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I NTRODUCTION

1. In the mid 60ies, F. Bruhat and J. Tits initiated a theory which led to a deep understanding of
reductive algebraic groups over valued fields [BT72], [BT84]. The main tool (and a concise way to
express the achievements) of this long-standing work is thenotion of abuilding. Generally speaking,
a building is a gluing of (poly)simplicial subcomplexes, all isomorphic to a given tiling naturally acted
upon by a Coxeter group [AB08]. The copies of this tiling in the building are calledapartmentsand
must satisfy, by definition, strong incidence properties which make the whole space very symmetric.
The buildings considered by F. Bruhat and J. Tits are Euclidean ones, meaning that their apartments
are Euclidean tilings (in fact, to cover the case of non-discretely valued fields, one has to replace
Euclidean tilings by affine spaces acted upon by a Euclidean reflection group with a non-discrete,
finite index, translation subgroup [Tit86]). A Euclidean building carries a natural non-positively
curved metric, which allows one to classify in a geometric way maximal bounded subgroups in the
rational points of a given non-Archimedean semisimple algebraic group. This is only an instance of
the strong analogy between the Riemannian symmetric spacesassociated with semisimple real Lie
groups and Bruhat-Tits buildings [Tit75]. This analogy is our guideline here.

Indeed, in this paper we investigate Bruhat-Tits buildingsand their compactification by means of
analytic geometry over non-Archimedean valued fields, as developed by V. Berkovich — see [Ber98]
for a survey. Compactifications of symmetric spaces is now a very classical topic, with well-known
applications to group theory (e.g., group cohomology [BS73]) and to number theory (via the study
of some relevant moduli spaces modeled on Hermitian symmetric spaces [Del71]). For deeper
motivation and a broader scope on compactifications of symmetric spaces, we refer to the recent
book [BJ06], in which the case of locally symmetric varieties is also covered. One of our main re-
sults is to construct for each semisimple group G over a suitable non-Archimedean valued fieldk, a
family of compactifications of the Bruhat-Tits buildingB(G,k) of G overk. This family is finite,
actually indexed by the conjugacy classes of proper parabolic k-subgroups in G. Such a family is of
course the analogue of the family of Satake [Sat60] or Furstenberg [Fur63] compactifications of a
given Riemannian non-compact symmetric space — see [GJT98] for a general exposition.

In fact, the third author had previously associated, with each Bruhat-Tits building, a family of
compactifications also indexed by the conjugacy classes of proper parabolick-subgroups [Wer07]
and generalizing the "maximal" version constructed beforeby E. Landvogt [Lan96]. The Bruhat-Tits
building B(G,k) of G overk is defined as the quotient for a suitable equivalence relation, say∼,
of the product of the rational points G(k) by a natural model, sayΛ, of the apartment; we will refer
to this kind of construction as agluing procedure. The family of compactifications of [Wer07] was
obtained by suitably compactifyingΛ to obtain a compact spaceΛ and extending∼ to an equivalence
relation on G(k)×Λ. As expected, for a given group G we eventually identify the latter family of
compactifications with the one we construct here, see [RTW2].

Our compactification procedure makes use of embeddings of Bruhat-Tits buildings in the ana-
lytic versions of some well-known homogeneous varieties (in the context of algebraic transformation
groups), namely flag manifolds. The idea goes back to V. Berkovich in the case when G splits over its
ground fieldk [Ber90, §5]. One aesthetical advantage of the embedding procedureis that it is similar
to the historical ways to compactify symmetric spaces, e.g., by seeing them as topological subspaces
of some projective spaces of Hermitian matrices or inside spaces of probability measures on a flag
manifold. More usefully (as we hope), the fact that we specifically embed buildings into compact
spaces from Berkovich’s theory may make these compactifications useful for a better understanding
of non-Archimedean spaces relevant to number theory (in thecase of Hermitian symmetric spaces).
For instance, the building of GLn over a valued fieldk is the "combinatorial skeleton" of the Drinfel’d
half-spaceΩn−1 overk [BC91], and it would be interesting to know whether the precise combinato-
rial description we obtain for our compactifications might be useful to describe other moduli spaces
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for suitable choices of groups and parabolic subgroups. Oneother question about these compactifi-
cations was raised by V. Berkovich himself [Ber90, 5.5.2] and deals with the potential generalization
of Drinfel’d half-spaces to non-Archimedean semisimple algebraic groups of arbitrary type.

2. Let us now turn to the definition of the embedding maps that allow us to compactify Bruhat-
Tits buildings. Let G be ak-isotropic semisimple algebraic group defined over the non-Archimedean
valued fieldk and letB(G,k) denote the Euclidean building provided by Bruhat-Tits theory [Tit79].
We prove the following statement (see 2.4 and Prop. 3.34):assume that the valued field k is a local
field (i.e., is locally compact) and (for simplicity) thatG is almost k-simple; then for any conjugacy
class of proper parabolic k-subgroup, say t, there exists a continuous,G(k)-equivariant mapϑt :
B(G,k)→Part(G)an which is a homeomorphism onto its image.Here Part(G) denotes the connected
component of typet in the proper variety Par(G) of all parabolic subgroups in G (on which G acts
by conjugation) [SGA3, Exposé XXVI, Sect. 3]. The superscriptan means that we pass from the
k-variety Part(G) to the Berkovichk-analytic space associated with it [Ber90, 3.4.1-2]; the space
Par(G)an is compact since Par(G) is projective. We denote byBt(G,k) the closure of the image ofϑt

and call it theBerkovich compactificationof typet of the Bruhat-Tits buildingB(G,k).
Roughly speaking, the definition of the mapsϑt takes up the first half of this paper, so let us provide

some further information about it. As a preliminary, we recall some basic but helpful analogies
between (scheme-theoretic) algebraic geometry andk-analytic geometry (in the sense of Berkovich).
Firstly, the elementary blocks ofk-analytic spaces in the latter theory are the so-calledaffinoidspaces;
they, by and large, correspond to affine schemes in algebraicgeometry. Affinoid spaces can be glued
together to definek-analytic spaces, examples of which are provided by analytifications of affine
schemes: if X= Spec(A) is given by a finitely generatedk-algebra A, then the set underlying the
analytic space Xan consists of multiplicative seminorms on A extending the given absolute value on
k. Let us simply add that it follows from the "spectral analytic side" of Berkovich theory that each
affinoid space X admits aShilov boundary, namely a (finite) subset on which any element of the
Banachk-algebra defining X achieves its minimum. We have enough now to give a construction of
the mapsϑt in three steps:

Step 1: we attach to any pointx ∈B(G,k) an affinoid subgroup Gx whosek-rational points coincide
with the parahoric subgroup Gx(k) associated withx by Bruhat-Tits theory (Th. 2.1).

Step 2: we attach to any so-obtained analytic subgroup Gx a pointϑ(x) in Gan (in fact the unique point
in the Shilov boundary of Gx), which defines a mapϑ : B(G,k)→Gan (Prop 2.4).

Step 3: we finally compose the mapϑ with an "orbit map" to the flag variety Part(G)an of typet (Def.
2.16).

Forgetting provisionally that we wish to compactify the building B(G,k) (in which case we have to
assume thatB(G,k) is locally compact, or equivalently, thatk is local), this three-step construction of
the mapϑt : B(G,k)→ Part(G)an works whenever the ground fieldk allows the functorial existence
of B(G,k) (see 1.3 for a reminder of these conditions). We note that in Step 2, the uniqueness of
the pointϑ(x) in the Shilov boundary of Gx comes from the use of a field extension splitting G and
allowing to seex as a special point (see below) and from the fact that integralstructures attached to
special points in Bruhat-Tits theory are explicitly described by means of Chevalley bases. At last, the
point ϑ(x) determines Gx because the latter analytic subgroup is the holomorphic envelop ofϑ(x) in
Gan. Here is a precise statement for Step 1 (Th. 2.1).

Theorem 1— For any point x inB(G,k), there is a unique affinoid subgroupGx of Gan satisfying
the following condition: for any non-Archimedean extension K of k, we haveGx(K) = StabG(K)(x).

This theorem (hence Step 1) improves an idea used for anothercompactification procedure, namely
the one using the map attaching to each pointx ∈B(G,k) the biggest parahoric subgroup of G(k)
fixing it [GR06]. The target space of the mapx 7→Gx(k) in [loc. cit.] is the space of closed subgroups
of G(k), which is compact for the Chabauty topology [INT , VIII.5]. This idea doesn’t lead to a
compactification ofB(G,k) but only of the set of vertices of it: ifk is discretely valued and if G
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is simply connected, any two points in a given facet of the Bruhat-Tits buildingB(G,k) have the
same stabilizer. Roughly speaking, in the present paper we use Berkovich analytic geometry, among
other things, to overcome these difficulties thanks to the fact that we can use arbitrarily large non-
Archimedean extensions of the ground field. More precisely,up to taking a suitable non-Archimedean
extension K ofk, any pointx∈B(G,k) can be seen as a special point in the bigger (split) building
B(G,K), in which case we can attach tox an affinoid subgroup of(G⊗k K)an. As a counterpart, in
order to obtain the affinoid subgroup Gx defined overk as in the above theorem, we have to apply a
Banach module avatar of Grothendieck’s faithfully flat descent formalism [SGA1, VIII] (Appendix
1).

As an example, consider the case where G= SL(3) and the fieldk is discretely valued. The
apartments of the building are then tilings of the Euclideanplane by regular triangles (alcovesin
the Bruhat-Tits terminology). If the valuationv of k is normalized so thatv(k×) = Z, then in order
to define the group Gx whenx is the barycenter of a triangle, we have to (provisionally) use a finite
ramified extension K such thatv(K×) = 1

3Z (the apartments inB(G,K) have "three times more walls"
andx lies at the intersection of three of them). The general case,when the barycentric coordinates of
the pointx (in the closure of its facet) are nota priori rational, requires ana priori infinite extension.

As already mentioned, when G splits over the ground fieldk, our compactifications have already
been defined by V. Berkovich [Ber90, §5]. His original procedure relies from the very beginningon
the explicit construction of reductive group schemes overZ by means of Chevalley bases [Che95].
If T denotes a maximal split torus (with character groupX∗(T)), then the model for an apartment in
B(G,k) is Λ = Hom(X∗(T),R×+) seen as a real affine space. Choosing a suitable (special) maximal
compact subgroupP in Gan, V. Berkovich identifiesΛ with the image of Tan in the quotient variety
Gan/P. The buildingB(G,k) thus appears in Gan/P as the union of the transforms ofΛ by the
proper action of the group ofk-rational points G(k) in Gan/P. Then V. Berkovich uses the notion of
apeaked point(and other ideas related to holomorphic convexity) in orderto construct a section map
Gan/P→Gan. This enables him to realizeB(G,k) as a subset of Gan, which is closed ifk is local.

The hypothesis that G is split is crucial for the choice of thecompact subgroupP. The construction
in Step 1 and 2 is different from Berkovich’s original approach and allows a generalization to the
non-split case. We finally note that, in Step 3, the embeddingmapϑt : B(G,k)→ Part(G)an only
depends on the typet; in particular, it doesn’t depend on the choice of a parabolic k-subgroup in the
conjugacy class corresponding tot.

3. Let us henceforth assume that the ground fieldk is locally compact. We fix a conjugacy class
of parabolick-subgroups in G, which provides us with ak-rational typet. The buildingB(G,k)
is the product of the buildings of all almost-simple factorsof G, and we letBt(G,k) denote the
quotient ofB(G,k) obtained by removing each almost-simple factor of G on whicht is trivial. The
previous canonical, continuous and G(k)-equivariant mapϑt : B(G,k)→ Part(G)an factors through
an injectionBt(G,k) →֒ Part(G)an. We then consider the question of describing as a G(k)-space the
so-obtained compactificationBt(G,k), that is the closure of Im(ϑt) = Bt(G,k) in Part(G)an.

The typet and the scheme-theoretic approach to flag varieties we adoptin Step 3 above (in order
to see easily the uniqueness ofϑt ), lead us to distinguish some other types of conjugacy classes of
parabolick-subgroups (3.2). These classes are calledt-relevantand are defined by means of flag
varieties, but we note afterwards thatt-relevancy amounts also to a combinatorial condition on roots
(Prop. 3.24) which we illustrate in Example 3.27 in the case of the groups SL(n).

Moreover each parabolic subgroup P∈ Par(G) defines a closedosculatorysubvariety Osct(P) of
Part(G), namely the one consisting of all parabolics of typet whose intersection with P is a parabolic
subgroup (Prop. 3.2). Then P ist-relevant if it is maximal among all parabolick-subgroups defining
the same osculatory subvariety. It is readily seen that eachparabolic subgroup is contained in a unique
t-relevant one. For instance, if G= PGL(V) and if δ is the type of flags(0⊂ H ⊂ V) where H is a
hyperplane of thek-vector space V, thenδ -relevant parabolick-subgroups are those corresponding to
flags(0⊂W ⊂ V), where W is a linear subspace of V. MoreoverBδ (PGL(V),k) is the seminorm
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compactification described in [Wer04]. In general, we denote by Rt(P) the kernel of the algebraic
action of P on the variety Osct(P) and byπt,P the natural projection P։ P/Rt(P). The following
theorem sums up several of our statements describingBt(G,k) as a G(k)-space (see e.g., Th. 4.1, Th.
4.11 and Prop. 4.20).

Theorem 2 — Let G be a connected semisimple linear algebraic group defined over a non-
Archimedean local field k and let t be the type of a proper parabolic k-subgroup inG. We denote
by B(G,k) its Bruhat-Tits building and byBt(G,k) the Berkovich compactification of type t of the
latter space.

(i) For any proper t-relevant parabolic k-subgroupP, there exists a natural continuous map
Bt(P/rad(P),k)→Bt(G,k) whose image lies in the boundary. These maps altogether provide
the following stratification:

Bt(G,k) =
⊔

t-relevantP’s

Bt(P/rad(P),k),

where the union is indexed by the t-relevant parabolic k-subgroups in G.
(ii) Let x be a point in a stratumBt(P/rad(P),k). Then there is a k-analytic subgroupStabtG(x)

of Gan such thatStabtG(x)(k) is the stabilizer of x inG(k). Moreover we haveStabtG(x) =
π−1

t,P ((P/Rt(P))x), where(P/Rt(P))x is the k-affinoid subgroup of(P/Rt(P))an attached by the-
orem 1 to the point x ofBt(P/rad(P),k) = B(P/Rt(P),k).

(iii) Any two points x,y in Bt(G,k) lie in a common compactified apartmentAt(S,k) and we have:

G(k) = StabtG(x)(k)N(k)StabtG(y)(k),

whereN is the normalizer of the maximal split torusSdefining the apartmentA(S,k).

Statement (i) in the above theorem says that the boundary added by taking a closure in the embed-
ding procedure consists of Bruhat-Tits buildings, each of these being isomorphic to the Bruhat-Tits
building of some suitable Levi factor (Prop. 4.7). This phenomenon is well-known in the context of
symmetric spaces [Sat60]. Statement (ii) first says that a boundary point stabilizeris a subgroup of
a suitable parabolick-subgroup in which, roughly speaking, some almost simple factors of the Levi
factor are replaced by parahoric subgroups geometrically determined by the point at infinity. In the
case G= PGL(V) with δ as above, theδ -relevant parabolick-subgroups (up to conjugacy) are those
having exactly two diagonal blocks, and the boundary point stabilizers are simply obtained by replac-
ing exactly one block by a parahoric subgroup of it. At last, statement (iii) is often referred to as the
mixed Bruhat decomposition.

4. At this stage, we understand the finite family of Berkovich compactificationsBt(G,k), indexed
by thek-rational typest. We describe in 4.2 the natural continuous and G(k)-equivariant maps be-
tween these compactifications arising from fibrations between flag varieties and we show in Appendix
C that no new compactification arises from non-rational types of parabolic subgroup. In a sequel to
this article [RTW2], we will (a) compare Berkovich compactifications with the ones defined by the
third author in [Wer07], relying on a gluing procedure and the combinatorics of weights of an ab-
solutely irreducible linear representations of G, and (b) as suggested in [loc.cit], show (from two
different viewpoints) that these compactifications can also be described in a way reminiscent to Sa-
take’s original method for compactifying riemanniann symmetric spaces.

5. Let us close this introduction by two remarks. The first one simply consists in mentioning
why it is interesting to have non-maximal compactificationsof Bruhat-Tits buildings. This is (at
least) because in the case of Hermitian locally symmetric spaces, some interesting compactifications,
namely the Baily-Borel ones [BB66], are obtained as quotients ofminimal compactifications (of a
well-defined type) by arithmetic lattices. The second remark deals with the Furstenberg embedding
approach, consisting in sending a symmetric space into the space of probability measures on the
various flag varieties of the isometry group [Fur63]. In the Bruhat-Tits case, this method seems to
encounter new difficulties compared to the real case. The main one is that not all maximal compact
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subgroups in a simple non-Archimedean Lie group act transitively on the maximal flag variety of
the group. This is well-known to specialists in harmonic analysis (e.g., one has to choose a special
maximal compact subgroup to obtain a Gelfand pair). The consequence for Furstenberg compactifi-
cations is that, given a non-special vertexv with stabilizer Gv(k), it is not clear, in order to attach a
Gv(k)-invariant probability measureµv to v, how to distribute the mass ofµv among the Gv(k)-orbits
in the flag variety. We think that in the measure-theoretic approach, some subtle problems of this kind
deserve to be investigated, though the expected compactifications are constructed in the present paper
by the Berkovich approach.

Conventions. Let us simply recall a standard convention (already used above): alocal field is a
non-trivially and discretely valued field which is locally compact for the topology arising from the
valuation; this amounts to saying that it is complete and that the residue field is finite.

Roughly speaking this paper applies some techniques from algebraic (and analytic) geometry in
order to prove some group-theoretic statements. Conventions in these two different fields are some-
times in conflict. We tried to uniformly prefer the conventions from algebraic geometry since they are
the ones which are technically used. For instance, it is important for us to use varieties of parabolic
subgroups [SGA3] rather than flag varieties, even though they don’t have any rational point over the
ground field and the affine and projective spaces are those defined in [EGA].

Accordingly, our notation for valued fields are that of V. Berkovich’s book [Ber90]; in particular,
the valuation ring of such a fieldk is denoted byk◦ and its maximal ideal is denoted byk◦◦ (1.2.1).

Working hypothesis. The basic idea underlying this work is to rely on functoriality of Bruhat-Tits
buildings with respect to field extensions. The required assumptions on the group or on the base field
are discussed in (1.3.4).

Structure of the paper. In the first section, we briefly introduce Berkovich’s theoryof analytic
geometry over complete non-Archimedean fields and Bruhat-Tits theory of reductive algebraic groups
over valued fields. The second section is devoted to realizing the Bruhat-Tits buildings of reductive
groups over complete valued fields as subsets of several spaces relevant to analytic geometry, namely
the analytic spaces attached to the groups themselves, as well as the analytic spaces associated with
the various flag varieties of the groups. The third section deals with the construction of the compact-
ifications, which basically consists in taking the closuresof the images of the previous maps; it has
also a Lie theoretic part which provides in particular the tools useful to describe the compactifications
in terms of root systems and convergence in Weyl chambers. The fourth section is dedicated to de-
scribing the natural action of a non-Archimedean reductivegroup on Berkovich compactifications of
its building.

At last, in one appendix we extend the faithfully flat descentformalism in the Berkovich context
because it is needed in the second section, and in the other appendix we prove some useful technical-
ities on fans, in connection with compactifications.

1. BERKOVICH GEOMETRY AND BRUHAT-T ITS BUILDINGS

The main goal of this section is to recall some basic facts about the main two topics which are
"merged" in the core of the paper in order to compactify Euclidean buildings. These topics are
non-Archimedean analytic geometry according to Berkovichand the Bruhat-Tits theory of algebraic
groups over valued fields, whose main tools are the geometry of buildings and integral structures for
the latter groups. This requires to fix first our basic conventions about algebraic groups. Concern-
ing Berkovich geometry, the only new result here is a criterion for being affinoid over the ground
field; it uses Grothendieck’s formalism of faithfully flat descent adapted (in the first appendix) to our
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framework. Concerning Bruhat-Tits theory, we use (huge) extensions of the ground field to improve
dramatically the transitivity properties of the actions ofthe rational points of a reductive group on the
points of the associated building.

1.1. Algebraic groups

This subsection is merely dedicated to fix some conventions concerning the algebraic groups and
related algebraic varieties we use in this paper. The main point is that, in order to fully use Berkovich’s
approach to non-Archimedean analytic geometry, we need to adopt the framework of group schemes
as developed in [SGA3] or [DG70a] — an introductory reference is [Wat79]. As an example, ifk is
a field and G is ak-group scheme, a subgroup of G will always mean ak-subgroup scheme.

(1.1.1)We use throughout the text the language of group schemes, which is arguably more precise
and flexible than the somehow classical viewpoint adopted for example in [Bor91]. Thus, alinear
algebraic groupover a fieldk is by definition a smooth connected affine group scheme overk (see
for example [KMRT98 , 21.12] for a translation). If G is a linear algebraic group over k andk′/k is
any field extension, we denote by G(k′) the group ofk′-valued points of G and by G⊗k k′ the linear
algebraic group overk′ deduced from base change.

Let firstk denote an algebraically closed field and let H denote a linearalgebraic group overk. The
radical (unipotent radical, respectively) of H is the biggest connected normal solvable (unipotent,
respectively) subgroup of H; we denote these subgroups by rad(H) and radu(H), respectively. We say
that H isreductiveif the subgroup radu(H) is trivial; this is so whenever rad(H) is trivial, in which
case we say that H issemisimple. In general, we let Hss denote the semisimple group H/rad(G).

Now let S denote a scheme. A group scheme over S is a group object in the category of schemes
over S [DG70a, II, §1]. Let G be such a group scheme. For any points∈ S we denote bys the
spectrum of an algebraic closure of the residue fieldκ(s) of s. Following [SGA3, Exposé XIX, 2.7],
we say that G is areductive(semisimple, respectively) S-group scheme if it is smooth and affine over
S, and if all its geometric fibers Gs = G×Ssare connected and reductive (connected and semisimple,
respectively) in the above sense. A particular instance of reductive S-group schemes aretori: a
smooth affine S-group scheme T is atorus if there exists an étale covering S′→ S such that T⊗SS′

is isomorphic to a diagonalizable groupGn
m,S′ . A torus T issplit if it is isomorphic to someGn

m,S.
Finally, amaximal torusof a S-group scheme G is a closed subgroup T satisfying the following two
conditions: (a) T is a torus, (b) for eachs∈ S, Ts is a maximal torus of Gs.

Reductive S-group schemes are defined and thoroughly studied by M. Demazure in [SGA3, Ex-
posés XIX to XXVI]; an introductory article is [Dem65]. We will use the results contained in these
references throughout the present paper.

(1.1.2)By the fundamental work of C. Chevalley, over a fixed algebraically closed field, a reductive
algebraic group is completely characterized by itsroot datum[Spr98, 9.6.2 and 10.1.1]: this is ba-
sically a combinatorial datum encoding the Dynkin diagram,the maximal torus and the way roots
appear as characters of the latter.

For any scheme S, aChevalley(Demazure, respectively) group scheme over S is a semisimple
(reductive, respectively) S-group scheme containing a split maximal torus; one speaks also of a split
semisimple (reductive, respectively) S-group scheme. To each such S-group is attached a root datum
and the main result of [Dem65] is the following generalization of Chevalley’s theorem: for any non-
empty scheme S, there is a one-to-one correspondence between isomorphism classes of Demazure
group schemes and isomorphism classes of root data. In particular, any Demazure group scheme over
a non-empty scheme S comes from a Demazure group scheme over Spec(Z) by base change. For
each root datum, the existence of the corresponding split semisimple group scheme G over Spec(Z)
was essentially proved by Chevalley in [Che95]; starting with the semisimple complex group G(C),
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his strategy was to introduce aZ-form of its Lie algebragC in terms of specific bases calledChevalley
bases[Ste68]. We will use them.

(1.1.3)One of the main tools we use for the compactifications is the variety of parabolic subgroups
of a reductive group scheme. The reference for what follows is [SGA3, Exposé XXVI].

Let k denote a field and let G denote a reductive group overk. A closed subgroup P of G is called
parabolic if it is smooth and if the quotient variety G/P is proper overk. This last condition amounts
to saying that P contains aBorel subgroupof G, that is a closed connected and solvable smooth
subgroup of G, maximal for these properties.

More generally, if S is a scheme and G is a reductive group scheme over S, then a subgroup P is
calledparabolic if it is smooth over S and if the quotient Gs/Ps is a propers-scheme for anys∈ S. In
this case, the (fppf) quotient-sheaf G/P is represented by an S-scheme, which is smooth and proper
over S.

For any reductive group scheme G over S, the functor from the category of S-schemes to the
category of sets, attaching to each S-scheme S′ the set of parabolic subgroups of GS′, is representable
by a smooth and projective S-scheme Par(G). If P is a parabolic subgroup of G, the natural morphism
λP : G→ Par(G) defined by

G(S′)→ Par(G)(S′), g 7→ g(P×SS′)g−1

for any S-scheme S′, induces an isomorphism between G/P and an open and closed subscheme of
Par(G).

If k denotes a field with algebraic closureka and if S= Spec(k), then the connected components
of Par(G) are in natural one-to-one correspondence with the Gal(ka|k)-stable subsets of the set of
vertices of the Dynkin diagram of G⊗k ka.

The typeof a parabolic subgroup, say P, of G is the connected component of Par(G) containing
it; it is denoted byt(P). The connected component corresponding to a given typet is denoted by
Part(G); it is a projective smooth homogeneous space under the groupG, image of the canonical map
λP : G/P→ Par(G).

The connected component Part(G) of Par(G) will occasionally be called theflag variety of type t
associated with G; it need not contain a rational point overk. When it does, such a point corresponds
to a parabolick-subgroup of G and we say that the typet is k-rational (or evenrational, if non
confusion seems likely to arise).

Finally, if the typet corresponds to the empty set of simple roots in the above description of
connected components of Par(G), the scheme Par∅(G) is the variety of Borel subgroupsand we
denote it by Bor(G). Since Bor(G)(k) is the set of Borel subgroups of G, we have Bor(G)(k) 6= ∅
if and only if G has a Borel subgroup, i.e., if and only if G isquasi-split. We will use Bor(G) for an
arbitrary reductivek-group G.

1.2. Non-Archimedean analytic geometry

We begin this subsection by a brief review of analytic geometry over a non-Archimedean field.
We then turn to the question of descending the base field, a technical device which lies at the core of
Berkovich realizations of buildings (Sect. 2).

(1.2.1)A non-Archimedean fieldis a fieldk equipped with a complete non-Archimedean absolute
value |.|, which we assume to be non-trivial. Elements ofk with absolute value less or equal to 1
define a subringk◦ of k; this ring is local and we let̃k denote its residue field. For the algebraic theory
of valuations, we refer to [AC, Chapitre 6] and [BGR84].

A non-Archimedean extensionK/k is an isometric extension of non-Archimedean fields. For a
non-Archimedean fieldk, we letBMod(k) denote the category of Banachk-modules with bounded
k-homomorphisms. We call a boundedk-homomorphismu : M → N strict if the quotient norm on
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M/ker(u) is equivalent to the norm induced by N (in [Ber90] V. Berkovich calls such a homomor-
phismadmissible). We letBModst(k) denote the subcategory ofBMod(k) in which morphisms are
required to be strict.

For a non-Archimedean fieldk and ann-tuple r = (r1, . . . , rn) of positive real numbers, we let
k{r−1

1 ξ1, . . . , r−1
n ξn} denote thek-algebra

{
f = ∑

ν=(ν1,...,νn)∈Nn

aν ξ ν1
1 . . .ξ νn

n

∣∣∣ |aν |r
ν1
1 . . . rνn

n → 0 whenν1 + . . .+ νn→ ∞

}

equipped with the Banach norm

|| f ||= max
ν∈Nn
|aν |r

ν1
1 . . . rνn

n .

When r = (r1, . . . , rn) is a vector of positive real numbers which arelinearly independentin
(R>0/|k×|)⊗ZQ, i.e., such thatrν1

1 . . . rνn
n /∈ |k×| for any ν = (ν1, . . . ,νn) ∈ Zn−{0}, the Banach

k-algebrak{r−1
1 ξ1, r1ξ−1

1 , . . . , r−1
n ξn, rnξ−1

n } is a non-Archimedean field which we denote bykr .
Let M and N be Banachk-modules, all of whose norms are denoted by‖ . ‖. Then we can consider

on t0he classical (i.e., algebraic) tensor product M⊗k N a norm, also denoted by‖ . ‖, and defined by
‖ f ‖= infmaxi ‖mi ‖ · ‖ ni ‖, where the infimum is taken over all the representationsf = ∑i mi⊗ni.
The completion of M⊗k N with respect to‖ . ‖ is called thecompleted tensor productof M and N,
and is denoted by M̂⊗kN. The notion of completed tensor product of homomorphisms is defined
similarly.

(1.2.2)Let A denote a commutative Banach ring with unit. V. Berkovich callsspectrumof A, and
denotes byM (A), the set of all bounded multiplicative seminorms on A; this is a non-empty set if
A 6= 0 [Ber90, 1.2]. We adopt the following notation: for an elementx of M (A) and an elementf
of A, we write | f (x)| or | f |(x) instead ofx( f ). Equipped with the weakest topology for which all the
functions A→R+, f 7→| f | (x) are continuous,M (A) is a Hausdorff and compact topological space
[loc. cit.].

Roughly speaking, this notion of spectrum for Banach commutative rings plays in Berkovich theory
a role similar to the one played by the notion of spectrum (setof prime ideals) in algebraic geometry.
For instance, as in commutative algebra, any bounded homomorphism of commutative Banach rings
ϕ : A → B gives rise to a continuous mapM (B)→M (A), which we denote byaϕ . At last, if x
is a point ofM (A), then its kernelpx = { f ∈ A ; | f | (x) = 0} is a closed prime ideal in A. The
completion of the fraction field of A/px, with respect to the natural extension of| . | (x), is called the
complete residue fieldof A at x; it is denoted byH (x).

Strictly speaking, the building blocks of algebraic geometry are spectra of commutative rings seen
as locally ringed spaces, that is spectra endowed with a sheaf of local rings. Analogously, one has
to define a sheaf of local rings on each space X= M (A) where A is a commutative Banach ring
with unit, in order to obtain the so-calledk-affinoid spaces. However, since the building blocks are
compact, one has first of all to single out a class of compact subspaces inM (A). Here is a brief
summary of their definition, given in several steps [Ber90, 2.1-2.3].

First of all, we are interested in spectra of suitable Banachalgebras over non-Archimedean com-
plete valued fields: theaffinoid algebras. Let us be more precise. We letBAlg(k) denote the category
of Banachk-algebras and boundedk-homomorphisms.

Definition 1.1. — (i) A Banach k-algebraA is called k-affinoid if there exists a strict epimorphism
k{r−1

1 ξ1, . . . , r−1
n ξn}։ A. It is calledstrictly k-affinoid if we can take ri = 1 for each index i.

(ii) A Banach k-algebraA is calledaffinoid if there exists a non-Archimedean extensionK/k such
that A is aK-affinoid algebra.

(iii) We let k−Aff (Aff (k), respectivly) denote the full subcategory ofBAlg(k) whose objects are
k-affinoid algebras (of affinoid k-algebras, respectively).
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We henceforth fix ak-affinoid algebra A and consider its (Berkovich) spectrum X= M (A). A
k-affinoid domainin X [loc. cit., 2.2 p. 27] is by definition a subset D of X such that the functor

FD : Aff (k)→ Sets, B 7→ {ϕ ∈ HomBAlg(k)(A,B) | Im(aϕ)⊂ D}

is representable by a pair(AD,ϕD) consisting of ak-affinoid algebra AD and a boundedk-
homomorphismϕD : A → AD. This pair is then unique up to a unique isomorphism and the
morphismaϕD mapsM (AD) homeomorphically onto D. Thespecial subsetsof X are then defined
to be the finite unions ofk-affinoid domains contained in X [loc. cit., p. 30]; to such a space D
is naturally attached a Banachk-algebra, say AD, which can be computed as follows: if{Di}i∈I is
a finite covering of D byk-affinoid domains, then AD = Ker(∏i∈I ADi → ∏i, j∈I ADi∩V j ) — Tate’s
acyclicity theorem implies that the kernel doesn’t depend on the choice of the covering. Thanks to
the latter class of closed subsets in X, a sheaf of local ringsOX can finally be defined on X by setting
for each open subset U of X:

Γ(OX ,U) = lim←−D AV ,

where the projective limit is taken over all special subsetsD ⊂ U. The so-obtained locally ringed
spaces(X,OX) are calledk-affinoid spaces[loc. cit., p. 32]; anaffinoid space over kis a K-affinoid
space for some non-Archimedean extension K/k.

In Berkovich theory, the next step is then to definek-analytic spaces. Since we will not need this
notion in full generality, let us simply mention that ak-analytic space is defined by gluing affinoid
spaces along affinoid domains, and that the functorial definition of affinoid domains in an affinoid
space given above extends to anyk-analytic space; we refer to [Ber93, §1] for a detailed exposition.
A k-analytic space is simultaneously a locally ringed space and a locally ringed site with respect to the
Grothendieck topology generated by its affinoid subspaces.One relies on the latter structure to define
morphisms. The categoryk-An of k-analytic spaces has finite products and ak-analytic group is a
group object in the category ofk-analytic spaces. As for schemes, the underlying set of ak-analytic
group is not a group in general.

We will need the notion of an analytic space Xan associated with a scheme X locally of finite type
over a non-Archimedean fieldk [Ber90, 3.4]. As in complex algebraic geometry, Xan is equipped
with a morphism of locally ringed spacesρ : Xan→ X and(Xan,ρ) represents the functor

k−An→ Set, Y 7→ Homloc.rg.sp.(Y,X).

When X is affine, the analytic space Xan is described set-theoretically as consisting of the multiplica-
tive seminorms on the coordinate ringO(X) of X extending the absolute value ofk and the mapρ
sends a seminorm on its kernel — which is a (closed) prime ideal of O(X).

In general, the underlying set of Xan can be described as the quotient of the setX =
⋃

K/k X(K)

— where the union is over all non-Archimedean extensions K/k — by the equivalence relation which
identifiesx′ ∈ X(K′) andx′′ ∈ X(K′′) whenever there exist embeddings of non-Archimedean fields
K→ K′ and K→ K′′ such thatx′ andx′′ come from the same point in X(K) [loc. cit., 3.4.2].

Lemma 1.2. — Let X be an affine algebraic k-scheme. Any compact subset ofXan is contained in a
k-affinoid domain.

