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INTRODUCTION

This paper is mainly meant to be a survey on two papers wriitethe same authors, namely
[RTW10] and [RTW12]; it also contains some further developments which we fouseful to men-
tion here. The general theme is to explain what the theorpalfyéic spaces in the sense of Berkovich
brings to the problem of compactifying Bruhat-Tits builg&

1. Bruhat-Tits buildings— The general notion of a building was introduced by J. Titthie 60ies
[Tits74], [BouQ7, Exercises for IV.2]. These spaces are cell complexes metjto have some nice
symmetry properties so that important classes of groupsanggn them. More precisely, it turned
out in practice that for various classes of algebraic grams generalizations, a class of buildings
is adapted in the sense that any group from such a class aalnvety transitive action on a suitable
building. The algebraic counterpart to the transitivitpperties of the action is the possibility to
derive some important structure properties for the group.

This approach is particularly fruitful when the class of e is that of simple Lie groups over
non-Archimedean fields, or more generally reductive graaes non-Archimedean valued fields —
see Sect. 3. In this case the relevant class of buildingsaisahEuclidean buildings (1.1)This
is essentially the only situation in building theory we ddes in this paper Its particularly nice
features are, among others, the facts that in this case flténigg are (contractible, hence simply
connected) gluings of Euclidean tilings and that deep (nositive curvature) metric arguments are
therefore available; moreover, on the group side, strastare shown to be even richer than ex-
pected. For instance, topologically the action on the Ingjsl enables one to classify and understand
maximal compact subgroups (which is useful to represemtatieory and harmonic analysis) and,
algebraically, it enables one to define important integratiets for the group (which is again useful
to representation theory, and which is also a crucial steprits analytic geometry).

One delicate point in this theory is merely to prove that feudable non-Archimedean reductive
group, there does exist a nice action on a suitable Euclidedding: this is the main achievement
of the work by F. Bruhat and J. Tits in the 70id&T72], [BrT84]. Eventually, Bruhat-Tits theory
suggests to see the Euclidean buildings attached to redugtoups over valued fields (henceforth
called Bruhat-Tits buildingy as non-Archimedean analogues of the symmetric spacesgafiesm
real reductive Lie groups, from many viewpoints at least.

2. Some compactification procedures Compactifications of symmetric spaces were defined and
used in the 60ies; they are related to the more difficult gobbf compactifying locally symmetric
spaces$at60H, to probability theory Fur63], to harmonic analysis... One group-theoretic outcome
is the geometric parametrization of classes of remarkalbleed subgroupsMoo64]. For all the
above reasons and according to the analogy between Brithditildings and symmetric spaces, it
makes therefore sense to try to construct compactificatbbBsiclidean buildings.

When the building is a tree, its compactification is quiteyemsdescribe $er77. In general,
and for the kind of compactifications we consider here, trg fionstruction is due to E. Landvogt
[Lan96]: he uses there the fact that the construction of the Briiftatbuildings themselves, at least at
the beginning of Bruhat-Tits theory for the simplest casessists in defining a suitable gluing equiv-
alence relation for infinitely many copies of a well-choserclitiean tiling. In Landvogt's approach,
the equivalence relation is extended so that it glues tegettiinitely many compactified copies of
the Euclidean tiling used to construct the building. Anothpproach is more group-theoretic and
relies on the analogy with symmetric spaces: since the syricmpace of a simple real Lie group
can be seen as the space of maximal compact subgroups obtig gne can compatify this space by
taking its closure in the (compact) Chabauty space of afledlasubgroups. This approach is carried
out by Y. Guivarc’h and the first autho6R06]; it leads to statements in group theory which are
analogues ofifloo64] (e.g., the virtual geometric classification of maximal axaele subgroups) but



the method contains an intrinsic limitation due to which eaanot compactify more than the set of
vertices of the Bruhat-Tits buildings.

The last author of the present paper also constructed cdifigettons of Bruhat-Tits buildings, in
at least two different ways. The first way is specific to theeazfghe general linear group: going back
to Bruhat-Tits’ interpretation of Goldman-Iwahori’s woft163], it starts by seeing the Bruhat-Tits
building of GL(V) — where V is a vector space over a discretely valued non-Aretdean field — as
the space of (homothety classes of) non-Archimedean nomé. oThe compactification consists
then in adding at infinity the (homothety classes of) norezewn-Archimedean seminorms on V.
Note that the symmetric space of R) is the set of normalized scalar productsRihand a natural
compactification consists in projectivizing the cone ofifres nonzero semidefinite bilinear forms:
what is done in \Wer04] is the non-Archimedean analogue of this; it has some cdiureaevith
Drinfeld spaces and is useful to our subsequent compaditficin the vein of Satake’s work for
symmetric spaces. The second way is related to represemthgory WerQ7]: it provides, for a
given group, a finite family of compactifications of the Brt#i&s building. The compactifications,
asin E. Landvogt's monograph, are defined by gluing comfiedt=uclidean tilings but the variety of
possibilities comes from exploiting various possibibitief compactifying equivariantly these tilings
in connection with highest weight theory.

3. Use of Berkovich analytic geometry The compactifications we would like to introduce here
make a crucial use of Berkovich analytic geometry. Thereaateally two different ways to use the
latter theory for compactifications.

The first way is already investigated by V. Berkovich himsgtien the algebraic group under
consideration is splitBer90, Chap. 5]. One intermediate step for it consists in definimgag@ from
the building to the analytic space attached to the algelgaiap: this map attaches to each point
of the building an affinoid subgroup,Gwhich is characterized by a unique maximal pa¥ik) in
the ambient analytic space of the group. The nfajg a closed embedding when the ground field
is local; a compactification is obtained whénis composed with the (analytic map) associated to
a fibration from the group to one of its flag varieties. One mistan this way the finite family of
compactifications described iMer07]. One nice feature is the possibility to obtain easily maps
between compactifications of a given group but attachedstindt flag varieties. This enables one to
understand in combinatorial Lie-theoretic terms whichrimary components are shrunk when going
from a "big" compactification to a smaller one.

The second way mimics |. Satake’s work in the real case. Mmeigely, it uses a highest weight
representation of the group in order to obtain a map from thieling of the group to the building of
the general linear group of the representation space whgke said before, is nothing else than a
space of non-Archimedean norms. Then it remains to use themeem compactification mentioned
above by taking the closure of the image of the composed roaptiie building to the compact space
of (homothety classes of) seminorms on the non-Archimede@aresentation space.

For a given group, these two methods lead to the same famitpmipactifications, indexed by
the conjugacy classes of parabolic subgroups. One integesbint in these two approaches is the
fact that the compactifications are obtained by taking tbewke of images of equivariant maps. The
construction of the latter maps is also one of the main difiis; it is overcome thanks to the fact
that Berkovich geometry has a rich formalism which combieebniques from algebraic and analytic
geometry (the possibility to use field extensions, or thecephof Shilov boundary, are for instance
crucial to define the desired equivariant maps).

Structure of the paper. In Sect. 1, we define (simplicial and non-simplicial) Eueka buildings
and illustrate the notions in the case of the groups; 8te also show in these cases how the natural
group actions on the building encode information on the gisttucture of rational points. In Sect. 2,
we illustrate general notions thanks to the examples ofespaaturally associated to special linear
groups (such as projective spaces); this time the notiansedgvant to Berkovich analytic geometry
and to Drinfeld upper half-spaces. We also provide specifierples of compactifications which we



generalize later. In Sect. 3, we sum up quickly what we neah BBruhat-Tits theory, including the
existence of integral models for suitable bounded openrsuipg; following the classical strategy, we
first show how to construct a Euclidean building in the s@ige by gluing together Euclidean tilings,
and then how to rely on Galois descent arguments for nonssadéy split groups. In Sect. 4, we
finally introduce the maps that enable us to obtain compeatifins of Bruhat-Tits buildings (these
maps from buildings to analytifications of flag varietieséaeen previously defined by V. Berkovich
in the split case); a variant of this embedding approactsecto Satake’s ideas using representation
theory to compactify symmetric spaces, is also quickly gmésd. At last, Sect. 5 contains a new
result, namely an intrinsic characterization of the imafythe embedding we use, from Bruhat-Tits
building to the analytification of the group; this gives a né@scription of the building in terms of
multiplicative norms on the coordinate rings of the group.

Acknowledgements. We warmly thank the organizers of the summer school "Bedtogpaces”
held in Paris in July 2010. We are grateful to the referee fanyncomments, corrections and some
relevant questions, one of which led to Proposition 5.1haly, we thank Christophe Cornut for an
interesting (electronic) discussion which prompted ustanulate and prove Theorem 5.7.

Conventions. In this paper, as inger90], valued fields are assumed to be non-Archimedean and
complete, the valuation ring of such a fikds denoted byk°, its maximal ideal is byk°° and its
residue field bﬁ = k°/k°°. Moreover aocal field is a non-trivially valued non-Archimedean field
which is locally compact for the topology given by the valaat(i.e., it is complete, the valuation is
discrete and the residue field is finite).

1. BUILDINGS AND SPECIAL LINEAR GROUPS

We first provide a (very quick) general treatment of Euclidé&aildings; general references for
this notion are Rou09 and [Wei09]. It is important for us to deal with the simplicial as well as
the non-simplicial version of the notion of a Euclidean ding because compactifying Bruhat-Tits
buildings via Berkovich techniques uses huge valued fi€léhe second part illustrates these defini-
tions for special linear groups; in particular, we show howvirterpret suitable spaces of horms to
obtain concrete examples of buildings in the case when gebedic group under consideration is the
special linear group of a vector space. These spaces of naithmaturally be extended to spaces of
(homothety classes of) seminorms when buildings are cereidn the context of analytic projective
spaces.

1.1. Euclidean buildings

Euclidean buildings are non-Archimedean analogues of Rigrian symmetric spaces of the non-
compact type, at least in the following sense: if G is a singigebraic group over a valued field
k, Bruhat-Tits theory (often) associates to G dnd metric space, called a Euclidean building, on
which G(k) acts by isometries in a "very transitive” way. This is a ditwawhich is very close to
the one where a (hon-compact) simple real Lie group actssoasiociated (non-positively curved)
Riemannian symmetric space. In this more classical casdrdhsitivity of the action, the explicit
description of fundamental domains for specific (e.g., maicompact) subgroups and some non-
positive curvature arguments lead to deep conjugacy anctste results — sedfau09] and [Par09]



for a modern account. Euclidean buildings are singularepéaat, by and large, play a similar role
for non-Archimedean Lie groups(&) as above.

1.1.1. Simplicial definition

The general reference for building theory from the variodiscrete" viewpoints isAB08]. Let
us start with an affine reflection group, more preciseftyoxeter group of affine tyg@ou07]. The
starting point to introduce this notion is a locally finitenfdy of hyperplanes — calledvalls — in
a Euclidean spacddc. cit., V 81 introduction]. An affine Coxeter group can be seen asoamr
generated by the reflections in the walls, acting properltherspace and stabilizing the collection of
walls [loc. cit., V 83 introduction]; it is further required that the action each irreducible factor of
the ambient space be via an infingssentiagroup (no non-zero vector is fixed by the group).

Example 1.1 — 1. The simplest (one-dimensional) example of a Euclidéig is provided by
the real line tesselated by the integers. The corresporaffitge Coxeter group, generated by
the reflections in two consecutive vertices (i.e., integésshe infinite dihedral group £

2. The next simplest (irreducible) example is provided by tissselation of the Euclidean plane
by regular triangles. The corresponding tiling group is@uoxeter group of affine typévz; it is
generated by the reflections in the three lines supportiegtlyes of any fundamental triangle.

Note that Poincaré’s theorem is a concrete source of Ewaclidiéings: start with a Euclidean
polyhedron in which each dihedral angle between codimensitaces is of the fornf for some
integerm > 1 (depending on the pair of faces), then the group generatelebreflections in these
faces is an affine Coxeter groujd§s88, IV.H.11].

In what follows, X is a Euclidean tiling giving rise to a Euclidean reflectioowgp by Poincaré’s
theorem (in Bourbaki's terminology, it can also be seen asniditural geometric realization of the
Coxeter complex of an affine Coxeter group, that is the afition of the Tits’ cone of the latter
group Bou07).

Definition 1.2 — Let(Z,W) be a Euclidean tiling and its associated Euclidean reflectiooup. A
(discrete) Euclidean builidingf type (£,W) is a polysimplicial complex, sag, which is covered
by subcomplexes all isomorphic ¥o— called theapartments- such that the following incidence
properties hold.

(SEB 1) Any two cells of% lie in some apartment.
(SEB 2) Given any two apartments, there is an isomorphism betwessn fixing their intersection .

The cells in this context are callddcetsand the group W is called thé/eyl groupof the building
2. The facets of maximal dimension are cal&doves

The axioms of a Euclidean building can be motivated by me&ésons. Indeed, once the choice
of aW-invariant Euclidean metric ok has been made, there is a natural way the define a distance on
the whole building: given any two pointsandx’ in 4, by (SEB 1) pick an apartmerdt containing
them and consider the distance betwrandx' taken inA; then (SEB 2) implies that the so—obtained
non-negative number doesn’t depend on the choic&. ot requires further work to check that one
defines in this way a distance on the building (i.e., to chiek the triangle inequality hold®ar00,
Prop. 11.1.3]).

Remark 1.3 — The terminology "polysimplicial” refers to the fact thatbuilding can be a direct
product of simplicial complexes rather than merely a simalicomplex; this is why we provisionally
used the terminology "cells" instead of "polysimplices"state the axioms (as already mentioned,
cells will henceforth be called facets — alcoves when theytap-dimensional).

Let us provide now some examples of discrete buildings spmeding to the already mentioned
examples of Euclidean tilings.
Example 1.4 — 1. The class of buildings of typ&R, D.,) coincides with the class of trees with-
out terminal vertex (recall that a tree is a 1-dimensionalpicial complex —i.e., the geometric
realization of a graph — without non-trivial looS¢r77).



2. A 2—dimensiona1072-bui|ding is already impossible to draw, but roughly spegkit can be con-
structed by gluing half-tilings to an initial one along vea(l.e., fixed point sets of reflections)
and by iterating these gluings infinitely many times prodi@eprescribed "shape" of neighbor-
hoods of vertices is respected — see Example 1.7 for furétailsl on the local description of a
building in this case.

It is important to note that axiom (ii) doa®t require that the isomorphism between apartments
extends to a global automorphism of the ambient buildingfabt, it may very well happen that
for a given Euclidean buildingZ we have Aut#) = {1} (take for example a tree in which any
two distinct vertices have distinct valencies). Howevefits’ classification of Euclidean buildings
[Tit86] implies that in dimensio: 3 any irreducible building comes — via Bruhat-Tits theoeg aext
remark — from a simple algebraic group over a local field, &edefore admits a large automorphism
group. At last, note that there do exist 2-dimensional exgticlidean buildings, with interesting but
unexpectedly small automorphism grougs{00].

Remark 1.5 — In Sect. 3, we will briefly introduce Bruhat-Tits theoryh& main outcome of this
important part of algebraic group theory is that, given aisenple algebraic group G over a local
field k, there exists a discrete Euclidean buildiigg= %(G, k) on which the group of rational points
G(k) acts by isometries and strongly transitively (i.e., trawsly on the inclusions of an alcove in an
apartment).

Example 1.6 — Let G as above be the group $Then the Euclidean building associated tg &L
a Euclidean building in which every apartment is a Coxetenglex of typeATz, that is the previously
described 2-dimensional tiling of the Euclidean spRéeby regular triangles. Strong transitivity of
the Slg(k)-action means here that given any alcoves (triangtes)and any apartments, A’ such
thatc C A andc’ C A’ there existg € SL3(k) such that’ = g.candA’ =g.A.

The description of the apartments doesn’t depend on théfietdik (only on the Dynkin diagram
of the semisimple group in general), but the fikldlays a role when one describes the combinatorial
neighborhoods of facets, or small metric balls around eesti Such subsets, which intersect finitely
many facets whek is a local field, are known to be realizations of some (sphérlauildings: these
buildings are naturally associated to semisimple grouparézterized by some subdiagram of the
Dynkin diagram of G) over the residue fietabf k.

Example 1.7 — For G= SL3 andk = Qp, each sufficiently small ball around a vertex is the flag
complex of a 2-dimensional vector space o¥eipZ and any edge in the associated Bruhat-Tits
building is contained in the closure of exacthy 1 triangles. A suitably small metric ball around
any point in the relative interior of an edge can be seen asjagtive line oveiZ / pZ, that is the flag
variety of Sl, overZ /pZ.

1.1.2. Non-simplicial generalization

We will see, e.g. in 4.1, that it is often necessary to undadseind use reductive algebraic groups
over valued fields fonon-discretevaluations even if in the initial situation the ground fietddis-
cretely valued. The geometric counterpart to this is thessary use of non-discrete Euclidean build-
ings. The investigation of such a situation is already ceddyy the fundamental work by F. Bruhat
and J. Tits as written irgrT72] and BrT84], but the intrinsic definition of a non-discrete Euclidean
building is not given there — sed@if86] though, for a reference roughly appearing at the same time
as Bruhat-Tits’ latest papers.

The definition of a building in this generalized context istgimilar to the discrete one (1.1.1)
in the sense that it replaces an atlas by a collection ofessligvhich are still calle@partmentsand
turn out to be maximal flat (i.e., Euclidean) subspaces onedtilding is endowed with a natural
distance. What follows can be found for instance in A. Parssthesis Par0(Q].

Let us go back to the initial question.



Question 1.8 — Which geometry can be associated to a grog)®hen G is a reductive group
overk, a (not necessarily discretely) valued field?

The answer to this question is a long definition to swallowyeowill provide some explanations
immediately after stating it.

The starting point is again@dimensional Euclidean space, Sy, together with a finite group
W in the group of isometries IsofByect) ~ Oq(R). By definition, avectorial wallin e is the
fixed-point set int,e; of a reflection inV and avectorial Weyl chambes a connected component of
the complement of the union of the walls3e;, SO that Weyl chambers are simplicial cones.

Now assume that we are given an affine Euclidean shadi¢h underlying Euclidean vector space
>vect- We have thus Isofit) ~ ISom(Zyect) X Zyect =~ Og(R) x RY. We also assume that we are given
a groupW of (affine) isometries ifX such that the vectorial part W is W and such that there exists
a pointx € ¥ and a subgroup T Isom(X) of translations satisfyingV =W - T; we use here the
notationW, = Stalyy(x). A point x satisfying this condition is callespecial

Definition 1.9, — LetZ be asetand let7 = {f : = — #} be a collection of injective maps, whose
images are calle@partmentsWe say thatZ is a Euclidean buildingdf type(Z,W) if the apartments
satisfy the following axioms.

(EB 1) The family.</ is stable by precomposition with any element of W (i.e., for &€ o7 and any
weW, we have dw € ).

(EB 2) Forany f, f’ € o the subse¥; y = f'~1(f(X)) is convex ir and there exists & W such that
we have the equality of restrictiorig 1o f') % = Wlg, -

(EB 3) Any two points of# are contained in a suitable apartment.

At this stage, there is a well-defined map# x % — R-~o and we further require:

(EB 4) Given any (images of) Weyl chambers, there is an apartmefticohtaining sub-Weyl chambers
of each.
(EB 5) Given any apartmerk and any point x A, there is al-lipschitz retraction map & ry 5 : % —
A such that [y = id, and r-1(x) = {x}.
The above definition is taken fronPar00, 11.1.2]; in these axioms &Veyl chambers the affine
counterpart to the previously defined notion dayl chambeand a "sub-Weyl chamber" is a trans-
late of the initial Weyl chamber which is completely contdrin the latter.

Remark 1.10 — A different set of axioms is given in G. Rousseau’s papay09, 86]. It is inter-
esting because it provides a unified approach to simplicidlreon-simplicial buildings via incidence
requirements on apartments. The possibility to obtain adiscrete building with Rousseau’s axioms
is contained in the model for an apartment and the definiti@facet as a filter. The latter axioms are
adapted to some algebraic situations which cover the caBeubfat-Tits theory over non-complete
valued fields — sedjou09, Remark 9.4] for more details and comparisons.

