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INTRODUCTION

1. In the mid 60ies, F. Bruhat and J. Tits initiated a theory WHad to a deep understanding of
reductive algebraic groups over valued fielB3 2], [BT84]. The main tool (and a concise way to
express the achievements) of this long-standing work isttien of abuilding. Generally speaking,
a building is a gluing of (poly)simplicial subcomplexed,isbmorphic to a given tiling naturally acted
upon by a Coxeter groufAB08]. The copies of this tiling in the building are calleghartmentsand
must satisfy, by definition, strong incidence propertiescivimake the whole space very symmetric.
The buildings considered by F. Bruhat and J. Tits are Eualidenes, meaning that their apartments
are Euclidean tilings (in fact, to cover the case of non+éisdy valued fields, one has to replace
Euclidean tilings by affine spaces acted upon by a Euclidefiaction group with a non-discrete,
finite index, translation subgroufif86]). A Euclidean building carries a natural non-positively
curved metric, which allows one to classify in a geometrig/waaximal bounded subgroups in the
rational points of a given non-Archimedean semisimple laigie group. This is only an instance of
the strong analogy between the Riemannian symmetric spassesiated with semisimple real Lie
groups and Bruhat-Tits building3it75]. This analogy is our guideline here.

Indeed, in this paper we investigate Bruhat-Tits buildiags their compactification by means of
analytic geometry over non-Archimedean valued fields, asldped by V. Berkovich — se@®er98§]
for a survey. Compactifications of symmetric spaces is nowrg glassical topic, with well-known
applications to group theory (e.g., group cohomoloB$T73) and to number theory (via the study
of some relevant moduli spaces modeled on Hermitian synngpaces Del71)). For deeper
motivation and a broader scope on compactifications of symergpaces, we refer to the recent
book [BJO€], in which the case of locally symmetric varieties is alsea@d. One of our main re-
sults is to construct for each semisimple group G over aldeitaon-Archimedean valued fiek] a
family of compactifications of the Bruhat-Tits building(G,k) of G overk. This family is finite,
actually indexed by the conjugacy classes of proper pakaubgroups in G. Such a family is of
course the analogue of the family of Satakaf6( or FurstenbergHur63] compactifications of a
given Riemannian non-compact symmetric space —&dd 98] for a general exposition.

In fact, the third author had previously associated, witbheBruhat-Tits building, a family of
compactifications also indexed by the conjugacy classesagfep parabolik-subgroups \Ver07]
and generalizing the "maximal" version constructed beligr&. Landvogt [an96]. The Bruhat-Tits
building #(G,k) of G overk is defined as the quotient for a suitable equivalence relagay~,
of the product of the rational points(& by a natural model, saf, of the apartment; we will refer
to this kind of construction as gluing procedure The family of compactifications oMer07] was
obtained by suitably compactifyinfy to obtain a compact spadeand extending- to an equivalence
relation on Gk) x A. As expected, for a given group G we eventually identify thiter family of
compactifications with the one we construct here, 888/2].

Our compactification procedure makes use of embeddings wiaiTits buildings in the ana-
Iytic versions of some well-known homogeneous varietiegh{e context of algebraic transformation
groups), namely flag manifolds. The idea goes back to V. Beckadn the case when G splits over its
ground fieldk [Ber90, §85]. One aesthetical advantage of the embedding procésitivat it is similar
to the historical ways to compactify symmetric spaces, bygseeing them as topological subspaces
of some projective spaces of Hermitian matrices or insigeesp of probability measures on a flag
manifold. More usefully (as we hope), the fact that we spedaiff embed buildings into compact
spaces from Berkovich's theory may make these compaciditauseful for a better understanding
of non-Archimedean spaces relevant to number theory (icdlse of Hermitian symmetric spaces).
For instance, the building of Glover a valued field is the "combinatorial skeleton" of the Drinfel'd
half-spaceQ"1 overk [BC91], and it would be interesting to know whether the precise loioato-
rial description we obtain for our compactifications migbtuseful to describe other moduli spaces



for suitable choices of groups and parabolic subgroups. dilmer question about these compactifi-
cations was raised by V. Berkovich himseffdro0, 5.5.2] and deals with the potential generalization
of Drinfel'd half-spaces to non-Archimedean semisimplgebkaic groups of arbitrary type.

2. Let us now turn to the definition of the embedding maps thatwalls to compactify Bruhat-
Tits buildings. Let G be &-isotropic semisimple algebraic group defined over the Amriiimedean
valued fieldk and let#(G, k) denote the Euclidean building provided by Bruhat-Tits tigddit79].
We prove the following statement (see 2.4 and Prop. 3.26sume that the valued field k is a local
field (i.e., is locally compact) and (for simplicity) th&tis almost k-simple; then for any conjugacy
class of proper parabolic k-subgroup, say t, there exist®atiouous,G(k)-equivariant mapd; :
#(G,k) — Pag(G)3" which is a homeomorphism onto its imadgdere Paf(G) denotes the connected
component of typé in the proper variety P&G) of all parabolic subgroups in G (on which G acts
by conjugation) §GA3, Exposé XXVI, Sect. 3]. The superscrifit means that we pass from the
k-variety Par(G) to the Berkovichk-analytic space associated with Bgr90, 3.4.1-2]; the space
Par(G)2"is compact since P&B) is projective. We denote b, (G, k) the closure of the image &k
and call it theBerkovich compactificatioof typet of the Bruhat-Tits buildingZ(G, k).

Roughly speaking, the definition of the mahgakes up the first half of this paper, so let us provide
some further information about it. As a preliminary, we tecame basic but helpful analogies
between (scheme-theoretic) algebraic geometrykaauaalytic geometry (in the sense of Berkovich).
Firstly, the elementary blocks &fanalytic spaces in the latter theory are the so-calféidoid spaces;
they, by and large, correspond to affine schemes in algepeaimetry. Affinoid spaces can be glued
together to defind-analytic spaces, examples of which are provided by affigigtions of affine
schemes: if X= SpecA) is given by a finitely generatektalgebra A, then the set underlying the
analytic space X' consists of multiplicative seminorms on A extending theegiabsolute value on
k. Let us simply add that it follows from the "spectral analyside" of Berkovich theory that each
affinoid space X admits &hilov boundary namely a (finite) subset on which any element of the
Banachk-algebra defining X achieves its minimum. We have enough mogivie a construction of
the maps; in three steps:

Step 1: we attach to any poirte %#(G, k) an affinoid subgroup Gwhosek-rational points coincide
with the parahoric subgroupyX) associated wittkx by Bruhat-Tits theory (Th. 2.1).

Step 2: we attach to any so-obtained analytic subgroua @intJ (x) in G2" (in fact the unique point
in the Shilov boundary of @, which defines a mafl : Z(G,k) — G2" (Prop 2.4).

Step 3: we finally compose the m&pwith an "orbit map" to the flag variety R&6)2" of typet (Def.
2.16).

Forgetting provisionally that we wish to compactify thelling #(G, k) (in which case we have to
assume tha#?(G, k) is locally compact, or equivalently, thiis local), this three-step construction of
the mapd; : #(G,k) — Pag(G)2" works whenever the ground fieldallows the functorial existence
of #(G,k) (see 1.3 for a reminder of these conditions). We note thatep 8, the uniqueness of
the pointd (x) in the Shilov boundary of comes from the use of a field extension splitting G and
allowing to seex as a special point (see below) and from the fact that intesjrattures attached to
special points in Bruhat-Tits theory are explicitly debed by means of Chevalley bases. At last, the
pointJ (x) determines @because the latter analytic subgroup is the holomorphielepwofJ (x) in
G?", Here is a precise statement for Step 1 (Th. 2.1).

Theorem 1— For any point X in%Z(G,k), there is a unique affinoid subgroupy of G" satisfying
the following condition: for any non-Archimedean extendfoof k, we havesy(K) = Staly k) (X).

This theorem (hence Step 1) improves an idea used for armhgractification procedure, namely
the one using the map attaching to each pgiat.%(G,k) the biggest parahoric subgroup ofiG
fixing it [GRO6]. The target space of the map- Gy(k) in [loc. cit.] is the space of closed subgroups
of G(k), which is compact for the Chabauty topolog\NT , VIII.5]. This idea doesn't lead to a
compactification of8(G, k) but only of the set of vertices of it: K is discretely valued and if G



is simply connected, any two points in a given facet of thehatdTits building.Z(G,k) have the
same stabilizer. Roughly speaking, in the present paperse@arkovich analytic geometry, among
other things, to overcome these difficulties thanks to tloe theat we can use arbitrarily large non-
Archimedean extensions of the ground field. More precisglyp taking a suitable non-Archimedean
extension K ofk, any pointx € #(G,k) can be seen as a special point in the bigger (split) building
#(G,K), in which case we can attach xan affinoid subgroup ofG @k K)2". As a counterpart, in
order to obtain the affinoid subgroup, @efined ovek as in the above theorem, we have to apply a
Banach module avatar of Grothendieck’s faithfully flat degdormalism S§GAL, VIII] (Appendix

1).

As an example, consider the case where=GL(3) and the fieldk is discretely valued. The
apartments of the building are then tilings of the Euclidptane by regular trianglesalcovesin
the Bruhat-Tits terminology). If the valuationof k is normalized so that(k*) = Z, then in order
to define the group Gwhenx is the barycenter of a triangle, we have to (provisionallgg a finite
ramified extension K such thatk *) = £Z (the apartments i8(G, K) have "three times more walls"
andx lies at the intersection of three of them). The general caken the barycentric coordinates of
the pointx (in the closure of its facet) are natpriori rational, requires aa priori infinite extension.

As already mentioned, when G splits over the ground fieldur compactifications have already
been defined by V. BerkovictBEr90, 85]. His original procedure relies from the very beginnorg
the explicit construction of reductive group schemes &dxry means of Chevalley baseSte93.

If T denotes a maximal split torus (with character grotigT)), then the model for an apartment in
A(G,k) is A = Hom(X*(T),R%) seen as a real affine space. Choosing a suitable (speciainalax
compact subgroup in G, V. Berkovich identifies\ with the image of " in the quotient variety
G2"/P. The building #(G, k) thus appears in /P as the union of the transforms #f by the
proper action of the group d¢frational points Gk) in G3"/P. Then V. Berkovich uses the notion of
apeaked poinfand other ideas related to holomorphic convexity) in otderonstruct a section map
G2"/P — G?". This enables him to realiz& (G, k) as a subset of &, which is closed ik is local.

The hypothesis that G is split is crucial for the choice of¢bmpact subgroup. The construction
in Step 1 and 2 is different from Berkovich’s original appbaand allows a generalization to the
non-split case. We finally note that, in Step 3, the embeddiag 35; : #(G,k) — Pag(G)2" only
depends on the type in particular, it doesn’t depend on the choice of a paradekubgroup in the
conjugacy class correspondingtto

3. Let us henceforth assume that the ground fieidl locally compact. We fix a conjugacy class
of parabolick-subgroups in G, which provides us withkaational typet. The building (G, k)
is the product of the buildings of all almost-simple factofsG, and we let%;(G,k) denote the
quotient of Z(G, k) obtained by removing each almost-simple factor of G on whittrivial. The
previous canonical, continuous andkpequivariant mag; : Z(G,k) — Pag(G)?" factors through
an injection%; (G, k) — Pag(G)2". We then consider the question of describing aglaGpace the
so-obtained compactification; (G, k), that is the closure of Ii;) = %;(G,k) in Pag(G)2".

The typet and the scheme-theoretic approach to flag varieties we au&tep 3 above (in order
to see easily the uniqueness&), lead us to distinguish some other types of conjugacy etas$
parabolick-subgroups (3.2). These classes are caleglevantand are defined by means of flag
varieties, but we note afterwards thaklevancy amounts also to a combinatorial condition oisroo
(Prop. 3.24) which we illustrate in Example 3.27 in the casthe groups S(n).

Moreover each parabolic subgroupsRParG) defines a closedsculatorysubvariety Os¢P) of
Pat(G), namely the one consisting of all parabolics of tywehose intersection with P is a parabolic
subgroup (Prop. 3.2). Then Ptiselevant if it is maximal among all paraboliesubgroups defining
the same osculatory subvariety. Itis readily seen that pacbolic subgroup is contained in a unique
t-relevant one. For instance, if & PGL(V) and if d is the type of flagg0 c H C V) where H is a
hyperplane of th&-vector space V, thed-relevant parabolik-subgroups are those corresponding to
flags(0 ¢ W C V), where W is a linear subspace of V. Moreow@(PGL(V),k) is the seminorm



compactification described iMer04]. In general, we denote by;®P) the kernel of the algebraic
action of P on the variety Og®) and byt p the natural projection P» P/R;(P). The following
theorem sums up several of our statements descrigii®, k) as a Gk)-space (see e.g., Th. 4.1, Th.
4.11 and Prop. 4.20).

Theorem 2— Let G be a connected semisimple linear algebraic group defined avaon-
Archimedean local field k and let t be the type of a proper paliabk-subgroup inG. We denote
by %(G,K) its Bruhat-Tits building and by (G, k) the Berkovich compactification of type t of the
latter space.

(i) For any proper t-relevant parabolic k-subgroup there exists a natural continuous map
% (P/rad(P),k) — %:(G,k) whose image lies in the boundary. These maps altogetheidgrov
the following stratification:

Z(GK= || %(P/radP),k),
t-relevantP’s

where the union is indexed by the t-relevant parabolic kgsotps in G.

(i) Let x be a point in a stratund, (P/rad(P),k). Then there is a k-analytic subgrougtal};(x)
of G2 such thatStaly;(x)(k) is the stabilizer of x inG(k). Moreover we haveStaly;(x) =
15 ((P/Ri(P))x), where(P/R(P))x is the k-affinoid subgroup ¢P/R;(P))2" attached by the-
orem 1 to the point x of3;(P/rad(P),k) = Z(P/R(P),k).

(iii) Any two points yy in %;(G,k) lie in a common compactified apartmeR(S, k) and we have:

G(k) = Staly (x) (k)N (k)Stal; (y) (k),
whereN is the normalizer of the maximal split tor@defining the apartmeri (S k).

Statement (i) in the above theorem says that the boundasdauidtaking a closure in the embed-
ding procedure consists of Bruhat-Tits buildings, eacthebé being isomorphic to the Bruhat-Tits
building of some suitable Levi factor (Prop. 4.7). This pbeenon is well-known in the context of
symmetric spacesSjat6(J. Statement (i) first says that a boundary point stabilizest subgroup of
a suitable parabolik-subgroup in which, roughly speaking, some almost simpttofa of the Levi
factor are replaced by parahoric subgroups geometricallgrohined by the point at infinity. In the
case G= PGL(V) with é as above, thé-relevant paraboli&-subgroups (up to conjugacy) are those
having exactly two diagonal blocks, and the boundary paatiikzers are simply obtained by replac-
ing exactly one block by a parahoric subgroup of it. At lastfement (iii) is often referred to as the
mixed Bruhat decomposition

4. At this stage, we understand the finite family of Berkovicmgactifications%; (G, k), indexed
by thek-rational typed. We describe in 4.2 the natural continuous ané)@quivariant maps be-
tween these compactifications arising from fibrations betwiag varieties and we show in Appendix
C that no new compactification arises from non-rational $ypieparabolic subgroup. In a sequel to
this article RTW2], we will (a) compare Berkovich compactifications with thees defined by the
third author in Wer07], relying on a gluing procedure and the combinatorics ofghts of an ab-
solutely irreducible linear representations of G, and @)aggested in [loc.cit], show (from two
different viewpoints) that these compactifications caw &ls described in a way reminiscent to Sa-
take’s original method for compactifying riemanniann syetrit spaces.

5. Let us close this introduction by two remarks. The first omapdy consists in mentioning
why it is interesting to have non-maximal compactificatimisBruhat-Tits buildings. This is (at
least) because in the case of Hermitian locally symmetacag, some interesting compactifications,
namely the Baily-Borel oneBB66], are obtained as quotients pfinimal compactifications (of a
well-defined type) by arithmetic lattices. The second réntirals with the Furstenberg embedding
approach, consisting in sending a symmetric space into gheesof probability measures on the
various flag varieties of the isometry groupuf63]. In the Bruhat-Tits case, this method seems to
encounter new difficulties compared to the real case. The ora is that not all maximal compact



subgroups in a simple non-Archimedean Lie group act tri&esiton the maximal flag variety of
the group. This is well-known to specialists in harmoniclgsia (e.g., one has to choose a special
maximal compact subgroup to obtain a Gelfand pair). Theemunsnce for Furstenberg compactifi-
cations is that, given a non-special vertewith stabilizer G(Kk), it is not clear, in order to attach a
Gy(k)-invariant probability measurg, to v, how to distribute the mass pf, among the Gk)-orbits

in the flag variety. We think that in the measure-theoretigragch, some subtle problems of this kind
deserve to be investigated, though the expected compattfis are constructed in the present paper
by the Berkovich approach.

Conventions. Let us simply recall a standard convention (already usegebalocal fieldis a
non-trivially and discretely valued field which is locallpmpact for the topology arising from the
valuation; this amounts to saying that it is complete andtti@residue field is finite.

Roughly speaking this paper applies some techniques frgebedic (and analytic) geometry in
order to prove some group-theoretic statements. Conventiothese two different fields are some-
times in conflict. We tried to uniformly prefer the convemtiofrom algebraic geometry since they are
the ones which are technically used. For instance, it is napbfor us to use varieties of parabolic
subgroups $GAJ] rather than flag varieties, even though they don't have atignal point over the
ground field and the affine and projective spaces are thogeeddfi EGA].

Accordingly, our notation for valued fields are that of V. Bavich's book Ber9(]; in particular,
the valuation ring of such a fieklis denoted byk° and its maximal ideal is denoted kY’ (1.2.1).

Working hypothesis. The basic idea underlying this work is to rely on functotiabf Bruhat-Tits
buildings with respect to field extensions. The requirediagxions on the group or on the base field
are discussed in (1.3.4).

Structure of the paper. In the first section, we briefly introduce Berkovich’s theafyanalytic
geometry over complete non-Archimedean fields and Brufiatffeory of reductive algebraic groups
over valued fields. The second section is devoted to reglitia Bruhat-Tits buildings of reductive
groups over complete valued fields as subsets of severaspaevant to analytic geometry, namely
the analytic spaces attached to the groups themselves,llassvilee analytic spaces associated with
the various flag varieties of the groups. The third sectialsdeith the construction of the compact-
ifications, which basically consists in taking the closunéshe images of the previous maps; it has
also a Lie theoretic part which provides in particular th@saiseful to describe the compactifications
in terms of root systems and convergence in Weyl chambers.faurth section is dedicated to de-
scribing the natural action of a non-Archimedean reduainaip on Berkovich compactifications of
its building.

At last, in one appendix we extend the faithfully flat desdentalism in the Berkovich context
because it is needed in the second section, and in the othendig we prove some useful technical-
ities on fans, in connection with compactifications.

1. BERKOVICH GEOMETRY AND BRUHAT-TITS BUILDINGS

The main goal of this section is to recall some basic factsiatiee main two topics which are
"merged" in the core of the paper in order to compactify Eledin buildings. These topics are
non-Archimedean analytic geometry according to Berkowaot the Bruhat-Tits theory of algebraic
groups over valued fields, whose main tools are the geométwilolings and integral structures for
the latter groups. This requires to fix first our basic coneerst about algebraic groups. Concern-
ing Berkovich geometry, the only new result here is a caterior being affinoid over the ground
field; it uses Grothendieck’s formalism of faithfully flatstent adapted (in the first appendix) to our



framework. Concerning Bruhat-Tits theory, we use (hugémsions of the ground field to improve
dramatically the transitivity properties of the actiongfud rational points of a reductive group on the
points of the associated building.

1.1. Algebraic groups

This subsection is merely dedicated to fix some conventionserning the algebraic groups and
related algebraic varieties we use in this paper. The maint gthat, in order to fully use Berkovich'’s
approach to non-Archimedean analytic geometry, we needdptahe framework of group schemes
as developed ingGA3] or [DG704 — an introductory reference iSNat79]. As an example, ik is
a field and G is &-group scheme, a subgroup of G will always medasaibgroup scheme.

(1.1.1) We use throughout the text the language of group schemeshwhiarguably more precise
and flexible than the somehow classical viewpoint adopteaéxfample in Bor91]. Thus, alinear
algebraic groupover a fieldk is by definition a smooth connected affine group scheme kysee
for example KMRT98, 21.12] for a translation). If G is a linear algebraic groyeidk andk’ /k is
any field extension, we denote by(I5) the group ofk’-valued points of G and by Gk’ the linear
algebraic group ove’ deduced from base change.

Let firstk denote an algebraically closed field and let H denote a liakggtbraic group ovet. The
radical (unipotent radical respectively) of H is the biggest connected normal sob/gdbhipotent,
respectively) subgroup of H; we denote these subgroupsdfiijand rad(H), respectively. We say
that H isreductiveif the subgroup rat{H) is trivial; this is so whenever rg#l) is trivial, in which
case we say that H semisimpleln general, we let ki denote the semisimple group/rhd(G).

Now let S denote a scheme. A group scheme over S is a groupt abjthe category of schemes
over S PG70a Il, 81]. Let G be such a group scheme. For any peigtS we denote by the
spectrum of an algebraic closure of the residue figls) of s. Following [SGA3, Exposé XIX, 2.7],
we say that G is aeductive(semisimplerespectively) S-group scheme if it is smooth and affine over
S, and if all its geometric fibersda= G xgSare connected and reductive (connected and semisimple,
respectively) in the above sense. A particular instanceedfictive S-group schemes armi: a
smooth affine S-group scheme T isoaus if there exists an étale covering S S such that TogS
is isomorphic to a diagonalizable grod], . A torus T issplit if it is isomorphic to someGy,
Finally, amaximal torusof a S-group scheme G is a closed subgroup T satisfying thenfolg two
conditions: (a) T is a torus, (b) for easke S, Tsis a maximal torus of &

Reductive S-group schemes are defined and thoroughly dtbgié1. Demazure in$GA3, Ex-
posés XIX to XXVI]; an introductory article isfem65. We will use the results contained in these
references throughout the present paper.

(1.1.2) By the fundamental work of C. Chevalley, over a fixed algataily closed field, a reductive
algebraic group is completely characterized byrdkst datum[Spr98, 9.6.2 and 10.1.1]: this is ba-
sically a combinatorial datum encoding the Dynkin diagraine, maximal torus and the way roots
appear as characters of the latter.

For any scheme S, @hevalley(Demazure respectively) group scheme over S is a semisimple
(reductive, respectively) S-group scheme containing i& siaiximal torus; one speaks also of a split
semisimple (reductive, respectively) S-group scheme.abb such S-group is attached a root datum
and the main result ofjem6] is the following generalization of Chevalley’s theoreror finy non-
empty scheme S, there is a one-to-one correspondence beiseseorphism classes of Demazure
group schemes and isomorphism classes of root data. legartiany Demazure group scheme over
a non-empty scheme S comes from a Demazure group scheme &7, Sby base change. For
each root datum, the existence of the corresponding spilitsé@ple group scheme G over Sp&¢
was essentially proved by Chevalley @H{e95; starting with the semisimple complex groug@G,



his strategy was to introduceZaform of its Lie algebrac in terms of specific bases call€hevalley
baseqd Ste6g. We will use them.

(1.1.3)One of the main tools we use for the compactifications is thietyaof parabolic subgroups
of a reductive group scheme. The reference for what foll@ySGAS3, Exposé XXVI].

Let k denote a field and let G denote a reductive group &vér closed subgroup P of G is called
parabolicif it is smooth and if the quotient variety (B is proper ovek. This last condition amounts
to saying that P contains Borel subgroupof G, that is a closed connected and solvable smooth
subgroup of G, maximal for these properties.

More generally, if S is a scheme and G is a reductive groupnselever S, then a subgroup P is
calledparabolicif it is smooth over S and if the quotients@s is a propes-scheme for ange S. In
this case, the (fppf) quotient-sheaf/Bis represented by an S-scheme, which is smooth and proper
over S.

For any reductive group scheme G over S, the functor from #tegory of S-schemes to the
category of sets, attaching to each S-schehtbeSset of parabolic subgroups o§@is representable
by a smooth and projective S-scheme(Rr If P is a parabolic subgroup of G, the natural morphism
Ap: G — ParG) defined by

G(S) — ParG)(S), g+ g(PxsS)g™*

for any S-scheme’Sinduces an isomorphism betweer”5and an open and closed subscheme of
ParG).

If k denotes a field with algebraic closk@and if S= Speck), then the connected components
of PafG) are in natural one-to-one correspondence with thelk3j#)-stable subsets of the set of
vertices of the Dynkin diagram of &y k2.

Thetypeof a parabolic subgroup, say P, of G is the connected compafd?arG) containing
it; it is denoted byt(P). The connected component corresponding to a given ttypalenoted by
Pag(G); it is a projective smooth homogeneous space under the gsoupage of the canonical map
Ap: G/P— ParG).

The connected component R&) of PafG) will occasionally be called thélag variety of type t
associated with G; it need not contain a rational point &vé¥hen it does, such a point corresponds
to a parabolick-subgroup of G and we say that the typés k-rational (or evenrational, if non
confusion seems likely to arise).

Finally, if the typet corresponds to the empty set of simple roots in the aboveriggen of
connected components of P&y, the scheme Pa(G) is the variety of Borel subgroupsind we
denote it by BofG). Since Bo(G)(k) is the set of Borel subgroups of G, we have Bax(k) # @
if and only if G has a Borel subgroup, i.e., if and only if Ggsasi-split We will use BofG) for an
arbitrary reductivek-group G.

1.2. Non-Archimedean analytic geometry

We begin this subsection by a brief review of analytic geayneter a non-Archimedean field.
We then turn to the question of descending the base field haitad device which lies at the core of
Berkovich realizations of buildings (Sect. 2).

(2.2.1) A non-Archimedean fielis a fieldk equipped with a complete non-Archimedean absolute
value|.|, which we assume to be non-trivial. Elementskafith absolute value less or equal to 1
define a subring® of k; this ring is local and we lét denote its residue field. For the algebraic theory
of valuations, we refer ta4C, Chapitre 6] andBGR84].

A non-Archimedean extensid/k is an isometric extension of non-Archimedean fields. For a
non-Archimedean fielt, we letBMod (k) denote the category of Banakkmodules with bounded
k-homomaorphisms. We call a bound&éhomomorphisnmu : M — N strict if the quotient norm on
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M /ker(u) is equivalent to the norm induced by N (iB4r90] V. Berkovich calls such a homomor-
phismadmissiblg. We letBMod®'(k) denote the subcategory BMod (k) in which morphisms are
required to be strict.

For a non-Archimedean field and ann-tuple r = (r4,...,ry) of positive real numbers, we let
k{r*&,...,ry &} denote thek-algebra

{ = Z ay&)t. & ]av\rzl...r,‘{”—>Owhenv1+...+vn—>oo}

equipped with the Banach norm

— Vi v
1]l = maxjay[ry"...rq"

Whenr = (rq,...,ry) is a vector of positive real numbers which dieearly independenin
(R-o/|K*|) ®z Q, i.e., such that]*...rin ¢ |k*| for any v = (vy,...,Vn) € Z" — {0}, the Banach
k-algebrak{r;*&1,r1& %, ... ritén, &y 1} is @ non-Archimedean field which we denotekpy

Let M and N be Banack-modules, all of whose norms are denoted|byj. Then we can consider
on tOhe classical (i.e., algebraic) tensor productMN a norm, also denoted hy. ||, and defined by
| f|l=infmax || m || - || ni |, where the infimum is taken over all the representatibasy; m @ n;.
The completion of Mk N with respect tq| . || is called thecompleted tensor productf M and N,
and is denoted by M¢N. The notion of completed tensor product of homomorphissndeifined
similarly.

(1.2.2) Let A denote a commutative Banach ring with unit. V. Berkdvialls spectrumof A, and
denotes by (A), the set of all bounded multiplicative seminorms on A; tlsi®inon-empty set if
A # 0 [Ber90, 1.2]. We adopt the following notation: for an elememntf .# (A) and an element

of A, we write | f(x)| or | f|(x) instead ofx(f). Equipped with the weakest topology for which all the
functions A— R, f —| f | (X) are continuous,Z (A) is a Hausdorff and compact topological space
[loc. cit.].

Roughly speaking, this notion of spectrum for Banach conaitivg rings plays in Berkovich theory
a role similar to the one played by the notion of spectrumdggetime ideals) in algebraic geometry.
For instance, as in commutative algebra, any bounded hompinison of commutative Banach rings
¢ : A — B gives rise to a continuous mag/(B) — .#(A), which we denote bf¢. At last, if x
is a point of Z (A), then its kernepy = {f € A; | f | (x) =0} is a closed prime ideal in A. The
completion of the fraction field of Apx, with respect to the natural extension|of (x), is called the
complete residue fieldf A at x; it is denoted by (x).

Strictly speaking, the building blocks of algebraic geamere spectra of commutative rings seen
as locally ringed spaces, that is spectra endowed with & shéacal rings. Analogously, one has
to define a sheaf of local rings on each space X7 (A) where A is a commutative Banach ring
with unit, in order to obtain the so-callddaffinoid spaces. However, since the building blocks are
compact, one has first of all to single out a class of compdau$aces inZ(A). Here is a brief
summary of their definition, given in several steBef90, 2.1-2.3].

First of all, we are interested in spectra of suitable Baragkbras over non-Archimedean com-
plete valued fields: thaffinoid algebrasLet us be more precise. We BAIg (k) denote the category
of Banachk-algebras and boundéghomomorphisms.

Definition 1.1 — (i) A Banach k-algebra is called kaffinoidif there exists a strict epimorphism
k{r;1&,...,ryt&} — A. Itis calledstrictly k-affinoid if we can take r= 1 for each index i.
(i) A Banach k-algebra is called affinoid if there exists a non-Archimedean extensiofk such
that A is aK-affinoid algebra.
(iii) We let k— Aff (Aff (k), respectivly) denote the full subcategoryBAlg (k) whose objects are
k-affinoid algebras (of affinoid k-algebras, respectively)
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We henceforth fix &-affinoid algebra A and consider its (Berkovich) spectrum=X#(A). A
k-affinoid domairin X [loc. cit., 2.2 p. 27] is by definition a subset D of X suclattthe functor

Fp : Aff (k) — Sets B +— {¢ € Homgag((A,B) | Im(?¢) C D}

is representable by a paitAp,¢p) consisting of ak-affinoid algebra A and a boundeck-
homomorphism¢p : A — Ap. This pair is then unigue up to a unique isomorphism and the
morphism?¢p maps.# (Ap) homeomorphically onto D. Thepecial subsetsf X are then defined

to be the finite unions ok-affinoid domains contained in X [loc. cit., p. 30]; to suchmase D

is naturally attached a Banag&kalgebra, say A, which can be computed as follows: {iD; }ic is

a finite covering of D byk-affinoid domains, then A= Ker([Tic; Ap, — [Ti jei Abinv;) — Tate’s
acyclicity theorem implies that the kernel doesn’t dependh® choice of the covering. Thanks to
the latter class of closed subsets in X, a sheaf of local rifigsan finally be defined on X by setting
for each open subset U of X:

r(ﬁ)OU) — IiﬂDAV>

where the projective limit is taken over all special subd2ts U. The so-obtained locally ringed
spaceg X, Ox) are callek-affinoid spacefloc. cit., p. 32]; anaffinoid space over ks a K-affinoid
space for some non-Archimedean extensig.K

In Berkovich theory, the next step is then to defiranalytic spaces. Since we will not need this
notion in full generality, let us simply mention thatkeanalytic space is defined by gluing affinoid
spaces along affinoid domains, and that the functorial digfinbf affinoid domains in an affinoid
space given above extends to daginalytic space; we refer t@pro3, 81] for a detailed exposition.
A k-analytic space is simultaneously a locally ringed spadedncally ringed site with respect to the
Grothendieck topology generated by its affinoid subspades.relies on the latter structure to define
morphisms. The categolyAn of k-analytic spaces has finite products ankl-analytic group is a
group object in the category &fanalytic spaces. As for schemes, the underlying setke@malytic
group is not a group in general.

