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INTRODUCTION

This paper is mainly meant to be a survey on two papers wriitethe same authors, namely
[RTW10] and [RTW11]; it also contains some further developments which we fouseful to men-
tion here. The general theme is to explain what the theorpalfyéic spaces in the sense of Berkovich
brings to the problem of compactifying Bruhat-Tits builg&

1. Bruhat-Tits buildings— The general notion of a building was introduced by J. Titghe
60ies Bou07, Exercises for IV.2]. These spaces are cell complexes,inatio have some nice
symmetry properties so that important classes of groupsanggn them. More precisely, it turned
out in practice that for various classes of algebraic grams generalizations, a class of buildings
is adapted in the sense that any group from such a class aglnvety transitive action on a suitable
building. The algebraic counterpart to the transitivitpperties of the action is the possibility to
derive some important structure properties for the group.

This approach is particularly fruitful when the class of e is that of simple Lie groups over
non-Archimedean fields, or more generally reductive graaes non-Archimedean valued fields —
see Sect. 3. In this case the relevant class of buildingsaisahEuclidean buildings (1.1)This
is the only situation in building theory we consider in thisper. Its particularly nice features are,
among others, the facts that in this case the buildings @arlis connected) gluings of Euclidean
tilings and that deep (non-positive curvature) metric axgots are therefore available; moreover, on
the group side, structures are shown to be even richer thaacted. For instance, topologically the
action on the buildings enables one to classify and undetstaaximal compact subgroups (which
is useful to representation theory and harmonic analysig) algebraically, it enables one to define
important integral models for the group (which is again ukgf representation theory, and which is
also a crucial step towards analytic geometry).

One delicate point in this theory is merely to prove that feudable non-Archimedean reductive
group, there does exist a nice action on a suitable Euclibedding: this is the main achievement
of the work by F. Bruhat and J. Tits in the 70i&&T72], [BrT84]. Eventually, Bruhat-Tits theory
suggests to see the Euclidean buildings attached to redugtoups over valued fields (henceforth
called Bruhat-Tits buildingy as non-Archimedean analogues of the symmetric spacesgafism
real reductive Lie groups, from many viewpoints at least.

2. Some compactification procedures Compactifications of symmetric spaces were defined and
used in the 60ies; they are related to the more difficult mobbf compactifying locally symmetric
spaces$at60H, to probability theory Fur63], to harmonic analysis... One group-theoretic outcome
is the geometric parametrization of classes of remarkallged subgroupsMoo64]. For all the
above reasons and according to the analogy between Brithditildings and symmetric spaces, it
makes therefore sense to try to construct compactificabbBsiclidean buildings.

The first construction is due to E. Landvogah96]: he uses there the fact that the construction of
the Bruhat-Tits buildings themselves, at least at the Imdéggnof Bruhat-Tits theory for the simplest
cases, consists in defining a suitable gluing equivalernadior for infinitely many copies of a well-
chosen Euclidean tiling. In Landvogt’s approach, the egjaivce relation is extended so that it glues
together infinitely many compactified copies of the Euclidéfing used to construct the building.
Another approach is more group-theoretic and relies onrtatgy with symmetric spaces: since the
symmetric space of a simple real Lie group can be seen as élse g maximal compact subgroups
of the group, one can compatify this space by taking its cén the (compact) Chabauty space
of all closed subgroups. This approach is carried out by Yw&c'h and the first authorGRO6];
it leads to statements in group theory which are analogu¢Mob64] (e.g., the virtual geometric
classification of maximal amenable subgroups) but the ndetbatains an intrinsic limitation due to
which one cannot compactify more than the set of verticeb@Bruhat-Tits buildings.



The last author of the present paper also constructed cdifigettons of Bruhat-Tits buildings, in
at least two different ways. The first way is specific to theeazfghe general linear group: going back
to Bruhat-Tits’ interpretation of Goldman-Iwahori’s wofs163], it starts by seeing the Bruhat-Tits
building of GL(V) —where V is a vector space over a discretely valued non-Aretdean field — as
the space of (homothety classes of) non-Archimedean nomé. oThe compactification consists
then in adding at infinity the (homothety classes of) norezewn-Archimedean seminorms on V.
Note that the symmetric space of R) is the set of normalized scalar productsRihand a natural
compactification consists in projectivizing the cone ofifies nonzero semidefinite bilinear forms:
what is done in \\Ver04] is the non-Archimedean analogue of this; it has some cdioreavith
Drinfeld spaces and is useful to our subsequent compaditficin the vein of Satake’s work for
symmetric spaces. The second way is related to represemthgory WerQ7]: it provides, for a
given group, a finite family of compactifications of the Brt#i&s building. The compactifications,
asin E. Landvogt's monograph, are defined by gluing comfi@dtEuclidean tilings but the variety of
possibilities comes from exploiting various possibibitief compactifying equivariantly these tilings
in connection with highest weight theory.

3. Use of Berkovich analytic geometry The compactifications we would like to introduce here
make a crucial use of Berkovich analytic geometry. Thereaateally two different ways to use the
latter theory for compactifications.

The first way is already investigated by V. Berkovich himsgtien the algebraic group under
consideration is splitBer90, Chap. 5]. One intermediate step for it consists in definimgag@ from
the building to the analytic space attached to the algelgaiap: this map attaches to each point
of the building an affinoid subgroup,Gwhich is characterized by a unique maximal pa¥ik) in
the ambient analytic space of the group. The nfajg a closed embedding when the ground field
is local; a compactification is obtained whénis composed with the (analytic map) associated to
a fibration from the group to one of its flag varieties. One mistan this way the finite family of
compactifications described iMer07]. One nice feature is the possibility to obtain easily maps
between compactifications of a given group but attachedstindt flag varieties. This enables one to
understand in combinatorial Lie-theoretic terms whichrimary components are shrunk when going
from a "big" compactification to a smaller one.

The second way mimicks |. Satake’s work in the real case. Mogeisely, it uses a highest weight
representation of the group in order to obtain a map from thieling of the group to the building of
the general linear group of the representation space wagke said before, is nothing else than a
space of non-Archimedean norms. Then it remains to use themeem compactification mentioned
above by taking the closure of the image of the composed roaptiie building to the compact space
of (homothety classes of) seminorms on the non-Archimede@aresentation space.

For a given group, these two methods lead to the same famitpmipactifications, indexed by
the conjugacy classes of parabolic subgroups. One integesbint in these two approaches is the
fact that the compactifications are obtained by taking tbewke of images of equivariant maps. The
construction of the latter maps is also one of the main difiies; it is overcome thanks to the fact
that Berkovich geometry has a rich formalism which combieeblniques from algebraic and analytic
geometry (the possibility to use field extensions, or thecephof Shilov boundary, are for instance
crucial to define the desired equivariant maps).

Structure of the paper. In Sect. 1, we define (simplicial and non-simplicial) Euekah buildings
and illustrate the notions in the case of the groups; 8te also show in these cases how the natural
group actions on the building encode information on the gisttucture of rational points. In Sect. 2,
we illustrate general notions thanks to the examples ofespaaturally associated to special linear
groups (such as projective spaces); this time the notiansedgvant to Berkovich analytic geometry
and to Drinfeld upper half-spaces. We also provide specifiernples of compactifications which we
generalize later. In Sect. 3, we sum up quickly what we nea BBruhat-Tits theory, including the
existence of integral models for suitable bounded openrsuipg; following the classical strategy, we



first show how to construct a Euclidean building in the s@ie by gluing together Euclidean tilings,
and then how to rely on Galois descent arguments for nonssadéy split groups. In Sect. 4, we
finally introduce the maps that enable us to obtain compeatifins of Bruhat-Tits buildings (these
maps from buildings to analytifications of flag varietieséaeen previously defined by V. Berkovich
in the split case); a variant of this embedding approactsecto Satake’s ideas using representation
theory to compactify symmetric spaces, is also quickly gmésd. At last, Sect. 5 contains a new
result, namely an intrinsic characterization of the imafythe embedding we use, from Bruhat-Tits
building to the analytification of the group; this gives a naescription of the building in terms of
multiplicative norms on the coordinate rings of the group.

Acknowledgements. We warmly thank the organizers of the summer school "Bedtogpaces”
held in Paris in July 2010.

Conventions. In this paper, as inger9(Q], valued fields are assumed to be non-Archimedean and
complete, the valuation ring of such a fikds denoted byk°, its maximal ideal is byk°° and its
residue field byk = k°/k>°. Moreover alocal fieldis a non-trivially valued non-Archimedean field
which is locally compact for the topology given by the valaat(i.e., it is complete, the valuation is
discrete and the residue field is finite).

1. BUILDINGS AND SPECIAL LINEAR GROUPS

We first provide a (very quick) general treatment of Euclidé&aildings; general references for
this notion are Rou09 and [Wei09]. It is important for us to deal with the simplicial as well as
the non-simplicial version of the notion of a Euclidean ding because compactifying Bruhat-Tits
buildings via Berkovich techniques uses huge valued fi€léh& second part illustrates these defini-
tions for special linear groups; in particular, we show howinterpret suitable spaces of horms to
obtain concrete examples of buildings in the case when gebedic group under consideration is the
special linear group of a vector space. These spaces of neithmaturally be extended to spaces of
(homothety classes of) seminorms when buildings are ceresidn the context of analytic projective
spaces.

1.1. Euclidean buildings

Euclidean buildings are non-Archimedean analogues of Rigrian symmetric spaces of the non-
compact type, at least in the following sense: if G is a singigbraic group over a valued field
k, Bruhat-Tits theory (often) associates to G d&nd metric space, called a Euclidean building, on
which G(k) acts by isometries in a "very transitive” way. This is a ditwawhich is very close to
the one where a (hon-compact) simple real Lie group actssoasiociated (non-positively curved)
Riemannian symmetric space. In this more classical casdrdhsitivity of the action, the explicit
description of fundamental domains for specific (e.g., maicompact) subgroups and some non-
positive curvature arguments lead to deep conjugacy andtste results — sedfau09] and [Par09]
for a modern account. Euclidean buildings are singularepéaat, by and large, play a similar role
for non-Archimedean Lie groups(&) as above.



1.1.1. Simplicial definition

The general reference for building theory from the variodiscrete" viewpoints isAB08]. Let
us start with an affine reflection group, more precisetyoxeter group of affine tyg@ou07]. The
starting point to introduce this notion is a locally finitenfdy of hyperplanes — calledvalls — in
a Euclidean spacddc. cit., V 81 introduction]. An affine Coxeter group can be seen asoamr
generated by the reflections in the walls, acting properltherspace and stabilizing the collection of
walls [loc. cit., V 83 introduction]; it is further required that the action each irreducible factor of
the ambient space be via an infinéssentiagroup (no non-zero vector is fixed by the group).

Example 1.1 — 1. The simplest (one-dimensional) example of a Euclidéig is provided by
the real line tesselated by the integers. The corresporaffitge Coxeter group, generated by
the reflections in two consecutive vertices (i.e., integasshe infinite dihedral group

2. The next simplest (irreducible) example is provided by tibsselation of the Euclidean plane
by regular triangles. The corresponding tiling group is@oxeter group of affine typévz; it is
generated by the reflections in the three lines supportiegtlyes of any fundamental triangle.

Note that Poincaré’s theorem is a concrete source of Ewaclidiéings: start with a Euclidean
polyhedron in which each dihedral angle between codimensitaces is of the fornfl for some
integerm > 1 (depending on the pair of faces), then the group generateédebreflections in these
faces is an affine Coxeter groud§s88, IV.H.11].

In what follows, > is a Euclidean tiling giving rise to a Euclidean reflectioomgp by Poincaré’s
theorem (in Bourbaki's terminology, it can also be seen asnidtural geometric realization of the
Coxeter complex of an affine Coxeter group, that is the afition of the Tits’ cone of the latter
group Bou07).

Definition 1.2 — Let(Z,W) be a Euclidean tiling and its associated Euclidean reflectiooup. A
(discrete) Euclidean builidinof type (Z,W) is a polysimplicial complex, sag, which is covered
by subcomplexes all isomorphic ®o— called theapartments- such that the following incidence
properties hold.

(SEB 1) Any two cells ofZ lie in some well-chosen apartment.
(SEB 2) Given any two apartments, there is an isomorphism betwesn ftxing their intersection .

The cells in this context are callddcetsand the group W is called thé/eyl groupof the building
2. The facets of maximal dimension are cal&doves

The axioms of a Euclidean building can be motivated by me&ésons. Indeed, once the choice
of aW-invariant Euclidean metric ok has been made, there is a natural way the define a distance on
the whole building: given any two pointsandx’ in %, by (SEB 1) pick an apartmerdt containing
them and consider the distance betwrandx' taken inA; then (SEB 2) implies that the so—obtained
non-negative number doesn’t depend on the choic&. ot requires further work to check that one
defines in this way a distance on the building (i.e., to chiek the triangle inequality hold®ar00,
Prop. 11.1.3]).

Remark 1.3 — The terminology "polysimplicial" refers to the fact thatbuilding can be a direct
product of simplicial complexes rather than merely a sigiglicomplex; this is why we provisionally
used the terminology "cells" instead of "polysimplices"state the axioms (as already mentioned,
cells will henceforth be called facets — alcoves when theyep-dimensional).

Let us provide now some examples of discrete buildings spoeding to the already mentioned
examples of Euclidean tilings.

Example 1.4 — 1. The class of buildings of typ&R, D.,) coincides with the class of trees with-
out terminal vertex (recall that a tree is a 1-dimensionalpicial complex —i.e., the geometric
realization of a graph — without non-trivial looS¢r77).

2. A 2-dimensionalA,-building is already impossible to draw, but roughly spegkit can be con-
structed by gluing half-tilings to an initial one along vea(l.e., fixed point sets of reflections)



and by iterating these gluings infinitely many times prodi@eprescribed "shape" of neighbor-
hoods of vertices is respected — see Example 1.7 for furétailsl on the local description of a
building in this case.

It is important to note that axiom (ii) doa®t require that the isomorphism between apartments
extends to a global automorphism of the ambient buildingfabt, it may very well happen that
for a given Euclidean buildingZ we have Aut#) = {1} (take for example a tree in which any
two distinct vertices have distinct valencies). Howevefits’ classification of Euclidean buildings
[Tit86] implies that in dimension: 3 any irreducible building comes — via Bruhat-Tits theoeg aext
remark — from a simple algebraic group over a local field, &edefore admits a large automorphism
group. At last, note that there do exist 2-dimensional exgticlidean buildings, with interesting but
unexpectedly small automorphism grougs{00].

Remark 1.5 — In Sect. 3, we will briefly introduce Bruhat-Tits theoryh& main outcome of this
important part of algebraic group theory is that, given aisanple algebraic group G over a local
field k, there exists a discrete Euclidean buildisgg= %(G, k) on which the group of rational points
G(k) acts by isometries and strongly transitively (i.e., tramsly on the inclusions of an alcove in an
apartment).

Example 1.6 — Let G as above be the group $LThen the Euclidean building associated te &L
a Euclidean building in which every apartment is a Coxetengex of typeA,, that is the previously
described 2-dimensional tiling of the Euclidean spRéeby regular triangles. Strong transitivity of
the Slg(k)-action means here that given any alcoves (triangtes)and any apartment&, A’ such
thatc C A andc’ C A’ there existg € SL3(k) such that’ = g.candA’ = g.A.

The description of the apartments doesn’t depend on théfietdk (only on the Dynkin diagram
of the semisimple group in general), but the fikldlays a role when one describes the combinatorial
neighborhoods of facets, or small metric balls around eesti Such subsets, which intersect finitely
many facets whek is a local field, are known to be realizations of some (sphérlauildings: these
buildings are naturally associated to semisimple grouparécterized by some subdiagram of the
Dynkin diagram of G) over the residue fietbf k.

Example 1.7 — For G= SLz andk = Qp, each sufficiently small ball around a vertex is the flag
complex of a 2-dimensional vector space o¥eipZ and any edge in the associated Bruhat-Tits
building is contained in the closure of exacthy 1 triangles. A suitably small metric ball around
any point in the relative interior of an edge can be seen asjagtive line oveiZ / pZ, that is the flag
variety of Slp overZ /pZ.

1.1.2. Non-simplicial generalization

We will see, e.g. in 4.1, that it is often necessary to undadseaind use reductive algebraic groups
over valued fields fonon-discretevaluations even if in the initial situation the ground fietddis-
cretely valued. The geometric counterpart to this is thessary use of non-discrete Euclidean build-
ings. The investigation of such a situation is already ceddyy the fundamental work by F. Bruhat
and J. Tits as written irgrT72] and [BrT84], but the intrinsic definition of a non-discrete Euclidean
building is not given there — se@if86] though, for a reference roughly appearing at the same time
as Bruhat-Tits’ latest papers.

The definition of a building in this generalized context istgimilar to the discrete one (1.1.1)
in the sense that it replaces an atlas by a collection ofe'sligvhich are still calle@partmentsand
turn out to be maximal flat (i.e., Euclidean) subspaces onedtilding is endowed with a natural
distance. What follows can be found for instance in A. Parssthesis Par0(Q].

Let us go back to the initial question.

Question 1.8 — Which geometry can be associated to a grog)®hen G is a reductive group
overk, a (not necessarily discretely) valued field?



The answer to this question is a long definition to swallowwsowill provide some explanations
immediately after stating it.

The starting point is again@dimensional Euclidean space, S8y, together with a finite group
W in the group of isometries IsofByec) =~ Og(R). By definition, avectorial wallin e is the
fixed-point set i ec Of a reflection inV and avectorial Weyl chambeis a connected component of
the complement of the union of the walls3e, so that Weyl chambers are simplicial cones.