Remark 1.11 — In this paper we do not use the plain word "chamber" thoaghstandard termi-
nology in abstract building theory. This choice is made widieonfusion: alcoves here are chambers
(inthe abstract sense) in Euclidean buildings and paisattetiasses of Weyl chambers here are cham-
bers (in the abstract sense) in spherical buildings at tgfofiEuclidean buildings\\vei09, Chap. 8],
[ABOS, 11.8].

It is easy to see that, in order to prove that the rdagefined thanks to axioms (EB 1)-(EB 3)
is a distance, it remains to check that the triangle inetyubblds; this is mainly done by using the
retraction given by axiom (EB 5). The previously quoted figetrotivation (Remark 1.3) so to speak
became a definition. Note that the existence of suitablactns is useful to other purposes.

The following examples of possibly non-simplicial Euclatebuildings correspond to the examples
of simplicial ones given in Example 1.4.

Example 1.12 — 1. Consider the real lin& = R and its isometry grouZ /2Z x R. Then a
Euclidean building of typéR,Z /2Z x R) is a real tree — see below.
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2. For a 2-dimensional case extending simplidiatbuildings, a model for an apartment can be
taken to be a maximal flat in the symmetric space of(®)/SO(3) acted upon by its stabilizer
in SL3(R) (using the notion of singular geodesics to distinguish ta#s) There is a geometric
way to define the Weyl group and Weyl chambers (six directiginsimplicial cones) in this
differential geometric context — sellfu09] for the general case of arbitrary symmetric spaces.

Here is a (purely metric) definition of real trees. It is a rieetpace(X,d) with the following two
properties:

(i) it is geodesic given any two points, X' € X there is a (continuous) map: [0;d] — X, where
d =d(x,X), such that(0) = x, y(d) =X andd(y(s), y(t)) =|s—t| for anyst € [0;d];

(i) any geodesic triangle is a tripod (i.e., the union ofetlirgeodesic segments with a common
end-point).

Remark 1.13 — Non-simplicial Euclidean buildings became more popw@ce recent work of
geometric (rather than algebraic) nature, where non-elisdsuildings appear as asymptotic cones of
symmetric spaces and Bruhat-Tits building$.97].

The remark implies in particular that there exist non-aigeiEuclidean buildings in any dimension,
which will also be seen more concretely by studying spacewofArchimedean norms on a given
vector space —see 1.2.

Remark 1.14 — Note that given a reductive group G over a valued figBruhat-Tits theory "often"
provides a Euclidean building on which the grougkacts strongly transitively in a suitable sense
(see Sect. 3 for an introduction to this subject).

1.1.3. More geometric properties

We motivated the definitions of buildings by metric consatiems, therefore we must mention
the metric features of Euclidean buildings once these sphaee been defined. First, a Euclidean
building always admits a metric whose restriction to anyrapent is a (suitably normalized) Eu-
clidean distanceRou09, Prop. 6.2]. Endowed with such a distance, a Euclideanibgili$ always a
geodesic metric space as introduced in the above metrigtiefiof real trees (1.1.2).

Recall that we use the axioniEB) from Def. 1.9 to define a building; moreover we assume that
the above metric is complet&his is sufficient for our purposes since we will eventualsabwith
Bruhat-Tits buildings associated to algebraic groups ouemplete non-Archimedean fields.

Let (#4,d) be a Euclidean building endowed with such a metric. Tf@nd) satisfies moreover a
remarkable non-positive curvature property, called th& @ property(where "CAT" seems to stand
for Cartan-Alexandrov-Toponogov). Roughly speakings tirioperty says that geodesic triangles are
at least as thin as in Euclidean planes. More precisely, ¢ 5 to compare a geodesic triangle
drawn in % with "the" Euclidean triangle having the same edge lengthgieodesic space is said
to have the CAT0)-property, or to be CAT(0), if a median segment in each geodesic triangle is at
most as long as the corresponding median segment in the csmpé&iangle drawn in the Euclidean
planeR? (this inequality has to be satisfied for all geodesic triaayyl Though this property is stated
in elementary terms, it has very deep consequerikRes(9, 87].

One first consequence is the uniqueness of a geodesic sebatemten any two pointBH99,
Chap. II.1, Prop. 1.4].

The main consequence is a famous and very useful fixed-poipepy. The latter statement is
itself the consequence of a purely geometric one: any baliedbset in a complete, CAT(0)-space
has a unigue, metrically characterized, circumcei&08, 11.3]. This implies that if a group acting
by isometries on such a space (e.qg., a Euclidean buildirggy baunded orbit, then it has a fixed point.
This is theBruhat-Tits fixed point lemmé applies for instance to any compact group of isometries.
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Let us simply mention two very important applications of Brihat-Tits fixed point lemma (for
simplicity, we assume that the building under considermat®discrete and locally finite — which
covers the case of Bruhat-Tits buildings for reductive gsoaver local fields).

1. The Bruhat-Tits fixed point lemma is used to classify malibtounded subgroups in the isom-
etry group of a building. Indeed, it follows from the definiti of the compact open topology
on the isometry group A#4) of a building %, that a facet stabilizer is a compact subgroup
in Aut(#). Conversely, a compact subgroup has to fix a point and thist pain be sent to
a point in a given fundamental domain for the action of (Adj on % (the isometry used for
this conjugates the initial compact subgroup into the 8taiof a point in the fundamental
domain).

2. Another consequence is that any Galois action on a Britebuilding has "sufficiently many"
fixed points, since a Galois group is profinite hence compdttese Galois actions are of
fundamental use in Bruhat-Tits theory, following the gehédea — widely used in algebraic
group theory — that an algebraic group G o¥es nothing else than a split algebraic group
over the separable closuk& namely Gy k®, together with a semilinear action of Glel/k) on
Gy ks [Bor9l, AG §11-14].

Arguments similar to the ones mentioned in 1. imply that, mkés a local field, there are exactly
d+ 1 conjugacy classes of maximal compact subgroups i 8k). They are parametrized by the
vertices contained in the closure of a given alcove (in féxety are all isomorphic to Si;1(k°) and
are all conjugate under the action of &k (k) by conjugation).

Remark 1.15 — One can make 2. a bit more precise. The starting point oh&rliits theory

is indeed that a reductive group G over any field, kagplits — hence in particular is very well
understood — after extension to the separable cldsuoé the ground field. Then, in principle, one
can go down to the group G ovérby means of suitable Galois action — this is one leitmotiv in
[BT65]. In particular, Borel-Tits theory provides a lot of infoation about the group &) by seeing

it as the fixed-point set &)</ When the ground field is a valued field, then one can associate
a Bruhat-Tits buildingZ = %2(G, k®) to Gy k® together with an action by isometries of @&//K).
The Bruhat-Tits building of G ovek is contained in the Galois fixed-point sgt®2(</%) | but this is
inclusion is strict in general: the Galois fixed-point sebigger than the desired buildingRpu77,

[11]; this point is detailed in 5.2. Still, this may be a goodstiapproximation of Bruhat-Tits theory to
have in mind. We refer to 3.2.2 for further details.

1.2. TheSL, case

We now illustrate many of the previous notions in a very eip§ituation, of arbitrary dimension.
Our examples are spaces of norms on a non-Archimedean \&zoe. They provide the easiest
examples of Bruhat-Tits buildings, and are also very closgpaces occurring in Berkovich analytic
geometry. In this section, we denote by WK-&ector space and by+ 1 its (finite) dimension ovek.

Note that until Remark 1.23 we assume that k is a local field.

1.2.1. Goldman-lwahori spaces
The materiel of this subsection is classical and could be fordexample, in Wei74].
We are interested in the following space.

Definition 1.16 — The Goldman-lwahorispace of the k-vector spaceé is the space of non-
Archimedean norms oN’; we denote it by.4"(V,k). We denote by?2"(V,k) the quotient space
A (V,k)/ ~, where~ is the equivalence relation which identifies two homothetions.
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To be more precise, lét- || and|| - || be norms in/"(V,k). We have|| - ||~| - ||" if and only if
there existx > 0 such thaf| x||= c || x|’ for all x € V. In the sequel, we use the notatiph. to
denote the class with respect to the homothety equivalexiagan.

Example 1.17 — Here is a simple way to construct non-Archimedean norm¥ oiPick a basis
e = (ep,€1,...,&) in V. Then for each choice of parametags= (co,Cy,...,Cq) € R4, we can
define the non-Archimedean norm which sends each vecto§; Aie to max{exp(c) | Ai|}, where
| - | denotes the absolute valuelofWe denote this norm by - ||ec.

We also introduce the following notation and terminology.

Definition 1.18 — (i) Let|| - || be anorm and le¢be abasisiV. We say thaj - || is diagonalized
by eif there exists & R9*1 such that]| - |=|| - |lec; in this case, we also say that the basis
adaptedo the norm|| - ||.

(i) Given a basi®, we denote b% the set of norms diagonalized by
Ae={|l - [lec: c€ R}
(i) We denote by the quotient of&ve by the homothety equivalence relatiale = Ave/ ~.

Note that the spacé is naturally an affine space with underlying vector spRée?!: the free
transitive R%+1-action is by shifting the coefficients which are the logarithms of the "weights"
exp(c;) for the normg|| - [lec: SiAie — maxoci<a{exp(ci) |Ai |}. Under this identification of affine
spaces, we havete ~ R%™1/R(1,1,...,1) ~ R,

Remark 1.19 — The space?’(V, k) will be endowed with a Euclidean building structure (Th3).2
in which the spaces. — with e varying over the bases of V — will be the apartments.

The following fact can be generalized to more general vafigdds than local fields but isottrue
in general (Remark 1.24).

Proposition 1.20 — Every norm of 4 (V,k) admits an adapted basis W.

Proof— Let| - || be anorm of #"(V,k). We prove the result by induction on the dimension of the
ambientk-vector space. Lgt be any non-zero linear form on V. The map-\{0} — R, sendingy to

—| HY)| naturally provides, by homogeneity, a continuous mpag?(V)(k) — R... Sincek is locally

Iyl
compact, the projective spa&&V)(k) is compact, therefore there exists an elemeatV — {0} at

which @ achieves its supremum, so that
(1)

*
STE]

IIx||<||z]| for anyze V.

K(2)

Letzbe an arbitrary vector of V. We write=y-+ Wx according to the direct sum decomposition

V = Ker(u) @ kx. By the ultrametric inequality satisfied By ||, we have

(1)
Kok z[[<max{|yl; X
() 2]l {l e X[/}
and
(1@
* %k % YIS maxy || Z||; —— || X|| f-
o)yl {2l 0| [I[}
Inequality (+) says that ma¥| z ’ZE)Z(;” x|} =[|z], 0 (% +) implies || z||>||y|. The latter
inequality together with{x) implies that|| z||> max{|| y|l; ;ZE)Z(;‘ || x||}. Combining this with(sx)
JH@)|

we obtain the equality z||= max{||y

|Ix]|}. Applying the induction hypothesis to Kgr),

M|
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we obtain a basis adapted to the restrictior| of| to Ker(u). Adding x we obtain a basis adapted to
|| - ||, as required (note th%% is the coordinate corresponding to the vectar any such basis)[]

Actually, we can push a bit further this existence resultélaolapted norms.

Proposition 1.21 — For any two norms of#”(V, k) there is a basis o¥ simultaneously adapted to
them.

Proof— We are now given two norms, sdy- || and|| - ||’, in .#/(V,Kk). In the proof of Prop.
1.20, the choice of a non-zero linear fopurhad no importance. In the present situation, we will take
advantage of this freedom of choice. We again argue by iimucin the dimension of the ambient
k-vector space.

Iyl

Iyl
Y :P(V)(k) — R.. Again because the projective sp&{®/) (k) is compact, there existsc V — {0}

at whichy achieves its supremum, so that
/!

Iyl Iy
(RSPl

Now we endow the dual space*With the operator nornj - ||* associated td - || on V. Since V
is finite-dimensional, by biduality (i.e. the normed vecspace version of V' ~ V), we have the

By homogeneity, the map ¥ {0} — R, sendingy to naturally provides a continuous map

for anyy € V.

equality || x||= sup |||HLE)|(|)*| . By homogeneity and compactness, there edistsV* — {0} such
pev+—{o}
that || x||= |||A)\()\(|)*|' For arbitraryy € V we have| A (y) | <||y] - ||A ||*, so the definition ok implies
that
AW _ [yl
< +— foranyye V.
A (1]l

In other words, we have founde V andA € V* such that

/
AW _ Iyl _ Iyl
2601 = Tl 1]

Now we are in position to apply the arguments of the proof @ipPrl.20 to both| - || and|| - ||’

foranyy e V.

to obtain that|| z||= max{|| y||; :;531 | x|} and || z||'= max{||y]; :;Eg: | x|I'} for anyz e vV
decomposed as= x+ Yy with y € Ker(A). It remains then to apply the induction hypothesis (i.at th
the desired statement holds in the ambient dimension minus 1 O

1.2.2. Connection with building theory

It is now time to describe the connection between Goldmaahiwi spaces and Euclidean build-
ings. As already mentioned, the subspagegsvill be the apartments " (V,k) (Remark 1.19).

Let us fix a basigin V and consider first the bigger affine spakge= {|| - lec: €€ RIFL} ~ RIFL,
The symmetric group”y ., 1 acts on this affine space by permuting the coefficientEhis is obviously
a faithful action and we have another one given by the affinecitre. We obtain in this way an
action of the group”y..1 x R%t1 on Ae and, after passing to the quotient space, we cam\ses the
ambient space of the Euclidean tiling attached to the affimee@r group of typévd (the latter group
is isomorphic ta%y.1 x Z9). The following result is due to Bruhat-Tits, elaborating Goldman-
Iwahori’s investigation of the space of normg (V, k) [G163].

Theorem 1.22 — The space?’ (V,k) = .4 (V,k)/ ~ is a simplicial Euclidean building of typ&g,
where d+ 1 = dim(V); in particular, the apartments are isometric ®¢ and the Weyl group is
isomorphic to%y, 1 x Z9.
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Reference— In [BrT72, 10.2] this is stated in group-theoretic terms, so one hasmobine the
guoted statement withdc. cit., 7.4] in order to obtain the above theorem. This will be eix@d in
Sect. 3. [

The 0-skeleton (i.e., the vertices) for the simplicial stawe corresponds to tHé-latticesin the
k-vector space V, that is the fré&&-submodules in V of rankl + 1. To a lattice? is attached a norm
| - |l.# by setting||x||.=inf{|A|: A € k* andA ~1x € .#}. One recovers thi-lattice . as the unit
ball of the norm|| - || «.

Remark 1.23 — Note that the space (V,K) is an extended building in the sense Bit79]; this is,
roughly speaking, a building to which is added a Euclideatofain order to account geometrically
for the presence of a center of positive dimension.

Instead of trying to prove this result, let us mention thaig?r1.21 says, in our building-theoretic
context, that any two points are contained in an apartmenttHer words, this proposition implies
axiom (SEB 1) of Def. 1.2: it is the non-Archimedean analogtithe fact that any two real scalar
products are diagonalized in a suitable common basis (Galnmidt).

Now let us skip the hypothesis thiis a local field. Ifk is a not discretely valued, then it is not
true in general that every norm in’(V, k) can be diagonalized in some suitable basis. Therefore we
introduce the following subspace:

A (V,k)¥39 = fnorms in.#"(V, k) admitting an adapted bagis
Remark 1.24 — We will see (Remark 2.2) that the connection between Backaorojective spaces

and Bruhat-Tits buildings helps to understand why(V k) — .4 (V,k)¥39 £ & if and only if the
valued fieldk is not maximally complete (one also says spherically coteple

Thanks to the subspacé’ (V,k)%29, we can state the result in full generality.

Theorem 1.25 — The space? (V,k) = .4 (V,k)%29/ ~ is a Euclidean building of typ@g in which
the apartments are isometric 9 and the Weyl group is isomorphic t&.1 x A whereA is a
translation group, which is discrete if and only if so is tleuation of k.

Reference— This is proved for instance iPar00, 111.1.2]; see alsoBrT84] for a very general
treatment. O
Example 1.26 — Ford =1, i.e. when V~ k?, the Bruhat-Tits building2"(V,k) = .4/ (V,k)439/ ~
given by Theorem 1.25 is a tree, which is a (non-simpliciaBl tree whenevek is not discretely
valued.

1.2.3. Group actions

After illustrating the notion of a building thanks to Goldméwvahori spaces, we now describe the
natural action of a general linear group over the valued #eda its Bruhat-Tits building. We said
that buildings are usually used to better understand gretapsh act sufficiently transitively on them.
We therefore have to describe the (. k)-action on.2"(V,k) given by precomposition on norms
(thatis,g. || - || =] - || cg~* for anyg € GL(V,k) and any|| - |€ .#'(V,k)). Note that we have the
formula

9 | - llec=Il - llgec-
We will also explain how this action can be used to find intiengsdecompositions of GV, k).
Note that the GLV,k)-action on.2"(V,K) factors through an action by the group PGLK).

For the sake of simplicity, we assume that k is discretelyacuntil the rest of this section

We describe successively: the action of monomial matricebe corresponding apartment, stabi-
lizers, fundamental domains and the action of elementaigotent matrices on the buildings (which
can be thought of as "foldings" of half-apartments fixing ptementary apartments).

First, it is very useful to restrict our attention to apartitse Pick a basige of V and consider the
associated apartmefl.. The stabilizer ofA¢ in GL(V,k) consists of the subgroup of linear auto-
morphismsg which aremonomialwith respect te, that is whose matrix expression with respect to
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has only one non-zero entry in each row and in each column;emetd N = Staly (v k) (Ae). Any
automorphism in Nlifts a permutation of the indices of the vect&g0 < i < d) in e. This defines a
surjective homomorphismdN- .4, 1 whose kernel is the group, say,f the linear automorphisms
diagonalized bye. The group RN SL(V,K) lifts the translation subgroup of the (affine) Weyl group
Far1x Z9 of 27(V,K). Note that the latter translation group consists of thestations contained
in the group generated by the reflections in the codimensifatds of a given alcove, therefore this
group is (of finite index but) smaller than the "obvious" guagiven by translations with integral co-
efficients with respect to the bagisFor anyA € (k*)", we have the following "translation formula":

A H : He,g:H : He,(q—log\)\i\)w
Example 1.27 — Whend = 1 and wherk is local, the translations of smallest displacement length

in the (affine) Weyl group of the corresponding tree are tedimns whose displacement length along
their axis is equal to twice the length of an edge.

The fact stated in the example corresponds to the genetahttdhe SI(V, k)-action onZ"(V, k)
is type(or color)-preserving choosingd + 1 colors, one can attach a color to egemel(= codimen-
sion 1 facet) so that each color appears exactly once in tseir@ of any alcove; a panel of a given
color is sent by any element of 8¢, k) to a panel of the same color. Note that the action of\Glk),
hence also of PGV, k), on 2" (V,k) is not type-preserving since PG, k) acts transitively on the
set of vertices.

It is natural to first describe the isotropy groups for theaactve are interested in.
Proposition 1.28 — We have the following description of stabilizers:

Stals(v g (|| - [lec) = {9 € GL(V,k) : det(g) = 1 andlog(|gij |) < ¢ -G},
where[g;; | is the matrix expression @L(V,k) with respect to the basks

Reference— This is for instanceRar00, Cor. I11.1.4]. O

There is also a description of the stabilizer group iN\6lk) as the set of matrices stabilizing a
point with respect to a tropical matrix operatiovgrll, Prop. 2.4].

We now turn our attention to fundamental domains. xée a vertex in2"(V,k). Fix a basise
such thaix = [|| - ||eo]~. Then we have an apartmefyt containingx and the inequations

CoS<C < <Cg
define a Weyl chamber with tip (after passing to the homothety classes). The other Weyhbbes
with tip x contained inA¢ are obtained by using the action of the spherical Weyl gréyp;, which
amounts to permuting the indices of tgé& (this action is lifted by the action of monomial matrices
with coefficients+1 and determinant 1).
Accordingly, if we denote byo a uniformizer ofk, then the inequations
C<C<--<C and cg—Co< —log|w]
define an alcove (whose boundary contath&nd any other alcove A is obtained by using the
action of the affine Weyl group”y,.1 x Z9.
Proposition 1.29 — Assume k is local. We have the following description of fumet#al domains.
(i) Given a vertex x, any Weyl chamber with tip x is a fundamerdgatain for the action of the
maximal compact subgrougtaly v ) (x) on 2" (V, k).
(i) Any alcove is a fundamental domain for the natural actioBlofV, k) on the building2™(V, k).

