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Abstract: In the papeBruhat-Tits theory from Berkovich’s point of view. | — Reations and compactifi-
cations of buildingswe investigated various realizations of the Bruhat-Tit8ding #(G, k) of a connected
and reductive linear algebraic group G over a non-Archimadeldk in the framework of V. Berkovich’s
non-Archimedean analytic geometry. We studied in detal cbmpactifications of the building which nat-
urally arise from this point of view. In the present paper, gi®e a representation theoretic flavor to these
compactifications, following Satake’s original constrans for Riemannian symmetric spaces.

We first prove that Berkovich compactifications of a buildimincide with the compactifications, previously
introduced by the third named author and obtained by a glpingedure. Then we show how to recover them
from an absolutely irreducible linear representation ofyGembeddingZ(G, k) in the building of the general
linear group of the representation space, compactified uitatde way. Existence of such an embedding is
a special case of Landvogt's general results on functoriafi buildings, but we also give another natural
construction of an equivariant embedding, which reliedgiesly on Berkovich geometry.
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INTRODUCTION

1. Letk be field a endowed with a complete non-Archimedean absohite ywhich we assume to
be non-trivial. Let G be a connected reductive linear algielgroup ovek. Under some assumptions
on G or onk, the Bruhat-Tits buildingZ(G,K) of G(K) exists for any non-Archimedean field K
extendingk and behaves functorially with respect to K; this is for exdarihe case if G is quasi-
split, or if k is discretely valued with a perfect residue field (in pattcuif k is a local field); we
refer to RTWO09, 1.3.4] for a discussion. Starting from this functorial stgnce of the Bruhat-Tits
building of G over any non-Archimedean extensiorkahd elaborating on some results of Berkovich
[Ber90, Chapter 5], we explained irRTWO09] how to realize canonically the building?(G, k) of
G(k) in some suitabld-analytic spaces. The fundamental construction gives argeal map from
the building to the analytification ¥ of the algebraic group G, from which one easily deduce amothe
map from%A(G,k) to X", where X stands for any generalized flag variety of G, i.e.p@nected
component of the projectivke-scheme P&() parametrizing the parabolic subgroups of G. Recall
that, if such a connected component X contaikgational point Rz ParG)(k), then X is isomorphic
to the quotient scheme B. In more elementary words, this simply means t#46, k) has a natural
description in terms of multiplicative seminorms (of hoimetly classes of multiplicative seminorms,
respectively) on the coordinate ring of G (on the homogesemordinate ring of any connected
component of P&6), respectively).

Since the algebraic scheme F@y is projective, the topological space underlying the aiifédyt
cation Paf(G)2" of any connected component R&) of PalG) is compact (that is, Hausdorff and
quasi-compact), hence can be used to compatif@, k) by passing to the closure (in a suitable sense
if kis not locally compact). In this way, one associates wittheaannected component P&) of
PaG) a compactified building%; (G, k), which is a Gk)-topological space containing some factor
of #(G,k) as a dense open subset. There is no loss of generality ifctiestito connected com-
ponents of P4G) having ak-rational point, i.e., which are isomorphic to/B for some parabolic
subgroup P of G (well-defined up to(l§-conjugacy). Strictly speakingZ:(G,k) is a compactifi-
cation of Z(G,k) only if k is a local field and if the conjugacy class of parabolic subgsocorre-
sponding to the component P@) of PaG) is non-degeneratd.e., consists of parabolic subgroups
which do not contain a full almost simple factor of G; howewee still refer to this enlargement of
% (G, k) as a "compactification" even if these conditions are notliedfi The compactified building
%:(G,k) comes with a canonical stratification into locally closetdspaces indexed by a certain set
of parabolic subgroups of G. The stratum attached to a plcafdogroup P is isomorphic to the
building of the semi-simplification fad(P) of P, or rather to some factors of it. We obtain in this
way one compactified building for each(k3-conjugacy class of parabolic subgroups of G.