Now assume that we are given an affine Euclidean spadi¢h underlying Euclidean vector space
Tvect. We have thus ISO0Z) ~ ISom(Zyect) X Zyect~ Og(R) x RY. We also assume that we are given
a groupW of (affine) isometries irx such that the vectorial part @ is W and such that there exists
a pointx € ¥ and a subgroup T Isom(Z) of translations satisfyingV =W - T; we use here the
notationW = Stalyy(X). A point x satisfying this condition is callespecial
Definition 1.9, — Let % be a setand let7 = {f : = — %} be a collection of injective maps, whose

images are calle@partmentsWe say thatZ is a Euclidean buildingof type(Z,W) if the apartments
satisfy the following axioms.

(EB 1) The family is stable by precomposition with any element of W (i.e., for b€ &7 and any
weW, we have dw € 7).

(EB2) Forany f, f’ € o the subse¥; 1 = f'~1(f(X)) is convex ir and there exists w W such that
we have the equality of restrictiori$ —1 o f') “ =Wz, -

(EB 3) Any two points of#Z are contained in a suitable apartment.

At this stage, there is a well-defined map# x % — R~o and we further require:

(EB 4) Given any (images of) Weyl chambers, there is an apartmeficohtaining sub-Weyl chambers
of each.
(EB 5) Given any inclusion x A of a point in an apartment, there is Rlipschitz retraction map
r=rya: % — Asuchthatiy=idy and ri(x) = {x}.
The above definition is taken fronPfr00, 11.1.2]; in these axioms &Veyl chambers the affine
counterpart to the previously defined notion dayl chambeand a "sub-Weyl chamber" is a trans-
late of the initial Weyl chamber which is completely contdrin the latter.

Remark 1.10 — A different set of axioms is given in G. Rousseau’s pay09, 86]. Itis inter-
esting because it provides a unified approach to simplicidlreon-simplicial buildings via incidence
requirements on apartments. The possibility to obtain adiserete building with Rousseau’s axioms
is contained in the model for an apartment and the definiti@facet as a filter. The latter axioms are
adapted to some algebraic situations which cover the caBeubfat-Tits theory over non-complete
valued fields — sedjou09, Remark 9.4] for more details and comparisons.

Remark 1.11 — In this paper we do not use the plain word "chamber" thotaghstandard termi-
nology in abstract building theory. This choice is made twideonfusion: alcoves here are chambers
(in the abstract sense) in Euclidean buildings and paisathetlasses of Weyl chambers here are cham-
bers (in the abstract sense) in spherical buildings at tgfofiEuclidean buildings.

It is easy to see that, in order to prove that the rdagefined thanks to axioms (EB 1)-(EB 3)
is a distance, it remains to check that the triangle inetyulblds; this is mainly done by using the
retraction given by axiom (EB 5). The previously quoted fcetrotivation (Remark 1.3) so to speak
became a definition. Note that the existence of suitablacttns is useful to other purposes.

The following examples of possibly non-simplicial Euckatebuildings correspond to the examples
of simplicial ones given in Example 1.4.

Example 1.12 — 1. Consider the real lin& = R and its isometry grouZ /2Z x R. Then a
Euclidean building of typéR,Z /2Z x R) is a real tree — see below.
2. For a 2-dimensional case extending simplidiatbuildings, a model for an apartment can be
taken to be a maximal flat in the symmetric space of(®)/SO(3) acted upon by its stabilizer
in SL3(R) (using the notion of singular geodesics to distinguish ta#sk There is a geometric
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way to define the Weyl group and Weyl chambers (six directiginsimplicial cones) in this
differential geometric context — sellfu09] for the general case of arbitrary symmetric spaces.

Here is a (purely metric) definition of real trees. It is a rieetpace(X,d) with the following two
properties:
(i) itis geodesic given any two points, X' € X there is a (continuous) map: [0;d] — X, where
d = d(x,X), such that(0) = x, y(d) =X andd(y(s),y(t)) =|s—t| for anyst € [0;d];
(i) any geodesic triangle is a tripod (i.e., the union ofetlirgeodesic segments with a common
end-point).
Remark 1.13 — Non-simplicial Euclidean buildings became more popw@ce recent work of
geometric (rather than algebraic) nature, where non-elisdsuildings appear as asymptotic cones of
symmetric spaces and Bruhat-Tits building$.97].

The remark implies in particular that there exist non-aigeiEuclidean buildings in any dimension,
which will also be seen more concretely by studying spacewofArchimedean norms on a given
vector space —see 1.2.

Remark 1.14 — Note that given a reductive group G over a valued fieBruhat-Tits theory "often"
provides a Euclidean building on which the groufkizacts strongly transitively in a suitable sense
(see Sect. 3 for an introduction to this subject).

1.1.3. More geometric properties

We motivated the definitions of buildings by metric considiems, therefore we must mention
the metric features of Euclidean buildings once these sphaee been defined. First, a Euclidean
building always admits a metric whose restriction to anyrpent is a (suitably normalized) Eu-
clidean distanceRou09, Prop. 6.2]. Endowed with such a distance, a Euclideanibgili$ always a
geodesic metric space as introduced in the above metrigtiefiof real trees (1.1.2).

Recall that we use the axion(EB) from Def. 1.9 to define a building; moreover we assume that
the above metric is complet&his is sufficient for our purposes since we will eventualfabwith
Bruhat-Tits buildings associated to algebraic groups owenplete non-Archimedean fields.

Let (#,d) be a Euclidean building endowed with such a metric. Thend) satisfies moreover a
remarkable non-positive curvature property, called th& @#property(where "CAT" seems to stand
for Cartan-Alexandrov-Toponogov). Roughly speakings tirioperty says that geodesic triangles are
at least as thin as in Euclidean planes. More precisely, ¢ 5 to compare a geodesic triangle
drawn in % with "the" Euclidean triangle having the same edge lengthgieodesic space is said
to have the CAJ0)-property, or to be CAT(0), if a median segment in each geodesic triangle is at
most as long as the corresponding median segment in the cismp&iangle drawn in the Euclidean
planeR? (this inequality has to be satisfied for all geodesic triaayyl Though this property is stated
in elementary terms, it has very deep consequeriRea(9, §87].

One first consequence is the uniqueness of a geodesic sebatemten any two pointsBH99,
Chap. II.1, Prop. 1.4].

The main consequence is a famous and very useful fixed-popegy. The latter statement is
itself the consequence of a purely geometric one: any baliedbset in a complete, CAT(0)-space
has a unique, metrically characterized, baryce#t&08, 11.3]. This implies that if a group acting by
isometries on such a space (e.g., a Euclidean building) basirzded orbit, then it has a fixed point.
This is theBruhat-Tits fixed point lemmaé applies for instance to any compact group of isometries.

Let us simply mention two very important applications of Brihat-Tits fixed point lemma (for
simplicity, we assume that the building under considermat®discrete and locally finite — which
covers the case of Bruhat-Tits buildings for reductive geoaver local fields).

1. The Bruhat-Tits fixed point lemma is used to classify matibounded subgroups in the isom-
etry group of a building. Indeed, it follows from the definiti of the compact open topology
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on the isometry group AQ#4) of a building %, that a facet stabilizer is a compact subgroup
in Aut(#). Conversely, a compact subgroup has to fix a point and thist pain be sent to

a point in a given fundamental domain for the action of (Adj on % (the isometry used for
this conjugates the initial compact subgroup into the 8taiof a point in the fundamental
domain).

2. Another consequence is that any Galois action on a BrTite&building has "sufficiently many"
fixed points, since a Galois group is profinite hence compdttese Galois actions are of
fundamental use in Bruhat-Tits theory, following the gehédea — widely used in algebraic
group theory — that an algebraic group G okés nothing else than a split algebraic group over
the separable closuk&, namely Gy k®, together with a suitable action of Gkt/k) on Gy k®
[Bor91, AG 811-14].

Arguments similar to the ones mentioned in 1. imply that, mkés a local field, there are exactly

d -+ 1 conjugacy classes of maximal compact subgroups i 8k). They are parametrized by the
vertices contained in the closure of a given alcove (in féxety are all isomorphic to §i;1(k°) and
are all conjugate under the action of &k (k) by conjugation).

Remark 1.15 — One can make 2. a bit more precise. The starting point oh&riliits theory

is indeed that a reductive group G over any field, kagplits — hence in particular is very well
understood — after extension to the separable cldsuoé the ground field. Then, in principle, one
can go down to the group G ovkrby means of a suitable Galois action — this is one leitmotiv in
[BT65]. In particular, Borel-Tits theory provides a lot of infoation about the group &) by seeing

it as the fixed-point set &)®2(</K  When the ground fielllis a valued field, then one can associate
a Bruhat-Tits buildingZ = %(G, k®) to Gy k® together with an action by isometries of @&//K).
The Bruhat-Tits building of G ovek is contained in the Galois fixed-point s@®2(</%) | but this is
inclusion is strict in general: the Galois fixed-point sebigger than the desired buildingRpu77,

I11]; this point is detailed in 5.2. Still, this may be a goodstiapproximation of Bruhat-Tits theory to
have in mind. We refer to 3.2.2 for further details.

1.2. TheSL;, case

We now illustrate many of the previous notions in a very eip8ituation, of arbitrary dimension.
Our examples are spaces of norms on a non-Archimedean \&ioe. They provide the easiest
examples of Bruhat-Tits buildings, and are also very closgpaces occurring in Berkovich analytic
geometry. In this section, we denote by W-&ector space and by+ 1 its (finite) dimension ovek.

Note that until Remark 1.23 we assume that k is a local field.

1.2.1. Goldman-lwahori spaces

We are interested in the following space.

Definition 1.16 — The Goldman-lwahorispace of the k-vector spaceé is the space of non-
Archimedean norms oN’; we denote it by.4"(V,k). We denote by?2"(V,k) the quotient space
A (V,K)
To be more precise, lét- || and|| - || be norms in4"(V,k). We have|| - ||~|| - ||" if and only if
there existx > 0 such thaf| x||= c || x|’ for all x € V. In the sequel, we use the notatiph. to
denote the class with respect to the homothety equivalexiagan.
Example 1.17 — Here is a simple way to construct non-Archimedean norm¥ oPick a basis
e = (ep,€1,...,64) in V. Then for each choice of parametars= (cp,cC1,...,Cq) € RI*1 we can
define the non-Archimedean norm which sends each vectof; Aje to max{exp(c) |Ai |}, where
| - | denotes the absolute valuelofWe denote this norm by - |[ec.

We also introduce the following notation and terminology.

, Where~ is the equivalence relation which identifies two homothedions.
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Definition 1.18 — (i) Let|| - || be anorm and le¢be a basis itV. We say thal - || is diagonalized
by eif there exists & R*1 such that]| - ||=|| - |lec; in this case, we also say that the basis
adaptedo the norm|| - ||.

(i) Given a basi®, we denote b%; the set of norms diagonalized by

Ae={|| - fec: c€ RIH

. ~ . . A
(iii) We denote by the quotient of\¢ by the homothety equivalence relatiag = —.

~

Note that the spacKe is naturally an affine space with underlying vector spR€e’: the free
transitive R%+1-action is by shifting the coefficients which are the logarithms of the "weights"
exp(ci) for the norms|| - |lec: SiAie — maxo<i<a{exp(c) | Ai|}. Under this identification of affine

Rd+l
R(1,1,....1)
Remark 1.19 — The space?’(V, k) will be endowed with a Euclidean building structure (Th3).2
in which the spaces. — with e varying over the bases of V — will be the apartments.

The following fact can be generalized to more general vafigdds than local fields but isottrue
in general (Remark 1.24).

Proposition 1.20 — Every norm of#"(V, k) admits an adapted basis W.

Proof.— Let|| - || be a norm of 4" (V,k). We prove the result by induction on the dimension of the
ambientk-vector space. Lat be any non-zero linear form on V. The map-\{0} — R, sendingy to
(1Y)

Iyl

compact, the projective spa&&V)(k) is compact, therefore there exists an elemeatV — {0} at
which @ achieves its supremum, so that

@)
& T
H(z)

Letzbe an arbitrary vector of V. We write=y-+ Wx according to the direct sum decomposition

spaces, we havel ~ ~ R4,

naturally provides, by homogeneity, a continuous rpagP(V)(k) — R... Sincek is locally

IIx||<||z]| for anyze V.

V = Ker(u) @ kx By the ultrametric inequality satisfied By ||, we have

. @)
(+) oo X
and

(1@

0 )yll I}
(1@
[H(X)|

inequality together with{x) implies that|| z||> max{|| y|l;

Hl()!

we obtain a basis adapted to the restrlctlmﬂ of| to Ker(u). Adding x we obtain a basis adapted to
| - ||, as required (note thej}% is the coordinate corresponding to the vectar any such basis)[]

(exx) - lyll< max(] z[f;

Inequality (x) says that ma{| z||;

IIX]|} =l z|l, so (xx*x) implies || z|| >| y||. The latter

1@ |
()]

|Ix]|}. Applying the induction hypothesis to Kgr),

|Ix||}. Combining this with(sxx)

we obtain the equalityl z||=

Actually, we can push a bit further this existence resultélaolapted norms.

Proposition 1.21 — For any two norms of#”(V, k) there is a basis o¥ simultaneously adapted to
them.

Proof— We are now given two norms, sdy- || and|| - ||’, in .#/(V,K). In the proof of Prop.
1.20, the choice of a non-zero linear foprhad no importance. In the present situation, we will take
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advantage of this freedom of choice. We again argue by ii@ucin the dimension of the ambient
k-vector space.
Iyl

Iyl
Y :P(V)(k) — R,. Again because the projective sp@t@/)(k) is compact, there existsc V — {0}

at which achieves its supremum, so that

vl Iyl
EIRET

Now we endow the dual space* With the operator nornj - ||* associated td - || on V. Since V
is finite-dimensional, by biduality (i.e. the normed vecspace version of ¥ ~ V), we have the

L]

By homogeneity, the map ¥ {0} — R, sendingy to naturally provides a continuous map

foranyy e V.

equality || x||= sup —. By homogeneity and compactness, there existsV* — {0} such
pev+—{0} ]l
that || x||= ||A)\)\(|)*|' For arbitraryy € V we have|A(y) |<|ly] - [| A ||*, so the definition ok implies
that
AM _ DIyl
for anyy € V.
XN

In other words, we have founde V andA € V* such that

AW Iyl iyl

ECINEINETE
Now we are in position to apply the arguments of the proof @ipPr1.20 to botH| - || and|| - ||’

foranyy e V.

. A A
to obtain that|| z||= ;%3” | x|} and || z||'= " ‘/\E)Z(;" | x|I'} for anyz e V
decomposed as= x+Yy with y € Ker(A). It remains then to apply the induction hypothesis (i.eaf th
the desired statement holds in the ambient dimension minus 1 O

1.2.2. Connection with building theory

It is now time to describe the connection between Goldmaahiwi spaces and Euclidean build-
ings. As already mentioned, the subspaégsvill be the apartments i (V,k) (Remark 1.19).

Let us fix a basigin V and consider first the bigger affine spate= {|| - lec: €€ RIFL} ~ RIFL,
The symmetric group”y ., 1 acts on this affine space by permuting the coefficientEhis is obviously
a faithful action and we have another one given by the affinecitre. We obtain in this way an
action of the group”y..1 x R1 on A and, after passing to the quotient space, we cages the
ambient space of the Euclidean tiling attached to the affive@r group of typé\q (the latter group
is isomorphic ta%y.1 x Z9). The following result is due to Bruhat-Tits, elaborating Goldman-
Iwahori’s investigation of the space of normg& (V, k) [GI63].

A (V,K)

Theorem 1.22 — The spaceZ? (V,k) = is a simplicial Euclidean building of typévd,

where d+ 1 = dim(V); in particular, the apartments are isometric ¢ and the Weyl group is
isomorphic to%y, 1 x Z9.

Reference— In [BrT72, 10.2] this is stated in group-theoretic terms, so one hastobine the
guoted statement withdc. cit., 7.4] in order to obtain the above theorem. This will be eix@éd in
Sect. 3. O

The 0-skeleton (i.e., the vertices) for the simplicial stawe corresponds to tHé-latticesin the
k-vector space V, that is the fré&&-submodules in V of rankl + 1. To a lattice? is attached a norm
| - |l.# by setting||x|| .= inf{|A|: A € k* andA ~1x € .#}. One recovers thi-lattice . as the unit
ball of the norm|| - || &
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Remark 1.23 — Note that the space (V,K) is an extended building in the sense Bit79]; this is,
roughly speaking, a building to which is added a Euclideatofain order to account geometrically
for the presence of a center of positive dimension.

Instead of trying to prove this result, let us mention thaiPrl.21 says, in our building-theoretic
context, that any two points are contained in an apartmenatHer words, this proposition implies
axiom (SEB 1) of Def. 1.2: it is the non-Archimedean analogtithe fact that any two real scalar
products are diagonalized in a suitable common basis (Gelnmidt).

Now let us skip the hypothesis thiais a local field. Ifk is a not discretely valued, then it is not
true in general that every norm irt’(V, k) can be diagonalized in some suitable basis. Therefore we
introduce the following subspace:

A (V,k)989 = fnorms in.#(V, k) admitting an adapted bagis
Remark 1.24 — We will see (Remark 2.2) that the connection between Backaprojective spaces

and Bruhat-Tits buildings helps to understand why(V k) — .4 (V,k)¥39 £ & if and only if the
valued fieldk is not maximally complete (one also says spherically coteple

Thanks to the subspacé’(V,k)%29, we can state the result in full generality.

JV(V, k)diag

Theorem 1.25 — The space? (V,k) = is a Euclidean building of typé\vd in which

the apartments are isometric 9 and the Weyl group is isomorphic t&,1 x A whereA is a
translation group, which is discrete if and only if so is tl@uation of k.

Reference— This is proved for instance iPar00, 111.1.2]; see alsoBrT84] for a very general
treatment. O

. 2 . o JV(V,k)diag
Example 1.26 — Ford =1, i.e. when V~ k¢, the Bruhat-Tits building2"(V,k) = ———

given by Theorem 1.25 is a tree, which is a (non-simpliciaBl tree whenevek is not dichreter
valued.