Proof. Write X = Spec(A) and choose ak-epimorphismπ : k[ξ1, . . . ,ξn]→ A. For a compact subset
C of Xan, there exists a positive real numberr such that max16i6nsupC |π(ξi)| 6 r and, if we set
B = k{r−1ξ1, . . . , r−1ξn}/ker(π), thenM (B) is ak-affinoid domain in Xan containing C. 2

(1.2.3)Let A be a commutative Banach algebra. Recall that any element f ∈ A has aspectral ra-
dius [TS, I, 2.3]:

ρ( f ) = lim
n→∞
‖ f n ‖

1
n = inf

n∈N
‖ f n ‖

1
n .
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Then the subset A◦ = { f ∈ A | ρ( f ) 6 1} is a subring of A and A◦◦ = { f ∈ A | ρ( f ) < 1} is an
ideal of A◦; we denote byÃ = A◦/A◦◦ the corresponding quotient ring. Letx ∈M (A). Then
we have a sequence of bounded ring homomorphisms: A→ A/px →֒ Quot(A/px) →֒H (x), where
Quot denotes the fraction field of an integral domain, andH (x) is the complete residue field ofx

defined above. This provides a ring homomorphismÃ → H̃ (x) whose kernel is a prime ideal since

H̃ (x) is a field. We finally obtain a mapπ : M (A)→ Spec(Ã) by attaching tox the prime ideal
{ f ∈ A◦ | | f |(x) < 1}. This map is called thereduction mapof the Banach algebra A [Ber90, 2.4].

A useful notion from spectral theory is that of Shilov boundary of A: a closed subset, sayΓ, of
M (A) is called a boundary if any element of A achieves its maximum in Γ. Minimal boundaries
exist by Zorn’s lemma, and when there is a unique minimal boundary, the latter is called theShilov
boundaryof A and is denoted byΓ(A). In the case when A is ak-affinoid algebra, the Shilov boundary
exists and is a finite subset of X= M (A) [loc. cit., 2.4.5] such that

ρ( f ) = max
Γ(A)
| f |

for any f ∈ A [loc. cit., 1.3.1]. If A is strictlyk-affinoid, then there is a remarkable connection with
the reduction mapπ : the Shilov boundaryΓ(A) is the preimage of the set of generic points (of the
irreducible components) of Spec(Ã) [loc. cit., 2.4.4]. We will make crucial use of arguments in this
circle of ideas in section 2.

(1.2.4)Let A be a finitely presentedk◦-algebra whose spectrum we denoteX . Thegeneric fibre(the
special fibrerespectively) ofX is thek-scheme X= Spec(A ⊗k◦ k) (thek̃-schemeXs = Spec(A ⊗k◦

k̃) respectively). The map

||.||A : A ⊗k◦ k→ R>0, a 7→ inf{|λ | ; λ ∈ k× anda∈ λ (A ⊗1)}

is a seminorm on A⊗k◦ k. The Banach algebra A obtained by completion is a strictlyk-affinoid
algebra whose spectrum we denote byX an. This affinoid space is naturally an affinoid domain in
Xan whose points are multiplicative seminorms onA ⊗k◦ k which are bounded with respect to the
seminorm||.||A . Moreover, there is a reduction mapτ : X an→Xs defined as follows: a pointx in
X an gives a sequence of ring homomorphisms

A →H (x)◦→ H̃ (x)

whose kernelτ(x) defines a prime ideal ofA ⊗k◦ k̃, i.e., a point inXs.

This construction and the one described in 1.2.3 are relatedas follows. The ring A◦ of power-
bounded elements in the affinoid algebra A is the integral closure ofA [BGR84, 6.1.2 and 6.3.4] and
we have a commutative diagram

Spec(Ã)

��

X an

π
::uuuuuuuuu

τ
%%JJJJJJJJJJ

Xs

in which the vertical arrow is a finite morphism. It follows that, if the schemeX is integrally closed
in its generic fibre — in particular ifX is smooth — thenπ = τ .

The construction above extends to any schemeX finitely presented overk◦. One defines ak-
analytic spaceX an by gluing the affinoid spaces(X|U)an associated with affine open subschemes
X|U of X . This k-analytic space is equipped with a reduction mapτ to the special fibre ofX . It
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comes also with a canonical morphismX an→ Xan, where X= X ⊗k◦ k denotes the generic fibre of
X and Xan its analytification (see 1.2.2); ifX is proper, this map is an isomorphism [Ber94, § 5].

(1.2.5)Let X = M (A) be ak-affinoid space. For any non-Archimedean extension K/k, the preimage
of ak-affinoid domain D⊂ X under the canonical projection prK/k : XK = X⊗̂kK→ X is a K-affinoid

domain in XK since the functor Fp−1
K/k(D) is easily seen to be represented by the pair(AD⊗̂kK,ϕD⊗̂idK).

The converse assertion holds if the extension K/k is affinoid, i.e., if K is ak-affinoid algebra.

Proposition 1.3. — Let X be a k-affinoid space and letK/k be an affinoid extension. A subsetD of
X is a k-affinoid domain if and only if the subsetpr−1

K/k(D) of XK is aK-affinoid domain.

This proposition, which gives the key to Berkovich realizations of Bruhat-Tits buildings, is a spe-
cial case of faithfully flat descent in non-Archimedean analytic geometry. Since we couldn’t find a
suitable reference, we provide in the first appendix a complete proof of this result (and of some related
technical statements we will need).

1.3. Bruhat-Tits theory

In this section, we sum up the main facts from Bruhat-Tits theory we need in this paper. Concerning
the hypotheses under which we will be using the theory, we need a weak version of the functoriality
of Bruhat-Tits buildings with respect to extensions of the ground field (this is automatically satisfied
when the ground field is locally compact). Thanks to huge non-Archimedean extensions, we note that
we can obtain interesting transitivity properties of the corresponding groups of rational points acting
on their buildings.

(1.3.1) We very quickly introduce the main terminology of Bruhat-Tits theory; we refer to [Rou08],
and particularly to Sect. 10 and 11 therein, for a reasonablydetailed introduction to these notions.
The first two parts of this reference also contain a very useful geometric introduction to non-discrete
Euclidean buildings.

Let G be a reductive group over a (by convention, complete) non-Archimedean fieldk. We
choose a maximal split torus S in G and denote byΦ(G,S) the corresponding set of roots.
For every rootα ∈ Φ(G,S), the root group Uα is the subgroup of G whose Lie algebra is the
eigenspace associated with the characterα or 2α in the adjoint representation of S on Lie(G).
Then(CentG(S)(k),(Uα (k))α∈Φ(S,G)) is agenerating root datum[BT72, 6.1.3, example c)] of type
Φ(S,G) in the sense of Bruhat-Tits. This statement sums up a substantial part of Borel-Tits theory
on the combinatorial structure of G(k) [BT65], [Bor91] — note that the fact that the fieldk is valued
hasn’t been used so far.

We now take into account the ultrametric absolute value ofk, which we write as| · | = e−ω(·) for
some valuationω : k→ R. Let us denote by M the centralizer CentG(S) of S in G: it is a reductive
group sometimes called thereductive anisotropic kernelof G. We also denote by V(S), or simply V if
no confusion is possible, the real vector space V(S) = HomA(X∗(S),R) where X∗(S) is the character
group Homk−Gr (S,Gm,k). By restriction from M to S, each characterχ ∈ X∗(M) is a linear form
on V(S) and there exists a homomorphismν : M(k)→ V(S) such that for any suchχ , we have the
equality: χ(ν(z)) =−ω(χ(z)) for anyz∈ S(k) [Rou08, Prop. 11.1].

Moreover the homomorphismν can be extended to a homomorphism from NormG(S)(k) to the
group of affine automorphisms of V(S), in such a way that the image of anyz∈S(k) is the translation
by ν(z) ∈ V(S) and the linear part of the image of anyn∈NormG(S)(k) is given by the image ofn in
thespherical Weyl groupWv = NormG(S)(k)/CentG(S)(k) [loc. cit., Prop. 11.3]. It follows from the
axioms of a root datum that for eachα ∈Φ(S,G) and any non-trivialu∈Uα(k) there exist non-trivial
u′,u′′ ∈U−α(k) such thatm(u) = u′uu′′ normalizes S(k) and the image ofm(u) in Wv is the reflection
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associated withα . The group generated by all the so-obtained reflections is called theaffine Weyl
group of G; we denote it by W. Finally we denote by A(S,k) the apartmentof S, that is the affine
space with underlying real vector space V(S), endowed with the previously defined affine action by
the group W.

The main result of Bruhat-Tits theory concerning the combinatorial structure of G(k) is, under
suitable assumptions on G andk, the existence of avaluation of the above root datum in G(k), in
the sense of [BT72, 6.2] — we go back in (1.3.4) to the these assumptions, since we have to make
our own (a priori stronger) assumptions for this paper. Roughly speaking, a valuation is a collection
(ϕα)α∈Φ(S,G) of maps Uα → R∪{+∞} which corresponds, in the split case, to the valuationω of k
when one chooses consistent additive parameterizations ofthe root groups. In general, for each rootα
and each real numberm, the preimage Uα ,m = ϕ−1

α ([m,+∞]) is a subgroup of the root group Uα(k);
moreover the family(Uα ,m)m∈R is a filtration of Uα(k); the groups Uα ,m satisfy axioms requiring
some consistency conditions, as well as a suitable behaviour with respect to commutators and to the
above (well-defined) mapu 7→m(u) given by the root datum axioms. In this framework, to each point
x∈ A(S,k) is attached a well-defined subgroup Uα ,x = Uα ,−α(x) of Uα(k) for each rootα .

(1.3.2) Assuming the existence of a valuation for the root datum(M,(Uα(k))α∈Φ(S,G)), one attaches
to each pointx∈ A(S,k) two groups. The first group is denoted by Px, it is by definition generated by
Ker(ν |M(k)) and the groups Uα ,x whenα varies overΦ(S,G); the second group is denoted byP̂x, it is

defined bŷPx = Px ·N(k)x where N(k)x denotes the stabilizer ofx in NormG(S)(k). TheBruhat-Tits
building of G overk, denoted byB(G,k), is defined [BT72, 7.4] as the quotient of the product space
G(k)×A(S,k) by the equivalence (gluing) relation∼ given by:

(g,x) ∼ (h,y) if and only if there existsn∈ NormG(S)(k) such thaty = ν(n)x andg−1hn∈ P̂x.

We obtain in this way a spaceB(G,k) on which G(k) acts naturally; denoting by[g,x] the class of
(g,x) for ∼, the action is described byh[g,x] = [hg,x]. Each subgroup Uα ,m fixes a non-empty half-
space of A(S,k) whose boundary is the fixed-point set in A(S,k) of the reflectionm(u) as above, for
some suitableu∈Uα ,m.

The Euclidean buildingB(G,k) carries a natural non-positively curved metric [BT72, 8.2], which
is complete since so isk in the present paper; moreover, the action of anyg ∈ G(k) is isometric.
The apartments, which are the G(k)-transforms of the space A(S,k) (embedded inB(G,k) by the
mapx 7→ [1G(k),x]), can be seen as the maximal subspaces ofB(G,k) isometric to some Euclidean
space. They are in one-to-one G(k)-equivariant correspondence with the maximalk-split tori in G;
this follows from the fact that G(k) acts transitively by conjugation on the maximalk-split tori in G
and the fact that NormG(S)(k) is exactly the stabilizer of A(S,k) in G(k).

One point we would like to emphasize is that, though we are mainly interested in compactifying
buildings, we must use Bruhat-Tits theory in full generality. More precisely, a necessary condition for
a metric space to admit a compactification is that the space belocally compact, which corresponds for
Bruhat-Tits buildings likeB(G,k) to the case whenk is locally compact; still, the techniques we use
lead us to deal with non-discretely valued fields: the geometric counterpart is the use of non-discrete
buildings. The non-discretely valued case is of course covered by [BT72] and [BT84], but is less
popular — e.g., not covered by the survey [Tit79]. In this case, Bruhat-Tits buildings are not cellular
complexes and facets are filters of subsets in the building. Still, a useful approach by incidence axioms
close to those of buildings of affine Tits systems has been developped in [Rou08].

Roughly speaking, the model of an apartment is a Euclidean affine space acted upon by a group
generated by reflections such that its vector quotient is a finite reflection group. Thewalls are the
fixed-point sets of the affine reflections and ahalf-apartmentis a half-space bounded by some wall.
This defines also in the underlying vector space a partition into Weylor vector chambersandvector
facets. Given an apartment A, a pointx∈ A and a vector facet Fv, the facetFx,Fv based atx and of
direction Fv is the filter of subsets of A which contain the intersection offinitely many half-apartments
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or walls containing a subset of the formΩ∩ (x+Fv), whereΩ is an open neighborhood ofx [loc. cit.,
§5]; analcoveis a maximal facet. With these definitions, a theory a buildings by means of incidence
axioms of apartments close to that of discrete buildings [AB08] can be written [Rou08, Part II]; note
that this is quite different from Tits’ axiomatic introduced in [Tit86] since for classifications purposes,
J. Tits uses there the geometry at infinity (in particular Weyl chambers and spherical buildings at
infinity) in order to define and investigate Euclidean (a priori not necessarily Bruhat-Tits) buildings.

With this terminology in mind, we can go back to the group action onB(G,k) in order to formulate
geometrically some well-known decompositions of G(k). Recall that a pointx ∈ A(S,k) is called
special if for any direction of wall there is a wall of A actually passing throughx [BT72, 1.3.7].
The Cartan decompositionof G(k) says that ifx ∈ A is special, then a fundamental domain for
the StabW(x)-action on A (i.e., asectorof tip x) is also a fundamental domain for the G(k)-action
on B(G,k). This decomposition implies that in order to describe a compactification, it is enough
to describe sufficiently many converging sequences of points in the closure of a given sector. It
also implies that given any pointx ∈ A, the apartment A contains a complete set of representatives
for the G(k)-action onB(G,k), that is: B(G,k) = StabG(k)(x)A. We also have to useIwasawa
decompositions[BT72, 7.3.1]. Such a decompositon is associated with a pointx∈ A and with vector
chambers D,D′ for A. It decomposes G(k) as: G(k) = U+

D(k) ·StabG(k)(A) ·StabG(k)(Fx,D′), where
U+

D(k) is the unipotent radical of the parabolic subgroup stabilizing the chamber at infinity∂∞D.

At last, let us say a few words about extended Bruhat-Tits buildings. We denote by X∗(G) the
character group Homk−Gr (G,Gm,k). If Z denotes the center of G, the restriction homomorphism
X∗(G)→ X∗(Zo) has finite kernel and its image has finite index in X∗(Zo). Therefore it induces an
isomorphism between the dualR-vector spaces. WhenB(G,k) exists, we letBe(G,k) denote theex-
tended Bruhat-Titsbuilding of G(k); it is simply the product of the buildingB(G,k) by the real vector
space V(G) = HomAb(X∗(G),R). The spaceBe(G,k) is endowed with the G(k)-action induced by
the natural actions on each factor — see [Tit79, 1.2] for the case of an apartment, and [Rou77, 2.1.15]
for the building case.

(1.3.3) The first result we recall is an easy consequence of measure-theoretic arguments whenk is
locally compact, i.e., when G(k) carries a Haar measure — see e.g., the use of [Mar91, 2.5.3] in the
proof of [GR06, Lemma 12].

Lemma 1.4. — For any x∈B(G,k), the pointwise stabilizerGx(k) is Zariski dense inG.

Proof. We pick a maximal split torus S in G such thatx∈ A(S,k). We denote by M= CentG(S) the
corresponding Levi factor; its derived subgroup[M,M] is semisimple anisotropic and the bounded
group [M,M](k) stabilizes pointwise the apartment A(S,k). Let c be an alcove in A(S,k) whose

closure containsx. It is enough to show that the Zariski closureGc(k)
Z

of the pointwise stabilizer
Gc(k) of c, is equal to G. First, since NormG(S)(k) = StabG(k)(A(S,k)), we deduce that NormG(S)∩
Gc(k) is equal to the pointwise stabilizer of A(S,k), hence contains[M,M](k). Since M= [M,M] ·S

is a reductive group, we already deduce that we have: M⊂Gc(k)
Z
[Bor91, 18.3].

We pick now a special point in A(S,k) and use the corresponding valuation(ϕα)α∈Φ(S,G) of the
root datum(M,(Uα)α∈Φ(S,G)) of G with respect to S. Letα be a root inΦ(S,G). The group Gc(k)
contains a suitable subgroup, say Uα ,c, of the filtration given byϕα . Using for instance the cocharacter
of S corresponding to the coroot ofα , we see that we have Uα(k) =

⋃
s∈S(k) sUα ,cs−1, which proves

that Uα(k) ⊂ Gc(k)
Z

becauseGc(k)
Z

contains S. Since Uα(k) is Zariski dense in Uα [BT65, 3.20],

we deduce thatGc(k)
Z

contains the root group Uα for eachα ∈Φ(S,G). This proves our claim, since
G is generated by M and the root groups Uα for α varying inΦ(S,G). 2

Let G be a split connected reductive group overk. With each special pointx∈Be(G,k) is associ-
ated a well-defined Demazure group schemeGx overk◦ with generic fibre G such thatGx(k◦) is the
stabilizer ofx in G(k) [BT84, 4.6.22]. More generally, for any connected reductive group G over
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k, Bruhat-Tits theory attaches to each pointx of B(G,k) some group scheme overk◦ with generic
fibre G. In the present paper, weneveruse these integral group schemes if G is not split or ifx is
not special. We replace these group schemes overk◦ by affinoid subgroups overk which come from
Berkovich theory. The latter affinoid subgroups are defined thanks to the Demazure group schemes
of the special points in the split case, and a faithfully flat descent argument. To perform this, we have
to use huge non-Archimedean extensions ofk and some weak functoriality property ofB(G,k).

(1.3.4)We can now be more precise about our working assumptions. First of all, the use of Berkovich
theory implies that we systematically work with complete valued fields. Given a non-Archimedean
field k and a reductive group G overk, we need of course theexistenceof a Bruhat-Tits building
B(G,k) for G, as well as some functoriality with respect to non-Archimedean extensions. Ideally,
we would assume fullfunctoriality of buildings with respect to non-Archimedean extensions, namely
the existence of a functorB(G, ·) from the categoryE(k) of non-Archimedean extensions ofk to
the category of sets, mapping a field extension K′/K to a G(K)-equivariant injectionB(G,K)→
B(G,K′). This hypothesis is too strong to hold in full generality [Rou77, III.5]. It is however
fulfilled if G is split (easy) or only quasi-split; more generally, functoriality holds if the following two
technical conditions are satisfied [Rou77, V.1.2 and errata]

(i) G quasi-splits over a tamely ramified (finite) Galois extensionk′/k ;
(ii) there is a maximal split torus T of G⊗k k′ containing a maximal split torus of G and whose

apartment A(T,k′) contains a Galois-fixed point.

Using functoriality in the quasi-split case, one remarks that both conditions are fulfilled over any
non-Archimedean extension K ofk as soon as they are fulfilled over the base fieldk.

Condition (i) holds if the residue field ofk is perfect. Condition (ii) holds if the valuation ofk
is discrete, in which case it follows from the so-called "descente étale" of Bruhat-Tits. As a con-
sequence, our strong hypothesis is fulfilled if the non-Archimedean field isdiscretely valued with a
perfect residue field; this is in particular the case ifk is a local field.

Remark 1.5. — According to [Rou77, II.4.14], condition (ii) holds if and only if the exists a maximal
split torus S of G satisying condition (DE) in [BT84, 5.1.5]).

However, a weaker form of functoriality suffices in order to perform our basic construction of
affinoid groups in 2.1. It is enough to assume the existence ofa functorB(G, ·) on a full subcategory
E0(k) of E(k) which is cofinal, i.e., each non-Archimedean extension ofk is contained in some
extension K∈ E0(k). Thanks to functoriality in the split case, this condition holds as soon as the
building B(G,k) sits inside the Galois-fixed point set of the buildingB(G,k′) of G over some finite
Galois extensionk′/k splitting G, in which case we can take forE0(k) the full subcategory of E(k)
consisting of non-Archimedean extensions of K containingk′.

It turns out that in the cases when the Bruhat-Tits building of G overk is known to exist, existence
follows from “descending” the valuation of the root datum ofG over a splitting extension down to
k. This is always possible whenk is a local field, and under much broader hypotheses of [BT84,
Introduction], by the famous two-step descent argument of the whole latter article (which, by the
way, justifies that we can use the machinery of [BT72] that we have just summed up). There is
also a one-step descent available in G.Rousseau’s habilitation [Rou77] and in the more recent papers
[Pra01] and [PY02].

(1.3.5)We work under the functoriality hypothesis discussed in (1.3.4). For a pointx in B(G,k) and
a non-Archimedean extension K/k, we letxK denote the image ofx in B(G,K).

Proposition 1.6. — Let x be a point inB(G,k). There exists an affinoid extensionK/k satisfying the
following two conditions:

(i) the groupG⊗k K is split;
(ii) the canonical injectionB(G,k)→B(G,K) maps x to a special point.



17

Proof. Let k′ be a finite extension ofk splitting the group G and setx′ = xk′ . Pick a split maximal
torus T in G′ = G⊗k k′ such thatx′ lies in the apartment A(T,k′) and set N= NormG′(T); we recall
the notation V(T) = HomAb(X∗(T),R). Finally, let x0 be a special point ofB(G,k′) contained in
A(T,k′). Since(x0)K is a special point ofB(G,K) for any non-Archimedean extension K ofk′, the
unique affine bijection with identical linear part V(T⊗k′ K)→ A(T,K) mapping 0 to(x0)K is N(K)-
equivariant. Indeed, the local Weyl group Wx0 coincides with the full spherical Weyl group Wv and
N(K) = T(K)⋊Wv.

The image of the map

T(K)→ V(T⊗k′ K) = V(T), t 7→ (χ 7→ log|χ(t)|)

consists of all linear formsu on the vector space X∗(T)⊗ZR such that〈u,χ〉 belongs to the subgroup
log|K×| of R for any characterχ ∈ X∗(T). In the identification above, the pointx′ of A(T,k′) corre-
sponds to a linear formu on X∗(T) whose image is a finitely generated subgroup ofR since X∗(T)
is a finitely generated abelian group. Now, if we consider anyaffinoid extension K ofk containing
k′ and such that im(u) ⊂ log|K×|, thenu and 0 belong to the same orbit in V(T) under the group
T(K), hencex andx0 belong to the same orbit under N(K). The pointx is therefore a special point of
B(G,K). 2

Proposition 1.7. — For any two points x and y inB(G,k), there exist an affinoid extensionK/k and
an element g ofG(K) such that gxK = yK .

Proof. Let K/k be a non-Archimedean extension splitting G and such that thepoint xK is a special
vertex ofB(G,K). Pick a split maximal torus T of G⊗k K whose apartment inB(G,K) contains
both xK andyK . TakingxK as a base point, the argument used in the proof above shows that there
exists a non-Archimedean extension K′/K such thatxK′ andyK′ lie in the same orbit under G(K′). 2

(1.3.5) As in [GR06], we also need to see the buildings of Levi factors of G insideB(G,k) — see
[loc. cit., 1.4] for further introductory details. Let P a parabolic subgroup of G containing S. The
imageS of S under the canonical projectionp : P→ Pss= P/rad(P) is a maximal split torus of the
semisimple group Pss. The map X∗(S)→ X∗(S), χ 7→ χ ◦ p is an injective homomorphism and we
let p∨ : V(S)→ V(S) denote the dual projection.

Let LP denote the Levi subgroup of P containing CentG(S). The projectionp induces an iso-
morphism between the reductive groups LP and P/radu(P), and between the semisimple groups
LP/rad(LP) and P/rad(P). The setΦ(P,S) of roots of P with respect to S is the union of the dis-
joint closed subsetsΦ(LP,S) andΦ(radu(P),S). The subsetΦ(LP,S) of X∗(S) spans X∗(S)⊗ZQ,
hence the kernel ofp∨ is the linear subspace

X∗(S)⊥ =
{

u∈ V(S) | ∀α ∈ X∗(S), α(u) = 0
}

= {u∈ V(S) | ∀α ∈Φ(LP,S), α(u) = 0} .

The following proposition is a particular instance of the results proved in [BT72, Sect. 7.6].

Proposition 1.8. — There is a natural affine mapA(S,k)→ A(S,k) with linear part p∨, mapping
special points to special points and inducing an isomorphism

A(S,k)/X∗(S)⊥
∼ // A(S,k).

Moreover letk′/k be a finite Galois extension splitting G and T any maximal torus of G. If we set
Γ = Gal(k′/k) and let S denote the maximal split torus of T, the map A(T,k′)→ A(T,k′) defined as
above isΓ-equivariant and the natural diagram

A(T,k′) // A(T,k′)

A(S,k)
?�

OO

// A(S,k)
?�

OO
,
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in which the vertical maps are the canonical injections, is commutative.

2. REALIZATIONS OF BUILDINGS

In this section we define, for a given reductive group G over a complete non-Archimedean fieldk,
various maps from the Bruhat-Tits buildingB(G,k) (or its extended version) to analytic spaces over
k. The target spaces are first the Berkovich analytic space Gan associated with G and then the ones
associated with the connected components Part(G) of the variety Par(G) of parabolic subgroups of
G.

The construction of the fundamental (first) mapϑ : B(G,k)→Gan relies on the idea to attach to
each pointx∈B(G,k) an affinoid subgroup Gx such that Gx(k) is the stabilizer ofx in G(k) (Th. 2.1).
In the split case, this map was defined Berkovich [Ber90, 5.4] in a different way. Our construction
requires a faithfully flat descent result in the context of Berkovich geometry, which is proved in
the first appendix. The other maps are derived fromϑ . The analytic space Part(G)an attached to
the (projective) "flag variety of typet" Part(G) is compact. The so-obtained mapsϑt : B(G,k)→
Part(G)an, which only depend ont, are used in the next section to define the compactifications.

We consider a reductive group G over a non-Archimedean fieldk and recall that our working
hypothesis, detailed in (1.3.4), are fulfilled in particular if k is a local field, or more generally if
Be(G,k) is obtained by descent of the ground field from a splitting field down tok.

2.1. Affinoid subgroups associated with points of a building

(2.1.1)The fundamental fact underlying Berkovich’s point of view on Bruhat-Tits theory is the fol-
lowing result.

Theorem 2.1. — Let x be a point inBe(G,k). There exists a unique k-affinoid subgroupGx of Gan

such that, for any non-Archimedean extensionK/k, we have:

Gx(K) = StabG(K)(xK).

Proof. Given a non-Archimedean extension K/k, we say that a K-pointg∈G(K) of G is localizedin
the pointzof Gan if {z} is the image of the morphismg : M (K)→Gan.

Define Gx as the subset of Gan consisting of the pointszsatisfying the following condition:

there exist a non-Archimedean extensionK/k and aK-point g: M (K)→Gan of G localized in z
such that gxK = xK .

Let k′/k be a non-Archimedean extension, denote byp the canonical projection of(G⊗k k′)an =
Gan⊗̂kk′ onto Gan and setx′ = xk′ . We claim thatp−1(Gx) = (G⊗k k′)x′ .

By definition, a pointzof Gan belongs to Gx if and only if there exist a non-Archimedean extension
K/k and a pointg∈G(K) fixing xK and sitting in a commutative diagram

k[G]
g //

##FFFFFFFF
K.

H (z)

<<zzzzzzzzz

Givenz′ ∈ (G⊗k k′)′x, such a diagram exists for the extensionH (z′) of H (z) and thereforezbelongs
to Gx. Conversely, ifz′ is a point of(G⊗kk′)an overz∈Gx, there exists a non-Archimedean extension
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K′ of H (z) covering both K andH (z′); sincex′K′ = xK′ , the elementg of G(K) seen in G(K′) fixes
x′K′ and thereforez′ belongs to(G⊗k k′)x′ .

Let us temporarily assume that the group G issplit and that the pointx is a special point of
Be(G,k). According to Bruhat-Tits theory, there exists a Demazure group schemeGx over the ringk◦

with generic fibre G such thatGx(k◦) is the subgroup of G(k) fixing the pointx. More generally, for
any non-Archimedean extension K/k, the subgroupGx(K◦) is the stabilizer of the pointxK in G(K);
indeed,xK is still a special point ofBe(G,K) andGxK = Gx⊗k◦ K◦.

Applying the construction described in 1.2.4, one gets an affinoid subgroupG an
x of Gan. We have

the equalityG an
x (K) = Gx(K◦) in G(K). This amounts to saying that, for any non-Archimedean

extension K/k, a pointg : M (K)→Gan is localized inG an
x if and only if gxK = xK , henceG an

x = Gx

as subsets of Gan. Hence Gx is in this case ak-affinoid domain of Gan and, for any non-Archimedean
extension K/k, Gx(K) is the subgroup of G(K) fixing the pointxK .

We now remove the two assumptions above. Let K/k be an affinoid extension splitting G and such
that xK is a special point ofBe(G,K) (Proposition 1.6). In view of what has been proved so far,
pr−1

K/k(Gx) = GxK is a K-affinoid domain in Gan⊗̂kK = (G⊗k K)an; in particular, Gx = prK/k(GxK ) is a
compact subset of Gan. Since any compact subset of Gan is contained in ak-affinoid domain (Lemma
1.2), we conclude from Proposition 1.3 that Gx is ak-affinoid domain in Gan.

Finally, let K/k be any non-Archimedean extension and pick an extension K′ of K splitting G and
such thatxK′ is a special point. We have:

Gx(K) = Gx(K
′)∩G(K)

= StabG(K′)(xK′)∩G(K)

= StabG(K)(xK)

and Gx is ak-affinoid subgroup of Gan in view of the next lemma. 2

Lemma 2.2. — LetX be a k-analytic group. For any k-affinoid domainD of X, the following condi-
tions are equivalent:

– D is a k-affinoid subgroup ofX;
– for any non-Archimedean extensionK of k, the subsetD(K) of X(K) is a subgroup.

Proof. By definition, a non-emptyk-affinoid domain D of X is a subgroup of X if the multiplication
mX : X×X→ X and the inversioniX : X→ X factor through the canonical immersionsιD : D→ X
andιD× ιD : D×D→ X×X:

D×D //___

ιD×ιD

��

D

ιD

��
X×X mX

// X

D //___

ιD

��

D

ιD

��
X

iX
// X.

Equivalently, both morphismsmX ◦ ιD× ιD andiX ◦ ιD are required to factor throughιD. In view of the
definition ofk-affinoid domains in terms of representability of a functor (1.2.2), this is the case if and
only if their images lie in the subset D of X. Since each point of a k-analytic space Y is the image of a
morphismM (K)→Y for a suitable non-Archimedean extension K ofk, the latter condition amounts
exactly to saying that D(K) is a subgroup of G(K) for any non-Archimedean extension K/k. 2

Remark 2.3. — Let x be a point inB(G,k). The theorem above has the following consequence:
given a non-Archimedean extension K ofk and a K-pointg∈ G(K) fixing xK in B(G,K), any other
K-point h∈G(K), inducing the same seminorm asg on the coordinate algebrak[G] of G, fixesxK .

Proposition 2.4. — Let x be a point inBe(G,k).

(i) The k-affinoid subgroupGx of Gan has a unique Shilov boundary point, which we denote by
ϑ(x). It is a norm on the k-algebra k[G] extending the absolute value of k.
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(ii) The k-affinoid groupGx is completely determined by the pointϑ(x): its k-affinoid algebra is the
completion of(k[G], |.|(ϑ(x))) and we have:

Gx = {z∈Gan | | f |(z) 6 | f |(ϑ(x)) for all f ∈ k[G]}.

(iii) If we let the groupG(k) act onGan by conjugation, then the subgroup of G(k) fixing the point
ϑ(x) is (ZGx)(k), whereZ = Cent(G).

(iv) If we let the groupG(k) act onGan by translation (on the left or on the right), thenGx(k) is the
subgroup ofG(k) fixing the pointϑ(x).

Proof. (i) Pick a non-Archimedean extension K/k splitting G and such thatxK is a special point of
Be(G,K); under these assumptions, the K-affinoid group Gx⊗̂kK = (G⊗k K)xK is deduced from a
Demazure group schemeG over K◦. SinceG is smooth, the reduction map (1.2.4) GxK → G ⊗K◦ K̃
induces a bijection between the Shilov boundary of GxK and the set of generic points in the special
fibre of G . Since Demazure group schemes are connected (by definition), G ⊗K◦ K̃ has only one
generic point and therefore the Shilov boundary of Gx⊗̂kK is reduced to a point. This isa fortiori
true for Gx since the canonical projection Gx⊗̂kK→Gx maps the Shilov boundary of the rangeonto
the Shilov boundary of the target [Ber90, proof of Proposition 2.4.4].

By definition,ϑ(x) is a multiplicative seminorm on thek-algebrak[G]. Thatϑ(x) is in fact a norm
can be checked after any non-Archimedean extension K/k since

| f |(ϑ(xK) = max
GxK

|p∗( f )|= max
Gx

| f |= | f |(ϑ(x)),

wherep denotes the projection of GxK = Gx⊗̂kK onto Gx. We can therefore assume that G is split, in
which case the conclusion follows most easily from the explicit formula (i) of Proposition 2.6, whose
proof is independant of assertions (ii), (iii), (iv) below.

(ii) Denote by A(x) the completion of(k[G], |.|(ϑ(x))) and let Ax be thek-affinoid algebra of Gx.
Since Ax is reduced, we may — and shall — assume that its norm coincideswith its spectral norm
[Ber90, Proposition 2.1.4], hence with|.|(ϑ(x)) asϑ(x) is the only Shilov boundary point of Gx. The
immersion Gx→ Gan corresponds to an injective homomorphism ofk-algebrask[G]→ Ax and thus
extends to an isometric embeddingi of A(x) into Ax.

Consider a non-Archimedean extension splitting G and such thatxK is a special point ofB(G,K).
We let GxK denote the Demazure group scheme over K◦ attached toxK . By definition, we have
an isomorphism of Banach algebras Ax⊗̂kK ≃ AxK ; moreover, since AxK is the completion of K[G]
with respect to the gauge norm coming from K◦[GxK ] (see 1.2.4), K[G] is dense in AxK . It follows
that i⊗̂K : A(x)⊗̂kK→ Ax⊗̂kK is an isomorphism of Banach algebras, hence A(x) = Ax by descent
(Lemma A.5).

(iii) We adapt the argument given by Berkovich in [Ber90, Lemma 5.3.2]. Considerg ∈ G(k)
such thatgϑ(x)g−1 = ϑ(x). In view of (ii), we havegGxg−1 = Gx and thusgGxK g−1 = GxK for any
non-Archimedean extension K/k since GxK = Gx⊗̂kK. Choose such an extension splitting G and
makingx a special point. LettingGx denote the Demazure group scheme over K◦ associated with
xK , our elementg of G(k) induces a K-automorphismγ of Gx⊗̂K◦K. By (ii), the affinoid algebra Ax
of Gx is the completion ofK[G] with respect to the gauge (semi)norm attached to K◦[Gx]. Since the
K◦-schemeGx is smooth and connected, this norm is multiplicative hence coincides with the spectral
norm |.|(ϑ(x)); moreover, K◦[Gx] is integrally closed in K[G] and therefore K◦[Gx] = K[G]∩A◦x (see
1.2.4). By hypothesis, the automorphism int(g)∗ of K[G] is an isometry with respect to the norm
|.|(ϑ(x)), hence int(g)∗ induces a K-automorphism of K◦[Gx], i.e., the automorphism int(g) of G⊗kK
induces an automorphismγ of Gx. Now we consider the following commutative diagram with exact
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rows
1 // Gx(K◦)/Z (K◦) //

� _

��

Aut(Gx,K◦) //
� _

��

Autext(Gx,K◦) // 1

1 // Gx(K)/Z (K) // Aut(Gx,K) // Autext(Gx,K) // 1

whereZ is the center ofGx and Autext denotes the group of outer automorphisms [SGA3, Exposé
XXIV, Sect. 1].