If we abandon the hypothesis tHais a local field and assume the absolute valuk isfsurjective
(ontoR>p), then the SLV,k)-action on.2"(V,K) is transitive.

Sketch of proof— (ii) follows from (i) and from the previous description tiie action of the
monomial matrices of Non Ae (note that SIV,k) is type-preserving, so a fundamental domain
cannot be strictly smaller than an alcove).

(). A fundamental domain for the action of the symmetricugro#y. 1 as above on the apartment
Ag is given by a Weyl chamber with tig, and the latter symmetric group is lifted by elements in
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Staly (v k) (X). Therefore it is enough to show that any point of the buildiag be mapped intd
by an element of Stafpy k) (X). Pick a pointz in the building and consider a basssuch thatAg
contains bothx andz (Prop. 1.21). We can write= || - [[eo=]| - ||e.c, With weightscin log |k* | since
xis a vertex. After dilation, if necessary, of each vectorhaf basi€/, we may — and shall — assume
thatc = 0. Pickg € SL(V, k) such thag.e= €. Sinceeand€ span the same lattideoverk®, which
is the unit ball forx (see comment after Th. 1.22), we hayk = L and thereforey stabilizesx. We
have therefore found € Staly v ) (X) with g.Ae = Ag, in particularg—.z belongs toAe. O

Remark 1.30 — Point (i) above is the geometric way to state the so-calladan decomposition:
SL(V,k) = Stal (v k) (X) T Staly (v k) (X), whereT+ is the semigroup of linear automorphisms
t diagonalized by and such that.x belongs to a fixed Weyl chamber i with tip x. The Weyl
chamber can be chosen so tfiat consists of the diagonal matrices whose diagonal coeftiiare
powers of some given uniformizer with the exponents indrgaalong the diagonal. Let us recall
how to prove this by means of elementary argumeRR94, §3.4 p. 152]. Leig € SL(V,K); we
pick A € k° so thatAg is a matrix of GLV, k) with coefficients ink°. By interpreting left and right
multiplication by elementary unipotent matrices as matperations on rows and columns, and since
k® is a principal ideal domain, we can fingl p’ € SLg,1(k°) such thatp~Agp—! is a diagonal
matrix (still with coefficients ink°®), which we denote byl. Therefore, we can writg = pA ~1dp’;
and sincey, pandp’ have determinant 1, so does A ~1d. It remains to conjugat& —d by a suitable
monomial matrix with coefficients:1 and determinant 1 in order to obtain the desired deconiposit

At the beginning of this subsection, we described the aaifdmear automorphisms on an apart-
ment when the automorphisms are diagonalized by a basisrigfire apartment. One last interesting
point is the description of the action of elementary unipbtaatrices (for a given basis). The action
looks like a "folding" in the building, fixing a suitable cled half-apartment.

More precisely, let us introduce the elementary unipoteatricesu;; (v) = id + VE;; wherev € k
and E; is the matrix whose only non-zero entry is tfigj)-th one, equal to 1.

Proposition 1.31 — The intersectionten Uij (A).Ke is the half-space ofi consisting of the norms
| - llec satisfying ¢ —c; > log|A |. The isometry given by the matrix (A) fixes pointwise this
intersection and the image of the open half-apartnﬁgfe{n “|lec: €j —Ci > log | A |} is (another
half-apartment) disjoint fron&.

Proof— In the above notation, we haug (v)(TiAi&) = Y. Aké + (Ai + VAj)g foranyv € k.

First, we assume that we haug(A). || - |lec=|| - |lec- Then, applying this equality of norms to the
vectore; providese® = max{€e“;€“ |A |}, hence the inequalitg; — ¢ > log |A |.

Conversely, pick a nornj- ||ec such thatc; — ¢ > log | A | and letx = 5 Aie. By the ultrametric
inequality, we haves” | A —AA; [< max{e” |Ai[;€% |A[|Aj]}, and the assumptiog; — ¢ > log |
A | implies thate® |Aj —AA; |[< max{e“ | A [;€% |Aj |}, so thate | Aj — AAj |< maxic/<d € | Ar].
Therefore we obtain thatj(A). || X [[ec<|| X ||ec for any vectorx. ReplacingA by —A andx by
uij (—A).x, we finally see that the norms (A). || - |lec and|| - ||ec are the same whesj —c; > log|A |.
We have thus proved that the fixed-point setigfA ) in Ac is the closed half-space,D= {| - llec:
Ci—C = log|A |}

It follows from this thatKem Uij ()\).Ke contains . Assume tha&m Uij ()\).Ke 2D, inorderto
obtain a contradiction. This would provide norts|| and|| - ||’ in Ae— D, with the property that
Uij(A). || - ||[=] - |I'. But we note that a norm ine— D, is characterized by its orthogonal projection

onto the boundary hyperpla@D, and by its distance tdD,. Sinceu;j(A) is an isometry which
fixes D, we conclude thaf - ||=]| - ||, which is in contradiction with the fact that the fixed-poset

of uij(A) in Aeis exactly D). O
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2. SPECIAL LINEAR GROUPS , BERKOVICH AND DRINFELD SPACES

We ended the previous section by an elementary construofighe building of special linear
groups over discretely valued non-Archimedean field. Theegdization to an arbitrary reductive
group over such a field is significantly harder and requireduh development of Bruhat-Tits, which
will be the topic of Section 3. Before diving into the subidtof buildings construction, we keep for
a moment the particular case of special linear groups anttilesa realization of their buildings in
the framework of Berkovich’s analytic geometry, which lsagry naturally to a compactification of
those buildings. The general picture, namely Berkoviclizations and compactifications of general
Bruhat-Tits buildings will be dealt with in Sect. 4).

Roughly speaking understanding the realization (resp. pemtification) described below of the
building of a special linear group amounts to understandlimgnothety classes of) norms on a non-
Archimedean vector space (resp. their degenerationg)g uke viewpoint of multiplicative semi-
norms on the corresponding symmetric algebra.

A useful reference for Berkovich theory is§m11]. Unless otherwise indicated, we assume in this
section that k is a local field

2.1. Drinfeld upper half spaces and Berkovich affine and progctive spaces

Let V be a finite-dimensional vector space olkeand let SV be the symmetric algebra of V. It is
a gradedk-algebra of finite type. Every choice of a basgs. .., vy of V induces an isomorphism of
S*V with the polynomial ring ovek in d + 1 indeterminates. The affine spakéV) is defined as the
spectrum Spd&*V), and the projective spad¥V) is defined as the projective spectrum P8 ).
These algebraic varieties give rise to analytic spacesdanstimse of Berkovich, which we briefly
describe below.

2.1.1. Drinfeld upper half-spaces in analytic projective paces

As a topological space, the Berkovich affine spA¢¥)2"is the set of all multiplicative seminorms
on SV extending the absolute value &riogether with the topology of pointwise convergence. The
Berkovich projective spacB(V)2" is the quotient ofA (V)3 — {0} modulo the equivalence relation
~ defined as followso ~ 3, if and only if there exists a constant> 0 such that for allf in S"V we
havea (f) = c"B(f). There is a natural PGV )-action onP (V)" given byga = a og~*. From the
viewpoint of Berkovich geometry, Drinfeld upper half-spaaan be introduced as followBgro5.

Definition 2.1L. — We denote by the complement of the union of all k-rational hyperplanes in
P(V)a"\. The analytic spac® is called Drinfeld upper half space.

Our next goal is now to mention some connections between libeeaanalytic spaces and the
Euclidean buildings defined in the previous section.

2.1.2. Retraction onto the Bruhat-Tits building

Let a be a point inA(V)2", i.e. a is a multiplicative seminorm on*¥. If a is not contained in
anyk-rational hyperplane oA (V), then by definitionor does not vanish on any element d\S= V.
Hence the restriction of the seminommto the degree one part'$ = V is a norm. Recall that the
Goldman-lwahori spacet’ (V. k) is defined as the set of all non-Archimedean norms on V, artd tha
Z (V,k) denotes the quotient space after the homothety relati@l{l.Passing to the quotients we
see that restriction of seminorms induces a map

1T:Q— 2°(V,Kk).

If we endow the Goldman-Iwahori spacé (V,k) with the coarsest topology, so that all evaluation
maps on a fixed € V are continuous, an&”(V, k) with the quotient topology, thenis continuous.
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Besides, it is equivariant with respect to the action of PGL). We refer to RTW12, §3] for further
details.

2.1.3. Embedding of the building (case of the special lineagroup)

Let now y be a non-trivial norm on V. By Proposition 1.20, there exitsasisey,...,eq4 of V
which is adapted tg, i.e. we have

y(TiAie) = max{exp(c)|Ail}

for some real numbersp,...,cq. We can associate tpa multiplicative seminornj(y) on SV by

mapping the polynomia§|:(i()mid)a,e'(g’...ei(;j to max{|a|exp(ioCo + ... +1i4Cq)}. Passing to the
guotients, we get a continuous map

it 2 (VK — Q

satisfyingt (j(a)) = a.

Hencej is injective and is a homeomorphism onto its image. Theeefioe mapj can be used to
realize the Euclidean building” (V, k) as a subset of a Berkovich analytic space. This observation i
due to Berkovich, who used it to determine the automorphissogofQ [Ber95].

Remark 2.2 — In this remark, we remove the assumption tkads local and we recall that the
building 2" (V, k) consists of homothety classesdifgonalizablenorms on V (Theorem 1.25). As-
suming din{V) = 2 for simplicity, we want to rely on analytic geometry to peothe existence of
non-diagonalizable norms on V for sorke

The mapj : 2" (V,k) — PY(V)3 can be defined without any assumptionlonGiven any point
xe Z (V,k), we pick a basie = (ep, e;) diagonalizingx and defing (x) to be the multiplicative norm
on S(V) mapping an homogeneous polynomfak 5, a,e’€]* to max,{|ay| - [eo| ()"0 - [er] ()" }.
We do not distinguish betweefd” (V,k) and its image byj in P(V)2", which consists only of points
of types 2 and 3 (this follows fronTlem11, 3.2.11]).

Let us now consider the subs@t of Q = P(V)2"— P(V)(k) consisting of multiplicative norms
on S (V) whose restriction to V is diagonalizable. The namtroduced above is well-defined on
Q' by 1(z) = zy. This gives a continuous retraction &f onto 2°(V,k). The inclusionQ’ C Q
is strict in general, i.e. ik is not local. For example, assume tikat C,, is the completion of
an algebraic closure d@p; this non-Archimedean field is algebraically closed but spiterically
complete. In this situatiorQ contains a point of type 4 [Tem11, 2.3.13], which we can approximate
by a sequencéx,) of points in 2°(V,Kk) (this is the translation of the fact thatcorresponds to
a decreasing sequence of closed ball& imith empty intersectionTem11, 2.3.11.(iii)]). Now, if
ze Q/, thent(z) = 1 (limx,) =lim 7(x,) = lim x, and therefore belongs to2"(V,k). Since the
latter set contains only points of type 2 or 3, this cannopleapndz ¢ Q’; in particular, the restriction
of zto V produces a norm which is not diagonalizable.

2.2. Afirst compactification

Let us now turn to compactification of the builditgy (V, k). We give an outline of the construction
and refer to RTW12, 83] for additional details. The generalization to arbigreeductive groups is
the subject of 4.2. Recall that we assume thiata local field.

2.2.1. The space of seminorms

Let us consider the se¥’(V,k) of non-Archimedean seminorms on V. Every non-Archimedean
seminormy on V induces a norm on the quotient spacgk®t(y). Hence using Proposition 1.20,
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we find that there exists a bass,...,eq of V such thata (3;Aie) = max{r; | Ai |} for some non-
negative real numbers,...,rq. In this case we say that is diagonalized by. Note that in contrast
to Definition 1.18 we do no longer assume thatithae non-zero and hence exponentials.

We can extend to a seminormj(y) on the symmetric algebra®8 ~ ke, . . ., eq] as follows:

i(y) (L:(iowid)a,eg’...ei;‘) =max{|a \ricg’ ...ri;‘ .

We denote byZ (V,k) the quotient of#(V, k) — {0} after the equivalence relation defined as
follows: a ~ B if and only if there exists a real constanwith o = cf. We equip.”(V,k) with
the topology of pointwise convergence afid(V, k) with the quotient topology. Then the association
y+— j(y) induces a continuous and PGL k)-equivariant map

i Z(V,k)— P(V)2"
which extends the map: 2" (V,k) — Q defined in the previous section.

2.2.2. Extension of the retraction onto the building

Moreover, by restriction to the degree one patS= V, a non-zero multiplicative seminorm on
S*Vyields an element in”’(V,k) — {0}. Passing to the quotients, this induces a map

T:P(V)2"— 2°(V,Kk)
extending the map : Q — 27(V, k) defined in section 2.1.
As in section 2.1, we see thab j is the identity onZ (V,k), which implies thatj is injective:
it is a homeomorphism onto its (closed) imagePifV )2". SinceP(V)2"is compact, we deduce that

the image ofj, and hence?”(V, k), is compact. As2 (V,k) is an open subset o (V, k), the latter
space is a compactification of the Euclidean buildifidV, k); it was studied in\\Ver04].

2.2.3. The strata of the compactification

For every proper subspace W of V we can extend norms OGN ¥ non-trivial seminorms on V
by composing the norm with the quotient map-¥V /W. This defines a continuous embedding

X (V/W,K) — 2 (V,K).
Since every seminorm on V is induced in this way from a normhenduotient space after its kernel,
we find that%2 (V, k) is the disjoint union of all Euclidean building8™(V /W, k), where W runs over

all proper subspaces of V. Hence our compactification of tindi@ean buildingZ2"(V,K) is a union
of Euclidean buildings of smaller rank.

2.3. Topology and group action

We will now investigate the convergence of sequenceg’ifV,k) and deduce that it is compact.
We also analyze the action of the group(S8LK) on this space.

2.3.1. Degeneracy of norms to seminorms and compactness

Let us first investigate convergence to the boundarggdiV,k) in 2°(V,k) = (.#(V,k)\{0})/ ~.
We fix a basi®e = (&y,...,€4) of V and denote by the corresponding apartment associated to the
norms diagonalized bgas in Definition 1.18. We denote by, C .27 (V, k) all classes oeminorms
which are diagonalized bg:.

We say that a sequenca, ), of points inAe is distinguished, if there exists a non-empty subset |
of {0,...,d} such that:

(a) Foralli €1 and allnwe havez,(g) # 0.

(b) for anyi, j € I, the sequenc zn(e)) converges to a positive real number;
Y
n
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Z(€)
Zn(8)

(c) foranyi elandj € {0,...,d} —1, the sequencé ) converges to 0.
n

Here we defin{%) as(fn"((:j» for an arbitrary representativg € .7 (V, k) of the class,. Note
n n
that this expression does not depend on the choice of thesepativex;.

Lemma 2.3 — Let (z,), be a distinguished sequence of pointsiin Choose some elementil.
We define a point.zin . (V,K) as the homothety class of the seminogidefined as follows:

i )\ i
Xeo () = Ilmn(zn(a)> !fj.EI
0 if j &l
and % (¥ ajej) = maxa;j|x~(€;). Then z does not depend on the choice of i, and the sequege
converges tozin 2 (V,K).

Proof. Letx, be a representative af in . (V,K). Fori, j and/ contained in we have

r (42) - () ().

which implies that the definition of the seminorm classdoes not depend on the choicel ef |.
The convergence statement is obvious, since the semirpisrequivalent tqxn(€)) . 0
Hence the distinguished sequence of norm cla&ggg considered in the Lemma converges to a
seminorm class whose kernd| is spanned by ak; with j ¢ |. Therefore the limit poink, lies in
the Euclidean building?”(V /W) at the boundary.

Note that the preceding Lemma implies thatis the closure of\e in .27 (V,k). Namely, consider
ze€ Ag, i.e. zis the class of a seminormon V which is diagonalizable bg. For everyn we define a
normx, on 'V by

(&), ifx(e)#0
X”(a):{ 1 ifx(e)=0

n’
and
Xn() ai&) = max|ai[xn(&).
|

Then the sequence of norm classgs- [z,]. in A¢ is distinguished with respect to the $et {i :
x(g) # 0} and it converges towards

We will now deduce from these convergence results that theespf seminorms is compact. We
begin by showing that. is compact.
Proposition 2.4 — Let (z,), be a sequence of points k.. Then(z,), has a converging subse-
qguence.

Proof. Letx, be seminorms representing the points By the box principle, there exists an index
i €{0,...,d} such that after passing to a subsequence we have

Xn(€) = xn(gj) forall j=0,...,d,n>0.
In particular we have,(e) > 0. For eachj =0, ...,d we look at the sequence

NI C))
B(i)n %(@)
which lies between zero and one. In particul?fi), = 1 is constant.
After passing to a subsequence (af), we may — and shall — assume that all sequerfgsn
converge to somg( j) between zero and one. Liebe the set of alj =0,...,n such thai3(j) > 0.

Then a subsequence @), is distinguished with respect to hence it converges by Lemma 2.8)
SinceA. is metrizable, the preceding proposition shows thais compact.
We can now describe the $¥,k)-action on the seminorm compactification of the Goldman-
Iwahori space of V. As before, we fix a basis- (e, ...,&).
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Let o be the homothety class of the norm on V defined by

d
i;eua

Po={geSL(V,k); g-o~o0}

be the stabilizer 0b. It follows from Proposition 1.28 thatf?= SLq, 1(k°) with respect to the basis
e
Lemma 2.5 — The magP, x Ae — 2 (V,K) given by theSL(V, k)-action is surjective.
Proof. Let[x]. be an arbitrary point in2"(V,k). The seminornx is diagonalizable with respect to
some basi€ of V. A similar argument as in the proof of Proposition 1.2%w# that there exists
an elementh € P, such thathx lies in A (actually hx lies in the closure, taken in the seminorm
compactification, of a Weyl chamber with t). O

The group Ris closed and boundediisu, k), hence compact. Sinage, is compact by Proposi-
tion 2.4, the previous Lemma proves that(V, k) is compact.

0) = max |a;
(0) = max |a|

and let

2.3.2. Isotropy groups

Let zbe a point inZ"(V, k) represented by a seminomwith kernel WC V. By X we denote the
norm induced by on the quotient space \W. By definition, an elemerg € PGL(V, k) stabilizesz
if and only if one (and hence any) representativef g in GL(V,K) satisfieshx~ x, i.e. if and only if
there exists somg > 0 such that

(*)  x(h71(v)) = yx(v) forallve V.

This is equivalent to saying thdt preserves the subspace W and that the induced elemint
GL(V/W.,Kk) stabilizes the equivalence class of the naron V/W. Hence we find

Stalpg(v k) (2) = {h € GL(V,k) : hfixes the subspace W atit ~ X} /k*.

Let us now assume thatis contained in the compactified apartméntgiven by the basis of V.
Then there are non-negative real numbrgrss, ..., rq such that

X(Zaia) = miax{ri|a;|}.

The space W is generated by all vectersuch thatr; = 0. We assume that ifi andr; are both
non-zero, the elemem /r; is contained in the value groug*| of k. In this case, it stabilizesz,
we find thaty = x(h~1g)/r; is contained in the value groyg®| of k, i.e. we havey = |A| for some
A € k*. Hence(Ah)x = x. Therefore in this case the stabilizerzih PGL(V, k) is equal to the image
of

{h € GL(V,K) : hfixes the subspace W amet = X}
under the natural map from G\, k) to PGL(V, k).

Lemma 2.6 — Assume that z is contained in the closed Weyl charber {[x]. € A : X(&) <
x(ep) < ... < X(eq)}, i.e. using the previous notation we haye<sr; < ... <rq. Let d— u be the
index such thaty_, =0and ry_,41 > 0. (If z is contained M, then we pupt = d+ 1. ) Then the
space W is generated by the vectarsvith i < d — u. We assume as above thafm is contained in
|k*| ifi >d—p and j>d— u. Writing elements irtGL(V) as matrices with respect to the basis
we find thatStalpg (v k) (2) is the image of

{( é BD ) € GLg+1(K) : D= (&) € SLu(k) with || <rj/ri foralli, | <u.}

in PGL(V, k).
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Proof. This follows directly from the previous considerationsrdmned with Proposition 1.28 which
describes the stabilizer groups of norms. O

The isotropy groups of the boundary points can also be destin terms of tropical linear algebra,
see Werll, Prop. 3.8].