1.2.3. Group actions

After illustrating the notion of a building thanks to Goldmévahori spaces, we now describe the
natural action of a general linear group over the valued #eda its Bruhat-Tits building. We said
that buildings are usually used to better understand gretapsh act sufficiently transitively on them.
We therefore have to describe the (. k)-action on.2"(V,k) given by precomposition on norms
(thatis,g. || - || =] - || cg~* for anyg € GL(V,k) and any|| - |€ .#/(V,k)). Note that we have the
formula

g |l - llec=Il - llgec-
We will also explain how this action can be used to find intiengsdecompositions of GV, k).
Note that the GLV,k)-action on.2"(V,K) factors through an action by the group PGLK).

For the sake of simplicity, we assume that k is discretelyacuntil the rest of this section

We describe successively: the action of monomial matricgde corresponding apartment, stabi-
lizers, fundamental domains and the action of elementaigotent matrices on the buildings (which
can be thought of as "foldings" of half-apartments fixing pbementary apartments).

First, it is very useful to restrict our attention to apartitse Pick a basis of V and consider the
associated apartemeAt. The stabilizer ofAe in GL(V,K) consists of the subgroup of linear au-
tomorphismsg which aremonomialwith respect tcg, that is whose matrix expression with respect
to e has only one non-zero entry in each row and in each column;enetd N = Staly (v k) (Ae)-
Any automorphism in N lifts a permutation of the indices of the vectas(0 <i < d) in e. This
defines a surjective homomaorphism N .%4,1 whose kernel is the group, say,»f the linear au-
tomorphisms diagonalized lgy The group RN SL(V,K) lifts the translation subgroup of the (affine)
Weyl group.#4,1 x 2% of 27 (V,k). Note that the latter translation group consists of thestean
tions contained in the group generated by the reflectiortseirddimension 1 faces of a given alcove,
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therefore this group is (of finite index but) smaller than'tblevious” group given by translations with
integral coefficients with respect to the basig-or anyA € (k*)", we have the following "translation
formula™

A flec=I - e (c—togiy;»
Example 1.27 — Whend = 1 and wherk is local, the translations of smallest displacement length

in the (affine) Weyl group of the corresponding tree are tedimns whose displacement length along
their axis is equal to twice the length of an edge.

The fact stated in the example corresponds to the genetahttdhe SI(V, k)-action on2"(V, k)
is type(or color)-preserving choosingd + 1 colors, one can attach a color to e@emel(= codimen-
sion 1 facet) so that each color appears exactly once in tseir@ of any alcove; a panel of a given
color is sent by any element of 8¢, k) to a panel of the same color. Note that the action of\Glk),
hence also of PGV, k), on 2" (V,k) is not type-preserving since PG, k) acts transitively on the
set of vertices.

It is natural to first describe the isotropy groups for theasctve are interested in.
Proposition 1.28 — We have the following description of stabilizers:

Staks (v (Il - llec) = {9 € GL(V,K) : det(g) = 1 andlog(|gij |) < ¢ — G},
where[g;; | is the matrix expression @L(V,k) with respect to the basks
Reference— This is for instanceRarQ0, Cor. I1.1.4]. O

There is also a description of the stabilizer group i\8lk) as the set of matrices stabilizing a
point with respect to a tropical matrix operatiovgrll, Prop. 2.4].

We now turn our attention to fundamental domains. xée a vertex in2’(V,k). Fix a basise

such thax = [|| - ||eo]~. Then we have an apartmett containingx and the inequations
COSC < <Cg

define a Weyl chamber with tip (after passing to the homothety classes). The other Weyhbbes
with tip x contained inA¢ are obtained by using the action of the spherical Weyl gréyp;, which
amounts to permuting the indices of tgé& (this action is lifted by the action of monomial matrices
with coefficients+1 and determinant 1).

Accordingly, if we denote byo a uniformizer ofk, then the inequations

C<C<--<C and cg—Co< —log|w
define an alcove (whose boundary contath@nd any other alcove i is obtained by using the
action of the affine Weyl group”y,.1 x Z9.
Proposition 1.29 — Assume Kk is local. We have the following description of fumefztal domains.

() Given a vertex x, any Weyl chamber with tip x is a fundamerdadain for the action of the
maximal compact subgrougtaly v ) (x) on 2" (V,K).
(i) Any alcove is a fundamental domain for the natural actioBlofV, k) on the building2™(V, k).
If we abandon the hypothesis thais a locak field and assume the absolute valueisfsurjective
(ontoR>p), then the SLV,k)-action on.2"(V,K) is transitive.

Sketch of proof— (ii) follows from (i) and from the previous description tiie action of the
monomial matrices of Non Ae (note that SV, k) is type-preserving, so a fundamental domain
cannot be strictly smaller than an alcove).

(). A fundamental domain for the action of the symmetricugro#y. 1 as above on the apartment
Ag is given by a Weyl chamber with tig, and the latter symmetric group is lifted by elements in
Staly (v k) (X). Therefore it is enough to show that any point of the buildiag be mapped intd.
by an element of Stafpy k) (x). Pick a pointzin the building and consider a basissuch thatAy
contains bothx andz (Prop. 1.21). We can write= || - [[eo=]| - ||e.c, With weightscin log |k* | since
xis a vertex. After dilation, if necessary, of each vectorhaf basi€/, we may — and shall — assume
thatc = 0. Pickg € SL(V, k) such thag.e= €. Sincee and€ span the same lattideoverk®, which
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is the unit ball forx (see comment after Th. 1.22), we hayk = L and thereforey stabilizesx. We
have therefore found € Staly (v ) (X) with g.Ae = Ag, in particularg—.z belongs toAe. O

Remark 1.30 — Point (i) above is the geometric way to state the so-calladan decomposition:
SL(V,k) = Stalg (v k) (x) T+ Staky (v g (X), whereT+ is the semigroup of linear automorphisms
t diagonalized by and such that.x belongs to a fixed Weyl chamber i with tip x. The Weyl
chamber can be chosen so tfiat consists of the diagonal matrices whose diagonal coeftiiare
powers of some given uniformizer with the exponents indrgaalong the diagonal. Let us recall
how to prove this by means of elementary argumeRRY4, §83.4 p. 152]. Leg € SL(V,k); we
pick A € k° so thatAg is a matrix of GLV, k) with coefficients ink°. By interpreting left and right
multiplication by elementary unipotent matrices as matgperations on rows and columns, and since
k® is a principal ideal domain, we can firgl p’ € SLq.1(k°) such thatp~tAgp~! is a diagonal
matrix (still with coefficients ink®), which we denote by. Therefore, we can writg = pA —1dp’
and sincey, pandp’ have determinant 1, so does A ~1d. It remains to conjugat& —d by a suitable
monomial matrix with coefficients:1 and determinant 1 in order to obtain the desired deconiposit

At the beginning of this subsection, we described the aaifdmear automorphisms on an apart-
ment when the automorphisms are diagonalized by a basisrdgefire apartment. One last interesting
point is the description of the action of elementary unipbteatrices (for a given basis). The action
looks like a "folding" in the building, fixing a suitable cled half-apartment.

More precisely, let us introduce the elementary unipoteatricesu;; (v) = id + VE;; wherev € k
and E; is the matrix whose only non-zero entry is tfigj)-th one, equal to 1.

Proposition 1.31 — The intersectionten Uij (A).Ke is the half-space ofie consisting of the norms
| - llec satisfying ¢ —c; > log|A |. The isometry given by the matrix (A) fixes pointwise this
intersection and the image of the open half-apartnﬁgfe{n “|lec: €j —Ci > log | A |} is (another
half-apartment) disjoint fron&.

Proof— In the above notation, we havg (v)(3;Ai€) = Y. Ak& + (A + VAj)e for anyv € k.

First, we assume that we haug(A). || - |lec=|| - |lec- Then, applying this equality of norms to the
vectorej providese® = max{€“i;€" |A [}, hence the inequality; — ci > log |A |.

Conversely, pick a normj- ||ec such thatc; — ¢ > log | A | and letx = 3 Aig. By the ultrametric
inequality, we haves® | Aj —AA; |[< max{e“ |Ai|;€% | A [|Aj|}, and the assumptiog; — ¢; > log |
A | implies thate® |Aj —AA; |[< max{e€% | A [;€% | Aj |}, so thate | Aj —AAj |< maxici<d € | Ar].
Therefore we obtain thatj(A). || X [[ec<|| X ||ec for any vectorx. ReplacingA by —A andx by
uij (—A).x, we finally see that the norms (A). || - |lec and|| - ||ec are the same whesj —c; > log | A |.
We have thus proved that the fixed-point setigfA ) in Ac is the closed half-space ;D= {I llec:
Cj—Ci=log|A [}

It follows from this thatKem Uij ()\).Ke contains . Assume tha&m Uij ()\).Ke 2D, inorderto
obtain a contradiction. This would provide normis|| and| - ||" in Ae — D, with the property that

uij(A). || - ||=] - |I'. But we note that a norm iAe — D, is characterized by its orthogonal projection
onto the boundary hyperpla@D, and by its distance tdD,. Sinceu;j(A) is an isometry which
fixes D, we conclude thaf - ||=]| - ||, which is in contradiction with the fact that the fixed-poset

of uij(A) in Aeis exactly D). O
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2. SPECIAL LINEAR GROUPS , BERKOVICH AND DRINFELD SPACES

We ended the previous section by an elementary construofighe building of special linear
groups over discretely valued non-Archimedean field. Theegdization to an arbitrary reductive
group over such a field is significantly harder and requireduh development of Bruhat-Tits, which
will be the topic of Section 3. Before diving into the subidtof buildings construction, we keep for
a moment the particular case of special linear groups anttilesa realization of their buildings in
the framework of Berkovich’s analytic geometry, which lsagry naturally to a compactification of
those buildings. The general picture, namely Berkoviclizations and compactifications of general
Bruhat-Tits buildings will be dealt with in Sect. 4).

Roughly speaking understanding the realization (resp. pemtification) described below of the
building of a special linear group amounts to understandlimgnothety classes of) norms on a non-
Archimedean vector space (resp. their degenerationg)g uke viewpoint of multiplicative semi-
norms on the corresponding symmetric algebra.

A useful reference for Berkovich theory is§m11]. Unless otherwise indicated, we assume in this
section that k is a local field

2.1. Drinfeld upper half spaces and Berkovich affine and progctive spaces

Let V be a finite-dimensional vector space olkeand let SV be the symmetric algebra of V. It is
a gradedk-algebra of finite type. Every choice of a basgs. .., vy of V induces an isomorphism of
S*V with the polynomial ring ovek in d + 1 indeterminates. The affine spakéV) is defined as the
spectrum Spd&°V), and the projective spad¥V) is defined as the projective spectrum P8 ).
These algebraic varieties give rise to analytic spacesdanstimse of Berkovich, which we briefly
describe below.

2.1.1. Drinfeld upper half-spaces in analytic projective paces

As a topological space, the Berkovich affine spa¢¥)2"is the set of all multiplicative seminorms
on SV extending the absolute value &riogether with the topology of pointwise convergence. The
Berkovich projective spacg(V)2" is the quotient ofA (V)3 — {0} modulo the equivalence relation
~ defined as followso ~ 3, if and only if there exists a constant> 0 such that for allf in S"V we
havea (f) = c"B(f). There is a natural PGV )-action onP(V )" given byga = a og~*. From the
viewpoint of Berkovich geometry, Drinfeld upper half-spaaan be introduced as followBgro5.
Definition 2.1L. — We denote by the complement of the union of all k-rational hyperplanes in
P(V)2". The analytic spac® is called Drinfeld upper half space.

Our next goal is now to mention some connections between libeeaanalytic spaces and the
Euclidean buildings defined in the previous section.

2.1.2. Retraction onto the Bruhat-Tits building

Let a be a point inA(V)2", i.e. a is a multiplicative seminorm on*¥. If a is not contained in
anyk-rational hyperplane of.(V), then by definitionor does not vanish on any element d\S= V.
Hence the restriction of the seminommto the degree one part'$ = V is a norm. Recall that the
Goldman-lwahori spacet’ (V. k) is defined as the set of all non-Archimedean norms on V, artd tha
Z (V,k) denotes the quotient space after the homothety relati@l{l.Passing to the quotients we
see that restriction of seminorms induces a map

1T:Q— 2°(V,Kk).

If we endow the Goldman-Iwahori spacé (V,k) with the coarsest topology, so that all evaluation
maps on a fixed € V are continuous, an&”(V, k) with the quotient topology, thenis continuous.
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Besides, it is equivariant with respect to the action of PGlk). We refer to RTW11, §3] for further
details.

2.1.3. Embedding of the building (case of the special lineagroup)

Let now y be a non-trivial norm on V. By Proposition 1.20, there exitsasisey,...,eq4 of V
which is adapted tg, i.e. we have

y(TiAie) = max{exp(c)|Ail}

for some real numbersp,...,cq. We can associate tpa multiplicative seminornj(y) on SV by

mapping the polynomia§|:(i()mid)a,e'(g’...ei(;j to max{|a|exp(ioCo + ... +1i4Cq)}. Passing to the
guotients, we get a continuous map

it 2 (VK — Q

satisfyingt (j(a)) = a.

Hencej is injective and is a homeomorphism onto its image. Theeefioe mapj can be used to
realize the Euclidean building” (V, k) as a subset of a Berkovich analytic space. This observation i
due to Berkovich, who used it to determine the automorphissogofQ [Ber95].

Remark 2.2 — In this remark, we remove the assumption tkads local and we recall that the
building 2" (V, k) consists of homothety classesdifgonalizablenorms on V (Theorem 1.25). As-
suming din{V) = 2 for simplicity, we want to rely on analytic geometry to peothe existence of
non-diagonalizable norms on V for sorke

The mapj : 2" (V,k) — P1(V)3 can be defined without any assumptionlonGiven any point
xe Z (V,k), we pick a basie = (ep, e;) diagonalizingx and defing (x) to be the multiplicative norm
on S (V) mapping an homogenenous polynoniak 3, a,e°€]* to max,{|av |- |eo|(X)" - |er|(x) " }.
We do not distinguish betweefd” (V,k) and its image byj in P(V)2", which consists only of points
of types 2 and 3 (this follows fronTlem11, 3.2.11]).

Let us now consider the subs@t of Q = P(V)2"—P(V)(k) consisting of multiplicative norms
on S (V) whose restriction to V is diagonalizable. The mapntroduced above is well-defined
on Q" by 1(2) = zy. This gives a continuous retraction ©f onto .2"(V,k). If we hadQ' = Q
in the case considered abouelgcal), the inclusion is strict in general. For example,uass that
k= C;, is the completion of an algebraic closure@f; this non-Archimedean field is algebraically
closed but not spherically complete. In this situati@gontains a point of type 4 [Tem11, 2.3.13],
which we can approximate by a sequerigg) of points in 2" (V,k) (this is the traduction of the
fact thatz corresponds to a decreasing sequence of closed b&llwith empty intersectionTem1l,
2.3.11.(iii))]). Now, ifze Q/, thenr(z) =r (limx,) =lim r(x,) = lim x, = zand therefore belongs
to 2 (V,k). Since the latter set contains only points of type 2 or 3,¢hisnot happen ard Q'; in
particular, the restriction afto V produces a norm which is not diagonalizable.

2.2. Afirst compactification

Let us now turn to compactification of the builditgy (V, k). We give an outline of the construction
and refer to RTW11, 83] for additional details. The generalization to arbigreeductive groups is
the subject of 4.2. Recall that we assume thiata local field.

2.2.1. The space of seminorms

Let us consider the se¥’(V,k) of non-Archimedean seminorms on V. Every non-Archimedean
seminormy on V induces a norm on the quotient spacgk®t(y). Hence using Proposition 1.20,
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we find that there exists a bass,...,eq of V such thata (3;Aie) = max{r; | Ai |} for some non-
negative real numbers,...,rq. In this case we say that is diagonalized by. Note that in contrast
to Definition 1.18 we do no longer assume thatithae non-zero and hence exponentials.

It follows from Proposition 1.21 that for two seminormssand 3 there exists a basis which
diagonalizes botlwr and.

We can extend to a seminormj(y) on the symmetric algebra®8 ~ ke, . . ., eq] as follows:

i(y) (L:(iowid)a,eg’...ei;‘) =max{|a \ricg’ ...ri;‘ .

We denote byZ (V,k) the quotient of#(V, k) — {0} after the equivalence relation defined as
follows: o ~ B if and only if there exists a real constanwith o = cf. We equip.”(V,k) with
the topology of pointwise convergence afid(V, k) with the quotient topology. Then the association
y+— j(y) induces a continuous and PGL k)-equivariant map

i Z(V,k) = P(V)2"
which extends the map: 2" (V,k) — Q defined in the previous section.

2.2.2. Extension of the retraction onto the building

Moreover, by restriction to the degree one pai'S-= V, a non-zero multiplicative seminorm on
S*V yields an element in” (V,k) — {0}. Passing to the quotients, this induces a map

T:P(V)*— 2Z°(V,K)
extending the map : Q — 27(V, k) defined in section 2.1.
As in section 2.1, we see thab j is the identity onZ (V,k), which implies thatj is injective:
it is a homeomorphism onto its (closed) imagePifV )2". SinceP(V)3"is compact, we deduce that

the image ofj, and hence?”(V, k), is compact. As2 (V,k) is an open subset o (V, k), the latter
space is a compactification of the Euclidean buildifidV, k); it was studied in\\Ver04].

2.2.3. The strata of the compactification

For every proper subspace W of V we can extend norms O ¥ non-trivial seminorms on V
by composing the norm with the quotient map-¥V /W. This defines a continuous embedding

2 (V/W,K) — 2 (V,K).
Since every seminorm on V is induced in this way from a normhenduotient space after its kernel,
we find that2"(V, k) is the disjoint union of all Euclidean building8™(V /W, k), where W runs over

all proper subspaces of V. Hence our compactification of tndiétean building2™(V, k) is a union
of Euclidean buildings of smaller rank.