We will need the notion of an analytic spac&Massociated with a scheme X locally of finite type
over a non-Archimedean fiekli[Ber90, 3.4]. As in complex algebraic geometry@Xs equipped
with a morphism of locally ringed spaces X2" — X and (X2", p) represents the functor

k—An — Set Y — Homocrg.sp. (Y, X).

When X is affine, the analytic spacé™s described set-theoretically as consisting of the mlidap
tive seminorms on the coordinate ridg X) of X extending the absolute value kfand the magp
sends a seminorm on its kernel — which is a (closed) primd wfe@(X).

In general, the underlying set of”Xcan be described as the quotient of the 8et= Uy /X (K)
— where the union is over all non-Archimedean extensiopfis-&- by the equivalence relation which
identifiesx’ € X(K’) andx” € X(K”) whenever there exist embeddings of non-Archimedean fields
K — K’ and K— K” such that’ andx” come from the same point in(X) [loc. cit., 3.4.2].

Lemma 1.2 — LetX be an affine algebraic k-scheme. Any compact subs¢t't contained in a
k-affinoid domain.

Proof. Write X = Spe¢A) and choose &epimorphismrt: k[&1,...,&,] — A. For a compact subset
C of X2, there exists a positive real numbesuch that maxi<nsup: |71(&)| < r and, if we set
B =k{r 1&,...,r 1&}/ker(m), then.# (B) is ak-affinoid domain in X" containing C. m

(1.2.3)Let A be a commutative Banach algebra. Recall that any elerhenA has aspectral ra-
dius[TS, I, 2.3]:

. 1 . 1
p(f) = lim || £7{j= inf || £7 7.
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Then the subset A= {f € A | p(f) < 1} is a subring of Aand X = {f ¢ A | p(f) <1} is an
ideal of A°; we denote byA = A°/A° the corresponding quotient ring. Lgte .#(A). Then
we have a sequence of bounded ring homomorphisms: A/px — QUOt(A /px) — 7 (X), where
Quot denotes the fraction field of an integral domain, aff@dx) is the complete residue field af

—_—

defined above. This provides a ring homomorphism- 2 (X) whose kernel is a prime ideal since

A (x) is a field. We finally obtain a mapr: .#(A) — SpecA) by attaching tax the prime ideal
{f € A°||f|(x) <1}. This map is called theeduction mamf the Banach algebra ABfr90, 2.4].

A useful notion from spectral theory is that of Shilov boundaf A: a closed subset, sdy, of
#(A) is called a boundary if any element of A achieves its maximarfi.i Minimal boundaries
exist by Zorn’s lemma, and when there is a unique minimal Haay the latter is called th8hilov
boundaryof A and is denoted bl (A). In the case when A iskaaffinoid algebra, the Shilov boundary
exists and is a finite subset of X.# (A) [loc. cit., 2.4.5] such that

f)= f
p(f) = max{]

forany f € Aloc. cit., 1.3.1]. If A is strictly k-affinoid, then there is a remarkable connection with
the reduction magpr : the Shilov boundary (A) is the preimage of the set of generic points (of the

irreducible components) of Sp(é%) [loc. cit., 2.4.4]. We will make crucial use of arguments liist
circle of ideas in section 2.

(1.2.4)Let o/ be afinitely presentekf’-algebra whose spectrum we dendté Thegeneric fibre(the
special fibrerespectively) of2" is thek-scheme X= Sped.«Z Q- k) (thek-schemeZs = Spe¢.«Z @
k) respectively). The map

[ ler + # @i k= R0, ar>inf{|A

;A ekandae (o ®1)}

is a seminorm on A k. The Banach algebra A obtained by completion is a striktbffinoid
algebra whose spectrum we denote #y". This affinoid space is naturally an affinoid domain in
Xa' whose points are multiplicative seminorms on®y- k which are bounded with respect to the
seminorm||.||.,. Moreover, there is a reduction map 23" — 25 defined as follows: a pointin

Z @ gives a sequence of ring homomorphisms

o — AKX — AN
whose kernef (x) defines a prime ideal of/ ®j- k ie. a point inZs.

This construction and the one described in 1.2.3 are rekdeidllows. The ring A of power-
bounded elements in the affinoid algebra A is the integralwie of<” [BGR84, 6.1.2 and 6.3.4] and
we have a commutative diagram

SpecA)

in which the vertical arrow is a finite morphism. It followsatt if the scheme?” is integrally closed
in its generic fibre — in particular if2” is smooth — thermr=r.

The construction above extends to any sche#idinitely presented ovek®. One defines &-
analytic space2 " by gluing the affinoid space§?|y)®" associated with affine open subschemes
Zy of Z'. Thisk-analytic space is equipped with a reduction niap the special fibre of2". It
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comes also with a canonical morphis#i?" — X2" where X= 2" @ k denotes the generic fibre of
2 and X" its analytification (see 1.2.2); i is proper, this map is an isomorphisiBdro4, § 5].

(1.2.5)Let X = .#(A) be ak-affinoid space. For any non-Archimedean extensigk, khe preimage
of ak-affinoid domain DC X under the canonical projection,gj : Xk = X&kK — X is a K-affinoid

domain in X% since the functor E;}k(D) is easily seen to be represented by the PaRKK , ¢pRidk ).
The converse assertion holds if the extensiok I§ affinoid, i.e., if K is ak-affinoid algebra.

Proposition 1.3 — Let X be a k-affinoid space and I&t/k be an affinoid extension. A subgebf
X is a k-affinoid domain if and only if the subs;B‘E/lk(D) of Xk is aK-affinoid domain.

This proposition, which gives the key to Berkovich reali@as of Bruhat-Tits buildings, is a spe-
cial case of faithfully flat descent in non-Archimedean gti@algeometry. Since we couldn’t find a
suitable reference, we provide in the first appendix a cotapmof of this result (and of some related
technical statements we will need).

1.3. Bruhat-Tits theory

In this section, we sum up the main facts from Bruhat-Tit®tiz@ve need in this paper. Concerning
the hypotheses under which we will be using the theory, we megeak version of the functoriality
of Bruhat-Tits buildings with respect to extensions of theumd field (this is automatically satisfied
when the ground field is locally compact). Thanks to huge Amhimedean extensions, we note that
we can obtain interesting transitivity properties of theresponding groups of rational points acting
on their buildings.

(1.3.1) We very quickly introduce the main terminology of BruhatsTiheory; we refer to Rou0§],
and particularly to Sect. 10 and 11 therein, for a reasondétgiled introduction to these notions.
The first two parts of this reference also contain a very uggfametric introduction to non-discrete
Euclidean buildings.

Let G be a reductive group over a (by convention, complete}-Ahimedean fielk. We
choose a maximal split torus S in G and denote ®{G,S) the corresponding set of roots.
For every roota € ®(G,S), the root group Y is the subgroup of G whose Lie algebra is the
eigenspace associated with the characteor 2o in the adjoint representation of S on ().
Then (Cent(S)(k), (Ua (K))aca(se)) is agenerating root datuniBT72, 6.1.3, example c)] of type
®(S,G) in the sense of Bruhat-Tits. This statement sums up a sulastpart of Borel-Tits theory
on the combinatorial structure of(i§ [BT65], [Bor91] — note that the fact that the fieldis valued
hasn’t been used so far.

We now take into account the ultrametric absolute valuk, efhich we write ag - | = e () for
some valuatiorw : K — R. Let us denote by M the centralizer Cg(®) of S in G: it is a reductive
group sometimes called theductive anisotropic kerne@lf G. We also denote by (%), or simply V if
no confusion is possible, the real vector spa¢&)\'= Homy (X*(S),R) where X (S) is the character
group Hom_gr(S,Gmk). By restriction from M to S, each charactgre X*(M) is a linear form
on V(S) and there exists a homomorphiam M (k) — V(S) such that for any sucly, we have the
equality: x(v(2)) = —w(x(2)) for anyz € S(k) [Rou08, Prop. 11.1].

Moreover the homomorphism can be extended to a homomorphism from Neg(®) (k) to the
group of affine automorphisms of(8), in such a way that the image of amg S(K) is the translation
by v(z) € V(S) and the linear part of the image of anyg Normg(S)(K) is given by the image af in
the spherical Weyl groupV¥ = Normg(S) (k) /Cents(S)(k) [loc. cit., Prop. 11.3]. It follows from the
axioms of a root datum that for eache ®(S, G) and any non-trivial € U, (K) there exist non-trivial
u,u” € U_q(k) such tham(u) = uu’ normalizes &) and the image af(u) in WV is the reflection
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associated witla. The group generated by all the so-obtained reflectionslisdcthe affine Weyl
group of G; we denote it by W. Finally we denote by(8,k) the apartmentof S, that is the affine
space with underlying real vector spacéSy, endowed with the previously defined affine action by
the group W.

The main result of Bruhat-Tits theory concerning the coratwnal structure of &) is, under
suitable assumptions on G akdthe existence of &aluation of the above root datum in ®), in
the sense ofBT72, 6.2] — we go back in (1.3.4) to the these assumptions, sirecbave to make
our own @ priori stronger) assumptions for this paper. Roughly speakingjuation is a collection
(a)aca(se) Of maps Uy — RU {+e} which corresponds, in the split case, to the valuatipof k
when one chooses consistent additive parameterizatidhe odot groups. In general, for each root
and each real numben, the preimage Wm = ¢4 ([m, +]) is a subgroup of the root group(k);
moreover the familyUqs m)mer is a filtration of Uy (k); the groups W m satisfy axioms requiring
some consistency conditions, as well as a suitable behawiibil respect to commutators and to the
above (well-defined) map— m(u) given by the root datum axioms. In this framework, to eacimpoi
x € A(S k) is attached a well-defined subgroug Y= U, _q(x 0f Uy (k) for each root.

(1.3.2) Assuming the existence of a valuation for the root dat(Uq (K))gcw(s)), ON€ attaches
to each poink € A(S, k) two groups. The first group is denoted by Ris by definition generated by
Ker(v|w ) and the groups Wx whena varies overd®(S, G); the second group is denoted By, it is

defined byPy = P, - N(K)x where NK), denotes the stabilizer ofin Normg(S)(k). The Bruhat-Tits
building of G overk, denoted byZ(G, k), is defined BT72, 7.4] as the quotient of the product space
G(k) x A(S,k) by the equivalence (gluing) relation given by:

(9,) ~ (h,y) if and only if there exist: € Normg(S)(k) such thay = v(n)x andg‘hn e P,.

We obtain in this way a spac# (G, k) on which GKk) acts naturally; denoting bjg, x| the class of
(9,x) for ~, the action is described Wyg, x| = [hg,x]. Each subgroup K fixes a non-empty half-
space of AS, k) whose boundary is the fixed-point set ii3\k) of the reflectiorm(u) as above, for
some suitablel € Ug m.

The Euclidean buildingZ(G, k) carries a natural non-positively curved metiiT[72, 8.2], which
is complete since so ik in the present paper; moreover, the action of gny G(k) is isometric.
The apartments, which are thglg-transforms of the space(8, k) (embedded inZ(G,k) by the
mapx+— [1gk),X]), can be seen as the maximal subspace® @, k) isometric to some Euclidean
space. They are in one-to-ondkp-equivariant correspondence with the maxirkadplit tori in G;
this follows from the fact that (k) acts transitively by conjugation on the maxinkedplit tori in G
and the fact that Norgx(S)(K) is exactly the stabilizer of £5,k) in G(k).

One point we would like to emphasize is that, though we arenipanterested in compactifying
buildings, we must use Bruhat-Tits theory in full geneyalMore precisely, a necessary condition for
a metric space to admit a compactification is that the spatach#y compact, which corresponds for
Bruhat-Tits buildings likeZ(G, k) to the case whekis locally compact; still, the techniques we use
lead us to deal with non-discretely valued fields: the gedmebunterpart is the use of non-discrete
buildings. The non-discretely valued case is of course reavby BT72] and [BT84], but is less
popular — e.g., not covered by the surva@yt79]. In this case, Bruhat-Tits buildings are not cellular
complexes and facets are filters of subsets in the builditill. &8useful approach by incidence axioms
close to those of buildings of affine Tits systems has beealdpped in Rou0§.

Roughly speaking, the model of an apartment is a Euclidefimeagpace acted upon by a group
generated by reflections such that its vector quotient isite fieflection group. Thevalls are the
fixed-point sets of the affine reflections antaf-apartmentis a half-space bounded by some wall.
This defines also in the underlying vector space a partitibm\iVeylor vector chamberandvector
facets Given an apartment A, a poirte A and a vector facet'f; the facetF, - based ak and of
direction F is the filter of subsets of A which contain the intersectiofimifely many half-apartments
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or walls containing a subset of the fo@ (x+ F'), whereQ is an open neighborhood gfloc. cit.,
85]; analcoveis a maximal facet. With these definitions, a theory a bugdiby means of incidence
axioms of apartments close to that of discrete buildi®g8J8] can be written Rou08, Part II]; note
that this is quite different from Tits’ axiomatic introduté [Tit86] since for classifications purposes,
J. Tits uses there the geometry at infinity (in particular Wehambers and spherical buildings at
infinity) in order to define and investigate Euclideanpfiori not necessarily Bruhat-Tits) buildings.

With this terminology in mind, we can go back to the group@ttin.%Z (G, k) in order to formulate
geometrically some well-known decompositions ofks Recall that a poink € A(S k) is called
specialif for any direction of wall there is a wall of A actually pasgi throughx [BT72, 1.3.7].
The Cartan decompositioof G(k) says that ifx € A is special, then a fundamental domain for
the Staly(x)-action on A (i.e., asectorof tip X) is also a fundamental domain for thel3-action
on #A(G,k). This decomposition implies that in order to describe a caetification, it is enough
to describe sufficiently many converging sequences of pdmtthe closure of a given sector. It
also implies that given any poimte A, the apartment A contains a complete set of represengative
for the Gk)-action on#(G, k), that is: #(G,k) = Staly (X)A. We also have to usevasawa
decomposition§BT72, 7.3.1]. Such a decompositon is associated with a poinf and with vector
chambers DD’ for A. It decomposes () as: Gk) = UJ (k) - Staly (A) - Staky ) (Fx o), where
Up (k) is the unipotent radical of the parabolic subgroup stahiizhe chamber at infinity..D.

At last, let us say a few words about extended Bruhat-Titidings. We denote by XG) the
character group Homg, (G,Gmk). If Z denotes the center of G, the restriction homomorphism
X*(G) — X*(Z°) has finite kernel and its image has finite index if(Z°). Therefore it induces an
isomorphism between the duitvector spaces. Whe# (G, k) exists, we let#®(G, k) denote theex-
tended Bruhat-Titbuilding of G(k); it is simply the product of the building?(G, k) by the real vector
space \(G) = Homap (X*(G),R). The space’®(G,k) is endowed with the (k)-action induced by
the natural actions on each factor — s&&q9, 1.2] for the case of an apartment, aRb[i77, 2.1.15]
for the building case.

(1.3.3) The first result we recall is an easy consequence of medseoestic arguments wheais
locally compact, i.e., when @) carries a Haar measure — see e.g., the usMafy1, 2.5.3] in the
proof of [GR0O6, Lemma 12].

Lemma 1.4 — For any xe #(G,k), the pointwise stabilizeBy(k) is Zariski dense ir6.

Proof. We pick a maximal split torus S in G such the¢ A(S,k). We denote by M= Cenis(S) the
corresponding Levi factor; its derived subgroib, M] is semisimple anisotropic and the bounded
group [M,M](K) stabilizes pointwise the apartmen{$k). Letc be an alcove in AS k) whose

closure containg. It is enough to show that the Zariski cIosu.'Ee(k)Z of the pointwise stabilizer
Ge(K) of ¢, is equal to G. First, since Nou(S) (k) = Staly (A(S,k)), we deduce that Norg(S) N
Gc(k) is equal to the pointwise stabilizer of(8 k), hence containfM, M](k). Since M= [M,M]-S
is a reductive group, we already deduce that we have: WI()Z[Borgl, 18.3].

We pick now a special point in ¢,k) and use the corresponding valuatighy ) ;o (s ) of the
root datum(M, (Uq)gea(se)) Of G with respect to S. Letr be a root in®(S,G). The group G(k)
contains a suitable subgroup, say 4Jof the filtration given byp,. Using for instance the cocharacter
of S corresponding to the coroot af we see that we haveddk) = Uscs SUq ¢S 1, which proves

that Uy (k) C Gc(k)Z becauses (k)Z contains S. Since MK) is Zariski dense in | [BT65, 3.20],

we deduce that’rsc(k)Z contains the root group Jfor eacha € ®(S,G). This proves our claim, since
G is generated by M and the root groupg fdr a varying in®(S,G). O

Let G be a split connected reductive group okewith each special point e #¢(G,K) is associ-
ated a well-defined Demazure group schetheverk® with generic fibre G such th&(k°) is the
stabilizer ofx in G(k) [BT84, 4.6.22]. More generally, for any connected reductive gr@iover
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k, Bruhat-Tits theory attaches to each pointf 2 (G,k) some group scheme ovkt with generic
fibre G. In the present paper, vmeveruse these integral group schemes if G is not split origf
not special. We replace these group schemessviy affinoid subgroups ovedewhich come from
Berkovich theory. The latter affinoid subgroups are defimeohks to the Demazure group schemes
of the special points in the split case, and a faithfully flescent argument. To perform this, we have
to use huge non-Archimedean extensionk ahd some weak functoriality property &f(G,k).

(1.3.4)We can now be more precise about our working assumptionst dfiall, the use of Berkovich
theory implies that we systematically work with completéuea fields. Given a non-Archimedean
field k and a reductive group G ovér we need of course thexistenceof a Bruhat-Tits building
A(G,k) for G, as well as some functoriality with respect to non-Anobdean extensions. Ideally,
we would assume fufunctoriality of buildings with respect to non-Archimedean extensioasnely
the existence of a functo®(G,-) from the categoryE(k) of non-Archimedean extensions kfto
the category of sets, mapping a field extensidiikkto a G(K)-equivariant injection#(G,K) —
P(G,K'). This hypothesis is too strong to hold in full generalifgdu77, 111.5]. It is however
fulfilled if G is split (easy) or only quasi-split; more geady, functoriality holds if the following two
technical conditions are satisfiedgu77, V.1.2 and errata]

(i) G quasi-splits over a tamely ramified (finite) Galois edienk’ /k ;

(i) there is a maximal split torus T of Gk k' containing a maximal split torus of G and whose

apartment AT, k') contains a Galois-fixed point.

Using functoriality in the quasi-split case, one remarkat thoth conditions are fulfilled over any
non-Archimedean extension K kfas soon as they are fulfilled over the base field

Condition (i) holds if the residue field d€ is perfect. Condition (ii) holds if the valuation &f
is discrete, in which case it follows from the so-called 'wage étale” of Bruhat-Tits. As a con-
sequence, our strong hypothesis is fulfilled if the non-Aredean field isliscretely valued with a
perfect residue fietathis is in particular the caselfis alocal field

Remark 1.5 — According to Rou77, 11.4.14], condition (ii) holds if and only if the exists a xieal
split torus S of G satisying condition (DE) iBT84, 5.1.5]).

However, a weaker form of functoriality suffices in order terform our basic construction of
affinoid groups in 2.1. It is enough to assume the existenegfafictor%(G, -) on a full subcategory
Eo(k) of E(k) which is cofinal i.e., each non-Archimedean extensionkois contained in some
extension Ke Eg(k). Thanks to functoriality in the split case, this conditioolds as soon as the
building #(G, k) sits inside the Galois-fixed point set of the buildisg(G, k') of G over some finite
Galois extensiork’ /k splitting G, in which case we can take fBg(k) the full subcategory of )
consisting of non-Archimedean extensions of K contairkihg

It turns out that in the cases when the Bruhat-Tits buildih@ @verk is known to exist, existence
follows from “descending” the valuation of the root datum@®fover a splitting extension down to
k. This is always possible whenis a local field, and under much broader hypotheseBoBH,
Introduction], by the famous two-step descent argumenhefwhole latter article (which, by the
way, justifies that we can use the machinery BTY2] that we have just summed up). There is
also a one-step descent available in G.Rousseau’s habilif@&ou77] and in the more recent papers
[Pra0]] and [PYO02].

(1.3.5)We work under the functoriality hypothesis discussed i8.4). For a poink in #(G,k) and
a non-Archimedean extensioryK we letxx denote the image ofin Z(G,K).
Proposition 1.6 — Let x be a point inZ(G, k). There exists an affinoid extensikink satisfying the
following two conditions:

() the groupG kK is split;

(i) the canonical injection(G, k) — #(G,K) maps x to a special point.
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Proof. Letk’ be a finite extension df splitting the group G and set = x. Pick a split maximal
torus T in G = G®kK such that(' lies in the apartment @, k') and set N= Normg (T); we recall
the notation \(T) = Homap (X*(T),R). Finally, letxy be a special point of8(G,k’) contained in
A(T,K). Since(xo) is a special point 0f2(G,K) for any non-Archimedean extension K kif the
unique affine bijection with identical linear par{ V&g K) — A(T,K) mapping 0 taXo)k is N(K)-

equivariant. Indeed, the local Weyl group/oincides with the full spherical Weyl group Wend
N(K) = T(K) »x WY,

The image of the map

T(K) = V(T@wK) =V(T), te (X — log|x(t)])

consists of all linear forma on the vector space*XT) ®z R such thatu, x) belongs to the subgroup
log|K*| of R for any charactey € X*(T). In the identification above, the poirtof A(T,k’) corre-
sponds to a linear form on X*(T) whose image is a finitely generated subgroufRcfince X (T)
is a finitely generated abelian group. Now, if we consider affiyjoid extension K ok containing
K" and such that irfu) C log|K*|, thenu and 0 belong to the same orbit in(V) under the group
T(K), hencex andxg belong to the same orbit unde ). The pointx is therefore a special point of
AB(G,K). O

Proposition 1.7 — For any two points x and y it8(G, k), there exist an affinoid extensi#tyk and
an element g o6(K) such that gx = yk .

Proof. Let K/k be a non-Archimedean extension splitting G and such thapdive x« is a special
vertex of Z(G,K). Pick a split maximal torus T of Gk K whose apartment it2(G,K) contains
bothxx andyk. Takingxk as a base point, the argument used in the proof above shotihé¢na
exists a non-Archimedean extensiofyK such thatx andyk: lie in the same orbit under &’). O
(1.3.5) As in [GRO06], we also need to see the buildings of Levi factors of G ins#lgs, k) — see
[loc. cit., 1.4] for further introductory details. Let P arpholic subgroup of G containing S. The
imageS of S under the canonical projectiqn P — Pss= P/rad(P) is a maximal split torus of the
semisimple group 8 The map X(S) — X*(S), x — x o p is an injective homomorphism and we
let p¥ : V(S) — V(S) denote the dual projection.

Let Lp denote the Levi subgroup of P containing Ggi®). The projectionp induces an iso-
morphism between the reductive groups &nd P'rad’(P), and between the semisimple groups
Lp/rad(Lp) and P'radP). The set®(P,S) of roots of P with respect to S is the union of the dis-
joint closed subset®(Lp,S) and®(rad’(P),S). The subsetb(Lp,S) of X*(S) spans X(S) ®z Q,
hence the kernel gb” is the linear subspace

X*(S)*t = {ueV(9) | Va e X*(S), a(u) =0}
= {ueV(S)|Vaed(Lp,S), a(u)=0}.
The following proposition is a particular instance of theuks proved inBT72, Sect. 7.6].
Proposition 1.8 — There is a natural affine map (S, k) — A(S,k) with linear part p’, mapping
special points to special points and inducing an isomonphis
A(S,K)/X*(S)t —== A(Sk).

Moreover letk’ /k be a finite Galois extension splitting G and T any maximal$atiG. If we set
I = Gal(k'/k) and let S denote the maximal split torus of T, the mdp A') — A(T,K') defined as
above id -equivariant and the natural diagram
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in which the vertical maps are the canonical injectionspimmutative.

2. REALIZATIONS OF BUILDINGS

In this section we define, for a given reductive group G ovesraplete non-Archimedean field
various maps from the Bruhat-Tits building(G, k) (or its extended version) to analytic spaces over
k. The target spaces are first the Berkovich analytic spa€eassociated with G and then the ones
associated with the connected components(Barof the variety PaiG) of parabolic subgroups of
G.

The construction of the fundamental (first) mép %2 (G,k) — G?" relies on the idea to attach to

each poink € #(G, k) an affinoid subgroup @such that G(K) is the stabilizer okin G(k) (Th. 2.1).
In the split case, this map was defined BerkoviBlerP0, 5.4] in a different way. Our construction
requires a faithfully flat descent result in the context ofk®eich geometry, which is proved in
the first appendix. The other maps are derived f@mThe analytic space R&6G)2" attached to
the (projective) "flag variety of typ&€' Pak(G) is compact. The so-obtained mafs: #(G,k) —
Pag(G)2", which only depend ot are used in the next section to define the compactifications.

We consider a reductive group G over a non-Archimedean kedid recall that our working

hypothesis, detailed in (1.3.4), are fulfilled in partiguiik is a local field, or more generally if
%°(G,k) is obtained by descent of the ground field from a splittingifabwn tok.

2.1. Affinoid subgroups associated with points of a building

(2.1.1) The fundamental fact underlying Berkovich’s point of view Bruhat-Tits theory is the fol-
lowing result.

Theorem 2.1 — Let x be a point in2%(G, k). There exists a unique k-affinoid subgroBp of G&"
such that, for any non-Archimedean extengdiofk, we have:

Gx(K) = Staks k) (*«)-
Proof. Given a non-Archimedean extensiorfkk we say that a K-poing € G(K) of G islocalizedin
the pointz of G2"if {z} is the image of the morphis: .# (K) — G?".
Define G as the subset of 8 consisting of the pointg satisfying the following condition:
there exist a non-Archimedean extensiofk and aK-point g: .# (K) — G®" of G localized in z
such that gx = X .

Let k'/k be a non-Archimedean extension, denoteptifie canonical projection diG @ k')2" =
Gk’ onto G"and sei’ = x¢. We claim thatp™1(Gy) = (G kK )x.

By definition, a poinz of G3"belongs to Gif and only if there exist a non-Archimedean extension
K/k and a poing € G(K) fixing X« and sitting in a commutative diagram

K[G] 2 K.
\ /
H(2)

GivenZ € (G®kK)y, such a diagram exists for the extensigfi(Z) of .7#’(z) and therefore belongs
to Gx. Conversely, iZ is a point of(G®kk')2" overz € Gy, there exists a non-Archimedean extension
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K" of ¢ (z) covering both K and#’(Z); sincex,, = xx/, the elemeng of G(K) seen in GK') fixes
X, and therefore belongs to G @y K')y.

Let us temporarily assume that the group Gsjdit and that the poink is a special point of
%°(G, k). According to Bruhat-Tits theory, there exists a Demazuoeig schemé over the ringk®
with generic fibre G such th&(k°) is the subgroup of (k) fixing the pointx. More generally, for
any non-Archimedean extensioryk the subgroui(K®) is the stabilizer of the pointk in G(K);
indeed Xk is still a special point of2%(G,K) and%, = % Qi K°.

Applying the construction described in 1.2.4, one gets &nafl subgroupZ2" of G2". We have
the equality’2"(K) = %(K°) in G(K). This amounts to saying that, for any non-Archimedean
extension Kk, a pointg: .# (K) — G®"is localized in2" if and only if gx = Xk, hence2" = Gy
as subsets of 8. Hence G s in this case &-affinoid domain of G" and, for any non-Archimedean
extension Kk, Gx(K) is the subgroup of ) fixing the pointxx .

We now remove the two assumptions above. Lgk Ke an affinoid extension splitting G and such
that X« is a special point of4%(G,K) (Proposition 1.6). In view of what has been proved so far,
Pry ji(Gx) = Gy, is a K-affinoid domain in @&yK = (G &k K)" in particular, G = pry i(Gx) is &
compact subset of @. Since any compact subset of'Gs contained in &-affinoid domain (Lemma
1.2), we conclude from Proposition 1.3 that i§ ak-affinoid domain in G".

Finally, let K/k be any non-Archimedean extension and pick an extensiaf K splitting G and
such thatx is a special point. We have:

Gy(K) = Gyx(K')NG(K)
= Stals) (%) NG(K)
= Stalyk) (%)
and G is ak-affinoid subgroup of &'in view of the next lemma. O

Lemma 2.2 — LetX be a k-analytic group. For any k-affinoid domdinof X, the following condi-
tions are equivalent:

— D is a k-affinoid subgroup of;
— for any non-Archimedean extensinof k, the subsdd(K) of X(K) is a subgroup.

Proof. By definition, a non-emptk-affinoid domain D of X is a subgroup of X if the multiplication
my : X x X — X and the inversiony : X — X factor through the canonical immersions: D — X
andip x Ip:DxD — X x X:

D

s

X.

Equivalently, both morphism®i o Ip x Ip andix o Ip are required to factor through. In view of the
definition ofk-affinoid domains in terms of representability of a functbi2(2), this is the case if and
only if their images lie in the subset D of X. Since each poird k-analytic space Y is the image of a
morphism.Z (K) — Y for a suitable non-Archimedean extension Kkothe latter condition amounts
exactly to saying that [X) is a subgroup of X) for any non-Archimedean extensioryK O

DxD--=D

IDXID\L llD D

XXme—>X

- — >

X<—0O

E—
IX

Remark 2.3 — Let x be a point in#Z(G,k). The theorem above has the following consequence:
given a non-Archimedean extension Klo&nd a K-pointg € G(K) fixing X« in #(G,K), any other
K-point h € G(K), inducing the same seminorm @en the coordinate algebkiG]| of G, fixesxk .
Proposition 2.4 — Let x be a point inZ%(G, k).