Sinceγ has trivial image in Autext(Gx,K◦), there existsh∈ Gx(K◦) such thatγ = int(h). It follows
thatg = hz in G(K) with h∈ Gx(K◦) = Gx(K) andz∈ Z(K), and thereforeg is ak-point of the group
GxZ.

(iv) Considerg ∈ G(k) such thatgϑ(x) = ϑ(x). In view of (ii), we havegGx = Gx and thusg
belongs to G(k)∩Gx = Gx(k). 2

Corollary 2.5. — For any x∈Be(G,k) and any g∈G(k),

Ggx = gGxg
−1 and ϑ(gx) = gϑ(x)g−1.

Proof. These two identities are obviously equivalent by Proposition 2.4, (ii), and they follow imme-
diately from the definition of Gx since

StabG(K)(gx) = gStabG(K)(x)g
−1

for any non-Archimedean extension K/k. 2

(2.1.2)We have attached to each pointx of Be(G,k) a canonical (semi-)normϑ(x) on k[G]. If G is
split, we can give an explicit formula for these (semi-)norms.

Choose a maximal split torus T in G and letΦ = Φ(G,T) denote the set of roots of G with respect
to T; choose also a Borel subgroup B of G containing T and letΦ+ denote the corresponding set
of positive roots (those occurring in radu(B)). Having fixed a total order onΦ+, the canonical map
induced by multiplication

∏
α∈Φ+

U−α ×T× ∏
α∈Φ+

Uα →G

is an isomorphism onto an open subsetΩ(T,B) of G which does not depend on the chosen ordering
and is called thebig cell of G with respect to(T,B).

Let o denote a special point inBe(G,k). This point corresponds to a Demazure group scheme
G over k◦ and we also fix a Chevalley basis of Lie(G ,k◦) (i.e., an integral Chevalley basis of
Lie(G)(k) [Ste68]), which defines a collection of isomorphismszα : A1

k→̃Uα for α ∈ Φ. We
get therefore an isomorphism between the big cellΩ(T,B) and the spectrum of thek-algebra
k[X∗(T)][(ξα)α∈Φ] of polynomials in theξα ’s with coefficients in the group ringk[X∗(T)] (the
coordinate ring of T). The open immersionΩ(T,B) →֒ G corresponds to ak-homomorphism from
k[G] to k[X∗(T)][(ξα)α∈Φ] and the (semi)normsϑ(x) are conveniently described on the latter ring.

Proposition 2.6. — We assume that the groupG is split and we use the notation introduced above.

(i) The pointϑ(o) belongs toΩ(T,B)an and corresponds to the following multiplicative norm:

k[X∗(T)][(ξα )α∈Φ]→ R>0, ∑
χ∈X∗(T),ν∈NΦ

aχ,ν χ ξ ν 7→max
χ,ν
|aχ,ν |.

(ii) If we use the point o to identify the apartmentA(T,k) with V(T) = HomAb(X∗(T),R), the
mapV(T)→Gan induced byϑ associates with u∈ V(T) the point ofΩ(T,B)an defined by the
multiplicative norm

k[X∗(T)][(ξα)α∈Φ]→ R>0, ∑
χ∈X∗(T),ν∈NΦ

aχ,ν χ ξ ν 7→max
χ,ν
|aχ,ν |∏

α∈Φ
eν(α)〈u,α〉.
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Proof. (i) The chosen Chevalley basisz = (zα)α∈Φ of Lie(G ,k◦) provides us with an integral model
Bz of B — namely, thek◦-subgroup scheme ofG generated by thek◦-torusT = Spec(k◦[X∗(T)])
and the unipotentk◦-groupszα(A1

k◦), α ∈Φ — and the isomorphism

∏
α∈Φ+

A1
k×T× ∏

α∈Φ+

A1
k→̃Ω(T,B)⊂G

comes from ak◦-isomorphism

∏
α∈Φ+

A1
k◦ ×T × ∏

α∈Φ+

A1
k◦→̃Ω(T ,Bz)⊂ G

onto the big cell ofG corresponding toT andBz.
By definition, ϑ(o) is the unique point of Gan contained in the affinoid domain Go which the

reduction map Go = G an→ G ⊗k◦ k̃ (1.2.3) sends to the generic point of the target. SinceΩ(T ,Bz)
is an open subscheme ofG meeting the special fibre ofG , the special fibre ofΩ(T ,Bz) contains
the generic point ofG ⊗k◦ k̃, and the affinoid spaceΩ(T ,Bz)

an sits inside Go. Thereforeϑ(o) is
the unique point inΩ(T ,Bz)

an which reduces to the generic point ofΩ(T ,Bz)⊗k◦ k̃. This means
concretely thatϑ(o) is characterized by the following two conditions: for anyf ∈ k[X∗(T)][(ξα )α∈Φ],

| f |(ϑ(o))6 1⇐⇒ f ∈ k◦[X∗(T)][(ξα)α∈Φ] and | f |(ϑ(o))< 1⇐⇒ f maps to 0 iñk[X∗(T)][(ξα )α∈Φ].

From this, we immediately conclude that

| f |(ϑ(o)) = max
χ,ν
|aχ,ν |

if f = ∑χ,ν aχ,ν χ ξ ν .

(ii) For anyt ∈ T(k) and any rootα ∈Φ, the elementt normalizes the root group Uα and conjuga-
tion by t induces an automorphism of Uα which is just the homothety of ratioα(t) ∈ k× if we read it
through the isomorphismzα : A1

k→ Uα . We thus have a commutative diagram

Spec(k[X∗(T)][(ξα)α∈Φ])
∼ //

τ
��

Ω(T,B)

int(t)
��

Spec(k[X∗(T)][(ξα)α∈Φ]) ∼
// Ω(T,B),

whereτ is induced by thek[X∗(T)]-automorphismτ∗ of k[X∗(T)][(ξα)α∈Φ] mappingξα to α(t)ξα
for anyα ∈Φ. It follows thatϑ(to) = tϑ(o)t−1 is the point of Gan defined by the multiplicative norm
onk[T][(ξα)α∈Φ] mapping an elementf = ∑χ,ν aχ,ν χ ξ ν to

|τ∗( f )|(ϑ(o)) =

∣∣∣∣∣∑χ,ν

(
aχ,ν ∏

α∈Φ
α(t)ν(α)

)
χ ξ ν

∣∣∣∣∣(ϑ(o))

= max
χ,ν
|aχ,ν |∏

α∈Φ
|α(t)|ν(α)

= max
χ,ν
|aχ,ν |∏

α∈Φ
e〈α ,log|t|〉ν(α)

since, by definition, the group T(k) is mapped to V(T) by sendingt to the linear formχ 7→ log|χ(t)|
on X∗(T) (cf. 1.3.1).

To complete the proof, note thatϑ(x) = prK/k(ϑ(xK)) — i.e., ϑ(x) is the restriction ofϑ(xK) to
k[T] — for any non-Archimedean extension K/k, and that any pointu of V(T) belongs to the image
of the map log| · | : T(K)→ V(T⊗k K) = V(T) for a suitable choice of K. 2

Remark 2.7. — Let G be a connected Chevalley group scheme over a scheme S and let T denote
a split maximal torus of G. With each Borel subgroup B of G containing T is associated the open
affine subschemeΩ(T,G) of G (thebig cell), whose definition is compatible with base change. When
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B runs over the set of Borel subgroups of G containing T, the big cellsΩ(T,G) cover the scheme
Bor(G). To prove this assertion, it is enough to check that those open subschemes cover each fiber Gs

over a geometric pointsof S. We are thus reduced to the case where S is the spectrum of an algebraic
closed field, and then the conclusion follows easily from therefined Bruhat decomposition [Che05,
Exposé 13, Théorème 3 and Corollaire 1].

More generally, the same conclusion holds for the family of parabolic subgroups of a given typet
containing T. Indeed, the morphismπ : Bor(G)→ Part(G) defined functor-theoretically by mapping
each Borel subgroup to the unique parabolic subgroup of typet containing it is surjective and maps
each big cellΩ(T,B) onto the corresponding big cell ofΩ(T,π(B)).

2.2. The canonical mapϑ : Be(G,k)→Gan

Proposition 2.8. — The mapϑ : Be(G,k)→ Gan defined in Proposition 2.4 enjoys the following
properties.

(i) This map isG(k)-equivariant if we let the groupG(k) act onGan by conjugation.
(ii) For any non-Archimedean extension k′/k, the natural diagram

Be(G,k′)
ϑ // (G⊗k k′)an

prk′/k

��
Be(G,k)

ϑ
//

OO

Gan

is commutative. Moreover, if k′/k is a Galois extension, the upper arrow isGal(k′/k)-
equivariant.

(iii) The mapϑ factors through the projectionBe(G,k)→B(G,k) and induces a continuous in-
jection ofB(G,k) into Gan. Its restriction to any apartment ofB(G,k) is a homeomorphism
onto a closed subspace ofGan. If the field k is locally compact,ϑ induces a homeomorphism
betweenB(G,k) and a closed subspace ofGan.

Proof. (i) This assertion is Corollary 2.5.

(ii) The first assertion follows immediately from the identity Gxk′
= Gx⊗̂kk′.

If k′/k is a Galois extension, there is a natural action of the groupΓ = Gal(k′/k) on (G⊗k k′)an —
to an elementγ of Γ corresponds thek-automorphism of(G⊗k k′)an defined by id⊗ γ−1 at the level
of the coordinate ringk′[G] = k[G]⊗k k′ — and Galois-equivariance ofϑ amounts to the identity
(G⊗k k′)γ(x) = γ(G⊗k k′)x in (G⊗k k′)an. If ι : k′ → K is any non-Archimedean extension, then
γ(G⊗k k′)x(K) consists by definition of elementsg in G(K) which fix the image ofx in B(G,K) if
we use the extensionu◦γ to embedB(G,k′) into B(G,K), i.e., if we compose the embedding coming
from uwith the automorphism ofB(G,k′) induced byγ . Thus we haveγ(G⊗kk′)x(K) = (G⊗kk′)γ(x),
and thereforeγ(G⊗k k′)x = (G⊗k k′)γ(x).

(iii) For any two pointsx,y∈Be(G,k) such thatϑ(x) = ϑ(y), Gx = Gy and thusϑ(xK) = ϑ(yK)
for any non-Archimedean extension K/k. By Proposition 1.7, we can choose K such thatyK = gxK

for someg∈G(K). Thenϑ(xK) = ϑ(gxK) = gϑ(xK)g−1 and thusg∈ (ZGx)(K) by Proposition 2.4
(iii). Enlarging K if necessary, we may assume thatg belongs to Z(K)Gx(K) = Gx(K)Z(K). Since
Gx(K) = StabG(K)(xK), yK = gxK ∈ Z(K)xK and the pointsxK andyK belong therefore to the same
fibre of Be(G,K)→B(G,K). Relying on (ii), we have thus proved that the mapϑ factors through
an injectionB(G,k)→Gan.

Given a maximal split torus S of G, the continuity ofϑ is equivalent to the continuity of the map

G(k)×A(S,k)→Gan, (g,x) 7→ gϑ(x)g−1

with respect to the natural topology on the left hand side, for B(G,k) is a topological quotient of
G(k)×A(S,k). Since the canonical map G(k)×Gan×G(k)→ Gan, (g,x,h) 7→ gxh is continuous,
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it remains to prove that the restriction ofϑ to the apartment A(S,k) is continuous. In view of the
previous assertion, there is no loss of generality in assuming that G is split, in which case the result is
an obvious consequence of the explicit formula given in Proposition 2.6.

Relying again on this explicit formula, one now proves thatϑ(A(S,k)) is closed in Gan. In view
of (ii), it suffices to consider the case of a split group sincethe projection(G⊗k K)an→Gan is closed
for any non-Archimedean extension K/k; moreover, sinceϑ factors throughB(G,k), we can also
assume that G is semisimple. Consider now a sequence(un) of points in V(S) = HomAb(X∗(T),R)
such that the sequence(ϑ(un)) converges in Gan. Thene−〈un,α〉 = |ξα |(ϑ(un)) converges inR>0 for
any rootα ∈Φ and the limit belongs toR>0 since|ξα |(ϑ(un))|ξ−α |(ϑ(un)) = e−〈un,α〉e〈un,α〉 = 1 for
anyn. Thus we get a mapu∞ : Φ→ R which is obviously additive and extends therefore to a linear
form on X∗(T) sinceΦ spans the vector space X∗(T)⊗ZQ (recall that we assumed G semisimple).
The pointu∞ is mapped to the limit of the sequence(ϑ(un)) and thusϑ(A(T,k)) is closed.

We have proved thatϑ maps homeomorphically each apartment ofB(G,k) onto a closed subset
of Gan. When the fieldk is locally compact, this is true for the whole buildingB(G,k). Indeed, if S
is a maximal split torus of G andx is a point in A(S,k), the group Gx(k) is compact andB(G,k)) =
Gx(k)A(S,k) (see (1.3.2)), hence

ϑ(B(G,k) = Gx(k) ·ϑ(A(S,k))

is a closed subspace of Gan (the action of G(k) is by conjugation). 2

Remark 2.9. — If G is split, the mapϑ introduced above coincides with the one defined by
Berkovich in [Ber90, 5.4.4]. Indeed, with the notation of [loc. cit],P = Go where o is the
special point ofB(G,k) corresponding to thek◦-Demazure group schemeG ⊗Z k◦ and, for any
λ ∈ HomAb(X∗(T),R>0), Pλ = Go−log(λ).

2.3. The canonical mapΘ : Be(G,k)×Be(G,k)→Gan

Given a pointx of Be(G,k) and a non-Archimedean extension K/k, we always writex instead of
xK in what follows.

The canonical mapϑ : Be(G,k)→ Gan which we have defined above is equivariant with respect
to the natural action of G(k) on Gan by conjugation and therefore factors through the projection of
Be(G,k) onto B(G,k). It is in fact possible to embed equivariantly the whole extended building
Be(G,k) into Gan if we let the group G(k) act on Gan by left translations. To be precise, we will
use a canonical mapΘ : Be(G,k)×Be(G,k)→Gan satisfying the following two conditions: for any
pointo∈Be(G,k), Θ(o,o) = ϑ(o) andΘ(o, .) : Be(G,k)→Gan is a G(k)-equivariant embedding of
Be(G,k) into Gan.

For any two pointsx,y ∈Be(G,k), there exists by Proposition 1.7 a non-Archimedean extension
K/k and an elementg∈G(K) such thaty = gx in Be(G,K).

One easily checks that the point prK/k(gϑ(x)) in Gan depends neither on K nor ong. Indeed, if
K′ is a non-Archimedean field extending K and ifg′ is an element of G(K′) such thaty = g′x in
Be(G,K′), theng−1g′x = x henceg−1g′ ∈ Gx(K′). Since Gx(K′) is the subgroup of G(K′) fixing
ϑ(x) in the natural action of G(K′) on (G⊗k K′)an by left translations (Proposition 2.4 (iv)), we have
g−1g′ϑ(x) = ϑ(x) hencegϑ(x) = g′ϑ(x) in (G⊗k K′)an and

prK′/k(g
′ϑ(x)) = prK′/k(gϑ(x))

= prK/kprK′/K(gϑ(x))

= prK/k(gprK′/K(ϑ(x))) = prK/k(gϑ(x)),

for ϑ(x) = prK/k(ϑ(x)).

Definition 2.10. — For any two points x,y in Be(G,k), we put

Θ(x,y) = prK/k(gϑ(x)),
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where g∈G(K) is such that y= gx inBe(G,K).

Lemma 2.11. — Pick some points x,x′,y and y′ in Be(G,k). If Θ(x,y) = Θ(x′,y′) in Gan, then
Θ(x,y) = Θ(x′,y′) in (G⊗k K)an for any non-Archimedean extensionK/k.

Proof. Let x be a point inB(G,k), K/k a non-Archimedean extension andg a K-point of G. Given
a point z in (G⊗k K)an whose image under the projection prK/k : (G⊗k K)an→ Gan belongs to
prK/k(gGx), there exist a non-Archimedean extension K′/K and a K′-point h of G localized inz such
that h ∈ gGx(K′). The K′-point g−1h is localized in Gx, henceg−1z∈ Gx andz∈ gGx. Therefore,
gGx = pr−1

K/k(prK/k(gGx)) and, sincegϑ(x) is the only Shilov boundary point ofgGx by Proposition

2.4 (i), gϑ(x) is the only maximal point in pr−1
K/k(prK/k(gϑ(x))) ⊂ gGx, i.e., the only point at which

each functionf ∈ K[G] reaches its supremum over pr−1
K/k(prK/k(gϑ(x))).

We have thus proved that the pointgϑ(x) of (G⊗k K)an is completely characterized by its image
in Gan. The same argument applies more generally togϑ(x)h for anyg,h∈G(K).

Consider now some pointsx,y,x′ andy′ in B(G,k) such thatΘ(x,y) = Θ(x′,y′) and pick a non-
Archimedean extension K/k such thaty = gx, x′ = hx andy′ = jx with g,h, j ∈G(K). By definition,
Θ(x,y) andΘ(x′,y′) are the images ofgϑ(x) and

jh−1ϑ(x′) = jh−1(hϑ(x)h−1) = jϑ(x)h−1

respectively in Gan. Since those points are completely characterized by their images in Gan, we have
gϑ(x) = jϑ(x)h−1 and therefore the identityΘ(x,y) = Θ(x′,y′) holds after any non-Archimedean
extension ofk. 2

Proposition 2.12. — The mapΘ : Be(G,k)×Be(G,k)→ Gan which we have just defined satisfies
the following properties.

(i) For any points x,y∈Be(G,k) and any elements g,h∈G(k),

Θ(gx,hy) = hΘ(x,y)g−1.

(ii) For any non-Archimedean extension k′/k, the natural diagram

Be(G,k′)×Be(G,k′)
Θ // (G⊗k k′)an

prk′/k

��
Be(G,k)×Be(G,k)

OO

Θ
// Gan

is commutative.
(iii) Let the groupG(k) act by left translations onGan. For any point o inBe(G,k), the mapΘ(o, ·)

is a continuous andG(k)-equivariant injection ofBe(G,k) into Gan which sends homeomor-
phically each apartment ofBe(G,k) onto a closed subset ofGan.

If the field k is locally compact, the mapΘ(o, ·) induces aG(k)-equivariant homeomorphism
betweenBe(G,k) and a closed subspace ofGan.

Proof. (i) Consider a non-Archimedean extension K/k such thaty = jx for some j ∈G(K). We have
hy= h jg−1gx, hence

Θ(gx,hy) = prK/k(h jg−1ϑ(gx)) = prK/k(h jϑ(x)g−1)

and thereforeΘ(gx,hy) = hΘ(x,y)g−1 since the projection prK/k is G(k)-equivariant.

(ii) This assertion follows immediately from the definitionof Θ.

(iii) The mapΘ(o, ·) is G(k)-equivariant by (i). Ifx andy are two points ofBe(G,k) such that
Θ(o,x) = Θ(o,y), the same equality holds after any non-Archimedean extension ofk by Lemma 2.11.
Therefore, we may assumex = go andy = ho for someg,h∈ G(k). It follows thatgϑ(o) = hϑ(o),
henceh−1g belongs to Go(k) by Proposition 2.6 (iv) andx = y. Thus the mapΘ(o, .) is injective.
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In order to establish the continuity ofΘ(o, ·), one may restrict to an apartment A(S,k) containing
o since this map is equivariant andBe(G,k) is a topological quotient of G(k)×A(S,k). We may also
assume that G is split by (ii). Then, if N denotes the normalizer of S in G and if K/k is a (huge)
non-Archimedean extension such that|K| = R>0, the group N(K) acts transitively on A(S,K) and
continuity ofΘ(o, ·) is obvious since this map is induced by

N(K)→ (G⊗k K)an, n 7→ nϑ(o).

Existence of such an extension is established by transfiniteinduction for a well-ordering onR; note
that we could restrict to non-Archimedean extensions ofk containing a given enumerable family of
extensions since sequential continuity ofΘ(o, ·) on A(S,k) is enough.

If the field k is locally compact,Be(G,k) is locally compact and the continuous bijectionΘ(o, ·)
is a homeomorphism onto a closed subset of Gan. 2

Remark 2.13. — If G is split ando is a given special point ofBe(G,k), the mapΘ(o, ·) above
coincides with the one defined by Berkovich in [Ber90, 5.4.2] starting with thek◦-Demazure group
Go. Indeed, with the notations of [loc. cit], we haveP= Go, p = o andtλ ∗P= prK/k(tGo), where K/k
is a non-Archimedean extension such thatλ takes values in|K×| andt is an element of K satisfying
λ = ψ(t).

2.4. Realizations of buildings in flag varieties

(2.4.1)With each parabolic subgroup P∈ Par(G)(k) is associated a morphismλP : G→ Par(G) de-
fined by the following condition: for anyk-scheme S, a pointg ∈ G(S) is mapped to the parabolic
subgroupλP(g) = g(P×k S)g−1 of G×k S. We recall that the image ofλP is the connected component
Part(P)(G) of Par(G) which defines the typet(P) of P, and that the morphismλP identifies the scheme
Part(P)(G) with the quotient G/P (see 1.1.3).

Lemma 2.14. — For any parabolic subgroupP∈ Par(G)(k), the map

λP◦ϑ : B(G,k)→ Par(G)an

depends only on the type t ofPand isG(k)-equivariant.

Proof. For any non-Archimedean extension K/k, the following diagram

B(G,K)
ϑ // (G⊗k K)an

��

λP⊗kK
// Par(G⊗k K)an

��
B(G,k)

OO

ϑ
// Gan

λP

// Par(G)an

is commutative by Proposition 2.8. The vertical arrows are G(k)-equivariant; we can therefore assume
that the group G is split and it suffices to check that the restriction of the mapλP◦ϑ to the set of
special points does not depend on the choice of the parabolicsubgroup P∈ Part(G)(k) and is G(k)-
equivariant.

Let o be a special point ofB(G,k) and letG denote the corresponding Demazure group scheme
over k◦ with generic fibre G. Since Par(G)(k) = Par(G )(k◦), the group P is the generic fibre of a
parabolic subgroupP of G of typet and the mapλP is induced by the mapλP : G → Part(G ). If we
let r denote the reduction maps, it follows that the diagram

Gan r //

λP

��

G ⊗k◦ k̃

λP⊗k◦ k̃
��

Par(G)an
r

// Par(G )⊗k◦ k̃
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is commutative. Since the morphismλP⊗k◦ 1̃k = λ
P⊗k◦ k̃

is dominant, the generic point ofG ⊗k◦ k̃ is

mapped to the generic point of the connected component Part(G)⊗k◦ k̃ of Par(G )⊗k◦ k̃ and therefore
λP◦ϑ(o) is the unique point in Par(G)an lying over the generic point of Part(G )⊗k◦ k̃. In particular,
this point does not depend on the choice of P∈ Part(G)(k).

For anyg ∈ G(k), we haveλP(ϑ(o)g−1) = λg−1Pg(ϑ(o)), henceλP(ϑ(o)g−1) = λP(ϑ(o)). On
the other hand, since the mapλP : Gan→ Par(G)an is G(k)-equivariant when we let G(k) act by left
translations on Gan, we getλP(gx) = gλP(x)g−1 for any pointx in Gan. We obtain therefore

(λP◦ϑ)(go) = λP(gϑ(o)g−1) = g(λP◦ϑ)(o)g−1

and this shows that the mapλP◦ϑ is G(k)-equivariant. 2

Remark 2.15. — While proving the lemma above, we have shown that(λP◦ϑ)(gx) = λP(gϑ(x))
for any elementg∈ G(k) and any pointx∈B(G,k). Sincegϑ(x) = gΘ(x,x) = Θ(x,gx), it follows
that

λP◦ϑ(gx) = λP◦Θ(x,gx).

Note that the right hand side makes it obvious that the mapλP◦ϑ is G(k)-equivariant; moreover, this
is also the definition adopted by Berkovich in [Ber90, Sect. 5.5], when G is split.

Definition 2.16. — For a k-rational type t, we denote byϑt : B(G,k) → Par(G)an the G(k)-
equivariant map defined byϑt = λP◦ϑ for anyP∈ Part(G)(k).

Proposition 2.17. — For any k-rational type t ofG and any non-Archimedean extension k′/k, the
diagram

B(G,k′)
ϑt // Par(G⊗k k′)an

p

��
B(G,k)

ϑt

//
?�

i

OO

Par(G)an

in which i denotes the canonical injection and p the canonical projection, is commutative.
Moreover, if k′ is a Galois extension of k, the upper horizontal arrow isGal(k′/k) equivariant and

the restriction of p to the Galois-fixed point set inPar(G⊗k k′)an is injective.

Proof. The first assertion follows immediately from Proposition 2.8 (ii), and from the commutativity
of the diagram

(G⊗k K)an
λP⊗kK

//

p

��

Par(G⊗k K)an

p
��

Gan
λP

// Par(G)an

for any P∈ Part(G)(k).

The second assertion follows from Galois-equivariance ofϑ andλP. The third assertion follows
from the fact that each fibre ofp is a Galois orbit. 2

(2.4.2) We still consider ak-rational typet of G. Assuming that G is split, we give an explicit
description of the mapϑt , completely similar to the one in (2.1.2).

Let P be a parabolic subgroup of G of typet and pick a maximal split torus T of G contained in P.
If we denote by Pop the parabolic subgroup of G opposite to P with respect to T, the morphism

radu(Pop)→ Par(G), g 7→ gPg−1
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(defined in terms of the functor of points) is an isomorphism onto an open subscheme of Par(G) which
we still denote byΩ(T,P) by abuse of notation.

Let Φ(G,T) be the set of roots of G with respect to T, pick a special pointo in B(G,k) and consider
the correspondingk◦-Chevalley groupG . The choice of anintegralChevalley basis in Lie(G)(k) leads
to an isomorphism of radu(Pop) with the affine space

∏
α∈Ψ

Uα ≃ ∏
α∈Ψ

A1
k,

whereΨ = Φ(radu(Pop),T) =−Φ(radu(P),T).

Proposition 2.18. — We assume that the groupG is split and we use the notation introduced above.

(i) The mapϑt sends the point o to the point ofΩ(T,P)an corresponding to the multiplicative
(semi)norm

k[(Xα)α∈Ψ]→ R>0, ∑
ν∈NΨ

aνXν 7→max
ν
|aν |.

(ii) Using the point o to identify the apartmentA(T,k) with the vector spaceV(T)= HomAb(X∗(T),R),
the mapV(T)→ Par(G)an induced byϑt associates with an element u ofV(T) the point of
Ω(P,T)an corresponding to the mutiplicative seminorm

k[(Xα)α∈Ψ]→ R>0, ∑
ν∈NΨ

aνXν 7→max
ν
|aν |∏

α∈Ψ
eν(α)〈u,α〉.

Proof. We can argue exactly as for Proposition 2.6. 2

Corollary 2.19. — For each point x ofB(G,k), the seminormϑt(x) induces an extension of the
absolute value of k to the function field ofPart(G).

This means thatϑt(x) is mapped to the generic point of Part(G) by the canonical map
ρ : Part(G)an→ Par(G) (see 1.2.2).

Proof. It suffices to prove this assertion when the group G is split.By the preceding proposition,
ϑt(x) induces a multiplicative seminorm on thek-algebra A of any big cellΩ(P,T) of Part(G) which
extends the absolute value ofk and satisfies the following condition: given anyf ∈ A, we have
| f |(ϑt(x)) = 0 if and only if f = 0. Therefore, this seminorm is a norm and extends to an absolute
value on the fraction field Quot(A) of A extending the absolute value ofk. Finally, sinceΩ(P,T) is
an affine open subset of the integral scheme Part(G), the field Quot(A) is nothing but the function
field of Part(G). 2

(2.4.3)The mapϑt can be defined more generally for a typet which is notk-rational, i.e., corresponds
to a connected component Part(G) of Par(G) such that Part(G)(k) = ∅. The most important case is
the typet =∅ of Borel subgroups for a group G which is not quasi-split.

Consider a finite Galois extensionk′/k splitting G, setΓ = Gal(k′|k) and pick a typet ′ of G⊗k k′

overt, i.e., a connected component Part ′(G⊗k k′) of Par(G⊗k k′) = Par(G)⊗k k′ lying over Part(G).
Letting prk′/k denote the canonical projection Part ′(G⊗k k′)an→ Par(G)an, the map prk′/k ◦ϑt ′ does
not depend on the choice oft ′ sinceΓ acts transitively on the types of G⊗k k′ lying overt and we set
ϑt = prk′/k ◦ϑt ′ .

One easily checks that proposition 2.17 holds in this more general situation.
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3. COMPACTIFICATIONS OF BUILDINGS

In this section we define, for a given reductive group G over a complete non-Archimedean fieldk,
the Berkovich compactifications of the Bruhat-Tits building B(G,k). If k is a local field, these com-
pactifications are defined by considering the mapsϑt : B(G,k)→ Part(G)an defined in the previous
section (2.4) and taking closures of their images; in general, we have first to restrict to apartments. In
any case, restricting the mapϑt to an apartment is the key point in order to obtain an injectivity crite-
rion for ϑt and to analyse the corresponding compactification ofB(G,k). The latter space is described
in terms of multiplicative seminorms on the coordinate ringof big cells of Part(G) (Proposition 2.18
and proof of Proposition 3.32).

All types t of parabolic subgroups considered in this section arek-rational, i.e., correspond to a
connected component Part(G) of Par(G) having ak-point; equivalently,t corresponds to a conjugacy
class of parabolic subgroups of G. A similar construction can be made for any typet, maybe non-
rational, since we have a well-defined mapϑt : B(G,k)→ Paran

t , but it will be shown in Appendix C
that there is nothing to be gained since the corresponding compactification ofB(G,k) already occurs
among compactifications associated withk-rational types.

Given ak-rational typet of parabolic subgroups of G, we begin by introducing a class of parabolic
subgroups of G, which we callt-relevantand which will later be useful to describe (the boundary
components of) the compactification of typet of B(G,k) (see 3.2).

3.1. Reminder on quasisimple factors, and a warning

Let k be a field and G a connected semisimplek-group. There exist a unique (finite) family(Gi)i∈I

of pairwise commuting smooth, normal and connected closed subgroups of G, each of them quasi-
simple, such that the product morphism

∏
i∈I

Gi→G

is a central isogeny. The Gi ’s are thequasi-simple componentsof G. More generally, the quasi-simple
components of a reductivek-group are the quasi-simple components of its derived subgroup.

The isogeny∏i∈I Gi→G induces an isomorphism of buildings

∏
i∈I

B(Gi,k) = B
(
∏
i∈I

Gi,k
) ∼ // B(G,k)

and ak-isomorphism

∏
i∈I

Par(Gi) = Par
(
∏
i∈I

Gi
)

// Par(G).

For eachk-rational typet of G, therestrictionof t to the quasi-simple component Gi is by definition
the typeti of its parabolic subgroup P∩Gi, where P is any element of Part(G)(k). When no confusion
seems likely to arise, we writet instead ofti .

We say that the restriction oft to Gi is trivial if ti is the type of the maximal parabolic subgroup Gi,
i.e., if any P∈Part(G)(k) contains the full component Gi. A k-rational typet of G isnon-degenerateif
its restriction to each isotropic quasi-simple component of G is non-trivial, i.e., if any P∈ Part(G)(k)
induces a proper parabolic subgroup on each isotropic quasi-simple component of G.

Definition 3.1. — For any k-rational type t, we letBt(G,k) denote the factor ofB(G,k) obtained
by removing from the building each quasi-simple component on which the restriction of t is trivial:

Bt(G,k) = ∏
i ∈ I

ti is non-trivial

B(Gi,k).
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One word of caution about the notationBt(G,k) and Bt(G,k) to be introduced in this section:
the first one denotes the factor building ofB(G,k) associated with the k-rational type t, the second
a compactification ofBt(G,k) which still depends on t; for example, if t and t′ are distinct non-
degenerate k-rational types of G, thenBt(G,k) = Bt ′(G,k) = B(G,k) butBt(G,k) 6= Bt ′(G,k).

3.2. Relevant parabolic subgroups

Reminder ([SGA3], Exposé XXVI, Définition 4.4.2)— Let S be a scheme and let G be a reductive S-
group scheme. Two parabolic subgroups of G, say P and Q, are called osculatoryif P∩Q is a parabolic
subgroup of G. This is equivalent to the following requirement: locally for the étale topology on S,
there exists a Borel subgroup of G simultaneously containedin P and Q.

(3.2.1)Let k be a field and G a reductivek-group. We consider ak-rational typet of G and attach with
each parabolic subgroup of G a closed subscheme of Part(G).

Proposition 3.2. — For any parabolic subgroupQ of G, the functor

(Sch/k)op→ Sets, S 7→ {P∈ Part(G)(S); P andQ×k Sare osculatory}

is representable by a closed subschemeOsct(Q) of Par(G), theosculatory subvarietyof Q in Part(G).
This scheme is homogeneous underQ and the morphismεP : Osct(Q)→ Par(Q), defined functor-
theoretically by

Osct(Q)(S)→ Par(Q)(S), P 7→ P∩Q,

is an isomorphism onto a connected component ofPar(Q).

Proof. Pick a parabolic subgroup Q of G and first note that there exists a parabolic subgroup of G
of type t osculatory with Q. Indeed, given any parabolic subgroup P ofG of typet, Q and P contain
minimal parabolic subgroups Q1 and P1 respectively; since any two minimal parabolic subgroups
of G are conjugate in G(k) [SGA3, Exposé XXVI, Corollaire 5.7], there existsg ∈ G(k) such that
Q1 = gP1g−1 and thereforegPg−1 is a parabolic subgroup of typet osculatory with Q.