2.3. Topology and group action

We will now investigate the convergence of sequenceg’ifV,k) and deduce that it is compact.
We also analyze the action of the group(S8LK) on this space.

2.3.1. Degeneracy of norms to seminorms and compactness

Let us first investigate convergence to the boundarg @V, k) in 27 (V,k) = (.7 (V,k)\{0})/ ~.
We fix a basi®e = (e, ...,eq) of V and denote by\ the corresponding apartment associated to the
norms diagonalized bg as in Definition 1.18. We denote by, ¢ 27 (V,k) all classes oseminorms
which are diagonalized b

We say that a sequenca,), of points inAe is distinguished, if there exists a non-empty subset |
of {0,...,d} such that:

(a) Foralli €1 and allnwe havez,(g) # 0.
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(b) for anyi, j €1, the sequencéi"n((zj))) converges to a positive real number;
n
(c) foranyi elandj € {0,...,d} —1, the sequencé%) converges to 0.
n

Here we define{ Z“((SR)) as<)’(‘n”((g>>) for an arbitrary representativg € . (V, k) of the class,. Note
n n
that this expression does not depend on the choice of thesepiativex,.

Lemma 2.3 — Let (z,), be a distinguished sequence of pointsiin Choose some elementil.
We define a point.zin . (V,K) as the homothety class of the seminogidefined as follows:

i ICHANENTE
Xeo(€]) = Ilmn(zn(a>) !fj.GI
0 ifj&l
and % (¥ ajej) = maxa;j|x-(€e;). Then z does not depend on the choice of i, and the sequege
converges tozin 2 (V,K).

Proof. Letx, be a representative af in . (V,Kk). Fori, j and/ contained in we have

i (er) =1m (e ) im ()

which implies that the definition of the seminorm classdoes not depend on the choicel ef |.
The convergence statement is obvious, since the semirpisrequivalent tqxn(€)) . 0
Hence the distinguished sequence of norm cla&ggg considered in the Lemma converges to a
seminorm class whose kernd| is spanned by ak; with j ¢ |. Therefore the limit poink, lies in
the Euclidean building?”(V /W) at the boundary.

Note that the preceeding Lemmaimplies thats the closure of\¢in 27(V,k). Namely, consider
ze€ Ag, i.e. zis the class of a seminormon V which is diagonalizable bg. For everyn we define a

normx, on 'V by
x(e), ifx&)#0
X”(a):{ 1 ifx(g)=0
and

Xn() ai&) = max|ai[xn(&).

Then the sequence of norm classgs- [z,]. in A¢ is distinguished with respect to the $et {i :
x(&) # 0} and it converges towards

We will now deduce from these convergence results that taeespf seminorms is compact. We
begin by showing that is compact.
Proposition 2.4 — Let (z,), be a sequence of points .. Then(z,), has a converging subse-
quence.
Proof. Letx, be seminorms representing the points By the box principle, there exists an index
i €{0,...,d} such that after passing to a subsequence we have

Xn(&) = Xn(gj) forall j=0,...,d,n>0.
In particular we have,(e) > 0. For eachj =0,...,d we look at the sequence
L Xa(ey)
B(in= %(@)
which lies between zero and one. In particul?fi), = 1 is constant.
After passing to a subsequence (af), we may — and shall — assume that all sequerfgsn

converge to somg( j) between zero and one. Liebe the set of alj =0,...,n such thai3(j) > 0.
Then a subsequence @), is distinguished with respect to hence it converges by Lemma 2.8)

SinceA. is metrizable, the preceeding proposition shows fhais compact.
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We can now describe the B, k)-action on the seminorm compactification of the Goldman-
Iwahori space of V. As before, we fix a basis- (ep,...,&n).
Let o be the homothety class of the norm on V defined by

d
i;eua

Po={geSL(V,k); g-o~o0}

be the stabilizer 0b. It follows from Proposition 1.28 thatf?= SLq, 1(k°) with respect to the basis
e
Lemma 2.5 — The magP, x Ae — 2 (V,K) given by theSL(V, k)-action is surjective.
Proof. Let[x]. be an arbitrary point in2"(V,k). The seminornx is diagonalizable with respect to
some basi€ of V. A similar argument as in the proof of Proposition 1.2%wis that there exists
an elementh € P, such thathx lies in A (actually hx lies in the closure, taken in the seminorm
compactification, of a Weyl chamber with t). O

The group Ris closed and bounded in S¥, k), hence compact. Singg. is compact by Proposi-
tion 2.4, the previous Lemma proves thét(V, k) is compact.

0) = max |a;
(0) = max |a|

and let

2.3.2. Isotropy groups

Let zbe a point inZ"(V, k) represented by a seminomwith kernel WC V. By X we denote the
norm induced by on the quotient space \W. By definition, an elemerg € PGL(V, k) stabilizesz
if and only if one (and hence any) representativef g in GL(V,K) satisfieshx~ x, i.e. if and only if
there exists somg > 0 such that

(x)  x(h™}(v)) = yx(v) forallve V.

This is equivalent to saying thdt preserves the subspace W and that the induced elemant
GL(V/W,Kk) stabilizes the equivalence class of the naron V/W. Hence we find

Stalpg (v k) (2) = {h € GL(V,kK) : hfixes the subspace W atat ~ X} /k*.

Let us now assume thaiis contained in the compactified apartméntgiven by the basis of V.
Then there are non-negative real numbgrss, ..., rq such that

X(Zaie,) :miax{ri\ai\}.

The space W is generated by all vectersuch thatr; = 0. We assume that ifi andr; are both
non-zero, the elemem /r; is contained in the value groug*| of k. In this case, ih stabilizesz,
we find thaty = x(h~'g) /r; is contained in the value groyg®| of k, i.e. we havey = |A| for some
A € k*. Hence(Ah)x = x. Therefore in this case the stabilizerzih PGL(V,K) is equal to the image
of

{h € GL(V,K) : hfixes the subspace W amet = X}
under the natural map from G\, k) to PGL(V,K).

Lemma 2.6 — Assume that z is contained in the closed Weyl charber {[x]. € A : (&) <
x(e1) < ... < X(eq)}, i.e. using the previous notation we hawestri < ... <rq. Let d— u be the
index such thaty_, = 0and rg_,41 > 0. (If z is contained M, then we pupt = d+ 1. ) Then the
space W is generated by the vectarsvith i < d — u. We assume as above thafm is contained in
|k*| ifi >d—p and j>d— pu. Writing elements irGL(V) as matrices with respect to the basis
we find thatStalyg (v k) (2) is the image of

{( é BD ) € GLgsa(K) : D = (&) € SLy(k) with || <r;/ri for all i, | gu,}
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in PGL(V, k).
Proof. This follows directly from the previous considerationsrdmned with Proposition 1.28 which
describes the stabilizer groups of norms. O

The isotropy groups of the boundary points can also be datiibterms of tropical linear algebra,
see Werll, Prop. 3.8].

3. BRUHAT-TITS THEORY

We provide now a very short survey of Bruhat-Tits theory. Tin@n achievement of the latter
theory is the existence, for many reductive groups overedhliields, of a combinatorial structure
on the rational points; the geometric viewpoint on this s éixistence of a strongly transitive action
of the group of rational points on a Euclidean building. Rdygspeaking, one half of this theory
(the one written in BrT72]) is of geometric and combinatorial nature and involvesugractions
on Euclidean buildings: the existence of a strongly traresiaction on such a building is abstractly
shown to come from the fact that the involved group can bewadawith the structure of a valued
root datum. The other half of the theory (the one writterBrl[84]) shows that in many situations, in
particular when the valued ground field is local, the groupatibnal points can be endowed with the
structure of a valued root datum. This is proved by subtlaments of descent of the ground field and
the main tool for this is provided by group schemes over thg of integers of the valued ground field.
Though it concentrates on the case when the ground field a lde survey articleTit79] written
some decades ago by J. Tits himself is still very useful. R@ra readable introduction covering also
the case of a non-discrete valuation, we recommand thetrepdrof Rousseaujou09.

3.1. Reductive groups

We introduce a well-known family of algebraic groups whi@ntains most classical groups (i.e.,
groups which are automorphism groups of suitable bilineasesquilinear forms, possibly taking
into account an involution, sed\ei60] and [KMRT98]). The ground field here is not assumed
to be endowed with any absolute value. The structure themryational points is basically due to
C. Chevalley over algebraically closed fiel@he03, and to A. Borel and J. Tits over arbitrary fields
[BT65] (assuming a natural isotropy hypothesis).

3.1.1. Basic structure results

We first need to recall some facts about general linear adgelgroups, up to quoting classical
conjugacy theorems and showing how to exhibit a root systesréductive group. Useful references
are A. Borel's Bor91] and W.C. Waterhouse’s bookg/at79].

Linear algebraic groups— By convention, unless otherwise stated, an "algebraamtin what
follows means a "linear algebraic group over some ground"fiddeing a linear algebraic group
amounts to being a smooth affine algebraic group scheme éofield). Any algebraic group can
be embedded as a closed subgroup of some groy¥ Glor a suitable vector space over the same
ground field (seeWat79, 3.4] for a scheme-theoretic statement aBdrp1, Prop. 1.12 and Th. 5.1]
for stronger statements but in a more classical context).

Let G be such a group over a figikg we will often consider the group &= G @k obtained by
extension of scalars frolkto an algebraic closure.
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Unipotent and diagonalizable groups We say thatg € G(k?) is unipotentif it is sent to a
unipotent matrix in somea(posterioriany) linear embedding : G — GL(V): this means thap (g) —
idy is nilpotent. The group (e is calledunipotentif so are all its elements; this is equivalent to
requiring that the group fixes a vector in any finite-dimenaldinear representation as aboVedt79,
8.3].

The group G is said to betarusif it is connected and if G is diagonalizable which is to say
that the algebra of regular function8(Gya) is generated by the characters okG.e., 0(Gya) ~
k3[X(Gyxa)] [Bor91, 88]. Here, XGya) denotes the finitely generated abelian group of characters
Gra = Gm ke andk?X(Gya)] is the corresponding group algebra okér A torus G defined ovek
(also called &-torus) is said to besplit over kif the above condition holds ovér i.e., if its coordinate
ring ¢(G) is the group algebra of the abelian group(&) = Hom g (G, Gmk). In other words, a
torus is a connected group of simultaneously diagonakzatmtrices in any linear embedding over
k? as above, and it ik-split if it is diagonalized in any linear embedding definegik [Wat79, 87].

Lie algebra and adjoint representatier One basic tool in studying connected real Lie groups is
the Lie algebra of such a group, that is its tangent spacesdatémtity elementBor91, 3.5]. In the
context of algebraic groups, the definition is the same batdbnveniently introduced in a functorial
way [Wat79, §12].

Definition 3.1 — LetG be a linear algebraic group over a field k. Th& algebraof G, denoted by
Z(G), is the kernel of the natural maB(k[e]) — G(k), where Ke] is the k-algebra X]/(X) and &
is the class of X; in particular, we haw = 0.

We havek|e] = k@ ke and the natural map above is obtained by applying the furdtpoints G to
the mapk[e] — k sendinge to 0. The bracket forZ’(G) is given by the commutator (group-theoretic)
operation Wat79, 12.2-12.3].

Example 3.2 — For G= GL(V), we haveZ(G) ~ EndV) where EndV) denotes the&-vector
space of all linear endomorphisms of V. More precisely, deynent of.,iﬁ(GL(V)) is of the form
idy + ue whereu € End(V) is arbitrary. The previous isomorphism is simply givenubys idy + ue
and the usual Lie bracket for E(\M) is recovered thanks to the following computation in(@Lk[e]):
[idy + ue,idy + Ue] = idy + (uu — U'u)e — note that the symbdl, .] on the left hand-side stands for
a commutator and thatdy + ug) ! = idy — ue for anyu € End(V).

An important tool to classify algebraic groups is the adjoapresentationgor91, 3.13].
Definition 3.3 — Let G be a linear algebraic group over a field k. Tlagljoint representatioof
G is the linear representatioAd : G — GL(.Z(G)) defined byAd(g) = int(g) | #(c) for any ge G,
whereint(g) denotes the conjugacy-h ghg ! — the restriction makes sense since, for any k-algebra
R, bothG(R) and.Z(G) ®« R can be seen as subgroups@fR[¢]) and the latter one is normal.

In other words, the adjoint representation is the linearasgntation provided by differentiating
conjugacies at the identity element.
Example 3.4 — For G= SL(V), we haveZ(G) ~ {u€ EndV) : tr(u) = 0} and Adg).u = gug!
for anyg € SL(V) and anyu € .Z(G). In this case, we write sometimeg(G) = sl(V).

Reductive and semisimple groups The starting point for the definition of reductive and s&mi
ple groups consists of the following existence statemi@atJ1, 11.21].

Proposition/Definition 3.5 — Let G be a linear algebraic group over a fikld

(i) There is a unique connected, unipotent, normal subgimupy., which is maximal for these
properties. Itis called the unipotent radical of G and isaded by%,(G).

(i) There is a unique connected, solvable, normal subgiouBy, which is maximal for these
properties. Itis called the radical of G and is denotedAiys).

The statement for the radical is implied by a finite dimensiggument and the fact that the Zariski
closure of the product of two connected, normal, solvableagsaups is again connected, normal
and solvable. The unipotent radical is also the unipoterttgfahe radical: indeed, in a connected
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solvable group (such a&(G)), the unipotent elements form a closed, connected, noroegreup
[Wat79, 10.3]. Note that by their very definitions, the radical ahe tnipotent radical depend only
on thek-group G and not on thé&-group G.

Definition 3.6. — LetG be a linear algebraic group over a field k.

(i) We say thaG is reductiveif we haveZ,(G) = {1}.

(i) We say thaG is semisimplef we haveZ (G) = {1}.
Example 3.7 — For any finite-dimensionak-vector space V, the group G\) is reductive and
SL(V) is semisimple. The groups §pand SQq) (for most quadratic formg) are semisimple.

If, taking into account the ground field we had used a rational version of the unipotent radical,
then we would have obtained a weaker notion of reductivityordprecisely, it makes sense to
introduce theational unipotent radical denoted by, «(G) and contained itZ,(G), defined to be
the unigue maximal connected, unipotent subgroup thehed over kThen G is callek-pseudo-
reductiveif we haveZ, k(G) = {1}. This class of groups is considered in the n@&78], it is first
investigated in some of J. Tits’ lectureFiP2] and [Tit93]). A thorough study of pseudo-reductive
groups and their classification are written in B. Conrad, @bler and G. Prasad’s booRGP10
(an available survey is for instanceg¢m11).

In the present paper, we are henceforth interested in régdeicfroups

Parabolic subgroups— The notion of a parabolic subgroup can be defined for arghbatc group
[Bor91, 11.2] but it is mostly useful to understand the structureatibnal points of reductive groups.

Definition 3.8. — Let G be a linear algebraic group over a field k and ldtbe a Zariski closed
subgroup of G. The subgrouis calledparabolicif the quotient spac&/H is a complete variety.

It turns outa posteriorithat for a parabolic subgroup H, the varietybis actually a projective
one; in fact, it can be shown that H is a parabolic subgroupdfanly if it contains @Borel subgroup
that is a maximal connected solvable subgrdBprpl, 11.2].

Example 3.9 — For G= GL(V), the parabolic subgroups are, up to conjugacy, the variougpg
of upper triangular block matrices (there is one conjugdagscfor each "shape" of such matrices,
and these conjugacy classes exhaust all possibilities).

The completeness of the quotient spagéi@ used to have fixed-points for some subgroup action,
which eventually provides conjugacy results as stateddbHXG70, 1V, 84, Th. 3.2].

Conjugacy theorems- We finally mention a few results which, among other thirajw one to
formulate classification results independent from the@®imade to construct the classification data
(e.g., the root system — see 3.1.2 beloB®91, Th. 20.9].

Theorem 3.10 — LetG be a linear algebraic group over a field k. We assume @ reductive.

() Minimal parabolic k-subgroups are conjugate over k, thatisy two minimal parabolic k-
subgroups are conjugate by an elemenGok).
(i) Accordingly, maximal k-split tori are conjugate over k.

For the rational conjugacy of tori, the reductivity assuimpican be dropped and simply replaced
by a connectedness assumption; this more general resudttésisSn CGP10 C.2]. In the general
context of connected groups (instead of reductive one®),has to replace parabolic subgroups by
pseudo-paraboliones in order to obtain similar conjugacy resu@P10, Th. C.2.5].

3.1.2. Root system and root datum

The notion of a root system is studied in detail Bop07, VI]. It is a combinatorial notion which
encodes part of the structure of rational points of redecgikoups. It also provides a nice uniform
way to classify semisimple groups over algebraically doBelds (up to isogeny), a striking fact
being that the outcome does not depend on the charactaristie field [Che05.
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Definition 3.11 — LetV be a finite-dimensional real vector space endowed with aasgabduct
which we denote by, -). We say that a finite subs®tof V — {0} is aroot systenif it spansV and if
it satisfies the following two conditions.

(RS 1) To eacha € @ is associated a reflection, rwhich stabilizesb and switchesr and —a.
(RS 2)Foranya,p € ®, we have §(8) — B € Za.

The elements @b are calledrootsand theWeyl groupof @ is by definition the group generated by
the reflections ¢ for a varying in®.

