1

Géométrie algébrique élémentaire

Examen Final mardi 14 mai 2013 Durée : 3 heures Documents autorisés

Si $h \in \mathbb{C}[T_1, ..., T_n]$, on notera $h_{T_i} := \partial_{T_i} h$ et $h_{T_i T_i} := \partial^2 h / \partial_{T_i} \partial_{T_i}$.

Exercice 1 Si $F \in \mathbb{C}[X,Y,Z]$ est un polynôme homogène, on pose

$$H_F := \left| egin{array}{cccc} F_{XX} & F_{XY} & F_{XZ} \\ F_{YX} & F_{YY} & F_{YZ} \\ F_{ZX} & F_{ZY} & F_{ZZ} \end{array} \right| .$$

En particulier, si F est de degré $d \ge 2$, le polynôme homogène H_F , s'il est non nul, est de degré 3(d-2).

Soit C une courbe $\subseteq \mathbb{P}^2$. Soit F un générateur de $I(C) \leq \mathbb{C}[X,Y,Z]$. On dit que $[a:b:c] \in C$ est un point d'inflexion de la courbe C si [a:b:c] est un point lisse de C et si $H_F(a,b,c)=0$.

1.1) Soit $\lambda \in \mathbb{C} \setminus \{0,1\}$. Montrer que la courbe affine plane d'équation :

$$y^2 = x(x-1)(x-\lambda)$$

est irréductible. On note C sa complétion projective dans \mathbb{P}^2 . Donner une équation F de C et montrer que C est lisse. Déterminer l'unique point à l'infini de C et montrer que c'est un point d'inflexion. Montrer que la courbe C a exactement 9 points d'inflexions.

1.2) On suppose que $F \in \mathbb{C}[X,Y,Z]$ est un polynôme homogène de degré d>1. On note L_1,L_2,L_3 les lignes du déterminant qui définit H_F . Montrer que :

$$XL_1 + YL_2 + ZL_3 = (d-1)(F_X, F_Y, F_Z)$$

en déduire que :

(1)
$$Z^{2}H_{F} = (d-1)^{2} \begin{vmatrix} F_{XX} & F_{XY} & F_{X} \\ F_{YX} & F_{YY} & F_{Y} \\ F_{X} & F_{Y} & dF/(d-1) \end{vmatrix}$$

On admettra que si $T:\mathbb{C}^3\to\mathbb{C}^3$ est une application $\mathbb{C}-\text{lin\'eaire},$ alors :

$$H_{F \circ T} = (\det T)^2 H_F \circ T$$
.

Si $x_0 \in \mathbb{A}^2$, $p,q \in \mathbb{C}[X,Y]$, on note (p,q) l'idéal engendré par p,q dans $\mathscr{O}_{\mathbb{A}^2,x_0}$, l'anneau des fonctions régulières au voisinage de x_0 , et :

$$I_{x_0}(p,q) := \dim_{\mathbb{C}} \mathscr{O}_{\mathbb{A}^2,x_0}/(p,q)$$
.

- 1.3) Soit P := [0:0:1], O := (0,0). On note f(X,Y) := F(X,Y,1), $h(X,Y) := H_F(X,Y,1)$. En utilisant la formule (1), montrer que $I_O(f,h) = I_O(f,g)$ où $g := f_y^2 f_{xx} + f_x^2 f_{yy} 2f_x f_y f_{xy}$. On note $C \subseteq \mathbb{P}^2$ la courbe définie par F.
- 1.4) Montrer que si P est un point singulier de C, alors $I_O(f,h) \geq 2$.
- 1.5) On suppose que P est un point lisse de C et que $f_x(0,0) = 0$. Montrer que, à multiplication par une constante près,

 $f = y + ax^2 + bxy + cy^2 + dx^3 + py^3 + qx^2y + rxy^2 + des$ monômes de degrés ≥ 4 .

Vérifier que

$$g = 2a + 6dx + ty + des monômes de degrés > 1,$$

pour un certain $t \in \mathbb{C}$.

En déduire que $I_O(f,h) > 0 \Leftrightarrow a = 0$, $I_O(f,h) = 1 \Leftrightarrow a = 0$ et $d \neq 0$. Si $F_1, F_2 \in \mathbb{C}[X,Y,Z]$ sont des polynômes homogènes de degrés d_1, d_2 , si $P \in \mathbb{P}^2$, on pose :

$$I_P(F_1, F_2) := \dim \mathcal{O}_{\mathbb{P}^2, P}/(F_{1,*}, F_{2,*})$$

où $F_{i,*} := F_i/L_i^{d_i}$ pour certaines formes linéaires L_i non nulles en P. Si $C_1, C_2 \subseteq \mathbb{P}^2$ sont des courbes projectives irréductibles, on note :

$$I_P(C_1, C_2) := I_P(F_1, F_2)$$

où $F_i \in \mathbb{C}[X,Y,Z]$ est un générateur homogène de l'idéal $I(C_i)$ (pour i=1,2).