Now we consider a parabolic subgroup P of G of typet osculatory with Q. For anyk-scheme
S and any parabolic subgroup P′ ∈ Part(G)(S) osculatory with Q×k S, the pairs(P′,Q×k S) and
(P×k S,Q×k S) are conjugate étale locally over S [SGA3, Exposé XXVI, Corollaire 4.4.3]: there
exist a covering étale morphism S′→ S and an elementg∈G(S′) such that P′×SS′ = g(P×k S′)g−1

and Q×k S′ = g(Q×k S′)g−1. The last condition amounts tog ∈ Q(S′) since Q= NormG(Q). Set
S′′ = S′×SS′ and letp1, p2 : S′′→ S′ denote the two canonical projections. The elementsg1 = g◦ p1

andg2 = g◦ p2 of Q(S′′) satisfy

g1(P×k S′′)g−1
1 = p∗1

(
g(P×k S′)g−1) = p∗1(P

′×SS′)

= P′×SS′′

= p∗2(P
′×SS′′) = p∗2

(
g(P×k S′)g−1)= g2(P×k S′′)g−1

2 ,

henceg−1
2 g1 ∈ P(S′′) since P= NormG(P). In other words, the elementg of Q(S′) defines a sec-

tion of the quotient sheaf Q/P∩Q over S and we have thus proved that the natural morphism
Q→ Part(G),g 7→ gPg−1 induces an isomorphism between the quotient sheaf Q/Q∩P and the sub-
functor of Part(G) consisting of parabolic subgroups of typet of G osculatory with Q.

Finally, since(P∩Q)/rad(Q) is a parabolic subgroup of Q/rad(Q), the quotient sheaf

Q/P∩Q≃ (Q/rad(Q))/(P∩Q/rad(Q))

is representable by a smooth and projectivek-scheme, canonically isomorphic to the connected com-
ponent of Par(Q) = Par(Q/rad(Q)) containing P∩Q. We conclude that the same assertion holds for
the functor of parabolic subgroups of G of typet osculatory with Q. 2
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Remark 3.3. — For any parabolic subgroup Q of G and any elementg of G(k), thek-automorphism
int(g) of Par(G) maps Osct(Q) onto Osct(gQg−1). Indeed, given ak-scheme S and a parabolic
subgroup P∈ Par(G)(S) of G×k S osculatory with Q×k S, gPg−1∩ (gQg−1×k S) = g(P∩ (Q×k

S))g−1 is a parabolic subgroup of G×k S, hencegPg−1 is osculatory withgQg−1.

Notation — Given ak-rational typet of G and a parabolic subgroup Q of G, we still let the let-
ter t denote the type of thek-reductive group Qss = Q/rad(Q) defined by the parabolic subgroup
(P ∩ Q)/rad(Q), where P is any element of Part(G)(k) osculatory with Q. Equivalently, the canon-
ical morphismεP : Osct(Q)→ Par(Q) = Par(Qss) is an isomorphism onto the connected component
Part(Qss) of Par(Qss).

Recall that, if G a reductive group, S is a split maximal torusand P is a parabolic subgroup contain-
ing S, then Pop denotes the parabolic subgroup of G opposite to P with respect to CentG(S) and the
morphism radu(Pop) → Par(G), functor-theoretically defined byg 7→ gPg−1, is an open immersion
whose imageΩ(S,P) is thebig cell of (S,P) in Par(G). Next proposition gives explicit equations
defining an osculatory subvarieties in a big cell.

Proposition 3.4. — Let P andQ be two osculatory parabolic subgroups ofG containing a maximal
split torusS and let t denote the type ofP. We letQ denote the reductive k-groupQ/radu(Q), S the
maximal split torus inQ induced bySand we setP= P∩Q/radu(Q).

(i) The canonical isomorphismOsct(Q)→̃Part(Q) identifies the open subschemeOsct(Q)∩Ω(S,P)
of Osct(Q) and the big cellΩ(S,P) of (S,P) in Part(Q).

(ii) Let Ψ = Φ(radu(Pop),S) denote the set of roots ofradu(Pop) with respect toS and fix a total
order onΨ. The preimage of the closed subschemeOsct(Q) of Part(G) under the immersion

j : ∏
α∈Ψ

Uα ≃ radu(Pop) →֒ Part(G)

is the closed subscheme defined by the equations uα = 1, whereα runs over the complement of
Φ(Q,S) in Ψ.

Proof. We first prove the second assertion.

(ii) Let Z be the closed subscheme of∏α∈Ψ Uα defined by the equationsuα = 1, α runing over the
complement ofΦ(Q,S) in Ψ.

Both Z andj−1Osct(Q) are integral (i.e., reduced and irreducible) closed subschemes of∏α∈Ψ Uα :
this is obvious for Z since Uα is a smooth and geometrically irreduciblek-scheme for any rootα ; for
j−1Osct(Q), this follows from the fact that this scheme is isomorphic toa non-empty open subscheme
of the integralk-scheme Osct(Q)≃ Part(Q). The canonical morphism∏α∈Ψ Uα →G maps Z into Q,
hence Z⊂ j−1Osct(Q); since these two closed subschemes of∏α∈Ψ Uα are integral, we are reduced
to checking that they have the same dimension.

Let L denote the Levi subgroup of Q containing T and write

Φ(Q,S) = Φ(L,S)∪Φ(radu(Q),S).

Since the parabolic subgroups P and Q are osculatory, radu(Pop)∩ radu(Q) = {1} and thus

Φ(Q,S)∩Ψ = Φ(Q,S)∩Φ(radu(Pop),S)

= Φ(L,S)∩Φ(radu(Pop),S) = Φ(L,S)∩Ψ.

It follows that the canonical projection

∏
α∈Ψ

Uα → ∏
α∈Φ(L,S)∩Ψ

Uα

restricts to an isomorphism between Z and∏α∈Φ(L,S)∩Ψ Uα . The subgroup L∩P of L is parabolic and
the set−(Φ(L,S)∩Ψ) consists of roots of its unipotent radical with respect to S;since the morphism
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f : L→Q induced by the canonical projection Q→Q= Q/radu(Q) is an isomorphism of reductivek-
groups, we deduce thatf leads to an isomorphism between∏α∈Φ(L,S)∩Ψ Uα and the unipotent radical

of P
op

. The conclusion is now obvious: since radu(P
op

) is isomorphic to an open dense subset of the
irreduciblek-scheme Part(G), we have

dimZ = dimradu(P
op

)

= dimPart(Q) = dimOsct(Q)

and therefore Z= j−1Osct(Q). This proves (ii).

(i) We have just proved that the canonical isomorphism radu(Pop)→̃Ω(S,P) identifies the closed
subschemes Osct(Q)∩Ω(S,P) and radu(Pop)∩ L = radu((P∩L)op). The canonical isomorphism

L
∼ // Q thus leads to a commutative diagram

radu(P
op

) oo ∼

� _

��

radu(Pop)∩L
� _

��

∼

((QQQQQQQQQQQQQ

Part(Q) oo ∼ Osct(Q) Osct(Q)∩Ω(S,P)? _oo

and we deduce that the isomorphism Osct(Q)→̃Part(Q) identifies the open subscheme Osct(Q) ∩ Ω(S,P)
with the big cellΩ(S,P). 2

Example 3.5. — Let V be ak-vector space of dimensiond+1 (d ∈ N) and consider the semisimple
k-group G= SL(V). The types of G are in one-to-one correspondence with the types of flags of
linear subspaces of V and we letδ denote the type corresponding to the flags({0} ⊂ H⊂ V) with
dim(H) = d.

Recall that thek-schemeP(V) represents the functor

(Sch/k)op→ Sets, S 7→ {isomorphism classes of invertible quotients of V⊗k S}

≃ {OS−submodules of V⊗k S, locally direct summands of rankd} .

There exists a uniquek-isomorphismλ : P(V)→ Parδ (G) such that, for anyk-scheme S, the map
λ (S) : P(V,S)→ Parδ (G)(S) sends anOS-submodule of V⊗k S, locally a direct summand of rankd,
to the parabolic subgroup of G×k S stabilizing it.

For two flags F, F′ of linear subspaces in V, the condition that their stabilizers are osculatory
amounts to requiring that there exists a complete flag containing both F and F′.

Let us now consider a parabolic subgroup Q of G, which is the stabilizer of a flag

{0} = V0 V1 . . . Vr  Vr+1 = V.

A parabolic subgroup P∈ Parδ (G)(k), corresponding to a flag({0} ⊂ H ⊂ V) with dim(H) = d, is
osculatory with Q if and only if the hyperplane H contains thelinear subspace Vr and, since this holds
more generally for anyk-scheme S and any P∈ Parδ (G)(S), the isomorphismλ : P(V)→̃Parδ (G)
identifies the closed subscheme Oscδ (Q) of Parδ (G) with the projective subspaceP(V/Vr) of P(V).

(3.2.2)The example above clearly shows that two different parabolic subgroups Q, Q′ of G may define
the same closed subscheme Osct(Q) = Osct(Q′) in Part(G). It turns out that there is a distinguished
parabolic subgroup attached with each osculatory subvariety in Part(G).

Proposition 3.6. — Let t denote a k-rational type ofG. For any parabolic subgroupQ of G, the set
of parabolic subgroupsQ′ of G satisfying

Osct(Q) = Osct(Q
′)
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has a maximal element.

Proof. First note that the group functor

(Sch/k)op→ Sets, S 7→ StabG(S)(Osct(Q×k S))

is representable by a closed subscheme of G. Indeed, the group G acts naturally on the Hilbert scheme
H of the projectivek-scheme Part(G) and, for anyk-scheme S, the stabilizer of Osct(Q)×k S in
G(S) is exactly the subgroup of G(S) fixing the pointx∈H (k)⊂H (S) defined by Osct(Q)×k S. It
follows that our functor is represented by the fibre of the morphism G→H , g 7→ gx, over the point
x. We letΠ denote the subgroup of G thus defined.

Since the subgroup Q stabilizes Osct(Q), the inclusion Q⊂Π is obvious.
Pick a finite Galois extensionk′/k splitting G and let us consider a purely inseparable extension

k′′/k′ such that the reducedk′′-scheme P′′ = (Π⊗k k′′)red underlyingΠ⊗k k′′ is a smoothk′′-group.
Since Q is smooth, Q⊗k k′′ is reduced and therefore the closed immersion Q⊗k k′′ →֒Π⊗k k′′ factors
through P′′ →֒ Π⊗k k′′. This proves that the smoothk′′-group P′′ is a parabolic subgroup of G⊗k k′′

containing Q⊗k k′′.
Since thek′-group G⊗kk′ is split, there exists a parabolic subgroup P′ of G⊗kk′ containing Q⊗kk′

such that P′′ = P′⊗k′ k′′. Thanks to faithfully flat descent, the closed immersion P′⊗k k′′ = P′′ →֒
Π⊗k k′′ comes from a closed immersion P′ →֒ Π⊗k k′ and P′ is therefore the greatest parabolic
subgroup of G⊗k k′ containing Q⊗k k′ and contained inΠ⊗k k′. It follows immediately from this
description of P′ that thisk′-group descends to a parabolick-group P of G containing Q and contained
in Π.

The identity

Osct(P) = Osct(Q)

is a direct consequence of the inclusions Q⊂ P⊂ Π, for the first one implies Osct(Q) ⊂ Osct(P)
whereas the second gives Osct(P)⊂Osct(Q) by the very definition ofΠ. Therefore, P is the maximal
element of the set {

Q′ ∈ Par(G)(k) ; Osct(Q
′) = Osct(Q)

}
.

2

Definition 3.7. — Let t denote a k-rational type ofG. A parabolic subgroupQ of G is said to be
t-relevantif it coincides with the maximal element of the set

{
Q′ ∈ Par(G)(k) ; Osct(Q

′) = Osct(Q)
}

.

It follows from the proof of Proposition 3.6 that this condition amounts to requiring that Q is the
maximal parabolic subgroup of G stabilizing Osct(Q).

Remark 3.8. — Each parabolic subgroup Q of G is contained in a unique minimal t-relevant
parabolic subgroup, namely the maximal parabolic subgroupstabilizing Osct(Q).

Example 3.9. — (i) Let us focus again on the example above: V is a finite dimensionalk-vector
space, G= SL(V) andt = δ is the type of flags({0} ⊂ H⊂ V) with codim(H) = 1. In this situation,
theδ -relevant parabolic subgroups of G are the stabilizers of flags({0} ⊂W⊂ V) (we allow W= {0}
or W = V).

(ii) If the group G is quasi-split andt = ∅ is the type of Borel subgroups, then each parabolic
subgroup of G is∅-relevant. Indeed, for all parabolic subgroups P, Q of G with Q P, there exists
a Borel subgroup of G contained in P but not in Q, hence Osc∅(Q) 6= Osc∅(P) and therefore Q is the
maximal parabolic subgroup of G stabilizing Osc∅(Q).
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Remark 3.10. — Let t denote ak-rational type of G and consider a parabolic subgroup Q of G. If
Q is t-relevant, then for any extensionk′/k the parabolic subgroup Q⊗k k′ of G⊗k k′ is t-relevant.
Indeed, if P′ denotes thet-relevant parabolic subgroup of G⊗k k′ stabilizing Osct(Q⊗k k′) and Π
the subgroup of G stabilizing Osct(Q), thenΠ⊗k k′ is the stabilizer of Osct(Q⊗k k′) in G⊗k k′ for
Osct(Q⊗k k′) = Osct(Q)⊗k k′. As shown in the proof of Proposition 3.6, Q is the maximal parabolic
subgroup of G contained inΠ and Q⊗k k′′ = (Π⊗k k′′)red for a convenient extensionk′′/k′, hence
P′⊗k′ k′′ = Q⊗k k′′ and therefore P′ = Q⊗k k′.

(3.2.3)We give in section 3.3 a description oft-relevant parabolic subgroups of the semisimplek-
group G in terms of its Dynkin diagram. As an immediate consequence, we will see that, if Q is a
parabolic subgroup of G and Q′ is the smallestt-relevant parabolic subgroup of G containing Q, then
the semisimple group Q/rad(Q) is isogeneous to a quotient of the semisimple group Q′/rad(Q′).

3.3. Fans and roots

We consider again in this paragraph an arbitrary fieldk and a semisimplek-group G. The basic
notions on fans and their associated compactifications are collected in appendix B.

(3.3.1)Let S be a maximal split torus of G with character group X∗(S) = Homk−Gr (S,Gm,k) and let
Φ = Φ(G,S) denote the set of roots of G with respect to S. Since it is more convenient to adopt
multiplicative notation in order to compactify affine spaces, we let

Λ(S) = HomAb(X∗(S),R>0)

denote the multiplicative dual of X∗(S). Each characterχ ∈ X∗(S) defines a positive real function on
Λ(S).

For any parabolic subgroup P of G containing S, the setΦ(P,S) of roots of P with respect to S is
the subset ofΦ(G,S) consisting of all rootsα such that P contains the root group Uα .

We first recall that the set of parabolic subgroups of G containing S has a nice description in terms
of cones inΛ(S) (Coxeter complex).

Proposition 3.11. — LetPbe a parabolic subgroup ofG containingS.

(i) The subsetC(P) of Λ(S), defined by the conditionα 6 1 for all α ∈Φ(Pop,S) =−Φ(P,S), is a
strictly convex polyhedral cone.

(ii) The coneC(P) spansΛ(S) if and only ifP is minimal.
(iii) The faces of the coneC(P) are the conesC(Q), whereQ runs over the set of parabolic subgroups

of G containingP.
(iv) For any parabolic subgroupQ of G containingS, C(P)∩C(Q) is the cone associated with the

smallest parabolic subgroup ofG containing bothPandQ. Moreover, whenQ runs over the set
of parabolic subgroups ofG containingS, the conesC(Q) are pairwise distinct and they cover
Λ(S).

Proof. All the assertions above are well-known and follow immediately from the fact that the map
P 7→ Φ(P,S) sets up an increasing one-to-one correspondence between parabolic subgroups of G
containing S and closed and generating subsets ofΦ, i.e., subsetsΨ of Φ satisfying the following two
conditions:

– for all α , β ∈Ψ, α + β ∈Φ =⇒ α + β ∈Ψ;
– for anyα ∈Φ(G,S), eitherα or−α belongs toΨ.

(See [SGA3, Exposé XXVI, Proposition 7.7]). The first condition amounts toΨ = 〈Ψ〉+ ∩Φ, where
〈Ψ〉+ denotes the semigroup spanned byΨ in X∗(S), whereas the second one implies thatΦ andΨ
span the same subgroup of X∗(S). 2
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Remark 3.12. — Given a parabolic subgroup P of G containing S, we have

Φ(P,S) = Φ(LP,S)⊔Φ(radu(P),S),

where LP is the Levi subgroup of P containing CentG(S). The setΦ(LP,S) consists precisely of
rootsα ∈Φ(G,S) such that bothα and−α belong toΦ(P,S); geometrically, this characterization is
equivalent to

Φ(LP,S) = {α ∈Φ(P,S) | α|C(P) = 1}.

If P is a minimal parabolic subgroup of G containing S, the interior of the coneC(P) is usually
referred to as theWeyl chamberof P in Λ(S). This motivates the following definition.

Definition 3.13. — TheWeyl fanon the vector spaceΛ(S) is the fan consisting of the conesC(P),
whereP∈ Par(G)(k) andS⊂ P.

Now we consider ak-rational typet of G and associate with it a new family of polyhedral cones in
Λ(S). The cones of higher dimension are roughly speaking the "combinatorial neighborhoods" of all
Weyl conesC(P) with P∈ Part(G)(k) and S⊂ P.

Definition 3.14. — For any parabolic subgroupPof Gof type t which containsS, we letCt(P) denote
the union of all conesC(Q) associated with the parabolic subgroupsQ of G satisfyingS⊂Q⊂ P:

Ct(P) =
⋃

Q∈ Par(G)(k)
S⊂Q⊂ P

C(Q).

Note that is suffices to considerminimalparabolic subgroups P0 satisfying S⊂P0⊂ P in the above
definition.

In order to analyze this definition, we recall that with anyk-rational typet of G are associated
two normal and semisimple subgroups G′ and G′′ of G, uniquely characterized by the following
conditions:

– the canonical morphism G′×G′′→G is a central isogeny;
– the restriction oft to G′ (to G′′, respectively) is non-trivial on any quasi-simple component of

G′ (is trivial, respectively).

The subgroup G′ (G′′, respectively) is simply the product of quasi-simple components of G to which
the restriction oft is non-trivial (is trivial, respectively).

The groups S′ = (S∩G′)◦ and S′′ = (S∩G′′)◦ are maximal split tori in G′ and G′′ respectively and
S= S′S′′. The isogeny S′×S′′→ S induces an injective homomorphism X∗(S)→ X∗(S′)⊕X∗(S′′)

whose image has finite index, hence a canonical isomorphismΛ(S′)⊕Λ(S′′) ∼ // Λ(S). Finally,

the setΦ = Φ(G,S) is the union of the two disjoint subsets

Σ′ = {α ∈Φ | α|S′′ = 1} and Σ′′ = {α ∈Φ | α|S′′ = 1}

and the canonical projection X∗(S)→ X∗(S′), α 7→ α|S′ (X∗(S)→ X∗(S′′), α 7→ α|S′′ , respectively)
induces a bijection betweenΣ′ andΦ′ = Φ′(G,S′) (betweenΣ′′ andΦ′′ = Φ(G′′,S′′), respectively).

Lemma 3.15. — LetP be a parabolic subgroup ofG of type t containingS.

(i) The subsetCt(P) of Λ(S) is the convex polyhedral cone{α 6 1 ; α ∈Φ(radu(Pop),S)}.
(ii) The maximal linear subspace contained inCt(P) is Λ(S′′).

(iii) For any parabolic subgroupP′ of G of type t containingS, the conesCt(P) andCt(P′) intersect
along a common face.
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Proof. Each parabolic subgroup considered in what follows contains the maximal split torus S.

(i) Note thatΦ(radu(Pop),S) =−Φ(radu(P),S) is precisely the subset ofΦ(Pop,S) consisting of all
rootsα such that−α /∈Φ(Pop,S). We set C= {α 6 1 ; α ∈Φ(radu(Pop),S)} and consider a minimal
parabolic subgroup P0. If P0⊂P, thenΦ(Pop

0 ,S)⊂Φ(Pop,S) andΦ(radu(Pop),S)⊂Φ(radu(Pop
0 ,S) =

Φ(Pop
0 ,S), henceC(P0)⊂ C and therefore Ct(P)⊂C.

If P0 * P, thenΦ(Pop
0 ,S) * Φ(Pop,S) and thus there exists a rootα ∈ Φ(Pop

0 ,S) such thatα /∈
Φ(Pop,S) and−α ∈Φ(Pop,S). Sinceα < 1 on the interiorC(P0)

◦ of C(P0), it follows thatC(P0)
◦ is

disjoint from C and thus ⋃

P0 minimal
P0 * P

C(P0)⊂ Λ(S)−C◦.

We remark that the left hand side is exactly the complement ofthe interior of Ct(P), so that C◦ ⊂
Ct(P)◦ and C⊂ Ct(P). We have thus proved

Ct(P) = {α 6 1 ; α ∈Φ(radu(Pop),S)}.

(ii) We use the notation introduced before stating the proposition. We can writeΦ(P,S) = Ψ′∪Σ′′,
whereΨ′ is the closed and generating subset ofΣ′ whose image under the bijectionΣ′ ∼ // Φ′
is the setΦ(P′,S′) of roots of the parabolic subgroup P′ = P∩G′ of G′ with respect to S′. Since
α|Λ(S′′) = 1 for each rootα ∈ Σ′, the cone

Ct(P) = {α 6 1 ; α ∈Φ(radu(Pop),S)}= {α 6 1 ; α ∈ (−Ψ′) andα /∈Ψ′}

contains the linear subspaceΛ(S′′) and it is enough to check that the cone ofΛ(S′) defined by the
conditions: α 6 1 for all α ∈ Φ(radu(P′op),S′), is strictly convex. Thus we are reduced to proving
that, if thek-rational typet is non-degenerate, then the cone Ct(P) is strictly convex.

Let us assume that the cone Ct(P) is not strictly convex and let L denote the maximal linear sub-
space ofΛ(S) it contains. We let W denote the Weyl group of the root systemΦ. The subgroup WP of
W stabilizing the coneC(P) acts simply transitively on the set of conesC(P0), where P0 is a minimal
parabolic subgroup contained in P. This subgroup stabilizes Ct(P), hence the linear subspace L by
maximality.

Pick a minimal parabolic subgroup P0 contained in P and denote by∆ ⊂ Φ the corresponding set
of simple roots. We also equip X∗(S) andΛ(S) with a W-invariant scalar product.

By (i), we haveα|L = 1 for each rootα ∈∆∩Φ(radu(Pop),S), i.e., each rootα ∈∆ whose restriction
to C(P) is not identically equal to 1. Since∆ spans a subgroup of finite index in X∗(S), the set
Γ = {α ∈ ∆ | α|L 6= 1} is non-empty as L6= {1}. Pick a rootβ in Γ. Sinceβ|L 6= 1, β|C(P) = 1 and
thus the orthogonal reflectionwβ with respect to the hyperplane{β = 1} belongs to WP. For any root
α in ∆−Γ, α|L = 1 hence

wβ (α)|L = wβ (α)|wβ (L) = α|L = 1

and therefore(α |β ) = 0 sincewβ (α) = α−2(α |β)
(β |β) β .

We have just proved thatΓ and∆−Γ are orthogonal, which implies thatΓ contains a connected
component of the Dynkin diagram ofΦ. Since moreoverΓ is contained in the subsetΦ(LP,S)∩∆ =
{α ∈ ∆ | α|C(P) = 1} of ∆ associated with the parabolic subgroup P, the latter contains therefore an
quasi-simple component of G and thus the typet = t(P) is trivial on this component.

(iii) Let us consider two distinct parabolic subgroups P andP′ of typet. The cones Ct(P) and Ct(P′)
have disjoint interiors, hence their intersection is contained in a proper face of each by convexity.
Let F and F′ denote the minimal faces of Ct(P) and Ct(P′) containing Ct(P)∩Ct(P′). We have
Ct(P)∩Ct(P′) = F∩F′ and this cone meets the interior of both F and F′ by minimality.

Assume F* F′, hence F◦ * F′. Since F◦ ∩F′◦ 6= ∅, it follows that F◦ meets∂F′ and thus there
exists a Weyl coneC whose interior meets both F◦ and∂F′. We haveC ⊂ F′ andC ⊂ ∂F′ for both
F and F′ are a union of Weyl cones. Let P0 and P′0 be two minimal parabolic subgroups satisfying
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S⊂ P0 ⊂ P and S⊂ P′0 ⊂ P′, and such thatC is a common face ofC(P0) andC(P′0). There exists a
unique elementw in the Weyl group such thatC(P′0) = wC(P0). By construction, the conewF is a
face of Ct(P′) whose interior meetsC, hence the smallest face of Ct(P′) containingC; sinceC⊂ ∂F′,
we deducewF⊂ ∂F′ and therefore dim(F′) > dim(F).

It is now easy to conclude. If F6= F′, then one of the following three situations occurs:

a) F* F′ and F′ * F;
b) F⊂ F′ and F′ * F;
c) F′ ⊂ F and F* F′.

In each case, the discussion above leads to a contradiction:

a) we obtain dim(F′) > dim(F) and dim(F) > dim(F′);
b) we obtain F⊂ F′ and dim(F) > dim(F′);
c) we obtain F′ ⊂ F and dim(F′) > dim(F).

Therefore, F= F′ and the cones Ct(P) and Ct(P′) do intersect along a common face. 2

Remark 3.16. — It follows from assertions (i) and (ii) above that P induces a non-trivial parabolic
subgroup of each isotropic quasi-simple factor of G if and only if the cone Ct(P) = {α 6 1 ; α ∈
Φ(radu(Pop),S)} is strictly convex, hence if and only ifΦ(radu(P),S) = −Φ(radu(Pop),S) spans
X∗(S)⊗ZQ.

When P runs over the set of parabolic subgroups of G of typet containing S, the family of faces
of the cones Ct(P) fulfills all requirements defining a fan except possibly strict convexity. In fact,
assertion (ii) of Lemma 3.15 shows that this family is the preimage of a fan onΛ(S′) under the
canonical projectionΛ(S)→ Λ(S)/Λ(S′′)≃ Λ(S′).

Definition 3.17. — For any k-rational type t, the prefanFt of type t onΛ(S) is the collection of all
faces of the conesCt(P), whereP runs over the setPart(G)(k).

All the cones which occur in the prefanFt can be described in terms of parabolic subgroups. Note
that, for every parabolic subgroup Q of G containing S, the set

{C∈Ft | C(Q)⊂ C}

is non-empty — indeed,C(Q) ⊂ C(Q′) ⊂ Ct(P) if Q′ is a minimal parabolic subgroup containing Q
and P is the unique element of Part(G)(k) containing Q′ — and is stable under intersection by Lemma
3.15, (iii). Hence the following definition makes sense.

Definition 3.18. — Given any parabolic subgroupQ of G containingS, we letCt(Q) denote the
smallest cone inFt containingC(Q).

Remark 3.19. — 1. This definition coincides with Definition 3.14 if Q is of typet.
2. For any parabolic subgroup Q of G containing S and any cone Cin Ft , with C(Q) ⊂ C, the

following conditions are equivalent:

– Ct(Q) = C;
– C(Q) meets the interior of C.

In particular, since each cone C∈ Ft is the union of Weyl cones of parabolic subgroups of G
containing S, we see immediately that C= Ct(Q) for a convenient Q: indeed, we just have to choose
Q such that the coneC(Q) meets the interior of C.

2. If t is the type of a minimal parabolic subgroup, Ct(Q) = C(Q) for any parabolic subgroup Q of
G containing S andFt is therefore nothing but the Weyl fan onΛ(S).

(3.3.2)For anyk-rational typet, we now relate the cones Ct(P) to t-relevant parabolic subgroups.



38

Throughout this paragraph, S is a maximal split torus of G andwe letΦ = Φ(G,S) denote the set
of roots of G with respect to S. For any parabolic subgroup P ofG containing S, we denote by LP the
Levi subgroup of P containing CentG(P). The setΦ(P,S) of roots of P with respect to S is the disjoint
union of the subsetsΦ(LP,S) andΦ(radu(P),S).

The following proposition relates the combinatorial construction of 3.2.1 and the geometric view-
point of 3.2. Moreover, it gives an explicit description of the cones inFt .

Proposition 3.20. — Let P andQ be two parabolic subgroups ofG containingS and assume thatP
is of type t.

(i) P andQ are osculatory if and only ifCt(Q)⊂ Ct(P).
(ii) The coneCt(P) is defined by the inequalitiesα 6 1, α ∈Φ(radu(Pop),S).

(iii) If P andQ are osculatory,Ct(Q) is the polyhedral cone defined by the conditions
{

α 6 1, α ∈Φ(radu(Pop),S)
α = 1, α ∈Φ(radu(Pop),S)∩Φ(LQ,S).

Proof. (i) The inclusions Ct(Q) ⊂ Ct(P) andC(Q) ⊂ Ct(P) are equivalent and the latter amounts to
the existence of a minimal parabolic subgroup P0 of G containing S such thatC(P0) contains both
C(P) andC(Q), i.e., such that P0 is simultaneously contained in P and Q. Thus Ct(Q)⊂ Ct(P) if and
only if the parabolic subgroups P and Q are osculatory.

(ii) This assertion was proved in Lemma 3.15, (i).

(iii) We assume that the parabolic subgroups P and Q are osculatory and let F denote the face of
the cone Ct(P) defined by the equationsα = 1 for all α ∈ Φ(radu(Pop),S)∩Φ(LQ,S). Since the
conditionsα ∈ Φ(LQ,S) andα|C(Q) = 1 are equivalent for any rootα ∈ Φ, F is clearly the smallest
face of Ct(P) containingC(Q), and thus F= Ct(Q). 2

Example 3.21. — Let d > 1 be an integer and G the semisimplek-group SL(d+1). We consider the
typeδ corresponding to flags

(
{0} ⊂ H⊂ kd+1

)
, where H is a hyperplane inkd+1.

Let T denote the torus of diagonal matrices and B the Borel subgroup of G consisting of upper
triangular matrices. Ifχ1, . . . ,χd+1 are the characters of T defined byχi (diag(t1, . . . , td+1)) = ti,
1 6 i 6 d+1, the set of roots isΦ(SL(d+1),T) = {χi− χ j : i 6= j}.

The simple roots associated with B areαi = χi− χi+1, where 16 i 6 d.
Let N be the normalizer of T in SL(d+1). Then the Weyl group N(k)/T(k) can be identified with

the symmetric groupSd+1.
The parabolic subgroup P of G of typeδ containing B consists of upper triangular block matrices

with a (d)× (d) block in the top left hand corner and a(1)× (1) block in the bottom right hand
corner. By definition, Cδ (P) is the union of all Weyl conesC(B′), where B′ is a Borel subgroup with
T⊂ B′ ⊂ P. Any Borel group B′ containing T is of the formnBn−1 for somen∈N(k). It is contained
in P if and only ifn is contained in P(k), which is equivalent to the fact that the permutationσ ∈Sd+1

induced byn fixesd+1. Since

C(B) = {χi+1− χi 6 1 : i = 1, . . . ,d}

we deduce
Cδ (P) = {χd+1− χi 6 1 : i = 1, . . . ,d}.

Note thatΦ(radu(Pop),T) = {χd+1−χi : i = 1, . . . ,d}, so that we recover the description from Propo-
sition 3.20, (ii).

If Q is a δ -relevant parabolic containing B, it consists of upper triangular block matrices with a
(r)× (r) block in the top left hand corner and a(d + 1− r)× (d+ 1− r) block in the bottom right
corner for somer ≥ 1, cf. Example 3.9. Hence we find

Φ(LQ,T) = {χi − χ j ; i 6= j andi, j ≤ r}∪{χi − χ j ; i 6= j andi, j > r}
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and
C(Q) = {χr+1− χr 6 1 andχi+1− χi = 1 for all i ≤ r−1 and alli ≥ r +1}.

The face of Cδ (P) containingC(Q) is

Cδ (Q) = {χd+1− χi ≤ 1 for all i ≤ r andχd+1− χi = 1 for all i ≥ r +1}.

We go a little further and establish a characterization oft-relevant parabolic subgroups in terms of
the Dynkin diagram of G. This will allow us to compare in [RTW2] the prefanFt with the collection
of cones defined in [Wer07] from the viewpoint ofadmissibility

We fix a minimal parabolic subgroup P0 of G containing S and let∆ denote the corresponding set
of simple roots inΦ. The map P7→ YP = Φ(LP,S)∩∆ sets up an increasing bijection between the set
of parabolic subgroups of G containing P0 and the power set of∆. The inverse bijection associates
with a subset Y of∆ the parabolic subgroup P of G containing P0 such that

Φ(P,S) = (〈Y〉∩Φ)∪Φ(P0,S).

Equivalently, YP is the subset of∆ defining the faceC(P) of the coneC(P0):

C(P) = {x∈ C(P0) | α(x) = 1, α ∈ YP}.

The group X∗(S) is equipped with a W-invariant scalar product(·|·) and we agree to see each finite
subset E of X∗(S) as agraphby introducing an edge between any two verticesα , β ∈E if (α |β ) 6= 0.

Proposition 3.22. — Let P denote the unique parabolic subgroup ofG of type t containingP0. For
any parabolic subgroupQ of G containingP0, the following conditions are equivalent:

(i) the conesCt(Q) andC(Q) have the same dimension;
(ii) the linear subspace{α = 1 ; α ∈YQ} of Λ(S) is the support of a face of the coneCt(P), namely

of Ct(Q);
(iii) seeing∆ as a graph following the convention above, each connected component ofYQ meets

YQ−YQ∩YP.

Proof. Equivalence of conditions (i) and (ii) follows immediately from the fact that the coneC(Q)
spans the linear subspace{α = 1 ; α ∈Φ(LQ,S)} of Λ(S).

(iii) =⇒ (ii) We assume that each connected component of YQ meets YQ−YQ∩YP and establish
the inclusion YQ ⊂ {α ∈ Φ | α|Ct (Q) = 1}. Since YQ generatesΦ(LQ,S) = {α ∈ Φ | α|C(Q) = 1}, it
will follow that Ct(Q) andC(Q) generates the same linear subspace ofΛ(S).

We pick α ∈ YQ and, up to replacingα by −α , we assume thatα belongs toΦ(Pop,S) =
Φ(LP,S)∪Φ(radu(Pop),S). The caseα ∈ Φ(radu(Pop),S) is trivial: indeed,α cuts out a face of
the cone Ct(P) by Lemma 3.15 (i) and this face containsC(Q) sinceα|C(Q) = 1.

We now address the caseα ∈ Φ(LP,S), i.e., α ∈ YP. Our assumption implies the existence of a
natural integerd and of rootsα0, . . . ,αd satisfying

– α0 ∈ YQ−YQ∩YP andαd = α ;
– αi ∈ YP∩YQ for any i ∈ {1, . . . ,d−1};
– (αi |αi+1) < 0 for anyi ∈ {1, . . . ,d−1} and(αi |α j) = 0 if |i− j|> 2.