Let ® be root system. For any subgein @, we denote byp™ (A) the set of roots which can be
written as a linear combination of elementsfofvith non-negative integral coefficients. We say that
A is abasisfor the root systemb if it is a basis of V and if we have = ®*(A) L d~(A), where
®~(A) = —dT(A). Any root system admits a basis and any two bases of a givarsystem are
conjugate under the Weyl group actidddu07, VI.1.5, Th. 2]. Whem is a basis of the root system
®, we say thatb™ (A) is asystem of positive roote @; the elements ik are then calledimple roots
(with respect to the choice d). The corootassociated tar is the linear forma" on V defined by
B—ra(B)=aY(B)a; in particular, we haver¥ (a) = 2.

Example 3.12 — Here is a well-known concrete construction of the rootesysof type A,. Let
R™1 = @  Rg be equipped with the standard scalar product, making this bg$ orthonormal.
Let us introduce the hyperplane {J; A& : 5; A = 0}; we also set; j = & — ¢j fori # j. Then
®={ajj:i#j}isaroot systeminV and = {a;j;1:0<i<n-—1}is abasis of it for which
®*(A) = {aij:i < j}. The Weyl group is isomorphic to the symmetric grotfy,1; canonical
generators leading to a Coxeter presentation are for iostginen by transpositions— i + 1.

Root systems in reductive groups appear as follows. Thaatsh of the adjoint representation
(Def. 3.3) to a maximak-split torus T is simultaneously diagonalizable okeso that we can write:

Z(G) =Dgex+(1)Z(G)pg Where Z(G)y ={ve Z(G):Ad(t).v=¢(t)vforallt e T(k)}.

The normalizer N= Ng(T) acts on X(T) via its action by (algebraic) conjugation on T, hence it
permutes algebraic characters. The action of the cerdrddiz Zg(T) is trivial, so the group actually
acting is the finite quotient &)/Z(k) (finiteness follows from rigidity of tori\Wat79, 7.7], which
implies that the identity component’Nentralizes T; in fact, we have°N= Z since centralizers of
tori in connected groups are connected).

®=&(T,G) = {¢ € X*(T): £(G)y # {0}}.
It turns out that Bor91, Th. 21.6]:

1. theR-linear span ofp is V = X*(T) ®z R;

2. there exists an (k) /Z(k)-invariant scalar product V;

3. the setb is a root system in V for this scalar product;

4. the Weyl group W of this root system is isomorphic ttkNZ (K).

Moreover one of the main results of Borel-Tits thedByp5] about reductive groups over arbitrary
fields is the existence of a very precise combinatorics ogtbeps of rational points. The definition
of this combinatorial structure — called@ot datum- is given in a purely group-theoretic context. It
is so to speak a collection of subgroups and classes modudstract subgroup T, all indexed by
an abstract root system and subject to relations which gérerand formalize the presentation of
SL, (or of any split simply connected simple group) over a fieldnbgans of elementary unipotent
matrices Bte68. This combinatorics for the rational points(k3 of an isotropic reductive group
G is indexed by the root systeM(T,G) with respect to a maximal split torus which we have just
introduced; in that case, the abstract group T of the roairdatan be chosen to be the group of
rational points of the maximal split torus (previously detbby the same letter!). More precisely,
the axioms of a root datum are given in the following defimititaken from BrT72, 6.1].
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Definition 3.13 — Let® be a root system and I& be a group. Assume that we are given a system
(T, (Uq, Ma)aeq;) whereT and eachJ, is a subgroup irG, and eachMy, is a right congruence class
moduloT. We say that this system ig@ot datumof type® for G if it satisfies the following axioms:

(RD 1) For eacha € @, we haved, # {1}.

(RD 2) For anya, B € @, the commutator groufldq,Ug]| is contained in the group generated by the
groupsUy indexed by rooty in ®N (Z-oa +Z-0B).

(RD 3) If both a and2a belong to®, we havelyy C Uy

(RD 4) For eacha € @, the clasdM, satisfiesU_5—{1} C UgMyUq.

(RD5) Foranya, 3 € ® and each re My, we have hJBn‘l = U, p)-

(RD 6) We haveTUT NU~ = {1}, whereU= is the subgroup generated by the groups indexed by
the rootsa of sign+.

The groupdJ, are called theroot groupsof the root datum.

This list of axioms is probably a bit hard to swallow in oneokt, but the example of Glcan help
a lot to have clearer ideas. We use the notation of Examp(Bobt system of type A.

Example 3.14 — Let G= GLp,1 and let T be the group of invertible diagonal matrices. Tdheac
root a; j of the root systen® of type A,, we attach the subgroup of elementary unipotent matrices
Uij = Uq,; = {In+AEj: A €k}. We can see easily thatd(T) = {monomial matrice that
Zg(T) =T and finally that N;(T) /Zs(T) ~ .#+1. Acting by conjugation, the groupdNT) permutes

the subgroups k), and the corresponding action on the indexing roots is ngtaise than the action

of the Weyl group#,.1 on ®@. The axioms of a root datum follow from matrix computation, i
particular checking axiom (RD4) can be reduced to the fahgwequality in Sk:

1 0y /11 0 -1 11
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We can now conclude this subsection by quoting a generalt ichsei to A. Borel and J. Tits (see
[BrT72,6.1.3 ¢)] and BT65]).

Theorem 3.15 — Let G be a connected reductive group over a field k, which we assarbe k-
isotropic. LetT be a maximal k-split torus i, which provides a root systeh = ®(T,G).

(i) For every roota € @ the connected subgroup, with Lie algebra.?(G), is unipotent; more-
over it is abelian or two-step nilpotent.

(i) The subgroupd (k) andUq (Kk), for a € @, are part of a root datum of typ® in the group of
rational pointsG(k).

Recall that we say that a reductive groujsistropic over kif it contains a non-centrad-split torus
of positive dimension (the terminology is inspired by theeaf orthogonal groups and is compatible
with the notion of isotropy for quadratic formB§r91, 23.4]). Note finally that the structure of a root
datum implies that (coarser) of a Tits system (also calleddaiy) [Bou07, 1V.2], which was used by
J. Tits to prove, in a uniform way, the simplicity (modulo ¢em of the groups of rational points of
isotropic simple groups (over sufficiently large fieldsjtg4].

3.1.3. Valuations on root data

Bruhat-Tits theory deals with isotropic reductive groupsrovalued fields. As for Borel-Tits theory
(arbitrary ground field), a substantial part of this theoan @lso be summed up in combinatorial
terms. This can be done by using the notion ehluation of a root datunwhich formalizes among
other things the fact that the valuation of the ground fiettlizes a filtration on each root group. The
definition is taken fromBrT72, 6.2].

Definition 3.16 — Let G be an abstract group and Ie{fr,(Ua,Ma)aeq;) be a root datum of type
® for it. A valuationof this root datum is a collectio = (¢4)ace Of Mapsgy : Uy — RU {0}
satisfying the following axioms.

(V 0) For eacha € &, the image ofp, contains at least three elements.
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(V1) For eacha € ® and eacly € RU {0}, the preimage, 1([¢; «]) is a subgroup obl 4, which we
denote byJy ¢; moreover we requirdy » = {1}.

(V 2) For eacha € ® and each re Mg, the map u— ¢_4(u) — ¢4 (nunt) is constant on the set
U*, =U_qo— {1}

(V3) Foranya,B € ®and/, ¢ € R such thatB ¢ —R . a, the commutator groufJq ,,Ug /] lies in
the group generated by the group$ . 4g, pe+qr Where pge Z.oand px +qg € .

(V 4) If both o and2a belong to®, the restriction oR¢, to Uy, is equal togog .

(V5) Fora € ®,ue Uy and U,u” € U_4 such that uu” € Mg, we havep_4(U') = —¢q(U).

The geometric counterpart to this list of technical axiosshie existence, for a group endowed
with a valued root datum, of a Euclidean building (called Brehat-Tits buildingof the group) on
which it acts by isometries with remarkable transitivityperties BrT72, 87]. For instance, if the
ground field is discretely valued, the corresponding bogds simplicial and a fundamental domain
for the group action is given by a maximal (poly)simplexcatslled aralcove(in fact, if the ground
field is discretely valued, the existence of a valuation ooat datum can be conveniently replaced
by the existence of an affine Tits systeBrT72, §2]). As already mentioned, the action turns out
to be strongly transitive, meaning that the group acts ii@aely on the inclusions of an alcove in an
apartment (Remark 1.5in 1.1.1).

3.2. Bruhat-Tits buildings

The purpose of this subsection is to roughly explain how Bttifits theory attaches a Euclidean
building to a suitable reductive group defined over a valueld fi This Bruhat-Tits building comes
equipped with a strongly transitive action by the group tibreal points, which in turn implies many
interesting decompositions of the group. The latter deamsitipns are useful for instance to doing
harmonic analysis or studying various classes of linearesgmtations of the group. We roughly
explain the descent method used to perform the construofitime Euclidean buildings, and finally
mention how some integral models are both one of the mairs @l an important outcome of the
theory.

3.2.1. Foldings and gluing

We keep the (connected) semisimple group G, defined overniw, (complete valued non-
Archimedean) fieldk but from now on,we assume for simplicity that k is a local field (i.e., is
locally compact) and we denote byits discrete valuationnormalized so that(k*) = Z. Hence
w(-) = —logy| - |, whereq > 1 is a generator of the discrete grollg |.

We also assume that G containk-gplit torus of positive dimension: this is an isotropy asgtion
overk already introduced at the end of 3.1.2 (in this situatiors #hgebraic condition is equivalent
to the topological condition that the group of rational gsi@(k) is non-compactRra82]). In order
to associate to G a Euclidean building on whictk{Gacts strongly transitively, according t®i{79]
we need two things:

1. amodel, say, for the apartments;

2. a way to glue many copies @f altogether in such a way that they will satisfy the incidence

axioms of a building (1.1.1).

Model for the apartmemt— References for what follows ar@if79, 81] or [Lan96, Chapter 1].
Let T be a maximak-split torus in G and let X(T) denote its group of 1-parameter subgroups (or
cocharactery As a first step, we sétyeci= X (T) ®z R.

Proposition 3.17 — There exists an affine spagewith underlying vector spac&eq, equipped
with an action by affine transformations: N(k) = Ng(T)(k) — Aff (%) and having the following
properties.

(i) There is a scalar product of such thatv (N(k)) is an affine reflection group.
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(i) The vectorial part of this group is the Weyl group of the rogttem® = ®(T,G).
(i) The translation (normal) subgroup acts cocompactlhyzoit is equal tov (Z(k)) and the vector
V(2) attached to an elementzZ (k) is defined by (v(2)) = —w(x(2)) for any x € X*(T).

If we go back to the example of GV) acting by precomposition on the space of classes of norms
Z (V,k) as described in 1.2, we can see the previous statement agmlgaation of the fact, men-
tioned in 1.2.3, that for any baseof V, the group N of monomial matrices with respect émcts on
the apartment\ as.%y x Z4 whered = dim(V).

Filtrations and gluing— Still for this special case, we saw (Prop. 1.31) that amyneintary
unipotent matrixu;j (A) = lq + AEjj fixes pointwise a closed half-apartment Ar bounded by a
hyperplane of the forn{c; — c; = constan} (the constant depends on the valuato( ) of the
additive parametek), the rest of the apartmeni, associated te being "folded" away frome.

In order to construct the Bruhat-Tits building in the geheese, the gluing equivalence will im-
pose this folding action for unipotent elements in root grguthis will be done by taking into account
the "valuation" of the unipotent element under consideratiWhat formalizes this is the previous no-
tion of a valuation for a root datum (Definition 3.16), whictopides a filtration on each root group.
For further details, we refer to the motivations given TitT9, 1.1-1.4]. It is not straightforward
to perform this in general, but it can be done quite explioithen the group G isplit overk (i.e.,
when it contains a maximal torus whichkssplit). For the general case, one has to go to a (finite,
separable) extension of the ground field splitting G and themse subtle descent arguments. The
main difficulty for the descent step is to handle at the same tBalois actions on the split group and
on its "split" building in order to descend the ground fieldfwr the valuation of the root datum and
at the geometric level (see 3.2.2 for slightly more details)

Let us provisionally assume that G is split okeThen each root group 4{k) is isomorphic to the
additive group ok and for any such group k) we can use the valuation kto define a decreasing
filtration {Uq (K)¢ }ecz satisfying:

Urez Ua(k)e = Ua(k) and ez Ua(k)e = {1},

and further compatibilities, namely the axioms of a valmai{Def. 3.16) for the root datum structure
on Gk) given by Borel-Tits theory (Th. 3.15) — the latter twin ro@ttdm structure in the split case
is easy to obtain by means of Chevalley basie$g (see remark below). For instance, in the case
of the general linear group, this can be merely done by usiagparameterizations

(k,4) ~ Uq, () = {id+ AEij : A € k}.

Remark 3.18 — Let us be slightly more precise here. For a split group @heaot group Y is
k-isomorphic to the additive grou@,, and the choice of a Chevalley basis of (@& determines a set
of isomorphismg py : Us — Ga}aco. Itis easily checked that the collection of maps

0 : Ug(K) 2 Ga(k) 2~ R

defines a valuation on the root datym(k), (Uqs (k),My)).

For each/ € R, the condition|py| < q~° defines amaffinoid subgroup | s in Ug" such that
Uqa(K)r = Uq s(k) for anyse (¢ —1,¢]. The latter identity holds after replacementkdfy any finite
extensiork’, as long as we normalize the valuation éfitkk such a way that is extends the valuation
on k This shows that Bruhat-Tits filtrations on root groups hia split case at this stage, comes from
a decreasing, exhaustive and separated filtratior§oby affinoid subgroupgUg s}scr-

Let us consider again the apartmentwith underlying vector spacyect = X«(T) ®z R. We
are interested in the affine linear forms+ ¢ (a € @, ¢ € Z). We fix an origin, sayo, such that
(a +0)(o) = 0 for any roota € ®. We have "level sets{a + ¢ = 0} and "positive half-spaces"
{a +¢ > 0} bounded by them.

For eachx € Z, we set N = Staly)(x) (using the actiorv of Prop. 3.17) and for each root
a we denote by W(K)x the biggest subgroup ddk), such thatx € {a + ¢ > 0} (i.e. £ is minimal
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for the latter property). At last, we defing B be the subgroup of &) generated by Nand by
{Uq(K)x}aco. We are now in position to define a binary relation, sgyon Gk) x Z by:

(9,X) ~ (h,y) <= there exist$1 € Ng(T)(Kk) such thaty = v(n).x andg—thn e Px.

Construction of the Bruhat-Tits buildings- This relation is exactly what is needed in order to
glue together copies af and to finally obtain the desired Euclidean building.

Theorem 3.19 — The relation~ is an equivalence relation on the g8tk) x = and the quotient
k) x X
spaceZ = #(G,k) = Gk

whose Weyl group is the affine reflection group:W/(N(k)). Moreover theG(k)-action by left
multiplication on the first factor o(k) x Z induces an action d&(k) by isometries o4(G, k).

is a Euclidean building whose apartments are isomorphiz tnd

Notation— According to Definition 1.9, copies & in #(G,k) are calledapartmentsthey are
the maximal flat (i.e., euclidiean) subspaces. Thanks(tg-Gonjugacy of maximal split tori 3.10,
apartments of8(G, k) are in bijection with maximal split tori of G. Therefore, welvgpeak of the
apartment of a maximal split toruS of G and write AS,k). By construction, this is an affine space
under theR-vector space Hogp (X*(S),R).

Reference— As already explained, the difficulty is to check the axiooha valuation (Def 3.16)
for a suitable choice of filtrations on the root groups of addiits root datum (Th. 3.15). Indeed,
the definition of the equivalence relatien hence the construction of a suitable Euclidean building,
for a valued root datum can be done in this purely abstractegbfBrT72, 87]. The existence of
a valued root datum for reductive groups over suitable vhlmet necessarily complete) fields was
announced inBrT72, 6.2.3 c)] and was finally settled in the second IHES pape84)18y F. Bruhat
and J. Tits BrT84, Introduction and Th. 5.1.20]. O

One way to understand the gluing equivalence relatiois to see that it prescribes stabilizers.
Actually, it can eventually be proved thatposterioriwe have:

sYer® = {a+¢>0} and Stabyy(x) = P for anyx € 2.

A more formal way to state the result is to say that to eachedhltoot datum on a group is
associated a Euclidean building, which can be obtained Hyiaggequivalence relation defined as
above Br172, 87].

Example 3.20 — In the case when & SL(V), it can be checked that the building obtained by the
above method is equivariantly isomorphic to the GoldmaaHeri space?” (V,k) [BrT72, 10.2].

3.2.2. Descent and functoriality

Suitable filtrations on root groups so that an equivalenizion ~ as above can be defined do not
always exist. Moreover, even when things go well, the wayatastruct the Bruhat-Tits building is
not by first exhibiting a valuation on the root datum given lyr&-Tits theory and then by using the
gluing relation~. As usual in algebraic group theory, one has first to deal thighsplit case, and
then to apply various and difficult arguments of descent efgiound field. Bruhat and Tits used a
two-step descent, allowing a fine description of smoothgirsiemodels of the group associated with
facets. A one-step descent was introduced by Rousseau tindsis Rou77], whose validity in full
generality now follows from recent work connected to Tit€r@er Conjecture §trl11]).

Galois actions— More precisely, one has to find a suitable (finite) Galoteesionk’ /k such that
G splits overk’ (or, at leastguasi-splitsoverk’, i.e. admits a Borel subgroup defined ok8rand,
which is much more delicate, which enables one:

1. to define a G&k'/k)-action by isometries on the "(quasi)-split" buildisg(G,k);

2. to check that a building for () lies in the Galois fixed point seB (G, k')Gak /%),

Similarly, the group @&K’) of course admits a G@{ /k)-action.
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Remark 3.21 — Recall that, by completeness and non-positive curvaamee step 1 is settled we
know that we have sufficiently many Galois-fixed points#iiG, k') (see the discussion of the Bruhat-
Tits fixed point theorem in 1.1.3).

