Examen partiel durée : 2h30

Soit k un corps algébriquement clos. Soit $G = \mathrm{SL}_2(k)$. Soient :

$$B:=\left\{\left(\begin{array}{cc} x & y \\ 0 & x^{-1} \end{array}\right) \ : \ x\in k^\times, y\in k\right\}, \ U:=\left\{\left(\begin{array}{cc} 1 & y \\ 0 & 1 \end{array}\right) \ : \ y\in k\right\} \ .$$

- 1) Montrer que $(B, B) = B_u = U$.
- 2) Si $\chi:\mathbb{G}_m\to\mathbb{G}_m$ est un caractère, montrer qu'il existe $m\in\mathbb{Z}$ tel que :

$$\forall t \in \mathbb{G}_m, \, \chi(t) = t^m .$$

3) Si $\chi: B \to \mathbb{G}_m$ est un caractère, montrer qu'il existe $m \in \mathbb{Z}$ tel que :

$$\forall \left(\begin{array}{cc} x & y \\ 0 & x^{-1} \end{array}\right) \in B, \, \chi \left(\begin{array}{cc} x & y \\ 0 & x^{-1} \end{array}\right) = x^m \ .$$

On note χ_m le caractère ci-dessus et on pose :

$$V_m := \{ f \in k[G] : \forall g \in G, \forall b \in B, f(gb) = \chi_m(b)f(g) \}$$
.

4) Si $g \in G$, si $f \in k[G]$, on définit $\gamma(g)f \in k[G]$ par :

$$\forall x \in G, \, \gamma(g)f(x) := f(g^{-1}x) .$$

Vérifier que $\gamma(g)(V_m) \subseteq V_m$ pour tout m. On a donc une représentation rationnelle :

$$\gamma: G \to GL(V_m)$$

pour tout $m \geq 0$.

5) Soit ψ le morphisme :

$$\psi: G \to \mathbb{A}^2, g \mapsto g(e_1)$$

où $e_1 := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. On note T_0, T_1 les fonctions coordonnées sur \mathbb{A}^2 . Soit

 $m\geq 0$. Montrer que si $F\in k[T_0,T_1]$ est un polynôme homogène de degré $m\geq 0$, alors $\psi^*F\in V_m$. Pour tout $0\leq i\leq m$, on pose :

$$f_i := \psi^*(T_0^i T_1^{m-i}) \in k[G]$$
.

Déterminer
$$f_i \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
 pour tout $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \in G$.

6) Montrer que si $0 \le i \le m$, on a :

$$\forall x \in k^{\times}, \gamma \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} f_i = x^{m-2i} f_i$$

$$\forall y \in k, \, \gamma \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} f_i = \sum_{j=0}^i (-1)^{i-j} \binom{i}{j} y^{i-j} f_j .$$

7) Soit n_0 la matrice :

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) .$$

Montrer que Un_0B est un ouvert de G (indication : montrer que $Un_0B = G \setminus B$).

8) En déduire que si $f \in V_m$, il existe un polynôme en une variable $h \in k[T]$ tel que :

$$\forall \left(\begin{array}{cc} x & y \\ z & t \end{array}\right) \in G \setminus B, f \left(\begin{array}{cc} x & y \\ z & t \end{array}\right) = z^m h \left(\frac{x}{z}\right) .$$

- 9) Montrer que si m < 0, $V_m = 0$. Montrer que $V_0 = k$. Montrer que si $m \ge 0$, alors deg $h \le m$ et que $f_0, ..., f_m$ est une base de V_m .
- 10) Soit $m \geq 0$; montrer que si $f \in V_m^U$, i.e.: $\forall g \in U, \gamma(g)f = f$, alors $f \in kf_0$.
- 11) Si $m \geq 0$ on note L_m le sous-espace de V_m engendré par les :

$$\gamma(g)(f_0), g \in G$$
.

Montrer que L_m est irréductible (i.e. $L_m \neq 0$ et si $L \leq L_m$ est un sousespace G-stable (pour la représentation γ), alors L = 0 ou L_m). Montrer aussi que L_m est le seul sous-espace G-stable et irréductible de V_m .

- 12) Soit $m \ge 0$. Montrer que si k est de caractéristique 0 ou p > m, V_m est irréductible (indication : par exemple, vérifier d'abord que chaque sous-espace G-stable de V_m a une base formée de certains f_i).
- 13) Déterminer l'unique sous-espace G-stable irréductible de V_p si k est de caractéristique p>0.
- 14) Soit $r: G \to \operatorname{GL}(V)$ une représentation rationnelle de dimension finie. Soit V' le dual de V. On pose pour tout $g \in G$ et tout $\lambda \in V'$ et tout $v \in V$:

$$(r'(g)\lambda)(v) := \lambda(r(g^{-1})v) \ .$$

Montrer que $r':G\to \mathrm{GL}(V')$ est encore une représentation rationnelle de G.

15) Montrer qu'il existe $0 \neq v \in V$ et $m \in \mathbb{Z}$ tel que :

$$\forall \left(\begin{array}{cc} x & y \\ 0 & x^{-1} \end{array} \right) \in B, \, r \left(\begin{array}{cc} x & y \\ 0 & x^{-1} \end{array} \right) v = x^m v \ .$$

On définit alors l'application k-linéaire : $\phi: V' \to k[G]$ telle que

$$\forall \lambda \in V', \forall g \in G, \phi(\lambda)(g) = \lambda(r(g)v)$$
.

- 16) Montrer que Im $\phi \subseteq V_m$.
- 17) Montrer que si r est une représentation irréductible, alors ϕ est injective et $m \geq 0$.
- 18) Montrer que si r est une représentation irréductible, alors r' aussi. En déduire qu'il existe un unique $m \geq 0$ tel que V soit isomorphe à L_m (par un isomorphisme G-équivariant).