In this situation the rootβ = rαd−1 ◦ . . . ◦ rα1(α0) (andβ = α0 if d = 0) is given by

β = α0−2
(α0|α1)

(α1|α1)
α1 + . . .+(−2)d−1(α0|α1) . . . (αd−2|αd−1)

(α1|α1) . . . (αd−1|αd−1)
αd−1

= α0 +m1α1 + . . .+md−1αd−1

with m1, . . . ,md ∈ Z− {0}. Since α0 belongs to∆− YP ⊂ Φ(radu(Pop),S) and α1, . . . ,αd−1 ∈
Φ(LP,S), this root belongs toΦ(radu(Pop),S) and thereforeβ cuts out a face of Ct(P). Moreover,
since all the rootsα0, . . . ,αd−1 belong to YQ, β|C(Q) = 1 and thereforeβ|Ct (Q) = 1 since Ct(Q) is the
smallest face of Ct(P) containingC(Q).
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Now we have

rαd(β ) = β −2
(αd|β )

(αd|αd)
αd

= β +(−2)d (α0|α1) . . . (αd−1|αd)

(α1|α1) . . . (αd|αd)
αd

= β +mα
with m∈ Z−{0}. As before, this root belongs toΦ(radu(Pop),S) and is identically equal to 1 on
C(Q), hencerαd(β )|Ct (Q) = 1. Sincem 6= 0, we finally reach our goal:α|Ct (Q) = 1.

(ii) =⇒ (iii) We prove the converse assertion. Let Y denote the unionof the connected components
of YQ which meet YQ−YQ∩YP and set Y′ = YQ−Y. The proof of (iii) =⇒ (ii) shows that{α =
1 ; α ∈ Y} is the support of a face F of Ct(P), namely of the cone Ct(Q′), where Q′ is the parabolic
subgroup containing S associated with the subset Y′ of ∆. We have moreoverC(Q) = F∩{β = 1 ; β ∈
Y′}.

Suppose thatα is a root belonging to Y′. On the one hand, the hyperplane Hα = {α = 1} does
not contain F since the subset Y∪{α} of ∆ consist of linearly independent roots. On the other hand,
orthogonality ofα and Y implies that the cone F is invariant under the orthogonal reflection with
respect to Hα . Thus, if Y′ is non-empty, the coneC(Q) = F∩

⋂
α∈Y′Hα meets the interior of F, hence

F is the smallest face of Ct(P) containingC(Q) and therefore

dimC(Q) 6 dimCt(Q)−1 < dimCt(Q).

2

Corollary 3.23. — Let P denote the unique parabolic subgroup ofG of type t containingP0 and let
Q be a parabolic subgroup ofG containingP0. The linear subspace spanned byCt(Q) is defined by
the conditionsα = 1, whereα runs over all connected components ofYQ meeting∆−YP.

Proof. This assertion was proved while establishing (iii)=⇒ (ii) above. 2

Here is finally our root-theoretic characterization oft-relevant parabolic subgroups. We still denote
by P0 denote a minimal parabolic subgroup of G containing S.

Proposition 3.24. — Let P denote the parabolic subgroup ofG of type t containingP0. For any
parabolic subgroupQ of G containingP0, we letỸQ denote the union of connected components of
YQ meeting∆−YP. Then the following conditions are equivalent:

(i) Q is t-relevant;
(ii) for any rootα ∈ ∆,

(α ∈ YP and α ⊥ ỸQ) =⇒ α ∈ YQ.

Proof. By definition, the parabolic subgroup Q ist-relevant if and only if it is maximal among all
parabolic subgroups Q′ of G satisfying Osct(Q) = Osct(Q′). We can obviously restrict to parabolic
subgroups Q′ containing S, in which case we proved in Proposition 3.4, (ii) that the latter condition
amounts toΦ(radu(P),S)∩Φ(LQ,S) = Φ(radu(P),S)∩Φ(LQ′,S), or equivalently to Ct(Q) = Ct(Q′)
by application of Proposition 3.20, (iii). It follows that the parabolic subgroup Q ist-relevant if
and only if, for any rootα ∈ ∆−YQ, the parabolic subgroup Qα associated with the subset YQα =
YQ∪{α} of ∆ satisfies Ct(Qα) Ct(Q).

We consider a rootα in ∆−YQ and letỸQ (ỸQα , respectively) denote the union of the connected
components of YQ (of YQα , respectively) meetingΦ−YP. The conditions Ct(Q) = Ct(Qα) and
ỸQ = ỸQα are equivalent by Corollary 3.23 and one immediately checksthat the identityỸQ = ỸQα

amounts to orthogonality ofα andỸQ. Therefore, the parabolic subgroup Q ist-relevant if and only
if there is no root in YP−YP∩YQ orthogonal to each connected component of YQ meeting∆−YP.
2
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Remark 3.25. — 1. LettingỸQ denote the union of the connected components of YQ meeting∆−
YP, condition (ii) above is equivalent to the following requirement: the complement of YQ in YP

consists only of roots whose distance tõYQ is at most one.
2. Given a parabolic subgroup Q of G containing P0, the smallestt-relevant parabolic subgroup

of G containing Q corresponds to the subset of∆ deduced from YQ by adjoining all the roots in YP
which are orthogonal to each connected component of YQ meeting∆−YP.

3. For any parabolic subgroup Q of G containing S, the smallest t-relevant parabolic subgroup
of G containing Q coincides with the largest parabolic subgroup Q′ of G containing Q such that
Ct(Q′) = Ct(Q).

Corollary 3.26. — For any parabolic subgroupQ of G containingS, both

{α ∈Φ(LQ,S) | α vanishes identically onCt(Q)}

and its complement are closed subsets ofΦ(LQ,S).
Moreover, if we letQ′ denote the smallest t-relevant parabolic subgroup ofG containingQ, then

Φ(LQ,S)⊂Φ(LQ′ ,S) and

{α ∈Φ(LQ′ ,S) ; α vanishes identically onCt(Q
′)}= {α ∈Φ(LQ,S) ; α vanishes identically onCt(Q)}.

Proof. Let Σ denote the set of roots inΦ(LQ,S) which vanish identically on the cone Ct(Q); this
is obviously a closed subset ofΦ(LQ,S). We consider now a minimal parabolic subgroup P0 of G
containing S and contained in Q, and we let∆ denote the corresponding set of simple roots inΦ(G,S).
By Corollary 3.23,Σ∩∆ is an union of connected component ofΦ(LQ,S)∩∆, thus

Φ(LQ,S)∩∆ = (Σ∩∆)∪ (Σc∩∆)

is a decomposition ofΦ(LQ,S)∩∆ into mutually orthogonal subsets. It follows thatΦ(LQ,S) is the
disjoint union of the closed subsets R and R′ respectively spanned byΣ∩∆ andΣc∩∆. Since any root
in Σ is a linear combination of roots ofΣ∩∆, Σ = R and thereforeΣc = R′ is closed.

The second assertion follows immediately of Corollary 3.23and Remark 3.25, 2. 2

Example 3.27. — We use the notation of Example 3.21. The Dynkin diagram of SL(d + 1) is the
graph

◦α1
◦α2

· · · ◦αd−1 αd
◦ .

For any proper parabolic subgroup Q of G containing B and not contained in P, the only connected
component of YQ meeting∆−YP = {αd} is ỸQ = {αℓ+1, . . . ,αd}, whereℓ is greatest indexi such
thatαi /∈ YQ. The roots in YP = {α1, . . . ,αd−1} which are orthogonal tõYQ areα1, . . . ,αℓ−1. They
are all contained in YQ if and only if

YQ = ∆−{αℓ},

or equivalently if Q is the stabilizer of the linear subspaceSpan(e1, . . . ,eℓ). Applying proposition
3.24, we thus recover the description ofδ -relevant parabolic subgroups of G= SL(d + 1) given in
3.2.1, Example 3.9.

3.4. Berkovich compactifications

From now on, we work again under the assumptions of (1.3.4).

(3.4.1) Let t denote ak-rational type of G. We consider the central isogeny G′×G′′ → G intro-
duced after Definition 3.14, which induces identificationsB(G,k) = B(G′,k)×B(G′′,k), Par(G) =
Par(G′)×Par(G′′) and Part(G) = Part ′(G′), wheret ′ denotes the restriction oft to G′.

Moreover, we letp′ denote the canonical projection of Par(G′)×Par(G′′) on Par(G′) and j the
closed immersion Par(G′) →֒ Par(G) defined (functor-theoretically) by P′ 7→ i(P′×G′′).
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Lemma 3.28. — With the notation and convention introduced above, the diagram

B(G,k)
ϑt //

p′

��

Par(G)an
OO

j

B(G′,k)
ϑt′

// Par(G′)an

is commutative.

Proof. Relying on Proposition 2.17, it is enough to prove that thisdiagram is commutative after
replacingk by a non-Archimedean extension. Hence we can assume that G issplit — then G′ and G′′

are also split — and we may restrict to check that the mapsj ◦ϑt ′ ◦ p′ andϑt coincide on the set of
special vertices ofB(G,k).

The diagram under consideration can be decomposed in four diagrams

B(G′×k G′′,k)
ϑ // (G′×k G′′)an

i

��
B(G,k)

ϑ
// Gan

B(G′×k G′′,k)
ϑ //

p′

��

(G′×k G′′)an

p′

��
B(G′,k)

ϑ
// G′an

(G′×k G′′)an
ιP′×G′′//

i

��

Par(G′×k G′′)an
OO

i∗

Gan
ιP

// Par(G)an

(G′×k G′′)an
ιP′×G′′//

p′

��

Par(G′×G′′)an

j
��

G′an
ιP′

// Par(G′)an

where P′ and P are elements of Part ′(G′,k) and Part(G)(k) respectively satisfyingi−1(P) = P′×k G′′.
It suffices to check that each of these four diagrams is commutative.

This is obviously true for the last two.
Consider a special pointo in B(G,k), whose associatedk◦-Chevalley group we denoteG . We

may find twok◦-Chevalley groupsG ′ andG ′′ with generic fibres G′ and G′′ respectively, such that the
isogenyi : G′×k G′′→G extends to ak◦-isogenyG ′×k◦ G

′′→ G (this follows from the equivalence
between the category of split reductive groups overk equipped with a splitting datum and the category
of root data [SGA3, Exposé XXIII, Théorème 4.1], together with the fact that any isogeny extends
to an isogeny of splitting data [SGA3, Exposé XXII, Corollaire 4.2.3]). These Chevalley groups
correspond to special pointso′ ando′′ in B(G′,k) andB(G′′,k), and the bijection betweenB(G′×k

G′′,k) = B(G′,k)×B(G′′,k) andB(G,k) induced byi maps(o′,o′′) to o. The commutativity of
the first two diagrams now follows from the very definition of the mapϑ together with observation
that the isogenyG ′×k◦ G

′′→ G induces a finite morphism between special fibres and thus mapsthe
generic point to the generic point. 2

Replacing the group G by the normal subgroup G′ and the buildingB(G,k) by its factorB(G′,k),
we may use the lemma above to reduce the study of the mapϑt to the case of a non-degenerate
k-rational typet, i.e., ak-rational type whose restriction to any quasi-simple component of G is non-
trivial.

If G is split and S denotes a split maximal torus, a parabolic subgroup P of G containing S is non-
degenerate if and only if the set of roots of radu(P) with respect to S spans a subgroup of finite index
in the character group X∗(S) of S (cf. Remark 3.16).

Proposition 3.29. — If the k-rational type t is non-degenerate, the map

ϑt : B(G,k)→ Par(G)an
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is injective.

Proof. By Proposition 2.17, we may assume the group G to be split.
Given a split maximal torus S of G, it follows from the explicit formula established in Proposition

2.18 that the mapϑt is injective on the apartment A(S,k). Indeed, having identified A(S,k) with the
vector spaceΛ(S) of real linear forms on X∗(S), two linear formsu, v∈Λ(S) satisfyingϑt(u) = ϑt(v)
coincide on the subsetΦ(radu(P),S) of X∗(S), where P denotes any parabolic subgroup of G of type
t containing S. Since the typet is non-degenerate,Φ(radu(P),S) spans X∗(S)⊗ZQ, henceu = v.

Injectivity of ϑt on the whole building follows from the fact that any two points are contained in a
common apartment. 2

(3.4.2)We fix ak-rational typet of (parabolic subgroups of) G.

For any maximal split torus S of G, we letAt(S,k) denote the closure ofϑt (A(S,k)) in Par(G)an

endowed with the induced topology. This is a compact topological space to which we refer as the
compactified apartmentof typet of S.

We letBt(G,k) denote the image of the map

G(k)×At(S,k)→ Par(G)an, (g,x) 7→ gxg−1,

which we endow with thequotienttopology. Set-theoretically,Bt(G,k) is the union of all compacti-
fied apartments of typet in Par(G)an.

Definition 3.30. — TheG(k)-topological spaceBt(G,k) is theBerkovich compactification of type
t of the buildingB(G,k).

Remark 3.31. — It is somehow incorrect to use the word "compactification"in this context for two
reasons:

– if the typet is degenerate, the mapϑt is not injective;
– if the field k is not locally compact, the topological spaceBt(G,k) is not compact.

However, the image ofϑt : B(G,k)→Bt(G,k) is obviously dense and we shall prove later (Propo-
sition 3.34) that this map is open.

Functoriality with respect to the field extends to the compactifications.

Proposition 3.32. — Let k′/k be a non-Archimedean extension.

(i) There exists a unique continuous mapBt(G,k)→Bt(G,k′) extending the canonical injection
of B(G,k) into B(G,k′). This map is aG(k)-equivariant homeomorphism onto its image.

(ii) If the field k is locally compact, the image ofBt(G,k) in Bt(G,k′) is closed.

Proof. (i) There exists clearly at most one continuous extensionBt(G,k)→Bt(G,k′) of the canoni-
cal injectionB(G,k) →֒B(G,k′) since the image ofB(G,k) in Bt(G,k) is dense.

For any maximal split torus S of G, we set At(S,k′) = ϑt(A(S,k)) and letAt(S,k′) denote its
closure in Par(G⊗kk′)an. We recall that there exists a torus T of G satisfying the following conditions:

– T contains S;
– T⊗k k′ is a maximal split torus of G⊗k k′ ;
– the injection ofB(G,k) →֒B(G,k′) maps A(S,k) into A(T,k′) = A(T⊗k k′,k′).

Equivalently,At(S,k′) is the closure ofϑt(A(S,k) in A(T,k′).
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Relying on the commutativity of the diagram

B(G,k′)
ϑt //

OO
Par(G)an⊗̂kk′

prk′/k

��
B(G,k)

ϑt

// Par(G)an

.

(see Proposition 2.17), it suffices to prove that the canonical projection prk′/k : Par(G)an⊗̂kk′ →

Par(G)an induces a homeomorphism betweenAt(S,k′) andAt(S,k), as well as a bijection between⋃
SAt(S,k′) and

⋃
SAt(S,k), and to consider the inverse bijection.

We split the proof in two steps.

First step: k′/k is a finite Galois extension. SetΓ = Gal(k′/k). In this case, it suffices to note
that the projection prk′/k induces a homeomorphism between the closedΓ-fixed point subspace
(Par(G)an⊗k k′)Γ of Par(G)an⊗k k′ and its image in Par(G)an, the latter being closed since the
map prk′/k is closed. Since the mapsB(G,k) →֒B(G,k′) and ϑt : B(G,k′)→ Par(G)an⊗k k′ are

Γ-equivariant, prk′/k induces therefore a homeomorphism betweenAt(S,k′) andAt(S,k), as well as a

bijection between
⋃

SAt(S,k′) and
⋃

SAt(S,k).

Second step: the groupG is split. In this case, the result will follow from the construction of a
continuous sectionσ of prk′/k overAt(S,k) mapping At(S,k) onto At(S,k′). We rely on the explicit
formula established in Proposition 2.18 to defineσ and we use the notation introduced there. First
note that each pointx of At(S,k) belongs to the open subsetΩ(P,S)an of Par(G)an for a convenient
choice of the parabolic subgroup P of G containing S (cf. Remark 2.7). Then this point corresponds
to the multiplicative seminorm on thek-algebrak[(Xα)α∈Ψ] defined by

f = ∑
ν∈NΨ

aνXν 7→ | f |(x) = max
ν
|aν |∏

α∈Ψ
|Xα |(x)

ν(α)

since the function| f |−maxν |aν |∏α∈Ψ |Xα |
ν(α) is continuous on Par(G)an and vanishes identically

on At(S,k) = ϑt(A(S,k)). We defineσ(x) as the point inΩ(P,S)an⊗̂kk′ corresponding to the multi-
plicative seminorm onk′[(Xα)α∈Ψ] satisfying the same identity:

∣∣∣∣∣ ∑
ν∈NΨ

aνXν

∣∣∣∣∣ (σ(x)) = max
ν
|aν |∏

α∈Ψ
|Xα |(x)

ν(α).

The mapσ : At(S,k)→ Par(G)an⊗̂kk′ is a continuous section of the projection prk′/k mapping
At(S,k) onto At(S,k′) by (2.4.2), Proposition 2.18. Thus, the maps prk′/k andσ induce continuous

and mutually inverse bijections between the setsAt(S,k′) andAt(S,k), and our assertion follows.

(ii) For any maximal split torus S of G and any pointx in A(S,k), B(G,k) = Gx(k)A(S,k) (see
reminders of Bruhat-Tits theory in (1.3.3)), hence the image of B(G,k) in Bt(G,k′) is contained
in the subspace F= Gx(k)At(S,k′). If the field k is locally compact, the topological group Gx(k) is
compact and therefore F, likeAt(S,k′), is a closed subset ofBt(G,k′). It follows that F contains the
closure F′ of B(G,k) in Bt(G,k′). Since F′ containsBt(G,k) = G(k)At(S,k′), we see finally that
Bt(G,k) is the closure ofB(G,k) in Bt(G,k′). 2

Lemma 3.33. — Let S be a maximal split torus ofG and x a point in the compactified apartment
At(S,k). If there exists an element g inG(k) such that gx belongs toBt(G,k), then x belongs the
subspaceAt(S,k) = ϑt(A(S,k)).

Proof. We can restrict to a non-degenerate type by Lemma 3.28.
We first assume that G is split and rely in this case on the explicit formula in Proposition 2.18.

There exists a parabolic subgroup P of G containing S such that the pointx of Par(G)an belongs to the
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big cell Ω(P,S)an and corresponds to a multiplicative seminorm on thek-algebrak[(Xα)α∈Ψ], where
Ψ = Φ(radu(Pop),S). As noticed in the proof of Proposition 3.32, the explicit formula for a pointx
lying in the image of A(S,k) holds more generally for any point inAt(S,k):

∣∣∣∣∑
ν

aνXν
∣∣∣∣(x) = max

ν
|aν |∏

α∈Ψ
|Xα |(x)

ν(α).

One easily checks that the pointx belongs to (the image of) A(S,k) if and only if |Xα |(x) > 0 for any
root α ∈ Φ(P,S), which amounts to requiring that this seminorm is in fact a norm, or equivalently
that | f |(x) > 0 for any non-zero germf ∈ OPar(G)an,x.

If there exists an elementg of G(k) such that the pointgx belongs toBt(G,k)−B(G,k), thengx
belongs toAt(S′,k)−A(S′,k) for some maximal torus S′ of G and there exists therefore a non-zero
germ f ′ ∈ OPar(G)an,gx satisfying| f ′|(gx) = 0. Then we have|g∗ f ′|(x) = | f ′|(gx) = 0 and, sinceg∗ f ′

is a non-zero germ atx, the pointx belongs toAt(S,k)−A(S,k).

We now address the general case. Letk′/k be finite Galois extension splitting G and consider a
maximal torus T of G satisfying the following conditions:

(a) T contains S;
(b) T⊗k k′ is split;
(c) the injectionB(G,k)→B(G,k′) identifies A(S,k) with the Galois-fixed point set of A(T,k′) =

A(T⊗k k′,k′).

It follows from Proposition 3.32 and continuity that the compactified apartmentAt(S,k) is identi-
fied with the Galois-fixed point set inAt(T,k′). If x is a point ofAt(S,k) whose G(k) orbits meets
Bt(G,k), then we know thatx belongs to A(T,k′), and therefore to A(S,k) sincex is Galois-fixed.2

Proposition 3.34. — The mapϑt : B(G,k)→Bt(G,k) is continuous, open and its image is dense.
This map is injective if and only if the type t is non-degenerate. Finally, if the field k is locally

compact, the topological spaceBt(G,k) is compact.

Proof. Continuity ofϑt and density of its image follow immediately from the definition ofBt(G,k).
By Proposition 3.29, the mapϑt is injective if the typet is non-degenerate; conversely, ift is degen-
erate, thenϑt is not injective by Lemme 3.28.

It remains to check that this map is open. Let us consider the following commutative diagram

G(k)×A(S,k)

π
��

id×ϑt // G(k)×At(S,k)

π
��

B(G,k)
ϑt

// Bt(S,k)

associated with a maximal split torus S of G, where the mapsπ are defined byπ(g,x) = gx. Given
an open subset U inB(G,k), V = (id×ϑt)(π−1(U)) is an open subset of G(k)×At(S,k). This is
moreover aπ-saturated subset, since any point(g,x) ∈G(k)×At(S,k) such thatgxbelongs toϑt(U)
is contained in the image of id×ϑt by Lemma 3.33, hence in(id×ϑt)(π−1(U)). Since V meets each
fibre ofπ overϑt(U), V = π−1(ϑt(U)) and thusϑt(U) is open inBt(G,k), for the mapπ is open and
surjective.

If the fieldk is locally compact, the spaceBt(G,k) is compact by the same argument as for Propo-
sition 3.32 (ii). 2

(3.4.3)Let t denote ak-rational type of G and S a maximal split torus. We prove in this paragraph
that the compactified apartmentAt(S,k), defined as the closure ofϑt(A(S,k)) in Par(G)an, coincides
with the compactification of the apartment A(S,k) associated with the prefanFt on Λ(S).
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Proposition 3.35. — The mapϑt : A(S,k)→ Part(G)an extends to a homeomorphism

A(S,k)
Ft ∼ // At(S,k).

Proof. We split the proof in three steps, the third one consisting in Lemma 3.36 below. 2

First step: reduction to the split case. We pick a finite Galois extensionk′/k splitting G and choose
a maximal torus T of G satisfying the following conditions:

(a) T contains S;
(b) T⊗k k′ is split;
(c) the injectionB(G,k)→B(G,k′) maps A(S,k) into A(T,k′) = A(T⊗k k′,k′).

It follows from Proposition 3.32 thatAt(S,k) is identified with the closure of A(S,k) in At(T,k′).
Let P denote a parabolic subgroup of G of typet containing S. Set T′ = T⊗k k′, S′ = S⊗k k′,

P′ = P⊗k k′ and letλ denote the homomorphism X∗(T′)→ X∗(S′) = X∗(S), α 7→ α|S′ . The cone
Ct(P′) in Λ(T′) = HomAb(X∗(T′),R>0) is defined by the inequalitiesα 6 1, α ∈ Φ(radu(P′op),T′)
and (λ∨)−1Ct(P′) is therefore the cone inΛ(S) = HomAb(X∗(S),R>0) defined by the inequalities
α 6 1, α ∈Φ(radu(P′op),T′). Since radu(P′op) = radu(Pop)⊗k k′,

Φ(radu(Pop),S)⊂ λ
(
Φ(radu(P′op

),T′)
)
⊂Φ(radu(Pop),S)∪{0},

hence(λ∨)−1Ct(P′
op) = Ct(P). Thus, the prefanFt on Λ(S) is the restriction of the prefanFt on

Λ(T′), and consequently the canonical injection A(S,k) →֒ A(T,k′) extends to a homeomorphism

betweenA(S,k)
Ft

and the closure of A(S,k) in A(T,k′)
Ft

.

It follows from the discussion above that any homeomorphismϕ ′ betweenA(T,k′)
Ft

andAt(T,k′)
fitting into the commutative diagram

A(T,k′)
p

yyssss
ssss

ss
ϑt

%%JJJJJJJJJJ

A(T,k′)
Ft

ϕ ′
// At(T,k′)

induces a homeomorphismϕ betweenA(S,k)
Ft

andAt(S,k) fitting into the commutative diagram

A(S,k′)
p

yyssss
ss

ss
ss

ϑt

$$JJJJJJJJJJ

A(S,k′)
Ft

ϕ ′
// At(S,k′)

and it suffices therefore to prove the proposition when the group G is split.

Second step: the split case. We fix a special pointo in the apartment A(S,k) with associated
k◦-Chevalley groupG .

Let S denote the splitk◦-torus with generic fibre S. Any parabolic subgroup P of G contain-
ing S extends uniquely to a parabolic subgroupP of G containingS and, if Pop denotes the
opposite parabolic subgroup with respect toS , the morphism radu(Pop)→ Par(G ) defined functor-
theoretically byg 7→ gPg−1 is an isomorphism onto an affine open subscheme of Par(G ), which we
denoteΩo(P,S) and whose generic fibre is the big cellΩ(P,S) of Par(G). Equivalently, choos-
ing a k◦-Chevalley basis of Lie(G) and a total order onΨ = Φ(radu(Pop),S) allows us to iden-
tify Ω(P,S) with the affine space Spec(k[(Xα)α∈Ψ]), in which caseΩo(P,S) corresponds to the
k◦-scheme Spec(k◦ [(Xα)α∈Ψ]). Finally, from the analytic point of view, the affine open subspace
Ωo(P,S) of Par(G ) determines an affinoid domainΩo(P,S)an in Par(G)an which, in the identifica-
tion Ω(P,S) ≃ Spec(k[(Xα)α∈Ψ]) above, is simply the affinoid domain ofΩ(P,S)an defined by the
inequalities|Xα |6 1, α ∈Ψ.
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When P runs over the set of parabolic subgroups of G of typet containing S, the affine open
subschemesΩo(P,S) cover the connected component Part(G ) of Par(G ) and the affinoid domains
Ωo(P,S)an cover therefore the connected component Part(G)an of Par(G)an (cf. Remark 2.7).

Now we use the special pointo to identify the affine space A(S,k) and the vector space V(S) =
HomAb(X∗(S),R) and we identify the latter withΛ(S) = HomAb(X∗(S),R>0) via

V(S)×X∗(S)→ R>0, (u,χ) 7→ e〈u,χ〉.

For any parabolic subgroup P of G of typet containing S, the image of the mapϑt : B(G,k)→
Par(G)an is contained in the big cellΩ(P,S)an and its restriction to the apartment A(S,k) associates
with an elementu of Λ(S) the multiplicative seminorm

f = ∑
ν

aνXν 7→max
ν
|aν |∏

α∈Ψ
u(α)ν(α)

on thek-algebrak[(Xα)α∈Ψ] (Proposition 2.18). By Lemma 3.15, (i), the polyhedral coneCt(P) is
the preimage of the affinoid domainΩo(P,S)an:

Ct(P) = ϑ−1
t (Ωo(P,S)an)∩Λ(S).

Moreover, if we let〈Ψ〉+ denote the semigroup spanned byΨ in X∗(S), the formula above allows us
more generally to associate with any homomorphism of unitary monoidsu : 〈Ψ〉+ → [0,1] a multi-
plicative seminorm onk[(Xα)α∈Ψ] extending the absolute value ofk. It follows that we get a contin-
uous and injective map

ωt,P : Ct(P) = HomMon(〈Ψ〉+, [0,1])→Ωo(P,S)an

which fits into the commutative diagram

Ct(P) = {u∈ Λ(S) | α(u) 6 1, for all α ∈Ψ}
ϑt //

u7→u|Ψ
��

Ωo(P,S)an

Ct(P) = HomMon(〈Ψ〉+, [0,1])

ωt,P

33hhhhhhhhhhhhhhhhhhhh

.

If P and P′ are two parabolic subgroups of G of typet containing S, the mapsωt,P andωt,P′ coincide
on Ct(P)∩Ct(P′), hence onCt(P)∩Ct(P′) = Ct(P)∩Ct(P′). We thus get a continuous map

ϑ t : A(S,k)
Ft
→ Par(G)an

extendingϑt .

Since the topological spacesA(S,k)
Ft

and Par(G)an are compact, the continuous mapϑ t is proper
and its image coincides with the closureAt(S,k) of ϑt(A(S,k)) in Par(G)an.

It only remains to prove that the mapϑ t is injective. Since its restriction to any compactified

coneC is injective for C∈Ft , it suffices to check that any two pointsx, y in A(S,k)
Ft such that

ϑ t(x) = ϑ t(y) belong to the compactification of the same cone inFt ; this is indeed the case by the
lemma below. 2

Recall that G is assumed to be split. Using the notation introduced in the previous proof, let us
consider the semisimplẽk-groupG̃ := G ⊗k◦ k̃ and the reduction map (1.2.3)

ro : Par(G)an→ Par(G̃).

Each parabolic subgroup Q of G extends uniquely to a parabolic subgroupQ of G andQ̃ := Q⊗k◦ k̃
is a parabolic subgroup of̃G; moreover, if Q contains S, theñQ contains̃S.

Note that with any parabolic subgroup Q of G containing S we can associate:

– the polyhedral cone Ct(Q) in Λ(S) (Definition 3.14),
– the integral closed subscheme Osct(Q̃) of Par(G̃) (Proposition 3.2).
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Finally, for any polyhedral cone C, we define theinterior int(C) of the compactified coneC as the
complement of closures of all proper faces of C:

int(C) = C−
⋃

F( C
face

F.

Lemma 3.36. — For any parabolic subgroupQ of G containingS, the interior of the compactified
coneCt(Q) is the preimage under the map

ro◦ϑ t : A(S,k)
Ft
→ Par(G̃)

of the generic point of the irreducible closed subschemeOsct(Q̃).

In particular: any two points x, y in A(S,k)
Ft

with ϑ t(x) = ϑ t(y) belong to the compactification
of the same cone inFt .

Proof. Taking into account the partition

A(S,k)
Ft

=
⊔

C∈Ft

int(C),

it suffices to check that, for any parabolic subgroup Q of G containing S, the mapro ◦ϑ t maps the
interior of the compactified coneCt(Q) to the generic point of Osct(Q̃).

Let us fix a parabolic subgroup P of G of typet containing S, setΨ = Φ(radu(Pop),S) and identify
as above thek◦-schemeΩo(P,S) with Spec(k◦ [(Xα)α∈Ψ]). The restriction of the mapro to the
affinoid domain

Ωo(P,S)an = {x∈Ω(P,S)an || f |(x) 6 1 , for all f ∈ k◦ [(Xα)α∈Ψ]}

of Ω(P,S)an takes values in the affine open subsetΩ(P̃, S̃) = Ωo(P,S)⊗k◦ k̃ of Par(G̃): given a point
x∈Ωo(P,S)an, the set of elementsf ∈ k◦ [(Xα)α∈Ψ] satisfying| f |(x) < 1 is a prime ideal containing
the maximal ideal ofk◦, hence its image iñk[(Xα)α∈Ψ] is a prime ideal andro(x) is the point so

defined inΩo(P̃, S̃)≃ Spec
(

k̃[(Xα)α∈Ψ]
)

.

Now we consider a parabolic subgroup Q of G containing S and osculatory with P. By Proposition
3.20, the interior of the compactified coneCt(Q) is the subspace ofCt(P) defined by the following
conditions: {

α = 1, α ∈Ψ∩Φ(LQ,S)
α < 1, α ∈Ψ−Ψ∩Φ(LQ,S).

It follows that, for any pointx in int(Ct(Q)), the set of elementsf ∈ k◦ [(Xα)α ] satisfying
| f |(x) < 1 is exactly the ideal generated by the maximal ideal ofk◦ and the coordinates Xα
with α ∈ Ψ−Ψ∩Φ(LQ,S). The pointro(x) is therefore the generic point of the closed subscheme

of Spec
(

k̃[(Xα)α∈Ψ]
)

defined by the vanishing of the coordinates Xα with α ∈ Ψ−Ψ∩Φ(LQ,S).

Finally, since this closed subscheme is the intersection ofthe open subschemeΩ(P̃, S̃) with the
closed irreducible subscheme Osct(Q̃) (Proposition 3.4, (ii)),ro(x) is nothing but the generic point of
Osct(Q̃) and the proof is complete. 2

4. GROUP ACTION ON THE COMPACTIFICATIONS

In this section, for a given reductive group G over a completenon-Archimedean fieldk and a given
k-rational typet of parabolic subgroups of G, we describe the Berkovich compactification Bt(G,k)
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of type t of the Bruhat-Tits buildingB(G,k). This means that we describe the boundary compo-
nents ofBt(G,k), which are in one-to-one correspondence witht-relevant parabolic subgroups as
defined in the previous section from a geometric viewpoint in(3.2.1). A root-theoretic interpreta-
tion was given in (3.3.2). It turns out that the boundary component ofBt(G,k) parameterized by
a t-relevant parabolic subgroup Q of G can naturally be identified with the Bruhat-Tits buildings of
the semisimple quotient of the latter group (Theorem 4.1). Natural fibrations between flag varieties
induce G(k)-equivariant maps between the corresponding compactifications, which we study. Finally,
we also describe the action of the group G(k) onBt(G,k), which enables us to prove a mixed Bruhat
decomposition (Proposition 4.20).

4.1. Strata and stabilizers

Throughout this section, we consider a semisimplek-group G and lett denote ak-rational type
of parabolic subgroups. We recall that, if Q is a parabolic subgroup of G, we still lett denote the
k-rational type of the parabolic subgroup(P∩Q)/rad(Q) of the reductive group Q/rad(Q), where P
is any parabolic subgroup in Part(G)(k) osculatory with Q (see (3.2.1)).

(4.1.1)For any parabolic subgroup P of G, we may use the canonical isomorphism

εP : Osct(P)
∼ // Part(P) = Part(Pss)

described in Proposition 3.2 to define the composite map

B(Pss,k)
ϑt // Part(Pss)

an ε−1
P // Osct(P)an� � // Par(G)an

and thus we get a continuous injection of the factorBt(Pss,k) of B(Pss,k) into Par(G)an.

Theorem 4.1. — LetRelt(G,k) denote the set of t-relevant parabolic subgroups ofG. WhenQ runs
over Relt(G,k), the buildingsBt(Qss,k) define a stratification ofBt(G,k) into pairwise disjoint
locally closed subspaces:

Bt(G,k) =
⊔

Q∈Relt(G,k)

Bt(Qss,k).

For any t-relevant parabolic subgroupQ of G, the injection ofBt(Qss,k) into Bt(G,k) extends to
a homeomorphism between the compactified buildingBt(Qss,k) and the closed subset

⋃

P∈ Relt (G,k)
P⊂ Q

Bt(Pss,k)

of Bt(G,k).

We establish two lemmas before proving this theorem.

Lemma 4.2. — Let P and Q be two t-relevant parabolic subgroups ofG. For any g∈ G(k),
gBt(Pss,k)g−1∩Bt(Qss,k) 6=∅ in Par(G)an if and only if gPg−1 = Q.

In particular:

(i) if P andQ are distinct,Bt(Pss,k) andBt(Qss,k) are disjoint;
(ii) for any points x,y∈B(Pss,k) and any g∈G(k), if g ·x = y in Part(G)an, then g∈ P(k).