F. Bruhat and J. Tits found a uniform procedure to deal witious situations of that kind. The pro-
cedure described iBfT72, 9.2] formalizes, in abstract terms of buildings and groambinatorics,
how to exhibit a valued root datum structure (resp. a Eualideuilding structure) on a subgroup of
a bigger group with a valued root datum (resp. on a subspateeadssociated Bruhat-Tits build-
ing). The main resultBrT72, Th. 9.2.10] says that under some sufficient conditionsyékgiction
of the valuation to a given sub-root datum "descends"” to aa@in and its associated Bruhat-Tits
building is the given subspace. These sufficient conditemesdesigned to apply to subgroups and
convex subspaces obtained as fixed-points of "twists" bgi§alktions (and they can also be applied
to non-Galois twists "a la Ree-Suzuki”).

Two descent steps- As already mentioned, this needn’t work over an arbitneadued fieldk
(even wherk is complete). Moreover F. Bruhat and J. Tits do not perforendbscent in one stroke,
they have to argue by a two step descent.

The first step is the so-calleguasi-splitdescent BrT84, 84]. It consists in dealing with field
extensions splitting an initially quasi-split reductiveogp. The Galois twists here (of the ambient
group and building) are shown, by quite concrete argumeatfit in the context of BrT72, 9.2]
mentioned above. This is possible thanks to a deep unddistaof quasi-split groups: they can
even be handled via a presentation (se&$g and [BrT84, Appendice]). In fact, the largest part
of the chapter about the quasi-split descd@1ilB4, 84] is dedicated to another topic which will be
presented below (3.2.3), namely the construction of slataitegral models (i.e. group schemes over
k° with generic fiber G) defined by geometric conditions invetybounded subsets in the building.
The method chosen by F. Bruhat and J. Tits to obtain thesgraitenodels is by using a linear
representation of G whose underlying vector space contasigtablek®-lattice, but they mention
themselves that this could be done by Weil's techniques @figichunks. Since then, thanks to the
developments of Néron model techniqu@&i.R90], this alternative method has been written down
[Lan9e6].

The second step is the so-calléthle descent BrT84, 85]. By definition, an étale extension, in
the discretely valued case (to which we stick here), is uifradhwith separable residual extension;
let us denote byks" the maximal étale extension & This descent step consists in considering
situations where the semisimpkegroup G is such that Gy k%" is quasi-split (so that, by the first
step, we already have a valued root datum and a Bruhat-Tithrmfor G(k®"), together with integral
structures). Checking that this fits in the geometric andhioatorial formalism of BrT72, 9.2] is
more difficult in that case. In fact, this is the place whem ititegral models over the valuation ring
k°> are used, in order to find a suitable torus in G which becomemasplit in G k' for some
étale extensiok’ of k [BrT84, Cor. 5.1.12].

Remark 3.22 — In the split case, we have noticed that the Bruhat-Titsafittns on rational points
of root groups come from filtrations by affinoid subgroupsl8}. This fact holds in general and
can be checked as follows: Ikt/k be a finite Galois extension splitting G and consider a makima
torus T of G which splits ovek’ and contains a maximal split torus S. The canonical prajacti
X*(T @k k) = X*(SekkK)=X*(S) induces a surjective map

p: ®(Tekk,Gakk) — d(S,G)U{0}

and there is a naturél-isomorphism
rl UB X I_I Uﬁ ~ Ua QK k/
Bep(a) Bept(2a)

for any ordering of the factor.
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A posteriori Bruhat-Tits two-step descent proves that any maximal gplis S of G is contained
in a maximal torus T which splits over a finite Galois extendig’k such that Ggk’/k) fixes a point
in the apartment of Bk in Z(G,K). If the valuation on kis normalized in such a way that it
extends the valuation on then, for any € R, the affinoid subgroup

Uﬁ,f X |_| U&zg
Bep*(a) Bep*(2a)

of the left-hand side corresponds to an affinoid subgroupefdft-hand side which does not depend
on the ordering of the factors and is preserved by the naaatain of Galk'|k); this can be checked

by using calculations inHrT72, 6.1] at the level ok” points, for any finite extensiok” /k’. By
Galois descent, we obtain an affinoid subgroup,df U3" such that

U[w(k’)> )
Bep(2a)

By [BrT84, 5.1.16 and 5.1.20], the filtration®J, (k) },cr are induced by a valuation on the root
datum(S(k),{Uq(k)).

Uq (k) =Uq (k)N ( Ug o (K') x
f peblo) ™"

Let us finish by mentioning why this two-step strategy is aelhpted to the case we are interested
in, namely that of a semisimple group G defined over a compiiteretely valued fiel& with perfect
residue fieldk: thanks to a result of R. SteinbergSdro4 lll, 2.3], such a group is known to quasi-
split overks". Compactifications of Bruhat-Tits buildings fit in this maeecific context for G ank.
Indeed, the Bruhat-Tits building?(G, k) is locally compact if and only if so ik, see the discussion
of the local structure of buildings below (3.2.3). Note fipahat the terminology "henselian" used in
[BrT84] is a well-known algebraic generalization of "completdigiatter "analytic" condition is the
only one we consider seriously here, since we will use Bedkogeometry).

Existence of Bruhat-Tits buildings- Here is at last a general statement on existence of Bruhat-
Tits buildings which will be enough for our purposes; thisukt was announced ilBfT72, 6.2.3 c)]
and is implied by BrT784, Th. 5.1.20].

Theorem 3.23 — Whenever k is complete, discretely valued, with perfedtiuesfield, one can
associate to the reductive k-gro@a Euclidean building on whicfs(k) acts strongly transitively.

Let us also give now an example illustrating both the statéroéthe theorem and the general
geometric approach characterizing Bruhat-Tits theory.

Example 3.24 — Let h be a Hermitian form of index 1 in three variables, say on the&arespace
V ~ k3. We assume thdt splits over a quadratic extension, dayk, so that SV, h) is isomorphic
to SLs overE, and we denote G@E/k) = {1;0}. Then the building of SU/,h) can be seen as the
set of fixed points for a suitable action of the Galois inviolnto on the 2-dimensional Bruhat-Tits
building of typeA, associated to Wy E as in 1.2. Ifk is local and ifq denotes the cardinality of
the residue field, then the Euclidean buildisg(SU(V, h),k) is a locally finite tree: indeed, it is a
Euclidean building of dimension 1 because khank of SUV, h), i.e. the dimension of maxim&t
split tori, is 1. The tree is homogeneous of valeneydwhenE /k is ramified, in which case the type
of the group is C-Bgin Tits’ classification Tit79, p. 60, last line]. The tree is semi-homogeneous
of valencies 1 q and 1+ g° whenE /k is unramified, and then the type%’2 [Tit79, p. 63, line 2].
For the computation of the valencies, we refer to 3.2.3 below

Functoriality.— For our purpose (i.e. embedding of Bruhat-Tits buildiinganalytic spaces and
subsequent compactifications), the existence statemeat isufficient. We need a stronger result
than the mere existence; in fact, we also need a good bemaxidlie building with respect to field
extensions.

Theorem 3.25 — Whenever k is complete, discretely valued, with perfeiduesfield, the Bruhat-
Tits building Z(G, K) depends functorially on the non-Archimedean extensionk of
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More precisely, let us denote by-GSetsthe category whose objets are pdiKs/k, X), whereK /k
is a non-Archimedean extension and X is a topological spagevweed with a continuous action of
G(K), and arrowgK /k,X) — (K’/k,X") are pairs(1, f), where! is an isometric embedding &
into K" and f is a GK)-equivariant and continous map from X td. X\e see the building of G as a
section%(G, —) of the forgetful functor

G Sets—s ( non—Archlmedean>

extension¥K /k

Reference— It is explained in RTW10, 1.3.4] how to deduce this from the general theory.

One word of caution is in order here.Kf/k is a Galois extension, then there is a natural action of
Gal(k'/k) on #(G,K') by functoriality and the smaller building?(G,K) is contained in the Galois-
fixed point set inZ(G, k). In general, this inclusion is strict, even when the grougpig [Rou77, IIl]

(see als®.2). However, one can show that there is equality if the extenii/k is tamely ramified
[loc. cit.] and [Pra01].

3.2.3. Compact open subgroups and integral structures

In what follows, we maintain the previous assumptions, itipalar the group G is semisimple and
k-isotropic. The buildingZ (G, k) admits a strongly transitive ®)-action by isometries. Moreover
it is alabelledsimplicial complex in the sense that,dfdenotes the number of codimension 1 facets
(called paneld in the closure of a given alcove, we can chodseolors and assign one of them to
each panel inZ(G,k) so that each color appears exactly once in the closure of @laoke. For
some questions, it is convenient to restrict oneself to thigefindex subgroup ()® consisting of the
color-preserving (otype-preservingisometries in @k).

Compact open subgroups For any facetF ¢ #(G,k) we denote by P the stabilizer
Staly (F): it is a bounded subgroup of (& and whenk is local, it is a compact, open sub-
group. It follows from the Bruhat-Tits fixed point theorem.1B) that the conjugacy classes of
maximal compact subgroups in(kg* are in one-to-one correspondence with the vertices in the
closure of a given alcove. The fact that there are usuallgraé\conjugacy classes of maximal
compact subgroups in(®) makes harmonic analysis more delicate than in the classasa of real
Lie groups. Still, for instance thanks to the notion of a sgleertex, many achievements can also be
obtained in the non-Archimedean cas&ac71]. Recall that a poink € #(G,k) is calledspecialif
for any apartmenf\ containingx, the stabilizer ok in the affine Weyl group is the full vectorial part
of this affine reflection group, i.e. is isomorphic to the @ptal) Weyl group of the root systed
of G overk.

Integral models for some stabilizers In what follows, we are more interested in algebraic prop-
erties of compact open subgroups obtained as facet stBiliZ he following statement is explained
in [BrT84, 5.1.9].

Theorem 3.26 — For any facet FC 2(G, k) there exists a smootli{group schemé&;: with generic
fiber G such that4e (k°) = Pe.

As already mentioned, the point of view of group schemes kivar Bruhat-Tits theory is not only
an important tool to perform the descent, but it is also anoirtgmt outcome of the theory. Here is
an example. The "best" structuaepriori available for a facet stabilizer is only of topological natu
(and even for this, we have to assume tha locally compact). The above models ok&mprovide
an algebraic point of view on these groups, which allows orgefine a filtration on them leading to
the computation of some cohomology groups of great intéoeshe congruence subgroup problem,
see for instanceAR844 and [PR84H. Filtrations are also of great importance in the represgor
theory of non-Archimedean Lie groups, see for instaldB94] and [MP96].
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Closed fibres and local combinatorial description of theldinig.— We finish this brief summary
of Bruhat-Tits theory by mentioning quickly two further disptions of integral models for facet
stabilizers.

First let us pick a faceF C Z(G,k) as above and consider the associdedroup schemés:.
As a scheme ovek’, it has a closed fibre (so to speak obtained by reduction rodit]) which
we denote by%. This is a group scheme over the residue fieldIt turns out that the rational
points?p(ﬁ) have a nice combinatorial structure (even thoughﬁlgeoup??p needn’t be reductive
in general); more precisely (E) has a Tits system structure (see the end of 3.1.2) with findgl W
group. One consequence of this is t%l(ﬁ) admits an action on a spherical building<aherical
building is merely a simplicial complex satisfying the axioms of D&f2 with the Euclidean tiling
> replaced by a spherical one). The nice point is that this regdiebuilding naturally appears in
the (Euclidean) Bruhat-Tits buildingZ(G,k). Namely, the set of closed facets containigs a
geometric realization of the spherical building@(ﬁ) [BrT84, Prop. 5.1.32]. In particular, for a
complete valued fiel#, the building#(G, k) is locally finite if and only if the spherical building of
?F(E) is actually finite for each facdt, which amounts to requiring that the residue fikeloe finite.
Note that a metric space admits a compactification if, ang @nlt is locally compact. Therefore
from this combinatorial description of neighborhoods afdis, we see thdhe Bruhat-Tits building
#(G, k) admits a compactification if and only if k is a local field

Remark 3.27 — Let us assume here thiats discretely valued. This is the context where the more
classical combinatorial structure of an (affine) Tits sysis relevant BouO7, 1V.2]. Let us exhibit
such a structure. First, a parahoric subgroup {(k)@&an be defined to be the image (f)°(k°)

for some faceF in #(G,k), where(%:)° denotes the identity componentf [BrT84, 5.2.8]. We
also say for short that a parahoric subgroup is the connetéduilizer of a facet in the Bruhat-Tits
building #(G,k). If G is simply connected (in the sense of algebraic grougen the family of
parahoric subgroups is the family of abstract paraboligseulps of a Tits system with affine Weyl
group BrT84, Prop. 5.2.10]. An Iwahori subgroup corresponds to the edsnF is a maximal
facet. At last, if moreovek is local with residual characteristig, then an Iwahori subgroup can be
characterized as the normalizer of a maximal predbgroup and an arbitrary parahoric subgroup as
a subgroup containing an lwahori subgroup.

Finally, the above integral models provide an important itmthe realization of Bruhat-Tits build-
ings in analytic spaces (and subsequent compactificatidnsleed, the fundamental step (see Th.
4.4) for the whole thing consists in attaching injectivatyainy point x € #(G,K) an affinoid sub-
group G of the analytic space ¥ attached to G, and the definition of G akes use of the integral
models attached to vertices. But one word of caution is ieoh&re since the connexion with integral
models avoids all their subtleties! For our constructianlyemoothk®-group scheme%: which are
reductiveare of interest; this is not the case in general, but one csitygaove the following state-
ment: given a vertex x %(G,k), there exists a finite extensiofyk such that the ’k-group scheme
¢, attached to the point x seen as a vertexA(iG, k'), is a Chevalley-Demazure group scheme over
K'°. In this situation, one can defif& @k K')x as thegeneric fibreof the formal completion o/,
along its special fibre; this iskd-affinoid subgroup ofG®k')2" and one invokes descent theory to
produce &-affinoid subgroup of &
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4. BUILDINGS AND BERKOVICH SPACES

As above, we consider a semisimple group G over some nonirAeciean fielk. In this section,
we explain how to realize the Bruhat-Tits building(G,k) of G(k) in non-Archimedean analytic
spaces deduced from G, and we present two procedures thbeassed to compactify Bruhat-Tits
buildings in full generality; as we pointed out before, taen “compactification” is misued K is not
a local field (see the discussion before Remark 3.27).

Assuming thak is locally compact, let us describe very briefly those two svafycompactifying
a building. The first is due to V. Berkovich when G is spBer90, Chap. V] and it consists in two
steps:

1. to define a closed embedding of the building into the aifi@igtion of the group (4.1);

2. to compose this closed embedding with an analytic map tl@group to a (compact) flag
variety (4.2).

By taking the closure of the image of the composed map, werohteequivariant compactification
which admits a Lie-theoretic description (as expected}.ifgiance, there is a convenient description
of this G(k)-topological space (convergence of sequences, boundatg stc.) by means of invariant
fans in (X.(S)®z R,W), where X.(S) denotes the cocharacter group of a maximal split torus S
endowed with the natural action of the Weyl grotp(4.3). The finite family of compactifications
obtained in this way is indexed by(&-conjugacy classes of parabolic subgroups.

These spaces can be recovered from a different point of visimg representation theory and
the concrete compactification”(V, k) of the building.2”(V,k) of SL(V,k) which was described in
Section 2. It mimicks the original stategy of I. Satake in thse of symmetric spaceSdt604: we
pick a faithful linear representation of G and, relying oralgtic geometry, we embed(G,k) in
2 (V,K); by taking the closure i2"(V, k), we obtain our compactification.

The references for the results quoted in this sectionRf&\[10] and [RTW11].

4.1. Realizing buildings inside Berkovich spaces

Let k be a field which is complete with respect to a non-trivial Woghimedean absolute value.
We fix a semisimple group G ovér Our first goal is to define a continuous injection of the Biteha
Tits building #(G, k) in the Berkovich space 8 associated to the algebraic group G.

4.1.1. Some non-Archimedean extensions

We need some functoriality assumption on the building wéi$pect to the field: in a sense which
was made precise after the statement of Theorem 3.25, thassrteat# (G, —) is functor on the
category of non-Archimedean extensionkof

As explained in RTW10, 1.3.4], these assumptions are in particular fulfilled is discretely
valued with perfect residue field or if G is split.

We will also have to consider infinite non-Archimedean egiens ofk as in the following exam-
ple.

Example 4.1 — Letr = (r4,...,rn) be a tuple of positive real numbers such tﬂ_él rin ¢ |k*| for
all choices of(iy,...,in) € Z"—{0}. Then thek-algebra

K = { > ax. e K. )
I=(

11...,in)

a,\rill...ri]”—>0When]i1]+...+\in]—>oo}

is a non-Archimedean field extensionlofvith absolute valuéf| = max {|a \rill .rinl
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Now let G*" be the Berkovich analytic space associated to the algepraip G. Since G is affine
with affine coordinate ring7(G), it consists of all multiplicative seminorms @#i(G) extending the
absolute value ok [Tem11. Our goal is the first step mentioned in the introductionmely the
definition of a continuous injection

9 B(G,k) — G

We proceed as follows. For every pokih the building% (G, k) we construct an affinoid subgroug G
of G?" such that, for any non-Archimedean extensiofk, the subgroup @GK) of G(K) is precisely
the stabilizer ofk in the building ovelK. Then we definé? (x) as the (multiplicative) seminorm on
0 (G) defined by taking the maximum over the compact subseif&?".

If the Bruhat-Tits building#(G,k) can be seen as non-Archimedean analogue of a Riemannian
symmetric space, itis not homogeneous undg) @or example, ik is discretely valued, the building
carries a polysimplicial structure which is preserved kydhbtion of Gk). There is a very simple way
to remedy at this situation using field extensions, and thiere our functoriality assumption comes
in. Indeed, given any two pointsandy in Z(G,k), one easily sees that there is a non-Archimedean
extensiorK /k such thatx andy belong to the same &)-orbit in (G, K). This remark leads to the
following result.