3. BRUHAT-TITS THEORY

We provide now a very short survey of Bruhat-Tits theory. Tin@n achievement of the latter
theory is the existence, for many reductive groups overedhliields, of a combinatorial structure
on the rational points; the geometric viewpoint on this s éixistence of a strongly transitive action
of the group of rational points on a Euclidean building. Rdygspeaking, one half of this theory
(the one written in BrT72]) is of geometric and combinatorial nature and involvesugractions
on Euclidean buildings: the existence of a strongly traresiaction on such a building is abstractly
shown to come from the fact that the involved group can bewadawith the structure of a valued
root group datum. The other half of the theory (the one wriite [BrT84]) shows that in many
situations, in particular when the valued ground field isalp¢he group of rational points can be
endowed with the structure of a valued root group datum. Ehimoved by subtle arguments of
descent of the ground field and the main tool for this is predidy group schemes over the ring of
integers of the valued ground field. Though it concentratethe case when the ground field is local,
the survey articleTit79] written some decades ago by J. Tits himself is still veryfulsd-or a very
readable introduction covering also the case of a nonlisaraluation, we recommend the recent
text of Rousseauqou09.

3.1. Reductive groups

We introduce a well-known family of algebraic groups whiantains most classical groups (i.e.,
groups which are automorphism groups of suitable bilineasesquilinear forms, possibly taking
into account an involution, sed\ei60] and [KMRT98]). The ground field here is not assumed
to be endowed with any absolute value. The structure themryational points is basically due to
C. Chevalley over algebraically closed fiel@he03, and to A. Borel and J. Tits over arbitrary fields
[BT65] (assuming a natural isotropy hypothesis).

3.1.1. Basic structure results

We first need to recall some facts about general linear adgelgroups, up to quoting classical
conjugacy theorems and showing how to exhibit a root systesréductive group. Useful references
are A. Borel's Bor91], Demazure-Gabriel'sf)G70] and W.C. Waterhouse'sNat79] books.

Linear algebraic groups— By convention, unless otherwise stated, an "algebraiogrin what
follows means a "linear algebraic group over some ground'fiddeing a linear algebraic group
amounts to being a smooth affine algebraic group scheme éofield). Any algebraic group can
be embedded as a closed subgroup of some groyl¥ Glor a suitable vector space over the same
ground field (seeWat79, 3.4] for a scheme-theoretic statement aBdrp1, Prop. 1.12 and Th. 5.1]
for stronger statements but in a more classical context).

Let G be such a group over a fidigdwe will often consider the group &= G @y k?® obtained by
extension of scalars frokto an algebraic closure.
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Unipotent and diagonalizable groups We say thatg € G(k?) is unipotentif it is sent to a
unipotent matrix in somea(posterioriany) linear embedding : G — GL(V): this means thap (g) —
idy is nilpotent. The group (e is calledunipotentif so are all its elements; this is equivalent to
requiring that the group fixes a vector in any finite-dimenaldinear representation as aboVedt79,
8.3].

The group G is said to betarusif it is connected and if G is diagonalizable which is to say
that the algebra of regular function8(Gya) is generated by the characters okG.e., 0(Gya) ~
k3[X(Gyxa)] [Bor91, 88]. Here, XGya) denotes the finitely generated abelian group of characters
Gra = Gm ke andk?X(Gya)] is the corresponding group algebra okér A torus G defined ovek
(also called &-torus) is said to besplit over kif the above condition holds ovér i.e., if its coordinate
ring ¢(G) is the group algebra of the abelian group(&) = Homy g (G, Gmk). In other words, a
torus is a connected group of simultaneously diagonakzatmtrices in any linear embedding over
k? as above, and it ik-split if it is diagonalized in any linear embedding definegik [Wat79, 87].

Lie algebra and adjoint representatier One basic tool in studying connected real Lie groups is
the Lie algebra of such a group, that is its tangent spacesdatémtity elementBor91, 3.5]. In the
context of algebraic groups, the definition is the same batdbnveniently introduced in a functorial
way [Wat79, §12].

Definition 3.1 — LetG be a linear algebraic group over a field k. Th& algebraof G, denoted by
Z(G), is the kernel of the natural maB(k[e]) — G(k), where Ke] is the k-algebra X]/(X) and &
is the class of X; in particular, we haw = 0.

We havek|e] = k@ ke and the natural map above is obtained by applying the furdtpoints G to
the mapk[e] — k sendinge to 0. The bracket forZ’(G) is given by the commutator (group-theoretic)
operation Wat79, 12.2-12.3].

Example 3.2 — For G= GL(V), we haveZ(G) ~ EndV) where EndV) denotes the&-vector
space of all linear endomorphisms of V. More precisely, deynent of.,iﬁ(GL(V)) is of the form
idy + ue whereu € End(V) is arbitrary. The previous isomorphism is simply givenubys idy + ue
and the usual Lie bracket for E(\M) is recovered thanks to the following computation in(@Lk[e]):
[idy + ue,idy + Ue] = idy + (uu — U'u)e — note that the symbdl, .] on the left hand-side stands for
a commutator and thatdy + ug) ! = idy — ue for anyu € End(V).

An important tool to classify algebraic groups is the adjoapresentationgor91, 3.13].
Definition 3.3 — Let G be a linear algebraic group over a field k. Tlagljoint representatioof
G is the linear representatioAd : G — GL(.Z(G)) defined byAd(g) = int(g) | #(c) for any ge G,
whereint(g) denotes the conjugacy-h ghg ! — the restriction makes sense since, for any k-algebra
R, bothG(R) and.Z(G) ®« R can be seen as subgroups@fR[¢]) and the latter one is normal.

In other words, the adjoint representation is the linearasgntation provided by differentiating
conjugacies at the identity element.
Example 3.4 — For G= SL(V), we haveZ(G) ~ {u€ EndV) : tr(u) = 0} and Adg).u = gug!
for anyg € SL(V) and anyu € .Z(G). In this case, we write sometimeg(G) = sl(V).

Reductive and semisimple groups The starting point for the definition of reductive and s&mi
ple groups consists of the following existence statemi@atJ1, 11.21].

Proposition/Definition 3.5 — Let G be a linear algebraic group over a fikld

(i) There is a unique connected, unipotent, normal subgimupy., which is maximal for these
properties. Itis called the unipotent radical of G and isaded by%,(G).

(i) There is a unique connected, solvable, normal subgiouBy, which is maximal for these
properties. Itis called the radical of G and is denotedAiys).

The statement for the radical is implied by a finite dimensiggument and the fact that the Zariski
closure of the product of two connected, normal, solvableagsaups is again connected, normal
and solvable. The unipotent radical is also the unipoterttgfahe radical: indeed, in a connected
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solvable group (such a&(G)), the unipotent elements form a closed, connected, noroegreup
[Wat79, 10.3]. Note that by their very definitions, the radical aned tinipotent radical depend only
on thek?-group Ga and not on thé-group G.

Definition 3.6. — LetG be a linear algebraic group over a field k.

(i) We say thaG is reductiveif we haveZ,(G) = {1}.

(i) We say thaG is semisimpldf we haveZ (G) = {1}.
Example 3.7 — For any finite-dimensionak-vector space V, the group G\) is reductive and
SL(V) is semisimple. The groups §pand Sdq) (for most quadratic formg) are semisimple.

If, taking into account the ground field we had used a rational version of the unipotent radical,
then we would have obtained a weaker notion of reductivityord/iprecisely, it makes sense to
introduce theational unipotent radical denoted by#, «x(G) and contained itvz,(G), defined to be
the unique maximal connected, unipotent subgroup the@hed over kThen G is callek-pseudo-
reductiveif we haveZ, x(G) = {1}. This class of groups is considered in the n@&78], it is first
investigated in some of J. Tits’ lecture§ 2] and [Tit93]). A thorough study of pseudo-reductive
groups and their classification are written in B. Conrad, @bler and G. Prasad’s booRGP10
(an available survey is for instanceg¢m11).

In the present paper, we are henceforth interested in régdeicfroups

Parabolic subgroups— The notion of a parabolic subgroup can be defined for arghbadic group
[Bor91l, 11.2] but it is mostly useful to understand the structureatibnal points of reductive groups.

Definition 3.8. — Let G be a linear algebraic group over a field k and ldtbe a Zariski closed
subgroup of G. The subgrouis calledparabolicif the quotient spac&/H is a complete variety.

It turns outa posteriorithat for a parabolic subgroup H, the varietybis actually a projective
one; in fact, it can be shown that H is a parabolic subgroupdfanly if it contains @Borel subgroup
that is a maximal connected solvable subgrdBprpl, 11.2].

Example 3.9 — For G= GL(V), the parabolic subgroups are, up to conjugacy, the variougpg
of upper triangular block matrices (there is one conjugdagscfor each "shape" of such matrices,
and these conjugacy classes exhaust all possibilities).

The completeness of the quotient spagéi@ used to have fixed-points for some subgroup action,
which eventually provides conjugacy results as stateddbHXG70, 1V, 84, Th. 3.2].

Conjugacy theorems- We finally mention a few results which, among other thirajigw one to
formulate classification results independent from the@mimade to construct the classification data
(e.g., the root system — see 3.1.2 beloB®91, Th. 20.9].

Theorem 3.10 — LetG be a linear algebraic group over a field k. We assume @ reductive.

() Minimal parabolic k-subgroups are conjugate over k, thatisy two minimal parabolic k-
subgroups are conjugate by an elemenGok).
(i) Accordingly, maximal k-split tori are conjugate over k.

For the rational conjugacy of tori, the reductivity assuimpican be dropped and simply replaced
by a connectedness assumption; this more general resudttésisSn CGP10 C.2]. In the general
context of connected groups (instead of reductive one®),has to replace parabolic subgroups by
pseudo-paraboliones in order to obtain similar conjugacy resu@P10, Th. C.2.5].

3.1.2. Root system, root datum and root group datum

The notion of a root system is studied in detail Bop07, IV]. It is a combinatorial notion which
encodes part of the structure of rational points of semik@rgpoups. It also provides a nice uniform
way to classify semisimple groups over algebraically dioéelds up to isogeny, a striking fact being
that the outcome does not depend on the characteristic @etdgChe09.
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In order to state the more precise classification of rede@ioups up to isomorphism (over alge-
braically closed fields, or more generally of split reduetiroups), it is necessary to introduce a more
subtle notion, namely that ofraot datum

Definition 3.11 — LetX be a finitely generated free abelian group; we denotxbigs Z-dual and
by (-,-) the duality bracket. Let R and"Re two finite subsets i and X", respectively. We assume
we are given a bijectioni: o — o~ from R onto R We have thus, for eadh € R, endomorphisms

Sy i X X— (X0 )a and S X=X —(a,x)a”
of the groupsX and X7, respectively. The quadrupte = (X,R,X",R") is said to be aoot datumif it
satisfies the following axioms:

(RD 1) Foreacha € R, we havéa,a™) =2.
(RD 2) Foreacha € R, we haveg(R) =R and g(R") =R"
This formulation is taken from3pr98]. The elements oR are called roots and the reflectiofs
generate a finite group W of automorphisms of X, calledwfey!| groupof W.

Let Q denote the subgroup of X generated”yUp to introducing V= Q®z R and choosing a
suitable W-invariant scalar product on V, we can seeftiata root system in the following classical
sense:

Definition 3.12 — LetV be a finite-dimensional real vector space endowed with aasgabduct
which we denote by, -). We say that a finite subset R\6f- {0} is aroot systenif it spansV and if
it satisfies the following two conditions.

(RS 1) To eacha € R is associated a reflectiory svhich stabilizes R and switchesand —a.
(RS 2)Foranya,pB € R,we haveg(B) — B € Za.

The Weyl group o is identified with the group of automorphisms of V generatgthie euclidean
reflectionss, .

Let R be a root system. For any subgetn R, we denote byR" (A) the set of roots which can

be written as a linear combination of element\afvith non-negative integral coefficients. We say
thatA is abasisfor the root systenR if it is a basis of V and if we hav® = R*(A) LUR (A), where
R (A) = —R"(A). Any root system admits a basis and any two bases of a givarsystem are
conjugate under the Weyl group actidddu07, VI.1.5, Th. 2]. Whem is a basis of the root system
R, we say thaR" (A) is asystem of positive roota R; the elements id are then callegimple roots
(with respect to the choice d). Thecorootassociated tar is the linear forma" on V defined by
B—s«(B) =aY(B)a; in particular, we haver¥ (a) = 2.
Example 3.13 — Here is a well-known concrete construction of the rootesysof type A, Let
R = @ ,Re be equipped with the standard scalar product, making this ba} orthonormal.
Let us introduce the hyperplane {J; A& : 5; A = 0}; we also set; j = & — ¢j fori # j. Then
R={a;;:i+# j}is aroot systeminV and = {ajj;1: 0 <i<n—1} is a basis of it for which
R*(A) = {a;j:i < j}. The Weyl group is isomorphic to the symmetric graufa,,; canonical
generators leading to a Coxeter presentation are for iostgiven by transpositionis— i + 1.

Root systems in reductive groups appear as follows. Thdatésh of the adjoint representation
(Def. 3.3) to a maximak-split torus T is simultaneously diagonalizable okgso that we can write:

Z(G) =DBgex+(1) ZL(G)p Where Z(G)y ={ve Z(G):Ad(t).v=¢(t)vforallt e T(k)}.

The normalizer N= Ng(T) acts on X(T) via its action by (algebraic) conjugation on T, hence it
permutes algebraic characters. The action of the cergraliz Zg(T) is trivial, so the group actually
acting is the finite quotient (%)/Z(k) (finiteness follows from rigidity of tori \Wat79, 7.7], which
implies that the identity component°’Nentralizes T; in fact, we have°N= Z since centralizers of
tori in connected groups are connected).

R=R(T,G) ={¢ € X*(T): Z(G)y # {0}}.
It turns out that Bor91, Th. 21.6]:
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1. theR-linear span oRis V = Q®z R, where QC X*(T) is generated bR,
2. there exists an (k) /Z(k)-invariant scalar product V;

3. the seRis a root system in V for this scalar product;

4. the Weyl group W of this root system is isomorphic ttkNZ (K).

Moreover one can go further and introduce a root datum bjnget = X*(T) and by taking X" to
be the group of all 1-parameter multiplicative subgroupd ofThe rootsa have just been intro-
duced before, but distinguishing the coroots among thearackers in X is less immediate (over
algebraically closed fields or more generally in the splge;ahey can be defined by means of com-
putation in copies of Si attached to roots as in Example 3.15 below). We won't neesilibi, as
already mentioned, in the split case the resulting quadri#p= (X,R X",R") characterizes, up to
isomorphism, the reductive group we started with (88A43] or [Spr98, Chap. 9 and 10]).

One of the main results of Borel-Tits theo®T65] about reductive groups over arbitrary fields is
the existence of a very precise combinatorics on the grotipstional points. The definition of this
combinatorial structure — calledraot group datun+ is given in a purely group-theoretic context. It
is so to speak a collection of subgroups and classes modudstract subgroup T, all indexed by
an abstract root system and subject to relations which gérerand formalize the presentation of
SL, (or of any split simply connected simple group) over a fieldnbgans of elementary unipotent
matrices Bte68. This combinatorics for the rational points(k3 of an isotropic reductive group
G is indexed by the root systeR(T,G) with respect to a maximal split torus which we have just
introduced; in that case, the abstract group T of the roaigaatum can be chosen to be the group
of rational points of the maximal split torus (previouslyndéed by the same letter!). More precisely,
the axioms of a root group datum are given in the followingrdg€in, taken from Br772, 6.1]Y.

Definition 3.14 — Let R be a root system and I8tbe a group. Assume that we are given a system
(T, (Uq, Ma)aeR) whereT and eachJ, is a subgroup irG, and eachM is a right congruence class
moduloT. We say that this system ig@ot group datunof type R forG if it satisfies the following
axioms:

(RGD 1) For eacha € R, we haveJ, # {1}.

(RGD 2) For anya, B € R, the commutator groufiq,Ug]| is contained in the group generated by the
groupsU, indexed by rooty in RN (Z-.00 +Z-0B).

(RGD 3) If both a and2a belong to R, we havidy, € Ug.

(RGD 4) For eacha € R, the clasdM satisfiesU_;—{1} C UsMyUq.

(RGD 5) For anya, 3 € R and each e My, we have hlﬁn‘l = Ug,p)-

(RGD 6) We haveTUT nU~ = {1}, whereU* is the subgroup generated by the groupg indexed by
the rootsa of sign+.

The groupdJ, are called theroot groupsof the root group datum.

This list of axioms is probably a bit hard to swallow in oneokt, but the example of Glcan help
a lot to have clearer ideas. We use the notation of ExampR(Bobt system of type 4.

Example 3.15 — Let G= GLj,1 and let T be the group of invertible diagonal matrices. Tcheac
root a; ; of the root systenR of type A,, we attach the subgroup of elementary unipotent matrices
Uij=Uq; = {ln+AE:A €k}. We can see easily thatd{(T) = {monomial matrice that
Zg(T) =T and finally that N;(T) /Zs(T) ~ .#+1. Acting by conjugation, the groupdNT) permutes

the subgroups k), and the corresponding action on the indexing roots is ngtaise than the action

of the Weyl group#,,11 onR. The axioms of a root group datum follow from matrix compigtat in
particular checking axiom (RGD4) can be reduced to thedlig equality in Sk:

(UThough the notion is taken fronBfT72], the terminology we use here is not the exact translatidch@french "donnée
radicielle" as used in [loc. cit.]: this is because we havealy used the terminology "root datum" in the combinatoria
sense of §GA3]. Accordingly, we use the notation 08[GAJ] instead of that of BrT72], e.g. a root system is denoted by
the letterR instead ofd.
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We can now conclude this subsection by quoting a generalt idisel to A. Borel and J. Tits (see
[BrT72,6.1.3 c)] and BT65]).

Theorem 3.16 — Let G be a connected reductive group over a field k, which we assarbe k-
isotropic. LetT be a maximal k-split torus i, which provides a root system-RR(T, G).

(i) For every roota € R the connected subgrolyy, with Lie algebra.Z(G)4 is unipotent; more-
over it is abelian or two-step nilpotent.

(i) The subgroup3 (k) andU, (k), for o € R, are part of a root group datum of type R in the group
of rational pointsG(k).

Recall that we say that a reductive groujsistropic over kif it contains a non-centrad-split torus
of positive dimension (the terminology is inspired by theeaf orthogonal groups and is compatible
with the notion of isotropy for quadratic formB¢r91, 23.4]). Note finally that the structure of a root
group datum implies that (coarser) of a Tits system (alskedd@N-pair) BouQ7, 1V.2], which was
used by J. Tits to prove, in a uniform way, the simplicity (mmcenter) of the groups of rational
points of isotropic simple groups (over sufficiently largelds) [Tit64].

3.1.3. Valuations on root group data

Bruhat-Tits theory deals with isotropic reductive groupsrovalued fields. As for Borel-Tits theory
(arbitrary ground field), a substantial part of this theay also be summed up in combinatorial terms.
This can be done by using the notion ofauationof a root group datum, which formalizes among
other things the fact that the valuation of the ground fiettlizes a filtration on each root group. The
definition is taken fromBrT72, 6.2].

Definition 3.17. — Let G be an abstract group and Iéﬂ', (Uq, Ma)aeR) be a root group datum of

type R for it. Avaluationof this root group datum is a collectiofp = (¢4)aer Of mapsgy : Ug —

RU {0} satisfying the following axioms.

(V 0) For eacha € R, the image op, contains at least three elements.

(V 1) For eacha € R and eaclf € RU{x}, the preimagep, ([¢; ]) is a subgroup ob),, which we
denote byJy ¢; moreover we requirdy » = {1}.

(V 2) For eacha € R and each re My, the map u— ¢_4(u) — ¢4 (nunm?) is constant on the set
U, =U_q—{1}.

(V3) Foranya,B € Rand/, ¢ € R such that ¢ —R, a, the commutator groufJq ¢, Ug /| lies in
the group generated by the groupg, g, pe+qr Where pge Z.oand px +qB € R.

(V 4) If both o and2a belong to R, the restriction &g, to Uy, is equal togyg.

(V5) Fora € R,ue Uy and U,u” € U_, such that (uu’ € My, we havep_, (U) = —dq(U).