(i) The k-affinoid subgrougs, of G" has a unique Shilov boundary point, which we denote by
9 (x). Itis a norm on the k-algebraj&] extending the absolute value of k.
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(i) The k-affinoid grousy is completely determined by the pothtx): its k-affinoid algebra is the
completion of K[G], |.|((x))) and we have:

Gy ={z€ G| |f|(2) < |f|(9(x)) for all f € K[G]}.

(iii) 1f we let the groupG(k) act onG?" by conjugation, then the subgroup ofkG fixing the point
9 (X) is (ZGx)(K), whereZ = Cen{(G).

(iv) If we let the groups(k) act onG2" by translation (on the left or on the right), th&y (k) is the
subgroup ofG(k) fixing the pointd (x).

Proof. (i) Pick a non-Archimedean extensiorykKsplitting G and such thaik is a special point of
%°%(G,K); under these assumptions, the K-affinoid groym@X = (G ®kK)y, is deduced from a
Demazure group schen# over K°. Since? is smooth, the reduction map (1.2.4),G~ ¢ @k- K
induces a bijection between the Shilov boundary qf &nd the set of generic points in the special
fibre of 4. Since Demazure group schemes are connected (by definiionk- K has only one
generic point and therefore the Shilov boundary @& is reduced to a point. This ia fortiori
true for G, since the canonical projection,&K — G, maps the Shilov boundary of the rangeto
the Shilov boundary of the targeB§r90, proof of Proposition 2.4.4].

By definition, 3 (x) is a multiplicative seminorm on thealgebrak[G]. Thatd (x) is in fact a norm
can be checked after any non-Archimedean extensidnsihce

(8 () = Irg;'JKlXIIO*(f)I = max|f| = [f](3(x),

wherep denotes the projection of 5= Gyx@KK onto G,. We can therefore assume that G is split, in
which case the conclusion follows most easily from the expiormula (i) of Proposition 2.6, whose
proof is independant of assertions (ii), (iii), (iv) below.

(if) Denote by A(x) the completion ofk[G], |.|(F(x))) and let A be thek-affinoid algebra of G
Since A is reduced, we may — and shall — assume that its norm coingiitbsits spectral norm
[Ber90, Proposition 2.1.4], hence witt{(J (x)) asd(x) is the only Shilov boundary point of GThe
immersion G — G2" corresponds to an injective homomorphismkedlgebrak[G] — Ay and thus
extends to an isometric embeddingf A(X) into Ay.

Consider a non-Archimedean extension splitting G and suatxg is a special point 0f2(G,K).
We let %, denote the Demazure group scheme overaltached taxc. By definition, we have
an isomorphism of Banach algebragiAK ~ Ay ; moreover, since 4 is the completion of KG|
with respect to the gauge norm coming from[%, | (see 1.2.4), KG]| is dense in A, . It follows
thati®K : A (X)@kK — Ax&kK is an isomorphism of Banach algebras, hen¢g)A= A, by descent
(Lemma A.5).

(iii) We adapt the argument given by Berkovich iB4r90, Lemma 5.3.2]. Consideg € G(k)
such thagd (x)g—1 = §(x). In view of (i), we havegGxg ! = G« and thusgGy, g ! = Gy, for any
non-Archimedean extension/K since G, = Gy®kK. Choose such an extension splitting G and
makingx a special point. Letting% denote the Demazure group scheme overaksociated with
Xk, our elemeng of G(k) induces a K-automorphismof %&k:-K. By (i), the affinoid algebra A
of Gy is the completion oK[G] with respect to the gauge (semi)norm attached (. Since the
K°-scheme?, is smooth and connected, this norm is multiplicative herairaides with the spectral
norm|.|(9(x)); moreover, K[%] is integrally closed in KG] and therefore K|%] = K[G] N Ay, (see
1.2.4). By hypothesis, the automorphism(g)t of K[G] is an isometry with respect to the norm
|.|(8 (X)), hence intg)* induces a K-automorphism of%, i.e., the automorphism ifg) of G®kK
induces an automorphismof ¢%. Now we consider the following commutative diagram with @xa
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FOWS
1— %(K°)/Z(K°) — Aut(%,K°) —— Autext(¥%,K°) —1

| | \

1——=%(K)/ % (K) — Aut(%,K) —= Autext(%,K) — 1

where 2 is the center of% and Autext denotes the group of outer automorphis@&A3, Exposé
XXV, Sect. 1].

Sincey has trivial image in Autext4%,K®), there existd € %(K°) such thaty = int(h). It follows
thatg = hzin G(K) with h € %(K°) = Gx(K) andz € Z(K), and thereforg is ak-point of the group
GyZ.

(iv) Considerg € G(k) such thatgd (x) = J(x). In view of (ii), we havegGyx = Gy and thusg
belongs to Gk) N Gy = Gx(K). O
Corollary 2.5 — For any xe #°(G,k) and any ge G(k),

Ggx=0Gxg * and 9(gx) =gd(x)g .

Proof. These two identities are obviously equivalent by ProjmsiR.4, (i), and they follow imme-
diately from the definition of ¢since

Stahsk)(9%) = gStalsk) (g
for any non-Archimedean extensioryK O

(2.1.2)We have attached to each poinof %°(G, k) a canonical (semi-)norrit (x) onk[G]. If G is
split, we can give an explicit formula for these (semi-)nerm

Choose a maximal split torus T in G and tet= ®(G, T) denote the set of roots of G with respect
to T; choose also a Borel subgroup B of G containing T andbletdenote the corresponding set
of positive roots (those occurring in rg@)). Having fixed a total order o™, the canonical map
induced by multiplication

r] U gxTx r] Uy — G
acdt acht
is an isomorphism onto an open sub&€%f,B) of G which does not depend on the chosen ordering
and is called théig cell of G with respect tdT,B).

Let o denote a special point i88¢(G,k). This point corresponds to a Demazure group scheme
¢ over k° and we also fix a Chevalley basis of ¥ k°) (i.e., anintegral Chevalley basis of
Lie(G)(k) [Ste6d), which defines a collection of isomorphisnzg : Al 55Uy for a € . We
get therefore an isomorphism between the big €HIT,B) and the spectrum of thk-algebra
KIX*(T)][(€a)aco] Of polynomials in theé,’s with coefficients in the group rind[X*(T)] (the
coordinate ring of T). The open immersi@T,B) — G corresponds to khomomorphism from
K[G] to KIX*(T)][(&a)aco] and the (semi)norm& (x) are conveniently described on the latter ring.

Proposition 2.6 — We assume that the gro@is split and we use the notation introduced above.
(i) The pointd (o) belongs taQ(T,B)2"and corresponds to the following multiplicative norm:
KIX*(M)][(§a)acod] = R>0, > axwx &' maxayyl.
XEX*(T),veN® XV

(i) If we use the point o to identify the apartmeh(T,k) with V(T) = Homap (X*(T),R), the
mapV(T) — G*"induced by associates with & V(T) the point ofQ(T,B)2" defined by the
multiplicative norm

KX (M][(Ea)aco] = Rz0, 3 ayux & maxiay,| [ /@b,
XeX*(T),veN® XV aco
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Proof. (i) The chosen Chevalley basis= (z;)qco Of Lie(¥,k°) provides us with an integral model
%, of B — namely, thek°-subgroup scheme & generated by th&°-torus.7 = Spec¢k®[X*(T)])
and the unipotert°-groupszq (AL ), o € ® — and the isomorphism
[1 AkxTx [] A=Q(T.B)CG
acht acht
comes from &°-isomorphism
M Al x T x [1 A>T . %) CY
acopt acdpt
onto the big cell of¢ corresponding ta7 and %;.
By definition, 9 (0) is the unique point of & contained in the affinoid domainGwhich the

reduction map 6= 93" — ¥4 @ k (1.2.3) sends to the generic point of the target. SR¢&, %4,)
is an open subscheme @jfvmeeting the special fibre ¢f, the special fibre of2(.7, %,) contains

the generic point of/ @i k, and the affinoid spac@(.7, %,)2" sits inside G. Therefored (o) is
the unique point i2(.7, %4,)2" which reduces to the generic point@f.7, %#,) @ k. This means
concretely thaf (o) is characterized by the following two conditions: for aihyg k[X*(T)][(¢a)aco],

[f](9(0) <1< f ek’ [X*(T)|[({x)aco] and |f|(F(0)) <l<= f mapstoO irkv[x*(T)][(Ea)aeq,].
From this, we immediately conclude that
[1](5(0)) = max(ay.y|

iff=3,,avxé&"

(i) For anyt € T(k) and any rootr € ®, the element normalizes the root group 4Jand conjuga-
tion byt induces an automorphism of;Uvhich is just the homothety of ratia(t) € k* if we read it
through the isomorphisig, : Al — Ug. We thus have a commutative diagram

Speck[X*(T)][(éa)aco]) —= Q(T,B)

Tl lint(t)

SpeckX*(T)][(éa)aco)) — Q(T,B),

wherert is induced by th&k[X*(T)]-automorphisnt™ of K[X*(T)][(&x)aco] mappingéy to a(t)éy
for anya € @. It follows thatd (to) =t (o)t~ is the point of G"defined by the multiplicative norm
onK[T][(¢a)aco] mapping an elemerft=7y, ,ay X &' to

XV aecd

= maxjayy| [ la )"
XV aDCD

— max|aX’v| e<a7|09‘t|>v(a)
XV aDdD

[T (DIF(0) = (8(0))

since, by definition, the group(K) is mapped to VT) by sending to the linear formy — log|x(t)]
on X*(T) (cf. 1.3.1).

To complete the proof, note that(x) = pry (3 (x«)) — i.e., #(x) is the restriction o (x«) to
k[T] — for any non-Archimedean extensioryk and that any pointi of V(T) belongs to the image
of the map lod- | : T(K) — V(T ®xK) = V(T) for a suitable choice of K. O

Remark 2.7 — Let G be a connected Chevalley group scheme over a schemd Btal denote
a split maximal torus of G. With each Borel subgroup B of G egmihg T is associated the open
affine subschem@(T,G) of G (thebig cell), whose definition is compatible with base change. When
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B runs over the set of Borel subgroups of G containing T, tlgeceils Q(T,G) cover the scheme
Bor(G). To prove this assertion, it is enough to check that those spbschemes cover each fiber G
over a geometric poirgof S. We are thus reduced to the case where S is the spectrumatifebraic
closed field, and then the conclusion follows easily fromréfined Bruhat decompositiol€he05
Exposé 13, Théoreme 3 and Corollaire 1].

More generally, the same conclusion holds for the familyarpolic subgroups of a given type
containing T. Indeed, the morphism: Bor(G) — Pag(G) defined functor-theoretically by mapping
each Borel subgroup to the unique parabolic subgroup ofttyjpataining it is surjective and maps
each big celQ(T,B) onto the corresponding big cell &f(T, 17(B)).

2.2. The canonical mapd : °(G,k) — G"

Proposition 2.8 — The mapd : #°(G,k) — G?" defined in Proposition 2.4 enjoys the following
properties.

(i) This map isG(k)-equivariant if we let the grou(k) act onG2" by conjugation.

(i) For any non-Archimedean extensioifl the natural diagram

,@e(G, k/) _’9> (G Rk k/)an

T lprk’/k

PB°(G,k) — Gan

is commutative. Moreover, if K is a Galois extension, the upper arrow @Gal(k'/k)-
equivariant.

(ili) The mapd factors through the projectio8®(G,k) — %(G,k) and induces a continuous in-
jection of (G, k) into G®". Its restriction to any apartment oB(G,k) is a homeomorphism
onto a closed subspace Gf". If the field k is locally compact} induces a homeomorphism
betweenZ (G, k) and a closed subspace Gf".

Proof. (i) This assertion is Corollary 2.5.

(i) The first assertion follows immediately from the ideptG,, = Gx®KK'.

If K'/kis a Galois extension, there is a natural action of the gfoupGal(k'/k) on (G ®xk')a"—
to an elemeny of I' corresponds thk-automorphism of G ® k')2" defined by idz y~* at the level
of the coordinate rind’[G] = k[G] ®x k' — and Galois-equivariance & amounts to the identity
(GakK)yx = V(G@xK)x in (GokK)®. If 1 : kK — K is any non-Archimedean extension, then
y(G @k K)x(K) consists by definition of elemengsin G(K) which fix the image ok in #(G,K) if
we use the extensiam y to embed” (G, K) into Z(G,K), i.e., if we compose the embedding coming
from uwith the automorphism of (G, k') induced byy. Thus we have/(G @k )x(K) = (GakK') ),
and therefore/(G @k k' )x = (G@kK') y(x)-

(i) For any two pointsx,y € #°(G, k) such that? (x) = 9(y), Gx = Gy and thusd (x« ) = & (yk )
for any non-Archimedean extensioryK By Proposition 1.7, we can choose K such that= gx«
for someg € G(K). Thend (xc) = 3 (g% ) = g3 (x)g~* and thusg € (ZG)(K) by Proposition 2.4
(ii). Enlarging K if necessary, we may assume tgdielongs to ZK)Gy(K) = Gx(K)Z(K). Since
Gx(K) = Stalyk) (X< ), Yk = 9% € Z(K)x« and the points andyk belong therefore to the same
fibre of #°(G,K) — #(G,K). Relying on (ii), we have thus proved that the magactors through
an injection#(G, k) — G".

Given a maximal split torus S of G, the continuity ®fis equivalent to the continuity of the map

G(k) x A(S.k) = G™, (g,x) — g8 (x)g "

with respect to the natural topology on the left hand side, &§G, k) is a topological quotient of
G(k) x A(S,k). Since the canonical map(l§ x G?" x G(k) — G?", (g,x,h) — gxhis continuous,
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it remains to prove that the restriction 6fto the apartment £S,k) is continuous. In view of the
previous assertion, there is no loss of generality in assgthiat G is split, in which case the result is
an obvious consequence of the explicit formula given in Bsdjon 2.6.

Relying again on this explicit formula, one now proves tB&h (S k)) is closed in G". In view
of (i), it suffices to consider the case of a split group sitieeprojection(G @y K)2" — G¥"is closed
for any non-Archimedean extensiorn/kK moreover, sincé factors through%(G,k), we can also
assume that G is semisimple. Consider now a sequ@npge®f points in (S) = Homap (X*(T),R)
such that the sequen¢é (u,)) converges in @. Thene (@ = |&,|(9 (un)) converges iR for
any roota € ® and the limit belongs t®-.o since|&x|(9 (Un))|&_a| (3 (un)) = e U elin@) — 1 for
anyn. Thus we get a map. : ® — R which is obviously additive and extends therefore to a linea
form on X*(T) since® spans the vector space' () @z Q (recall that we assumed G semisimple).
The pointu. is mapped to the limit of the sequen@®(u,)) and thusS (A(T,k)) is closed.

We have proved tha? maps homeomorphically each apartment({G, k) onto a closed subset
of G2". When the fieldk is locally compact, this is true for the whole buildirg(G, k). Indeed, if S
is a maximal split torus of G anxlis a point in A'S,k), the group G(k) is compact and4(G,k)) =
Gx(k)A(S,k) (see (1.3.2)), hence

9 (B(G,k) = Gx(k) - F(A(S,K))
is a closed subspace of§the action of Gk) is by conjugation). O
Remark 2.9 — If G is split, the mapd introduced above coincides with the one defined by
Berkovich in Ber90, 5.4.4]. Indeed, with the notation of [loc. citR = G, whereo is the

special point of#(G,k) corresponding to thé&°-Demazure group schenig€ ®z k° and, for any
A € Hompap (X*(T),R=0), Py = Go_jog(2)-

2.3. The canonical mapd : #°(G,k) x #%(G,k) — G*"

Given a pointx of #°(G, k) and a non-Archimedean extensiorik{ we always writex instead of
Xk in what follows.

The canonical mag : %°(G,k) — G2" which we have defined above is equivariant with respect
to the natural action of (k) on G*" by conjugation and therefore factors through the projectib
P°(G,k) onto #(G,K). Itis in fact possible to embed equivariantly the whole egtd building
P°(G,k) into G*" if we let the group G&k) act on G" by left translations. To be precise, we will
use a canonical map : #°(G, k) x #°(G, k) — G?" satisfying the following two conditions: for any
pointo € #%(G,k), ©(0,0) = J(0) and®(o,.) : Z%(G,k) — G*"is a G k)-equivariant embedding of
%°(G, k) into G*".

For any two pointx,y € 2°(G, k), there exists by Proposition 1.7 a non-Archimedean extensi
K/k and an elemerg € G(K) such thaty = gxin #%(G,K).

One easily checks that the pointpg(g9 (x)) in G*" depends neither on K nor an Indeed, if
K’ is a non-Archimedean field extending K andgifis an element of @&’) such thaty = g'x in
%(G,K"), theng~1g'x = x henceg—1g € Gx(K’). Since G(K’) is the subgroup of &K’) fixing
3 (x) in the natural action of &) on (G®kK’)2" by left translations (Proposition 2.4 (iv)), we have
g 1g'9(x) = 9 (x) hencegd (x) = g9 (x) in (GekK')a and

P k(@9 () = pre(@d(x))
Pr kPl /k (98 (X))
= Pl (@Pre k (8(X))) = Pr (99 (X)),
for 8 (x) = pri (9 (¥)).
Definition 2.10 — For any two points yy in (G, k), we put
O(xy) = prk k(99 (%)),
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where ge G(K) is such that y= gx in #%(G,K).

Lemma 2.11 — Pick some points X',y and y in Z%(G,k). If ©(x,y) = O(X,y) in G, then

O(x,y) = O(X,y) in (G®kK)a for any non-Archimedean extensink.

Proof. Letx be a point inZ(G,k), K/k a non-Archimedean extension ag@ K-point of G. Given
a pointz in (G ®xK)?" whose image under the projectioncpr : (G @k K)2" — G belongs to
Prk (9Gx), there exist a non-Archimedean extensidiiiKand a K-pointh of G localized inz such

thath € gGy(K’). The K-point g~th is localized in G, henceg='z € G, andz € gGy. Therefore,

gGx = prg/lk(er/k(gGX)) and, sinceggd (x) is the only Shilov boundary point @Gy by Proposition
2.4 (i), g9 (x) is the only maximal point in pzr}k(er/k(gﬁ (x))) € gCx, i.e., the only point at which
each functionf € K[G] reaches its supremum overmg(er/k(gﬁ (x))).

We have thus proved that the poit (x) of (G & K)2"is completely characterized by its image
in G". The same argument applies more generallgd¢x)h for anyg,h € G(K).

Consider now some pointsy,x andy in %(G,k) such that®(x,y) = ©(x,y’) and pick a non-
Archimedean extension K such thaty = gx, X = hxandy = jx with g,h, j € G(K). By definition,
O(x,y) andO(X,y’) are the images ajJ (x) and

jh"19(x) = jh 1 (hd(x)h 1) = j8(x)h?
respectively in @". Since those points are completely characterized by thiiges in @", we have

gd(x) = j&(x)h~* and therefore the identit®(x,y) = O(X,y) holds after any non-Archimedean
extension ok. O

Proposition 2.12 — The mapd : #°(G, k) x £°(G, k) — G?" which we have just defined satisfies
the following properties.

(i) For any points xy € #°(G,k) and any elements g € G(k),
O(gx hy) = ho(x,y)g .
(i) For any non-Archimedean extensioiflk the natural diagram

BE(G,K) x B(G,K) —2= (G@yK)a

T Lprk’/k

Z°(G,K) x #°(G,K) G

is commutative.
(iii) Letthe groupG(k) act by left translations o&". For any point o in%€(G, k), the mapd(o, -)
is a continuous and(k)-equivariant injection of#°(G, k) into G2" which sends homeomor-
phically each apartment o%€(G, k) onto a closed subset G*".
If the field k is locally compact, the m&xo, -) induces a(k)-equivariant homeomorphism
between®(G, k) and a closed subspace G

Proof. (i) Consider a non-Archimedean extensiopikkéuch thaty = jx for somej € G(K). We have
hy= hjglgx hence
O(gx hy) = pric x(hjg 8 (9x)) = pric x(hjd (g ™)
and therefor@®(gx, hy) = hO(x,y)g~* since the projection Rl is G(k)-equivariant.
(i) This assertion follows immediately from the definitioh ©.
(i) The map©(o,-) is G(k)-equivariant by (i). Ifx andy are two points of#°(G,k) such that
O(0,x) = ©(0,y), the same equality holds after any non-Archimedean exdareik by Lemma 2.11.

Therefore, we may assumxe= go andy = ho for someg, h € G(k). It follows thatgd (o) = hd(0),
henceh~1g belongs to G(k) by Proposition 2.6 (iv) and = y. Thus the maj®(o, ) is injective.
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In order to establish the continuity &f(o,-), one may restrict to an apartmen{3\k) containing
o since this map is equivariant ard®(G, k) is a topological quotient of &) x A(S,k). We may also
assume that G is split by (ii). Then, if N denotes the nornealiaf S in G and if Kk is a (huge)
non-Archimedean extension such thiét = R, the group NK) acts transitively on AS,K) and
continuity of©(o, ) is obvious since this map is induced by

N(K) — (G &k K)an, n— n&(o).

Existence of such an extension is established by transfirdigction for a well-ordering ofR; note
that we could restrict to non-Archimedean extensionk obntaining a given enumerable family of
extensions since sequential continuity@(o, -) on A(S,k) is enough.

If the field k is locally compact, (G, k) is locally compact and the continuous bijecti®fo, -)
is a homeomorphism onto a closed subset 8t G O
Remark 2.13 — If G is split ando is a given special point 0f8%(G, k), the map®(o,-) above
coincides with the one defined by Berkovich Ber90, 5.4.2] starting with thé&°-Demazure group
%. Indeed, with the notations of [loc. cit], we haRe= G, p = 0 andt; xP = pry 4 (tGo), where K/k
is a non-Archimedean extension such thakes values ifK*| andt is an element of K satisfying

A=y(t).
2.4. Realizations of buildings in flag varieties

(2.4.1)With each parabolic subgroupéPParG)(k) is associated a morphisap : G — ParG) de-
fined by the following condition: for ani-scheme S, a poirg € G(S) is mapped to the parabolic
subgroupAp(g) = g(P xkS)g~! of G xxS. We recall that the image & is the connected component
Pagp) (G) of PaG) which defines the typgP) of P, and that the morphis#p identifies the scheme
Pagp) (G) with the quotient GP (see 1.1.3).
Lemma 2.14 — For any parabolic subgroufp € Pa(G)(k), the map

Apo 8 : B(G,k) — Pa(G)®"
depends only on the type tBfand isG(k)-equivariant.
Proof. For any non-Archimedean extensiorii the following diagram

s Apg K
AB(G,K) —= (GakK)A" —— Pa(G®y K)a"

| | |

B(G,k) —— G > Pa(G)™

is commutative by Proposition 2.8. The vertical arrows afle)@quivariant; we can therefore assume
that the group G is split and it suffices to check that the ird&in of the mapApo J to the set of
special points does not depend on the choice of the parahdigroup R= Pag(G) (k) and is GK)-
equivariant.

Let o be a special point of2(G, k) and let¥ denote the corresponding Demazure group scheme
over k° with generic fibre G. Since P@s)(k) = Pa(¥)(k°), the group P is the generic fibre of a
parabolic subgroup” of 4 of typet and the map\p is induced by the map» : 4 — Pag(¥). If we
let r denote the reduction maps, it follows that the diagram

r

G G @ K

)\pt l)\y @kOE

PafG)*" — Pal¥) @ic k
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is commutative. Since the morphisin, @y 1k = Agz@kc& is dominant, the generic point 6f - K is
mapped to the generic point of the connected componer(m@koiz of Pal¥) ®i k and therefore
Apod(0) is the unique point in P&G)2" lying over the generic point of P&%) ®y- k. In particular,
this point does not depend on the choice a&f Pag(G)(K).

For anyg € G(k), we haveAp(d(0)g™t) = Ag-1py(9(0)), henceAp(8 (0)g~t) = Ap(9(0)). On
the other hand, since the map: G*" — ParG)2" is G(k)-equivariant when we let &) act by left
translations on &, we getAp(gx) = gAp(X)g~* for any pointx in G®". We obtain therefore

(Apo9)(go) = Ap(g9(0)g ") = g(Apo9)(0)g "
and this shows that the map o 3 is G(k)-equivariant. O
Remark 2.15 — While proving the lemma above, we have shown tflato 3)(gx) = Ap(gd (X))
for any elemeng € G(k) and any poink € #(G,k). Sincegd (x) = gO(x,x) = O(x,gx), it follows
that
Apo 3 (gX) = Apo O(X,gX).

Note that the right hand side makes it obvious that the MapS is G(k)-equivariant; moreover, this
is also the definition adopted by Berkovich Bgr90, Sect. 5.5], when G is split.

Definition 2.16 — For a k-rational type t, we denote b¥; : Z(G,k) — Pa(G)®" the G(k)-
equivariant map defined b$ = Apo J for anyP € Pag(G)(k).

Proposition 2.17 — For any k-rational type t ofc and any non-Archimedean extensidiikk the
diagram
B(G,K) —L ParG ey k)"
[

B(G,k) Pai(G)™"

t

in which i denotes the canonical injection and p the candnicajection, is commutative.
Moreover, if Kis a Galois extension of k, the upper horizontal arrov@ial(k' /k) equivariant and
the restriction of p to the Galois-fixed point setfarG ®xk')2" is injective.

Proof. The first assertion follows immediately from Propositia8 di), and from the commutativity
of the diagram

/\P&kK
(GarK) X, pafG ey K)an

pl l"
G —— = Paf(G)?"
Ap
for any Pe Pag(G) (k).
The second assertion follows from Galois-equivariancé @ndAp. The third assertion follows

from the fact that each fibre gfis a Galois orbit. O

(2.4.2) We still consider &-rational typet of G. Assuming that G is split, we give an explicit
description of the map, completely similar to the one in (2.1.2).

Let P be a parabolic subgroup of G of tyjpand pick a maximal split torus T of G contained in P.
If we denote by PP the parabolic subgroup of G opposite to P with respect tod ntbrphism

rad'(P°?) — Pa(G), g— gPg *
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(defined in terms of the functor of points) is an isomorphistito@n open subscheme of R&y which
we still denote byQ (T, P) by abuse of notation.

Letd(G,T) be the set of roots of G with respect to T, pick a special ppint% (G, k) and consider
the corresponding®-Chevalley groufZ. The choice of aimtegral Chevalley basis in Lig5) (k) leads
to an isomorphism of rdgP°P) with the affine space

I_LUO, ~ rLA&,
ac ac

whereW = ®(rad'(P°?), T) = —d(rad'(P), T).
Proposition 2.18 — We assume that the growpis split and we use the notation introduced above.

(i) The mapd; sends the point o to the point 6(T,P)2" corresponding to the multiplicative
(semi)norm

k[(XG)GELP:I — R}O, Z aVXV = mva.x|av|
veN¥

(i) Using the point o to identify the apartmeh(T, k) with the vector spac¥(T) = Homa, (X*(T),R),
the mapV(T) — Pa(G)2" induced byd; associates with an element u¥¢{T) the point of
Q(P, T)3" corresponding to the mutiplicative seminorm

K[(Xa)acw] = Rz0, 5 aX”— maxfay| |‘Levw><“ﬂ>.
ac

veNY

Proof. We can argue exactly as for Proposition 2.6. 0

Corollary 2.19 — For each point x ofZ(G,k), the seminorm9%(x) induces an extension of the
absolute value of k to the function fieldfd (G).

This means thatd;(x) is mapped to the generic point of R&) by the canonical map
p: Paf(G)"— ParG) (see 1.2.2).
Proof. It suffices to prove this assertion when the group G is sfit.the preceding proposition,
J¢(x) induces a multiplicative seminorm on tkealgebra A of any big cel(P, T) of Pag(G) which
extends the absolute value kfand satisfies the following condition: given ariye A, we have
|f](Jt(x)) =0 if and only if f = 0. Therefore, this seminorm is a norm and extends to an aesolu
value on the fraction field QufA) of A extending the absolute value kf Finally, sinceQ(P,T) is
an affine open subset of the integral scheme(Bay the field QuotA) is nothing but the function
field of Paf(G). O

(2.4.3)The mapd; can be defined more generally for a typehich is notk-rational, i.e., corresponds
to a connected component R&) of PaG) such that PafG)(k) = @. The most important case is
the typet = @ of Borel subgroups for a group G which is not quasi-split.

Consider a finite Galois extensidtyk splitting G, set” = Gal(k'|k) and pick a typd’ of G @y K
overt, i.e., a connected component P& @k k') of PalG ey k') = PafG) @k K lying over Pay(G).
Letting pr 4 denote the canonical projection PEB @k k)" — Par(G)3", the map pg o 9y does
not depend on the choice tifsincel” acts transitively on the types of &k’ lying overt and we set
S = prk//k oy.

One easily checks that proposition 2.17 holds in this moreg# situation.
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3. COMPACTIFICATIONS OF BUILDINGS

In this section we define, for a given reductive group G ovesraflete non-Archimedean field
the Berkovich compactifications of the Bruhat-Tits builgli?g(G, k). If kis a local field, these com-
pactifications are defined by considering the méps#(G, k) — Pag(G)2" defined in the previous
section (2.4) and taking closures of their images; in génemhave first to restrict to apartments. In
any case, restricting the map to an apartment is the key point in order to obtain an injégtisrite-
rion for 9; and to analyse the corresponding compactificatio® (B, k). The latter space is described
in terms of multiplicative seminorms on the coordinate rirfigpig cells of ParG) (Proposition 2.18
and proof of Proposition 3.32).

All typest of parabolic subgroups considered in this sectionkarational, i.e., correspond to a
connected component RP@s) of PaG) having ak-point; equivalentlyt corresponds to a conjugacy
class of parabolic subgroups of G. A similar construction ba made for any typg maybe non-
rational, since we have a well-defined mgp %(G,k) — Paf", but it will be shown in Appendix C
that there is nothing to be gained since the correspondimgpactification of%(G, k) already occurs
among compactifications associated vithational types.

Given ak-rational typet of parabolic subgroups of G, we begin by introducing a cldgmoabolic
subgroups of G, which we cattrelevantand which will later be useful to describe (the boundary
components of) the compactification of typef (G, k) (see 3.2).

3.1. Reminder on quasisimple factors, and a warning

Letk be a field and G a connected semisimipigroup. There exist a unique (finite) famil; )i
of pairwise commuting smooth, normal and connected closbdreups of G, each of them quasi-
simple, such that the product morphism

I_’Gi—>G
ie

is a central isogeny. The;8 are thequasi-simple component$ G. More generally, the quasi-simple
components of a reductidegroup are the quasi-simple components of its derived swipgr

The isogeny[ic; Gi — G induces an isomorphism of buildings
|'| B(Gi, k) = B( |_| Gi,k) —= #(G,k)
IS le

and ak-isomorphism

” Par(G;) = Par( |_| Gi) — ParG).

For eaclk-rational type of G, therestrictionof t to the quasi-simple component iG by definition
the typet; of its parabolic subgroup®G;, where P is any element of R&8) (k). When no confusion
seems likely to arise, we writenstead of;.