Proposition 4.2 — For every point xc %2(G, k) there exists a non-Archimedean field extensigk K
such that the following conditions hold:

(i) The groupG ®kK is split

(i) The canonical injection(G, k) — #(G,K) maps x to a special point.

The notion of a special point is defined in Section 1, just teebefinition 1.9. Its importance
comes from the fact that, when G is split, the stabilizer gbecgal point is particularily nice (see the
discussion after Theorem 4.4).

We refer to RTW10, Prop. 1.6] for a detailed proof, but here is an outline. Fadf our claim
can be achieved by a suitable finite separable field exteniarder to prove part (ii), we look at an
apartment in(G, k) containingx. The latter is an affine space endowed with the action of aneaffi
reflection group, extension of the (vectorial) Weyl group W®&xyk k' by a translation subgroup
which is controlled bylk*|. By combining finite field extensions and transcendentatresibns as
in Example 4.1, we can enlarge this translation part soxHatlongs to a wall in each direction
prescribed by W.

Remark 4.3 — If |[K*| = R-q, then GK) acts transitively onZ(G,K). In the pre-functorial era,
we could have fixed an algebraically closed non-ArchimedsdensionQ /k such thaQ*| = R-o.

4.1.2. Affinoid subgroups

Let us now describe the key fact explaining the relashigmbkiween Bruhat-Tits theory and non-
Archimedean analytic geometry. This result is crucial fbsabsequent constructions.

Theorem 4.4 — For every point xc %#(G, k) there exists a unique k-affinoid subgroGp of G&"
satisfying the following condition: for every non-Archidean field extension K, the groupGy(K)
is the stabilizer inG(K) of the image of x under the injectio# (G, k) — #(G,K).

The idea of the proof is the following (seRTW10, Th. 2.1] for details). If G is split and is
a special point in the building, then the integral mo@glof G described in (3.2.3) is a Chevalley
group scheme, and we defing &s the generic fibr@n of the formal completion of% along its
special fibre. This is &-affinoid subgroup of &, and it is easy to check that it satisfies the universal
property in our claim. Thanks to Proposition 4.2, we can eghithis situation after a suitable non-
Archimedean extensiok /k, and we apply faithfully flat descent to obtain tkaffinoid subgroup ¢
[RTW10, App. A]. Let us remark that, in order to perform this descs®p, it is necessary to work
with an extension which is not too big (technically, the fi&lghould be &-affinoid algebra); since
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on can obtairk by combining finite extensions with the transcental one rdesd in Example 4.1,
this is fine.

4.1.3. Closed embedding in the analytic group

The k-affinoid subgroup Gis the Berkovich spectrum of leaffinoid algebrady, i.e., G is the
Gelfand spectrum of bounded multiplicative seminormsAgn This is a compact and Hausdorff
topological space over which elements gf define real valued functions, and the Shilov boundary
of Gy is defined as the smallest subset on which each elemekt i@aches its maximum. It turns
out that this Shilov boundary is reduced to a unique poimotkd byd (x). This is easily seen by
combining the nice behaviour of Shilov boundaries underAaornimedean extensions together with
the bijective correspondance between Shilov boundarytpaifi/;, and irreducible components of
¥ @y K for any normak°-formal scheme”’; indeed, the smootkP-group schemé has a connected
special fibre when it is a Chevalley group scheme. Let us ai$® that the affinoid subgroup,@s
completely determined by the single poihx):

Gy={z€ G*"; Vf € 0(G), |T(2)| < |F(S(X)[}.

In this way we define the desired map
9 : B(G,k) — G,

and we showRTW10, Prop. 2.7] that it is injective, continuous andkp-equivariant (where )
acts on @" by conjugation). Ifk is a local field,d induces a homeomorphism from (G, k) to a
closed subspace offG[RTW10, Prop. 2.11].

Finally, the mapd is also compatible with non-Archimedean extensign&, i.e., the following
diagram

B(G,K) — (GayK)™

’K/kT ‘/pK/k
9

B(G,K) Gan

wherei i (resp. pk k) is the canonical embedding (resp. projection) is comnvetatn particular,

we see that this definessactionof py ) over the image of. In fact, any pointz belonging to this
subset of @"is universalin the sense offoil]] (or peakedaccording to the terminology introduced
by Berkovich and used irRTW10] and [RTW11]): for any non-Archimedean extensidfy/k, the
fibre pg/lk(z) contains a unique maximal point, where maximal has to be understood with respect

to evaluation of functiong € 0(G) @k K. The mapz+— z< defines a continuous section gf  over
the subset of universal points irf&Gand those two constructions coincide over the imag#:of

Ik (I k(X)) = 3 (X)k
for anyx € %4(G,K).

4.2. Compactifying buildings with analytic flag varieties

Once the building has been realized in the analytic sp&Egt@ easy to obtain compactifications.
In order not to misuse the latter word, we assume from now loaik is locally compact
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4.2.1. Maps to flag varieties

The embedding? : #(G,k) — G?" defined in 4.1.3 can be used to compactify the Bruhat-Tits
building #(G, k). We choose a parabolic subgroup P of G. Then the flag vari¢B i& complete,
and therefore the associated Berkovich sp&&é°)2" is compact. Hence we can map the building to
a compact space by the composition

9 B(G,k) 25 G —s (G/P)™".

The mapJdp is by construction @&)-equivariant and it depends only on thék{conjugacy class of
P: we haveSpy 1 = gdpg ! for anyg € G(K).
However, 3p may not be injective. By the structure theory of semisimpleugs, there exists
a finite familiy of normal reductive subgroups Gf G (each of them quasi-simple), such that the
product morphism
|_| G —G
|

is a central isogeny. Then the buildig(G, k) can be identified with the product of alf(G;j, k). If
one of the factors Gis contained in P, then the facte#(G;i, k) is squashed down to a point in the
analytic flag variety G/P)®".

If we remove all factors(G;, k) such that Gis contained in P fron#8(G, k), we obtain a building
%:(G,k), wheret stands for the type of the parabolic subgrop P, i.e. for itk)@onjugacy class.
The factor%: (G, k) is mapped injectively intdG/P)2" via Jp.

Remark 4.5 — If G is almost simple, thefp is injective whenever P is a proper parabolic subgroup
in G; hence in this case the mé@p provides an embedding 6B (G, k) into (G/P)2".

4.2.2. Berkovich compactifications

Allowing compactifications of the building in which some facs are squashed down to a point,
we introduce the following definition.

Definition 4.6. — Lett be aG(k)-conjugacy class of parabolic subgroups@fWe define%; (G, k)

to be the closure of the image &f(G,k) in (G/P)2" underdp whereP belongs to t, and we endow
this space with the induced topology. The compact spa¢6&, k) is called theBerkovich compacti-
fication of typet of the building%(G, k).

Note that we obtain one compactification for eaqlk)aconjugacy class of parabolic subgroups.

Remark 4.7 — If we drop the assumption thétis locally compact, the mafip is continuous but
the image of%; (G, k) is not a locally closed. In this case, the right way to procegd compactify
first each apartmentAS, k) of % (G, k) by closing it in G"/P2"and to define%;(G,k) as the union
of all compactified apartments. This set is a quotient )G A (S,k) and we endow it with the
quotient topology RTW10, 3.4].

4.2.3. The boundary

Now we want to describe the boundary of the Berkovich conifieations. We fix a typé (i.e., a
G(k)-conjugacy class) of parabolic subgroups.
Definition 4.8. — Two parabolic subgroupB and Q of G are calledosculatoryif their intersection
PN Qis also a parabolic subgroup.

Hence P and Q are osculatory if and only if they contain a comBwrel group after a suitable
field extension. We can generalize this definition to senpéngroups over arbitrary base schemes.
Then for every parabolic subgroup Q there is a variety; @¥coverk representing the functor which
associates to any base scheme S the set of all parabolicgedf dyer S which are osculatory to Q
[RTW10, Prop. 3.2].

Definition 4.9. — LetQ be a parabolic subgroup. We say th@is t-relevantif there is no parabolic
subgroupQ’ stricty containingQ such thatOsg(Q) = Osg(Q').
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Let us illustrate this definition with the following example

Example 4.10 — Let G be the group SIV), where V is a&-vector space of dimensiah+ 1. The
parabolic subgroups of G are the stabilizers of flags

0CViC...CV,CV.

Let H be a hyperplane i, and let P be the parabolic subgroup of(8l, stabilizing the flag G- H C

V. We denote its type by. Let Q be an arbitrary parabolic subgroup, stabilizing a@lggv, C ... C

V, C V. Then Q and P are osculatory if and only if H contains thedireubspace ¥ This shows that
all parabolic subgroups Q stabilizing flags contained insthigspace Ygive rise to the same variety
Osg(Q). Therefore, a non-trivial parabolic &relevant if and only if the corresponding flag has the
form 0C W C V.

Having understood how to parametrize boundary strata, wenow give the general description
of the Berkovich compactificatiog; (G, k). The following result is Theorem 4.1 ilRTW10].

Theorem 4.11 — For every t-relevant parabolic subgroup, let Qss be its semisimplification (i.e.,
Qss is the quotientQ/Z(Q) whereZ(Q) denotes the radical o). Then%:(G,k) is the disjoint
union of all the buildings#; (Qss, k), whereQ runs over the t-relevant parabolic subgroupstf

Note that the fact that the Berkovich compactifications ofvery group are contained in the flag
varieties of this group enables one to have natural mapseeetwompactifications: they are the
restrictions to the compactifications of (the analytic magsociated to) the natural fibrations between
the flag varieties. The above combinatorics-célevancy is a useful tool to formulate which boundary
components are shrunk when passing from a compactificatiasmtaller oneRTW10, Section 4.2].

Example 4.12 — Let us continue Example 4.10 by describing the stratificabf %5(SL(V),k).
Any d-relevant subgroup Q of & SL(V) is either equal to S{V) or equal to the stabilizer of a
linear subspace @ W C V. In the latter case Qis isogeneous to SMW) x SL(V /W). Now SL(W)

is contained in a parabolic of typ® henceZs(Qss, k) coincides withZ(SL(V /W), k). Therefore

PBs(SL(V),k) = | B(SL(V/W.K)),

Y,
where W runs over all linear subspacesW.

Recall from 3.20 that the Euclidean building(SL(V),k) can be identified with the Goldman-
Iwahori space?” (V,k) defined in 1.16. Hencé 5(SL(V),K) is the disjoint union of all2” (V /W, k).
Therefore we can identify the seminorm compactificatiiV, k) from 2.2 with the Berkovich com-
pactification of typed.

4.3. Invariant fans and other compactifications

Our next goal is to compare our approach to compactifyiniglmg with another one, developed in
[Wer07] without making use of Berkovich geometry. In this work, quewtified buildings are defined
by a gluing procedure, similar to the one defining the BruFitg-building in Theorem 3.19. In a first
step, compactifications of apartments are obtained by adermmposition. Then these compactified
apartments are glued together with the help of subgroupshatiirn out to the stabilizer groups in
the compactified building.

Let G be a (connected) semisimple group dvand #(G, k) the associated Bruhat-Tits building.
We fix a maximal split torus T in G, giving rise to the cochaesicspaceX eci = X.(T) ® R. The
starting point is a faithful, geometrically irreduciblepresentatiorp : G — GL(V) on some finite-
dimensionak-vector space V.

Let®(T,G) c X*(T) be the associated root system. We fix a bAgi$ ® and denote by (A) the
highest weight of the representatiprwith respect tad\. Then every otherkfrational) weight ofp is
of the formAg(A) — ¥ geaNa @ With coefficientsng > 0. We write[Ag(A) —A] = {a € A:ny > 0}.
We call every such subs¥tof A of the formY = [Ag(A) — A] for some weighA admissible
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Definition 4.13 — LetY C A be an admissible subset. We denot&Bythe following cone i ect:

A o a(x)=0 forall a €Y, and
Cy=¢xex
veel:  (Ag(A) —A)(x) =0 for all weightsA such thafAg(A) —A] ¢ Y

The collection of all ($ whereA runs over all basis of the root system and Y over all admissibl
subsets o\, is a complete fa, in Zyect. There is a natural compactification Bfec; associated to
Zp, which is defined a&yect = Uce 7, >vect/ (C) endowed with a topology given by tubular neigh-
bourhoods around boundary points. For details ¥é&x()7, Section 2] or RTW10, Appendix B].

We will describe this compactification in two examples.

Example 4.14 — If the highest weight op is regular, then every subset Y Afis admissible. In
this case, the fa%, is the full Weyl fan. In the case of a root system of typg, e resulting
compactification is shown on Figure 1. The shaded area is gactified Weyl chamber, whose
interior contains the corresponding highest weighp of

Example 4.15 — Let G=SL(V) be the special linear group of d-+ 1)-dimensionak-vector space
V, and letp be the identical representation. We look at the torus T ajatial matrices in S(V),
which gives rise to the root syste = {a; ;} of type Aq described in Example 3.12. Thén=
{ao1,012,...,04-14} is a basis of® andAg(A) = & in the notation of Example 3.12. The other
weights of the identical representation aie..., &4. Hence the admissible subsets\odire precisely
the sets Y= {ag1,...,ar—1r} forr =1,....d, and Yo = @. Letno,...,Nq be the dual basis of
£0,...,&4. ThenZec can be identified witt@{’zoRni/R(zi ni), and we find

CY, = {X="3 %Ni € Tvect: X0 = ... = X% ANAX0 > Xr11,X0 > Xr+2,.--,%0 = Xd}/R(Y i)
| |
The associated compactification is shown in Figure 2. Thdesharea is a compactified Weyl cham-

ber and its codimension one face marked by an arrow contiaénkighest weight ob (with respect
to this Weyl chamber).

FIGURE 1. Compactification of an apartment: regular highest weight

The compactificatior,ec induces a compactificatian of the apartmenk = A(T,k), which is an
affine space undef,ec. Note that the fan, and hence the compactificatianonly depend on the
Weyl chamber face containing the highest weighpp$ee Wer07, Theorem 4.5].
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FIGURE 2. Compactification of an apartment: singular highest wieigh

Using a generalization of Bruhat-Tits theory one can defisigbgroup Rfor all x € ¥ such that for
X € Z we retrieve the groups,Rlefined in section 3.2, se@/r07, section 3]. Note that by continuity
the action ofNg(T,k) on X extends to an action an

Definition 4.16 — The compactification(G, k), associated to the representatignis defined as
the quotient of the topological spacék3 x X by a similar equivalence relation as in Theorem 3.19:

(g,X) ~ (h,y) <= there exists re Ng(T,k) such that y= v(n).x and gthn e P,.

The compactification of8(G, k) with respect to a representation with regular highest weighn-
cides with the polyhedral compactification defined by Erasirandvogt in Lan96].

The connection to the compactifications defined with Berdfowpaces in section 4.2 is given by
the following result, which is proven irRTW11, Theorem 2.1].
Theorem 4.17 — Let p be a faithful, absolutely irreducible representation®fvith highest weight
Ao(A). Define

Z={ael:(a,A(d)) =0},
where(, ) is a scalar product associated to the root system as in Defin3.11. We denote by
the type of the standard parabolic subgroup®fssociated t&. Then there is &(k)-equivariant
homeomorphism
B(G,K)p — B(G,K)

restricting to the identity map on the building.
Example 4.18 — In the situation of Example 4.15 we ha¥g(A) = & and Z= {a12,...,04-14d}-
The associated standard parabolic is the stabilizer ofea IWe denote its type byr. Hence the
compactification of the building associated to(8L given by the identity representation is the one

associated to typeby Theorem 4.17. This compactification was studiedvef01]. It is isomorphic
to the seminorm compactificatiod” (V" k) of the building. 2" (V" k).

4.4. Satake’s viewpoint

If G is a non-compact real Lie group with maximal compact sobp K, Satake constructed in
[Sat60H a compactification of the Riemannian symmetric space&/K in the following way:
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— (i) First consider the symmetric space H associated to thepPSl(n, C) which can be iden-
tified with the space of all positive definite hermitiarx n-matrices with determinant 1. Then
H has a natural compactificatidt defined as the set of the homothety classes of all hermitian
n x n-matrices.

— (i) For an arbitrary symmetric space=-SG/K use a faithful representation of G to embed S
into H and consider the closure of Skh

In the setting of Bruhat-Tits buildings we can imitate thisgegy in two different ways.
Funtoriality of buildings—- The first strategy is a generalization of functorialitguks for build-

ings developed by Landvodtf§n00]. Let p : G — SL(V) be a representation of the semisimple group
G. Let S be a maximal split torus in G with normalizer N, andA¢8, k) denote the corresponding
apartment inZ(G,k). Choose a special vertexin A(S k). By [Lan00], there exists a maximal
split torus T in SKV) containingp(S), and there exists a poiwnt in the apartment AT k) of T in
A(SL(V),k) such that the following properties hold:

1. There is a unique affine map between apartmienggS k) — A(T,k) such thai(o) = 0. Its
linear part is the map on cocharacter spacesSX2z R — X, (T) ®z Z induced byp : S— T.

2. The map is such thap(Px) C Pi’(x) for all x € A(S,k), where R denotes the stabilizer of the
point x with respect to the (k)-action on%(G, k), and I?(X> denotes the stabilizer of the point
i(x) with respect to the SIV, k)-action on#(SL(V),k).

3. The map, : A(S,k) — A(T,k) — Z(SL(V),k) defined by composingwith the natural em-
bedding of the apartment(A&, k) in the buildingZ(SL(V),k) is N(k)-equivariant, i.e., for all
x € A(S,k) andn € N(k) we havep, (nx) = p(n)p.(X).

These properties imply that. : A(S,k) — #(SL(V),k) can be continued to a map : A(G,k) —
A (SL(V),k), which is continuous and ®&)-equivariant. By Lan00, 2.2.9], p. is injective.