The geometric counterpart to this list of technical axiosishie existence, for a group endowed
with a valued root group datum, of a Euclidean building @akheBruhat-Tits buildingof the group)
on which it acts by isometries with remarkable transitiyitpperties BrT72, §7]. For instance, if the
ground field is discretely valued, the corresponding badds simplicial and a fundamental domain
for the group action is given by a maximal (poly)simplexoatalled aralcove(in fact, if the ground
field is discretely valued, the existence of a valuation owat group datum can be conveniently
replaced by the existence of an affine Tits syst&nlf2, §82]). As already mentioned, the action
turns out to be strongly transitive, meaning that the grotig &ansitively on the inclusions of an
alcove in an apartment (Remark 1.5in 1.1.1).

3.2. Bruhat-Tits buildings

The purpose of this subsection is to roughly explain how Btdfits theory attaches a Euclidean
building to a suitable reductive group defined over a valueld fi This Bruhat-Tits building comes
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equipped with a strongly transitive action by the group ¢ibreal points, which in turn implies many
interesting decompositions of the group. The latter deasitipns are useful for instance to doing
harmonic analysis or studying various classes of linearesgmtations of the group. We roughly
explain the descent method used to perform the construofitime Euclidean buildings, and finally
mention how some integral models are both one of the mairs @l an important outcome of the
theory.

3.2.1. Foldings and gluing

We keep the (connected) semisimple group G, defined overnw, (complete valued non-
Archimedean) fieldk but from now on,we assume for simplicity that k is a local field (i.e., is
locally compact) and we denote lyits discrete valuationnormalized so thai(k*) = Z. Hence
w(-) = —logy| - |, whereq > 1 is a generator of the discrete grojlg |.

We also assume that G containk-gplit torus of positive dimension: this is an isotropy asgtion
overk already introduced at the end of 3.1.2 (in this situatiors #hgebraic condition is equivalent
to the topological condition that the group of rational gsi@(k) is non-compactRra82]). In order
to associate to G a Euclidean building on whictk{Gacts strongly transitively, according t®i{79]
we need two things:

1. a model, say, for the apartments;
2. a way to glue many copies @f altogether in such a way that they will satisfy the incidence
axioms of a building (1.1.1).

Model for the apartmemt— References for what follows ar&if79, 81] or [Lan96, Chapter I].
Let T be a maximak-split torus in G and let X(T) denote its group of 1-parameter subgroups (or
cocharactery As a first step, we sélyect= X (T) ®z R.

Proposition 3.18 — There exists an affine spagewith underlying vector spac&,eq, equipped
with an action by affine transformations: N(k) = Ng(T)(k) — Aff (%) and having the following
properties.

(i) There is a scalar product ob such thatv(N(k)) is an affine reflection group.
(i) The vectorial part of this group is the Weyl group of the rogitem R= R(T,G).
(iii) The translation (normal) subgroup acts cocompacth\zoit is equal tov (Z(k)) and the vector
v(2) attached to an elementzzZ (k) is defined by (v(2)) = —w(x(2)) for any x € X*(T).

If we go back to the example of GV) acting by precomposition on the space of classes of norms
2 (V,k) as described in 1.2, we can see the previous statement agmlgaation of the fact, men-
tioned in 1.2.3, that for any bastnf V, the group N of monomial matrices with respect éacts on
the apartment\ as.%y x Z4 whered = dim(V).

Filtrations and gluing— Still for this special case, we saw (Prop. 1.31) that amyneintary
unipotent matrixu;j(A) = Iq + AEj; fixes pointwise a closed half-apartment Aq bounded by a
hyperplane of the forn{c; — c¢; = constan} (the constant depends on the valuato(\ ) of the
additive parametek), the rest of the apartmeni, associated te being "folded" away from\e.

In order to construct the Bruhat-Tits building in the gehesse, the gluing equivalence will im-
pose this folding action for unipotent elements in root grgithis will be done by taking into account
the "valuation” of the unipotent element under consideratiVhat formalizes this is the previous no-
tion of a valuation for a root group datum (Definition 3.17hiah provides a filtration on each root
group. For further details, we refer to the motivations giwe [Tit79, 1.1-1.4]. It is not straight-
forward to perform this in general, but it can be done quitglieitly when the group G isplit over
k (i.e., when it contains a maximal torus whichkisplit). For the general case, one has to go to a
(finite, separable) extension of the ground field splittingr@l then to use subtle descent arguments.
The main difficulty for the descent step is to handle at theestime Galois actions on the split group
and on its "split" building in order to descend the groundifiebth for the valuation of the root group
datum and at the geometric level (see 3.2.2 for slightly ndetails).
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Let us provisionally assume that G is split okeThen each root group 4{k) is isomorphic to the
additive group ok and for any such group ,{k) we can use the valuation kfo define a decreasing
filtration {Uq (K)¢ }rez satisfying:

Urez Ua(K)e =Uq(K) and ez Ua(K)e = {1},

and further compatibilities, namely the axioms of a valmat{Def. 3.17) for the root group datum
structure on &) given by Borel-Tits theory (Th. 3.16) — the latter root gralgtum structure in the
split case is easy to obtain by means of Chevalley b&&e$§ (see remark below). For instance, in
the case of the general linear group, this can be merely dpasibg the parameterizations

(K, +) = Ugq; (k) = {id+AEjj: A € k}.
Remark 3.19 — Let us be slightly more precise here. For a split group @heaot group Y is

k-isomorphic to the additive group,, and the choice of a Chevalley basis of (@& determines a set
of isomorphismg py : Us — Ga}acr. It is easily checked that the collection of maps

da: Ug(K) 2 Ga(k) 2R

defines a valuation on the root group dat(ftk), (Ug (k),Mg)).

For each/ € R, the condition|py| < q° defines anaffinoid subgroup | s in UZ" such that
Uq (k)¢ = Uq s(k) for anys e (£ —1,¢]. The latter identity holds after replacementkdy any finite
extensiornk’, as long as we normalize the valuation &fitkk such a way that is extends the valuation
on k This shows that Bruhat-Tits filtrations on root groups hia split case at this stage, comes from
a decreasing, exhaustive and separated filtratior§oby affinoid subgroupgUq s}scr.

Let us consider again the apartmenwith underlying vector spac&yect = X.(T) ®z R. We
are interested in the affine linear forms+ ¢ (o € R, £ € Z). We fix an origin, sayo, such that
(a +0)(o) = 0 for any roota € R. We have "level sets{a + ¢ = 0} and "positive half-spaces"
{a + ¢ > 0} bounded by them.

For eachx € Z, we set N = Staly ) (x) (using the actiorv of Prop. 3.18) and for each root
o we denote by W (K)x the biggest subgroup ddk), such thatx € {a + ¢ > 0} (i.e. £ is minimal
for the latter property). At last, we defing B be the subgroup of &) generated by Nand by
{Uqx(K)x}acr- We are now in position to define a binary relation, sayon Gk) x X by:

(g,X) ~ (h,y) <= there exist$1 € Ng(T)(Kk) such thay = v(n).x andg—thn e Px.

Construction of the Bruhat-Tits buildings- This relation is exactly what is needed in order to
glue together copies af and to finally obtain the desired Euclidean building.

Theorem 3.20 — The relation~ is an equivalence relation on the g8tk) x = and the quotient
space# = A(G,k) = (G(k) x Z) / ~ is a Euclidean building whose apartments are isomorphiE to
and whose Weyl group is the affine reflection group:W(N(k)). Moreover theG(k)-action by left
multiplication on the first factor o(k) x Z induces an action d&(k) by isometries o4(G, k).

Notation— According to Definition 1.9, copies & in #(G,k) are calledapartmentsthey are
the maximal flat (i.e., euclidean) subspaces. Thanks(tg-Gonjugacy of maximal split tori 3.10,
apartments of8(G, k) are in bijection with maximal split tori of G. Therefore, welvgpeak of the
apartment of a maximal split toruS of G and write AS,k). By construction, this is an affine space
under theR-vector space Hogp (X*(S),R).

Reference— As already explained, the difficulty is to check the axiooha valuation (Def 3.17)
for a suitable choice of filtrations on the root groups of addrits root group datum (Th. 3.16).
Indeed, the definition of the equivalence relationhence the construction of a suitable Euclidean
building, for a valued root group datum can be done in thiglyuabstract contex8rT72, 87]. The
existence of a valued root group datum for reductive growgs euitable valued (not necessarily
complete) fields was announced BrT 72, 6.2.3 ¢)] and was finally settled in the second IHES paper
(1984) by F. Bruhat and J. Tit8[T84, Introduction and Th. 5.1.20]. O



30

One way to understand the gluing equivalence relatiois to see that it prescribes stabilizers.
Actually, it can eventually be proved thatposterioriwe have:

sV = {a+¢>0} and Stabyy(x) = Py for anyx € 2.
A more formal way to state the result is to say that to eachedhhoot group datum on a group is

associated a Euclidean building, which can be obtained Hyiaggequivalence relation defined as
above Br172, 87].

Example 3.21 — In the case when & SL(V), it can be checked that the building obtained by the
above method is equivariantly isomorphic to the GoldmaaHeri space?” (V,k) [BrT72, 10.2].

3.2.2. Descent and functoriality

Suitable filtrations on root groups so that an equivalentzion ~ as above can be defined do not
always exist. Moreover, even when things go well, the waytwstruct the Bruhat-Tits building is not
by first exhibiting a valuation on the root group datum givgrBorel-Tits theory and then by using
the gluing relation~. As usual in algebraic group theory, one has first to deal thighsplit case, and
then to apply various and difficult arguments of descent efgiound field. Bruhat and Tits used a
two-step descent, allowing a fine description of smoothgirsiemodels of the group associated with
facets. A one-step descent was introduced by Rousseau tindsis Rou77], whose validity in full
generality now follows from recent work connected to Tit€r@er Conjecture gtr11]).

Galois actions— More precisely, one has to find a suitable (finite) Galoteesionk’ /k such that
G splits overk’ (or, at leastguasi-splitsoverk’, i.e. admits a Borel subgroup defined ok8rand,
which is much more delicate, which enables one:

1. to define a G&k'/k)-action by isometries on the "(quasi)-split" building(G,k);

2. to check that a building for () lies in the Galois fixed point seB (G, k')Gak /%),
Similarly, the group @&K’) of course admits a G@{ /k)-action.

Remark 3.22 — Recall that, by completeness and non-positive curvaturee step 1 is settled we
know that we have sufficiently many Galois-fixed pointsG, k') (see the discussion of the Bruhat-
Tits fixed point theorem in 1.1.3).

F. Bruhat and J. Tits found a uniform procedure to deal wittious situations of that kind. The
procedure described iBfT72, 9.2] formalizes, in abstract terms of buildings and groogmbina-
torics, how to exhibit a valued root group datum structuesgt a Euclidean building structure) on
a subgroup of a bigger group with a valued root group datusp(ren a subspace of the associated
Bruhat-Tits building). The main resulBfT72, Th. 9.2.10] says that under some sufficient condi-
tions, the restriction of the valuation to a given sub-romup datum "descends" to a valuation and
its associated Bruhat-Tits building is the given subspdt®se sufficient conditions are designed to
apply to subgroups and convex subspaces obtained as fikatd-pb"twists" by Galois actions (and
they can also be applied to non-Galois twists "a la Ree-SUjzuk

Two descent steps- As already mentioned, this needn’'t work over an arbitnaadued fieldk
(even wherk is complete). Moreover F. Bruhat and J. Tits do not perforexd@scent in one stroke,
they have to argue by a two step descent.

The first step is the so-calleguasi-splitdescent BrT84, 84]. It consists in dealing with field
extensions splitting an initially quasi-split reductiveogp. The Galois twists here (of the ambient
group and building) are shown, by quite concrete argumeat§it in the context of BrT72, 9.2]
mentioned above. This is possible thanks to a deep unddistaof quasi-split groups: they can
even be handled via a presentation (s8&6g and [BrT84, Appendice]). In fact, the largest part
of the chapter about the quasi-split descd@1lB4, 84] is dedicated to another topic which will be
presented below (3.2.3), namely the construction of slataitegral models (i.e. group schemes over
k° with generic fiber G) defined by geometric conditions invetybounded subsets in the building.
The method chosen by F. Bruhat and J. Tits to obtain thesgraitenodels is by using a linear
representation of G whose underlying vector space contasigtablek®-lattice, but they mention
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themselves that this could be done by Weil's techniques @figichunks. Since then, thanks to the
developments of Néron model techniqu&i.R90], this alternative method has been written down
[Lan96].

The second step is the so-call&dledescentBrT84, 85]. By definition, an étale extension, in the
discretely valued case (to which we stick here), is unranhifith separable residual extension; let
us denote bks"the maximal étale extension kf This descent step consists in considering situations
where the semisimpl&-group G is such that Gy k®" is quasi-split (so that, by the first step, we
already have a valued root group datum and a Bruhat-Titglibgilfor G(k®"), together with integral
structures). Checking that this fits in the geometric andlioatorial formalism of BrT772, 9.2] is
more difficult in that case. In fact, this is the place whem ititegral models over the valuation ring
k° are used, in order to find a suitable torus in G which becomemabsplit in G k' for some
étale extensiok’ of k [BrT84, Cor. 5.1.12].

Remark 3.23 — In the split case, we have noticed that the Bruhat-Titsafittns on rational points
of root groups come from filtrations by affinoid subgroupsl@. This fact holds in general and
can be checked as follows: Iet/k be a finite Galois extension splitting G and consider a makkima
torus T of G which splits ovek’ and contains a maximal split torus S. The canonical praacti
X*(Tokk) = X*(S®kk)=X*(S) induces a surjective map

p: R(T @K, Gexk) — R(S,G)U {0}

and there is a naturél-isomorphism
rl UB X I_I Uﬁ ~ Ua QK k/
Bep(a) Bept(2a)

for any ordering of the factor.

A posteriori Bruhat-Tits two-step descent proves that any maximal gplis S of G is contained
in a maximal torus T which splits over a finite Galois extendig’k such that Ggk’/k) fixes a point
in the apartment of By k' in Z(G,K). If the valuation on kis normalized in such a way that it
extends the valuation on then, for any € R, the affinoid subgroup

I_' UB/ X |_| Uﬁ-,%
Bep~(a) Bep~t(2a)

of the left hand side corresponds to an affinoid subgroupeofitiht hand side which does not depend
on the ordering of the factors and is preserved by the naagtain of Galk’'|k); this can be checked
by using calculations inHrT72, 6.1] at the level ok” points, for any finite extensiok” /k'. By
Galois descent, we obtain an affinoid subgroup,@f UZ" such that

U[w(k’)> )
Bep~1(2a)

By [BrT84, 5.1.16 and 5.1.20], the filtrationdJ4 ((K) },cr are induced by a valuation on the root
group datum(S(k), {Uq (K)})-

Uq (k) =Uq (k)N ( Ugp (K x
Z BEID(O’) o

Let us finish by mentioning why this two-step strategy is veelhpted to the case we are interested
in, namely that of a semisimple group G defined over a compiiteretely valued fiel& with perfect
residue fielck: thanks to a result of R. SteinbergSdro4 IlI, 2.3], such a group is known to quasi-
split overks". Compactifications of Bruhat-Tits buildings fit in this maeecific context for G ank.
Indeed, the Bruhat-Tits buildingd(G, k) is locally compact if and only if so ik, see the discussion
of the local structure of buildings below (3.2.3). Note fipahat the terminology "henselian" used in
[BrT84] is a well-known algebraic generalization of "completdigiatter "analytic" condition is the
only one we consider seriously here, since we will use Bedkogeometry).
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Existence of Bruhat-Tits buildings- Here is at last a general statement on existence of Bruhat-
Tits buildings which will be enough for our purposes; thisuk was announced ilBfT72, 6.2.3 c)]
and is implied by BrT784, Th. 5.1.20].

Theorem 3.24 — Assume that k is complete, discretely valued, with persgitive field. The root
group datum oG(k) associated with a split maximal torus admits a valuatioms$ging the conditions
of Definition 3.17.

Let us also give now an example illustrating both the staténoéthe theorem and the general
geometric approach characterizing Bruhat-Tits theory.

Example 3.25 — Let h be a Hermitian form of index 1 in three variables, say on the&arespace
V ~ k3. We assume thdt splits over a quadratic extension, gayk, so that SWV,h) is isomorphic
to SLs overE, and we denote G¢Et /k) = {1;0}. Then the building of SU/,h) can be seen as the
set of fixed points for a suitable action of the Galois inviolnto on the 2-dimensional Bruhat-Tits
building of typeA, associated to Wy E as in 1.2. Ifk is local and ifq denotes the cardinality of
the residue field, then the Euclidean buildisg(SU(V, h),k) is a locally finite tree: indeed, it is a
Euclidean building of dimension 1 because khank of SUV, h), i.e. the dimension of maxim&t
split tori, is 1. The tree is homogeneous of valeneydwhenE /k is ramified, in which case the type
of the group is C-Bgin Tits’ classification Tit79, p. 60, last line]. The tree is semi-homogeneous
of valencies 1 q and 1+ ¢ whenE /k is unramified, and then the type?&), [Tit79, p. 63, line 2].
For the computation of the valencies, we refer to 3.2.3 below

Functoriality.— For our purpose (i.e. embedding of Bruhat-Tits buildiinganalytic spaces and
subsequent compactifications), the existence statemeat isufficient. We need a stronger result
than the mere existence; in fact, we also need a good behafvtbe building with respect to field
extensions.

Theorem 3.26 — Whenever k is complete, discretely valued, with perfeiduesfield, the Bruhat-
Tits building (G, K) depends functorially on the non-Archimedean extension of

More precisely, let us denote by-GSetsthe category whose objets are pdiks’k, X), whereK /k
is a non-Archimedean extension and X is a topological spadevweed with a continuous action of
G(K), and arrowg K /k,X) — (K'/k,X") are pairs(i, f), wherel is an isometric embedding &
into K" and f is a GK)-equivariant and continous map from X td.XVe see the building of G as a
section# (G, —) of the forgetful functor

G Sets—s ( non—Archlmedean>

extension¥K /k

Reference— It is explained in RTW10, 1.3.4] how to deduce this from the general theory.

One word of caution is in order here.Kf/k is a Galois extension, then there is a natural action of
Gal(k'/k) on #(G,K') by functoriality and the smaller building?(G,K) is contained in the Galois-
fixed point set inZ(G, k). In general, this inclusion is strict, even when the grougpig [Rou77, IIl]

(see als.2). However, one can show that there is equality if the extenii/k is tamely ramified
[loc. cit.] and [Pra01].

We will need to have more precise information about the behaif apartments. As above, we
assume thakt is complete, discretely valued and with perfect residuel fiel

Definition 3.27. — Let T be a maximal torus ofs and let l¢ be the minimal Galois extension of k
(in some fixed algebraic closure) which splits We denote bykthe maximal unramified extension
of kin k.

The torusT is well-adjustedf the maximal split subtori of and T @ ki are maximal split tori of
G and G ®yky".
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Lemma 3.28 — 1. Every maximal split toruS of G is contained in a well-adjusted maximal torus
T.

2. Assume thaBandT are as above, and let Kk be any non-Archimedean field extension which
splits T. The embedding?(G, k) — #(G,K) mapsA(S,k) into A(T,K).

Proof. 1. For each unramified finite Galois extensldyk, we can find a torus’S- G which contains
S and such that’&y k' is a maximal split torus of Gy k' [BrT84, Corollaire 5.1.12]. We choose a
pair (k',S') such that the rank of'$ maximal, equal to the relative rank ofsG k""; this means that
S ®k k" is a maximal split torus of Gy k” for any unramified extensiokl’ /k containingk’.

The centralizer of Sx¢ k' in Gy k' is a maximal torus of &K', hence T= Z(S') is a maximal
torus of G. By construction,’Splits overk¥" and 3@ ki" is a maximal split torus of @y ki". Since
Sc S, this proves that T is well-adjusted.

2. We keep the same notation as above. The exter§jdncontainskr, hence it is enough by
functoriality to check that the embedding(G,k) — 2(G,kr) maps AS,k) into A(T, k).
Let us consider the embeddings

B(G,k) = B(G,ky') — B(G,kr).