Proof. We recall that thek-analytic space Xan associated with an algebraick-scheme X is nat-
urally equiped with a mapρ : Xan→ X (see preliminaries on Berkovich theory, 1.2.2). Let us
consider the G(k)-equivariant mapρ : Par(G)an→ Par(G) defined at the end of (1.2.2) and pick
x in B(Pss,k). By Corollary 2.19, the mapρ ◦ϑt : B(Pss,k)→ Part(Pss) sendsx to the generic
point of Part(Pss). It follows therefore from Proposition 3.2 that our canonical embedding of
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B(Pss,k) into Part(G)an mapsx to a point lying over the generic point of the integral scheme
Osct(P). Since gOsct(P)g−1 = Osct(gPg−1) for any g ∈ G(k) (see Remark 3.3), the subsets
gBt(Pss,k)g−1 and Bt(Qss,k) of Par(G)an are non-disjoint if and only if the closed subschemes
Osct(gPg−1) = gOsct(P)g−1 and Osct(Q) of Par(G) coincide. Finally, since the parabolic subgroups
P and Q aret-relevant,gPg−1 and Q are alsot-relevant and the identity Osct(gPg−1) = Osct(Q)
amounts togPg−1 = Q. This completes the proof of our first assertion. Both (i) and (ii) are immediate
consequences of what has been said. 2

Let S be a maximal split torus of G and Q a parabolic subgroup ofG containing S. We letS denote

the image of S under the canonical projection Q→Qss and define a mapjQ : A(S,k)→ A(S,k)
Ft

as
follows:

– the apartment A(S,k) is canonically isomorphic to the quotient of the apartment A(S,k) by the
linear subspace X∗(S)⊥ = 〈C(Q)〉 of Λ(S) (1.3.5);

– by Proposition B.4, (iv), the quotient of A(S,k) by the linear subspace〈Ct(Q)〉 is a stratum of

A(S,k)
Ft

;
– sinceC(Q) ⊂ Ct(Q) by definition of the latter cone,〈C(Q)〉 ⊂ 〈Ct(Q)〉 and thus the canonical

projection of A(S,k)/〈C(Q)〉 onto A(S,k)/〈Ct(Q)〉 leads to a map

jQ : A(S,k) = A(S,k)/〈C(Q)〉 → A(S,k)/〈Ct(Q)〉 ⊂ A(S,k)
Ft

.

Note that this map may not be injective. Observe also thatA(S,k)
Ft

is covered by images of the
maps jQ when Q runs over the set of parabolic subgroups containing S.

Lemma 4.3. — With the notation introduced above, the diagram

A(S,k)
Ft

OO
jQ

ϑ t // Par(G)an

A(S,k)
ϑt

// Par(Qss)
an

?�

εQ

OO

is commutative.

Proof. We first reduce to the case of a split group by considering a finite Galois extension splitting G
and a maximal torus T of G satisfying the following conditions:

(a) T contains S;
(b) T⊗k k′ is split;
(c) the injection ofB(G,k) into B(G,k′) maps A(S,k) in A(T,k′).

We leave the details to the reader.

Now we suppose that the group G is split. Fix a parabolic subgroup P∈ Part(G)(k) osculatory
with Q and letP denote the parabolic subgroup(P∩Q)/rad(Q) ∈ Part(Qss)(k). We choose a special
point o in A(S,k) and leto denote its image under the canonical projection A(S,k)→ A(S,k); this is
a special point of A(S,k), and we useo ando as base points to identify A(S,k) and A(S,k) with Λ(S)
andΛ(S) respectively.

Since the vector spaceΛ(S) is covered by the cones Ct(P) when P runs over the set of parabolic
subgroups P∈Osct(Q)(k) containing S, it suffices to prove that the mapsϑ t ◦ j andεP◦ϑt coincide on
Ct(P). Introducing as in the proof of Proposition 3.35 the affinoiddomainsΩo(P,S) andΩo(P,S) in
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Par(G)an and Part(Qss)
an respectively,εQ identifiesΩo(P,S)an with Ωo(P,S)an∩Osct(Q)an by Propo-

sition 3.4 and it remains to check that the diagram

Ct(P)
ϑ t // Ωo(P,S)an

Ct(P)

j

OO

ϑt

// Ωo(P,S)an

εQ

OO

is commutative.
SetΨ = Φ(radu(Pop),S) andΨ = Φ(radu(P

op
),S) = Ψ∩Φ(LQ,S), and let〈Ψ〉+ and〈Ψ〉+ denote

the semigroups in X∗(S) and X∗(S) spanned byΨ andΨ respectively. It follows easily from Proposi-
tion 3.20 that both semigroups〈Ψ〉+∩X∗(S) and〈Ψ〉+ span the same cone in X∗(S)⊗ZR. The proof
of Proposition B.3, (i), shows thatj is the map

Ct(P) = HomMon(〈Ψ〉+, ]0,1]) → HomMon(〈Ψ〉+, [0,1]) = Ct(P)

u 7→ ũ =

{
u on 〈Ψ〉+
0 on〈Ψ〉+−〈Ψ〉+∩X∗(S).

.

Once we have chosen a total order onΨ, we may identifyΩo(P,S) andΩo(P,S) with the spectra of
k◦ [(Xα)α∈Ψ] andk◦

[
(Xα)α∈Ψ

]
respectively. By Proposition 3.4,εQ is then the morphism deduced

from thek◦-homomorphism

k◦ [(Xα)α∈Ψ]→ k◦
[
(Xα)α∈Ψ

]
, Xα 7→

{
Xα if α ∈Ψ
0 if α ∈Ψ−Ψ

and, finally, the mapsϑt ◦ j andεQ◦ϑt both associate with a pointu∈Ct(P) = HomMon(〈Ψ〉+, ]0,1])
the seminorm

f = ∑
ν

aνXν 7→max
ν
|aν |∏

α∈Ψ
ũ(α)ν(α)

onk[(Xα)α∈Ψ].

Proof of Theorem 4.1. By the very definition ofBt(G,k) in (3.4.2), any pointx of this compact-
ified building belongs to the compactified apartmentAt(S,k) of some maximal split torus S of G. It
follows from Lemma 4.3 that there exists a parabolic subgroup Q such thatx∈B(Qss,k). According
to Remark 3.8 and Lemma 4.2, this Q is unique if we assume it to be t-relevant. Conversely, if Q is a
parabolic subgroup of G, any maximal split torus S′ of Qss is the image of some maximal split torus
S of Q under the canonical projection Q→Qss andAt(S′,k) is contained inAt(S,k) by Lemma 4.3.
We have therefore

Bt(G,k) =
⊔

Q∈Relt(G,k)

Bt(Qss,k).

Let Q be at-relevant parabolic subgroup of G. Our injection ofBt(Qss,k) in Par(G)an obviously
extends to a continuous injection ofBt(Qss,k) in Par(G)an and, replacing G by Qss in what precedes,
we get

Bt(Qss,k) =
⊔

P∈ Relt(G,k)
Q⊂ P

Bt(Pss,k).

Now we check thatBt(Qss,k) is locally closed inBt(G,k). Let us choose a maximal split torus S
in Q and consider the map

π : G(k)×At(S,k)→Bt(G,k), (x,g) 7→ g.x := gxg−1

(conjugation takes place in Par(G)an). We pick a pointx in At(S,k) and let P denote thet-relevant
parabolic subgroup containing S such thatx is contained in the stratumAt(S,k) ∩Bt(Pss,k) of
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At(S,k). For any elementg of G(k) such thatg.x belongs toBt(Qss,k), we havegPg−1 = Q by
Lemma 4.2. Since the parabolic subgroups Q and P both containthe maximal split torus S, they
are in fact conjugate under the Weyl group W of(G,S). Hence there existsn∈ G(k) normalizing S
such thatn−1Qn = P, thus(gn−1)Q(gn−1)−1 = Q and thereforegn−1 ∈Q(k). If we pick n1, . . . ,nr in
NormG(S)(k) lifting the elements of W and setΣ = At(S,k)∩Bt(Qss,k), then it follows that

π−1 (Bt(Qss,k)) =
r⋃

i=1

Q(k)ni× (n−1
i Σ).

Since this subset of G(k)×At(S,k) is locally closed,Bt(Qss,k) is a locally closed subspace of
Bt(G,k).

One checks similarly thatBt(Qss,k) is the closure ofBt(Qss,k) in Bt(G,k). 2

Example 4.4. — Let G be the group PGL(V), where V is a vector space of dimensiond + 1 over
a locally compact non-Archimedean fieldk. Following Goldman and Iwahori [GI63], the building
B(G,k) can be identified with the space of norms on V modulo scaling. Let δ be the type of a
stabilizer of a flag({0} ⊂ H ⊂ V) with codim(H) = 1. It will be shown in a sequel to this article
[RTW2] that there exists a PGL(V,k)-equivariant homeomorphismι from Bδ (G,k) to the space of
seminorms on V modulo scaling, thus extending the Goldman-Iwahori identification. Let Q be aδ -
relevant parabolic subgroup. By Example 3.9, Q is the stabilizer of a flag({0} ⊂W ⊂ V). Hence
Qss is isogenous to the product PGL(W)×PGL(V/W). Since the typeδ is trivial on PGL(W), the
building Bδ (Qss,k) coincides withB(PGL(V/W),k). In the above identification,ι identifies the
stratumBδ (Qss,k) with the set of seminorm classes on V with kernel W.

Proposition 4.5. — LetK/k be a non-Archimedean extension.
For any t-relevant parabolic subgroupQ of G, Q⊗kK is a t-relevant parabolic subgroup ofG⊗k K

and the canonical injection ofB(G,k) in B(G,K) extends continuously to an injection ofBt(G,k)
in Bt(G,K) which induces the canonical injection ofBt(Qss,k) in Bt(Qss,K).

Proof. We have already proved that the canonical injectionBt(G,k)→Bt(G,K) extends continu-
ously to an injection ofBt(G,k) in Bt(G,K) (Proposition 3.32) and that, for anyt-relevant parabolic
subgroup Q of G, the parabolic subgroup Q⊗k K of G⊗k K is still t-relevant (Remark 3.10).

It remains to check that our mapBt(G,k) → Bt(G,K) induces the canonical injection of
Bt(Qss,k) in Bt(Qss,K) for any t-relevant parabolic subgroup Q. The arguments are completely
similar to those we used in order to prove Proposition 3.32: we first reduce to the split case, then we
rely on the explicit formula of proposition 2.18. 2

(4.1.2)We describe in this paragraph the subgroups of G naturally attached to strata of the compacti-
fied buildingBt(G,k).

Proposition 4.6. — The natural action ofG(k) on Bt(G,k) extends uniquely to an action on
Bt(G,k) and, for any t-relevant parabolic subgroupQ of G and any element g ofG(k),

gBt(Qss,k) = Bt((gQg−1)ss,k).

Proof. Given a maximal split torus S of G, the mapπ : G(k)×At(S,k)→ Par(G)an, (g,x) 7→ g.ϑt(x)
is equivariant with respect to the obvious actions of G(k). Since its image is precisely the subset
Bt(G,k) of Par(G)an, this proves the first assertion. The second follows from Lemma 4.2. 2

Proposition 4.7. — LetQ be a t-relevant parabolic subgroup ofG.

(i) For any non-Archimedean extensionK/k, the subgroupQ(K) of G(K) is the stabilizer of the
stratumBt(Qss,K) in Bt(G,K).
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(ii) There exists a largest smooth and connected closed subgroupRt(Q) of G satisfying the following
conditions:
• Rt(Q) is a normal subgroup ofQ containing the radicalrad(Q);
• for any non-Archimedean extensionK/k, the subgroupRt(Q,K) of G(K) acts trivially on

the stratumBt(Qss,K) of Bt(G,K).
The canonical projectionQss→Q/Rt(Q) identifies the buildingsBt(Qss,k) andB(Q/Rt(Q),k).

(iii) For any two points x, y in the stratumBt(Qss,k), there exists a non-Archimedean extensionK/k
and an element g ofQ(K) such that y= gx.

Proof. (i) Since any parabolic subgroup of G coincides with its normalizer in G, this assertion follows
from Lemma 4.2.

(ii) Let us consider the central isogeny Q′ss×Q′′ss→Qss associated with the typet after Definition
3.14; it identifiesB(Q′ss,k) andBt(Qss,k). The preimage of Q′′ss under the canonical projection of
Q onto Qss is a smooth closed subgroup of G normal in Q, and we let Rt(Q) denote its identity
component. Since the formation of Rt(Q) commutes with arbitrary field extension, the subgroup
Rt(Q,K) of G(K) acts trivially on the stratumBt(Qss,K) of Bt(G,K) for any non-Archimedean
extension K/k.

Suppose now that R is a smooth and connected closed subgroup of G which is normal in Q and
contains the radical rad(Q). The group R′ = R/rad(Q) is a smooth, connected and normal closed
subgroup of Qss. By [BT65, 2.15] (see also [Che05, Exposé 17]), R′ is the image of the product
morphism

∏
i∈I

Hi →G,

where{Hi}i∈I is the set of almost simple factors of Qsscontained in R′. If the group R(k) acts trivially
onBt(Qss,k), this is a fortiori the case for each Hi(k) and therefore Hi is contained in Q′′ssby definition
of Q′ss and Q′′ss. It follows that R is contained in Rt(Q).

(iii) Consider two pointsx and y in the stratumBt(Qss,k). Combining (ii) with Proposition
1.7, there exists a non-Archimedean extension K/k and a K-pointg of Q/Rt(Q) mappingx to y
in Bt(Qss,K) = B(Q/Rt(Q),K). Extending K if necessary, we may assume thatg is the image of a
K-point of Q and the assertion follows. 2

Remark 4.8. — 1. Note that, for anyt-relevant parabolic subgroup Q of G, the group Rt(Q)(k) acts
trivially on the whole analytic subspace Osct(Q)an of Par(G)an. Indeed, Rt(Q) acts trivially on the
subscheme Osct(Q)≃ Part(Q′ss) of Part(G) by construction.

2. The formation of Rt(Q) commutes with non-Archimedean field extension: Rt(Q⊗k K) =
Rt(Q)⊗k K.

Here is a root-theoretic description of the subgroup Rt(Q) of a t-relevant parabolic subgroup Q
of G. We fix a maximal split torus S of Q and letS denote its image under the canonical projection
Q→ Qss. The canonical injection X∗(S)→ X∗(S) identifies the subsetΦ(Qss,S) of X∗(S) with the
subsetΦ(Q,S)−Φ(radu(Q),S) = Φ(LQ,S) of Φ(Q,S) (where LQ denotes the Levi subgroup of Q
containing CentG(S)).

Proposition 4.9. — LetΛ be the set of roots inΦ(LQ,S) which do not vanish identically on the cone
Ct(Q)⊂ Λ(S).

(i) The quotient groupRt(Q)/rad(Q) contains the anisotropic component ofQss.
(ii) The isotropic component ofRt(Q)/rad(Q) is the subgroup ofQssgenerated by the images of the

root groupsUα for all α ∈ Λ.
(iii) The subgroupRt(Q) of Q is the semi-direct product ofradu(Q) by the subgroup ofLQ generated

by the anisotropic component of LQ, the subtorus ofS cut out by the roots inΦ(LQ,S) and the
root groupsUα , α ∈ Λ.
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Proof. (i) This assertion is clear since Rt(Q)/rad(Q) is the subgroup of Q/rad(Q) generated by the
quasi-simple components on which the typet restricts trivially (see proof of Proposition 4.7, (ii)).

(ii) Since bothΛ and its complement are closed subsets ofΦ(LQ,S) (Corollary 3.26),Λ is a union
of simple components of the root systemΦ(LQ,S). Let P0 be a minimal parabolic subgroup of G
containing S and contained in Q; we denote by∆ the corresponding set of simple roots inΦ(G,S)
and by P the parabolic subgroup of G of typet which contains P0. By Corollary 3.23,Λ is the union
of all connected components of∆∩Φ(LQ,S) which do not meetΦ(radu(P),S)∩∆. This amounts to
saying thatΛ is precisely the set of roots of the isotropic quasi-simple components of Qsson which the
restriction oft is trivial. Therefore it follows from the proof of Proposition 4.7, (ii), that the isotropic
component of Rt(Q)/rad(Q) is precisely the normal subgroup of Qss corresponding toΛ. By [BT65,
Corollaire 5.11], the latter is generated by the root groupsUα for all α ∈ Λ.

(iii) The group Q (its radical rad(Q), respectively) is the semi-direct product of its unipotentradical
radu(Q) by the Levi subgroup LQ (by the radical of LQ, respectively). Let H denote the maximal
anisotropic connected normal subgroup of LQ. The reductive group rad(LQ) is the identity component
of the center of LQ; it is a torus, generated by its anisotropic component(rad(LQ)∩H)0 and its
maximal split subtorus [BT65, Proposition 1.8]. The latter is a subtorus of S, namely the connected
component of

⋂

α∈Φ(LQ,S)

ker(α).

The group Rt(Q) is the semi-direct product of radu(Q) by LQ∩Rt(Q). It follows from (i) and
(ii) that LQ∩Rt(Q) is the subgroup of LQ generated by H, the subtorus of S cut out by the roots in
Φ(LQ,S) and the root groups Uα , α ∈ Λ. 2

Example 4.10. — As in Example 4.4, let G be the group PGL(V), and letδ be the type of the
stabilizer of a flag({0} ⊂ H ⊂ V) with codim(H) = 1. Let T denote the torus of diagonal matrices
and B the Borel subgroup of G consisting of upper triangular matrices (modulo center, of course), so
that H is generated bye1, . . . ,ed for a diagonal basise1, . . . ,ed+1 of V with respect to T.

Let Q be theδ -relevant parabolic subgroup induced by the stabilizer of the subspace W generated
by e1, . . . ,er for some 1≤ r ≤ d + 1. Then, by Example 4.4, the stabilizer Rδ (Q) of the stratum
Bδ (Qss,k) is the kernel of the natural map Q→ PGL(V/W). It obviously contains the unipotent
radical radu(Q). The natural morphism LQ→ PGL(W)×PGL(V/W) maps Rδ (Q)/radu(Q) surjec-
tively on the first factor PGL(W). Its kernel is the subgroup of T given by all diagonal matrices with
entries(a, . . . ,a,b, . . . ,b), wherea appearsr times. This coincides with the subtorus of T cut out by
Φ(LQ,T). Using Example 3.21, we find that a rootα of Q does not vanish identically on Cδ (Q) if
and only if α = χi − χ j for i 6= j and i, j ≤ r. The corresponding root groups are exactly the root
groups in LQ which are mapped to PGL(W) under LQ→ PGL(W)×PGL(V/W). Hence we recover
the description of Rδ (Q) in Proposition 4.10.

(4.1.3)Now we extend our initial Theorem 2.1 to the compactified building Bt(G,k) by attaching
with each point its stabilizer in Gan.

Theorem 4.11. — For any point x inBt(G,k), there exists a unique geometrically reduced k-analytic
subgroupStabt

G(x) of Gan such that, for any non-Archimedean extensionK/k, Stabt
G(x)(K) is the

subgroup ofG(K) fixing x inBt(G,K).

Let Q denote the t-relevant parabolic subgroup ofG defining the stratum which contains x.
The subgroupStabt

G(x) is contained inQan, it containsRt(Q)an as a normal closed analytic sub-
group and the canonical isomorphismQan/Rt(Q)an ∼= (Q/Rt(Q))an identifies the quotient group
Stabt

G(x)/Rt(Q)an with the affinoid subgroup(Q/Rt(Q))x of (Q/Rt(Q))an attached by Theorem 2.1
to the point x ofBt(Qss,k) = B(Q/Rt(Q),k).
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Proof. To the pointx of Bt(Qss,k) = B(Q/Rt(Q),k) corresponds by Theorem 2.1 a unique
k-affinoid subgroup(Q/Rt(Q))x of (Q/Rt(Q))an satisfying the following condition: for any non-
Archimedean extension K/k, (Q/Rt(Q))x(K) is the subgroup of(Q/Rt(Q))(K) fixing the pointx

in B(Q/Rt(Q),K). Using the canonical isomorphism Qan/Rt(Q)an ∼ // (Q/Rt(Q))an to identify
these analytic groups, we define Stabt

G(x) as the preimage of(Q/Rt(Q))x under the canonical
projection Qan→ (Q/Rt(Q))an:

Stabt
G(x) = Qan×(Q/Rt(Q))an (Q/Rt(Q))x.

Since the morphism Q→ Q/Rt(Q) is smooth, StabtG(x) is a geometrically reducedk-analytic sub-
group of Qan which contains Rt(Q)an as a closed invariant analytic subgroup, and the quotient group
Qan/Rt(Q)an is canonically isomorphic to the affinoid subgroup(Q/Rt(Q))x of (Q/Rt(Q))an. More-
over, for any non-Archimedean extension K/k and any elementg in Stabt

G(x)(K), the action ofg on
Bt(G,K) stabilizes the stratumBt(Qss,K) and fixes the pointx. The existence part of the proof is
thus complete.

Uniqueness follows from the fact that two geometrically reduced analytic subgroups of Gan having
the same K-points for any non-Archimedean extension K/k coincide. 2

Proposition 4.12. — Let x be a point inBt(G,k) andQ the t-relevant parabolic subgroup ofG such
that x belongs to the stratumBt(Qss,k).

(i) The groupStabt
G(x)(k) is Zariski dense inQ.

(ii) For any g∈G(k), Stabt
G(gx) = gStabt

G(x)g−1.

Proof. (i) Fix a Levi subgroup L of Q. Since Rt(Q) contains radu(Q), the group StabtG(x) is the semi-
direct product of the group radu(Q)an by the analytic subgroup Stabt

G(x)∩Lan. Therefore, StabtG(x)(k)
is the semi-direct product of radu(Q)(k) by the subgroup StabtG(x)∩L(k) of L(k).

Let S0 denote the maximal split subtorus of rad(LQ), H0 the anisotropic component of L and(Hi)i∈I

the quasi-simple isotropic components of the derived subgroup D(L) of L. The product morphism

S0×H0×∏
i∈I

Hi → L

is an isogeny. If we let J denote the subset of I consisting of indicesi ∈ I such that the typet is
non-trivial on Hi, then Rt(Q)∩L is the image of the subgroup S0×H0×∏i∈JHi and, for each index
i ∈ I − J, Stabt

G(x)∩Han
i is the affinoid subgroup attached by Theorem 2.1 to the projection of x

on the factorB(Hi,k) of Bt(Qss,k). It follows that the subgroup StabtG(x)∩ L(k) of L(k) contains
S0(k), H0(k) and Hi(k) for eachi ∈ J, as well as a parahoric subgroup of Hi(k) for eachi ∈ I−J.

The field k is infinite as it carries a non-trivial absolute value. On theone hand, the groups
S0(k), H0(k) and Hi(k) are Zariski dense in the reductive groups S0, H0 and Hi respectively [Bor91,
Corollary 18.3]; on the other hand, each parahoric subgroupof Hi(k) Zariski dense in Hi as well
(Lemma 1.4) and therefore Stabt

G(x)∩ L(k) is Zariski dense in L. It follows that StabtG(x)(k) is
Zariski dense in Q since radu(Q)(k) is Zariski dense in radu(Q) [SGA3, Exposé XXVI, Cor. 2.7].

(ii) This assertion is obvious. 2

Example 4.13. — In the setting of Example 4.10, letx be a point in the boundary component
Bδ (Qss,k). Recall thatBδ (Qss,k) can be identified withB(PGL(V/W),k). We denote byx
also the corresponding point inB(PGL(V/W),k). Let φ : Q→ PGL(V/W) be the natural map.
Then the preimage of the stabilizer of the pointx in PGL(V/W) underφ is equal to the stabilizer
StabδPGL(V)(x)(k) of x in PGL(V,k).

(4.1.4)We will finally give an explicit description of the group Stabt
G(x)(k) for any pointx of Bt(G,k)

by combining the theories of Borel-Tits and Bruhat-Tits. Weconsider at-relevant parabolic subgroup
Q of G and pick a pointx in the stratumBt(Qss,k). We fix a maximal split torus S in G contained in Q
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and such thatx belongs to the compactified apartmentAt(S,k). We set N= NormG(S), Z = CentG(S)
and let L denote the Levi subgroup of Q containing Z. The Weyl group W of the root systemΦ(G,S)
acts on the set of parabolic subgroups containing S and the stabilizer WQ of Q in W is canonically
isomorphic to the Weyl group of the root systemΦ(L,S). Moreover, the normalizer of S in Q is the
subgroup NQ = N∩Q and we have an exact sequence

1 // Z(k) // NQ(k) // WQ // 1 .

We set L′′ = Rt(Q)∩L and let L′ denote the semisimple subgroup of L generated by the isotropic
quasi-simple components of L on whicht is non-trivial. Both the product morphism L′× L′′ → L
and the morphismπ : L ′ → Q/Rt(Q) induced by the canonical projection of Q onto Q/Rt(Q) are
central isogenies. We set S′ = (S∩ L′)◦ and S′′ = (S∩ L′′)◦. The imageS of S′ in Q/Rt(Q) is a
maximal split torus of Q/Rt(Q) and the homomorphismπ∗ : X∗(S)→ X∗(S′) identifies the root sys-
temsΦ(Q/Rt(Q),S) andΦ(L′,S′). Moreover, for any rootα ∈Φ(L ′,S′), π induces an isomorphism
between the root group Uα in G and the corresponding root groupUα in Q/Rt(Q). We fix a special
point in A(S,k). Bruhat-Tits theory provides us with a decreasing filtration {Uα(k)r}r∈[−∞,+∞] on the
group Uα(k) for each rootα ∈ Φ(G,S). We have Uα(k)−∞ = Uα(k), Uα(k)+∞ = {1} and, for any
r ∈]−∞,+∞[, Uα(k)r is the subgroup of Uα(k) which acts trivially on the half-space{α > e−r} of
A(S,k).

Note that the decomposition

Φ(L,S) = Φ(L′,S′)∪Φ(L′′,S′′)

is precisely the decomposition introduced after Definition3.14: Φ(L ′′,S′′) is the union of all irre-
ducible components ofΦ(L,S) on which the typet has trivial restriction whereasΦ(L ′,S′) is the
union of all irreducible components ofΦ(L,S) on which the typet has non-trivial restriction. The
subgroups W′ and W′′ of WQ stabilizingΦ(L′,S′) andΦ(L′′,S′′) respectively are canonically isomor-
phic to the Weyl groups of the latter root systems and WQ = W′×W′′.

The action of the group N(k) on the apartment A(S,k) extends continuously to an action on the
compactified apartmentAt(S,k): indeed, for anyn ∈ N(k), the automorphism int(n) of Par(G)an

stabilizes the image of the equivariant mapϑt : A(S,k)→ Par(G)an, hence induces an automorphism
of its closureAt(S,k) in Par(G)an. For any pointx of At(S,k), let N(k)x := N(k)∩Stabt

G(x,k) be the
subgroup of N(k) fixing x. We set analogously Z(k)x := Z(k)∩Stabt

G(x,k) and define thelocal Weyl
groupWx as the image of N(k)x in W; we have therefore an exact sequence

1 // Z(k)x // N(k)x // Wx // 1 .

Observe that, ifx belongs to the stratumB(Qss,k), then each element of N(k)x stabilizes Q, thus N(k)x

is a subgroup of NQ(k) by Lemma 4.2. We also clearly have W′′ ⊂Wx, for N(k)x contains the group
NormL′′(S′′)(k), which is mapped onto W′′. It follows that Wx = W′x×W′′, where W′x := Wx∩W′.

Finally, At(S,k)∩Bt(Qss,k) is the apartment of S′ in B(L′,k) = Bt(Qss,k) and is canonically
isomorphic to the quotient of A(S,k) by the linear subspace〈Ct(Q)〉 of Λ(S) by Lemma 4.3. The
choice of an origin in A(S,k) gives therefore an origin in this affine space, and each rootα of Φ(G,S)
belonging to the subsetΦ(L′,S′) defines a function onAt(S,k)∩Bt(Qss,k).

Theorem 4.14. — For any point x inBt(Qss,k)∩At(S,k), the groupStabt
G(x,k) is generated by the

following subgroups ofG(k):

– N(k)x;
– all Uα(k) with α ∈Φ(radu(Q),S);
– all Uα(k) with α ∈Φ(L′′,S′′);
– all Uα(k)− logα(x) with α ∈Φ(L′,S′).
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Proof. Since StabtG(x) is the semi-direct product of radu(Q)an by Lan∩Stabt
G(x), Stabt

G(x)(k) is the
semi-direct product of radu(Q,k) by L(k)x := L(k)∩Stabt

G(x)(k) and it suffices to show that the latter
group coincides with the subgroup F of L(k) generated by N(k)x, all Uα(k) with α ∈ Φ(L′′,S′′) and
all Uα(k)− logα(x) with α ∈Φ(L′,S′). The inclusion F⊂ L(k)x is obvious.

Let us choose a minimal parabolic subgroupP0 in Q/Rt(Q) containingS. Its preimage P0 under
the isogenyπ : L′→Q/Rt(Q) is a minimal parabolic subgroup of L′ containing S′.

First step. For any elementg in L(k)x, the elementπ(g) of
(
Q/Rt(Q)

)
(k) belongs to(

Q/Rt(Q)
)

x(k), hence can be written asπ(g) = u−u+n, with

u− ∈ radu(P
op
0 ,k)x =

(
Q/Rt(Q)

)
x(k)∩ radu(P

op
0 ,k),

u+ ∈ radu(P0,k)x =
(
Q/Rt(Q)

)
x(k)∩ radu(P0,k)

and
n∈ Nx(k) = N(k)∩

(
Q/Rt(Q)

)
x(k)

([BT72], 7.1.4), whereN denotes the normalizer ofS in Q/Rt(Q). Since radu(P
op
0 )(k)x and

radu(P0)(k) are generated by the subgroupsUα(k)− logα(x) with α ∈ −Φ(radu(P0),S) and α ∈
Φ(radu(P0),S) respectively, we may writeu− = π(u−) and u+ = π(u+) with uniquely defined
elements

u− ∈ radu(Pop
0 )(k)x =

〈
Uα(k)− logα(x) ; α ∈ −Φ(radu(P0),S

′)
〉

and
u+ ∈ radu(P0)(k)x =

〈
Uα(k)− logα(x) ; α ∈Φ(radu(P0),S

′)
〉
.

Thus,h= (u−u+)−1g is an element of StabtG(x)(k)∩L(k) whose image in Q/Rt(Q) normalizesS and
it follows thath normalizes the torus S′ in L. Therefore we have:

Stabt
G(x)(k) ⊂ F.(NormL(S′,k)∩Stabt

G(x)(k)).

Second step. The normalizer (centralizer, respectively) of S′ in L is clearly the subgroup of L
generated by L′′ and NormL′(S′) (by L′′ and CentL′(S′) respectively), hence

NormL(S′)/CentL(S′)≃ NormL′(S
′)/CentL′(S

′)

and (
NormL(S′)/CentL(S′)

)
(k) = NormL(S′)(k)/CentL(S′)(k)

is naturally isomorphic to the Weyl group W′ of the root systemΦ(L′,S′). Moreover, NormL(S) ⊂
NormL(S′), CentL(S)⊂ CentL(S′) and the natural morphism

NormL(S)(k)/CentL(S)(k)→ NormL(S′)(k)/CentL(S′)(k)

is the projection of the Weyl group WQ onto its factor W′. It follows that the group

NormL(S′)(k)x := NormL(S′)(k)∩Stabt
G(x)(k)

is an extension of the local Weyl group W′x by

CentL(S′)(k)x := CentL(S)(k)∩Stabt
G(x)(k)

and, since the subgroup N(k)x of NormL(S)(k) surjects onto W′x, the group NormL(S′)(k)x is gen-
erated by N(k)x and CentL(S′)(k)x. Therefore, StabtG(x)(k) is contained in the subgroup of G(k)
generated by F and CentL(S′)(k)∩Stabt

G(x)(k).

Third step. The group H= CentL(S′) = L′′.CentL′(S′) is reductive, S is a maximal split torus and
Φ(H,S) = Φ(L′′,S′′). By Borel-Tits theory [BT65, Théorème 5.15], the group H(k) is generated
by the subgroups Uα(k) with α ∈ Φ(H,S) and by NormH(S)(k). Since the unipotent root group
Uα is contained in Rt(Q) for each rootα ∈ Φ(L′′,S′′), Uα(k) ⊂ Stabt

G(x)(k), and it follows that
H(k)∩Stabt

G(x)(k) is generated by these unipotent subgroups and by NormH(S)(k)∩Stabt
G(x)(k).



58

Therefore, StabtG(x)(k) is contained in the subgroup of G(k) generated by F and NormH(S)(k)∩
Stabt

G(x)(k).

Fourth step. Finally,
NormH(S) = NormL′′(S

′′).CentL′(S
′)

and
CentH(S) = CentL′′(S

′′).CentL′(S
′) = CentL(S),

hence (
NormH(S)/CentH(S)

)
(k) = NormH(S)(k)/CentH(S)(k)

is naturally isomorphic to the Weyl group W′′ of the root systemΦ(L′′,S′′) and the natural map

NormH(S)(k)/CentH(S)(k)→ NormL(S)(k)/CentL(S)(k)

is the injection of W′′ into WQ. It follows that the group

NormH(S)(k)x = NormH(S)(k)∩Stabt
G(x)(k)

is an extension of the local Weyl group W′′x = W′′ by

CentH(S)(k)x = CentH(S)(k)∩Stabt
G(x)(k)

= CentL(S)(k)x

= Z(k)x.

In particular, NormH(S)(k)x is a subgroup of N(k)x, thus StabtG(x)(k) ⊂ F and the proof is complete.
2

The arguments given in the previous proof lead to an extension of Bruhat-Tits’ definition of build-
ings to Berkovich compactifications. Together with the explicit description of the groups Stabt

G(x)(k)
above, the next proposition will later allow us to compare Berkovich compactifications with the ones
defined by the third author (see [RTW2]).

Corollary 4.15. — LetSbe a maximal split torus and let x and y be points inAt(S,k). If there exists
an element g ofG(k) such that gx= y in Bt(G,k), then y= nx for some element n ofN(k).

Consequently, the compactified buildingBt(G,k) is the quotient ofG(k)×At(S,k) by the following
equivalence relation:

(g,x) ∼ (h,y) ⇔
(
∃n∈ N(k), y = nx and g−1hn∈ Stabt

G(x)(k)
)
.

Proof. Let Q and Q′ denote thet-relevant parabolic subgroups of G containing S such thatx ∈
Bt(Qss,k) andy∈Bt(Q′ss,k). The identitygx= y implies Q′ = gQg−1 (Lemma 4.2) and thus there
exists an elementn1 in N(k) such that Q′ = n1Qn−1

1 . If we setz= n−1
1 y, theny = n1z andn−1

1 gx= z,
and therefore we may assume that the pointsx andy lie in the same stratumBt(Qss,k) of Bt(G,k).
This impliesg∈Q(k) by Lemma 4.2.