Let .# be the fan in X(T) ®z R associated to the identity representation, which is desdrin
Example 4.15. It turns out that the preimageZfunder the mafyeci(S,K) — Zyect( T, K) induced by
p:S— Tisthe fan,, see RTW11, Lemma 5.1]. This implies that the mapan be extended to a
map of compactified apartmemsS, k) — A(T,k). An analysis of the stabilizer groups of boundary
points shows moreover that(Py) C Pi’(x) for all x € A(S,k), where R denotes the stabilizer ofin

G(k), and Fi’(x) denotes the stabilizer ofx) in SL(V,k) [RTW11, Lemma 5.2]. Then it follows from
the definition of%(G, K)o in 4.16 that the embedding, of buildings may be extended to a map

B(G,K)p — B(SL(V),K)id-

It is shown in RTW11, Theorem 5.3] that this map is a(kg-equivariant homeomorphism of
%(G,K), to the closure of the image o#(G, k) in the right hand side.

Complete flag variety— Satake’s strategy of embedding the building in a fixed cactification
of the building associated to $Y,k) can also be applied in the setting of Berkovich spaces. Recal
from 3.20 that the buildingZ(SL(V),k) can be identified with the spac2’(V,k) of (homothety
classes of) non-archimedean norms on V. In section 2.2, wsteated a compactificatio?” (V, k)
as the space of (homothety classes of) non-zero non-Arcl@areseminorms on V and a retraction
mapt : P(V)3" — Z°(V,K).

Now let G be a (connected) semisimfigroup together with a projective representatmnG —
PGL(V,K). Let Bor(G) be the variety of all Borel groups of G. We assume for simplithat G is
quasi-split, i.e., that there exists a Borel group B definegt k; this amounts to saying that B@(k)
is non-empty. Then Bd6) is isomorphic to GB. There is a natural morphism

Bor(G) — P(V)

such any Borel group B in @ K for some field extensioK of k is mapped to the uniqu€-point in
P(V) invariant under Box K, see RTW11, Proposition 4.1]. Recall that in section 4.2.1 we defined
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a map
3 : B(G,k) — Bor(G)"
(@ denotes the type of Borel subgroups). Now we consider theposition

B(G,K) 22 Bor(G)™ = P(V)2 s 77 (VK.

We can compactify the buildingg(G, k) by taking the closure of the image. g’ denotes the con-
tragredient representation pf then it is shown in[RTW11, 4.8 and 5.3] that in this way we obtain
the compactificatios(G, k) v .

5. AN INTRINSIC CHARACTERIZATION OF THE BUILDING INSIDE Gan

In this last section, we compleme®RTW10] and [RTW11] by establishing an intrinsic descrip-
tion of the building as a subspace of the analytic gro@p(@Gheorem 5.5).

We described in 4.1 a canonica(l3-equivariant embedding : #(G,k) — G?", where GKk) acts
on G" by conjugation; in other words, this means that the buildih@(k) has a natural realization
as a space of multiplicatiMenorms on the coordinate ring(G) of G. It is very natural to ask for an
intrinsic description of the image &f, i.e. a characterization of multiplicative norms 6iG) which
appear in Berkovich’s realization o#(G, k). As we are going to see, one can answer this question in
a very pleasant way: the image®fis the set of points in & satisfying two simple conditions which
we formulate below.

5.1. Affinoid groups potentially of Chevalley type

Recall that we attached to any poibf Z(G,k) a k-affinoid subgroup Gof G2" satisfying the
following condition: for any non-Archimedean extensilirik, the subgroup @K) of G(K) is the
stabilizer ofx seen in the buildingZ(G,K). By definition, the pointd (x) is the unique element of
the Shilov boundary of G i.e. the only point of G such that f(y)| < |f(J(x))| for anyy € Gx and
any f € 0(G). Conversely, one can recovek @om 9 (x) as itsholomorphic envelopgRTW10,
Proposition 2.4,(ii)], which is to say:

Cx={ye G VI 0(G), [f(y)| <|[T(F(X)I}.

This can be phrased equivalently in terms of multiplicatieems onZ/(G) by saying that one recovers
the affinoid algebra of Gas the completion of the norméealgebra(0'(G), |.|(3(X)).

Let us say that &-affinoid group H is ofChevalley typ€or aChevalley k-affinoid grougf it is the
generic fibre of &°-formal group schemg?” which is the formal completion of k' -Chevalley semi-
simple group along its special fibre. More generally, we @y that H ispotentially of Chevalley
type if there exists an affinoid extensi#étyk such that KoK is a Chevalley affinoid group; by an
affinoid extension, we simply mean thitis a non-Archimedean field which iskaaffinoid algebra
(see RTW10, Appendix A]; this restriction allows to recovéraffinoid algebras fronK-affinoid
algebras equipped with a descent datum). By constructiek-&ffinoid group G attached to a point
x of (G, K) is always potentially of Chevalley type.

For a pointz of G?", let us define itholomorphic envelopby
G(9 ={yeG"; Vi€ 0(G), [f(y) <|f(2)I}.

The above discussion brings out a first condition fulfilledaloy point of G" belonging to the image
of 3.
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FIRST cONDITION— The holomorphic envelope of z is a k-affinoid subgroup piatgnof
Chevalley type.

It is easily checked that a point satisfying this conditimes appear in the image fover some
non-Archimedean extension kf

Lemma 5.1 — Let z be a point o662" whose holomorphic envelope is a k-affinoid subgroup poten-
tially of Chevalley type. Then z is universal, and theretexasnon-Archimedean extension iKsuch
that the canonical lifting z of z toGk belongs to the image &k .

We recall that the notion of @aniversal pointwas introduced at the end of 4.1.3.

Proof — By assumption, there exists an affinoid extendiotk such that Gz)&yK is aK-affinoid
subgroup of Chevalley type in®yK. By faithfully flat descent, it follows that @) is ak-affinoid
subgroup of @" with Shilov boundary{z} [RTW10, Appendix A]. Moreover, the Shilov boundary
of G(22"&kK is reduced to a unique universal point since this affinoid a@ionis the generic fibre of
a formal scheme with geometrically integral special fibrhisToroperty descends to(& [RTW10,
Lemma A.10], hence is universal.

Moreover, if K/k is an affinoid extension as above, then &eaffinoid Chevalley subgroup
G(2)@kK is the stabilizer of a unique pointof %(G,K), hence(Gk)x = G(2)@kK and therefore
Ik (X) = z«. We used the fact that arig-affinoid Chevalley subgroup of &x K occurs as the
stabilizer of some point in the building. To see this, justkpa special vertex; its stabilizer is a
K-affinoid Chevalley subgroup of &K, and any two of them are (& )-conjugate. O

5.2. Galois-fixed points in buildings

Itis clear that the above condition does not suffice to chiarae the image of . Indeed, consider
a finite Galois extensioR' /k and pick a poink’ in Z(G,k’) which is fixed under the natural action
of Gal(k'|k) on the building. Letz denote the image df (X') under the canonical projection offG
onto G". TheKk'-affinoid subgroup(Gy )y is equipped with a Galois descent datum, from which
one deduces: &= G(z) ®cK. It follows that Gz) is ak-affinoid group potentially of Chevalley
type. Now, if the field extensiok' /k is widely ramified, then the inclusion @®(G,k) into the set
of Galois-fixed points in(G, k) is strict in general (see example below); therefore, if wek @
Galois-fixed pointX' outside#(G, k), thenz does not belong to the image 8f This shows that the
condition introduced above does not suffice to characténeémage of9.

We want to illustrate this discussion by looking at an eletagnexample. Let us consider the
group G= SL, over some discretely valued fiekdand pick a finite Galois extensida of k. Via its
canonical embedding ", the building%(G,K) can be identified with the convex hull &f-(k')
insideP;*" with P1(k') omitted, i.e. with the subset

U Na(R>0),

ack

wheren, denotes the map fromR-g to Aﬁ’a” sendingr to the maximal point of the ball of radius

centered im. The Galois action o (G, k') is induced by the Galois action di’t;a”, and the sub-
building #(G, k) is the image of pathg, with a € k. Since the fiel is discretely valued — hence
spherically complete — there exists a well-defined Galgissariant retraction

T: Py PLAK) — B(G,k)

defined by sending a pointto the maximal point of the smallest ball with centekinontainingx.
Using this picture, one easily sees how a Galois-fixed paintappear in4(G,k') — Z(G,k). It
suffices to find an elememt of k' such that all the pathgqs(R-0) issued from conjugates? of a
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intersect at some point distinct fornfa ); since the Galois action permutes these paths, their ngeetin
pointx’ will be fixed. Note that we have

X =ng(r) and t(a)=nq(r),
wherer = max{|a?— a| ; g € Gal(K'|k)} is the diameter of the Galois orbit af andr’ = min{|a —
a ; a€k} is the distance fron to k.

Let k' be any totally ramified finite Galois extensionloflt is well-known thatk’ can be realized
as the splitting field of some Eisenstein polynomidlP=T®+ae 1T¢ 1+ ... + & T + ag, where
laj| < |ap| < 1 for alli and|k*| = |ag|?. The groupk’*| is generated bya | = |ag|*/® for any roota
of P.

We have da, k) = |a| and all conjugates af are contained in the closed ball&, |a|) = E(O, |a]).
The endomorphism Q&&;a” defined by PT) maps this ball onto the closed bal{@&|ap|). In order to
study the induced map(g, |a|) — E(O, |ag|), set U=T/a and write

1 e e-1
QU) = —P(aU) = L ye+ 21T ety L Hgyyg
ao ao ao ao
Sincelai|-|a < |a| < |ao| for anyi € {1,...,e— 1}, the polynomial Q reduces & U°®+1=1—U®
in k'[U]. It follows that the following four conditions are equivate
- all pathsnge(R~0), for g € Gal(K'|k), intersect outside? (G, k);
- all roots of P are contained in tlwpenball D(a, |a);
- all roots of Q are contained in tfepenball D(1,1);

- evanishes irk.

o ) a /
al & at . af
\\ 1 // \ | //
\ | / \\ | ,
\ ] / N | ,
\ | / N
\ | / N4
\ /
N
N
0 A o 0 00
no(lal) no(|al)
Casee;éOinE Casee=0ink

In particular, for any totally ramified (finite) Galois exg@ank’ /k, the building% (G, k) is strictly
smaller than the set of Galois-fixed points#(G,K') if and only if [K' : k] is divisible by the residue
characteristic.

Example 5.2 — Letk=Q; andk’ = Qz(a), wherea? = 2. The two pathg)4(R-o) andn_q(Rxo)
intersectZ(G, k) along the image d2%/2, ), whereas they meet along the imagéf/2, ). The
whole intervalng ([2-%/2,271/2)) consists of Galois-fixed points lying outsidé(G,k). In general,
Rousseau gave an upper bound for the distance of a Galotsgoiat in%(G, k') to #(G, k) in terms
of the ramification ok’ /k [Rou77, Prop. 5.2.7].

5.3. Apartments

Assume temporarily that the group G is split. Given a paiimt G*" whose holomorphic envelope
G(2) is ak-affinoid group potentially of Chevalley type, let us coresid non-Archimedean extension
K /k such that the canonical lifting of z belongs to the image dfx and denote by its preimage:
zx = 9k (X). Since the group G is split, the embeddiggf G, k) — Z(G,K) identifies the left-hand
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side with the union of apartments of all maximal split toriGp which are defined ovét. Therefore,
in order to guarantee that the poinitself belongs to the image d¥, we should require thatg
belongs to the apartment of a maximal split torus defined kvérhe proposition below translates
this additional condition in appropriate terms.

Given a torus S ovek, we denote by Sthe maximal bounded subgroup ot'Sit is the affinoid
subgroup defined by the equatidig = 1, wherex runs through the character group of S.

Proposition 5.3 — Let S be a maximal split torus and let x be a point@f G, k). The following
conditions are equivalent:

(i) x belongs to the apartme#t(S,k);

(ii) for every non-Archimedean extensioryK the point x is fixed by the action & (K) on
#(G,K);
(i) the affinoid subgrouis, of G2 containsS*.

Proof— Equivalence of points (ii) and (iii) follows immediatelyoim the definition of the affinoid
group G..

For any non-Archimedean extensiliik, the action of ) on %(G,K) preserves the apartment
A(S,K) and the induced action of the maximal bounded subgrdyi Ss trivial (this follows from
Proposition 3.17, (iii), generalized to an arbitrary noretimedean field). Hence (i) implies (ii).

The only non-trivial thing to prove is that (ii) implies (i)We argue by contraposition: given a
point x of the building which does not belong to the apartment A (S, k), we will exhibit a finite
unramified extensiok’ /k and an elemergof S'(k’) such thas- x # xin %(G,K).

Recall that the buildingZ(G, k) is a metric space satisfying the C&JJ-property(see 1.1.3). Since
the apartment A is a closed convex and complete subset, tiiosra unique poirt’ with

d(x,A) = d(x,X).
Moreover, there exists a unique geodesic segrpexif between those two points and
X X]NA = {X}.

Consider any apartment Aontaining bothx andx’; it contains|x, X] and intersects A along a closed
convex subset C. The point coincides with the projection in Aof x to C, hence it lies in the
boundary of C forx does not belong to A. Finally, since C is the intersection 6hiie number of
half-apartmentsRou09, Proposition 9.1], we conclude thdtbelongs to the wall H in A defined by
the vanishing of some affine roat Let H" denote the half-apartment on whialis non-negative and
write a= a + A, where the linear par belongs to the root systeMm(T,G) andA is an element of
log|k*|.

As explained in 3.2.1 and 3.2.2, the unipotent root groypi®Jendowed with a separated, ex-
haustive and decreasing filtratidt)s s}scr by affinoid subgroups. The subgroup & U, ) cor-
responding to the affine roet= a + A has the following geometric interpretation: for every non-
Archimedean extensiok /k, the action of W(K) on %#(G,K) fixes pointwise the half-apartment™H
and is transitive on the set of apartments which intersedbAgH". Moreover, if we set

U;’,\ = U Ua7r7
r>A

then U, » (K)/UZ , (K) is in bijection with equivalence classes of apartment&i(6, K) containing
H™*, where two such apartment are said to be equivalent thess@ttealong a neighborhood of'H
These properties can be deduced from the discussion in artithey are easy to see fo=SSL(V)

by mimicking the proof of Proposition 1.31.

The torus S acts on Jby conjugation. The bounded subgroup [Beserves each step of the

filtration and there is a non-canonical bijection

Uaa (K)/UZ 5 (K) =K
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such that the action of an elemesx: S'(K) on the left-hand side corresponds to multiplication by

orA(g) € K* on the right-hand side. Note that this condition implieg the unit element on the left-
hand side corresponds to 0 on the right-hand side.

To conclude the proof, observe that there exists a uniquaesies k satisfying the following
property: for everyu € U, ) (K) whose class modulo }JA(k) corresponds td, the apartmenti- A
contains a germ ofx, x| atx, i.e. we may writeu- AN [x,x’] = [x,y] for somey € [x,x). We have
& # 0 sincex does not belong to A. Now, i is fixed by S(k), thenorA(g) -& = & and therefore
aA(g) = 1 for anys € S'(k). This means that the characterof thek-torusSt is trivial at the level of
E—points. Since the characteris non-trivial, there exists a finite separable extengiohk such that
a#1on §(€). Denoting byk’ the corresponding unramified extensionkpfve conclude thax is
moved by some element of &').

O

Remark 5.4 — One can be more precise: since it occurs among the rootspﬂft&—semi—simple
group, the charactex is primitive anda (St(k)) = k*. Therefore, the apartment(8 k) coincides
with the fixed-point set of §k) if k contains at least 3 elements (see aBdB4, 5.16])

In the split case, the discussion above shows preciselyhaddclitional condition is required in
order to characterize the image 8fin G3" there exists a maximal split tor8in G such that
G(z)nS= S

In general, we impose the following:

SECOND CONDITION— There exists a maximal tordswhich contains a maximal split torus and
such thatG(z) N T =T

We now characterize the image ®fin the analytic space of G.

Theorem 5.5 — The image of the canonical embeddifig (G, k) — G*"is the subset of points z
satisfying the following two conditions:

1. the holomorphic envelop8(z) of z is a k-affinoid subgroup potentially of Chevalley type;
2. there exists a maximal toruk of G containing a maximal split torus and such thatz) N 12"
is the maximal affinoid subgroup* of T2",

Proof. We have already seen that the first condition is necessary.same holds for the second
one. Given a point € #(G, k), there exists a maximal split torus S and a maximal torus Tatoing
S such thak € A(S,k) C A(T,K'), wherek' is a finite extension ok which splits T. It follows that
Gy @k K contains the bounded torug T K, hence T c G,.

Now, let us show that the two conditions are sufficient. Letassider a pointz € G?" satisfying
the two conditions and pick a non-Archimedean exten${gk and a pointx € #(G,K) such that
z = 9k (X), wherez denotes the canonical extension of the universal paintGx = G ®x K. This
equality holds over any non-Archimedean extensioK oSincez satisfies the second condition, we
get a maximal torus T of G containing a maximal split torus hstinat Gz) N T = T, EnlargingK
if necessary, we assume that T splits oKeISince

Tk N (Gk)x =Tk NGk = (TNG(2))x = (TY), = (Tk)",

it follows from Proposition 5.3 that belongs to the apartment ofTOnce we know thatkx belongs

to the image of AT,K) for some non-Archimedean extensikrik splitting T, this property holds for
any such extension by compatibility 8fwith field extension (see the end of 4.1.3). In particular, we
can consider a finite Galois extensidrik which splits T. It follows from the identityGy )x = G(2)k
that the pointx is fixed by Galk'|k). Since AT,k')®aKIK is the image of AS,k) in 2(G,K'), we
conclude thak comes from a poiny of #(G, k) such thatz= 3 (y). O
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