The first one maps #5,k) into A(S,k¥") by By [BrT84, Proposition 5.1.14] and the second one
maps AS,k¥) into A(T,kr) by [Rou77, Théoréme 2.5.6], hence their composite has the required
property. 0

3.2.3. Compact open subgroups and integral structures

In what follows, we maintain the previous assumptions, iigalar the group G is semisimple and
k-isotropic. The buildingZ (G, k) admits a strongly transitive &)-action by isometries. Moreover
it is alabelledsimplicial complex in the sense that,dfdenotes the number of codimension 1 facets
(called paneld in the closure of a given alcove, we can chodseolors and assign one of them to
each panel inZ(G,k) so that each color appears exactly once in the closure of @laoke. For
some questions, it is convenient to restrict oneself to thigefindex subgroup ()® consisting of the
color-preserving (otype-preservingisometries in @k).

Compact open subgroups For any facetF C #(G,k) we denote by P the stabilizer
Staly (F): it is a bounded subgroup of (& and whenk is local, it is a compact, open sub-
group. It follows from the Bruhat-Tits fixed point theorem.XB) that the conjugacy classes of
maximal compact subgroups in(k3* are in one-to-one correspondence with the vertices in the
closure of a given alcove. The fact that there are usuallgrs¢\conjugacy classes of maximal
compact subgroups in(®) makes harmonic analysis more delicate than in the classasa of real
Lie groups. Still, for instance thanks to the notion of a $gleertex, many achievements can also be
obtained in the non-Archimedean cas#alc71]. Recall that a poink € #(G,K) is calledspecialif
for any apartmenf\ containingx, the stabilizer ok in the affine Weyl group is the full vectorial part
of this affine reflection group, i.e. is isomorphic to the @ptal) Weyl group of the root systeRiof
G overk.

Integral models for some stabilizers In what follows, we are more interested in algebraic prop-
erties of compact open subgroups obtained as facet stBiliZ he following statement is explained
in [BrT84, 5.1.9].

Theorem 3.29 — For any facet FC %#(G, k) there exists a smootlidgroup schemé’ with generic
fiber G such that: (k°) = Pe.

As already mentioned, the point of view of group schemes kivar Bruhat-Tits theory is not only
an important tool to perform the descent, but it is also anoirtgmt outcome of the theory. Here is
an example. The "best" structuaepriori available for a facet stabilizer is only of topological natu
(and even for this, we have to assume that locally compact). The above models okémprovide
an algebraic point of view on these groups, which allows orgefine a filtration on them leading to
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the computation of some cohomology groups of great intéoeshe congruence subgroup problem,
see for instanceAR844d and [PR84H. Filtrations are also of great importance in the represigor
theory of non-Archimedean Lie groups, see for instahdB94] and [MP96].

Closed fibres and local combinatorial description of theldinig.— We finish this brief summary
of Bruhat-Tits theory by mentioning quickly two further diggtions of integral models for facet
stabilizers.

First let us pick a faceF C #(G,k) as above and consider the associdedroup schemés:.
As a scheme ovek®, it has a closed fibre (so to speak obtained by reduction mddt) which
we denote by4-. This is a group scheme over the residue fAiTIeIdIt turns out that the rational
points% (k) have a nice combinatorial structure (even thoughktigeoup % needn't be reductive
in general); more precisel¥r (E) has a Tits system structure (see the end of 3.1.2) with findgl W
group. One consequence of this is t%ﬂ) admits an action on a spherical buildinggherical
building is merely a simplicial complex satisfying the axioms of D&f2 with the Euclidean tiling
2 replaced by a spherical one). The nice point is that this rigadebuilding naturally appears in
the (Euclidean) Bruhat-Tits buildingg(G, k). Namely, the set of closed facets containiRgs a
geometric realization of the spherical buiIding@(K) [BrT84, Prop. 5.1.32]. In particular, for a
complete valued field, the building%(G,k) is locally finite if and only if the spherical building of
?F(F) is actually finite for each facét, which amounts to requiring that the residue fileloe finite.
Note that a metric space admits a compactification if, angl dnit is locally compact. Therefore
from this combinatorial description of neighborhoods afefs, we see thahe Bruhat-Tits building
(G, k) admits a compactification if and only if k is a local field

Remark 3.30 — Let us assume here thats discretely valued. This is the context where the more
classical combinatorial structure of an (affine) Tits sysie relevant Bou07, 1V.2]. Let us exhibit
such a structure. First, a parahoric subgroup {k)@an be defined to be the image (f-)°(k°)

for some faceF in #(G,k), where(%:)° denotes the identity componentf [BrT84, 5.2.8]. We
also say for short that a parahoric subgroup is the connetéduilizer of a facet in the Bruhat-Tits
building #(G,k). If G is simply connected (in the sense of algebraic grougen the family of
parahoric subgroups is the family of abstract paraboligsulps of a Tits system with affine Weyl
group BrT84, Prop. 5.2.10]. An Iwahori subgroup corresponds to the edsnF is a maximal
facet. At last, if moreovek is local with residual characteristig, then an lwahori subgroup can be
characterized as the normalizer of a maximal presbgroup and an arbitrary parahoric subgroup as
a subgroup containing an lwahori subgroup.

Finally, the above integral models provide an important imthe realization of Bruhat-Tits build-
ings in analytic spaces (and subsequent compactificatidngleed, the fundamental step (see Th.
4.5) for the whole thing consists in attaching injectivedyany point x € (G, K) an affinoid sub-
group G of the analytic space @ attached to G, and the definition of, Giakes use of the integral
models attached to vertices. But one word of caution is ieoh&re since the connexion with integral
models avoids all their subtleties! For our constructianlyemoothk®-group scheme%: which are
reductiveare of interest; this is not the case in general, but one csitygaove the following state-
ment: given a vertex x %(G,k), there exists a finite extensiofyk such that the’kK-group scheme
¢, attached to the point x seen as a vertexAlfG, k'), is a Chevalley-Demazure group scheme over
K'°. In this situation, one can defif& =k k')x as thegeneric fibreof the formal completion of/,
along its special fibre; this iski-affinoid subgroup of G @y k')3" and one invokes descent theory to
produce &-affinoid subgroup of &

3.2.4. A characterization of apartments

For later use, we end this section on Bruhat-Tits theory bgedul characterization of apartments
inside buildings.
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Given a torus S ovek, we denote by §k) the maximal bounded subgroup ofk3. It is the
subgroup of &) defined by the equationg| = 1, wherex runs over the character group of S.

Proposition 3.31 — Let S be a maximal split torus and let x be a point@f G, k). If the residue
field of k contains at least four elements, then the follovziogditions are equivalent:

(i) x belongs to the apartme#t(S,k);
(ii) xis fixed under the action & (k).

Proof. Condition (i) always implies condition (ii). With our hyfizesis on the cardinality of the
residue field, the converse implication holds ByT84, Proposition 5.1.37]. O

4. BUILDINGS AND BERKOVICH SPACES

As above, we consider a semisimple group G over some nonirAeciean fieldk. In this section,
we explain how to realize the Bruhat-Tits building(G, k) of G(k) in non-Archimedean analytic
spaces deduced from G, and we present two procedures thhtassed to compactify Bruhat-Tits
buildings in full generality; as we pointed out before, teem “compactification” is abusive K is
not a local field (see the discussion before Remark 3.30).

Assuming thak is locally compact, let us describe very briefly those two svafycompactifying
a building. The first is due to V. Berkovich when G is spBer90, Chap. V] and it consists in two
steps:

1. to define a closed embedding of the building into the aiii@igtion of the group (4.1);

2. to compose this closed embedding with an analytic map tf@rgroup to a (compact) flag
variety (4.2).

By taking the closure of the image of the composed map, wérohteequivariant compactification
which admits a Lie-theoretic description (as expected}.ifgiance, there is a convenient description
of this G(k)-topological space (convergence of sequences, boundats stc.) by means of invariant
fans in (X.(S) ®z R,W), where X.(S) denotes the cocharacter group of a maximal split torus S
endowed with the natural action of the Weyl group W (4.3). Tihie family of compactifications
obtained in this way is indexed by(&-conjugacy classes of parabolic subgroups.

These spaces can be recovered from a different point of wieimg representation theory and
the concrete compactificatio”(V, k) of the building.2"(V, k) of SL(V,k) which was described in
Section 2. It mimics the original strategy of |. Satake in thse of symmetric spaceSdt60g: we
pick a faithful linear representation of G and, relying oralgtic geometry, we embe®(G, k) in
2 (V,K); by taking the closure i2"(V, k), we obtain our compactification.

Caution — 1. We need some functoriality assumption on the buildinthwéspect to the field: in
a sense which was made precise after the statement of The&b2&nthis means tha¥(G,—) is
functor on the category of non-Archimedean extensions of

As explained in RTW10, 1.3.4], these assumptions are fulfilledkiguasi-splits over a tamely
ramified extension ok. This is in particular the case Isis discretely valued with perfect residue
field, or if G is split.

2. There is no other restriction on the non-Archimedean faldnsidered in 4.1. From 4.2 on, we
assume that is local. In any case, the reader should keep in mind that non-lo¢ahsions ok do
always appear in the study of Bruhat-Tits buildings fromk®sich’s point of view (see Proposition
4.2).
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The references for the results quoted in this sectionRif&\[10] and RTW12].

4.1. Realizing buildings inside Berkovich spaces

Let k be a field which is complete with respect to a non-trivial Woghimedean absolute value.
We fix a semisimple group G ovér Our first goal is to define a continuous injection of the Biteha
Tits building (G, k) in the Berkovich space 8 associated to the algebraic group G. Since G is
affine with affine coordinate ring’(G), its analytification consists of all multiplicative semimnes on
0 (G) extending the absolute value kfiTem11].

4.1.1. Non-Archimedean extensions and universal points

We will have to consider infinite non-Archimedean extensiofk as in the following example.

Example 4.1 — Letr = (r4,...,rn) be a tuple of positive real numbers such lﬂ_%\lr}{‘ ¢ |k*| for
all choices of(iy,...,in) € Z"—{0}. Then thek-algebra

ke = { > axt. e Kt )
I=(

i1in)

a,]rill...ri]”—>Owhen]i1]+...+\in]—>oo}

is a non-Archimedean field extensionlofvith absolute valuéf | = max {|a |ril1 iy

We also need to recall the notion ofumiversalpoint @, Let z be a point in @", seen as a
multiplicative k-seminorm onZ’(G). For a given non-Archimedean field extensidrik, there is a
naturalK-seminorm||.|| = z® 1 on 0(G) @k K, defined by

[a]] = infmax|a; ()| - |

where the infimum is taken over the set of all expressipra @ A; representingy, with a; € 0(G)
and A; € K. The pointz is said to beuniversalif, for any non-Archimedean field extensidt/k,
the aboveK-seminorm o7 (G) @ K is multiplicative. One writegk for the corresponding point in
G™&@kK. We observe that this condition depends only on the conpretsidue field#(z) of G at
z

Remark 4.2 — 1. Obviously, points of & coming fromk-rational points of G are universal.

2. Letx € G be universal. For any finite Galois extensidyk, the canonical extensiog of x to
Gk K is invariant under the action of Gél/k): indeed, th&/-normx® 1 on0'(G) @K' is Galois
invariant.

3. If kis algebraically closed, Poineau proved that every poi@®is universal Poill, Corollaire
4.10].

4.1.2. Improving transitivity

Now let G*" be the Berkovich analytic space associated to the algegraigp G. Our goal is the
first step mentioned in the introduction, namely the definitbf a continuous injection

9 : B(G,k) — G

We proceed as follows. For every pokih the building% (G, k) we construct an affinoid subgroug G
of G?" such that, for any non-Archimedean extensiofk, the subgroup @GK) of G(K) is precisely
the stabilizer ofk in the building ovelK. Then we definé? (x) as the (multiplicative) seminorm on
0 (G) defined by taking the maximum over the compact subseif&?".

(2This notion was introduced by Berkovich, who used the ailjeqeaked[Ber90, 5.2]. Its study was carried on by
Poineau, who prefered the adjectiveiversal[Poil1].
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If the Bruhat-Tits buildingZ (G, k) can be seen as non-Archimedean analogue of a Riemannian
symmetric space, itis not homogeneous undg) @or example, ik is discretely valued, the building
carries a polysimplicial structure which is preserved by diction of Gk). There is a very simple
way to remedy at this situation using field extensions, aiishwhere our functoriality assumption
comes in.

Let us first of all recall that the notion of a special point vadined in Section 1, just before
Definition 1.9. Its importance comes from the fact that, wieis split, the stabilizer of a special
point is particularly nice (see the discussion after Theorke5). As simple consequences of the
definition, one should notice the following two propertidsa pointx € #(G, k) is special, then

- every point in the @k)-orbit of x is again special;

- if moreover G issplit, thenx remains special i#(G, K) for any non-Archimedean field exten-
sionK/k (indeed: the local Weyl group atover K contains the local Weyl group aiverk,
and the full Weyl group of G is the same oveand overK).

We can now explain how field extensions allow to improve fitaiity of the group action on the
building.
Proposition 4.3 — 1. Given any two points,y € #(G,k), there exists a non-Archimedean field
extension KKk such that x and vy, identified with points &f(G,K) via the canonical injection
PB(G,k) — #B(G,K), belong to the same orbit und&x(K).

2. For every point xc #(G, k), there exists a non-Archimedean field extensigk Kuch that the
following conditions hold:

(i) The groupG &K is split; (i) The canonical injectio?(G,k) — %(G,K) maps x to a special
point.

We give a proof of this Proposition since it is the a key refuidtthe investigation of Bruhat-Tits
buildings from Berkovich'’s point of view. The second aseerfollows easily from the first: just pick
a finite separable field extensiéfyk splitting G and a special pointin #(G,kK'), then consider a
non-Archimedean field extensidf/k’ such thatx andy belong to the same (& )-orbit. In order to
prove the first assertion, we may and do assume that G is lsptiS denote a maximal split torus of
G whose apartment (8,k) contains bothx andy. As recalled in Proposition 3.17, this apartment is
an affine space under,XS) ®z R, where X.(S) denotes the cocharacter space of S, afik &cts on
A(S,k) by translation via a map : S(k) — X.(S) ®z R. Using a basis of characters to identify (%)
(resp. S) withz" (resp.Gyp,), it turns out thaw is simply the map

kX —>Rn> (tla"‘>tn)H(_Iog|tl|7"‘a_log|tn|)'

By combining finite field extensions and transcendentalresites as described in Example 4.1, we
can construct a non-Archimedean field extens{otk such that the vector—y € R" belongs to the
subgroup log(K*)"|. This implies thai andy, seen as points of (8,K), belong to the same orbit
under §K), hence under (X).

Remark 4.4 — If |[K*| = R-o, then GK) acts transitively onZ(G, K). However, it is more natural
to work functorially than to fix arbitrarily an algebraicgltlosed non-Archimedean extensi@yk
such thatQ*| = R-o.

4.1.3. Affinoid subgroups

Let us now describe the key fact explaining the relationg@pveen Bruhat-Tits theory and non-
Archimedean analytic geometry. This result is crucial fbsabsequent constructions.

Theorem 4.5 — For every point xc Z(G,k) there exists a unique k-affinoid subgroGp of G?"
satisfying the following condition: for every non-Archidean field extension K, the groupGy(K)
is the stabilizer inG(K) of the image of x under the injectia#(G,k) — %#(G,K).
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The idea of the proof is the following (seRTW10, Th. 2.1] for details). If G is split and is
a special point in the building, then the integral mo@glof G described in (3.2.3) is a Chevalley
group scheme, and we defing &s the generic fibr@n of the formal completion of% along its
special fibre. This is &-affinoid subgroup of &, and it is easy to check that it satisfies the universal
property in our claim. Thanks to Proposition 4.3, we can eghithis situation after a suitable non-
Archimedean extensiok /k, and we apply faithfully flat descent to obtain tkaffinoid subgroup ¢
[RTW10, App. A]. Let us remark that, in order to perform this descs®p, it is necessary to work
with an extension which is not too big (technically, the fi&léghould be &-affinoid algebra); since
one can obtaiK by combining finite extensions with the transcendental alessribed in Example
4.1, this is fine.

4.1.4. Closed embedding in the analytic group

The k-affinoid subgroup Gis the Berkovich spectrum of kaffinoid algebra A, i.e., G is the
Gelfand spectrum# (Ax) of bounded multiplicative seminorms on AThis is a compact and Haus-
dorff topological space over which elements of define non-negative real valued functions. For
any non-zerd-affinoid algebra A, one can show that its Gelfand spectrdftA) contains a small-
est non-empty subset, called B&ilov boundaryand denoted (A), such that each elemefitof A
reaches its maximum at some pointifA).

Remark 4.6 — (i) If A = k{T} is the Tate algebra of restricted power series in one vajaben
. (A) is Berkovich’s closed unit disc and its Shilov boundary idueed to the poinb defined by
the Gauss norm: fof = S ,cnanT", one hagf(0)| = max, |an|.

(i) Letac kwithO< |a < 1. If A =k{T,S}/(ST—a), then.#Z (A) is an annulus of modulys|
andr (A) contains two points, 0: for f = ¥ ,c; a,T", where T = a™1S, one hasf (0)| = max, |an|
and|f(0d')| = max,|an|.|a".

(iii) For any non-zerdk-affinoid algebra A, its Shilov boundalfy(A) is reduced to a point if and
only if the seminorm

A—Rso, fr— sup [f(X)]
xe (A)

is multiplicative.

For every point of #(G,K), it turns out that the Shilov boundary ok& .# (Ay) is reduced to a
unique point, denoteé (x). This is easily seen by combining the nice behavior of SHiloundaries
under non-Archimedean extensions, together with a natijeadtion between the Shilov boundary of
7y and the set of irreducible components’ ot k if 77 is a normak°-formal scheme; indeed, the
smoothk®-group schemé has a connected special fibre when it is a Chevalley groupgrsehket
us also note that the affinoid subgroup i&completely determined by the single pofhix) via

Cx={zeG*"; Vf e 0(G), |f(z)| <|f(3(X)|}-

In this way we define the desired map
9 : B(G,k) — G,

and we showRTW10, Prop. 2.7] that it is injective, continuous andkp-equivariant (where )
acts on @" by conjugation). Ifk is a local field,d induces a homeomorphism from (G, k) to a
closed subspace offG[RTW10, Prop. 2.11].

Finally, the map3 is also compatible with non-Archimedean extensién, i.e., the following
diagram
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B(G.K) 2 (G k)™
IK/kT Pk /k

B(G,K) Gan

9
whereiy ) (resp. p k) is the canonical embedding (resp. projection) is comnvgatn particular,
we see that this definessectionof py ) over the image of. In fact, any pointz belonging to this
subset of @"is universal (4.1.1) and (i (X)) coincides with the canonical lif# (x)x of J(x) to
(GekK)2"for anyx € #(G,k).

Moreover, if K/k is a Galois extension, then the upper arrow in the diagram agkGk)-
equivariant by RTW10, Prop. 2.7].

4.2. Compactifying buildings with analytic flag varieties

Once the building has been realized in the analytic sp&Bgt@ easy to obtain compactifications.
In order not to misuse the latter word, we assume from now loaiik iis locally compact

4.2.1. Maps to flag varieties

The embedding? : #(G,k) — G2" defined in 4.1.4 can be used to compactify the Bruhat-Tits
building #(G, k). We choose a parabolic subgroup P of G. Then the flag vari¢ly i& complete,
and therefore the associated Berkovich sp&:&)2" is compact. Hence we can map the building to
a compact space by the composition

9 B(G,k) 25 GA"— (G/P)a".
The mapJdp is by construction @&)-equivariant and it depends only on thék{conjugacy class of
P: we haveSpy 1 = gdpg ! for anyg € G(K).
However, 3p may not be injective. By the structure theory of semisimpleugs, there exists
a finite family of normal reductive subgroups Gf G (each of them quasi-simple), such that the

product morphism
|_| Gi — G
[

is a central isogeny. Then the buildig(G, k) can be identified with the product of alf(G;, k). If
one of the factors Gis contained in P, then the facte#(G;i, k) is squashed down to a point in the
analytic flag varietyG/P)a".

If we remove from#(G, k) all factors.Z(G;, k) such that Gis contained in P, then we obtain a
building % (G, k), wheret stands for the type of the parabolic subgroup P, i.e., fagftg-conjugacy
class. The facto#: (G, k) is mapped injectively intdG/P)" via Jp.