We say that the restriction oto G istrivial if t; is the type of the maximal parabolic subgroup G
i.e., if any P Pag(G)(k) contains the full component;GA k-rational typet of G isnon-degeneraté
its restriction to each isotropic quasi-simple componéi® ¢s non-trivial, i.e., if any R= Paf(G)(K)
induces a proper parabolic subgroup on each isotropic Giragle component of G.

Definition 3.1 — For any k-rational type t, we le%; (G, k) denote the factor of4(G,k) obtained
by removing from the building each quasi-simple componentiuich the restriction of t is trivial:
P (G, k) = |'| AB(Gi, k).

iel
t; is non-trivial



30

One word of caution about the notatio#; (G,k) and %;(G,k) to be introduced in this section:
the first one denotes the factor building #f G, k) associated with the k-rational type t, the second
a compactification of; (G, k) which still depends on t; for example, if t andare distinct non-
degenerate k-rational types of G, thefi(G, k) = %y (G,k) = %(G,k) but %;(G,k) # By (G,K).

3.2. Relevant parabolic subgroups

Reminder (BGAJ3, Exposé XXVI, Définition 4.4.2)- Let S be a scheme and let G be a reductive S-
group scheme. Two parabolic subgroups of G, say P and Q, lé&gd oaculatoryif PN Q is a parabolic
subgroup of G. This is equivalent to the following requirerndocally for the étale topology on S,
there exists a Borel subgroup of G simultaneously contaim&dand Q.

(3.2.1)Letk be afield and G a reductikegroup. We consider krrational typet of G and attach with
each parabolic subgroup of G a closed subscheme gf®ar

Proposition 3.2 — For any parabolic subgrou® of G, the functor
(Sch/k)®® — Sets S+ {P c Pag(G)(S); PandQ xk S are osculatory

is representable by a closed subscheédsg (Q) of ParG), theosculatory subvarietgf Q in Pag(G).
This scheme is homogeneous un@eand the morphisngp : Osg(Q) — ParfQ), defined functor-
theoretically by

Os6(Q)(S) — ParQ)(S), P—PNQ,
is an isomorphism onto a connected componeftafQ).

Proof. Pick a parabolic subgroup Q of G and first note that therdsziparabolic subgroup of G
of typet osculatory with Q. Indeed, given any parabolic subgroup 8 of typet, Q and P contain
minimal parabolic subgroups:@nd R respectively; since any two minimal parabolic subgroups
of G are conjugate in (k) [SGA3, Exposé XXVI, Corollaire 5.7], there existse G(k) such that
Q: = gP1g ! and thereforgPg ! is a parabolic subgroup of tygesculatory with Q.

Now we consider a parabolic subgroup P of G of typesculatory with Q. For ank-scheme
S and any parabolic subgroup € Pag(G)(S) osculatory with Qxx S, the pairs(P,Q xx S) and
(PxkS,Q xkS) are conjugate étale locally over SGA3, Exposé XXVI, Corollaire 4.4.3]: there
exist a covering étale morphism S S and an elemerg € G(S) such that PxsS = g(P xxS)g !
and Qxx S = g(Q xxS)g~L. The last condition amounts tpc Q(S') since Q= Normg(Q). Set
S’ =9 xsS and letp, p2 : S” — S denote the two canonical projections. The elemgints go p;
andg; = go p, of Q(S’) satisfy
9 (PxkS")g; " = pi (9(PxkS)g™t) = pi(F xsS)

= P xs%

= PP xs8") =P (9(PxkS)g ") = R(PxkS")g, ™,
henceg, *g; € P(S’) since P= Normg(P). In other words, the elemeigtof Q(S) defines a sec-
tion of the quotient sheaf PN Q over S and we have thus proved that the natural morphism
Q — Paf(G),g— gPg~! induces an isomorphism between the quotient she& QP and the sub-

functor of Paf(G) consisting of parabolic subgroups of typpef G osculatory with Q.
Finally, since(PNQ)/rad Q) is a parabolic subgroup of @ad Q), the quotient sheaf

Q/PNQ =~ (Q/radQ)) /(PN Q/radQ))

is representable by a smooth and projeckiszheme, canonically isomorphic to the connected com-
ponent of PaiQ) = Par(Q/rad(Q)) containing P Q. We conclude that the same assertion holds for
the functor of parabolic subgroups of G of typesculatory with Q. 0
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Remark 3.3 — For any parabolic subgroup Q of G and any elengeoit G(k), thek-automorphism
int(g) of PafG) maps OsdQ) onto Osg(gQg?). Indeed, given &-scheme S and a parabolic
subgroup P= PafG)(S) of G xS osculatory with Q<xS, gPg N (gQg ! xk S) = g(PN (Q x«
S))g~lis a parabolic subgroup of &S, hencegPg~1 is osculatory withgQg 1.

Notation — Given ak-rational typet of G and a parabolic subgroup Q of G, we still let the let-
ter t denote the type of thi-reductive group @ = Q/radQ) defined by the parabolic subgroup
(P N Q)/rad(Q), where P is any element of R&B)(k) osculatory with Q. Equivalently, the canon-
ical morphismep : Osg(Q) — PafQ) = ParQss) is an isomorphism onto the connected component

Paf(Qss) of ParQss).

Recall that, if G a reductive group, S is a split maximal taand P is a parabolic subgroup contain-
ing S, then PP denotes the parabolic subgroup of G opposite to P with réspe€eng(S) and the
morphism ra(P°?) — PaxG), functor-theoretically defined by+— gPg~?, is an open immersion
whose imageQ(S, P) is the big cell of (S,P) in PaG). Next proposition gives explicit equations
defining an osculatory subvarieties in a big cell.

Proposition 3.4 — LetP andQ be two osculatory parabolic subgroups®fcontaining a maximal
split torusS and let t denote the type & We letQ denote the reductive k-group/rad’(Q), Sthe
maximal split torus iQ induced byS and we seP = PN Q/rad'(Q).

(i) The canonical isomorphis@sg(Q)-=Pag(Q) identifies the open subsche@sg(Q)NQ(S,P)
of Osg(Q) and the big celQ(S,P) of (S,P) in Pag(Q).

(i) LetWw = d(rad'(P°P),S) denote the set of roots ehd'(P°P) with respect taS and fix a total
order on¥. The preimage of the closed subschédsg (Q) of Pag(G) under the immersion

j: [ Vg~ rad(P?) — Pag(G)

is the closed subscheme defined by the equatigrs 1 wherea runs over the complement of
®(Q,S) in W.

Proof. We first prove the second assertion.

(i) Let Z be the closed subscheme[qf .y U, defined by the equationg, = 1, a runing over the
complement ofp(Q,S) in Y.

Both Z andj ~10sg(Q) are integral (i.e., reduced and irreducible) closed sudsels of ] gey Uq:
this is obvious for Z since |Jis a smooth and geometrically irreducitdescheme for any roat; for
j~10sg(Q), this follows from the fact that this scheme is isomorphia tion-empty open subscheme
of the integrak-scheme O5€Q) ~ Pak(Q). The canonical morphisiflycy Uy — G maps Z into Q,
hence Zc j~10sg(Q); since these two closed subschemegf]gfy U, are integral, we are reduced
to checking that they have the same dimension.

Let L denote the Levi subgroup of Q containing T and write
d(Q,S) = d(L,S) Ud(rad'(Q),S).
Since the parabolic subgroups P and Q are osculatory(R& Nrad'(Q) = {1} and thus
O(Q, S NY = d(Q,S)Nnd(rad'(P®),S)
®(L,S)Nd(rad'(P°P),S) = ®(L,S)NW.

It follows that the canonical projection

rlPUa — !_l Ua
ae aed(L,SNY

restricts to an isomorphism between Z giigoL,s)nw Ua- The subgroup O1P of L is parabolic and
the set—(P(L,S)NW) consists of roots of its unipotent radical with respect tsiS¢e the morphism



32

f : L — Q induced by the canonical projection-QQ = Q/rad(Q) is an isomorphism of reductive
groups, we deduce thatleads to an isomorphism betwepj co (. s)nw Ua and the unipotent radical

of P". The conclusion is now obvious: since YQEO'O) is isomorphic to an open dense subset of the
irreduciblek-scheme PafG), we have
dimz = dimrad'(P™)
= dimPaf(Q) =
and therefore Z j~10sg(Q). This proves (ii).

(i) We have just proved that the canonical isomorphisnt {@@®)=Q(S, P) identifies the closed
subschemes 0gQ) N Q(S,P) and rad(P°P) NL = rad'((PNL)°P). The canonical isomorphism

L —— Q thus leads to a commutative diagram

dimOsg(Q)

rad'(P™) < rad'(P°®) NL

| | T

~

Pag(Q) Osg(Q) =——0s6(Q)NQ(S,P)
and we deduce that the isomorphism @&¢-=>Pag (Q) identifies the open subscheme @& N Q(S,P)
with the big cellQ(S,P). O

Example 3.5 — Let V be ak-vector space of dimensiaih+ 1 (d € N) and consider the semisimple
k-group G= SL(V). The types of G are in one-to-one correspondence with thestygp flags of
linear subspaces of V and we l@tdenote the type corresponding to the fld§8} C H C V) with
dim(H) =d.

Recall that thé&k-schemeP (V) represents the functor

(Sch/k)°® — Sets S+ {isomorphism classes of invertible quotients of¥S}
~ {0s— submodules of \&y S, locally direct summands of rank} .

There exists a uniquk-isomorphismA : P(V) — Pag(G) such that, for ank-scheme S, the map
A(S):P(V,S) — Pais(G)(S) sends avs-submodule of \&y S, locally a direct summand of rark
to the parabolic subgroup of &S stabilizing it.

For two flags F F' of linear subspaces in V, the condition that their stahiizare osculatory
amounts to requiring that there exists a complete flag congboth F and £

Let us now consider a parabolic subgroup Q of G, which is takilster of a flag

{0} =VoCVig...CV, C Vi1 =V.

A parabolic subgroup B Pars(G)(k), corresponding to a flag{0} ¢ H V) with dim(H) =d, is
osculatory with Q if and only if the hyperplane H contains lihear subspace Mand, since this holds
more generally for ank-scheme S and any € Palz(G)(S), the isomorphism\ : P(V)=Palz(G)
identifies the closed subscheme @%@) of Pars(G) with the projective subspad&V /V,) of P(V).

(3.2.2)The example above clearly shows that two different paratsolbgroups QQ’ of G may define
the same closed subscheme ©&¢ = Osg(Q') in Pag(G). It turns out that there is a distinguished
parabolic subgroup attached with each osculatory sultyanédag(G).

Proposition 3.6 — Let t denote a k-rational type @. For any parabolic subgrou® of G, the set
of parabolic subgroup€) of G satisfying

Osg(Q) = Osg(Q)
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has a maximal element.
Proof. First note that the group functor
(Sch/k)?P — Sets S Stalyg)(0sa(Q xkS))

is representable by a closed subscheme of G. Indeed, the Graats naturally on the Hilbert scheme
2 of the projectivek-scheme PafG) and, for anyk-scheme S, the stabilizer of Q&Q) xx S in
G(S) is exactly the subgroup of §) fixing the pointx € 77’ (k) C 7 (S) defined by Os¢Q) xxS. It
follows that our functor is represented by the fibre of thephism G— 7, g— gx, over the point
X. We letl denote the subgroup of G thus defined.

Since the subgroup Q stabilizes @$€2), the inclusion QC I is obvious.

Pick a finite Galois extensiok /k splitting G and let us consider a purely inseparable extensi
k”/K' such that the reduced-scheme P = (M ®kk"),oq underlyingn @i k" is a smoothk”-group.
Since Q is smooth, @y k” is reduced and therefore the closed immersian®’ — M @k’ factors
through P — M ®xk”. This proves that the smookli-group P is a parabolic subgroup of & k”
containing QriK’.

Since thek'-group GxkK' is split, there exists a parabolic subgrodmPG @k’ containing QK

such that P =P @ k”. Thanks to faithfully flat descent, the closed immersiémpk’ = P" —
M @k k” comes from a closed immersiod P> M @k k' and P is therefore the greatest parabolic
subgroup of Gok k' containing Qe k' and contained il @ K. It follows immediately from this
description of Pthat thisk’-group descends to a parabdtigroup P of G containing Q and contained
in .

The identity

Osq(P) = Osa(Q)

is a direct consequence of the inclusions—@ c I, for the first one implies Os(Q) C Osg(P)
whereas the second gives @89 C Osg(Q) by the very definition of1. Therefore, P is the maximal
element of the set

{Q e Pa(G)(k) ; Osg(Q) = 0sg(Q)} .
O

Definition 3.7. — Let t denote a k-rational type @. A parabolic subgrouf of G is said to be
t-relevantif it coincides with the maximal element of the set

{Q € ParG)(k) ; Os¢(Q) = 0sg(Q)} .

It follows from the proof of Proposition 3.6 that this coridit amounts to requiring that Q is the
maximal parabolic subgroup of G stabilizing @%@).

Remark 3.8 — Each parabolic subgroup Q of G is contained in a unique mahit-relevant
parabolic subgroup, namely the maximal parabolic subgstaipilizing Os¢(Q).

Example 3.9 — (i) Let us focus again on the example above: V is a finite disienal k-vector
space, G= SL(V) andt = d is the type of flag${0} C H C V) with codim(H) = 1. In this situation,
the d-relevant parabolic subgroups of G are the stabilizers géfl0} ¢ W C V) (we allow W= {0}
orW=yV).

(i) If the group G is quasi-split antl= & is the type of Borel subgroups, then each parabolic
subgroup of G isz-relevant. Indeed, for all parabolic subgroups@of G with Q& P, there exists
a Borel subgroup of G contained in P but not in Q, hence,0Q¢ # Osc,; (P) and therefore Q is the
maximal parabolic subgroup of G stabilizing Q$Q).
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Remark 3.10 — Lett denote &-rational type of G and consider a parabolic subgroup Q offG. |
Q ist-relevant, then for any extensidd/k the parabolic subgroup k' of Gy K’ is t-relevant.
Indeed, if P denotes the-relevant parabolic subgroup of & k' stabilizing OsgQ @k k') and
the subgroup of G stabilizing OgQ), thenlN @y K is the stabilizer of Os€Q ®kK') in Gy K for
Osg(Q®kk) = Osg(Q) ®x K. As shown in the proof of Proposition 3.6, Q is the maximabjpatic
subgroup of G contained iR and Qe kK’ = (M ®kK”’),.4 for a convenient extensiok’ /k’, hence

P @k K’ = Qe k” and therefore P= Q@ K'.

(3.2.3) We give in section 3.3 a description bfelevant parabolic subgroups of the semisimiple
group G in terms of its Dynkin diagram. As an immediate consage, we will see that, if Q is a
parabolic subgroup of G and @ the smallest-relevant parabolic subgroup of G containing Q, then
the semisimple group @ad(Q) is isogeneous to a quotient of the semisimple groUf&(Q').

3.3. Fans and roots

We consider again in this paragraph an arbitrary fiekthd a semisimpl&-group G. The basic
notions on fans and their associated compactificationsalected in appendix B.

(3.3.1)Let S be a maximal split torus of G with character grouf$j = Hom_g, (S,Gm) and let
® = ®(G,S) denote the set of roots of G with respect to S. Since it is morevenient to adopt
multiplicative notation in order to compactify affine spacee let

A(S) = Homap (X*(S), R-o)

denote the multiplicative dual of ’XS). Each charactex € X*(S) defines a positive real function on
A(S).

For any parabolic subgroup P of G containing S, theds@, S) of roots of P with respectto S is
the subset ofp(G, S) consisting of all rootsr such that P contains the root groug .U

We first recall that the set of parabolic subgroups of G caoirigi S has a nice description in terms
of cones IN\(S) (Coxeter complex).

Proposition 3.11 — LetP be a parabolic subgroup @b containings.
(i) The subse€(P) of A(S), defined by the conditioa < 1for all a € ®(P°P,S) = —d(P,S), is a
strictly convex polyhedral cone.

(i) The coneZ(P) spans/\(S) if and only ifPis minimal.

(iii) The faces of the cor&P) are the cone€(Q), whereQ runs over the set of parabolic subgroups
of G containingP.

(iv) For any parabolic subgrou® of G containingS, €(P) N €(Q) is the cone associated with the
smallest parabolic subgroup & containing bothP andQ. Moreover, wher® runs over the set
of parabolic subgroups d& containingS, the cones(Q) are pairwise distinct and they cover
A(S).

Proof. All the assertions above are well-known and follow immégliafrom the fact that the map
P— ®(P,S) sets up an increasing one-to-one correspondence betweanofia subgroups of G
containing S and closed and generating subsets 0&., subset¥ of @ satisfying the following two
conditions:

—forala, BeW,a+Becd=a+pBeWV¥,

— foranya € ®(G,S), eithera or —a belongs td¥.
(See BGA3, Exposé XXVI, Proposition 7.7]). The first condition amositd W = (W)™ N d, where
(W)* denotes the semigroup spanned¥yn X*(S), whereas the second one implies taand ¥
span the same subgroup of (). O
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Remark 3.12 — Given a parabolic subgroup P of G containing S, we have
®(P,S) = ®(Lp,S) LU d(rad'(P),S),

where Lp is the Levi subgroup of P containing Cel§). The setd®(Lp,S) consists precisely of
rootsa € ®(G,S) such that botlr and—a belong to®(P, S); geometrically, this characterization is
equivalent to

CD(LP, S) = {a S CD(P, S) | Qerp) = l}.

If P is a minimal parabolic subgroup of G containing S, theiiiar of the cone(P) is usually
referred to as th&Veyl chambeof P in A(S). This motivates the following definition.

Definition 3.13 — TheWeyl fanon the vector spacA(S) is the fan consisting of the con&sgP),
whereP € Par(G) (k) andS C P.

Now we consider &-rational typet of G and associate with it a new family of polyhedral cones in
A(S). The cones of higher dimension are roughly speaking the bamatorial neighborhoods" of all
Weyl conest(P) with P € Pag(G)(k) and Sc P.

Definition 3.14 — For any parabolic subgroup of G of type t which containS, we letC; (P) denote
the union of all cone€(Q) associated with the parabolic subgrouR=f G satisfyingSc Q C P

aP= U Q.
Qe Par(G)(k)
SCcQcP
Note that is suffices to considarinimalparabolic subgroupspBatisfying SC Py C P in the above
definition.

In order to analyze this definition, we recall that with anyational typet of G are associated
two normal and semisimple subgroups$ &d G of G, uniquely characterized by the following
conditions:

— the canonical morphism’Gt G’ — G is a central isogeny;
— the restriction ot to G' (to G, respectively) is non-trivial on any quasi-simple compunaf
G (is trivial, respectively).
The subgroup G(G”, respectively) is simply the product of quasi-simple comgnts of G to which
the restriction of is non-trivial (is trivial, respectively).

The groups S= (SNG')° and $ = (SN G")° are maximal split tori in Gand @ respectively and
S=S579". The isogeny Sx S’ — S induces an injective homomorphismi (%) — X*(S') & X*(S")
whose image has finite index, hence a canonical isomorpmisg®) & A(S”") =—— A(S). Finally,
the setd® = ®(G, S) is the union of the two disjoint subsets

Y={aed|aqg =1} and¥" ={a e ®|agy =1}

and the canonical projection”¥S) — X*(S), a — aig (X*(S) — X*(S'), a — a|g, respectively)
induces a bijection betweeti and®’' = ®'(G, S) (betweerr” and®” = d(G”,S"), respectively).

Lemma 3.15 — LetP be a parabolic subgroup d& of type t containings.

() The subse€;(P) of A(S) is the convex polyhedral coder < 1; a € d(rad'(P°?),S)}.
(i) The maximal linear subspace containedJtP) is A(S”).
(i) For any parabolic subgrou’ of G of type t containings, the cone<; (P) andC;(P') intersect
along a common face.
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Proof. Each parabolic subgroup considered in what follows costtiie maximal split torus S.

(i) Note thatd(rad'(P°P), S) = —d(rad'(P), S) is precisely the subset @f(P°P, S) consisting of all
rootsa such that-a ¢ ®(P°P,S). We set C={a < 1; a € d(rad'(P°?),S)} and consider a minimal
parabolic subgroup If Po C P, then®(Pg’, S) € ®(P°P, S) and®(rad’(P°P), S) C d(rad'(P3P,S) =
P(PP,S), hencet(Py) C C and therefore GP) C C.

If Po ¢ P, then® (PP, S) ¢ ®(P°P,S) and thus there exists a roate ®(P;",S) such thata ¢
®(P°P.S) and—a € ®(P°P,S). Sincea < 1 on the interior(Py)° of €(Py), it follows that®(Py)° is
disjoint from C and thus

U ePo) cA(S)-C.

Py minimal
PP

We remark that the left hand side is exactly the complemetitefnterior of G(P), so that C C
Ci(P)° and Cc C;(P). We have thus proved

C(P)={a <1;aecd(rad(P®),S)}.

(i) We use the notation introduced before stating the psdmm. We can writeb(P,S) =Y U",

whereW is the closed and generating subsetbfvhose image under the bijectidti —— @’
is the setd(P,S) of roots of the parabolic subgroug £ PN G’ of G’ with respect to S Since
ajzsr) = 1 for each rootr € 3/, the cone

CG(P)={a<1l;acd(rad(P?),S)}={a<1l;aec(-¥) anda ¢ ¥V}

contains the linear subspaf€S’) and it is enough to check that the cone/qfS') defined by the
conditions: a < 1 for all a € ®(rad'(P°P),S)), is strictly convex. Thus we are reduced to proving
that, if thek-rational typet is non-degenerate, then the conéRJ is strictly convex.

Let us assume that the cong(B) is not strictly convex and let L denote the maximal linear sub-
space of\(S) it contains. We let W denote the Weyl group of the root systerthe subgroup Wof
W stabilizing the con&(P) acts simply transitively on the set of con&d), where B is a minimal
parabolic subgroup contained in P. This subgroup stabiZéP), hence the linear subspace L by
maximality.

Pick a minimal parabolic subgroup Bontained in P and denote yc ® the corresponding set
of simple roots. We also equip*XS) and/A(S) with a W-invariant scalar product.

By (i), we havea)_ = 1for each rootr € AN®(rad'(P°P), S), i.e., each rootr € A whose restriction
to €(P) is not identically equal to 1. Sinc& spans a subgroup of finite index in“{s), the set
M={aelA|a#1}isnon-empty as k# {1}. Pick arootB in . Sincef. # 1, Bep = 1 and
thus the orthogonal reflectiomg with respect to the hyperplafg = 1} belongs to . For any root
ainA-T, aL=1 hence

Wg ()L = Wg (@) wyr) = oL =1
and thereforga|B) = 0 sincewg(a) = a — Zggl‘ggﬂ

We have just proved thdt andA — I are orthogonal, which implies th&itcontains a connected
component of the Dynkin diagram df. Since moreover is contained in the subsét(Lp, S)NA =
{a € A| ajgp) = 1} of A associated with the parabolic subgroup P, the latter aosithierefore an
quasi-simple component of G and thus the typet(P) is trivial on this component.

(iii) Let us consider two distinct parabolic subgroups P Bhoff typet. The cones GP) and G(P)
have disjoint interiors, hence their intersection is cordd in a proper face of each by convexity.
Let F and F denote the minimal faces of;®) and G(P) containing G(P) N C;(P). We have
Ci(P)NCi(P) = FNF and this cone meets the interior of both F andyminimality.

Assume FZ F/, hence F ¢ F. Since PNF* # @, it follows that F meetsdF and thus there
exists a Weyl con€ whose interior meets both"fanddF. We have¢ c F and¢ c dF for both
F and F are a union of Weyl cones. LepRind B, be two minimal parabolic subgroups satisfying
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SC Py C P and SC Py C P, and such tha€ is a common face of (Pg) and€(P;). There exists a
unique elementv in the Weyl group such that(P) = w&(Pg). By construction, the coneF is a
face of G(P') whose interior meets, hence the smallest face of(€) containing¢; since¢ c dF,
we deducevF C dF and therefore dirtF') > dim(F).

It is now easy to conclude. If # F, then one of the following three situations occurs:

a) F¢Fand F ¢ F;

b) FCFandF ¢ F;

c) FCFand FZ F.
In each case, the discussion above leads to a contradiction:

a) we obtain dinF’) > dim(F) and dim(F) > dim(F');

b) we obtain Fc F and dim(F) > dim(F');

c) we obtain FC F and din{F’) > dim(F).
Therefore, = F and the conesCP) and G(P') do intersect along a common face. 0

Remark 3.16 — It follows from assertions (i) and (ii) above that P inds@non-trivial parabolic
subgroup of each isotropic quasi-simple factor of G if anty @ithe cone G(P) ={a <1; a €
®(rad'(P°P),S)} is strictly convex, hence if and only b(rad'(P),S) = —®(rad'(P°?),S) spans
X*(S) ®z Q.

When P runs over the set of parabolic subgroups of G of tygntaining S, the family of faces
of the cones @P) fulfills all requirements defining a fan except possiblyctdonvexity. In fact,
assertion (ii) of Lemma 3.15 shows that this family is theipege of a fan omM\(S') under the
canonical projectiol\(S) — A(S)/A(S") ~ A(S).

Definition 3.17. — For any k-rational type t, the prefai#; of type t onA\(S) is the collection of all
faces of the coneS; (P), whereP runs over the sePaf(G) (k).

All the cones which occur in the prefa#; can be described in terms of parabolic subgroups. Note
that, for every parabolic subgroup Q of G containing S, the se

{Ce A[€(QcC}
is non-empty — indeed?(Q) c ¢€(Q’) ¢ C;(P) if Q' is a minimal parabolic subgroup containing Q

and P is the unique element of R&) (k) containing Q— and is stable under intersection by Lemma
3.15, (iii). Hence the following definition makes sense.

Definition 3.18 — Given any parabolic subgrou@ of G containingS, we letC;(Q) denote the
smallest cone it containing®(Q).

Remark 3.19 — 1. This definition coincides with Definition 3.14 if Q is oftet.

2. For any parabolic subgroup Q of G containing S and any coie.%;, with €(Q) c C, the
following conditions are equivalent:

- G(Q=C;

— €(Q) meets the interior of C.

In particular, since each cone €.% is the union of Weyl cones of parabolic subgroups of G
containing S, we see immediately that=GC; (Q) for a convenient Q: indeed, we just have to choose
Q such that the con&(Q) meets the interior of C.

2. If tis the type of a minimal parabolic subgroup(Q) = €(Q) for any parabolic subgroup Q of
G containing S and# is therefore nothing but the Weyl fan @q(S).

(3.3.2)For anyk-rational typet, we now relate the cones (@) to t-relevant parabolic subgroups.
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Throughout this paragraph, S is a maximal split torus of Gwaedet® = ®(G,S) denote the set
of roots of G with respect to S. For any parabolic subgroup 8 obntaining S, we denote bylthe
Levi subgroup of P containing Cei(iP). The setd(P,S) of roots of P with respect to S is the disjoint
union of the subset®(Lp, S) and®(rad'(P),S).

The following proposition relates the combinatorial constion of 3.2.1 and the geometric view-
point of 3.2. Moreover, it gives an explicit description bétcones in7;.

Proposition 3.20 — LetP and Q be two parabolic subgroups @ containingS and assume tha®
is of type t.

(i) PandQ are osculatory if and only i€ (Q) C C;(P).
(i) The coneC;(P) is defined by the inequalities < 1, a € ®(rad'(P°P), S).
(iii) If PandQ are osculatoryC;(Q) is the polyhedral cone defined by the conditions

a <1 aecd(rad'(PP),S)
a=1 aec®d(rad'(P?),SNd(Lg,S).

Proof. (i) The inclusions gQ) C C;(P) and€(Q) C C;(P) are equivalent and the latter amounts to
the existence of a minimal parabolic subgroupd® G containing S such that(Py) contains both
¢(P) and¢(Q), i.e., such that §is simultaneously contained in P and Q. Thys@ < C;(P) if and
only if the parabolic subgroups P and Q are osculatory.

(i) This assertion was proved in Lemma 3.15, (i).

(iii) We assume that the parabolic subgroups P and Q areaiscyland let F denote the face of
the cone @P) defined by the equations = 1 for all a € ®(rad'(P°P),S) N d(Lg,S). Since the
conditionsa € ®(Lq,S) andacq) = 1 are equivalent for any roat € @, F is clearly the smallest
face of G(P) containing¢(Q), and thus = C;(Q). O

Example 3.21 — Letd > 1 be an integer and G the semisimgigroup SL(d+ 1). We consider the
type & corresponding to flagé{0} € H C k%*1), where H is a hyperplane kf*?.

Let T denote the torus of diagonal matrices and B the Borefysulp of G consisting of upper
triangular matrices. If(1,..., Xda+1 are the characters of T defined ly(diagty,...,t4+1)) = t;,
1<i<d+1,thesetofroots i®(SL(A+1),T)={xi—x; i #]}.

The simple roots associated with B are= x; — xi1, where 1< i < d.

Let N be the normalizer of T in Sld+ 1). Then the Weyl group Ik) /T (k) can be identified with
the symmetric grou®q.1.

The parabolic subgroup P of G of ty@econtaining B consists of upper triangular block matrices
with a (d) x (d) block in the top left hand corner and(&) x (1) block in the bottom right hand
corner. By definition, G(P) is the union of all Weyl coneg(B’), where B is a Borel subgroup with
T c B’  P. Any Borel group Bcontaining T is of the fornmBn~? for somen € N(k). It is contained
in P if and only ifn is contained in k), which is equivalent to the fact that the permutatir Gq4. 1
induced byn fixesd + 1. Since

CB)={Xi1—xi<l:i=1...,d}
we deduce
Cs(P) ={Xas1—xi<1l:i=1,....d}.
Note thatd(rad"(PP), T) = {Xq+1— Xi :i = 1,...,d}, so that we recover the description from Propo-
sition 3.20, (ii).
If Q is a d-relevant parabolic containing B, it consists of upperrgialar block matrices with a

(r) x (r) block in the top left hand corner and(d+1—r) x (d+ 1—r) block in the bottom right
corner for some > 1, cf. Example 3.9. Hence we find

DL, T)={xi—xpi#jandi,j<r}Uu{xi—x;;i#jandij>r}
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and
¢(Q) ={Xr+1—Xxr <landxi1—xi=1foralli<r—1andalli >r+1}.
The face of G(P) containingZ(Q) is

Cs(Q)={Xdr1—Xi <1foralli <randxg;1—xi=1foralli>r+1}.
We go a little further and establish a characterizatiotrr@evant parabolic subgroups in terms of

the Dynkin diagram of G. This will allow us to compare RTW?2] the prefan%; with the collection

of cones defined inWer07] from the viewpoint ofadmissibility

We fix a minimal parabolic subgroup Bf G containing S and lek denote the corresponding set
of simple roots inb. The map P— Yp = ®(Lp,S)NA sets up an increasing bijection between the set
of parabolic subgroups of G containing &nd the power set dk. The inverse bijection associates
with a subset Y ofA the parabolic subgroup P of G containingdich that

®(P,S) = ((Y)ND)UD(Py,S).
Equivalently, ¥ is the subset oA defining the face (P) of the coneZ(Py):
CP)={xe€(Py) | a(x)=1, a €Yp}.