- 1.6) Soit $P \in C$ un point lisse, donner une équation linéaire de la tangente T_PC (vue comme droite projective de \mathbb{P}^2) en fonction de $F_X(P), F_Y(P), F_Z(P)$.
- 1.7) Montrer que si $P \in C$, alors :

$$H_F(P)=0 \Leftrightarrow \left\{ \begin{array}{c} P \text{ est un point singulier} \\ \\ \text{ou} \\ P \text{ est un point lisse et } I_P(C,T_PC) \geq 3 \end{array} \right.$$

(indication : traiter d'abord le cas où P = [0:0:1] et $f_x(0,0) = 0$, puis se ramener à ce cas par un changement linéaire de variables)

On dit qu'un point d'inflexion P de C est ordinaire si $I_P(C, T_PC) = 3$.

- 1.8) Montrer qu'une courbe $C \subseteq \mathbb{P}^2$ lisse et irréductible de degré > 2 a toujours au moins un point d'inflexion.
- 1.9) Soit $C \subseteq \mathbb{P}^2$ une cubique irréductible. On suppose que P := [0:0:1] est un point d'inflexion de C et que la tangente T_PC a pour équation y = 0 (on note [x:y:z] les coordonnées des points de \mathbb{P}^2). En utilisant la question 5), montrer qu'à une constante multiplicative près, le générateur F de I(C) est de la forme :

$$F = Z^2Y + bXYZ + cY^2Z \bmod \mathbb{C}[X, Y] .$$

pour certains $b, c \in \mathbb{C}$. Justifier l'existence d'un changement projectif de coordonnées qui transforme F en un polynôme homogène de la forme :

$$Z^2Y$$
 – une forme cubique en X,Y

(indication : considérer $Z \mapsto Z - b/2X - c/2Y$).

1.10) Déduire de la question précédente que toute courbe projective plane, irréductible et cubique est projectivement équivalente à une courbe d'une des équations suivantes :

$$Z^{2}Y = X^{3}, Z^{2}Y = X^{2}(X-Y), Z^{2}Y = X(X-Y)(X-\lambda Y), \lambda \in \mathbb{C} \setminus \{0,1\}.$$

1.11) En déduire qu'une cubique lisse irréductible a 9 points d'inflexions, tous ordinaires (indication : on pourra utiliser la question 1)).

Exercice 2 Soit T l'adhérence de $\{[1:t:t^2:t^3]:t\in\mathbb{C}\}$ dans \mathbb{P}^3 .

2.1) On considère le morphisme :

$$f: \mathbb{P}^1 \to \mathbb{P}^3, [s:t] \mapsto [s^3: s^2t: st^2: t^3]$$
.

Montrer que $f(\mathbb{P}^1) = T$ (indication : on rappelle (ou on admet) que l'image de f est fermée).

2.2) On pose:

$$Q_1 := \{ [x : y : z : w] : xz = y^2 \},$$

$$Q_2 := \{ [x : y : z : w] : xw = yz \},$$

$$Q_3 := \{ [x : y : z : w] : yw = z^2 \}.$$

Montrer que $T = Q_1 \cap Q_2 \cap Q_3$ mais que $T \neq Q_1 \cap Q_2$.

2.3) Soit $F \in \mathbb{C}[X, Y, Z, W]$ un polynôme homogène. Montrer que :

$$F = A(X, W) + YB(X, W) + ZC(X, W) \mod (XZ - Y^2, XW - YZ, YW - Z^2)$$

pour certains polynômes homogènes A,B,C (indication: montrer que le sous-espace des polynômes de la forme A(X,W)+YB(X,W)+ZC(X,W)+D(X,Y,Z,W) avec $D\in (XZ-Y^2,XW-YZ,YW-Z^2)$ est stable par multiplication par X,Y,Z,W).

- 2.4) En déduire que $I(T) = (XZ Y^2, XW YZ, YW Z^2)$.
- 2.5) Montrer que $T \cap \{[0:y:z:w]:y,z,w \in \mathbb{C}\} = \{[0:0:0:1]\}.$
- 2.6) Montrer que si l est une forme linéaire qui s'annule sur T, alors l=0.
- 2.7) En déduire que tout système de générateurs de I(T) contient au moins 3 éléments.
- 2.8) On pose $H_1 := \{ [x : y : z : w] : y^2 = xz \}, H_2 := \{ [x : y : z : w] : z^3 + xw^2 = 2yzw \}$. Montrer que $T = H_1 \cap H_2$.