Remark 4.7 — If G is almost simple, thefp is injective whenever P is a proper parabolic subgroup
in G; hence in this case the mép provides an embedding 6B (G, k) into (G/P)2".

4.2.2. Berkovich compactifications

Allowing compactifications of the building in which some fas are squashed down to a point,
we introduce the following definition.
Definition 4.8. — Lett be aG(k)-conjugacy class of parabolic subgroups@fWe define%; (G, k)
to be the closure of the image &f(G,k) in (G/P)2" underdp, whereP belongs to t, and we endow
this space with the induced topology. The compact spa¢6&, k) is called theBerkovich compacti-
fication of typet of the building%(G, k).

Note that we obtain one compactification for eaqlk)aconjugacy class of parabolic subgroups.



40

Remark 4.9 — If we drop the assumption thétis locally compact, the mafip is continuous but
the image of%; (G, k) is not locally closed. In this case, the right way to proceetbicompactify
each apartmentAS, k) of %, (G, k) by closing it in G"/P2"and to define%, (G, k) as the union of all
compactified apartments. This set is a quotient ()G A (S,k) and we endow it with the quotient
topology RTW10, 3.4].

4.2.3. The boundary

Now we want to describe the boundary of the Berkovich conifieations. We fix a typé (i.e., a
G(k)-conjugacy class) of parabolic subgroups.
Definition 4.10 — Two parabolic subgroupB andQ of G are calledosculatoryif their intersection
PN Qis also a parabolic subgroup.

Hence P and Q are osculatory if and only if they contain a comBwarel group after a suitable
field extension. We can generalize this definition to senp&ngroups over arbitrary base schemes.
Then for every parabolic subgroup Q there is a variety; @¥coverk representing the functor which
associates to any base scheme S the set of all parabolicgedf dyer S which are osculatory to Q
[RTW10, Prop. 3.2].

Definition 4.11 — LetQ be a parabolic subgroup. We say tt@is t-relevantf there is no parabolic
subgroupQ’ strictly containingQ such thatOsg(Q) = Osg(Q').

Let us illustrate this definition with the following example

Example 4.12 — Let G be the group SIV), where V is &-vector space of dimensiah+ 1. The
non-trivial parabolic subgroups of G are the stabilizerflagfs

(OCVIG...CV, CV).

Let H be a hyperplane in V, and let P be the parabolic subgré @i 0v) stabilizing the flag0 C

H C V). We denote its type by. Let Q be an arbitrary parabolic subgroup, stabilizing a flag
(0C V1< ...CV,CV). Then Q and P are osculatory if and only if H contains the lirsedospace
V.. This shows that all parabolic subgroups Q stabilizing flegistained in the subspaceg Yive
rise to the same variety Os(@). Therefore, a non-trivial parabolic &-relevant if and only if the
corresponding flag has the formOW C V.

Having understood how to parametrize boundary strata, wenow give the general description
of the Berkovich compactificatiog; (G, k). The following result is Theorem 4.1 ilRTW10].

Theorem 4.13 — For every t-relevant parabolic subgroup, let Qss be its semisimplification (i.e.,
Qss is the quotientQ/#(Q) whereZ(Q) denotes the radical oR). Then%;(G,k) is the disjoint
union of all the buildings#%; (Qss, k), whereQ runs over the t-relevant parabolic subgroupsGf

The fact that the Berkovich compactifications of a given grate contained in the flag varieties of
this group enables one to have natural maps between coffiqstains: they are the restrictions to the
compactifications of (the analytic maps associated to) #itieral fibrations between the flag varieties.
The above combinatorics bfrelevancy is a useful tool to formulate which boundary cormgnts are
shrunk when passing from a compactification to a smaller BA&\[10, Section 4.2].

Example 4.14 — Let us continue Example 4.12 by describing the stratificabf % 5(SL(V),k).
Any d-relevant subgroup Q of & SL(V) is either equal to SLV) or equal to the stabilizer of a
linear subspace @ W C V. In the latter case Qis isogeneous to SW) x SL(V /W). Now SL(W)

is contained in a parabolic of typl henceZ5(Qss, k) coincides withZ(SL(V /W), k). Therefore

Bs(SL(V).k) = |J 2(SL(V/W,K)),
WcV

where W runs over all linear subspacesW.
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Recall from 3.21 that the Euclidean building(SL(V),k) can be identified with the Goldman-
Iwahori space?” (V, k) defined in 1.16. Hencé5(SL(V),K) is the disjoint union of all2” (V /W, k).
Therefore we can identify the seminorm compactificatiiV, k) from 2.2 with the Berkovich com-
pactification of typed.

4.3. Invariant fans and other compactifications

Our next goal is to compare our approach to compactifyingglmg with another one, developed in
[Wer07] without making use of Berkovich geometry. In this work, quewtified buildings are defined
by a gluing procedure, similar to the one defining the BruFitg-building in Theorem 3.20. In a first
step, compactifications of apartments are obtained by adec@mposition. Then these compactified
apartments are glued together with the help of subgroupshabin out to be the stabilizers of points
in the compactified building.

Let G be a (connected) semisimple group dvend (G, k) the associated Bruhat-Tits building.
We fix a maximal split torus T in G, giving rise to the cochaesicspaceX ect = X.(T) ® R. The
starting point is a faithful, geometrically irreduciblepresentatiorp : G — GL(V) on some finite-
dimensionak-vector space V.

LetR=R(T,G) C X*(T) be the associated root system. We fix a bAsi$ R and denote byo(A)
the highest weight of the representatjpmith respect td\. Then every otherkrational) weight ofp
is of the formAg(A) — 3 yea Ne @ With coefficientsn, > 0. We write[Ag(A) —A] = {a € A:ny > O}
We call every such subs¥tof A of the formY = [Ag(A) — A] for some weighA admissible

Definition 4.15 — LetY C A be an admissible subset. We denot&fythe following cone i ect:

ez a(x)=0 foralla €Y, and
a veeh:  (Ag(A)—A)(x) =0 for all weightsA such thafAg(A) —A] ¢ Y

The collection of all cones & whereA runs over all basis of the root system and Y over all
admissible subsets @, is a complete fan, in Zye. There is a natural compactification Bfect
associated ta7,, which is defined a&yect = Ucc 7, Zvect/ (C) endowed with a topology given by
tubular neighborhoods around boundary points. For desaits [Mer07, Section 2] or RTW10,
Appendix B].

We will describe this compactification in two examples.

Example 4.16 — If the highest weight op is regular, then every subset Y Afis admissible. In
this case, the far%, is the full Weyl fan. In the case of a root system of typg, e resulting
compactification is shown on Figure 1. The shaded area is gactified Weyl chamber, whose
interior contains the corresponding highest weighp of

Example 4.17 — Let G=SL(V) be the special linear group of d-+ 1)-dimensionak-vector space
V, and letp be the identical representation. We look at the torus T ajatial matrices in S(V),
which gives rise to the root systeR= {a; ;} of type Ay described in Example 3.13. Thén=
{ao1,012,...,04-14} is a basis oR and Ag(A) = & in the notation of Example 3.13. The other
weights of the identical representation aie..., &4. Hence the admissible subsets\odire precisely
the sets Y= {ag1,...,ar—1r} forr =1,....d, and Yo = @. Letno,...,Nq be the dual basis of
£0,...,&. ThenZec can be identified witt@{’zoRni/R(zi ni), and we find

CY, = {X= Y XMi € Zvect: Xo = ... = X ANAX0 > Xr41,%0 = Xr42,---,%0 = Xa}/R(Y i)
! |

The associated compactification is shown in Figure 2. Thdesharea is a compactified Weyl cham-
ber and its codimension one face marked by an arrow contaénkijhest weight gb (with respect
to this Weyl chamber).
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FIGURE 1. Compactification of an apartment: regular highest weight

|
|

FIGURE 2. Compactification of an apartment: singular highest wieigh

The compactificatiorz et induces a compactificatian of the apartmenkE = A(T, k), which is an
affine space undef,ec. Note that the fan, and hence the compactificatianonly depend on the
Weyl chamber face containing the highest weighpp$ee Wer07, Theorem 4.5].

Using a generalization of Bruhat-Tits theory one can defisigbgroup Rfor all x € ¥ such that for
X € Z we retrieve the groupssRlefined in section 3.2, se#/pr07, section 3]. Note that by continuity
the action of N;(T,k) on Z extends to an action an

Definition 4.18 — The compactification(G, k), associated to the representatignis defined as
the quotient of the topological spa@k) x X by a similar equivalence relation as in Theorem 3.20:

(g,X) ~ (h,y) <= there exists re Ng(T,k) such that y= v(n).x and gthn e P,.
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The compactification of4(G, k) with respect to a representation with regular highest weighn-
cides with the polyhedral compactification defined by Erasirandvogt in Lan96].

The connection to the compactifications defined with Berdfowpaces in section 4.2 is given by
the following result, which is proved irRTW12, Theorem 2.1].

Theorem 4.19 — Letp be a faithful, absolutely irreducible representation®fvith highest weight
Ao(D). Define

Z={aclA:{(a,A(D)) =0},
where(, ) is a scalar product associated to the root system as in Difini3.12. We denote by
the type of the standard parabolic subgroup@®associated t&. Then there is &(k)-equivariant
homeomorphism

B(G,K)p — B(G,K)

restricting to the identity map on the building.

Example 4.20 — In the situation of Example 4.17 we haXg(A) = & and Z= {a12,...,04-14d}
The associated standard parabolic is the stabilizer ofea IWe denote its type by. Hence the
compactification of the building associated to(8l given by the identity representation is the one
associated to typgby Theorem 4.19. This compactification was studiedMef01]. It is isomorphic

to the seminorm compactificatiod” (V" , k) of the building.2"(V", k).

4.4. Satake’s viewpoint

If G is a non-compact real Lie group with maximal compact sobg K, Satake constructed in
[Sat60H a compactification of the Riemannian symmetric space&/K in the following way:

— (i) First consider the symmetric space H associated to thepPSl(n, C) which can be iden-
tified with the space of all positive definite hermitiarx n-matrices with determinant 1. Then
H has a natural compactificatidh defined as the set of the homothety classes of all hermitian
n x n-matrices.

— (i) For an arbitrary symmetric space=-SG/K use a faithful representation of G to embed S
into H and consider the closure of Skh

In the setting of Bruhat-Tits buildings we can imitate thistegy in two different ways.
Functoriality of buildings—- The first strategy is a generalization of functorialitgukts for build-

ings developed by Landvodtf§n00]. Let p : G — SL(V) be a representation of the semisimple group
G. Let S be a maximal split torus in G with normalizer N, andA¢8, k) denote the corresponding
apartment inZ(G,k). Choose a special vertexin A(S k). By [Lan00], there exists a maximal
split torus T in SKV) containingp(S), and there exists a poiwt in the apartment AT, k) of T in
A(SL(V),k) such that the following properties hold:

1. There is a unique affine map between apartmients(S k) — A(T,k) such thai(o) = 0. Its
linear part is the map on cocharacter spacgsSX®z R — X,.(T)®z Z induced byp : S— T.
2. The mag is such thafp(Px) C Pi’(x> for all x € A(S,k), where R denotes the stabilizer of the
point x with respect to the (k)-action on%(G, k), and F?(x) denotes the stabilizer of the point
i(x) with respect to the SIV, k)-action on#(SL(V),k).
3. The mapo, : A(S,k) — A(T,k) — Z(SL(V),k) defined by composingwith the natural em-
bedding of the apartment(&, k) in the building Z(SL(V),k) is N(k)-equivariant, i.e., for all
x € A(S,k) andn € N(k) we havep, (nx) = p(n)p.(X).
These properties imply that. : A(S,k) — B(SL(V),k) can be continued to a map : (G, k) —
A (SL(V),k), which is continuous and &)-equivariant. By Lan00, 2.2.9], p. is injective.
Let .Z# be the fan in X(T) ®z R associated to the identity representation, which is desdrin
Example 4.17. It turns out that the preimages®funder the mayeci(S, k) — Zvect(T,K) induced by
p:S— Tisthe fan%,, see RTW12, Lemma 5.1]. This implies that the mapan be extended to a
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map of compactified apartmemsS, k) — K('I;k). An analysis of the stabilizers of boundary points
shows moreover thgd(Px) C Fyi(x) for all x € A(S,k), where R denotes the stabilizer ofin G(k),

and F?(X) denotes the stabilizer ofx) in SL(V,k) [RTW12, Lemma 5.2]. Then it follows from the
definition of %(G, k), in 4.18 that the embedding of buildings may be extended to a map

B(G,K)p — B(SL(V),K)ig.

It is shown in RTW12, Theorem 5.3] that this map is a(kg-equivariant homeomorphism of
(G, k), onto the closure of the image & (G, k) in the right hand side.

Complete flag variety— Satake’s strategy of embedding the building in a fixed cactification
of the building associated to $Y, k) can also be applied in the setting of Berkovich spaces. Recal
from 3.21 that the buildingZZ(SL(V),k) can be identified with the spac&’(V,k) of (homothety
classes of) non-Archimedean norms on V. In section 2.2, wstoacted a compactificatio” (V, k)
as the space of (homothety classes of) non-zero non-Arcl@areseminorms on V and a retraction
mapt : P(V)3" — 27(V,K).

Now let G be a (connected) semisimgtgroup together with an absolutely irreducible projective
representatiop : G — PGL(V, k). Let Bor(G) be the variety of all Borel groups of G. We assume for
simplicity that G is quasi-split, i.e., that there exists @& group B defined ovd; this amounts to
saying that BofG) (k) is non-empty. Then B¢6) is isomorphic to GB. There is a natural morphism

Bor(G) — P(V)

such that any Borel subgroup B iné&GK for some field extensioK of k is mapped to the unique
K-point in P(V) invariant under B K, see RTW12, Proposition 4.1]. Recall that in section 4.2.1
we defined a map

3 : B(G,k) — Bor(G)"

(@ denotes the type of Borel subgroups). Now we consider theposition

B(G,K) 22 Bor(G)™ s P(V)a s 77 (VK.

We can compactify the buildingg(G, k) by taking the closure of the image. g’ denotes the con-
tragredient representation pf then it is shown inlRTW12, 4.8 and 5.3] that in this way we obtain
the compactificatios(G, k) v .

5. AN INTRINSIC CHARACTERIZATION OF THE BUILDING INSIDE Gan

In this last section, we complememRTW10] and [RTW12] by establishing an intrinsic descrip-
tion of the building as a subspace of the analytic groép Ghe fieldk is complete, discretely valued,
with perfect residue field.

We described in 4.1 a canonica(l3-equivariant embedding : #(G,k) — G?", where Gk) acts
on G*" by conjugation; in other words, this means that the buildi (k) has a natural realization
as a space of multiplicatiMenorms on the coordinate ring(G) of G. It is very natural to ask for an
intrinsic description of the image &f, i.e. a characterization of multiplicative norms 61G) which
appear in Berkovich’s realization o#(G,k). As we are going to see, one can answer this question
in a very pleasant way: the image ®fis the set of points in & satisfying a few simple conditions
which we formulate below (Theorem 5.6 and Theorem 5.8).



45

5.1. Affinoid groups potentially of Chevalley type

Recall that we attached to any poibf Z(G,k) a k-affinoid subgroup Gof G2" satisfying the
following condition: for any non-Archimedean extensilirik, the subgroup @K) of G(K) is the
stabilizer ofx seen in the buildingZ(G,K). By definition, the pointd (x) is the unique element of
the Shilov boundary of G i.e., the only point of Gsuch that f(y)| < |f(J(x))| for anyy € Gx and
any f € 0(Gy). Conversely, one can recoveg @om 3 (x) as itsholomorphic envelopgRTW10,
Proposition 2.4,(ii)], which is to say:

Gx={yeG"; Vi e 0(G), [f(y)| <If(8(x)]}.

This can be phrased equivalently in terms of multiplicatieems onZ/(G) by saying that one recovers
the affinoid algebra of as the completion of the norméealgebra(0'(G), |.|(3 (X)).

Let us say that &-affinoid group H is ofChevalley typdor a Chevalley k-affinoid groypif it is
the generic fibre of &°-formal group scheme?” which is the formal completion of E-Chevalley
semisimple group along its special fibre. More generallywillssay that H ispotentiallyof Chevalley
type if there exists an affinoid extensi#tyk such that KK is a Chevalley affinoid group. By an
affinoid extension, we simply mean thitis a non-Archimedean field which iskaaffinoid algebra
(see RTW10, Appendix A]; this restriction allows to recovéraffinoid algebras fronK-affinoid
algebras equipped with a descent datum). By constructiek-&ffinoid group G attached to a point
x of (G, K) is always potentially of Chevalley type.

For a pointz of G?", let us define itholomorphic envelopby
G(z) ={yeG™; ¥t € 6(G), |f(y)| <|f@}.

The above discussion brings out a first condition fulfilledalny point of G" belonging to the image
of 3.

FIRST cONDITION— The holomorphic envelope of z is a k-affinoid subgroup piatgnof
Chevalley type.

It is easily checked that every point satisfying this caoditdoes appear in the image 8fover
some non-Archimedean extensionkof

Lemma5.1 — Let z be a point 062" whose holomorphic envelope is a k-affinoid subgroup poten-
tially of Chevalley type. Then z is universal, and theretexasnon-Archimedean extension/iKsuch
that the canonical lift g of z toG§" belongs to the image &« .

We recall that the notion of aniversal pointwas introduced in 4.1.1.

Proof — By assumption, there exists an affinoid field exteng{ofk such that Gz)&kK is aK-
affinoid subgroup of Chevalley type in®®K. Moreover, the Shilov boundary of @2"&kK is
reduced to a unique universal point since this affinoid dorsathe generic fibre of a formal scheme
with geometrically integral special fibre. By faithfully fldescent, it follows that @) is ak-affinoid
subgroup of @" whose Shilov boundary is reduced to the pdir}, which is universal RTW10,
Appendix A].

Moreover, if K/k is an affinoid extension as above, then &eaffinoid Chevalley subgroup
G(2)&kK is the stabilizer of a unique pointof %(G,K), hence(Gk )x = G(2)&kK and therefore
9k (X) = zx. We used the fact that ang-affinoid Chevalley subgroup C @6 &y K)2" occurs as the
stabilizer of some point in the building. To see this, picl apecial vertexin %2(G,K); its stabilizer
is aK-affinoid subgroup of G @k K)2" of Chevalley type, hence can be deduced from C by some
K-automorphismu of Gy K. Since this automorphism acts on%(G,K) by preserving special
vertices TTit79, 2.5], it follows that C coincides with the stabilizer of tepecial vertexs—1(z). O
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5.2. Galois-fixed points in buildings

The above condition does not suffice to characterize theamég: it is (almost) always possible
to construct a point € G®" and a non-Archimedean extensiirik such that :

(i) the canonical liftingxk of x to GZ" belongs to the building(G,K) ;

(i) the pointx does not belong to the building (G, k).

This is easy to realize if the residue characteristik isfpositive, by considering a widely ramified
Galois extensiorK /k. If the residue field is of characteristic zero, Galois tlyezannot lead to such
a situation, but we will see at the end of next section that &nough to consider a transcendental
non-Archimedean field extensidq/k, wherer is a positive real number such thdtn [k*| = {1}

and
ke = { gant”;

in order to construct an example (this works whatever thidwescharacteristic df is). In particular,
even if the residue characteristiclofs zero, the above condition fails to characterize the inwddge.

an|r" — 0 when|n| — oo},

Let us concentrate on the Galois-theoretic side in this@ectVe consider a finite Galois extension
k' /k and pick a poinz € G?" such that @&z) is ak-affinoid subgroup potentially of Chevalley type.
This point has a canonical lific to G*"®y k', which is fixed under the natural action of @dlk) on
Gy K'; in particular, ifze belongs to the buildingZ(G, k'), then it lies in the subset of Galois-fixed
points. Conversely, if we start with a poirte G*" @y k' which belongs to%(G, k') and is Galois-
fixed, then thel'-affinoid subgroup Gy )y is equipped with a Galois descent datum. It follows that
we can write G = G(z) ®x K for some poinz € G®", and that Gz) is ak-affinoid group potentially
of Chevalley type.