2. Assuming thak is a local field, the third named author had already definechgpegtification
of #(G,k) for each conjugacy class of parabolic subgroup of G, ¥éx()7]. Inspired by Satake’s
approach for Riemannian symmetric spaces, the construgiidloc.cit] starts with an absolutely
irreducible (faithful) linear representatignof G and consists of two steps:

(i) the apartment AS k) of a maximal split torus S of G in8(G,k) is compactified, say into
A(S,k)p, by using the same combinatorial analysis of the weighys a$ in [Sat6d;

(i) the compactified buildingZ(G, k), is defined as the quotient of(i§ x A(S,k), by a suitable
extension of the equivalence relation used by Bruhat arskditonstruct’ (G, k) as a quotient
of G(k) x A(S,k).

It is proved in [loc.cit] that the so-obtained compactifiadlding only depends on the position
of a highest weight op with respect to Weyl chambers, or equivalently on the caajycclass of
parabolic subgroups of G stabilizing the line spanned bycéoveof highest weight. As suggested in
[loc.cit], these compactifications turn out to coincidewierkovich ones.



Let us define thaype {(p) of an absolutely irreducible linear representatjon G — GLy as
follows. If G is split, then each Borel subgroup B of G stat®@k a unique line g.in V, its highest
weight line One easily shows that there exists a largest parabolicraupd® of G stabilizing the
line Lg. Now, the typet(p) of the representatiop is characterized by the following condition: for
any finite extensiof’/k splitting G, the connected component £a(G) of Pa(G) contains eack'’-
point occurring as the largest parabolic subgroup efi® stabilizing a highest weight line in ¥y k.
Finally, thecotypeof the representatiop is defined as the type of the contragredient representation
p. We establish in Section 2, Theorem 2.1, the following corispa.

Theorem 1— Let p be an absolutely irreducible (faithful) linear represetita of G in some finite-
dimensional vector space over k. Then the compactificatiéf@, k) , and %, (G, k) of the building
(G, k) are canonically isomorphic.

3. We still assume thédk is a local field but the results below hold more generally fdiszretely
valued non-Archimedean field with perfect residue field. #heo way to compactify buildings by
means of linear representations consists first in compauifthe building of the projective linear
group PGly of the representation space and then using a represeniatiwder to embed?(G, k)
into this compactified building. Finally, a compactificatiof Z(PGLy,k) can be obtained by em-
bedding this building in some projective space, hence tiswpoint is the closest one in spirit to the
original approach for symmetric spaces. It is also a way tmeot Bruhat-Tits theory to Berkovich’s
interpretation of the space of seminorms on a gikemctor spaceBer95).

More precisely, leto : G — GLy be an absolutely irreducible linear representation of G in a
finite-dimensionak-vector space V. We use such a majn two ways to obtain continuous (&)-
equivariant maps from the building?(G, k) to a compact spac& (V,k) naturally attached to the
k-vector space V. Denoting by’ (V,k) the "extended Goldman-Ilwahori space" consisting of non-
zero seminorms on V (the space of norms was studied16d]), then the space?”(V,K) is the
quotient of.”(V,k) by homotheties. It is the non-Archimedean analogue of ttetiept of the cone
of positive (possibly degenerate) Hermitian matrices phojective space associated with Evigl
[Sateq.

In the real case, the latter space is classically the tappatesof a suitable Satake map. In our
case, we identify2 (V,k) with the compactificationZZ5(PGLy,k) corresponding to the typ& of
parabolic subgroups stabilizinghgperplaneof V. One could also consider the compactified building
%r(PGLy,k) associated with the typeof parabolic subgroups stabilizindiae of V (see WWer01]).
Note that%s(PGLy,k) = Z,(PGLyv,k), where VV is the dual of V.

A first way to obtain a map?(G, k) — 2 (V,k) is to make use of E. Landvogt’s work on the func-
toriality of Bruhat-Tits buildings (with respect both teetigroup and to the field). Indeed, specializing
the results oflLan00] to k-homomorphisms arising from linear representation$ — GLy, we ob-
tain a (possibly non-uniquely defined) map: #(G,k) — £(PGLy,k) between buildings. We can
then compose it with the compactification mdp: Z(PGLy,k) — Zr(PGLy,k) in order to obtain
an analogue of a Satake map.