The group X(S) is equipped with a W-invariant scalar prodydt) and we agree to see each finite
subset E of X(S) as agraphby introducing an edge between any two vertiaeg3 € E if (a|f) # 0.

Proposition 3.22 — Let P denote the unique parabolic subgroup@ff type t containing?y. For
any parabolic subgrou® of G containingPy, the following conditions are equivalent:
(i) the cone<z(Q) and€(Q) have the same dimension;
(i) the linear subspacéa =1; a € Yq} of A(S) is the support of a face of the coflg(P), namely
of G(Q);
(iif) seeingA as a graph following the convention above, each connectetpooent ofY o meets
YQ — YQ NYp.

Proof. Equivalence of conditions (i) and (ii) follows immediatdtom the fact that the coné(Q)
spans the linear subspafe =1 ; a € ®(Lg,S)} of A(S).

(i) = (i) We assume that each connected component®méets Yo — YoNYp and establish
the inclusion Y5 C {a € ® | a|c, () = 1}. Since Yq generatesb(Lq,S) = {a € ® | aj¢(q) = 1}, it
will follow that C;(Q) and€(Q) generates the same linear subspack(&).

We pick a € Yq and, up to replacingr by —a, we assume thatr belongs to®(PP,S) =
®(Lp,S) U d(rad'(P°P),S). The casea € d(rad'(P°P),S) is trivial: indeed,a cuts out a face of
the cone @P) by Lemma 3.15 (i) and this face contai@Q) sinced¢(q) = 1.

We now address the casec ®(Lp,S), i.e.,a € Yp. Our assumption implies the existence of a
natural integed and of rootsay, ..., ag satisfying

—apceYgo—YoNYpandag = a;

—ai€YpnYqforanyie{1,...,d—1};

— (ailaiy1) < Oforanyi € {1,...,d—1} and(ai|a}) = 0if i — j| > 2.

In this situation the roo =rq, ,0...0rq,(0o) (andp = ag if d = 0) is given by

_ (arolor) d-1(do|a1). .. (dg—2|0g—1)
[3 = Qap—2
(01’01) (al\al)...(ord_l\ad_l)
= Op+May+...+My_104-1

with my,...,mq € Z — {0}. Since ap belongs toA — Yp C ®(rad'(P°?),S) and as,...,0q4 1 €
®(Lp,S), this root belongs tab(rad'(P°P),S) and thereforg3 cuts out a face of CP). Moreover,
since all the rootsx, ..., adq-1 belong to Yo, Bi¢(q) = 1 and thereforgc, ) = 1 since ¢(Q) is the
smallest face of GP) containing®(Q).

ar+...+(-2)
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Now we have

o (adlB)
rad(B) = B Z(ad|ad)ad
q(aolaz)...(ag-1]0q)
B+(-2) (a1]a1) ... (aglag)
= B+ma

with me Z — {0}. As before, this root belongs ®(rad'(P°?),S) and is identically equal to 1 on
€(Q), hencerq,(B)|c,(q) = 1. Sincem# 0, we finally reach our goabc, ) = 1.

(i) = (iii) We prove the converse assertion. Let Y denote the unfdhe connected components
of Yo which meet Yo —YgnYpand set Y=Yq—Y. The proof of (iii) = (ii) shows that{a =
1; a € Y} is the support of a face F of;(), namely of the cone €Q'), where Qis the parabolic
subgroup containing S associated with the subsef X. We have moreove?(Q) =FN{B=1; B €
Y’}

Suppose thatr is a root belonging to ¥ On the one hand, the hyperplang H {a = 1} does
not contain F since the subset ¥ a} of A consist of linearly independent roots. On the other hand,
orthogonality ofa and Y implies that the cone F is invariant under the orthoboslection with
respect to 4. Thus, if Y is non-empty, the con&(Q) = FN(,cy Hae meets the interior of F, hence
F is the smallest face of(P) containing®(Q) and therefore

dime(Q) < dmG(Q) — 1 < dimG(Q).
O

Corollary 3.23 — LetP denote the unique parabolic subgroup®bf type t containing?y and let
Q be a parabolic subgroup @b containingPy. The linear subspace spanned ®(Q) is defined by
the conditionsx = 1, wherea runs over all connected componentsyef meetingA — Yp.

Proof. This assertion was proved while establishing €#)- (ii) above. O

Here is finally our root-theoretic characterizatiort-oélevant parabolic subgroups. We still denote
by Py denote a minimal parabolic subgroup of G containing S.
Proposition 3.24 — Let P denote the parabolic subgroup &f of type t containingPy. For any
parabolic subgroupQ of G containing Py, we IetYNQ denote the union of connected components of
Y g meetingA — Yp. Then the following conditions are equivalent:

() Qist-relevant;

(ii)y for any roota € A,

(@eYpand a L Yg)=—>aceVYo

Proof. By definition, the parabolic subgroup Qtigelevant if and only if it is maximal among all
parabolic subgroups’@f G satisfying Os¢Q) = Osg(Q'). We can obviously restrict to parabolic
subgroups Qcontaining S, in which case we proved in Proposition 3.3 tifi@t the latter condition
amounts tab(rad'(P),S) N ®(Lg,S) = d(rad'(P),S)NP(Lg,S), or equivalently to §Q) = C;(Q')
by application of Proposition 3.20, (iii). It follows thahé parabolic subgroup Q tsrelevant if
and only if, for any rootr € A—Y g, the parabolic subgroup Qassociated with the subsety =
YoqU{a} of A satisfies @Qq) & G(Q).

We consider a roor in A—Y g and Iet\?é (YAQ:, respectively) denote the union of the connected
components of ¥% (of Yq,, respectively) meeting® — Yp. The conditions gQ) = C(Q,) and
YNQ = YAQ: are equivalent by Corollary 3.23 and one immediately chéfthsthe identityYNQ = YAQ:
amounts to orthogonality af andYNQ. Therefore, the parabolic subgroup Q-elevant if and only

if there is no root in ¥ — YpNYq orthogonal to each connected component gfrifeetingA — Yp.
O
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Remark 3.25 — 1. LettingYNQ denote the union of the connected components @méetingA —
Yp, condition (ii) above is equivalent to the following recgerinent: the complement ofin Yp
consists only of roots whose distanceﬁé is at most one.

2. Given a parabolic subgroup Q of G containing the smallest-relevant parabolic subgroup
of G containing Q corresponds to the subsefAafeduced from ¥ by adjoining all the roots in ¥
which are orthogonal to each connected componentgfméetingA — Y p.

3. For any parabolic subgroup Q of G containing S, the sntalleslevant parabolic subgroup
of G containing Q coincides with the largest parabolic sobgr@ of G containing Q such that

G(Q) =G(Q).

Corollary 3.26 — For any parabolic subgrou® of G containingS, both
{a € ®(Lq,S) | a vanishes identically o€ (Q)}

and its complement are closed subset®@fq,S).
Moreover, if we lelQ’ denote the smallest t-relevant parabolic subgrouafontainingQ, then
®(Lg,S) C ®(Ly,S) and

{a ed(Ly,S); a vanishes identically o6 (Q')} ={a € ®(Lo,S) ; a vanishes identically o€ (Q)}.

Proof. Let > denote the set of roots i#(Lq,S) which vanish identically on the cone @); this
is obviously a closed subset @f(Lq,S). We consider now a minimal parabolic subgroupd? G
containing S and contained in Q, and weletenote the corresponding set of simple roo®{s, S).
By Corollary 3.23 >N A is an union of connected component®fL g, S) N A, thus

®(Lg,S)NA=(ZNA)U(Z°NA)

is a decomposition of(Lg,S) N A into mutually orthogonal subsets. It follows thi&fLq,S) is the
disjoint union of the closed subsets R andé&spectively spanned BN A andZ°NA. Since any root
in X is a linear combination of roots &fN A, ~ = R and therefor&® = R’ is closed.

The second assertion follows immediately of Corollary 3aR8 Remark 3.25, 2. O

Example 3.27 — We use the notation of Example 3.21. The Dynkin diagramldfdS- 1) is the
graph

o o s o o .
ay az ad—1 aq

For any proper parabolic subgroup Q of G containing B and aotained in P, the only connected
component of ¥y meetingA—Yp = {ag} is YNQ = {d¢41,...,0q4}, wherel is greatest indek such
thata; ¢ Yo. The roots in ¥ = {ay,...,aq4-1} which are orthogonal tG’NQ areqsy,...,ay_1. They
are all contained in ¥ if and only if

YQ =A— {aZ}a
or equivalently if Q is the stabilizer of the linear subsp&garies,...,e/). Applying proposition

3.24, we thus recover the description®felevant parabolic subgroups of-6SL(d + 1) given in
3.2.1, Example 3.9.

3.4. Berkovich compactifications

From now on, we work again under the assumptions of (1.3.4).

(3.4.1) Let t denote ak-rational type of G. We consider the central isogenyx@” — G intro-
duced after Definition 3.14, which induces identificaticdéG, k) = Z(G',k) x (G k), PafG) =
PalG') x PafG") and ParG) = Pax (G'), wheret’ denotes the restriction ofto G'.

Moreover, we letp’ denote the canonical projection of Paf) x PafG”) on PafG’) and j the
closed immersion P&&') — ParG) defined (functor-theoretically) by P~ i(P x G”).
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Lemma 3.28 — With the notation and convention introduced above, therdiag

B(G,k) — Pa(G)™

p’l TJ

#(G',K) ——~ Pa(G)™"
t/

is commutative.

Proof. Relying on Proposition 2.17, it is enough to prove that thigram is commutative after
replacingk by a non-Archimedean extension. Hence we can assume thaBtis- then Gand G’
are also split — and we may restrict to check that the mjap8 o p’ andJ; coincide on the set of
special vertices of8(G, k).

The diagram under consideration can be decomposed in fagrains

B(G %G, k) 2 (G xkG")A  B(G x(G,k) —— (G xxG")a"

| | |» |¥

B(G,K) Gan B(G k) G

b4

lpxg lpxgy

(G/ ><kG//)aﬂ 72 Pa'(G/ ><k(-;//)an (G/ ><kG//)aﬂ 2 Pa'(G/ X G//)an

N A

Gan pa,(G)an Gan 4@) pa'(G/)an

Ip

where Pand P are elements of R&G', k) and Par(G)(k) respectively satisfying 1(P) = P’ xxG".
It suffices to check that each of these four diagrams is cortat

This is obviously true for the last two.

Consider a special poird in #(G, k), whose associatekP-Chevalley group we denot¢. We
may find twok°-Chevalley group¥”’ and¥” with generic fibres Gand G’ respectively, such that the
isogenyi : G’ xxG" — G extends to &°-isogeny¥’ xy 4" — % (this follows from the equivalence
between the category of split reductive groups dvequipped with a splitting datum and the category
of root data BGA3, Exposé XXIII, Théoréme 4.1], together with the fact thay &ogeny extends
to an isogeny of splitting datsS[GA3, Exposé XXII, Corollaire 4.2.3]). These Chevalley groups
correspond to special pointsando” in #(G', k) and #(G”,k), and the bijection betwee#® (G’ x\
G". k) = B(G,k) x Z(G",k) and Z(G, k) induced byi maps(0’,0”) to 0. The commutativity of
the first two diagrams now follows from the very definition bétmapd together with observation
that the isogeny’ x - 4" — ¢ induces a finite morphism between special fibres and thus thaps
generic point to the generic point. O

Replacing the group G by the normal subgroum@d the buildingZ(G, k) by its factor#(G', k),
we may use the lemma above to reduce the study of the #nap the case of a non-degenerate
k-rational typdt, i.e., ak-rational type whose restriction to any quasi-simple congm of G is hon-
trivial.

If G is split and S denotes a split maximal torus, a parabaligsoup P of G containing S is non-
degenerate if and only if the set of roots of té@) with respect to S spans a subgroup of finite index
in the character groupXS) of S (cf. Remark 3.16).

Proposition 3.29 — If the k-rational type t is non-degenerate, the map
St : B(G,k) — Pa(G)®"
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is injective.
Proof. By Proposition 2.17, we may assume the group G to be split.

Given a split maximal torus S of G, it follows from the explifbrmula established in Proposition
2.18 that the map; is injective on the apartment(8,k). Indeed, having identified ¢S,k) with the
vector spacé\(S) of real linear forms on X(S), two linear formsu, v € A(S) satisfyingd; (u) = ;(v)
coincide on the subs&(rad'(P),S) of X*(S), where P denotes any parabolic subgroup of G of type
t containing S. Since the tyges non-degenerat&h(rad'(P), S) spans X(S) @7 Q, henceu = v.

Injectivity of 9; on the whole building follows from the fact that any two pailatre contained in a
common apartment. O

(3.4.2)We fix ak-rational typet of (parabolic subgroups of) G.

For any maximal split torus S of G, we 8% (S,k) denote the closure d; (A(S,k)) in Pa(G)2"
endowed with the induced topology. This is a compact toposdgpace to which we refer as the
compactified apartmertdf typet of S.

We let.%; (G, k) denote the image of the map

G(K) x Ai(S,k) — Pa(G)™", (g,x) — gxg ™,

which we endow with thguotienttopology. Set-theoreticallyz; (G, k) is the union of all compacti-
fied apartments of typein PafG)2".

Definition 3.30 — TheG(k)-topological space%;(G,K) is theBerkovich compactification of type
t of the building%(G, k).

Remark 3.31 — It is somehow incorrect to use the word "compactificatiomthis context for two
reasons:

— if the typet is degenerate, the ma} is not injective;
— if the field k is not locally compact, the topological spagg(G, k) is not compact.

However, the image of; : %(G,k) — %;(G,k) is obviously dense and we shall prove later (Propo-
sition 3.34) that this map is open.

Functoriality with respect to the field extends to the contifiaations.

Proposition 3.32 — Let K/k be a non-Archimedean extension.

(i) There exists a unique continuous m#(G,k) — %;(G,k') extending the canonical injection
of (G, k) into Z(G,K'). This map is & (k)-equivariant homeomorphism onto its image.
(i) Ifthe field k is locally compact, the image @ (G, k) in %;(G,K') is closed.

Proof. (i) There exists clearly at most one continuous extens#fG,k) — % (G, k') of the canoni-
cal injection%(G, k) — 2(G,K) since the image of8(G,k) in %;(G,k) is dense.

For any maximal split torus S of G, we set(8,K) = 5 (A(S,k)) and letA;(S,K') denote its
closure in PaiG®k')2". We recall that there exists a torus T of G satisfying theofeihg conditions:

— T contains S;
— Tk is a maximal split torus of Gk ;
— the injection of#(G,k) — Z(G,K') maps AS,k) into A(T,K') = A(T kK, K).

Equivalently,A; (S,K) is the closure o (A(S,k) in A(T,K).
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Relying on the commutativity of the diagram

B(G.K) —2- Pa(G)2 K .

T lpr

A(G,K) — Par(G)a"
t
(see Proposition 2.17), it suffices to prove that the cambrpcojection pg . : PaG)2"2k —
Pai(G)®" induces a homeomorphism betweg(S k') andA(S,k), as well as a bijection between
UsAt(S,K) andJsA¢ (S, k), and to consider the inverse bijection.

We split the proof in two steps.

First step: K/k is a finite Galois extensionSetl" = Gal(k'/k). In this case, it suffices to note
that the projection Rry induces a homeomorphism between the cloBefiked point subspace
(PaG)a" @ k) of PalG)2"® k' and its image in P&6)2", the latter being closed since the
map pf . is closed. Since the map#(G,k) — %(G,K) andd; : #(G,K) — Pa(G)*" @k k' are
[-equivariant, pg  induces therefore a homeomorphism betwagis, k') andA¢(S,k), as well as a
bijection betweet JsA;(S,K') andUsA¢ (S, K).

Second step: the grou is split. In this case, the result will follow from the constructioha
continuous sectiow of pry overA(S, k) mapping A(S,k) onto A (S,k'). We rely on the explicit
formula established in Proposition 2.18 to defme@nd we use the notation introduced there. First
note that each point of A;(S,k) belongs to the open subsetP, S)2" of PafG)2" for a convenient
choice of the parabolic subgroup P of G containing S (cf. R&r@&). Then this point corresponds
to the multiplicative seminorm on thealgebrak[(X 4 )qcw] defined by

f=S aX’— |[f|(x) =maxla,| [T [Xa|(x)" @
VEZNW Vv y vV aI;L a
since the functionf| — max, |ay,| [Jacw |Xa|"(®) is continuous on P&G)2" and vanishes identically
on A(S,k) = 3 (A(S,k)). We definea(x) as the point irQ(P, S)2"@yk’ corresponding to the multi-
plicative seminorm oi!/[(X4)qcy] Satisfying the same identity:

a, XV

veNY

The mapo : A¢(S,k) — PaG)2"2yK is a continuous section of the projection, pr mapping
A((S,k) onto A(S,K) by (2.4.2), Proposition 2.18. Thus, the mapg Rrand o induce continuous
and mutually inverse bijections between the ge{sSS k') andA¢(S,k), and our assertion follows.

(i) For any maximal split torus S of G and any poiitn A(S k), Z(G,k) = Gx(k)A(S,k) (see
reminders of Bruhat-Tits theory in (1.3.3)), hence the ima§ % (G,k) in %;(G,K) is contained
in the subspace E Gx(k)A¢(S,K). If the fieldk is locally compact, the topological group @) is
compact and therefore F, likg (S, k'), is a closed subset @B, (G,k'). It follows that F contains the
closure Fof %(G,k) in %(G,k). Since F contains%;(G,k) = G(k)A;(S,K'), we see finally that
%:(G,K) is the closure ofZ(G,k) in %;(G,K). m

(0(4) = maxiay| [ [Xel (0

Lemma 3.33 — Let S be a maximal split torus o6 and x a point in the compactified apartment
A¢(S,k). If there exists an element g @(k) such that gx belongs t&(G,k), then x belongs the
subspacé\; (S, k) = 9(A(S,k)).

Proof. We can restrict to a non-degenerate type by Lemma 3.28.
We first assume that G is split and rely in this case on the @kgpdrmula in Proposition 2.18.
There exists a parabolic subgroup P of G containing S sutlitbgointx of PaiG)2" belongs to the
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big cell Q(P,S)@" and corresponds to a multiplicative seminorm onkfagebrak|(Xq)qcw], Where
Y = d(rad’(P°P),S). As noticed in the proof of Proposition 3.32, the explicitrfaula for a pointx
lying in the image of AS, k) holds more generally for any point & (S, k):

a,X"| (x) = max/a Xa| (x)V (@)
Z v ) = m: ‘V’J;U al(X)

One easily checks that the poinbelongs to (the image of) (8, k) if and only if | X4|(x) > O for any
root a € ®(P,S), which amounts to requiring that this seminorm is in fact amoor equivalently
that|f|(x) > O for any non-zero gern € Opyyg)any-

If there exists an elememtof G(k) such that the poingx belongs to%; (G, k) — %(G, k), thengx
belongs toA:(S,k) — A(S, k) for some maximal torus’®f G and there exists therefore a non-zero
germ ' € Opgyc)an gy Satisfying| f'|(gx) = 0. Then we haveg* f'|(x) = |f'|(gx) = 0 and, sincey* f’
is a non-zero germ at the pointx belongs toA; (S, k) — A(S k).

We now address the general case. K¢k be finite Galois extension splitting G and consider a
maximal torus T of G satisfying the following conditions:

(a) T contains S;
(b) Tk is split;
(c) the injection#(G, k) — #(G,K') identifies A'S, k) with the Galois-fixed point set of @, k') =
A(T Rk k/,k/).
It follows from Proposition 3.32 and continuity that the qomatified apartmend(S,k) is identi-
fied with the Galois-fixed point set iA;(T,k'). If x is a point of A¢(S,k) whose Gk) orbits meets
%:(G, k), then we know that belongs to AT, k'), and therefore to £S,k) sincex is Galois-fixed.O

Proposition 3.34 — The map9; : Z(G,k) — %:(G,k) is continuous, open and its image is dense.
This map is injective if and only if the type t is non-degeteereFinally, if the field k is locally
compact, the topological spac#; (G, k) is compact.

Proof. Continuity of9; and density of its image follow immediately from the defimitiof % (G, k).
By Proposition 3.29, the maf, is injective if the type is non-degenerate; converselyt it degen-
erate, therd; is not injective by Lemme 3.28.

It remains to check that this map is open. Let us considera@iing commutative diagram

G(K) x A(S,K) % G(k) x Ay(S,K)

nl ln

‘@(Gvk) @t(s> k)

B

associated with a maximal split torus S of G, where the ntapse defined byt(g,x) = gx Given
an open subset U i8(G,k), V = (id x §)(rr1(U)) is an open subset of &) x A¢(S,k). This is
moreover ar-saturated subset, since any pdigtx) € G(k) x A¢(S,k) such thagxbelongs tad; (U)
is contained in the image of id 9; by Lemma 3.33, hence ifid x 3;)(r1(U)). Since V meets each
fibre of moverd; (U), V = m1(&(U)) and thusd; (U) is open in% (G, k), for the maprtis open and
surjective.

If the fieldk is locally compact, the spac#, (G, k) is compact by the same argument as for Propo-
sition 3.32 (ii). O

(3.4.3)Lett denote &-rational type of G and S a maximal split torus. We prove i fhéragraph
that the compactified apartmefi(S, k), defined as the closure §f(A(S,k)) in Pa(G)", coincides
with the compactification of the apartment®k) associated with the prefa# on A(S).
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Proposition 3.35 — The map9; : A(S,k) — Paf(G)2" extends to a homeomorphism
AGK T — A(SK).

Proof. We split the proof in three steps, the third one consistinggmma 3.36 below. a

First step: reduction to the split cas®Ve pick a finite Galois extensidti/k splitting G and choose
a maximal torus T of G satisfying the following conditions:

(a) T contains S;
(b) Tk is split;
(c) the injection#(G,k) — #£(G,k') maps AS,k) into A(T,K') = A(T ek, K).
It follows from Proposition 3.32 thak; (S, k) is identified with the closure of &8,k) in A¢(T,K').

Let P denote a parabolic subgroup of G of tytpeontaining S. Set T= T @k, S = S®yK,
P'= P&k and letA denote the homomorphism*KI’) — X*(S) = X*(S), a — a|g. The cone
Ci(P) in A(T') = Homap (X*(T'),Rx0) is defined by the inequalities < 1, a € ®(rad'(P°?), T')
and (AY)"1C(P) is therefore the cone IN(S) = Homap (X*(S),R~0) defined by the inequalities
a <1,acd(rad'(PP),T'). Since ral(P°?) = rad’(P°P) @K,

®(rad'(P?),S) C A (P(rad'(PP),T')) C d(rad(P°P),S) U {0},
hence(AY)~1C (P°P) = C;(P). Thus, the prefar; on A(S) is the restriction of the prefar#; on
A(T’), and consequently the canonical |nject|0|QSAk) — A(T,K') extends to a homeomorphism

betweenA(S, k) and the closure of £5,k) in A(T, k’)

It follows from the discussion above that any homeomorpkdéﬂnetweem(T, k/)"ozl andA(T,K)
fitting into the commutative diagram

/ Tk’\

A(T,K) k/ t(T,K)

induces a homeomorphisgnbetweenA (S, k) k) andA (S, k) fitting into the commutative diagram

A(SK)

/\

A(SK)~ K

and it suffices therefore to prove the proposition when tlo@giG is split.

Second step: the split cas&Ve fix a special poinb in the apartment AS k) with associated
k°-Chevalley groupy .

Let . denote the splik®-torus with generic fibre S. Any parabolic subgroup P of G aint
ing S extends uniquely to a parabolic subgrotp of 4 containing.” and, if 2°° denotes the
opposite parabolic subgroup with respectto the morphism rdt{ #2°P) — Par¥) defined functor-
theoretically byg — g#2g~1 is an isomorphism onto an affine open subscheme d@ffawhich we
denoteQ,(P,S) and whose generic fibre is the big c@I(P,S) of PafG). Equivalently, choos-
ing a k°-Chevalley basis of Lig5) and a total order ot = ®(rad'(P°P),S) allows us to iden-
tify Q(P,S) with the affine space Spék[(Xq4)acw]), In Which caseQq(P,S) corresponds to the
k°-scheme Spe&° [(X4)acw]). Finally, from the analytic point of view, the affine open spbhce
Qo(P,S) of Par¥) determines an affinoid domai,(P,S)2" in ParG)2" which, in the identifica-
tion Q(P,S) ~ Spedk[(Xq)acw]) above, is simply the affinoid domain 6f(P,S)2" defined by the
inequalities|Xq| < 1,0 € V.
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When P runs over the set of parabolic subgroups of G of typentaining S, the affine open
subscheme®),(P,S) cover the connected component P& of Pa¥) and the affinoid domains
Qo (P, S)2" cover therefore the connected component(Rgf" of ParG)2" (cf. Remark 2.7).

Now we use the special poiotto identify the affine space (&,k) and the vector space(8) =
Homap (X*(S),R) and we identify the latter with(S) = Homap (X*(S),R~0) via
V(S) x X*(S) = Ruo, (u,X) — e,
For any parabolic subgroup P of G of typeontaining S, the image of the map : (G, k) —

Pai(G)2"is contained in the big cefR(P,S)2" and its restriction to the apartment{®&k) associates
with an element of A(S) the multiplicative seminorm

f =Y a,X" — maxlay| [ u(a)"@
Z v 1ax|ay GEL

on thek-algebrak[(X4)acw] (Proposition 2.18). By Lemma 3.15, (i), the polyhedral c@éP) is
the preimage of the affinoid domagy,(P, S)2"
Ce(P) = 9 (Qo(P,S)*) NA(S).

Moreover, if we let{W)" denote the semigroup spanned®yn X*(S), the formula above allows us
more generally to associate with any homomorphism of unitaonoidsu : (W)* — [0,1] a multi-
plicative seminorm ok [(X4)qcw] extending the absolute value kflt follows that we get a contin-
uous and injective map

@ p : Ct(P) = Homyon ((W),[0,1]) — Qo(P,S)?"
which fits into the commutative diagram

Ci(P)={ueA(S)|a(u) <1, foralla € ¥} o Qo(P,S)2".

UHuwl o
Ci(P) = Homyion ((¥)*,[0,1])

If P and P are two parabolic subgroups of G of typeontaining S, the maps; p andw p coincide
on G(P)NCi(P), hence orCi(P) N CG(P) = C(P) N C;(P'). We thus get a continuous map

S &

3t :A(S K — Pa(G)a"

extendingd;.

Since the topological spacéssS, k)ﬂ‘_and PafG)2" are compact, the continuous mapis proper
and its image coincides with the closukg(S, k) of J;(A(S,k)) in Par(G)a".

It only remains to prove that the map is injective. Since its restriction to any compactified
coneC is injective for Ce .7, it suffices to check that any two points y in A(S, k)/t such that
J1(X) = J¢(y) belong to the compactification of the same coneZ this is indeed the case by the
lemma below. a

Recall that G is assumed toNbe split. Using the notation ditced in the previous proof, let us
consider the semisimplegroupG = ¢ ®- k and the reduction map (1.2.3)

ro: Pa(G)®" — ParG).

Each parabolic subgroup Q of G extends uniquely to a pa@boligroup? of ¢ and@ = 2@ K
is a parabolic subgroup &; moreover, if Q contains S, th&p containsS.

Note that with any parabolic subgroup Q of G containing S weassociate:

— the polyhedral cone @Q) in A(S) (Definition 3.14),

— the integral closed subscheme @& of PaiG) (Proposition 3.2).
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Finally, for any polyhedral cone C, we define ingerior int(C) of the compactified con€ as the
complement of closures of all proper faces of C:

i@ =c- |J F

FcC
face

Lemma 3.36 — For any parabolic subgrou® of G containingS, the interior of the compactified
coneC;(Q) is the preimage under the map

roo 9t A(S, k)"% — ParG

)
of the generic point of the irreducible closed subsch&mseg(Q).
In particular: any two points xy in A(S, k)/t with 3¢(x) = ¢(y) belong to the compactification

of the same cone i%;.
Proof. Taking into account the partition

ASK = | | int©),

Ce

it suffices to check that, for any parabolic subgroup Q of Gt@ioing S, the map, o 3; maps the
interior of the compactified con@;(Q) to the generic point of Os@).

Let us fix a parabolic subgroup P of G of typeontaining S, se¥ = ®(rad'(P°P), S) and identify
as above th&°-schemeQq(P,S) with Spedk® [(Xq)aew]). The restriction of the map, to the

affinoid domain
Qo(P,S)2"={xe Q(P,S)®" ||f|(x) <1, forall f € k°[(Xqg)acw]}

of Q(P,S)2" takes values in the affine open subS¥P,S) = Q,(P,S) ®ic k of PafG): given a point
X € Qo(P,S)", the set of elements € k” [(Xa)acw] satisfying|f[(x) < 1 is a prime ideal containing

the maximal ideal ok®, hence its image itk[(X4)acw] is @ prime ideal andy(X) is the point so
defined inQo(P.§) = Spec(K[(Xa)acw] ).

Now we consider a parabolic subgroup Q of G containing S aodlawry with P. By Proposition
3.20, the interior of the compactified cog(Q) is the subspace df;(P) defined by the following
conditions:

a=1 ae¥Wnd(Lg,S)
a<l ae¥W-Y¥Ynod(lLe,S).
It follows that, for any pointx in int(C;(Q)), the set of elementd € k°[(Xq)q] satisfying

|f|(x) < 1 is exactly the ideal generated by the maximal idealkdfand the coordinates X
with o e W —WNd(Lg,S). The pointry(X) is therefore the generic point of the closed subscheme

of Spec(E[(Xa)aewD defined by the vanishing of the coordinateg With 0 € ¥ —WN®(Lg,S).

Finally, since this closed subscheme is the intersectiothefopen subschem@(P,S) with the
closed irreducible subscheme @€2) (Proposition 3.4, (ii))ro(x) is nothing but the generic point of

Osg(Q) and the proof is complete. O

4. GROUP ACTION ON THE COMPACTIFICATIONS

In this section, for a given reductive group G over a comphete-Archimedean fielé and a given
k-rational typet of parabolic subgroups of G, we describe the Berkovich cantifpzation %; (G, k)
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of typet of the Bruhat-Tits buildingZ(G,k). This means that we describe the boundary compo-
nents of%;(G,k), which are in one-to-one correspondence witkelevant parabolic subgroups as
defined in the previous section from a geometric viewpoin{3i2.1). A root-theoretic interpreta-
tion was given in (3.3.2). It turns out that the boundary coment of %; (G, k) parameterized by
at-relevant parabolic subgroup Q of G can naturally be identifvith the Bruhat-Tits buildings of
the semisimple quotient of the latter group (Theorem 4.13tulal fibrations between flag varieties
induce GKk)-equivariant maps between the corresponding compaciifitgtwhich we study. Finally,
we also describe the action of the groufkizon % (G, k), which enables us to prove a mixed Bruhat
decomposition (Proposition 4.20).