Our final arguments are essentially the same as those given inthe previous proof, the notation of
which we use again here. Since Q(k) = radu(Q)(k).L(k) and radu(Q)(k) acts trivially onBt(Qss,k),
we may assume thatg lies in L(k). Its imageπ(g) in

(
Q/Rt(Q)

)
(k) satisfiesπ(g)x = y, hence there

exists an elementn of N(k) such thatnx = y and π(g) ∈ n
(
Q/Rt(Q)

)
x(k) (by the very definition

of the buildingB(Q/Rt(Q),k) in [BT72, 7.4.1]). Relying on the decomposition
(
Q/Rt(Q)

)
x(k) =

N(k)xradu(P
op
0 )(k)xradu(P0)(k)x, we may find as in step 1 above unipotent elementsu− andu+ in

Stabt
G(x)(k) such thatπ(g(u−u+)−1) belongs toN(k). If follows thatg(u−u+)−1 belongs to

NormL(S′)(k)⊂ N(k)Rt(Q)

by the last three steps above. We thus can writeg = ng′ with n∈ N(k) andg′ ∈ Stabt
G(x)(k), hence

nx= ng′x = y and the first assertion of the lemma is established.

The second assertion follows immediately from the first. 2
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4.2. Natural fibrations between compactifications

Natural morphisms between flag varieties induce fibrations between Berkovich compactifications
of a building, which we now describe.

(4.2.1)The set of types of parabolic subgroups of G is partially ordered as follows: given two typest
andt ′, we sett 6 t ′ if there exist P∈ Part(G)(ka) and P′ ∈ Part(G)(ka) with P⊂ P′. The maximal type
corresponds to the trivial parabolic subgroup G and the minimal one is given by Borel subgroups.

Let t andt ′ be two types witht 6 t ′. For anyk-scheme S and any typet parabolic subgroup P of
G×k S, there exists a unique typet ′ parabolic subgroup P′ of G×k S with P⊂ P′. The map

πt ′
t,S : Part(G)(S)→ Part ′(G)(S)

so defined is functorial with respect to S, hence comes from ak-morphism

πt ′
t : Part(G)→ Part ′(G)

which obviously sits in a commutative diagram

Part(G)an

πt′
t

��

G

λP′
::vvvvvvvvvv

λP $$IIIIIIIII

Part ′(G)an

where P∈ Part(G)(k), P′ ∈ Part ′(G)(k), λP(g) = gPg−1 andλP′(g) = gP′g−1. This construction pro-
vides us with a continuous and G(k)-equivariant map

πt ′
t : Bt(G,k)→Bt ′(G,k)

such thatπt ′
t ◦ϑt = ϑt ′ .

Remark 4.16. — Since eachk-rational type dominates the typetmin of minimal parabolic subgroups
of G, we have a continuous, surjective and G(k)-equivariant map

πt
tmin

: Btmin(G,k)→Bt(G,k)

for eachk-rational typet. Relying on on this observation,Btmin(G,k) is called themaximal compact-
ification of B(G,k).

(4.2.2)We restrict tok-rational types in this paragraph. We fix twok-rational typest andt ′ with t 6 t ′

and describe the mapπt ′
t : Bt(G,k)→Bt ′(G,k).

Lemma 4.17. — For any parabolic subgroupQ of G, the stratumBt(Qss,k) is mapped onto the
stratumBt ′(Qss,k). Moreover, each t′-relevant subgroup is t-relevant.

Proof. The first assertion follows from the fact that the morphismπt ′
t : Part(G)→ Part ′(G) maps the

subscheme Osct(Q) onto the subscheme Osct ′(Q). This is immediate in terms of functors: for any
k-scheme S and any P∈Osct(Q)(S), the subgroupπt ′

t,S(P)∩(Q×k S) of G×k S contains the parabolic

subgroup P∩ (Q×k S), hence is parabolic. We therefore haveπt ′
t,S(P

′) ∈ Osct ′(Q)(S), and the map

Osct(Q)→Osct ′(Q) is surjective sinceπt ′
t is equivariant and both varieties are homogenous under Q

(Proposition 3.2).
The stabilizer of Osct ′(Q) contains the stabilizer of Osct(Q). If Q is t ′-relevant, then Q=

StabG (Osct ′(Q)), hence Q⊂ StabG(Osct(Q))⊂Q and therefore Q ist-relevant. 2
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Proposition 4.18. — LetQ be a t′-relevant parabolic subgroup ofG and writeQss= H1×H2 (quasi-
isogeny), whereH2 is the largest semisimple factor ofQss to which the restriction of t′ is trivial.

(i) Let t2 denote the restriction of t toH2. We haveBt(Qss,k) = B(H1,k) ×Bt2(H2,k),
Bt ′(Qss,k) = B(H1,k), and the mapπt ′

t is the projection on the first factor.
(ii) The preimage of the stratumBt ′(Qss,k) is the union of all strataBt(Pss,k), whereP runs over

the set of t-relevant parabolic subgroups ofG contained inQ and satisfyingP/rad(Q) = H1×P2

with P2 ∈ Par(H2)(k), hence it is homeomorphic toB(H1,k)×Bt2(H2,k).

Proof. (i) Let t1 and t ′1 denote the restriction oft and t ′ respectively to H1. By construction, the
restriction oft ′ to each almost simple factor of H1 is non-trivial; sincet 6 t ′, this remark holdsa
fortiori for the typet. The schemes Osct(Q), Part(Qss) and Part1(H1)×Part2(H2) are canonically
isomorphic; similarly, the schemes Osct ′(Q), Part ′(Qss) and Part ′1(H1) are canonically isomorphic
(Proposition 3.2). Moreover, the morphism

Part1(H1)×Part2(H2)→ Part ′1(H1)

induced byπt ′
t is obviously the projection on the first factor composed byπt ′1

t1 .
We haveBt(Qss,k) = B(H1,k)×Bt2(H2,k), Bt ′(Qss,k) = B(H1,k) and the restrictions of the

mapsϑt and ϑt ′ to B(H1,k) coincide with the mapsϑt1 and ϑt ′1
respectively by construction (cf.

4.1.1). Then the conclusion follows from commutativity of the diagram

Part1(H1)
an

π
t′1
t1

��

B(H1,k)

ϑt1

88ppppppppppp

ϑt′1 &&MMMMMMMMMM

Part ′1(H1)
an.

(ii) Given at-relevant parabolic subgroup P of G, the stratumBt(Pss,k) is mapped onto the statum
Bt ′(Pss,k). The latter coincides withB(Qss,k) if and only if Q is the smallestt ′-relevant parabolic
subgroup of G containing P, which amounts to saying that Osct ′(P) = Osct ′(Q). In the isogeny
between H1×H2 and Qss, P/rad(Q) corresponds to a parabolic subgroup P1×P2 of H1×H2, where
P1 ∈ Par(H1)(k) and P2 ∈ Par(H2)(k). The condition above amounts to Osct ′(P1) = Part ′(H1), hence
to P1 = H1 by Lemma 4.19 below.

We have therefore

(πt ′
t )−1(Bt ′(Qss,k)) =

⋃

P2∈Par(H2)(k)

B(H1,k)×Bt2((P2)ss,k)

= B(H1,k)×Bt2(H2,k).

2

Lemma 4.19. — Let t denote a k-rational type of parabolic subgroups ofG and assume that t is non-
degenerate (i.e., is non-trivial on each almost-simple component ofG). For any parabolic subgroup
Q of G, the following conditions are equivalent:

(i) Osct(Q) = Part(G) ;
(ii) Q = G.

Proof. Consider a maximal split torus S of G contained in Q and let P denote a parabolic subgroup
of G of typet, containing S and osculatory with Q. It follows from Proposition 3.4 that Osct(Q) and
Part(G) coincide if and only if

Φ(radu(Pop),S)⊂Φ(Q,S).
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Since P and Q are osculatory, radu(Pop)∩ radu(Q) = {1} and the latter condition is thus equivalent to

Φ(radu(Pop),S)⊂Φ(LQ,S),

where LQ denotes the Levi subgroup of Q containing CentG(S). Now, since P induces a non-trivial
parabolic subgroup on each almost-simple component of G,Φ(radu(Pop),S) spans a subgroup of
finite index in X∗(S) by Lemma 3.15, henceΦ(LQ,S) spans X∗(S)⊗ZQ and Q= G. 2

4.3. The mixed Bruhat decomposition

Let us choose as above ak-rational type of parabolic subgroups, sayt, and let us consider the
corresponding compactificationB(G,k)→Bt(G,k).

Notation. We adopt the following conventions throughout this paragraph: for any stratumΣ of
Bt(G,k), we let PΣ denote the correspondingt-relevant parabolic subgroup of G and set RΣ = Rt(PΣ).
For any pointx of Bt(G,k), we letΣ(x) denote the stratum — possibly the buildingBt(G,k) — con-
tainingx and we set Gx = Stabt

G(x).

Proposition 4.20. — Let x and y be any points inBt(G,k).

(i) There exists a maximal split torusS in G such that x and y lie inAt(S,k).
(ii) The groupGx(k) acts transitively on the compactified apartments containing x.

(iii) Denoting byN the normalizer ofS in G, we have the following decomposition:

G(k) = Gx(k)N(k)Gy(k).

Let us start with the following statement.

Lemma 4.21. — Let A be the compactified apartment associated with a maximal split torus S and
let ξ ∈ A.

(i) For any x∈ A, we have:G(k) = Gξ (k)N(k)Gx(k).
(ii) For anyη ∈Bt(G,k) such thatΣ(η)∩A is an apartment inΣ(η), there exists g∈PΣ(η)∩Gξ (k)

such that g.η ∈ A.

Proof of lemma. For anyξ ∈Bt(G,k), there exists a point̃ξ in the maximal compactification of
B(G,k) such that StabG(k)(ξ̃ ) ⊂ Gξ (k) (see Remark 4.16). Therefore it is enough to work with the
maximalcompactification.

(i) Let us denote by H the subset Gξ (k)N(k)Gx(k). We have to show that H= G(k). Let us denote
by M the reductive Levi factor of PΣ(ξ ) determined by S. For any vector chamber D in A, we denote
by U+

D(k) the unipotent group generated by all the corresponding positive root groups. We choose D
so that we have: radu(PΣ(ξ ))(k)⊂ U+

D(k)⊂ PΣ(ξ )(k).
By definition, H contains N(k)Gx(k) and by the Iwasawa decomposition [BT72, Prop. 7.3.1 (i)] we

have: G(k)= U+
D(k)N(k)Gx(k). Therefore it remains to show that for anyu∈U+

D(k), we haveuH⊂H.
Let u∈ U+

D(k) andh∈ H. We writeu = u′ξ v+ with u′ξ ∈ radu(PΣ(ξ ))(k) andv+ ∈M(k)∩U+
D(k), and

alsoh = hξ nhx with hξ ∈Gξ (k), n∈ N(k) andhx ∈Gx(k). For the factorhξ , we can write precisely:
hξ = uξ mξ with uξ ∈ radu(PΣ(ξ ))(k) andmξ ∈Mξ (k). Then we have:

uh= u′ξ v+uξ mξ nhx = (u′ξ v+uξ (v+)−1)(v+mξ )(nhx).

Since radu(PΣ(ξ ))(k) is normalized by M(k), the first factorrξ = u′ξ v+uξ (v+)−1 of the right hand-side

belongs to Gξ (k). By Bruhat decomposition in M(k) [BT72, Th. 7.3.4 (i)], for anyζ ∈ A ∩Σ(ξ )

we havev+mξ = ℓξ n′ℓζ , with ℓξ ∈ Lξ (k), n′ ∈ N(k)∩M(k) andℓζ ∈ Lζ (k), where L denotes the
semisimple Levi factor L= [M,M]. Therefore, for anyζ ∈ A∩Σ(ξ ), we can write

uh= rξ ℓξ n′ℓζ nhx = (rξ ℓξ )(n′n)(n−1ℓζ nhx).



62

The fixed-point set in A of the bounded subgroup Lζ (k) is a non-empty intersection of root half-
spaces, which is a fundamental domain for the action by translations of S(k)∩ L(k) on A [BT72,
Prop. 7.6.4]. We thus have the freedom to chooseζ ∈ A ∩Σ(ξ ) so thatn−1ℓζ n fixesx. For such a
choice, we have:rξ ℓξ ∈Gξ (k), n′n∈ N(k) andn−1ℓζ ngx ∈Gx(k), as required.

(ii) First, any pointη ∈B(G,k) clearly satisfies the hypothesis in claim (ii). Moreover if both ξ
andη belong to the buildingB(G,k), then the conclusion of the lemma follows from the facts that
there is an apartment containing both of them [BT72, Th. 7.4.18 (i)] and that the stabilizer ofξ in
G(k) acts transitively on the apartments containingξ [BT72, Cor. 7.4.9]. We henceforth assume that
ξ andη are not simultaneously contained inB(G,k).

If ξ ∈A, the conclusion follows from (i): there existg∈G(k) andζ ∈A∩Σ(η) such thatg.ζ = η ;
then we can writeg= gξ ngζ with gξ ∈Gξ (k)∩PΣ(η), n∈StabG(k)(A) andgζ ∈Gζ (k), which provides
η = gξ .(n.ζ ). To finish the proof, we assume that neitherξ norη belong to the buildingB(G,k) and
argue by induction on thek-rank of G.

First, we assume that this rank is equal to 1. Sinceη 6∈B(G,k), thenΣ(η) = {η} and the hypoth-
esis thatΣ(η)∩A is an apartment inΣ(η) simply means thatη ∈ A, so there is nothing to do.

We assume now that thek-rank of G is> 2 and we denote by L′ the semisimple Levi factor of
PΣ(η) determined by S. Then there is a pointζ in the closure ofΣ(η)∩A such that the stabilizer of
ζ in L′(k) fixes ξ . To see this, recall that A′ = A ∩Σ(η) is canonically isomorphic to the quotient
of A by some linear subspace F and observe that, since we work with the maximal compactification,
the projectionp : A → A′ extends continuously to a mapA → A′; indeed, the prefan on A deduced
from the fanF ′

∅ on A′ consists of unions of cones occuring inF∅ and thusp extends to a map

betweenA = A
F∅ andA′ = A′

F ′
∅ . By the induction hypothesis, we can findg ∈ L′ζ (k) such that

g.η ∈ Σ(η)∩A, and the conclusion follows from this, since L′ζ (k)⊂Gξ (k). 2

Here is a proof in the case when the valuation is discrete. We mention it because it is more
geometric (using galleries).

Second proof of lemma (discrete valuation). We argue by induction on the minimal lengthℓ of a
gallery inΣ(η) connectingΣ(η)∩A to η (by definition, such a gallery is a sequencea1,a2, ...am of
consecutively adjacent alcoves inΣ(η), with a1 containing a codimension one face inA ∩Σ(η) and
η ∈ am). If ℓ = 0, we can simply takeg = 1. We now assume thatℓ > 1 and choose a corresponding
gallerya1,a2, ...aℓ as above. This codimension one face ina1∩A defines a wall in the Bruhat-Tits
building Σ(η), which itself defines a pair of opposite affine roots, say{±α}, in the root system of
(PΣ(η)/RΣ(η))(k) with respect to S(k). This defines a wall in the apartment A and at least one of
the two closed root half-spaces ofA bounded by this wall, say the one defined byα , containsξ .
We therefore have Uα(k) ⊂ PΣ(η)(k)∩Gξ (k). Moreover, using Bruhat-Tits theory in the boundary
stratumΣ(ξ ), there exists an elementu∈ Uα(k)−{1} such thatu.a1 ⊂ A ∩Σ(ξ ) Applying u to the
minimal gallerya1,a2, ...aℓ and forgetting the first alcove, we see that the pointu.η can be connected
to A ∩Σ(η) by a gallery of length6 ℓ−1, so that we can apply our induction hypothesis to find an
elementh∈ PΣ(η)∩Gξ (k) such thathu.η ∈ A∩Σ(η). Then we can finally takeg = hu. 2

We can now proceed to the proof of the proposition.

Proof. As a preliminary, we show that ifΣ andΣ′ are strata in the compactificationBt(G,k), then
there exists an apartment A of the buildingB(G,k) such thatA ∩Σ is an apartment of the building
Σ andA∩Σ′ is an apartment ofΣ′. Indeed, let PΣ and PΣ′ be the parabolic subgroup of G stabilizing
Σ andΣ′, respectively; it is enough to consider a maximal split torus S contained in PΣ ∩PΣ′. The
existence of such a maximal split torus (see [Bor91, 20.7]) corresponds to the fact that any two facets
in the spherical building of P are contained in an apartment.The image, say SΣ and SΣ′ , of S by the
canonical projectionπΣ : PΣ ։ PΣ/RΣ andπΣ′ : PΣ′ ։ PΣ′/RΣ′ , respectively, is then a maximal split
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torus of the semisimple quotient PΣ/RΣ (the semsimple quotient PΣ′/RΣ′ , respectively) and we have:
A(S,k)∩Σ = A(SΣ,k) (A(S,k)∩Σ′ = A(SΣ′,k), respectively).

(i) By the preliminary claim, there exists an apartment A such that A ∩ Σ(x) and A ∩ Σ(y) are
apartments inΣ(x) andΣ(y), respectively. Let us pick an auxiliary pointz∈ A ∩Σ(x). By Lemma
4.21 withξ = z andη = y, we can findg∈ PΣ(y) ∩Gz(k) such thatg.y∈ A ∩Σ(y) and by the same
lemma withξ = g.y andη = g.x we can findh∈PΣ(η)∩Gg.y(k) such thathg.x∈A∩Σ(η). We finally
have:x,y∈ g−1h−1A.

(ii) The pointx lies in the closureA0 of some apartment A0, which itself corresponds to a maximal
split torus S0 in G. Let A be an arbitrary apartment such thatx ∈ A; it corresponds to a maximal
split torus S in G. Denoting byπΣ(x) the canonical map PΣ(x) ։ PΣ(x)/RΣ(x), we find thatπΣ(x)(S) is a
maximal split torus of PΣ(x)/RΣ(x). It follows from classical Bruhat-Tits theory [BT72, Cor. 7.4.9] that
Gx(k) acts transitively on the apartments of the stratumΣ(x) containingx, so there existsg∈ Gx(k)
such thatπΣ(x)(gSg−1) = πΣ(x)(S0), meaning that both tori S0 andgSg−1 lie in the same algebraick-
group S0⋉RΣ(x). The group RΣ(x)(k) acts transitively (by conjugation) on the maximalk-split tori of
S0⋉RΣ(x), so we can findu∈RΣ(x)(k) such that(ug)S(ug)−1 = S0. It remains to note thatug∈Gx(k)
since RΣ(x)(k) fixesΣ(x) pointwise.

(iii) Let g∈ G(k). By (i), there exists a compactified apartmentA containingx andy and a com-
pactified apartmentA′ containingg · y andx. By (ii), we can find an elementh ∈ Gx(k) such that
hA = A′. Applying Corollary 4.15 to the pointsy andh−1g · y in A, we get an elementn in N(k)
satisfyingn−1h−1g·y = y, and therefore

g = hn(n−1h−1g) ∈Gx(k)N(k)Gy(k).

2

Remark 4.22. — Geometrically, the proof of (ii) can be described as follows. Fix a reference apart-
ment A0 whose closure inBt(G,k) containsx, and pick an arbitrary apartment A with the same
property. First, we foldA ∩Σ(x) onto A0∩Σ(x) by using actions of root group elements from the
stabilizer ofx in the Levi factor of PΣ attached toA0∩ Σ(x) (this transitivity property for actions
of parahoric subgroups is, so to speak, "Bruhat-Tits theoryin a stratum at infinity"). Then we use
elements of the unipotent radical of PΣ to fold A onto A0.

APPENDIX A: ON FAITHFULLY FLAT DESCENT IN BERKOVICH GEOMETRY

In this first appendix, we develop the formalism of faithfully flat descent as introduced by
Grothendieck [SGA1, VIII], in the context of Berkovich analytic geometry. Sometechnicalities in
connection with the Banach module or Banach algebra structures we consider have to be taken into
account. English references for the classical case from algebraic geometry are [Wat79] for affine
schemes and [BLR90] in general.

(A.1) Let k denote a non-Archimedean field and let X= M (A) be ak-affinoid space. For any non-
Archimedean extension K/k, the preimage of ak-affinoid domain D⊂ X under the canonical projec-
tion prK/k : XK = X⊗̂kK→ X is a K-affinoid domain in XK since the functor Fpr−1

K/k(D) is easily seen

to be represented by the pair(AD⊗̂kK,ϕD⊗̂idK). The converse assertion holds if the extension K/k
is affinoid, i.e., if K is ak-affinoid algebra, and this appendix is devoted to the proof of this fact.
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Proposition A.1— LetX be a k-affinoid space and letK/k be an affinoid extension. A subsetD of X
is a k-affinoid domain if and only if the subsetpr−1

K/k(D) of XK is a K-affinoid domain.

Lemma A.2— LetK/k be a non-Archimedean extension. The following conditionsare equivalent:

(i) the extension is affinoid;
(ii) there exist real positive numbers r1, . . . , rn, linearly independent in(R>0/|k×|)⊗ZQ and such

that the fieldK is a finite extension of kr ;
(iii) there exists a tower of non-Archimedean extensions

K = K(n)⊃ K(n−1)⊃ . . .⊃ K(1)⊃ K{0} = k

such thatK(i)/K(i−1) is finite orK(i) = K(i−1)r for somer ∈R>0−|K(i−1)×|Q.

Proof. The implications (ii)⇒ (iii) ⇒ (i) are obvious since each extension K(i)/K(i−1) is affinoid.
The implication (i)⇒ (ii) is established in [Duc08]. 2

(A.2) It seems adequate to begin by a brief review of faithfully flatdescent in algebraic geometry (see
also [SGA1, VIII] and [BLR90, §6]).

Faithfully flat descent in algebraic geometry.If A is a ring, we letMod(A) denote the category of
A-modules. Any ring homomorphismε : A→ A′ defines a functor

ε∗ : Mod(A)→Mod(A′), M 7→ ε∗(M) = M⊗A A′.

The content of Grothendieck’s faithfully flat descent theory is that the categoryMod(A) can be re-
covered from the categoryMod(A′) if the homomorphismε is faithfully flat, which is to say that
the functorε∗ is exact — i.e., it commutes with taking kernels and images — and faithful — i.e.,
M⊗A A′ = 0 if and only if M = 0.

Consider the natural diagram

A
ε // A′

p1 //

p2
// A′⊗A A′

p13 //

p12 //

p23
//
A′⊗A A′⊗A A′,

where the A-linear maps are defined byp1(a) = a⊗1, p2(a) = 1⊗a and

p12(a⊗b) = a⊗b⊗1, p23(a⊗b) = 1⊗a⊗b, p13(a⊗b) = a⊗1⊗b,

so that
p12p1 = p13p1 = q1, p12p2 = p23p1 = q2 and p23p2 = p13p2 = q3,

where
q1(a) = a⊗1⊗1, q2(a) = 1⊗a⊗1, and q3(a) = 1⊗1⊗a.

A descent datumon an A′-module M is an isomorphism of A′⊗A A′-modulesδ : p∗1M →̃ p∗2M
satisfying the following cocyle condition:

p∗23(δ )◦ p∗12(δ ) = p∗13(δ ).

We denote byMod(A′)desc the category whose objects are pairs(M,δ ) consisting of an A′-module
equipped with a descent datum and in which the morphisms between two objects(M,δ ) and(N,δ ′)
are the A′-linear maps M→ N compatible with descent data (in an obvious way). For any A-module

M, the canonical isomorphismp∗1(ε∗M)
∼ // p∗2(ε∗M) provides a descent datumδM on the A′-

moduleε∗(M) and the A′-linear mapε∗(ϕ) : ε∗M → ε∗N induced by an A-linear mapϕ : M → N
is automatically compatible with the descent dataδM , δN. Hence we get a functorε∗ : Mod(A)→
Mod(A′)desc, M 7→ (ε∗M,δM).

Theorem A.3— The functorε∗ is an equivalence of categories. Moreover there exists (up to a unique
isomorphism) at most one descent datum on a given A′-module.

This theorem follows readily from the next two statements:
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(i) For any A-module M, the sequence

0 // M
εM // ε∗M

ϕM // p∗2(ε∗M),

whereεM = idM⊗ ε andϕM = idM⊗ p2−δM ◦ (idM⊗ p1), is exact.
(ii) For any A′-module M equipped with a descent datumδ , let M0 be the kernel of the map

ϕδ = idM⊗ p2−δ ◦ (idM⊗ p1) : M −→ p∗2M;

then the canonical mapε∗M0 = M0⊗A A′→M, which is automatically compatible with the descent
dataδ andδM0, is an isomorphism.

First step— We begin by assuming that the homomorphismε admits a sectionσ . Defining the
mapτ : A′⊗A A′→ A′ by τ(a⊗b) = σ(a)b and settingσM = idM ⊗σ andτM = idM ⊗ τ , we have
σM ◦ εM = idM andτM ◦ϕM = idε∗M− εM ◦σM , hence the sequence (i) is exact.

The descent datumδ induces an isomorphismτ∗(δ ) between the A′-modulesτ∗(p∗1M) = ε∗(σ ∗M)
andτ∗(p∗2M) = M. Thanks to the cocycle condition satisfied byδ , this isomorphism is compatible
with the descent dataδ and δσ∗M ; in view of (i), it induces therefore an A-module isomorphism
betweenσ ∗M and M0. Hence(M,δ ) is canonically isomorphic to(ε∗M0,δM0) and descent data on
A′-modules are therefore unique up to a unique isomorphism.

Second step— We now rely on faithful flatness of A′ over A to deduce the general case from
the first step. Indeed, the first assertion is true if and only if the sequence is exact after applyingε∗
(“assertionε∗(i)”) whereas the second assertion is true if and only if the canonical mapε∗(ε∗M0)→
ε∗M is an isomorphism (“assertionε∗(ii)”). Thanks to the associativity of tensor product and tothe
canonical identification M⊗′A A′ = M for any A′-module M′, assertionε∗(i) is exactly assertion (i)
if we consider the morphismp1 : A′→ A′⊗A A′ and the A′-moduleε∗M instead of the morphism
ε : A→ A′ and the A-module M. By the same argument,ε∗(δ ) is a descent datum on the A′⊗A A′-
modulep∗1M′ = ε∗(ε∗M) with respect to the morphismp1 and, sinceε∗M0 is the kernel ofε∗(ϕδ ) =
ϕε∗(δ ), assertionε∗(ii) is precisely assertion (ii) if we consider the morphismp1 and the A′⊗A A′-
modulep∗1M instead of the the morphismε and the A′-module M. But assertionsε∗(i) andε∗(ii) are
true since the morphismp1 has an obvious section; assertions (i) and (ii) are therefore true and the
theorem is proved. 2

Remark A.4— 1. It is worth recalling that faithfully flat descent includes Galois descent as a special
case. Indeed, if L/K is a finite Galois extension with group G, the map

L⊗K L ∼ // ∏
g∈G

L, a⊗b 7→ (g(a)b)g

is by definition an isomorphism of K-algebras and, if M is an L-module,

– an L⊗K L-isomorphismδ : p∗1M→̃p∗2M is nothing but a collection(δg)g∈G of K-automorphisms
of M such thatδg(ax) = g(a)δg(x) for anya∈ L, g∈G andx∈M;

– δ is a descent datum, i.e., it satisfies the cocycle condition,if and only if δgh = δg ◦ δh for any
g,h∈G.

In other words, a descent datum on an L-module M is nothing butan action of G on M via semilin-
ear automorphisms. Moreover, ifδ = (δg)g∈G is a descent datum on M, then Ker(ϕδ ) is the K-module
consisting of all elementsx in M such thatδg(x) = x for anyg∈G.

2. Faithfully flat descent applies equally well to algebras:indeed, the functorε : Mod(A)→
Mod(A′)descobviously induces an equivalence between the subcategories Alg(A) andAlg(A′)desc if
we restrict ourselves to descent data which are isomorphisms of A′⊗A A′-algebras.

(A.3) non-Archimedean field extensions.We consider now a non-Archimedean extension K/k and we
adapt the algebraic arguments above to the functor

BMod(k)→ BMod(K), M 7→M⊗̂kK.
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Working with completed tensor products instead of standardtensor products requires only minor
modifications as soon as one knows that this functor is exact on the subcategoryBModst(k); this
nontrivial fact is due to L. Gruson [Gru66].
Lemma A.5— LetK/k be a non-Archimedean extension.

(i) The functor
ε∗ : BMod(k)→ BMod(K), M 7→M⊗̂kK

transforms strict exact sequences of k-modules into strictexact sequences ofK-modules.
(ii) For any Banach k-moduleM, the canonical homomorphismM→ ε∗M is an isometric injection.

In particular, the functorε∗ is faithful.
(iii) A sequence of Banach k-modules is strict and exact if and onlyif it is strict and exact after

applyingε∗.

Proof. (i) This is proved by Gruson in [Gru66, Sect. 3] and the argument goes as follows.

Let 0 // M′
u // M

v // M′′ // 0 be a short exact and strict sequence of Banachk-
modules; modifying norms in their equivalence classes if necessary, we can assume that bothu andv
are isometric. The sequence

0 // M′⊗̂kN
u⊗̂idN // M⊗̂kN

v⊗̂idN // M′′⊗̂kN // 0

is obviously exact and isometric if N is a finite dimensional Banachk-module, since N is then the
direct sum of a finite number of copies ofk. Having proved that any Banachk-module N is the limit
of a direct system(N•) of finite dimensional Banachk-modules, one gets a short exact and isometric
sequence

0 // M′⊗̂kN•
u⊗̂idN• // M⊗̂kN•

v⊗̂idN•// M′′⊗̂kN• // 0

of direct systems of Banachk-modules. In this situation, taking limits preserves exactness as well
as norms and we conclude from the commutativity of completedtensor products with limits that the
sequence

0 // M′⊗̂kN
u⊗̂idN // M⊗̂kN

v⊗̂idN // M′′⊗̂kN // 0

is exact and isometric.
(ii) Pick a direct system M• of finite dimensional Banachk-modules with limit M. Since the

assertion is obvious as long as M is decomposable, we get an isometric exact sequence of direct sys-
tems 0 // M• // M•⊗̂kK and, taking limits, we conclude that the canonical homomorphism

M→M⊗̂kK is an isometric injection.
(iii) If a boundedk-linear mapu : M → N between Banachk-modules is strict, then the bounded

K-linear mapuK = u⊗̂kK is strict thanks to the exactness property of the functor· ⊗̂kK on BModst(k).
Conversely, consider the commutative diagram

0 // M/ker(u) //

u

��

(M/ker(u)) ⊗̂kK =
(
M⊗̂kK

)
/ker(uK)

uK

��
0 // N // N⊗̂kK

,

in which rows are exact and isometric; if the mapuK is strict, then so isu and the conclusion follow
from (i) and (ii). 2

The definition of a descent datum is formally the same as in thealgebraic situation.

Proposition A.6— LetK/k be an extension of non-Archimedean fields. The functor

BMod(k)→ BMod(K)desc, M 7→ (M,δM)



67

is an equivalence of categories.

Proof. By the same general arguments as in the proof of Theorem A.3,the proposition follows from
the next two assertions.

(i) For any Banachk-module M, the sequence

(S) 0 // M
εM // ε∗M

ϕM // p∗2M

is strict and exact.
(ii) For any K′-module M equipped with a descent datumδ , let M0 be the kernel of the map

ϕδ = idM⊗ p2−δ ◦ (idM⊗ p1) : M −→ p∗2M.

Then the canonical mapε∗M0 = M0⊗̂kK→M, which is automatically compatible with the descent
dataδ andδM0, is a (strict) isomorphism.

As in the algebraic situation above, these assertions are true as soon asε is any morphism of Banach
k-algebras admitting a section; they are therefore true if one substitutes the field extensionε : k→ K
and the Banachk-module M (the Banach K-module with descent datum(M,δ ), respectively) by the
morphismp1 : K→ K⊗̂kK and the Banach K-moduleε∗M (the Banach K̂⊗kK-module with descent
datum(p∗1M, p∗1(δ )), respectively). Thanks to the associativity of completed tensor product and to
the canonical identification M̂⊗KK = M for any Banach K-module M, the new sequences relative to
p1 : K → K⊗̂kK are exactly the ones obtained by applying the functorε∗ to the former sequences,
relative toε : k→ K. Therefore (i) and (ii) follow from Lemma A.5. 2

The following slightly more precise result will be useful inthe study of maps between compactifi-
cations.

Proposition A.7— Let K/k be an extension of non-Archimedean fields and letM be a Banach
K-module equipped with a descent datumδ . If δ is an isometry, then the canonical isomorphism
Ker(ϕδ )⊗̂kK→̃M is an isometry.

Proof. If A is a Banach ring and if we letBMod1(A) denote the subcategory ofBMod(A) in which
morphisms are required to be contractions (i.e., to have norm at most one), then a morphism between
two Banach A-modules is an isometric isomorphism if and onlyif it is an isomorphism in the cat-
egoryBMod1(A). According to this observation, our assertion will follow from descent theory for
the categoriesBMod1(k) andBMod1(K) instead ofBMod(k) andBMod(K). Since the canonical
morphismsε , p1, p2, p12, p23 and p13 are contractions, we can apply the same arguments as in the
proposition above to deduce that, indeed, the functorε∗ defines an equivalence between the categories
BMod1(k) andBMod1(K). 2

Finally, if the non-Archimedean extension K/k is affinoid, then affinoid algebras behave well under
descent.

Proposition A.8— Let K/k be an affinoid extension. A Banach k-algebraA is k-affinoid if and only
if the BanachK-algebraA⊗̂kK is K-affinoid.

Proof. When K= kr with r ∈R>0−|k×|Q, this statement is [Ber90, Corollary 2.1.8]. The proof given
there works more generally for any affinoid extension K/k once it has been noticed that K contains a
dense and finitely generatedk-subalgebra. 2

Corollary A.9 — Let K/k be a non-Archimedean extension. The functor from Banach k-algebras
to BanachK-algebras equipped with descent data is an equivalence of categories. Moreover, if the
extension is affinoid, this functor maps k-affinoid algebrasontoK-affinoid algebras.

Proof. By the same argument as in Remark A.4, it follows from Proposition A.6 that a Banach
K-algebra AK with a descent datum comes from a Banachk-algebra A. Moreover, in view of the
previous proposition, A is ak-affinoid algebra if AK is a K-affinoid algebra and if the extension K/k
is affinoid. 2
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We can now go back to our main technical descent result.