There is another way to embed the buildi##fG, k) into 2" (V, k), which turns out to be very natu-
ral and relies crucially on Berkovich geometry. There ex@éshaturak-morphismp from the scheme
Bor(G) of Borel subgroups of G to the projective spd@&/) satisfying the following condition: for
any extension Kk, the mappk sends a Borel subgroup B of &K to the unique K-poinp(B) of
P(V) it fixes. By passing to analytic spaces, we get a mapor(G)3"— P(V)a". Using the concrete
description of2"(V,k) andP(V)2", we have a natural retractian: P(V)2" — 27(V,k), so that the
compositionp = 7o p o 3, sends the Bruhat-Tits building?(G, k) into 2°(V, k). This is our second
way to obtain a non-Archimedean analogue of a Satake magt Eneasily seen that this canonical
map sends an apartment into an apartment.



These two embedding procedures lead to the previous fanoifieompactifications (cf. Theorem
4.8 and Theorem 5.3):

Theorem 2— Assume that k is a non-Archimedean local field anghle6G — GLy be an absolutely
irreducible linear representation @& in a finite-dimensional vector spaséover K.

(i) The mapp : Z(G,k) — 2 (V,k) induces aG(k)-equivariant homeomorphism between
@t(m(e,k) and the closure of the image pfin 27(V, k).

(i) Any Landvogt map, : #(G,k) — Z(PGLy,k) induces aG(k)-equivariant homeomorphism
betweenZ, (G, k) and the closure of its image i#;(PGLy, k).

Conventions. Assumptions on the fielk are made explicit at the beginning of each section.
Notations and conventions frorRTWO09] are recalled in section 1.

Let us stress one particular working hypothesis: the resaolfloc.cit] were obtained under a
functoriality assumption for buildings with respect to rarchimedean extension of the ground field
(seelloc.cit, 1.3.4]for a precise formulation). This assumption, which is felfilin particular ifk
is discretely valued with perfect residue field or if the graunder consideration is split, is made
throughout the present work.

Structure of the paper. In the first section, we briefly review the constructions RTIV09] and
state the results from [loc.cit] to be used in this work. Theand section is devoted to the identifi-
cation of Berkovich compactifications with the compactificas introduced in\\Ver07]. The third
section contains a concrete description of the Berkovichpaztification of the building?” (V, k) =
% (PGLy, k) associated with the projective spa®@/) seen as a generalized flag variety. The last two
sections deal with the recovery of Berkovich compactifaragi via embeddings int& (V, k), in the
spirit of Satake’s original construction for Riemanniamnsyetric spaces. In Section 4, we construct
a canonical @&)-map from%(G, k) to 2" (V, k) for each absolutely irreducible linear representation
of G in V, and we show that taking the closure leads to the Backocompactification of2(G, k) of
typet(p). In Section 5, we rely on Landvogt's functoriality resultsgroduce such a map and derive
the same conclusion.



1. BERKOVICH COMPACTIFICATIONS OF BUILDINGS

This section provides a brief summary of realizations andpactifications of Bruhat-Tits build-
ings in the framework of Berkovich's non-Archimedean atialgeometry. We refer taTWO09] for
proofs, details and complements.

In the following, we consider a non-Archimedean fiéldi.e., a field endowed with a complete
non-Archimedean absolute value which we assume to be idalktand a semisimple and connected
lineark-group G.

(1.1) For each poink of the Bruhat-Tits buildingZ(G,k), there exists a unique affinoid subgroup
Gy of G?" satisfying the following condition: for any non-Archimeate extension Kk, the group
Gx(K) is the stabilizer ok in G(K), wherexx denotes the image of under the natural injection
PB(G,k) — A(G,K). Seen as a set of multiplicative seminorms on the coordalgebras/(G) of G,
the subspace Gcontains a uniqgue maximal point, denoteddfk). One can recover from J (X)

as its holomorphic envelope:

Gx={ze G*";

fl(z) <|f|(9(x)) forall f € O(G)}.