4.1. Strata and stabilizers

Throughout this section, we consider a semisinipliroup G and let denote &-rational type
of parabolic subgroups. We recall that, if Q is a paraboliegsaup of G, we still let denote the
k-rational type of the parabolic subgrogPn Q)/rad Q) of the reductive group @adQ), where P
is any parabolic subgroup in RéB) (k) osculatory with Q (see (3.2.1)).

(4.1.1)For any parabolic subgroup P of G, we may use the canonicalagzhism
gp: 0sg(P) —— Pag(P) = Pag(Psy)

described in Proposition 3.2 to define the composite map

1

P(Pss K) —'> Pag(Psg? —— Osq(P)*— Pa(G)™"
and thus we get a continuous injection of the fack#(Pss k) of 2(Pss k) into PafG)2".

Theorem 4.1 — LetRelt(G, k) denote the set of t-relevant parabolic subgroup&ofVhenQ runs
over Ret(G,k), the buildings%:(Qss k) define a stratification of#;(G,k) into pairwise disjoint
locally closed subspaces:

%t (G, k) == |_| e%t (st, k)
QcRet(Gk)
For any t-relevant parabolic subgrouQ of G, the injection 0f%; (Qss, k) into % (G,k) extends to
a homeomorphism between the compactified build#(Qss, k) and the closed subset

U  %i(Pssk)

P e Re}(G,k)
PCQ

of %:(G,k).
We establish two lemmas before proving this theorem.

Lemma4.2 — Let P and Q be two t-relevant parabolic subgroups &. For any g€ G(k),
0% (Pss, K)g™1 N %, (Qss K) # @ in PaG)2"if and only if Pg~! = Q.
In particular:
(i) if PandQ are distinct,%; (Pss k) and % (Qss, k) are disjoint;
(i) for any points xy € B(Pss K) and any ge G(k), if g-x =y in Pag(G)2", then ge P(k).

Proof. We recall that thek-analytic space X' associated with an algebralescheme X is nat-
urally equiped with a map : X3 — X (see preliminaries on Berkovich theory, 1.2.2). Let us
consider the @&)-equivariant magp : PafG)?" — PafG) defined at the end of (1.2.2) and pick
x in #(Psgk). By Corollary 2.19, the map o 9, : Z(Pss k) — Pag(Pss) sendsx to the generic
point of Pay(Psg). It follows therefore from Proposition 3.2 that our can@hiembedding of
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P (Pss, k) into Par(G)2" mapsx to a point lying over the generic point of the integral scheme
Osg(P). Since gOsg(P)g! = Osg(gPg~1) for any g € G(k) (see Remark 3.3), the subsets
0% (Pss, k)91 and %;(Qss k) of PafG)2" are non-disjoint if and only if the closed subschemes
Osg(gPg 1) = gOsg(P)g~* and Os¢(Q) of ParG) coincide. Finally, since the parabolic subgroups
P and Q ard-relevant,gPg~! and Q are alst-relevant and the identity OggPg—!) = Osg(Q)
amounts t@Pg~! = Q. This completes the proof of our first assertion. Both () & are immediate
consequences of what has been said. O

Let S be a maximal split torus of G and Q a parabolic subgroup ofntaining S. We | denote

the image of S under the canonical projection-QQssand define a majy : A(S,k) — my‘ as
follows:

— the apartment AS k) is canonically isomorphic to the quotient of the apartme($.K) by the
linear subspace XS)* = (¢(Q)) of A(S) (1.3.5);

— by Proposition B.4, (iv), the quotient of (&,k) by the linear subspacg;(Q)) is a stratum of
AGSK

— since(Q) C Ci(Q) by definition of the latter con€€(Q)) C (Ci(Q)) and thus the canonical
projection of AS k)/(€(Q)) onto A(S,k)/(Ci(Q)) leads to a map

o1 ASK) = A(SK)/(€(Q) — A(SK/(CG(Q) CAGK .

Note that this map may not be injective. Observe also A& k) " is covered by images of the
mapsjq when Q runs over the set of parabolic subgroups containing S.

Lemma 4.3 — With the notation introduced above, the diagram

ASK T — > Pa(G)™
jQT JSQ
A(S.K) —5= PalQs)™

is commutative.

Proof. We first reduce to the case of a split group by consideringit& fidalois extension splitting G
and a maximal torus T of G satisfying the following conditon

(a) T contains S;
(b) Tk is split;
(c) the injection of#(G, k) into A(G, k') maps AS k) in A(T,K).

We leave the details to the reader.

Now we suppose that the group G is split. Fix a parabolic supgP< Pag(G) (k) osculatory
with Q and letP denote the parabolic subgro(®NQ)/radQ) € Pag(Qss) (k). We choose a special
pointoin A(S,k) and leto denote its image under the canonical projectidisA) — A(S,K); this is
a special point of AS k), and we us® ando as base points to identify (8, k) and A(S,k) with A(S)
and/\(S) respectively.

Since the vector spadk(S) is covered by the cones;(®) when P runs over the set of parabolic
subgroups R Osg(Q)(k) containing S, it suffices to prove that the maQs j andepo J; coincide on

Ct(P). Introducing as in the proof of Proposition 3.35 the affind@mainsQ, (P, S) andQ5(P,S) in
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ParfG)2"and ParQss)?" respectivelygq identifiesQg (P, S)2" with Qo (P, S)3"N Osg (Q)?" by Propo-
sition 3.4 and it remains to check that the diagram

(P ﬁQoP

U')I

is commutative. B o
SetW = d(rad'(P°?), S) and¥ = d(rad'(F™),S) = WN®d(Lo,S), and let(W)* and(W)* denote
the semigroups in XS) and X*(S) spanned by andW respectively. It follows easily from Proposi-

tion 3.20 that both semigrougd’)* N X*(S) and(W¥)* span the same cone i §S) ®z R. The proof
of Proposition B.3, (i), shows thatis the map
Ci(P) = Homyon ((W),]0,4])  —  Homyon ((W) ", [0,1]) = Ci(P)

- u on(¥Y)*
e U= {o on (W)+ — (W) AX*(S). -

Once we have chosen a total order8npwe may identifyQ, (P, S) andQs5(P, S) with the spectra of
k°[(Xa)aew] andk® [(Xq),cp) respectively. By Proposition 3.4 is then the morphism deduced
from thek®-homomorphism

] ) Xq ifae®
K [(Xa)acw] — K [(Xa)aem]’xaH{ 0 faew-—W

and, finally, the map#; o j andeg o 9; both associate with a pointe C;(P) = Homyon ((¥)*,]0,1])
the seminorm
f=Ya,X"— maxla,| [ t(a)’@
Z v ax|ay GEL

onk|[(Xa)aew].

Proof of Theorem 4.1 By the very definition of%;(G,k) in (3.4.2), any poink of this compact-
ified building belongs to the compactified apartmaptS, k) of some maximal split torus S of G. It
follows from Lemma 4.3 that there exists a parabolic subgi@Qusuch thak € #(Qss k). According
to Remark 3.8 and Lemma 4.2, this Q is unique if we assume i terélevant. Conversely, if Q is a
parabolic subgroup of G, any maximal split tordso8Qss is the image of some maximal split torus
S of Q under the canonical projection-Q QssandA; (S, k) is contained iM(S,k) by Lemma 4.3.
We have therefore

%:(G,k) = |_| P (Qss, K).

QeRet(G k)
Let Q be at-relevant parabolic subgroup of G. Our injection%f(Qss k) in Par(G)2" obviously
extends to a continuous injection & (Qss, k) in PaG)2" and, replacing G by Qin what precedes,
we get

@t (QSS’ k) = |_| ez (PSS’ k) :
Pe Rel(G,k)
QcP

Now we check that%; (Qss k) is locally closed in%; (G, k). Let us choose a maximal split torus S
in Q and consider the map

11: G(K) x A¢(S,k) — %(G,K), (x,g) — g.x:=gxg !

(conjugation takes place in R&)2"). We pick a pointx in A¢(S k) and let P denote therelevant
parabolic subgroup containing S such thats contained in the stratur:(S,k) N % (Pss k) of
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A;(S,k). For any elemeng of G(k) such thatg.x belongs to%;(Qss k), we havegPg—! = Q by
Lemma 4.2. Since the parabolic subgroups Q and P both caotiteimaximal split torus S, they
are in fact conjugate under the Weyl group W(& S). Hence there exists € G(k) normalizing S
such than~1Qn = P, thus(gn~1)Q(gn~1)~! = Q and thereforgn— € Q(k). If we pickny,...,n; in
Normg(S) (k) lifting the elements of W and s&t = A;(S,k) N %:(Qss K), then it follows that

Y (%:(Qss k) UQ n x (n 1)

Since this subset of &) x A¢(S,k) is locally closed,%;(Qss k) is a locally closed subspace of
%: (G, k). B B
One checks similarly tha#;(Qss, K) is the closure of4;(Qss k) in % (G, k). a

Example 4.4 — Let G be the group PGWV), where V is a vector space of dimensida- 1 over
a locally compact non-Archimedean fidtd Following Goldman and Iwahori@l63], the building
% (G, k) can be identified with the space of norms on V modulo scalingt d_be the type of a
stabilizer of a flag {0} € H C V) with codim(H) = 1. It will be shown in a sequel to this article
[RTW2] that there exists a PGV, k)-equivariant homeomorphismfrom %5(G,k) to the space of
seminorms on V modulo scaling, thus extending the Goldmahori identification. Let Q be &-
relevant parabolic subgroup. By Example 3.9, Q is the sebibf a flag({0} ¢ W C V). Hence
Qss is isogenous to the product PGN) x PGL(V /W). Since the typé is trivial on PGLW), the
building #5(Qss, k) coincides withZ(PGL(V /W),Kk). In the above identification, identifies the
stratumZ;(Qss, k) with the set of seminorm classes on V with kernel W.

Proposition 4.5 — LetK /k be a non-Archimedean extension.

For any t-relevant parabolic subgroup of G, Q®kK is a t-relevant parabolic subgroup &®yK
and the canonical injection of8(G, k) in %(G,K) extends continuously to an injection &% (G, k)
in % (G,K) which induces the canonical injection % (Qss K) in %;(Qss K).

Proof. We have already proved that the canonical injectiédniG,k) — %;(G,K) extends continu-
ously to an injection of%;(G, k) in %;(G,K) (Proposition 3.32) and that, for atyelevant parabolic
subgroup Q of G, the parabolic subgroum(XK of G ®kK is still t-relevant (Remark 3.10).

It remains to check that our mags(G,k) — %;(G,K) induces the canonical injection of
P (Qss, K) In Hi(Qss, K) for any t-relevant parabolic subgroup Q. The arguments are conhplete
similar to those we used in order to prove Proposition 3.32fivst reduce to the split case, then we
rely on the explicit formula of proposition 2.18. 0

(4.1.2)We describe in this paragraph the subgroups of G naturaigtzd to strata of the compacti-
fied building % (G, k).

Proposition 4.6 — The natural action ofG(k) on %:(G,k) extends uniquely to an action on
%:(G,k) and, for any t-relevant parabolic subgro@pof G and any element g @(k),

0% (Qss K) = %t((gQg_l)s& K).

Proof. Given a maximal split torus S of G, the map G(k) x A¢(S,k) — ParG)a", (g,x) — g.9(X)
is equivariant with respect to the obvious actions @¢k)G Since its image is precisely the subset
%:(G,k) of Pa(G)2", this proves the first assertion. The second follows from ivend.2. 0

Proposition 4.7 — LetQ be a t-relevant parabolic subgroup G

(i) For any non-Archimedean extensiéiyk, the subgroug(K) of G(K) is the stabilizer of the
stratum%; (Qss, K) in %;(G,K).
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(i) There exists a largest smooth and connected closed subBoQp of G satisfying the following
conditions:
¢ R((Q) is a normal subgroup d containing the radicatad(Q);
e for any non-Archimedean extensiknk, the subgrou;(Q,K) of G(K) acts trivially on
the stratum%; (Qss, K) of %;(G,K).
The canonical projectio®ss— Q/R:(Q) identifies the buildingss; (Qss, k) and Z(Q/R:(Q), k).
(iii) For any two points xy in the stratum#; (Qss, k), there exists a non-Archimedean extens{otk
and an element g @(K) such that y= gx.

Proof. (i) Since any parabolic subgroup of G coincides with itamalizer in G, this assertion follows
from Lemma 4.2.

(i) Let us consider the central isogeny, Q& Qi — Qssassociated with the tygeafter Definition
3.14; it identifies#(Qs k) and % (Qss k). The preimage of Q under the canonical projection of
Q onto Qg is a smooth closed subgroup of G normal in Q, and we [¢QRdenote its identity
component. Since the formation of(®) commutes with arbitrary field extension, the subgroup
Ri(Q,K) of G(K) acts trivially on the stratun¥;(Qss, K) of %;(G,K) for any non-Archimedean
extension Kk.

Suppose now that R is a smooth and connected closed subgr@imvbich is normal in Q and
contains the radical ra®). The group R= R/radQ) is a smooth, connected and normal closed
subgroup of @ By [BT65, 2.15] (see alsoGhe05 Exposé 17]), Ris the image of the product

morphism
|_| Hi — G,
e

where{H;}ic is the set of almost simple factors of{@ontained in R If the group RKk) acts trivially
on % (Qss k), this is a fortiori the case for each (K) and therefore Hs contained in @ by definition
of Q,sand It follows that R is contained in RQ).

(iii) Consider two pointsx andy in the stratum%;(Qss k). Combining (i) with Proposition
1.7, there exists a non-Archimedean extensiofk kind a K-pointg of Q/R;(Q) mappingx to y
in % (Qss K) = B(Q/Ri(Q),K). Extending K if necessary, we may assume thistthe image of a
K-point of Q and the assertion follows. O

Remark 4.8 — 1. Note that, for any-relevant parabolic subgroup Q of G, the groug@® (k) acts
trivially on the whole analytic subspace @&8)2" of PaG)2". Indeed, R(Q) acts trivially on the
subscheme Os®) ~ Pag(Q%) of Pat(G) by construction.

2. The formation of RQ) commutes with non-Archimedean field extension;( @Rk K) =

Rt(Q) Rk K.

Here is a root-theoretic description of the subgroyp® of at-relevant parabolic subgroup Q
of G. We fix a maximal split torus S of Q and I[Btdenote its image under the canonical projection
Q — Qss The canonical injection XS) — X*(S) identifies the subseb(Qss, S) of X*(S) with the
subset®(Q,S) — d(rad'(Q),S) = P(Lg,S) of P(Q,S) (where Ly denotes the Levi subgroup of Q
containing Cerg(S)).

Proposition 4.9 — LetA be the set of roots i®(L g, S) which do not vanish identically on the cone
Ci(Q) CA(S).
(i) The quotient grouf;(Q)/rad(Q) contains the anisotropic component@fs.
(i) The isotropic component & (Q)/rad(Q) is the subgroup 0Qssgenerated by the images of the
root groupsUy for all a € A.
(iii) The subgroup(Q) of Q is the semi-direct product ead'(Q) by the subgroup df generated
by the anisotropic component ofl-the subtorus o$ cut out by the roots i®(Lg,S) and the
root groupsUq, a € A.
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Proof. (i) This assertion is clear sinca ®)/rad(Q) is the subgroup of QradQ) generated by the
quasi-simple components on which the typestricts trivially (see proof of Proposition 4.7, (ii)).

(i) Since bothA and its complement are closed subset®(fq,S) (Corollary 3.26) A is a union
of simple components of the root systebiLg,S). Let Ry be a minimal parabolic subgroup of G
containing S and contained in Q; we denotethe corresponding set of simple roots®iG, S)
and by P the parabolic subgroup of G of typ&hich contains B. By Corollary 3.23A is the union
of all connected components AN ®(Lq, S) which do not meet(rad'(P), S) NA. This amounts to
saying that\ is precisely the set of roots of the isotropic quasi-simpl@ponents of @ on which the
restriction oft is trivial. Therefore it follows from the proof of Propogiti 4.7, (ii), that the isotropic
component of RQ)/rad Q) is precisely the normal subgroup of{gorresponding té\. By [BT65,
Corollaire 5.11], the latter is generated by the root grdupdor all a € A.

(iii) The group Q (its radical ra), respectively) is the semi-direct product of its unipotexdical
rad'(Q) by the Levi subgroup & (by the radical of lg, respectively). Let H denote the maximal
anisotropic connected normal subgroup gf The reductive group rdtlg) is the identity component
of the center of k; it is a torus, generated by its anisotropic compongatiLq) NH)° and its
maximal split subtorusgT65, Proposition 1.8]. The latter is a subtorus of S, namely thenected
component of

(] ker(a).

aed(Lq,S)

The group R(Q) is the semi-direct product of ra@) by Lo N R:(Q). It follows from (i) and
(ii) that Lo NRy(Q) is the subgroup of § generated by H, the subtorus of S cut out by the roots in
®(Lg,S) and the root groups & a € A. 0

Example 4.10 — As in Example 4.4, let G be the group PG4, and letd be the type of the
stabilizer of a flag {0} ¢ H ¢ V) with codim(H) = 1. Let T denote the torus of diagonal matrices
and B the Borel subgroup of G consisting of upper triangulatrives (modulo center, of course), so
that H is generated bgy, . .., e4 for a diagonal basis, . ..,e4.1 of V with respect to T.

Let Q be thed-relevant parabolic subgroup induced by the stabilizehefdubspace W generated
by ey,...,e for some 1<r < d+1. Then, by Example 4.4, the stabilizes(®) of the stratum
PB5(Qss K) is the kernel of the natural map @ PGL(V/W). It obviously contains the unipotent
radical rad(Q). The natural morphism$.— PGL(W) x PGL(V /W) maps R(Q)/rad'(Q) surjec-
tively on the first factor PG{W). Its kernel is the subgroup of T given by all diagonal masiesth
entries(a,...,a,b,...,b), wherea appears times. This coincides with the subtorus of T cut out by
®(Lo,T). Using Example 3.21, we find that a romtof Q does not vanish identically ons(Q) if
and only ifa = xj — x;j fori # j andi,j <r. The corresponding root groups are exactly the root
groups in Lo which are mapped to PGW) under Lo — PGL(W) x PGL(V /W). Hence we recover
the description of R(Q) in Proposition 4.10.

(4.1.3)Now we extend our initial Theorem 2.1 to the compactified diniy %, (G, k) by attaching
with each point its stabilizer in .

Theorem 4.11 — For any point x in%; (G, k), there exists a unique geometrically reduced k-analytic
subgroupStak}(x) of G&" such that, for any non-Archimedean extensiofk, Stal(x)(K) is the
subgroup ofG(K) fixing x in % (G, K).

Let Q denote the t-relevant parabolic subgroup @f defining the stratum which contains x.
The subgrougStak}(x) is contained inQ®", it containsR;(Q)2" as a normal closed analytic sub-
group and the canonical isomorphis@®"/R;(Q)2" = (Q/R:(Q))2" identifies the quotient group
Stak}(x) /R (Q)2" with the affinoid subgroupQ/R:(Q))x of (Q/R;(Q))2" attached by Theorem 2.1
to the point x 0f%;(Qss, k) = Z(Q/R:(Q),K).
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Proof. To the pointx of %;(Qss k) = Z(Q/Ri(Q),k) corresponds by Theorem 2.1 a unique
k-affinoid subgroup(Q/R:(Q))x of (Q/R:(Q))3" satisfying the following condition: for any non-
Archimedean extension k&, (Q/R:(Q))x(K) is the subgroup ofQ/R:(Q))(K) fixing the pointx

in (Q/Ri(Q),K). Using the canonical isomorphisn?QR;(Q)2" —— (Q/R;(Q))3" to identify
these analytic groups, we define S§&b as the preimage ofQ/R;(Q))x under the canonical
projection Q" — (Q/R:(Q))*™

Stab_t;(x) = Qan X(Q/Ry(Q))a" (Q/Rt (Q))X

Since the morphism @+ Q/R(Q) is smooth, Sta§(x) is a geometrically reducekt-analytic sub-
group of 3" which contains RQ)2" as a closed invariant analytic subgroup, and the quotientgr
Q?"/R;(Q)®"is canonically isomorphic to the affinoid subgro(®/R;(Q))x of (Q/R:(Q))2". More-
over, for any non-Archimedean extensiofikand any elemerg in Stak(x)(K), the action ofg on
%:(G,K) stabilizes the stratun®;(Qss, K) and fixes the poink. The existence part of the proof is
thus complete.

Uniqueness follows from the fact that two geometricallyueed analytic subgroups ofChaving
the same K-points for any non-Archimedean extensigh &oincide. O

Proposition 4.12 — Let x be a point in%; (G, k) andQ the t-relevant parabolic subgroup & such
that x belongs to the stratur#; (Qss, k).

(i) The groupStak}(x)(k) is Zariski dense ig.

(ii) Forany ge G(k), Stak}(gx) = gStali(x)g~?.

Proof. (i) Fix a Levi subgroup L of Q. Since{RQ) contains rat(Q), the group Staf(x) is the semi-
direct product of the group rd@Q)2" by the analytic subgroup Stgtx) NL3". Therefore, Stak(x) (k)
is the semi-direct product of ra) (k) by the subgroup Stgiftx) NL (k) of L(K).

Let S denote the maximal split subtorus of tad), Ho the anisotropic component of L a; )ic|
the quasi-simple isotropic components of the derived smiygD(L ) of L. The product morphism

SoXHoX I_|Hi—>L
le

is an isogeny. If we let J denote the subset of | consistinghdicesi € | such that the type is
non-trivial on H, then R(Q) NL is the image of the subgroup S Ho x [ic;Hi and, for each index
i €1—J, Stag(x) NHA" is the affinoid subgroup attached by Theorem 2.1 to the giojeof x
on the factor%(H;,k) of %;(QssK). It follows that the subgroup Stgx) NL(k) of L(k) contains
So(K), Ho(k) and H(k) for eachi € J, as well as a parahoric subgroup gfi for eachi € 1 —J.

The field k is infinite as it carries a non-trivial absolute value. On tdre hand, the groups
So(k), Ho(k) and H(k) are Zariski dense in the reductive groups Sp and H respectively Bor91,
Corollary 18.3]; on the other hand, each parahoric subgafug;(k) Zariski dense in Has well
(Lemma 1.4) and therefore Stalx) NL(k) is Zariski dense in L. It follows that Stgix)(k) is
Zariski dense in Q since ra@) (k) is Zariski dense in rafQ) [SGA3, Exposé XXVI, Cor. 2.7].

(i) This assertion is obvious. O

Example 4.13 — In the setting of Example 4.10, let be a point in the boundary component
AB5(Qss k). Recall that#s(Qss k) can be identified withz(PGL(V/W),k). We denote byx
also the corresponding point i#(PGL(V /W),k). Let ¢: Q — PGL(V /W) be the natural map.
Then the preimage of the stabilizer of the paoirin PGL(V /W) underg is equal to the stabilizer
StatBey v () (k) of xin PGL(V k).

(4.1.4)We will finally give an explicit description of the group Staix) (k) for any pointx of %; (G, k)
by combining the theories of Borel-Tits and Bruhat-Tits. ¥d@sider d-relevant parabolic subgroup
Q of G and pick a poink in the stratumz; (Qss, k). We fix a maximal split torus S in G contained in Q
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and such that belongs to the compactified apartménatS, k). We set N= Normg(S), Z = Cent(S)
and let L denote the Levi subgroup of Q containing Z. The Weglg W of the root syster®(G, S)
acts on the set of parabolic subgroups containing S and dhdizer Wg of Q in W is canonically
isomorphic to the Weyl group of the root systek(L,S). Moreover, the normalizer of S in Q is the
subgroup N = NN Q and we have an exact sequence

1 Z(k) NQ(k) —_ WQ —1.

We set I = R(Q)NL and let L’ denote the semisimple subgroup of L generated by the isotrop
guasi-simple components of L on whiths non-trivial. Both the product morphism' k L” — L
and the morphisntt: L’ — Q/R;(Q) induced by the canonical projection of Q ontgR)(Q) are
central isogenies. We set S (SNL')° and $ = (SNL"”)°. The imageS of S in Q/R(Q) is a
maximal split torus of @R;(Q) and the homomorphism* : X*(S) — X*(S) identifies the root sys-
tems®(Q/Ri(Q),S) andd(L’, ). Moreover, for any rootr € ®(L’,S), minduces an isomorphism
between the root group 4Jin G and the corresponding root groUly in Q/R(Q). We fix a special
point in A(S k). Bruhat-Tits theory provides us with a decreasing filttat) o (K)r }rc[—w, 1 ON the
group Uy (k) for each roota € ®(G,S). We have Y (K)_«o = Uy (K), Ua(K)+w = {1} and, for any
r €] — oo, +oo[, Uy (K); is the subgroup of Y(k) which acts trivially on the half-spacga > e "} of
A(S,K).

Note that the decomposition

P(L,S) =d(L',S)ud(L", S

is precisely the decomposition introduced after Definit®oh4: ®(L”,S") is the union of all irre-
ducible components oP(L,S) on which the type has trivial restriction wherea®(L’,S) is the
union of all irreducible components @¥(L,S) on which the type has non-trivial restriction. The
subgroups Wand W’ of W, stabilizing®(L’,S) andd(L"”,S”) respectively are canonically isomor-
phic to the Weyl groups of the latter root systems ang 3WW’' x W”.

The action of the group (k) on the apartment £5,k) extends continuously to an action on the
compactified apartmem;(S,k): indeed, for anyn € N(k), the automorphism iiih) of Pa(G)2"
stabilizes the image of the equivariant m&p A(S,k) — ParfG)2", hence induces an automorphism
of its closureA;(S,k) in PaiG)2". For any poinix of A (S, k), let N(K)y := N(k) N Stal}(x,k) be the
subgroup of NK) fixing x. We set analogously (R)y := Z(k) N Stak (x,k) and define théocal Weyl
group Wy as the image of k)« in W; we have therefore an exact sequence

1 Z(k)x N(k)x — WX —_— 1 .

Observe that, ik belongs to the stratut# (Qss k), then each element of(K) stabilizes Q, thus )y
is a subgroup of (k) by Lemma 4.2. We also clearly have”W Wy, for N(k)x contains the group
Norm»(S")(k), which is mapped onto W It follows that W = W, x W”, where W, := W, "W'.

Finally, A¢(S,k) N % (Qss K) is the apartment of'Sn Z(L’ k) = %:(Qss, k) and is canonically
isomorphic to the quotient of ¢, k) by the linear subspacgC; (Q)) of A(S) by Lemma 4.3. The
choice of an origin in AS, k) gives therefore an origin in this affine space, and eachaawit®(G, S)
belonging to the subs&(L’,S) defines a function 0A(S,k) N % (Qss k).

Theorem 4.14 — For any point x in%;(Qss k) NA¢(S, k), the groupStak} (x,k) is generated by the
following subgroups o6 (K):

— N(K)x;

— all Uy (k) with a € d(rad'(Q), S);

— all Uy (k) with o € d(L",S");

- all Ug(k),mga(x) with o € CD(L/,S/).
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Proof. Since Sta§(x) is the semi-direct product of r8(R)2" by L2"N Stak}(x), Stak}(x)(k) is the
semi-direct product of rddQ, k) by L(k)x := L (k) N Stalg(x)(k) and it suffices to show that the latter
group coincides with the subgroup F ofd) generated by Kk)y, all U4 (k) with a € ®(L”,S") and
all Ug (K)_10ga(x) With a € ®(L",S'). The inclusion FC L (K)x is obvious.

Let us choose a minimal parabolic subgrdpin Q/R;(Q) containingS. Its preimage Punder
the isogenyr: L’ — Q/R:(Q) is @ minimal parabolic subgroup of tontaining &

First step For any elementy in L(k)y, the elementr(g) of (Q/R:(Q))(k) belongs to
(Q/Ri(Q)),(k), hence can be written agg) = 0_1,.n, with

u e rad (P’ k)x = (Q/Re(Q)), (k) Nrad!(Fy” k),

U, € rad'(Po,k)x = (Q/Ri(Q)), (k) Nrad'(Po,K)
and
ne Ny(k) =N(K) N (Q/Ri(Q)) (k)
([BT72], 7.1.4), whereN denotes the normalizer & in Q/R(Q). Since rad(Fy")(k)x and

rad'(Po)(k) are generated by the subgroup (k)_ioga(x With a € —®(rad'(P;),S) and a €
d(rad'(Pp),S) respectively, we may writ@_ = m(u_) and U, = m(u,) with uniquely defined
elements

u_ € rad'(P3") (K)x = (Uqa (K) _1oga(x) ; o € —P(rad'(Py),S))
and

U € rad'(Po) (K)x = (Ua (K) _ioga(x) ; @ € ®(rad'(Pp),S)).
Thus,h = (u_u, )~1gis an element of Stal{x) (k) N L (k) whose image in @R;(Q) normalizesS and
it follows thath normalizes the torus’'$ L. Therefore we have:
Stalk(x)(k) C F.(Norm_ (S, k) N Stak}(x)(k)).

Second step The normalizer (centralizer, respectively) dfig L is clearly the subgroup of L
generated by Land Norm/(S) (by L” and Cent/(S') respectively), hence

Norm_(S)/Cent (S) ~ Norm./(S) /Cent(S)
and
(Norm_(S')/Cent (S)) (k) = Norm_(S) (k) /Cent (S) (k)
is naturally isomorphic to the Weyl group "Wif the root systen®(L’,S'). Moreover, Norm(S) C
Norm (S'), Cent (S) C Cent (S') and the natural morphism
Norm (S)(k)/Cent (S)(k) — Norm_(S)(k) /Cent (S) (k)
is the projection of the Weyl group ¥onto its factor W. It follows that the group
Norm (S)(K)x := Norm_ (S)(k) N Stalk (x) (k)
is an extension of the local Weyl group,\Wy
Cent (S)(k)x := Cent (S)(k) N Stald (x) (k)

and, since the subgroup(Nx of Norm (S)(k) surjects onto W, the group Norm(S')(k)x is gen-
erated by NKk)x and Cent(S)(k)x. Therefore, Stak(x)(k) is contained in the subgroup of(§
generated by F and Ceri8) (k) N Stal(x) (k).