Proof of Proposition A.1.Let D be a subset of X such that D′ = pr−1
K/k(D) is a K-affinoid domain in

X′ = X⊗̂kK and denote by(AD′ ,ϕ ′) a pair representing the functor FD′ : Aff (K)→ Sets. Denoting as
above byp1 andp2 the two canonical maps from K to K̂⊗kK as well as the corresponding projections
X′×X X′ = X⊗̂kK⊗̂kK→ X′,

HomK⊗̂kK(p∗i A,B) = HomK(A,B(i)) (i ∈ {1,2})

for any Banach K-algebra A and any Banach K⊗̂kK-algebra B, where B(i) stands for B seen as a
K-algebra via the mappi . Hence the pair(p∗i AD′ , p∗i (ϕV ′) represents the functor Fp−1

i (D′). Since

p1◦prK/k = p2◦prK/k, we havep−1(D′) = p−1
2 (D′) and thus there exists an isomorphism of Banach

K⊗̂kK-algebras

δ : p∗1AV ′
∼ // p∗2AD′

such thatδ ◦ p∗1(ϕD′) = p∗2(ϕD′) ◦ δA. If we let as aboveq1, q2 andq3 denote the three canonical
projections from X′×X X′×X X′ onto X′, thenq−1

1 (D′) = q−1
2 (D′) = q−1

3 (D′) and it follows thatδ
satisfies the cocyle condition defining descent data. Henceδ is a descent datum on AD′. One checks
similarly that the mapϕD′ : A→ AV ′ is compatible with descent data.

Corollary 9 applies here, and thus we get ak-affinoid algebra AD together with a boundedk-
homomorphismϕ : A→ AD which induce AD′ andϕD′ after base-change to K. It also follows from
this corollary that, for any affinoidk-algebra B, a boundedk-morphismϕ : A→ B factors throughϕD

if and only if the morphismε∗(ϕ) factors throughε∗(ϕD) = ϕD′ ; since this last condition is equivalent
to the inclusion of pr−1

K/k(im(aϕ)) = im(a(ε∗(ϕ))) into pr−1
K/k(D) = D′, we deduce from the surjectivity

of the map prK/k thatϕ factors throughϕD if and only if im(aϕ) is contained in D, i.e., if and only if
ϕ ∈ FD(B). Hence the pair(AD,ϕD) represents the functor FD, which completes the proof. 2

(A.4) We conclude this section with a technical result which follows easily from Proposition A.7. The
norm of a Banachk-algebra A is said to beuniversally multiplicativeif, for any non-Archimedean
extension K/k, the norm of the Banach K-algebra Â⊗kK is multiplicative.

Lemma A.10— Let k′/k be a finite Galois extension and letA′ be a Banach k′-algebra equipped with
a descent datumδ . We denote byA the Banach k-algebra such that(A′,δ )≃ (A⊗k k′,δA).

(i) If the norm ofA′ is multiplicative, then the descent datum is an isometry.
(ii) If the norm ofA′ is universally multiplicative, then the norm ofA is universally multiplicative.

Proof. (i) By definition, the descent datumδ is an isomorphism of Banachk′ ⊗k k′-algebras
p∗1A′→̃p∗2A′ satisfying the natural cocycle condition, wherep1 and p2 are the canonical homomor-
phismsk′→ k′⊗k k′. Sincek′/k is a finite Galois extension,k′⊗k k′ is isometric to the product of a
[k′ : k] copies ofk′ and thus the Banachk-algebrap∗1A′ = A′⊗k′,p1 (k′⊗k′) is isometric to the product
of [k′ : k] copies of A′. The same argument applies also top∗2A′.

Now, observe that the norm of A′ coincides with the spectral norm since it is multiplicative. This
remains true for the product of a finite number of copies of A′ since the induced norm is power-
multiplicative and therefore the norms on the Banachk′-algebrasp∗1A′ and p∗2A′ coincide with the
spectral norms. Since any homomorphism of Banach algebras lowers the spectral (semi-)norms,
isomorphisms are isometries with respect to the spectral (semi-)norms and we conclude that our
descent datumδ is an isometry.

(ii) By construction, we have a canonical isometric monomorphism A →֒ A′ and saying that the
descent datum is isometric amounts to saying that the induced isomorphism A⊗k k′→ A′ is an isom-
etry.

Consider now a non-Archimedean extension K/k and pick a non-Archimedean field K′ extending
both k′ and K. By assumption, the norm on A′⊗̂k′K′ is multiplicative. Thanks to the canonical
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isometric monomorphism(A⊗̂kK)⊗̂KK′ ≃ A⊗̂kK′, it suffices to show that the norm of Â⊗kK′ is
multiplicative to deduce that the norm of Â⊗kK is multiplicative. Since Â⊗kK′ is isometric to(A⊗k

k′)⊗̂
′
kK
′, the conclusion follows from the isometry A⊗k k′ ≃ A′ and our initial assumption. 2

APPENDIX B: ON FANS

This second appendix deals with the technicalities useful to compactify vector spaces by means of
the notion of a fan. We use it in the case when the fan comes fromLie theory, that is when the ambient
space is the Coxeter complex of a spherical root system, in which roots are seen as linear forms.

(B.1) Let M be a free abelian group of finite rank. We equip the abelian groupΛ = HomAb(M,R>0)
with the structure of a real vector space by settingλ .ϕ = ϕλ for anyλ ∈R, ϕ ∈ Λ.

A (rational)polyhedral coneis a subset ofΛ defined by a finite number of inequalitiesϕ 6 1 with
ϕ ∈M. A faceof a polyhedral cone C is the intersection of C with a hyperplane{ϕ = 1}, whereϕ is
an element of M such thatϕ|C 6 1. The cone C isstrictly convexif it contains no line.

For each strictly convex polyhedral cone C inΛ,

SC = {ϕ ∈M |ϕ(u) 6 1 for all u∈C}

is a semigroup in M which spans M as a group and which is finitelygenerated (Gordan’s Lemma).
Besides,

C = {u∈ Λ |ϕ(u) 6 1 for all ϕ ∈ SC}.

If (ϕi)i∈I is a set of generators of the semigroup SC, each face F of C can be described by equalities
ϕi = 1 with i running over a subset of I. Since SC is finitely generated, the set of faces of C is therefore
finite.

Remark B.1— Let C be a strictly convex polyhedral cone and consider a face F of C. If F 6= C, there
exists by definition an elementϕ of SC such thatϕF = 1 andϕC−F < 1. Moreover, for anyψ ∈M
whose restriction to F is 1, one can find a natural numbern such that(nϕ +ψ)F 6 1 on C: indeed, on
can find such a number so thatnϕ +ψ is not greater than 1 on any given ray (a one dimensional face)
of C and, since the set of rays is finite, there exists an uniform n.

(B.2) A fan on Λ is a finite familyF of polyhedral cones satisfying the following conditions:

– each cone is strictly convex;
– the union of all these cones coversΛ;
– for each cones C,C′ ∈F , C∩C′ is a face of C and C′;
– each face of a cone C∈F belongs toF .

To any fanF on the vector spaceΛ corresponds a compactificationΛF
of Λ which we now

describe.
Letting Mon denote the category of unitary monoids, thecanonical compactificationof a polyhe-

dral cone C is defined as the set
C = HomMon(SC, [0,1])

of all morphisms of unitary monoids SC→ [0,1], equipped with the coarsest topology for which
each evaluation mapC→ [0,1], u 7→ ϕ(u), is continuous, whereϕ ∈ SC. This topological space is
compact since it can be canonically identified with a closed subspace of the product space[0,1]SC.
The canonical map

C→ C, u 7→ (ϕ 7→ ϕ(u))
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identifies C homeomorphically with the open subset HomMon(SC, ]0,1]) of HomMon(SC, [0,1]) (that
this subset is open follows from the finite generation of SC).

Lemma B.2— LetC be a strictly convex polyhedral cone andF a face ofC.

(i) There exists a unique continuous mapF→ C extending the inclusionF →֒ C. This map is a
homeomorphism betweenF and the closure ofF in C.

(ii) Let SF
C denote the subset ofSC consisting of those elementsϕ such thatϕ|F = 1 and let 〈F〉

denote the linear subspace ofΛ generated byF. The set

CF = {u∈C | ϕ(u) > 0 for all ϕ ∈ SF
C andϕ(u) = 0 for all ϕ ∈ SC−SF

C}

is canonically identified with a strictly convex polyhedralcone in the vector space

Λ/〈F〉= HomMon(SF
C,R>0).

(iii) If we letF • denote the set of faces ofC,

C =
⊔

F∈F •

CF.

(iv) For any coneC∈F and any facesF,F′ of C,

CF∩F′ =

{
F′F if F⊂ F′

∅ otherwise

in C.

Proof. (i) To the inclusion F⊂ C corresponds an inclusion SC⊂ SF, hence a natural continuous map

i : F = HomMon(SF, [0,1])→ HomMon(SC, [0,1]) = C

extending the inclusion of F= HomMon(SF, ]0,1]) into C= HomMon(SC, ]0,1]). If the latter is strict,
injectivity of i follows from Remark B.1: with the notation introduced there, if u, v∈ F have the same
restriction to SC, thenϕ(u)nψ(u) = ϕ(v)nψ(v) and thusψ(u) = ψ(v) sinceϕ(u) = ϕ(v) = 1.

The topological spacesF andC being compact, the continuous injectioni is a homeomorphism
onto its image andi(F) is the closure ofi(F) in C since F is dense inF.

(ii) We have
〈F〉= {u∈ Λ |ϕ(u) = 1 for all ϕ ∈ SF

C}

and the canonical mapΛ = HomMon(SC,R>0)→ HomMon(SF
C,R>0) deduced from the inclusion of

SF
C into SC induces a linear isomorphism between the vector spacesΛ/〈F〉 and HomMon(SF

C,R>0).
If N denotes the subgroup of M consisting of all elementsϕ such thatϕ|F = 1 and if W =

HomAb(N,R>0), then N is free of finite rank and SF
C is canonically isomorphic to the semigroup

in N associated with the strictly convex polyhedral conep(C) of W, wherep denotes the canonical
projection ofΛ on W. Thus SFC is finitely generated by Gordan’sLemma. Besides, it followsimmedi-
ately from the definition of SFC that it contains the sum of two elements of SC if and only if it contains
both summands. One deduces from this last property that, foranyu∈ HomMon(SF

C, ]0,1]), the map ˜u
from SC to [0,1] defined by

ϕ(ũ) =

{
ϕ(u) if ϕ ∈ SF

C
0 otherwise

is a morphism of unitary monoids, hence defines a point in CF. We thus get a homeomorphism
between CF and the polyhedral cone HomMon(SF

C, ]0,1]) in Λ/〈F〉.

(iii) Let us consider a pointu in C. We letΣ denote the set of allϕ ∈ SC such thatϕ(u) > 0 and F
the subset of C defined by the conditionsϕ = 1, ϕ ∈ Σ. Then F is a face of C andΣ⊂ SF

C. If we pick
ϕ1, . . . ,ϕr in SC such that C∩{ϕi = 1} are the different faces of codimension one of C containing F,
then:

– for anyϕ ∈ SF
C, there exists an integern > 1 such thatnϕ belongs toNϕ1 + . . .+Nϕr ;
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– for any i ∈ {1, . . . , r}, there exists an elementϕ in Σ and an integern > 1 such thatnϕ =
n1ϕ1 + . . .nrϕr with n1, . . . ,nr ∈N andni > 1.

Since the sum of two elements of SC belongs toΣ if and only if both summands belong toΣ, the
last property impliesϕ1, . . . ,ϕr ∈ Σ and then the identityΣ = SF

C follows from the first one.
Finally, the pointu belongs to the cone CF and thusC =

⊔
F∈F • CF.

(iv) We have F⊂ F′ if and only if SF′
C ⊂ SF

C. If SF′
C * SF

C, there existsϕ ∈ SF′
C which does not belong

to SF
C and therefore CF∩F′ =∅.

If SF′
C ⊂ SF

C, then

CF∩F′ =

{
u∈HomMon(SC, [0,1])

∣∣∣∣
ϕ(u) = 0 for anyϕ /∈ SF

C andϕ(u) > 0 for anyϕ ∈ SF
C

ϕ(u) = 1 for anyϕ ∈ SF′
C

}

=

{
u∈HomAb(SF′ , [0,1])

∣∣∣∣
ϕ(u) = 0 for anyϕ /∈ SF

C
ϕ(u) > 0 for anyϕ ∈ SF′

C

}

= F′F,

for SF′ is the subgroup of M generated by SC and−SF′
C . 2

Consider now a fanF on the vector spaceΛ. We deduce from the first assertion in the lemma

above that the compactified cones{C}F • glue together to define a compact topological spaceΛF

containingΛ as a dense open subset. Indeed, it is enough to defineΛF
as the quotient of the compact

topological space
⊔

C∈F C by the following equivalence relation: two pointsx ∈ C andy ∈ C′ are
equivalent if and only if there exists a cone C′′ ∈F contained in C and C′, as well as a pointz∈ C′′

mapped tox andy, respectively, under the canonical injections ofC′′ into C andC′, respectively. The

quotient spaceΛF
is compact since we have glued together a finite number of compact spaces along

closed subspaces.

Each compactified coneC embeds canonically intoΛF
and, since C′ = C′ ∩C for any cones

C, C′ ∈F satisfying C′ ⊂C, the natural map
⊔

C∈F C→ΛF
factors through the canonical projection

⊔
C∈F C→ Λ and induces therefore a homeomorphism betweenΛ and a dense open subset ofΛF

.

Proposition B.3— Let us consider a fanF on the vector spaceΛ.

(i) For any coneC ∈ F , there exists a canonical homeomorphism iC between the vector space

Λ/〈C〉 and a locally closed subsetΣC of ΛF
.

The setFC of cones inF containingC induces a fan on the vector spaceΛ/〈C〉 and the map iC

extends to a homeomorphism between the associated compactification ofΛ/〈C〉 and the closure

of ΣC in ΛF
.

(ii) The family{ΣC}C∈F is a stratification ofΛF
into locally closed subspaces:

ΛF
=
⊔

C∈F

ΣC and ΣC =
⊔

C′ ∈F

C⊂ C′

ΣC′ .

(iii) The action ofΛ on itself by translations extends to an action ofΛ on ΛF
by homeomorphisms

stabilizing each stratum and, via the identification iC : Λ/〈C〉→̃ΣC, the action induced on the
stratumΣC is the action ofΛ on Λ/〈C〉 by translations.

(iv) A sequence(pn) of points inΛ converges to a point ofΛF
belonging to the stratumΣC if and

only if the following two conditions hold:
• almost all points pn lie in the union of the conesC′ ∈F containingC;
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• for any cone C′ ∈ FC and any elementϕ of SC′, the sequence(ϕ(pn)) converges in
[0,+∞[ and

lim ϕ(pn) = 0⇐⇒ ϕ /∈ SC
C′ .

Proof. (i) For any cone C inF , the quotient vector spaceΛ/〈C〉 is canonically isomorphic to
HomAb(MC,R>0), where MC denotes the subgroup of M consisting in elementsϕ satisfyingϕ|C = 1.
For any cone C′ in F containing C, the semigroup SC′ ∩MC = SC

C′ is finitely generated and spans
MC. If we let FC denote the set of all cones C′ ∈F containing C andp the canonical projection ofΛ
ontoΛ/〈C〉, it follows that the polyhedral conesp(C′) = HomMon(SC

C′ , ]0,1]), C′ ∈FC, define a fan
on the vector spaceΛ/〈C〉.

For any cone C′ ∈F , extension by zero on SC′−SC
C′ provides us with a map

iCC′ : p(C′) = HomMon(SC
C′ , ]0,1])→ HomMon(SC′ , [0,1]) = C′ ⊂ ΛF

.

This map is a homeomorphism onto the locally closed subspace

C′C =
{

u∈C′ | ϕ(u) = 0 for anyϕ ∈ SC′ −SC
C′ andϕ(u) > 0 for anyϕ ∈ SC

C′
}

.

Moreover, for any face C′′ of C′ containing C, SC′ ⊂ SC′′ and the natural diagram

p(C′) = HomMon(SC
C′ , ]0,1])

iC
C′ //

OO
HomMon(SC′ , [0,1]) = C′

OO

p(C′′) = HomMon(SC
C′′ , ]0,1])

iC
C′′

// HomMon(SC′′ , [0,1]) = C′′

is commutative. Therefore there exists a unique mapiC from Λ/〈C〉 to ΛF
whose restriction to each

conep(C′), C′ ∈FC, coincides withiCC′ . Let ΣC denote the union of all cones C′C with C′ ∈FC.
Thanks to the gluing conditions (iv) of Lemma B.2, the mapiC is a homeomorphism between the

vector spaceΛ/〈C〉 and the subspaceΣC of ΛF
. Since

ΣC∩C′′ =

{
C′′C if C ⊂C′′

∅ otherwise

is a locally closed subspace ofC′′ for any cone C′′ ∈F , ΣC is a locally closed subspace ofΛF
.

Finally, if C′ is a cone inFC, the closure of C′C in ΛF
is canonically homeomorphic to the canoni-

cal compactification of this cone by lemma 2, (i) and it follows that the mapiC : Λ/〈C〉→ΣC⊂ΛF
ex-

tends to a homeomorphism between the compactification ofΛ/〈C〉 coming from the fan{p(C′)}C′∈FC

and the closure ofΣC in ΛF
.

(ii) Given two cones C, C′ in F such thatΣC∩ΣC′ 6= ∅, we can pickΓ andΓ′ in F with C⊂ Γ,
C′ ⊂ Γ′ andΓC∩Γ′C′ 6=∅. Since

Γ∩Γ′C′ =
{

ΓC′ if C′ ⊂ Γ
∅ otherwise

(Lemma B.2, (iv)), we deduce C′ ⊂ Γ, henceΓC∩ΓC′ 6= ∅ and, finally, C′ = C. Thus the locally
closed subspacesΣC, C∈F , are pairwise disjoint.

Moreover, for any cones C, C′ ∈F with C⊂ C′,

CC′ =
⋃

C′′ ∈F

C⊂ C′′ ⊂ C′

C′C′′
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and therefore

ΣC =
⋃

C′ ∈F

C⊂ C′

C′C =
⋃

C′, C′′ ∈F

C⊂ C′′ ⊂ C′

C′C′′ =
⋃

C′′ ∈F

C⊂ C′′

ΣC′′ .

(iii) Let us pick a vectorv∈ Λ and consider the unique maptv : ΛF
→ ΛF

fulfilling the following
requirement: for any cone C∈F , tv(ΣC) ⊂ ΣC and the map(iC)−1 ◦ tv ◦ iC : Λ/〈C〉 → Λ/〈C〉 is the
translation by the vectorv. Given a cone C∈ F , note that the union of all strataΣC′ , C′ ⊂ C, is
naturally homeomorphic to HomMon(SC,R>0). This observation allows us to make the restriction of

tv to C = HomMon(SC, [0,1]) explicit: for any pointu∈ C, tv(u) is the point ofΛF
corresponding to

the morphism of unitary monoids

SC→ R>0, ϕ 7→ ϕ(v)ϕ(u).

Clearly, the restriction of the maptv to each compactified coneC is continuous and therefore this

map is continuous. The mapΛ×ΛF
→ ΛF

, (v,u) 7→ tv(u) providesΛF
with an action ofΛ by

homeomorphisms; this action stabilizes each stratum, on which it induces the natural action ofΛ by
translation via the identificationsiC : Λ/〈C〉 ≃ ΣC.

(iv) We consider a sequence(pn) of points inΛ.

Let us first assume that this sequence converges to a pointp in ΛF
belonging to the stratumΣC.

We consider a cone C′ ∈F containing C and an elementϕ in SC′.
There is at least one cone C′′ in FC containing infinitely manypn, since

⋃
C′′∈FC

C′′ contains the
stratumΣC. We pick one of them. For anyψ ∈ SC′′,

lim
pn∈C′′

ψ(pn) = ψ(p)

andψ(p) = 0 if and only if ψ /∈ SC
C′′ . Since C is a common face of the cones C′ and C′′, there exists

an elementψ ∈ SC
C′′ such thatϕ +ψ belongs to SC′′. Moreover,ϕ +ψ ∈ SC

C′′ if and only if ϕ ∈ SC
C′′ as

(ϕ + ψ)|C = ϕ|C. Sinceψ(p) > 0, it follows that

lim
pn∈C′′

ϕ(pn) = ϕ(p),

andϕ(p) = 0 if and only if ϕ /∈ SC
C′ .

Let us now assume that the sequence(pn) is eventually contained in the union of all cones C′ ∈F

containing C and that, for any C′ ∈FC and anyϕ ∈ SC′, the sequence(ϕ(pn)) converges in[0,+∞[,
with lim ϕ(pn) = 0 if and only if ϕ ∈ SC′ −SC

C′.
Given any cone C′ ∈FC containing an infinite number of terms of the sequence(pn), we define a

mappC′ : SC′→ [0,1] by settingϕ(pC′) = limpn∈C′ ϕ(pn) for all ϕ ∈SC′. This is obviously a morphism
of unitary monoids, hence a point inC′, and it follows from our assumption thatpC′ belongs toΣC.

If C′ and C′′ are two cones inFC, both of them containing infinitely manypn, then C′ ∩C′′ is a

cone inFC and obviouslypC′ = pC′∩C′′ = pC′′ . Thus the sequence(pn) converges inΛF
to a point of

ΣC. 2

(B.3) More generally, property (iii) in the proposition above allows us to compactify any affine space
A under the vector spaceΛ. Let∼ denote the usual equivalence relation on A×Λ: (a,v) ∼ (a′,v′) if
a+ v = a′+ v′. The structural map A×Λ→ A, (a,v) 7→ a+ v induces a homeomorphism between

the quotient space A×Λ/∼ and A. Embedding A×Λ in A×ΛF
, one checks that the closure of the

equivalence relation∼ is an equivalence relation∼′ which we can easily make explicit:

(a,x) ∼′ (a′,y) if and only if x andy are contained in the same stratumΣC of ΛF

and there exists somev∈ Λ such thaty = tv(x) anda′+v∈ a+ 〈C〉.
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Then we defineA
F

to be the quotient topological space A×ΛF
/∼′.

Proposition B.4— LetA be an affine space under the vector spaceΛ and letF be a fan onΛ.

(i) The topological spaceA
F

is compact and the canonical mapA → A
F

is a homeomorphism

onto a dense open subset ofA
F

.
(ii) For any point a∈A, the mapΛ→A, v 7→ a+v extends uniquely to a homeomorphism between

ΛF
andA

F
.

(iii) For any vector v∈ Λ, the translationA→ A, a 7→ a+v extends uniquely to an automorphism

of the topological spaceA
F

.

(iv) The topological spaceA
F

is stratified into affine spaces:

A
F

=
⊔

C∈F

A/〈C〉.

Proof. (i) and (ii) The topological spaceA
F

is Hausdorff because the equivalence relation∼′ is
closed. Since the equivalence relation∼ on A×Λ is closed as well, A×Λ is invariant under∼′ and

its image inA
F

is thus a dense open subset.

Let us pick a pointa in A and check that the canonical projectionp : A×ΛF
→ A

F
induces a

homeomorphism between{a}×ΛF
andA

F
. Since{a}×ΛF

is compact andA
F

is Hausdorff, the

continuous mapp : {a}×ΛF
→ A

F
is closed; its image is a closed subset ofA

F
containing the

dense open subsetp(A×Λ), thusp({a}×ΛF
) = A

F
and thereforeA

F
is compact. Finally, given

two pointsx, y ∈ ΛF
with (a,x) ∼′ (a,y), we may choose sequences(xn) and (yn) of points inΛ

converging tox andy respectively and satisfying(a,xn) ∼ (a,yn) for all n; then we havexn = yn for

all n, hencex = y, for the topological spaceΛF
is Hausdorff. Thus the mapp : {a}×ΛF

→ A
F

is a
homeomorphism.

(iii) This assertion follows immediately from PropositionB.3, (iii).

(iv) Let C be a cone inF and 0C denote the origin of the stratumΣC ≃ Λ/〈C〉 in ΛF
. The map

A → A ×ΛF
, a 7→ (a,0C) is Λ-equivariant and induces a homeomorphism between the quotient

affine space A/〈C〉 and a locally closed subspace ofA
F

which we can also describe as the image
of A×ΣC under the canonical projectionp. Relying on Proposition B.3, it follows from (ii) that the

locally closed subspaces of this kind define a stratificationof A
F

:

A
F

=
⊔

C∈F

A/〈C〉.

2

Remark B.5— More generally, one can define aprefanon the real vector spaceΛ as the preimageF
of a fanF ′ on a quotient spaceΛ′ = Λ/Λ0. It consists of rational polyhedral cones inΛ satisfying all
the defining conditions of a fan but strict convexity, since each cone contains the vector subspaceΛ0.

If A is an affine space underΛ, one agrees on definingA
F

as the compactificationA′
F ′

of A′= A/Λ0

with respect to the fanF ′.

APPENDIX C: ON NON-RATIONAL TYPES

This last appendix deals with non-rational types of parabolic subgroups and with the corresponding
compactifications of a building. We consider a semisimple linear group G over a non-Archimedean
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field k and recall that atype t of parabolic subgroups of G is by definition a connected component
of the k-scheme Par(G), which we denote by Part(G). If G is split, then types are in one-to-one
correspondence with G(k)-conjugacy classes of parabolic subgroups of G, and for any typet, Part(G)
is isomorphic to G/P, where P is any parabolic subgroup of G defining ak-point in Part(G). In
general, a typet is said to bek-rational if the component Part(G) has ak-point. The most important
example is the type∅ of Borel subgroups of G: the scheme Bor(G) = Par∅(G) is a geometrically
connected component of Par(G), and the type∅ is k-rational if and only if G has a Borel subgroup,
i.e., if and only if G is quasi-split.

Let t be any type. The construction of (3.4.1) makes sense even ift is non-rational: we just
consider the mapϑt : B(G,k)→ Par(G)an defined in (2.4.3), take the closureAt(S,k) of the image
of some apartment A(S,k) and define the compactified buildingBt(G,k) as the topological quotient
of G(k)×At(S,k) under the equivalence relation induced by the map

G(k)×At(S,k)→ Par(G)an, (g,x) 7→ g·x = gxg−1.

Equivalently,Bt(G,k) is the closure ofB(G,k) in the compactified buildingBt ′(G,k′), wherek′/k
is a finite extension splitting G andt ′ denotes a type of G⊗k k′ dominatingt.

Our aim is to show that there exists ak-rational typet ′ such thatBt(G,k)∼= Bt ′(G,k).

Let P0 be a minimal parabolic subgroup of G. By Proposition 3.2 and Galois descent, the functor

(Sch/k)op→ Sets, S 7→ {P∈ Part(G)(S) | P and P0×k S are osculatory}

is representable by a closed and smooth subscheme Osct(P0) of Part(G), homogeneous under P0 and
such that, for any finite Galois extensionk′/k,

Osct(P0)⊗k k′ =
⋃

t ′∈I

Osct ′(P0⊗k k′),

where I is the set of types of G⊗k k′ dominatingt. One proves as in Proposition 3.6 the existence of a
largest parabolic subgroup Q0 of G stabilizing Osct(P0). The conjugacy class of Q0 does not depend
on the initial choice of P0 since minimal parabolic subgroups of G are conjugate under G(k), hence
defines ak-rational typeτ .

Example— 1. If t is k-rational, then Q0 is the unique parabolic subgroup of G of typet containing
P0. Indeed, let P be the parabolic subgroup of typet containing P0. Since Osct(P0) is homogeneous
under P0, this scheme is reduced to the closed point P of Part(G) and thus Q0 = P. We have therefore
τ = t if t is k-rational.

2. If G is quasi-split, then P0 is a Borel subgroup of G andτ is the largestk-rational type dominated
by t.

3. If t =∅ is the type of Borel subgroups, thenτ is the minimalk-rational type:τ = tmin. Indeed,
if k′/k is a finite Galois extension splitting G, then Osc∅(P0)⊗k k′ = Osc∅(P0⊗k k′), Q0⊗k k′ is the
largest parabolic subgroup of G⊗kk′ stabilizing Osc∅(P0⊗k k′) and Q0⊗k k′ = P0⊗k k′ since P0⊗k k′

is∅-relevant. It follows that Q0 = P0 by Galois descent.

Proposition— With the notation above, we haveBt(G,k)∼= Bτ(G,k).

We first prove this result for the typet =∅ of Borel subgroups, in which caseτ = tmin is the type
of minimal parabolic subgroups of G.

Lemma 1— The projection

πtmin
∅ : Bor(G)an = Par∅(G)an→ Partmin(G)an

induces an homeomorphism betweenB∅(G,k) andBtmin(G,k).

Proof. Consider a finite Galois extensionk′/k splitting G. It follows easily from results of 4.2 and
Galois equivariance that the projectionπtmin

∅ induces a mapB∅(G,k)→ Btmin(G,k) satisfying the
following condition: for any parabolic subgroup Q of G, the preimage of the stratumBtmin(Qss,k) is
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B(H1,k)×B∅(H2,k), where H1 and H2 are the semi-simple normal and connected subgroups of Qss

to which the restrictions oftmin are non-degenerate and trivial respectively. Sincetmin is the minimal
k-rational type, this implies that H2 has no non-trivial parabolic subgroup, hence is anisotropic over
k. It follows thatB∅(H2,k) = B∅(H2,k) is a point and that the mapπtmin

∅ : B∅(G,k)→Btmin(G,k)
is bijective. This is clearly a homeorphism. 2

We now prove the proposition at the level of apartments.

Lemma 2— For any maximal split torus,At(S,k)∼= Aτ(S,k).

Proof. We fix a finite Galois extensionk′/k splitting G and setΓ = Gal(k′|k). We still denote byt a
type of G⊗kk′ dominatingt. Let T be a maximal torus of G containing S and satisfying the following
conditions:

– T′ = T⊗k k′ is split;
– the injectionB(G,k) →֒B(G,k′) maps A(S,k) into A(T′,k′).

It follows from the definition of the mapϑt in (2.4.3) thatAt(S,k) can be identified with the closure
of A(S,k) in At(T′,k′). By Proposition 3.35, we are reduced to checking that the prefansFt andFτ
on the vector spaceΛ(T′) have the same restriction toΛ(S), i.e., that

Ct(P)∩Λ(S) = Cτ(P)∩Λ(S)

for any parabolic subgroup P of G containing S. It is enough toconsiderminimalparabolic subgroups
of G containing S.

So let P0 be a minimal parabolic subgroup of G containing S and denote as above by Q0 the
largest parabolic subgroup of G stabilizing Osct(P0). We write P0 and Q0 for P0⊗k k′ and Q0⊗k k′

respectively, and we recall thatτ is by definition the type of Q0. Let B be a Borel subgroup of G⊗k k′

satisfying T′ ⊂ B⊂ P0 and let P denote the unique parabolic subgroup of G⊗k k′ of typet containing
B. We have Ct(P0) = Ct(Q0) since Osct(P0) = Osct(Q0), and Cτ(P0) = Cτ(Q0) since Q0 is of typeτ
and contains P0. Recall that

Ct(P) = {α 6 1, for all α ∈Φ(radu(Pop),T′)}, Cτ(Q0) = {α 6 1, for all α ∈Φ(radu(Qop
0 ),T′)}

and
Ct(Q0) = {α 6 1, for all α ∈Φ(radu(Pop),T′)}∩ 〈Ct(Q0)〉,

where
〈Ct(Q0)〉= {α = 1, for all α ∈Φ(LQop

0
,T′)∩Φ(radu(Pop),T′)}

is the linear subspace spanned by Ct(Q0) (see Proposition 3.20, (iii)). Since B⊂ P and B⊂ Q0, the
Weyl coneC(B) is contained in both Ct(P) and Cτ(Q0) and therefore these two cones have overlap-
ping interiors. This observation has the following consequence: for any rootα ∈ Φ(radu(Pop),T′),
the cones Ct(P) and Cτ(Q0) cannot lie on both sides of the hyperplane{α = 1}, hence Cτ(Q0) is not
contained in the half-space{α > 1} sinceα 6 1 on Ct(P). This implies that(−α) does not belong
to Φ(radu(Qop

0 ),T′) or, equivalently,α ∈Φ(Qop
0 ,T′). Thus we getΦ(radu(Pop),T′)⊂Φ(Qop

0 ,T′) and
the inclusion〈Ct(Q0)〉∩Cτ(Q0)⊂ Ct(Q0) follows immediately. Since

Λ(S)⊂ 〈C(P0)〉 ⊂ 〈Ct(P0)〉= 〈Ct(Q0)〉,

the inclusion
Cτ(Q0)∩Λ(S)⊂ Ct(Q0)∩Λ(S)

is established.

Conversely, consider a rootα ∈ Φ(radu(Qop
0 ),T′). The inclusionΦ(radu(Qop

0 ),T′) ⊂ Φ(Pop,T′)
being proved as above,α belongs either toΦ(radu(Pop),T′) or to Φ(LPop,T′). In the first case,α 6 1
on Ct(Q0) and thusα 6 1 on Ct(Q0)∩Λ(S).

We address now the caseα ∈ Φ(LPop,T′). Note that Ct(Q0)∩{α = 1} is a union of Weyl cones
and assume that there exists a pointx ∈ Ct(Q0)

◦ ∩Λ(S) such thatα(x) = 1. This point belongs to
the interior of some Weyl coneC contained in Ct(Q0)∩{α = 1}. SinceC◦ ∩Λ(S) 6= ∅, this cone
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corresponds to a parabolic subgroup Q1; moreover, we have Ct(Q1) = Ct(Q0), for C∩Ct(P0)
◦ =

C∩Ct(Q0)
◦ 6=∅. It follows that Q1⊂Q0, because Q0 is by definition the largest parabolic subgroup

of G such thatC(Q0) meets the interior of Ct(P0), henceC(Q0)⊂ C(Q1) andα = 1 onC(Q0). This
last condition amounts toα ∈ Φ(LQ0,T

′) = Φ(LQop
0
,T′) and thus leads to a contradiction since we

assumedα ∈ Φ(radu(Qop
0 ),T′). We have thereforeα < 1 or α > 1 on Ct(Q0)

◦∩Λ(S) by convexity,
henceα 6 1 or α > 1 on Ct(Q0)∩Λ(S). Sinceα belongs toΦ(radu(Qop

0 ),T′), we haveα < 1 on the
interior ofC(Q0)⊂ Ct(Q0) and thereforeα 6 1 on Ct(Q0)∩Λ(S).

We have thus proved that each rootα ∈Φ(radu(Qop
0 ),T′) satisfiesα 6 1 on Ct(Q0)∩Λ(S), hence

Ct(Q0)∩Λ(S)⊂ Cτ(Q0)

and, finally,
Ct(Q0)∩Λ(S) = Cτ(Q0)∩Λ(S).

2

Proof of Proposition. Identifying B∅(G,k) and Btmin(G,k) by Lemma 1, we have two G(k)-
equivariant and continuous maps

B∅(G,k)
πt

∅

&&LLLLLLLLLLπτ
tmin

yyrrrrrrrrrr

Bτ(G,k) Bt(G,k).

Consider two pointsx,y in B∅(G,k) and letA∅(S,k) be a compactified apartment containing both of
them (Proposition 4.20, (i)). The conditionsπt

∅(x) = πt
∅(y) andπτ

tmin
(x) = πτ

tmin
(y) amount to saying

thatx andy have the same image in the compactified apartmentsAt(S,k) andAτ(S,k) respectively,
hence are equivalent by Lemma 2. It follows that the diagram above can be completed by a G(k)-
equivariant homeomorphism

Bτ(G,k)
∼ // Bt(G,k) .

2
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