By functoriality (Theorem 3.26), we identify#(G, k) with a subset ofZ(G,k’) contained in the
Galois-fixed locus. If the extensidi/k is tamely ramified, thew8(G, k) coincides with the set of
Galois-fixed points inZ(G, k') and therefore belongs ta%(G,k). If the extensiork’/k is widely
ramified, there are in general more Galois-fixed pointsifG, k'), and any such point’ leads to a
pointz € G2 whose holomorphic envelope iskaaffinoid subgroup potentially of Chevalley type but
which does not belong t#(G, k).

We want to illustrate this discussion by looking at an eletagnexample. Let us consider the
group G= SL, over some discretely valued fiekdand pick a finite Galois extensiddi of k. Via its
canonical embedding iR;*", the building(G,K) can be identified with the convex hull 8 (k')
insideP&;aln with P1(k') omitted, i.e., with the subset

U na(R>O) )

ack/

wheren, denotes the map froR-g to Aﬁ’a” sendingr to the maximal point of the ball of radius

centered im. The Galois action o%(G,K') is induced by the Galois action (fl"t;a”, and the sub-
building (G, k) is the image of pathg, with a € k. Since the field is discretely valued — hence
spherically complete — there exists a well-defined Galqgisvariant retraction

T2 P — PLA(k) — B(G k)
defined by sending a poimtto the maximal point of the smallest ball with centekinontainingx.
Using this picture, one easily sees how a Galois-fixed pantappear i4(G,k') — Z(G,k). It
suffices to find an elememt of k' such that all the pathg,s(R~) issued from conjugates? of a

intersect at some point distinct fronfa ); since the Galois action permutes these paths, their ngeetin
pointX will be fixed. Note that we have

X =nqg(r) and 1(a)=na(r),
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wherer = maxX{|a? — a| ; g € Gal(K'|k)} is the diameter of the Galois orbit af andr’ = min{|a —
al ; a€k} is the distance fronw to k.

Let k' be any totally ramified finite Galois extensionloflt is well-known thatk’ can be realized
as the splitting field of some Eisenstein polynomidlP=T®+ae 1T® 1+ ... + & T + ag, where
|laj| < |ao| < 1 for alli and|k*| = |ag|?. The groupk’*| is generated bya| = |ag|*/® for any roota
of P.

We have da, k) = |a| and all conjugates af are contained in the closed ball&, |a|) = E(O, |a]).
The endomorphism o&i;a” defined by PT) maps this ball onto the closed ball&|ag|). In order to
study the induced map(g, |a|) — E(0, |ag|), set U= T/a and write

1 a® ae 1081
U)= —P(aU) = —Ue+ 12
Q(U) 2 (aV) X

a
U+ +Lau+l
ao

Sincela|.|a|' < |a| < |ag| for anyi € {1,...,e— 1}, the polynomial Q reduces %U‘H— 1=1-U¢
in K [U]. It follows that the following four conditions are equivate

- all pathsnge(R-0), for g € Gal(K'|k), intersect outsideZ (G, k);

- all roots of P are contained in tlepenball D(a, |a|);

- all roots of Q are contained in thepenball D(1,1);

- evanishes irk.

a ) a /
a’ ; a¥ ad ; a9
\\ | // \\ : //
oo S
\ | / N
\ | / N4
\ /
\ ! /
O \\:// o O 0o
no(|al) No(lal)
Casee+0ink Casee=0ink

In particular, for any totally ramified (finite) Galois exg@ank’ /k, the building% (G, k) is strictly
smaller than the set of Galois-fixed points#(G,K') if and only if [K' : k] is divisible by the residue
characteristic.

Example 5.2 — Letk=Q, andk’ = Qz(a), wherea? = 2. The two pathg),(R-0) andn_q(R=o)
intersectZ(G, k) along the image d2%/2, ), whereas they meet along the imagéf/2, ). The
whole intervalng ([2-%/2,271/2)) consists of Galois-fixed points lying outsidé(G,k). In general,
Rousseau gave an upper bound for the distance of a Galoisgoist in % (G, k') to #(G, k) in terms
of the ramification ok’ /k [Rou77, Prop. 5.2.7].

5.3. Apartments

The characterization of the building insidéequires an additional condition involving maximal
tori of G. We will have to make use of the following fact.

Lemma5.3 — LetT be atorus over k.

(i) Its analytificationT2" contains a largest bounded subgrolip. This is an affinoid subgroup,
which coincides with the affinoid domain cut out by the equmstjx| = 1, x € X*(T), whenT
is split.

(i) The Shilov boundary df! is reduced to a pointt, which is universal.
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Proof. We consider first the case of a split torus. xif,..., xn is a basis of characters of T, then
the equationgxs| = 1,...,|xn| = 1 cut out ak-affinoid subgroup ¥ of T3 over which|x| = 1 for
any charactey € X*(T). LetK/k be a non-Archimedean extension ané bounded subgroup of
T(K). For any charactex of T, both x(I") and (—x)(I") = x(I')~* are bounded subgroups Kf,
hencelx ()| =1 andl" c T}(K). The Shilov boundary of Tis reduced to a universal point since the
reduction of ®, a torus oveE, is geometrically irreducible.

In general, we pick a finite Galois extensi&hk splitting T and set = T ®xk'. The affinoid
subgroup F, of T2"is stable under the natural Galois action @, ience its descends tdaffinoid
subgroup F of T such that = (T!) @« K. Finally, since the Shilov boundary of'®yK is the
preimage of the Shilov boundary of- Tinder the canonical projection, we see thatcbntains an
unique Shilov boundary point. Its universality followsdindRTW10, Lemma A.10]. O

Let us now go back to our discussion toward a characterizaifahe building inside &. We
assume temporarily that the group G is split. Given a ppimt G®" whose holomorphic envelope
G(2z) is ak-affinoid group potentially of Chevalley type, let us coresid non-Archimedean extension
K/k such that the canonical lifik of z belongs to the image a¥x and denote by its preimage:
zx = Jk(X). Since the group G is split, the embeddigg G, k) — %£(G,K) identifies the left-hand
side with the union of apartments of all maximal split toriGp which are defined ovét. Therefore,
in order to guarantee that the pofmitself belongs to the image &f, we should require thatbelongs
to the apartment of a maximal split torus defined dw€Fhe next proposition translates this additional
condition in appropriate terms.

Proposition 5.4 — Let S be a maximal split torus and let x be a point@f(G, k). The following
conditions are equivalent:

(i) x belongs to the apartme#t(S,k);

(ii) for every non-Archimedean extensioryK the point x is fixed by the action &(K) on
A (G,K);
(i) the affinoid subgrouis, of G containsS*.

Proof— Equivalence of points (ii) and (iii) follows immediatelydim the definition of the affinoid
group G, and it is obvious that (i) implies (ii). The converse impliion is a direct consequence of
Proposition 3.31. If the residue field &fcontains at least four elements, thebelongs to AS, k)
as soon as it is fixed by!&). In general, we consider any non-Archimedean extenigk such
that the residue field dk contains at least four elements, sbelongs to the apartment ofs&g K
in the building Z(G,K); since S is split, the embedding &#(G, k) inside #(G, K) identifies the
apartments AS k) and A(S,K), hencex belongs to AS, k). O

In the split case, the discussion above shows preciselyhadaiiclitional condition should be re-
quired in order to characterize the imagesofn G2 there exists a maximal split tori&in G such
that G(z) N S*" = St.

To deal with the general case, we recall the following deénifrom (3.2.2).

Definition 5.5. — LetT be a maximal torus d& and let k- the minimal Galois extension of k which
splits T. We denote byikthe maximal unramified extension of k in k

The torusT is well-adjustedf the maximal split subtori of and T @ k{" are maximal split tori of
G and Gy kY.

SECOND CONDITION— There exists a well-adjusted maximal tofisuch thatG(z) N T = T2.
We now characterize the image ®fin the analytic space of G.

Theorem 5.6 — The image of the canonical embeddifig #(G, k) — G*"is the subset of points z
satisfying the following two conditions:

1. the holomorphic envelop8(z) of z is a k-affinoid subgroup potentially of Chevalley type;
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2. there exists a well-adjusted maximal tofli®f G such thatG(z) N T2" is the maximal affinoid
subgroupT? of T2,

Proof. We have already seen that the first condition is necessary.same holds for the second
one. Given a poink € #(G,k), Lemma 3.28 guarantees the existence of a maximal spli ®@nd
a well-adjusted maximal torus T containing S such thatA(S k) C A(T,K'), wherek' is a finite
Galois extension ok which splits T. It follows that G®y k' contains the bounded torus &y K/,
hence T c G,.

Now, let us show that the two conditions are sufficient. Letassider a pointz € G?" satisfying
these conditions and pick a non-Archimedean extensigk and a pointx € #(G,K) such that
z = 9« (X), wherezx denotes the canonical lift of the universal pairtb G = (G ®k K)2". This
equality holds over any non-Archimedean extensioK oSSincez satisfies the second condition, we
get a well-adjusted maximal torus T of G containing a maxispéit torus S such that @) N Ta"= T1,
EnlargingK if necessary, we assume that T splits o¥erSince

TEN (Gk)x = TR'NG(2)k = (T"NG(D))x = (TH) = (Tk)",

it follows from Proposition 5.4 that belongs to the apartment ofTOnce we know thatkx belongs

to the image of AT,K) for some non-Archimedean extensikrik splitting T, this property holds for
any such extension by compatibility 8fwith field extension (see the end of 4.1.3). In particular, we
can consider a finite Galois extensidrik which splits T. It follows from the identityGy )x = G(2)k
that the pointx is fixed by Galk'|k). Since AT,k')%aKIK is the image of AS,k) in Z(G,K'), we
conclude thak comes from a poiny of #(G, k) such thatz= 3 (y). O

5.4. Areformulation in terms of norms

The above characterization of points of"'Qying inside the buildingZ (G, k) (identified with its
image by the canonical map) can be conveniently rephrased in terms of (multiplicgtkeorms
on the coordinate algebra(G).

This reformulation relies on a construction involving wrisal points, and we refer to (4.1.1) for a
definition of this notion. Let @ denote the subset of universal points if"G-ollowing Berkovich
[Ber90, 5.2], there is a naturahonoidstructure on @ extending the group structure or{l3. Given
any two pointsg, h € GZ", the seminorng® h on 0(G) @ ¢(G) is multiplicative, and one defines
g* h as the induced multiplicative seminorm @n(G) via the comultiplication ma@ : (G) —
0(G) ®x 0(G). This binary operation is associative, with unit the eletrea G(k); moreover, we
recover the group law i) andh belong to GK).

More generally, given an (analytic) action of'Gn somek-analytic space X, one can define in a
similar way an action of the monoid3Gon the topological space underlying X, which extends the
action of Gk).

Lemma5.7 — Let X be a k-analytic space endowed witlG&"-action G3" x X — X. Let ge G?"
and xe X. If both points g and x are universal, then so is)xg

Proof. Let K /k be any non-Archimedean field extension. We have to checktibaensor product
of norms on(.77(g) ®k # (X)) ®k K is multiplicative. Sincex is universal, the tensor product norm
on .77 (X) ®k K is multiplicative. This implies that the underlying ringasdomain, and its quotient
field K’ inherits an absolute value extending this norm. Since therwaal isomorphisn{.7Z(g) ®x
H(X)) @k K ~ 7(g) @k (A (X) @k K) is an isometry, we thus get an isometric embedding

(A(9) Rk (A (X)) @K =~ H(g) @k (H(X) 2k K) — 2 (g) @K',

The norm on the right-hand-side is multiplicative by unsadity of g and the conclusion followsO
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Finally, we also recall that one can define a partial ordetherset underlying &' as follows:
x=y ifandonlyif Yae 0(G), |a(x)| < |a(y)].

We can now give the following description of the buildingides G".
Theorem 5.8 — A point xe G2" belongs to the image of the canonical embedding% (G, k) —
G2"if and only if
(i) xis universal,
(i) xxx=< xandinv(x) < X;
(i) there exists a well-adjusted maximal toflisuch thator < X;
(iv) x is maximal with respect to the three conditions above.
Remark 5.9 — 1. In particular, conditions (i)-(iv) imply thatis a multiplicativek-normon &'(G).

2. One way to understand condition (ii) is to say thdefines &-multiplicative norm on the com-
mutative Hopf algebr&’(G), with respect to which commultiplication and the antipode lzounded.
One should observe that (iii) obviously implieg % x, so that the counit is also bounded.

3. By Lemma 5.10 below, the conditio X X (resp. inx) < X) impliesx = 1g * X < X* X (resp.
X = inv(X)), hence condition (ii) could be replaced kyx = x and in(x) = x.

Lemma5.10 — Let xy,X,y be four points inG?" such that both setéx,y} and{x,y'} contain at
least one universal point. Ifx X and y< Y/, then xy < X' xy andinv(x) < inv(x).

Proof. This follows directly from the formulas:
va€ 0(G), [a(x+y)| =infmax[bi(x)|-|ci(y)| and [a(x +y)| = infmax|bi(x)|-[ci(y)I;

where the infimum is taken over the set of all expressiprs © ¢ representing\(a), and
vae 0(G), [a(inv(x)| = [inv(a)(x)| < [inv(a)(x)| = [a(inv(x))|.
0

Lemma5.11 — Let x be a universal point @&2", with holomorphic envelop&(x) = {ze G?"; z<
x}. The following conditions are equivalent:

(i) G(x) is a subgroup object d&?", i.e.,G(x)(K) is a subgroup o65(K) for any non-Archimedean

extension Kk;
(i) x satisfies
I <X inv(x) <X, and XxX=< X

Moreover,G(x) is bounded irG3".

Proof. Assume that &) is a subgroup object of &. Since Gx)(k) is a subgroup of ), it
contains the unit elemenigland therefore 4 < x. Let us now consider the canonical point
G(s2(x)) lying overx, i.e., thes#(x)-point defined by the canonical homomorphigi(G) — .#(x).
We havela(x)| = |a(x)| for anya € ¢/(G), as well as

la(x+x)| = [a(x-x)| and [a(inv(x))| = [a(x )].
Sincex-x andx ! belong to Gx)(#(x)), it follows that
la(x+x)| <la(x)| and |a(inv(x))| < [a(x)|
for allae ¢(G), which exactly means that«x < x and inyx) <

We assume now that is a universal point of &' satisfying the conditions of (ii). Obviously,
G(x) contains the-rational point . Given a non-Archimedean extensiink and elementg,h €
G(x)(K), we have for alb € 0(G):

la(g™")| = linv(a)(g)| < finv(a)(x)| = |a(inv(x))|

X.
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and

a(gh)| = [A(a)(g, h)| < infmax|bi ()] - |ci ()] < infmax]by (x)] - [ci (x)] = [a(x*x)],

where the infimum is taken over the set of all expresspig® ¢; representing\(a). Since inyx) < x
andx* x < X, we deduce

la(g™)| < |a(x)| and [a(gh)| <[a(x)],
henceg!,gh € G(x)(K). This proves that (X) is a subgroup object of 3.

Boundedness is obvious: fi, ..., fy is a finite set generating'(G) as ak-algebra, thenfi(y)| <
max | fi(x)| for any pointy € G(x). O

Proof of Theorem 5.8We identify the buildingZ (G, k) with its image in G" by the embedding
9.

If a point x of G?" belongs to%(G,k), thenx is universal (Lemma 5.1) and () is ak-affinoid
subgroup of @", hencexxx < and in(x) < xby Lemma 5.11. Moreover, there exists a well-adjusted
maximal torus T such that @) N T3 = T, and this equality amounts to saying thatominates the
distinguished pointpof T. Finally, consider a universal poiate G2" satisfying condition (ii) and
dominatingx (which implies thaz dominates &). For any non-Archimedean extensikiik, Lemma
5.11 implies that &)(K) is a bounded subgroup of(&) containing Gx)(K); by maximality of the
latter, we deduce @)(K) = G(x)(K), hence Gx) = G(z) andz= x. We have thus checked that
satisfies conditions (i)-(iv).

Conversely, le be a point in @" satisfying conditions (i)-(iv). We observe that conditii)
implies thatx dominates &, hence it follows from Lemma 5.11 that(§(K) is a bounded subgroup
of G(K) for any non-Archimedean extensi&yk. We are going to show that all these subgroups fix a
common point inZ(G, k). By condition (iii), there exists a well-adjusted maximaius T of G such
that TH(K) € G(x)(K) for anyK.

We first assume that T is split and thatontains at least four elements. For any non-Archimedean
field extensionK /k, we identify A(T,k) with A(T,K) in #(G,K), and we let# (K) denote the
fixed-point set of Gx)(K) in #(G,K). This is a non-empty closed subset, which lies in the apart-
ment A(T,k) since Gx)(K) contains the group of units'{K) and there are at least four elements
in K (Proposition 3.31). Considering in particular the extensi”’(x) /k, we get a poinz € A(T, k)
fixed under the canonical element G(.7#°(x)) overx. This means that belongs to Gz)(.77(x)),
or equivalently thak is contained in thé-affinoid subgroup @&). This amounts to saying that
dominate, hencex = z by maximality.

In general, we consider a finite Galois extensidfk which splits T and such that contains at
least four elements. It follows from the previous arguméatt the canonical extensiog of X to
Gy K belongs to the apartment ofd k' in (G,K'). Sincexy is invariant under the action of
Gal(k'/k), this point belongs to the image of(8 k) in A(T,k') by Remark 4.2,2, and therefore
belongs to AS,K). O

With this new characterization of the building(G, k) inside the analytic space®G we can com-
plete the discussion at the beginning of section 5.2.

Proposition 5.12 — Let r be a positive real number such th&tm [k*| = {1} and selG, = G2k,
The canonical projection jof G, onto G3" restricts to an embedding o8(G, k;) into G2".

Proof. We adapt an argument of BerkovicBdr99, Theorem 10.1]. Let &) = .# (k;) denote
the Gelfand spectrum d§; this is the annulus of width zero and radius the affine line: Ar) =
{xe Al | |T(x)| =r}. It comes with a simply transitive action of the affinoid tei@}, = A(1) by
multiplication: for any non-Archimedean field extensidrik,

GLK)={teK*||t|=1}, A(NK)={AeK]|]A|=r} and t-A =tA.
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Since G = G*" xxA(r), we get an action oG}, on thek-analytic space G whose orbits coincide
with the fibres of the canonical projectign : G; — G&".

If we consider the partial ordex introduced above on Gthen eactG: -orbit O = p;l(x) has a
unigue maximal point (x). Indeed, the orbit of a poirte G; is the image of the natural map

H ()G — G x( G — Gy,

which is compatible with partial orders on the source angetaspaces; sind8}, has a unique max-
imal point oz, the conclusion follows. This maximal point can also be dbsd as before in terms
of "multiplication” by the universal point®,, namely

0(X) = zx0g,,

for anyz € p~1(x). The mapo thus defined is a continuous section of the projecpan

In order to prove the Proposition, it is now enough to essabihat the buildingZ(G, k) is con-
tained in the image of. So let us consider a poiate Z(G, k) and sek = p;(z). Sinceo(x) is the
unique maximal point of the fibrg; 1(x), one haz < o (x). If we manage to check that(x) satisfies
conditions (i)-(iii) of Theorem 5.8, then we are done by nmaxiity of z

(i) Since both pointz € G, and g, € G}, are universal (Theorem 5.8 and Lemma 5.3), so is the
pointo(x) = zx0g,, by Lemma5.7.

(i) The diagonal action o6}, on G xxG; induces an action d&}, on thek-analytic space Gxy,
G, with respect to which the multiplication map &y, G, — G; is equivariant. This implies that

0(X)*x0(X) = (zx0g,, ) * (2% 0g,, ) = (z*2) *xOg,, -

Fromzxz=z(Remark 5.9, 3), we deduce thafx) « o(X) = o(x). Similarly, the antipode G— G,
commutes with the action @&, and therefore

inv(a(x)) = inv(zx0g1 ) = iNV(2) *0g1 .

Since in(z) = z(Remark 5.9, 3), we deduce that {im(x)) = o(X).

(iii) Finally, condition (iii) is obvious: we have < o(x) and a < zfor some well-adjusted maxi-
mal torus T, henceox o(X). O

This last result shows that, [i* |2 # R*, then there always exists a poid G*" such that Gx) is
ak-affinoid subgroup potentially of Chevalley type bug %(G,k): just pick a positive real number
r outside|k*|? and a pointx' € G; which belongs toZ(G, k) — %(G,k); thenx = p;(X) satisfies
both conditions.
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