Third step The group H= Cent (S') = L”.Cent./(S) is reductive, S is a maximal split torus and
®(H,S) = ®(L",S"). By Borel-Tits theory BT65, Théoreme 5.15], the group(K) is generated
by the subgroups MK) with o € ®(H,S) and by Norny(S)(k). Since the unipotent root group
Uq is contained in RQ) for each roota € ®(L",S"), Ug (k) C Staki(x)(k), and it follows that
H(k) N Stak}(x)(k) is generated by these unipotent subgroups and by N@k) N Stak}(x) (k).
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Therefore, Staf(x)(k) is contained in the subgroup of(i§ generated by F and NogS)(k) N
Stak} (x) (k).
Fourth step Finally,
Normy(S) = Norm_»(S”).Cent./(S)
and
Ceniy(S) = Cent»(S").Cent/(S) = Cent (S),
hence
(Normy(S)/Centy(S)) (k) = Normy(S) (k) /Centy(S) (k)
is naturally isomorphic to the Weyl group”V@f the root systen®(L”,S”) and the natural map
Normy(S)(k)/Centy(S)(k) — Norm_(S)(k)/Cent (S)(Kk)
is the injection of W into Wq. It follows that the group
Normy (S)(K)x = Normy (S) (k) N Stakd (x) (k)
is an extension of the local Weyl group/M W" by
Ceniy(S)(K)x = Ceniy(S)(k) N Stak(x)(k)
= Cent (S)(k)x
= Z(K)x.
In particular, Norng (S) (K)x is a subgroup of i)y, thus Stag(x)(k) C F and the proof is complete.
O

The arguments given in the previous proof lead to an extarsi®@ruhat-Tits’ definition of build-
ings to Berkovich compactifications. Together with the @iptlescription of the groups Stgtx) (k)
above, the next proposition will later allow us to comparekBeich compactifications with the ones
defined by the third author (seBTW2]).

Corollary 4.15 — LetSbe a maximal split torus and let x and y be point®\iS, k). If there exists
an element g o6(k) such that gx=y in %;(G, k), then y= nx for some element n df(k).

Consequently, the compactified buildiagy(G, k) is the quotient o6(k) x A; (S, k) by the following
equivalence relation:

(9.X) ~ (h,y) < (3ne N(k), y=nxand gthne Stak{(x)(k)).

Proof. Let Q and Q denote the-relevant parabolic subgroups of G containing S such that
%:(Qss k) andy € % (Qis k). The identitygx =y implies @ = gQg~* (Lemma 4.2) and thus there
exists an element; in N(k) such that Q= n;Qn; . If we setz= n; 'y, theny = n;zandn; 'gx=z,
and therefore we may assume that the poirdsdy lie in the same stratun®; (Qss k) of % (G, k).
This impliesg € Q(k) by Lemma 4.2.

Our final arguments are essentially the same as those givtee jprevious proof, the notation of
which we use again here. SincélQ=rad'(Q)(k).L (k) and rad(Q)(k) acts trivially on%(Qss k),
we may assume thatlies in L(k). Its imager(g) in (Q/R:(Q)) (k) satisfiesrt(g)x =y, hence there
exists an elemertt of N(k) such thatnx =y and 1(g) € N(Q/Ri(Q)), (k) (by the very definition
of the building 2 (Q/R:(Q),k) in [BT72, 7.4.1]). Relying on the decompositidi®/R;(Q)), (k) =
N(K)xrad'(Py") (k)xrad'(Py) (k)x, we may find as in step 1 above unipotent elementsand u,. in
Stak(x)(k) such thatt(g(u_u, )~*) belongs taN(k). If follows thatg(u_u, )~ belongs to

Norm, (S) (k) € N(K)R(Q)

by the last three steps above. We thus can vgiteng with n € N(k) andg’ € Stak(x)(k), hence
nx= ngx =y and the first assertion of the lemma is established.

The second assertion follows immediately from the first. O
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4.2. Natural fibrations between compactifications

Natural morphisms between flag varieties induce fibraticts/een Berkovich compactifications
of a building, which we now describe.

(4.2.1)The set of types of parabolic subgroups of G is partially ;rdes follows: given two typds
andt’, we set <t’ if there exist Pz Pag(G)(k?) and P € Pag(G)(k?) with PC P'. The maximal type
corresponds to the trivial parabolic subgroup G and themmahbne is given by Borel subgroups.

Lett andt’ be two types witht <t’. For anyk-scheme S and any typeparabolic subgroup P of
G xk S, there exists a unique typeparabolic subgroup’Pf G xS with PC P.. The map

iis: Par(G)(S) — Par(G)(S)
so defined is functorial with respect to S, hence comes frarmarphism
it : Pag(G) — Pag (G)
which obviously sits in a commutative diagram

Pag(G)2"

%

G g

N

Pag (G)2"

where Pc Pag(G)(k), P € Pag (G)(K), Ap(g) = gPg~! andAp (g) = gP’'g~*. This construction pro-
vides us with a continuous andK3-equivariant map

ntt/ : @t(G> k) - @t/(ea k)
such thatr{’ o 8; = 9.

Remark 4.16 — Since eaclk-rational type dominates the typgi, of minimal parabolic subgroups
of G, we have a continuous, surjective angk{sequivariant map

nttmin : thin(ea k) - @t(e, k)

for eachk-rational typet. Relying on on this observatiom;_. (G,K) is called themaximal compact-
ification of Z(G, k).

(4.2.2)We restrict tok-rational types in this paragraph. We fix twerational typeg andt’ with t <t’
and describe the mag’ : %;(G,k) — %y (G,k).

Lemma 4.17 — For any parabolic subgrou of G, the stratum%;(Qss K) is mapped onto the
stratum%y (Qss k). Moreover, each'trelevant subgroup is t-relevant.

Proof. The first assertion follows from the fact that the morphigim Pag(G) — Par (G) maps the
subscheme Og®) onto the subscheme Q4€). This is immediate in terms of functors: for any
k-scheme S and anyd®Osg(Q)(S), the subgroupf:S(P) N(Q xxS) of G xS contains the parabolic
subgroup P (Q x S), hence is parabolic. We therefore haq?g(P’) € Os¢ (Q)(S), and the map
0sg(Q) — Osq/(Q) is surjective sincet is equivariant and both varieties are homogenous under Q
(Proposition 3.2).

The stabilizer of OsgQ) contains the stabilizer of Og®). If Q is t'-relevant, then Q=
Stals (Ose/ (Q)), hence QC Stalkys; (Osg(Q)) C Q and therefore Q isrelevant. O
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Proposition 4.18 — LetQ be a t-relevant parabolic subgroup @ and writeQss= H1 x H» (quasi-
isogeny), wherél, is the largest semisimple factor @sto which the restriction of'tis trivial.

(i) Let & denote the restriction of t tddy. We have%(Qss k) = Z(H1,k) x %, (H2, k),
Py (Qss k) = B(H1,k), and the mapy is the projection on the first factor.

(i) The preimage of the stratur#; (Qss k) is the union of all strataz; (Pss k), whereP runs over
the set of t-relevant parabolic subgroups®tontained inQ and satisfyind®/rad(Q) = Hy x P,
with P, € Pai(Hz)(k), hence it is homeomorphic t&(Hy, k) x %, (Hz,K).

Proof. (i) Lett; andt; denote the restriction df andt’ respectively to H. By construction, the
restriction oft’ to each almost simple factor of;Hs non-trivial; sincet < t’, this remark holdsa
fortiori for the typet. The schemes Og®), Par(Qss) and Pat(H1) x Pag,(H2) are canonically
isomorphic; similarly, the schemes Q$®Q), Par(Qss) and Pag(Hl) are canonically isomorphic
(Proposition 3.2). Moreover, the morphism

Pax, (H1) x Pa,(Hz) — Pag, (H1)

!

induced byn{’ is obviously the projection on the first factor composeohf;y

We haveZ;(Qss k) = #(H1,K) x %, (Hz,k), B (Qss k) = Z#(H1,K) and the restrictions of the
mapsd; and 9y to Z(H1,k) coincide with the maps;, and 19t5 respectively by construction (cf.
4.1.1). Then the conclusion follows from commutativity bétdiagram

Pag, (H1)2"
Iy
‘@(Hlv k) 7'(?
z9t/1
Paﬁ(Hl)a”.

(i) Given at-relevant parabolic subgroup P of G, the strat#itPss k) is mapped onto the statum
Py (Pss k). The latter coincides with2(Qss k) if and only if Q is the smallest'-relevant parabolic
subgroup of G containing P, which amounts to saying that.@c= Osg (Q). In the isogeny
between H x Hz and Qg, P/rad(Q) corresponds to a parabolic subgroup#P, of H; x Ha, where
P € ParH1)(k) and B € Par(Hz)(K). The condition above amounts to @§€;) = Pag (H1), hence
to PL = Hy by Lemma 4.19 below.

We have therefore
(M) M%u(Qssk) = | B(HLK) x By((P2)ss k)
PePar(Hz) (k)
= PB(Hy,K) x B, (Ha,K).
O

Lemma 4.19 — Lett denote a k-rational type of parabolic subgroup$aind assume thatt is non-
degenerate (i.e., is non-trivial on each almost-simple ponent ofG). For any parabolic subgroup
Q of G, the following conditions are equivalent:

() Osq(Q) = Pak(G) ;
(i) Q =G.
Proof. Consider a maximal split torus S of G contained in Q and leeRote a parabolic subgroup
of G of typet, containing S and osculatory with Q. It follows from Propimsi 3.4 that Os¢Q) and
Pag(G) coincide if and only if
d(rad'(P°P),S) C 9(Q, ).
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Since P and Q are osculatory, Y&e°P) nrad'(Q) = {1} and the latter condition is thus equivalent to
®(rad'(P),S) € @(Lq,9),

where Lo denotes the Levi subgroup of Q containing G&8). Now, since P induces a non-trivial
parabolic subgroup on each almost-simple component ob@ad'(P°?),S) spans a subgroup of
finite index in X' (S) by Lemma 3.15, henc®(L g, S) spans X(S) ®z Q and Q= G. O

4.3. The mixed Bruhat decomposition

Let us choose as abovekaational type of parabolic subgroups, sayand let us consider the
corresponding compactificatio® (G, k) — % (G, k).
Notation. We adopt the following conventions throughout this paapr for any stratunk of
%:(G, k), we let B denote the corresponditgelevant parabolic subgroup of G and set-RR;(Ps).
For any pointx of %;(G, k), we letZ(x) denote the stratum — possibly the buildizgy(G, k) — con-
tainingx and we set G= Stak}(x).
Proposition 4.20 — Let x and y be any points i, (G, k).

(i) There exists a maximal split tor®in G such that x and y lie ir\(S,k).
(i) The groupGx(k) acts transitively on the compactified apartments containin
(iii) Denoting byN the normalizer oSin G, we have the following decomposition:

G(k) = Gx(KN(K)Gy (k).

Let us start with the following statement.

Lemma4.21 — Let A be the compactified apartment associated with a maximal tgplis S and
leté € A.
(i) Forany xe A, we have:G(k) = Gg (K)N(K)Gx(k).
(i) Foranyn € %;(G,k) such that(n)NA is an apartment itf(n), there exists g P57 NGg (K)
such that g7 € A.

Proof of lemma For anyé € %:(G,k), there exists a poinf in the maximal compactification of
%(G,k) such that Stagy (&) C Gg (k) (see Remark 4.16). Therefore it is enough to work with the
maximalcompactification.

(i) Let us denote by H the subse &)N(k)Gx(k). We have to show that B G(k). Let us denote
by M the reductive Levi factor of B¢ determined by S. For any vector chamber D in A, we denote
by UZ (k) the unipotent group generated by all the correspondingipesbot groups. We choose D
so that we have: rddPs ) (k) C Uf (k) C Ps(g)(k).

By definition, H contains k)G (k) and by the lwasawa decompositidsil[72, Prop. 7.3.1 (i)] we
have: Gk) = U (k)N(k)Gx (k). Therefore it remains to show that for amg U} (k), we haveuH C H.
Letu € Up (k) andh € H. We writeu = u;v* with Uy € rad'(Py¢)) (k) andv' € M (k) nUg (k), and
alsoh = hgnh, with h; € G¢(k), n € N(k) andh, € Gy(k). For the factoth;, we can write precisely:
hs = ugmg with us € rad’(Ps(g)) (k) andmg € Mg (k). Then we have:

uh= v usmenhy, = (Usv ug (v) ™) (vimg ) (nhy).

Since radl(Ps)) (k) is normalized by Mk), the first factor s = u;v*ug (vH)~1 of the right hand-side

belongs to G(k). By Bruhat decomposition in i) [BT72, Th. 7.3.4 (i)], for any € ANZ(&)
we havevim; = ("0, with £z € Lg(k), " € N(k)nM(k) and/; € L,(k), where L denotes the
semisimple Levi factor = [M,M]. Therefore, for any € ANZ (), we can write

uh=rglenlznh = (relg)(n'n)(n~1¢,nhy).
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The fixed-point set in A of the bounded subgroug(k) is a non-empty intersection of root half-
spaces, which is a fundamental domain for the action by laoss of §k) "L (k) on A [BT72,
Prop. 7.6.4]. We thus have the freedom to chopseA N Z(&) so thatn~*¢,n fixesx. For such a
choice, we haverg (g € Gg(k), n'n € N(k) andn~1¢,ng, € G(k), as required.

(i) First, any pointn € #(G,k) clearly satisfies the hypothesis in claim (ii). Moreover dttioé
andn belong to the buildingZ(G, k), then the conclusion of the lemma follows from the facts that
there is an apartment containing both of theéBi 2, Th. 7.4.18 (i)] and that the stabilizer éfin
G(k) acts transitively on the apartments containdnfBT72, Cor. 7.4.9]. We henceforth assume that
& andn are not simultaneously contained4(G, k).

If & € A, the conclusion follows from (i): there exigtc G(k) and{ € ANZ(n) such thay.d = n;
then we can writg = ggng; with g; € G¢ (k) NP5, n € Staly ) (A) andg; € G; (k), which provides
n = ge.(n.{). Tofinish the proof, we assume that neitgemor ) belong to the buildingZ(G, k) and
argue by induction on thke-rank of G.

First, we assume that this rank is equal to 1. Singe %(G, k), thenZ(n) = {n} and the hypoth-
esis tha®(n) NAis an apartment itZ(n) simply means thag € A, so there is nothing to do.

We assume now that tHerank of G is> 2 and we denote by’lthe semisimple Levi factor of
Ps(;) determined by S. Then there is a pofhtn the closure o&(n) N A such that the stabilizer of

{ in L'(k) fixes &. To see this, recall that’A= ANZ(n) is canonically isomorphic to the quotient
of A by some linear subspace F and observe that, since we witikive maximal compactification,
the projectionp: A — A’ extends continuously to a ma#p— A’; indeed, the prefan on A deduced
from the fan.#/, on A’ consists of unions of cones occuring.#, and thusp extends to a map

betweenA — A2 andA/ — A7 2. By the induction hypothesis, we can figd= L} (k) such that
g.n € £(n)NA, and the conclusion follows from this, sinc(% k) C Gg (k). O

Here is a proof in the case when the valuation is discrete. \Wetion it because it is more
geometric (using galleries).

Second proof of lemma (discrete valuatian)VMe argue by induction on the minimal lengttof a
gallery inZ(n) connecting=(n)NA to n (by definition, such a gallery is a sequengea,, ... am of
consecutively adjacent alcoves3iin ), with a; containing a codimension one faceAm 2(n) and

n € am). If £ =0, we can simply takg = 1. We now assume thét> 1 and choose a corresponding
galleryas,ap,...a, as above. This codimension one facaiim A defines a wall in the Bruhat-Tits
building Z(n), which itself defines a pair of opposite affine roots, $ayr }, in the root system of
(Ps(n)/Rs(n))(K) with respect to £&). This defines a wall in the apartment A and at least one of
the two closed root half-spaces Afbounded by this wall, say the one defined dy containsé .

We therefore have kK) C Ps,)(K) N Gg (k). Moreover, using Bruhat-Tits theory in the boundary
stratumZ (&), there exists an elemente U, (k) — {1} such thatu.a; C ANZ(&) Applying u to the
minimal galleryas, as, ... ay and forgetting the first alcove, we see that the pointcan be connected
to ANZ(n) by a gallery of length< ¢ — 1, so that we can apply our induction hypothesis to find an
elementh € Ps(,;) N Gg¢ (k) such thahu.n € ANZ(n). Then we can finally takg = hu. 0

We can now proceed to the proof of the proposition.

Proof. As a preliminary, we show that E and%’ are strata in the compactificatio#; (G, k), then
there exists an apartment A of the buildisg( G, k) such thatA N < is an apartment of the building
> andA N’ is an apartment af’. Indeed, let P and R: be the parabolic subgroup of G stabilizing
> andZ’, respectively; it is enough to consider a maximal split $o8icontained in PN Ps.. The
existence of such a maximal split torus (sBei91, 20.7]) corresponds to the fact that any two facets
in the spherical building of P are contained in an apartm&he image, say Sand S, of S by the
canonical projections : Ps — Ps /Ry and s : P — Ps/ /Ry, respectively, is then a maximal split
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torus of the semisimple quotient FRs (the semsimple quotientsP' Ry, respectively) and we have:
A(S,K)NZ = A(Ss,K) (A(S k)N = A(Sy/, k), respectively).

(i) By the preliminary claim, there exists an apartment Atstitat A N Z(x) and A N Z(y) are
apartments irE(x) and Z(y), respectively. Let us pick an auxiliary poiate ANZ(x). By Lemma
4.21 withé = zandn =y, we can findg € P5(y) N G,(k) such thatg.y € ANZ(y) and by the same
lemma with = g.y andn = g.xwe can finch € P5;) NGgy(k) such thahgx e ANZ(n). We finally
have:x,y € g~th~1A.

(ii) The pointx lies in the closuré\ of some apartment £ which itself corresponds to a maximal
split torus $ in G. Let A be an arbitrary apartment such tlxat A; it corresponds to a maximal
split torus S in G. Denoting by, the canonical maps — Py /Ry, we find thatrg (S) is a
maximal split torus of B /Rs(x - It follows from classical Bruhat-Tits theorB[l 72, Cor. 7.4.9] that
Gx(k) acts transitively on the apartments of the strafix) containingx, so there existg € Gy(K)
such thatrg ) (gSg™1) = T5(x) (So), meaning that both tori SandgSg ! lie in the same algebraic
group $ x Ry(y). The group Ry (k) acts transitively (by conjugation) on the maxinkaplit tori of
So % Ry(x), S0 we can findi € R5 4 (k) such tha{ug)S(ug) ~* = Sp. It remains to note thatg € Gy(k)
since Ry (k) fixesZ(x) pointwise.

(iii) Let g € G(k). By (i), there exists a compactified apartméntontainingx andy and a com-
pactified apartmen@’ containingg-y andx. By (i), we can find an elemerit € Gy(k) such that
hA = A’. Applying Corollary 4.15 to the pointg andh~1g-yin A, we get an element in N(k)
satisfyingn—th~1g-y =y, and therefore

g = hn(n"*h~1g) € Gy(K)N(K)Gy (k).
O

Remark 4.22 — Geometrically, the proof of (ii) can be described as follo Fix a reference apart-
ment Ay whose closure i, (G,k) containsx, and pick an arbitrary apartment A with the same
property. First, we foldA N Z(x) onto Ap N Z(X) by using actions of root group elements from the
stabilizer ofx in the Levi factor of R attached toAgN Z(x) (this transitivity property for actions
of parahoric subgroups is, so to speak, "Bruhat-Tits th@ory stratum at infinity"). Then we use
elements of the unipotent radical of B fold A onto Ay.

APPENDIX A: ON FAITHFULLY FLAT DESCENT IN BERKOVICH GEOMETRY

In this first appendix, we develop the formalism of faithfullat descent as introduced by
Grothendieck $GAL, VIII], in the context of Berkovich analytic geometry. Sortexhnicalities in
connection with the Banach module or Banach algebra stestue consider have to be taken into
account. English references for the classical case frombadic geometry areNat79] for affine
schemes andgLR90] in general.

(A.1) Let k denote a non-Archimedean field and leX# (A) be ak-affinoid space. For any non-
Archimedean extension K, the preimage of &-affinoid domain DC X under the canonical projec-
tion Pl /it Xk = X&kK — X is a K-affinoid domain in X% since the functor ’E@k(D) is easily seen

to be represented by the pMD®kK7¢D®idK). The converse assertion holds if the extensighk K
is affinoid i.e., if K is ak-affinoid algebra, and this appendix is devoted to the prédtiie fact.
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Proposition A.1— Let X be a k-affinoid space and I&t/k be an affinoid extension. A sub&eof X
is a k-affinoid domain if and only if the subsmp/lk(D) of Xk is aK-affinoid domain.

Lemma A.2— LetK/k be a non-Archimedean extension. The following condittwasquivalent:

() the extension is affinoid;
(i) there exist real positive numberg,r..,ry, linearly independent ifR-o/|k*|) ®z Q and such
that the fieldK is a finite extension of;k
(iii) there exists a tower of non-Archimedean extensions

K=K(n) >K(nh-1)>...02K(1) DK{0} =k
such thatk (i) /K (i — 1) is finite orK (i) = K(i — 1), for somer € R-o— |K(i —1)*|2.

Proof. The implications (ii)= (iii) = (i) are obvious since each extensiofi KK (i — 1) is affinoid.
The implication (i)=- (ii) is established inPuc0§]. O

(A.2) It seems adequate to begin by a brief review of faithfully descent in algebraic geometry (see
also [SGA1, V] and [BLR90, §6])).

Faithfully flat descent in algebraic geometij/A is a ring, we letMod (A ) denote the category of
A-modules. Any ring homomorphism: A — A’ defines a functor

€*:Mod(A) — Mod(A"), M — £*(M) =M @ A.
The content of Grothendieck’s faithfully flat descent theisrthat the categorivod(A) can be re-
covered from the categorylod (A’) if the homomorphisie is faithfully flat, which is to say that
the functore* is exact — i.e., it commutes with taking kernels and imagesné- faithful — i.e.,
M ®a A’ =0 if and only if M= 0.
Consider the natural diagram

L P12

_—
A—S= AT A QAA PR A @A A @p A,

P2 P23

where the A-linear maps are definedjpya) =a® 1, p2(a) = 1®aand
pr2(a®b) =ab® 1, p;s(@a®b)=1®axb, pi(a®b)=a®l®b,
so that
P12P1 = P13P1 = O, P12P2 = P23P1 =2 and pzapz = pizPz = 0,
where
q(a)=a®lel gpa=1®arl, andg(a) =11l®a

A descent daturon an A-module M is an isomorphism of ‘& A’-modulesd : p;M = piM
satisfying the following cocyle condition:

P23(9) © P12(3) = P13(9).
We denote byMod (A')gesc the category whose objects are pdi, ) consisting of an Amodule
equipped with a descent datum and in which the morphismseagtwwvo objectgM, &) and(N, d’)
are the A-linear maps M— N compatible with descent data (in an obvious way). For anpddule

M, the canonical isomorphisrp;(e*M) —— p3(¢*M) provides a descent datudy on the A-
modulee*(M) and the A-linear mape*(¢) : €M — £*N induced by an A-linear map : M — N
is automatically compatible with the descent d&{a dy. Hence we get a functa™ : Mod (A) —
Mod (A")gesc M — ("M, v ).

Theorem A.3— The functore* is an equivalence of categories. Moreover there existsq@punique
isomorphism) at most one descent datum on a givenddule.
This theorem follows readily from the next two statements:
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(i) For any A-module M, the sequence

&m dwm

0 M e*M P5(£*M),

wheregy = idy ® € andgy = idy ® p2 — dv o (idw ® p1), is exact.
(i) For any A-module M equipped with a descent datdiet Mg be the kernel of the map

b5 =idy © p2— o (idy @ p1) : M — p3M;

then the canonical mapg'Mg = Mg®a A’ — M, which is automatically compatible with the descent
datad anddy,, is an isomorphism.

First step— We begin by assuming that the homomorphisradmits a sectiorw. Defining the
mapt:A’®a A’ — A’ by T(a® b) = o(a)b and settingoy = idy ® 0 and Ty = idy ® T, we have
om o &v = idy and Ty o ¢ = ide-m — Em © Om, hence the sequence (i) is exact.

The descent datudinduces an isomorphisat(d) between the Amodulest*(p;M) = £*(o*M)
and7*(p5sM) = M. Thanks to the cocycle condition satisfied dythis isomorphism is compatible
with the descent datd and ds+nm; in view of (i), it induces therefore an A-module isomorphis
betweeno*M and My. Hence(M, d) is canonically isomorphic tés*Mg, dv,) and descent data on
A’-modules are therefore unique up to a unique isomorphism.

Second step— We now rely on faithful flatness of ‘Aover A to deduce the general case from
the first step. Indeed, the first assertion is true if and dnilgd sequence is exact after applyiag
(“assertione*(i)”) whereas the second assertion is true if and only if theanical magE*(€*Mg) —
£*M is an isomorphism (“assertiogi*(ii)”"). Thanks to the associativity of tensor product andtie
canonical identification Mo, A" = M for any A'-module M, assertiore*(i) is exactly assertion (i)
if we consider the morphism, : A’ — A’ ®a A’ and the A-module&*M instead of the morphism
€:A — A’ and the A-module M. By the same argumegit(d) is a descent datum on th€ @, A’-
modulep;M’ = £*(£*M) with respect to the morphisim and, since*Mg is the kernel oE*(¢5) =
9.+ (5), assertiore*(ii) is precisely assertion (i) if we consider the morphigmand the AxaA'-
modulep;M instead of the the morphismand the A-module M. But assertions* (i) and *(ii) are
true since the morphism; has an obvious section; assertions (i) and (ii) are thezefore and the
theorem is proved. O

Remark A.4— 1. It is worth recalling that faithfully flat descent inclesl Galois descent as a special
case. Indeed, if [K is a finite Galois extension with group G, the map

Lokl —— r'LL a®b (g(a)b)g
ge

is by definition an isomorphism of K-algebras and, if M is amiodule,

— an L®k L-isomorphismd : p;M = p5M is nothing but a collectioidg)gec of K-automorphisms
of M such thatdy(ax) = g(a)Jdy(x) foranyac L, ge G andx € M;

— 0 is a descent datum, i.e., it satisfies the cocycle conditf@md only if &n = &y o &, for any
g,heG.

In other words, a descent datum on an L-module M is nothin@buatction of G on M via semilin-
ear automorphisms. Moreoverdf= (dy)qcc is a descent datum on M, then Kég) is the K-module
consisting of all elementsin M such thatdy(x) = x for anyg € G.

2. Faithfully flat descent applies equally well to algebrasdeed, the functoe : Mod(A) —
Mod (A’)gesc Obviously induces an equivalence between the subcatsgdgéA ) andAlg (A’)gescif
we restrict ourselves to descent data which are isomorphigi’ @ A’-algebras.

(A.3) non-Archimedean field extensiose consider now a non-Archimedean extensiotk Knd we
adapt the algebraic arguments above to the functor

BMod (k) — BMod (K), M — M&K.
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Working with completed tensor products instead of standandor products requires only minor
modifications as soon as one knows that this functor is exa¢he subcategorModst(k); this
nontrivial fact is due to L. Grusordru66].

Lemma A.5— LetK/k be a non-Archimedean extension.

(i) The functor
£* : BMod (k) — BMod (K), M — M&yK
transforms strict exact sequences of k-modules into &xatt sequences KFmodules.
(i) For any Banach k-modulel, the canonical homomorphist — £*M is an isometric injection.

In particular, the functore* is faithful.
(i) A sequence of Banach k-modules is strict and exact if andibilys strict and exact after

applyinge*.
Proof. (i) This is proved by Gruson ifdru66, Sect. 3] and the argument goes as follows.
Let 0O M/ "M — M 0 be a short exact and strict sequence of Barlach

modules; modifying norms in their equivalence classesgéessary, we can assume that bo#mdv
are isometric. The sequence

~ ®id ~ ®id ~
0 —>= M'&N —> M@N ~—> M"@N — 0

is obviously exact and isometric if N is a finite dimensionanchk-module, since N is then the
direct sum of a finite number of copies kaf Having proved that any Banaéhmodule N is the limit
of a direct systeniN,) of finite dimensional Banack-modules, one gets a short exact and isometric
sequence

- uRidn, voidn,

0—— M'®N, — M&kN, —= M"@N, —= 0

of direct systems of Banadkkmodules. In this situation, taking limits preserves emast as well
as norms and we conclude from the commutativity of complétedor products with limits that the
sequence

~ ®id - ®id ~
0 —>= M'&N —> ME@N ~——> M"@N — 0
is exact and isometric.

(i) Pick a direct system M of finite dimensional Banack-modules with limit M. Since the
assertion is obvious as long as M is decomposable, we gebtaretsc exact sequence of direct sys-
tems 0— M, — M,®¢K and, taking limits, we conclude that the canonical homorhnism
M — M&K is an isometric injection.

(i) If a boundedk-linear mapu : M — N between Banack-modules is strict, then the bounded

K-linear mapux = u®kK is strict thanks to the exactness property of the functogk on BModS'(k).
Conversely, consider the commutative diagram

0 — M/ker(u) — (M/ker(u)) @K = (M@kK) /ker(uk) ,

u lUK

0 N N&@KK

in which rows are exact and isometric; if the mapis strict, then so isi and the conclusion follow
from (i) and (ii). 0

The definition of a descent datum is formally the same as imldpebraic situation.

Proposition A.6— LetK /k be an extension of non-Archimedean fields. The functor
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is an equivalence of categories.
Proof. By the same general arguments as in the proof of TheoremtteFroposition follows from
the next two assertions.

(i) For any Banaclk-module M, the sequence

&M dwm

(S 0 M &M psM

is strict and exact.
(i) For any K-module M equipped with a descent datdiet Mg be the kernel of the map

Ps=idy @ p2— 0o (idu®p1) : M — p;M.

Then the canonical magMg = M@K — M, which is automatically compatible with the descent
datad anddw,, is a (strict) isomorphism.

As in the algebraic situation above, these assertionswas soon asis any morphism of Banach
k-algebras admitting a section; they are therefore trueefsmbstitutes the field extensien k — K
and the Banack-module M (the Banach K-module with descent dat{ivh d), respectively) by the
morphismp; : K — K&K and the Banach K-modulg*M (the Banach KK-module with descent
datum(p;M, p;(9)), respectively). Thanks to the associativity of completeusor product and to
the canonical identification MxK = M for any Banach K-module M, the new sequences relative to
p1: K — K&K are exactly the ones obtained by applying the funetoto the former sequences,
relative toe : k — K. Therefore (i) and (ii) follow from Lemma A.5. O

The following slightly more precise result will be usefultire study of maps between compactifi-
cations.

Proposition A.7— Let K/k be an extension of non-Archimedean fields andMebe a Banach
K-module equipped with a descent datdm If J is an isometry, then the canonical isomorphism
Ker(¢s)@kK-=M is an isometry.

Proof. If Ais a Banach ring and if we IéBMod(A) denote the subcategory BMod(A) in which
morphisms are required to be contractions (i.e., to havam@most one), then a morphism between
two Banach A-modules is an isometric isomorphism if and dhlyis an isomorphism in the cat-
egoryBMod1(A). According to this observation, our assertion will follovorfn descent theory for

the categorieBMod1(k) andBMod;(K) instead ofBMod (k) andBMod (K). Since the canonical
morphismse, p1, P2, P12, P23 and pi3 are contractions, we can apply the same arguments as in the
proposition above to deduce that, indeed, the functatefines an equivalence between the categories
BMod (k) andBMod; (K). O

Finally, if the non-Archimedean extensioryKis affinoid, then affinoid algebras behave well under
descent.

Proposition A.8— LetK/k be an affinoid extension. A Banach k-algeBr#s k-affinoid if and only
if the BanachK-algebraA®K is K-affinoid.

Proof. When K=k with r € R.o— |k*|2, this statement is§er90, Corollary 2.1.8]. The proof given
there works more generally for any affinoid extensiofkince it has been noticed that K contains a
dense and finitely generat&esubalgebra. O

Corollary A.9— Let K/k be a non-Archimedean extension. The functor from Banaalgdbras
to BanachK-algebras equipped with descent data is an equivalencetefjodes. Moreover, if the
extension is affinoid, this functor maps k-affinoid algelrat K-affinoid algebras.

Proof. By the same argument as in Remark A.4, it follows from Prijwos A.6 that a Banach
K-algebra A with a descent datum comes from a Ban&ehlgebra A. Moreover, in view of the
previous proposition, A is B-affinoid algebra if A is a K-affinoid algebra and if the extensioryiK
is affinoid. 0



68

We can now go back to our main technical descent result.

Proof of Proposition A.1Let D be a subset of X such that B prg/lk(D) is a K-affinoid domain in

X’ = X&¢K and denote byAp, ¢’) a pair representing the functopF Aff (K) — Sets Denoting as
above byp; andp, the two canonical maps from K tod#K as well as the corresponding projections
X" xx X' = X@kK&KK — X/,

Homy s, « (BFA, B) = Homg (A, BW) (ie{1,2})

for any Banach K-algebra A and any Banacly-algebra B, where B stands for B seen as a
K-algebra via the mag;. Hence the paifp;Ap, pf (¢v:) represents the functorp_E(D,). Since

P10 Pl /k = P20 Pl i, We havep~1(D’) = p,*(D’) and thus there exists an isomorphism of Banach
K&kK-algebras
5: PiAY —> PsAD

such thatd o p;(¢p') = p5(do) o da. If we let as abovey;, g and gz denote the three canonical
projections from Xxx X’ xx X’ onto X, theng; %(D’) = ¢, *(D’) = g3 *(D’) and it follows thaté
satisfies the cocyle condition defining descent data. Hérisea descent datum onpA One checks
similarly that the magp : A — Ay is compatible with descent data.

Corollary 9 applies here, and thus we gek-affinoid algebra A together with a boundek-
homomorphismp : A — Ap which induce Ay and¢p after base-change to K. It also follows from
this corollary that, for any affinoi#-algebra B, a boundddmorphism¢ : A — B factors throughpp
if and only if the morphisng* (¢ ) factors througte™ (¢p) = ¢p; since this last condition is equivalent
to the inclusion of pI/lk(im(ad))) =im(3(e*(¢))) into prg/lk(D) = D’, we deduce from the surjectivity
of the map pg , that¢ factors throughpp if and only if im(2¢) is contained in D, i.e., if and only if
¢ € Fp(B). Hence the paifAp, ¢p) represents the functopF-which completes the proof. O

(A.4) We conclude this section with a technical result which feleeasily from Proposition A.7. The
norm of a Banaclk-algebra A is said to baniversally multiplicativeif, for any non-Archimedean
extension Kk, the norm of the Banach K-algebrazAK is multiplicative.

Lemma A.10— Let K /k be a finite Galois extension and ketbe a Banachkalgebra equipped with
a descent daturd. We denote b the Banach k-algebra such th@d’, 8) ~ (A @k K, ).

(i) If the norm ofA’ is multiplicative, then the descent datum is an isometry.
(i) If the norm ofA’ is universally multiplicative, then the norm Afis universally multiplicative.

Proof. (i) By definition, the descent daturd is an isomorphism of Banack @y k'-algebras
p;A’ = psA’ satisfying the natural cocycle condition, whegseand p, are the canonical homomor-
phismsk’ — K @y K. Sincek' /k is a finite Galois extensiork’ @k k' is isometric to the product of a
(K" : k] copies ofk’ and thus the Banadtralgebrap; A’ = A’ @ p, (K ® K') is isometric to the product
of [K' : k] copies of A. The same argument applies alsqt@\’.

Now, observe that the norm of Aoincides with the spectral norm since it is multiplicativéhis
remains true for the product of a finite number of copies bfiface the induced norm is power-
multiplicative and therefore the norms on the Ban&chlgebrasp;A’ and p;A’ coincide with the
spectral norms. Since any homomorphism of Banach algebvesrs the spectral (semi-)norms,
isomorphisms are isometries with respect to the specteshi(dnorms and we conclude that our
descent datum is an isometry.

(i) By construction, we have a canonical isometric mongphism A< A’ and saying that the
descent datum is isometric amounts to saying that the intisoenorphism Az k' — A’ is an isom-
etry.

Consider now a non-Archimedean extensiofki&nd pick a non-Archimedean field Kxtending
both k' and K. By assumption, the norm on'@cK’ is multiplicative. Thanks to the canonical
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isometric monomorphismA®KK)&kK' ~ A&yK/, it suffices to show that the norm of &K’ is
multiplicative to deduce that the norm ofAK is multiplicative. Since &K' is isometric to(A ®x
k’)@LK’, the conclusion follows from the isometry@ k' ~ A’ and our initial assumption. O

APPENDIX B: ON FANS

This second appendix deals with the technicalities usefabmpactify vector spaces by means of
the notion of a fan. We use it in the case when the fan comeslfietheory, that is when the ambient
space is the Coxeter complex of a spherical root system, ichwhots are seen as linear forms.

(B.1) Let M be a free abelian group of finite rank. We equip the abegjieoup/A\ = Homap (M, R-)
with the structure of a real vector space by seting = ¢? for anyA € R, ¢ € A.

A (rational) polyhedral cones a subset of\ defined by a finite number of inequalitigis< 1 with
¢ € M. A faceof a polyhedral cone C is the intersection of C with a hyperplgp = 1}, where¢ is
an element of M such thatc < 1. The cone C istrictly convexf it contains no line.

For each strictly convex polyhedral cone CAp
Sc={¢peM|p(u)<1lforallueC}

is a semigroup in M which spans M as a group and which is finigelgerated Gordan’s Lemma
Besides,

C={ueA|¢(u) <1 forall € Sc}.

If (¢i)iel is a set of generators of the semigroup 8ach face F of C can be described by equalities
¢i = L withi running over a subset of I. Since & finitely generated, the set of faces of C is therefore
finite.

Remark B.1— Let C be a strictly convex polyhedral cone and consider @ Faof C. If F=£ C, there
exists by definition an element of Sc such thatgr = 1 and¢c_r < 1. Moreover, for any € M
whose restriction to F is 1, one can find a natural nunmsrch thatng + ¢)r < 1 on C: indeed, on
can find such a number so thah + ¢ is not greater than 1 on any given ray (a one dimensional face)
of C and, since the set of rays is finite, there exists an umifar

(B.2) A fanon A is a finite family.# of polyhedral cones satisfying the following conditions:

— each cone is strictly convex;

— the union of all these cones covéxs

— for each cones ' €.%,CNC'isafaceof Cand C
— each face of a cone €.% belongs to%.

To any fan.# on the vector spacé corresponds a compactiﬁcatid_ln”oZ of A which we now
describe.

Letting Mon denote the category of unitary monoids, ttamonical compactificatioof a polyhe-
dral cone C is defined as the set

C =Homwyon (Sc, [0,1])
of all morphisms of unitary monoidscS— [0, 1], equipped with the coarsest topology for which
each evaluation ma@ — [0,1], u+ ¢ (u), is continuous, wherg € Sc. This topological space is
compact since it can be canonically identified with a closgaspace of the product spaj@1]Sc.
The canonical map
C—C, u— (¢ (u)
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identifies C homeomorphically with the open subset ggniSc,]0,1]) of Hompon (Sc, [0,1]) (that
this subset is open follows from the finite generation gf.S

Lemma B.2— LetC be a strictly convex polyhedral cone aRa face ofC.

(i) There exists a unique continuous map- C extending the inclusiof — C. This map is a
homeomorphism betwe&mand the closure of in C.

(ii) Let Sk denote the subset & consisting of those elemengssuch that¢r = 1 and let(F)
denote the linear subspace Afgenerated by. The set

Cer={uecC|¢(u)>0 forall ¢ ¢ SEand¢(u)=0forall ¢ € Sc—Sg}
is canonically identified with a strictly convex polyhedcaine in the vector space

A/{F) = Homyon (SE, R=0).
(iii) If we let.7* denote the set of faces Gf

C=|] Cr

Fe7*
(iv) For any coneC € .# and any face§, F of C,
F. ifFCF

5 _
CrnF = { @ otherwise

in C.
Proof. (i) To the inclusion K= C corresponds an inclusione$ Sg, hence a natural continuous map

extending the inclusion of E Homyon (Sr,]0,1]) into C= Homuon (Sc,]0,1]). If the latter is strict,

injectivity of i follows from Remark B.1: with the notation introduced thefei, v € F have the same
restriction to g, theng (u)"Y(u) = ¢ (v)"(v) and thusp(u) = Y(v) sinced (u) = $(v) = 1.

The topological spaces andC being compact, the continuous injectiois a homeomorphism
onto its image andF) is the closure of(F) in C since F is dense iR.

(i) We have

(F)={ueA|p(u)=1 forall ¢ € S5}
and the canonical mafy = Homyon (Sc,R~o) — HomMon(SE,R>o) deduced from the inclusion of
Sk into S induces a linear isomorphism between the vector spA¢és) and Honyon (S5, R-0).

If N denotes the subgroup of M consisting of all elemegtsuch that¢r = 1 and if W=
Homab (N, R-0), then N is free of finite rank andfSis canonically isomorphic to the semigroup
in N associated with the strictly convex polyhedral cqii€) of W, wherep denotes the canonical
projection ofA on W. Thus $ is finitely generated by Gordan’sLemma. Besides, it follinwsedi-
ately from the definition of Sthat it contains the sum of two elements efiSand only if it contains
both summands. One deduces from this last property thaanfou € Homyoen (SE,]0, 1)), the mapu™
from S to [0, 1] defined by

~ [ o(u) if¢peSk
o(0) = { 0 otherwsige
is a morphism of unitary monoids, hence defines a point gn @/e thus get a homeomorphism
between € and the polyhedral cone Haggn (Sg,]0,1]) in A/(F).

(iii) Let us consider a point in C. We lets denote the set of alh € Sc such thatp (u) >0 and F
the subset of C defined by the conditiohis= 1, ¢ € 5. Then Fis a face of C ani C SE. If we pick
#1,..., ¢ in Sc such that @ {¢; = 1} are the different faces of codimension one of C containing F,
then:

— for any ¢ € Sk, there exists an integer> 1 such thah¢ belongs tadN¢; + ...+ N¢y;
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— for anyi € {1,...,r}, there exists an elemeugt in < and an integen > 1 such thain¢ =
ng1+...nc ¢, withng,...,n, € Nandn; > 1.

Since the sum of two elements of Helongs tax if and only if both summands belong ik the
last property implie®y, ..., ¢, € = and then the identitf = Sk follows from the first one.

Finally, the pointu belongs to the conegCand thusC = | |g. ». Cr.

(iv) We have Fc F' if and only if & € SE. If SR ¢ SE, there exist® € SE which does not belong
to § and therefore ENF = 2.

If S§ C S, then

_ —0f £ and f £
CenF = {ue HOMyon (Sc. [0, 1) ' $(u)=0 or;?uy)qbflsgfgn y¢¢<L2 gg Oforany¢ e Sc }
¢(u) =0forany¢ ¢ Sk }

— {UEHomAb(SFU[O’l]) ‘ ¢(u) > 0 for any¢ € SE

-/
- F>
for Sg is the subgroup of M generated by Snd—SE. O

Consider now a far¥¥ on the vector spacA. We deduce from the first assertion in the lemma
above that the compactified congS} #. glue together to define a compact topological spﬁfe

containing/\ as a dense open subset. Indeed, it is enough to d&finas the quotient of the compact
topological space |- C by the following equivalence relation: two points= C andy € C’ are
equivalent if and only if there exists a coné €.% contained in C and ‘Cas well as a point € C”
mapped tox andy, respectively, under the canonical injectiong3dfinto C andC/, respectively. The
guotient spac@” is compact since we have glued together a finite number of aotrgpaces along
closed subspaces.

Each compactified con€ embeds canonically intK‘i and, since C= C'NC for any cones
C, C' € .7 satisfying C C C, the natural map|c. » C— A factors through the canonical projection

lce.#z C — A and induces therefore a homeomorphism betweand a dense open subseiof .
Proposition B.3— Let us consider a far#% on the vector spacA.

(i) For any coneC € .Z, there exists a canonical homeomorphismbitween the vector space
N\/{(C) and a locally closed subs&t of A7,
The setZc of cones in# containingC induces a fan on the vector spatg(C) and the map9
extends to a homeomorphism between the associated cofigagictn of A /(C) and the closure
of Zcin A

(i) The family{Zc}cc# is a stratification ofA” into locally closed subspaces:

N =|]|Z% and = || Zc.
Ces CeF
ccc

(i) The action ofA on itself by translations extends to an action/\obn N by homeomorphisms
stabilizing each stratum and, via the identificatién: i\ /(C) =3¢, the action induced on the
stratumZX¢ is the action ofA on A/(C) by translations.

(iv) A sequencép,) of points in/A\ converges to a point *” belonging to the straturiic if and
only if the following two conditions hold:

e almost all points g lie in the union of the cone8’ € .# containingC;
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e for any cone Ce %#c and any elemen$ of Sc, the sequencé¢(p,)) converges in
[0,+00] and

lim¢(pn) =0<= ¢ ¢ SE.

Proof. (i) For any cone C in#Z, the quotient vector spack/(C) is canonically isomorphic to
Homap (M©,R-0), where M* denotes the subgroup of M consisting in elemensatisfyinggc = 1.
For any cone Cin .# containing C, the semigroupcSYM¢ = 88 is finitely generated and spans
MC. If we let.%c denote the set of all coneg €. containing C ang the canonical projection af
onto/A/(C), it follows that the polyhedral cong¥C’) = Homon (SS,]0,1]), C' € Fc, define a fan
on the vector spac&/(C).

For any cone Cc .%, extension by zero onds— 88 provides us with a map

. = =7
i$ : p(C") = Homyon (SE,,]0,1]) — Homyion (S, [0,1]) =C' c A .
This map is a homeomorphism onto the locally closed subspace

Ce={ueC | ¢(u)=0foranyp € S —SE and¢ (u) > 0 for any¢p € S5 } .
Moreover, for any face Cof C’' containing C, & C Sc» and the natural diagram

C

p(C’) = Homyon(SE,10, 1)) —=— Homyon(Se,[0.1)) = T

T T

p(C”) = Hornv|0n (88”7]07 1]) IC—> HOITMOH (SC”> [Oa 1]) = @

c

is commutative. Therefore there exists a unique iftdpom A/(C) to A7 whose restriction to each
conep(C'), C € Fc, coincides with&,. LetZc denote the union of all cones.@vith C’ € Fc.
Thanks to the gluing conditions (iv) of Lemma B.2, the nijis a homeomorphism between the

vector spacé\/(C) and the subspaca: of A7 Since
CL ifccc

T
2cnC _{ @ otherwise

is a locally closed subspace 6f for any cone € ¢ .%, 3¢ is a locally closed subspace af .
Finally, if C’ is a cone inZc, the closure of € in AN is canonically homeomorphic to the canoni-

cal compactification of this cone by lemma 2, (i) and it folitliat the maiF : A /(C) — 3¢ C A ex-
tends to a homeomorphism between the compactificatidyy ¢€) coming from the faq p(C') } c'c.2c
and the closure df¢ in A

(i) Given two cones CC' in .# such thatc NZc # @, we can pick” andl" in.Z withCc T,
C clMandlfcnry # @. Since

= o Mo ifC'crl
ror ’_{ o otherwise

(Lemma B.2, (iv)), we deduce’@ I, hencel c Nl # @ and, finally, C = C. Thus the locally
closed subspaces;, C € .#, are pairwise disjoint.
Moreover, for any cones @C' € .# with Cc C/,

CC/ — U /C//

C'eZ
cccCc'ccC
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and therefore

Z_C == U C_/ == U /C// == U ZC//.

CeF cC,CeF Cc'eZ
ccc ccc'cc ccc

(iii) Let us pick a vectow € A and consider the unique map N fulfilling the following
requirement: for any cone € .7, t,(3c) C 2c and the magi®)~tot,0i®: A/(C) — A/(C) is the
translation by the vectov. Given a cone G .%#, note that the union of all strata-, C' C C, is
naturally homeomorphic to Hogan (Sc,R>0). This observation allows us to make the restriction of
t, to C = Homyon (Sc, [0,1]) explicit: for any pointu € C, t,(u) is the point ofA” corresponding to
the morphism of unitary monoids

Sc — Rxo, ¢ = ¢ (V)¢ (u).
Clearly, the restriction of the map to each compactified con@ is continuous and therefore this
map is continuous. The mapx A~ — A, (v,u) — t,(u) providesA” with an action ofA by

homeomorphisms; this action stabilizes each stratum, achwhinduces the natural action &f by
translation via the identificatiori§ : A/(C) ~ Z¢.

(iv) We consider a sequengen) of points inA.

Let us first assume that this sequence converges to a pd]inﬁy belonging to the straturBic.
We consider a cone’@& .# containing C and an elemedtin Sc.

There is at least one coné’ @ .%¢ containing infinitely manyp,, sinceUCHE%W contains the
stratumZc. We pick one of them. For any € Scr,

lim ¢(pa) = Y(p)

PreC”
andy(p) = 0 if and only if ¢ ¢ SS,. Since C is a common face of the conésa@d C/, there exists
an elementp Sg,, such thatp + (¢ belongs to . Moreover,¢ + ) € 58, ifand only if ¢ € Sg,, as
(¢ + ) c = §c- Sincey(p) > 0, it follows that

lim ¢(pn) = (p),

pneC”
and¢(p) =0ifand only if¢ ¢ SS.

Let us now assume that the sequefyg@ is eventually contained in the union of all conéssC#
containing C and that, for any’' € .%¢ and any¢ € Sc, the sequencép (pn)) converges in0, 4o,
with lim ¢ (p,) = 0 if and only if ¢ € So — SK..

Given any cone Ce .%¢ containing an infinite number of terms of the sequefigg, we define a
mappc : So — [0, 1] by settingg (pc) = limp,cc ¢ (pn) for all ¢ € Sg. This is obviously a morphism
of unitary monoids, hence a point @, and it follows from our assumption that belongs ta>c.

If C" and C' are two cones in%c, both of them containing infinitely mang,, then CNC" is a

cone in%c and obviouslypc = pcncr = per. Thus the sequendg,) converges in to a point of
2c. a

(B.3) More generally, property (iii) in the proposition aboveoals us to compactify any affine space
A under the vector spack. Let ~ denote the usual equivalence relation or A: (a,v) ~ (&,V) if
a+v=a +V. The structural map A A — A, (a,v) — a+Vvinduces a homeomorphism between

the quotient space AN/ ~ and A. Embedding A A in A x K‘g, one checks that the closure of the
equivalence relatior- is an equivalence relatior’ which we can easily make explicit:

(a,x) ~' (&,y) if and only if x andy are contained in the same stratlig of N
and there exists somes A such thaty = t,(x) anda +v € a+ (C).
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Then we defin@&” to be the quotient topological spacexA\” / ~.

Proposition B.4— LetA be an affine space under the vector spAcand let.# be a fan on\.

(i) The topological spac@ch is compact and the canonical m#p— A7 isa homeomorphism

onto a dense open subsetf .
(i) For any pomt ac A, the map\ — A, vi— a+ Vv extends uniquely to a homeomorphism between

A7 andA”
(iii) For any vector \e A\, the translationA — A, a— a- v extends uniquely to an automorphism

of the topological spacK’g
(iv) The topological spacﬁy is stratified into affine spaces:

= || A/C)
Ce7

Proof. (i) and (ii) The topological spacﬁy is Hausdorff because the equivalence relatignis
closed. Since the equivalence relatisron A x A is closed as well, A A is invariant under’ and

its image inA” is thus a dense open subset.

Let us pick a poinain A and check that the canonical prOJectlpn AxAN” A7 induces a
homeomorphism betwee[la} « N andA” . Since{a} x A s compact and” |s Hausdorff, the
continuous map : {a} x AT A7 s closed its image is a closed subsefof containing the
dense open subsp(A x N\), thusp({a} x A ) A7 and therefordd” is compact. Finally, given

two pointsx, y € A~ with (a,x) ~' (a,y), we may choose sequences) and (y,) of points inA
converging tax andy respectively and satlsfylnga Xn) ~ (a,yn) for all n; then we havexn yn for

all n, hencex =y, for the topological space is Hausdorff. Thus the map: {a}x/\ ~A7isa
homeomorphism.

(iii) This assertion follows immediately from Propositi@3, (iii).

(iv) Let C be a cone inZ and @ denote the origin of the stratulty ~ A/(C) in A7 The map
A — Ax K‘g, ar— (a,0c) is A-equivariant and induces a homeomorphism between theemtoti
affine space A(C) and a locally closed subspaceﬁg which we can also describe as the image
of A x Z¢ under the canonical projectign Relying on Proposition B.3, it follows from (ii) that the
locally closed subspaces of this kind define a stratificatioR” :

=[] A/(©)

Ce7
O

Remark B.5— More generally, one can defingoeefanon the real vector spadeas the preimage”
of a fan.#’ on a quotient spac&’ = A//\. It consists of rational polyhedral conesArsatisfying all
the defining conditions of a fan but strict convexity, sineelecone contains the vector subspAge

If Ais an affine space undée¥, one agrees on definid_gg as the compactificatioﬁ"oz/ of A"=A/Ng
with respect to the far’.

APPENDIX C: ON NON-RATIONAL TYPES

This last appendix deals with non-rational types of patialslbgroups and with the corresponding
compactifications of a building. We consider a semisimpiedr group G over a non-Archimedean
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field k and recall that aype tof parabolic subgroups of G is by definition a connected camepb
of the k-scheme P&6G), which we denote by PAG). If G is split, then types are in one-to-one
correspondence with &)-conjugacy classes of parabolic subgroups of G, and forygett Paf(G)

is isomorphic to @GP, where P is any parabolic subgroup of G defining@oint in Pay(G). In
general, a type is said to bek-rational if the component PafG) has ak-point. The most important
example is the type of Borel subgroups of G: the scheme BB) = Par;(G) is a geometrically
connected component of R&), and the typez is k-rational if and only if G has a Borel subgroup,
i.e., if and only if G is quasi-split.

Lett be any type. The construction of (3.4.1) makes sense evelsifion-rational: we just
consider the mag : Z(G,k) — Par(G)2" defined in (2.4.3), take the closufg(S, k) of the image
of some apartment ¢,k) and define the compactified building; (G, k) as the topological quotient
of G(k) x A¢(S,k) under the equivalence relation induced by the map

G(K) x A(S,k) — PaG)®", (g,X) — g-x=gxg .

Equivalently,%; (G, k) is the closure of4(G, k) in the compactified buildingy (G,k'), wherek’ /k
is a finite extension splitting G aritldenotes a type of Gx k' dominatingt.

Our aim is to show that there existkaational typet’ such that%; (G, k) = %y (G, k).

Let Py be a minimal parabolic subgroup of G. By Proposition 3.2 aatb(s descent, the functor

(Sch/k)°P — Sets S+ {P € Pag(G)(S) | P and B xS are osculatory

is representable by a closed and smooth subscheméRgsof Pag(G), homogeneous undep Bnd
such that, for any finite Galois extensikfyk,

Osg(Po) @k K = | ] Osg (Po@kK'),
t'el
where | is the set of types of &k’ dominatingt. One proves as in Proposition 3.6 the existence of a
largest parabolic subgroupy@f G stabilizing OsdPy). The conjugacy class ofdoes not depend
on the initial choice of psince minimal parabolic subgroups of G are conjugate undky, Gence
defines &-rational typer.

Example— 1. If t is k-rational, then @ is the unique parabolic subgroup of G of tyjpeontaining
Po. Indeed, let P be the parabolic subgroup of typentaining B. Since OsgPy) is homogeneous
under R, this scheme is reduced to the closed point P of(Rarand thus @ = P. We have therefore
T =t if tis k-rational.

2. If Gis quasi-split, then f#As a Borel subgroup of G ardis the largesk-rational type dominated
byt.

3. If t = @ is the type of Borel subgroups, thens the minimalk-rational type:T = tmin. Indeed,
if K'/k is a finite Galois extension splitting G, then Q$By) @k k' = Osc, (P @k k'), Qo @k K’ is the
largest parabolic subgroup of&k’ stabilizing Osg (Po®k k') and @ ®@kk' = Py®k k' since By kK
is @-relevant. It follows that @= Py by Galois descent.

Proposition— With the notation above, we havé (G, k) = %.(G,k).
We first prove this result for the tyge= @ of Borel subgroups, in which cage= tmi, is the type
of minimal parabolic subgroups of G.
Lemma 1— The projection
T : Bor(G)" = Par, (G)®" — Pag

min(G)an

induces an homeomorphism betwegp (G, k) and %;_, (G,K).

Proof. Consider a finite Galois extensidyk splitting G. It follows easily from results of 4.2 and
Galois equivariance that the projectiaré;"i” induces a map4y(G,k) — %, (G,k) satisfying the
following condition: for any parabolic subgroup Q of G, thesimnage of the stratur®; , (Qss K) is
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% (H1,K) x B5(Hz,k), where H and H; are the semi-simple normal and connected subgroupgof Q
to which the restrictions df,i, are non-degenerate and trivial respectively. Sipgeis the minimal
k-rational type, this implies that 4has no non-trivial parabolic subgroup, hence is anisotroper
k. It follows thatZ (Ha, k) = B4 (Ha, k) is a point and that the mag?™ : 2, (G,k) — %, (G,k)
is bijective. This is clearly a homeorphism. O

We now prove the proposition at the level of apartments.
Lemma 2— For any maximal split torusA(S,k) =2 A¢(S,k).
Proof. We fix a finite Galois extensioki /k splitting G and sef = Gal(k' k). We still denote by a
type of Gk’ dominatingt. Let T be a maximal torus of G containing S and satisfying thefing
conditions:

- T =TkK is split;

— the injection%(G, k) — %(G,k’) maps AS,k) into A(T" K)).
It follows from the definition of the mag, in (2.4.3) thatA(S,k) can be identified with the closure

of A(S,k) in A¢(T’,K). By Proposition 3.35, we are reduced to checking that thiapse# and.%;
on the vector spac&(T’) have the same restriction &4S), i.e., that

G(P)NA(S) = C:(P)NA(S)

for any parabolic subgroup P of G containing S. It is enougtottsidemminimalparabolic subgroups
of G containing S.

So let B be a minimal parabolic subgroup of G containing S and denstabave by @ the
largest parabolic subgroup of G stabilizing @8g). We write R and Q for Py @k k' and Q ®k K
respectively, and we recall thatis by definition the type of @ Let B be a Borel subgroup of &k
satisfying T € B C Py and let P denote the unique parabolic subgroup ek® of typet containing
B. We have @Py) = Ci(Qop) since OsgPy) = 0OsG(Qp), and G (Pg) = C;(Qp) since Q is of typet
and contains § Recall that

Ci(P) = {a <1, foralla € d(rad'(P®),T")}, C;(Qo) ={a <1, forall a e d(rad(Qy"),T')}

and
Ci(Qo) = {a < 1, forall a € d(rad'(P°P), T")} N (Ct(Qo)),

where

(Ci(Qo)) = {a =1, forall a € ®(Lqe, T') N P(rad'(PP), T')}
is the linear subspace spanned hy@) (see Proposition 3.20, (iii)). Since 8 P and BC Qo, the
Weyl cone€(B) is contained in both {P) and G (Qo) and therefore these two cones have overlap-
ping interiors. This observation has the following consewe: for any rootr € d(rad'(P°P), T'),
the cones gP) and G (Qp) cannot lie on both sides of the hyperplafe= 1}, hence G(Qp) is not
contained in the half-spacdgx > 1} sincea < 1 on G(P). This implies that —a) does not belong
to d(rad'(Qg"), T') or, equivalentlya € ®(Qg", T'). Thus we getb(rad'(P°P), T') C ®(Qg", T') and
the inclusion(C;(Qo)) N C;(Qo) C Ci(Qp) follows immediately. Since

A(S) C (€(Po)) C (Ci(Po)) = (Ct(Q)),
the inclusion
Cr(Qo) NA(S) € G (Qo) NA(S)
is established.

Conversely, consider a roat € ®(rad(Q"), T'). The inclusion®(rad(QP), T') € ®(P°P,T')
being proved as above, belongs either ta(rad'(P°P), T") or to ®(Lpop, T'). In the first caseqg < 1
on G(Qp) and thusa < 1 on G(Qo) NA(S).

We address now the casec ®(Lpon, T'). Note that G(Qop) N {a = 1} is a union of Weyl cones
and assume that there exists a poirt C;(Qp)° N/A(S) such thata (x) = 1. This point belongs to
the interior of some Weyl coné contained in @Qg) N {a = 1}. Since€® NA(S) # @, this cone
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corresponds to a parabolic subgroup; @oreover, we have (@Q;) = Ci(Qp), for €N Ci(Py)° =
NG (Qo)° # . It follows that Q C Qo, because Qis by definition the largest parabolic subgroup
of G such thatt(Qp) meets the interior of {Py), hence®(Qp) C €(Q;1) anda =1 on&(Qp). This
last condition amounts ta € ®(Lg,,T') = CD(LQgp,T’) and thus leads to a contradiction since we
assumedr € ®(rad'(Qg"), T'). We have thereforer < 1 or a > 1 on G(Qo)° N/A(S) by convexity,
hencea < 1 ora > 1 0on G(Qo) NA(S). Sincea belongs tod(rad'(Qg"), T'), we havea < 1 on the
interior of €(Qg) C Ci(Qop) and thereforer <1 on G(Qo) NA(S).

We have thus proved that each reot ®(rad'(Qg"), T') satisfiesr < 1 on G(Qo) NA(S), hence

Ct(Qo) NA(S) C Cr(Qo)
and, finally,
Ct(Qo) NA(S) = C¢(Qo) NA(S).
O

Proof of Proposition Identifying %,(G,k) and %, (G,k) by Lemma 1, we have two ®)-
equivariant and continuous maps

PBz(G,K)

rETmin \ntZ‘\

Z+(G,K) Z,(G,K).

Consider two points,yin % (G,k) and letA (S, k) be a compactified apartment containing both of
them (Proposition 4.20, (i)). The conditioms,(x) = 11, (y) and ¢ (x) = 7§ (y) amount to saying
thatx andy have the same image in the compactified apartm@ntS k) andA(S,k) respectively,
hence are equivalent by Lemma 2. It follows that the diagraove can be completed by al3-

equivariant homeomorphism
B1(G,k) —= %, (G,K)
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