We have thus defined a map
9 : B(G,k) — G*"

which is continuous, injective and(&)-equivariant with respect to the(fg-action by conjugation
on G™". By its very constructior is compatible with non-Archimedean extensiongkof

(1.2) We let Pa(G) denote the&k-scheme of parabolic subgroups of G; this is a smooth aneqtieg
scheme representing the functor

Sch/k — Sets S+ {parabolic subgroups of & S}.

The connected components of F@y are naturally in bijection with Gé&k?|k)-stable subsets of ver-
tices in the Dynkin diagram of G k® Such a subsdtis called atypeof parabolic subgroups of G
and we denote by P&G) the corresponding connected component of ®arFor example, Par(G)

is the scheme of Borel subgroups of G whereas the trivial tgpeesponds to the maximal parabolic
subgroup G. Finally, a typeis said to bek-rational if Par (G) (k) # @, i.e., if there exists a parabolic
subgroup of G of typé.

With each parabolic subgroup P of G is associated a morplisnG — ParG), defined functor-
theoretically byg +— gPg~! and inducing an isomorphism from/8 to the (geometrically) connected
component of P46G) containing thek-point P. Composing with the analytification ofwp, we
obtain a continuous and(&)-equivariant map fron#%(G, k) to Pa{G)2" which depends only on the
typet of P. This map is denoted b§; and its image lies in the connected component(Baf" of
Pai(G)2". The mapd; only depends on the tygenot on the choice of P in B46G) (k). It is defined
more generally for any typeof parabolic subgroups, even n&rational ones; however, we restrict
to k-rational types in this section.

The topological space underlying P@)2" is compact, hence leads to compactifications of the
building #(G, k) by closing. From now on, we fix kerational typet and describe the corresponding
compactification of#(G,k). If S is a maximal split torus of G, we recall that 8 k) denotes the
corresponding apartment in the buildiggyG, k).

Definition 1.1 — For any maximal split torusS of G, we let A((S,k) denote the closure of
9t (A(S,k)) in PafG)a". We set

Z:(G,K) = | JA(S k) C ParG)™,
S



where the union is taken over the set of maximal split toiGofThis is aG(k)-invariant subset of
ParG)2", which we endow with the quotient topology induced by tharabG(k)-equivariant map

G(K) x A¢(S,k) — %;(G,K).

(See RTWO09, Definition 3.30].)

The typet is said to benon-degeneratdf it restricts non-trivially to each almost simple factdr o
G, i.e., ift, seen as a G@?|k)-stable set of vertices in the Dynkin diagram D of(gk?, does not
contain any connected component of D. In general, there exissemisimple groups'HH” and a
central isogeny G- H’ x H” such that has non-degenerate restriction tbatd trivial restriction to
H”. In this situation,%(G, k) = #(H’, k) x Z(H" k) and we let%; (G, k) denote the factaZ(H’, k).

Proposition 1.2 — (i) The map%; : (G, k) — ParfG)2"factors through the canonical projection
of #(G, k) onto %, (G, k) and induces an injection of the latter building RalG)2".
(i) If the field k is locally compact, the, (G, k) is the closure o (%(G,k)) in PafG)2", en-
dowed with the induced topology.

(See RTWO09, Proposition 3.34].)

If k is not locally compact, the topological spag(G,k) is not compact. However, the map
S : %(G,K) — %(G,K) stillinduces a homeomorphism onto an open dense subsgét(, k).

(1.3) The topological space’;(G,k) carries a canonical stratification whose strata are lower-
dimensional buildings coming from semisimplications atale parabolic subgroups of G.

We can attach to each parabolic subgroup Q of G a closed andtisraobscheme Og€) of
Pat(G), homogeneous under Q and representing the subfunctor

Sch/k — Sets S+ { parabolic subgroups of &S }

of typet, osculatory with Q<x S

We recall that two parabolic subgroups of a reductive Sqgismheme are osculatory if, étale locally
on S, they contain a common Borel subgroup. Lettingd@note the semisimplegroup Q/radQ),
the morphismig : Osg(Q) — Pag(Qss) defined functor-theoretically by P (PN Q)/rad Q) is an
isomorphism.

There exists a largest parabolic subgrods@bilizing OsgQ). By construction, we have Q Q
and OsgQ') = Osg(Q), and we say that Q isrelevantif Q = Q. In general, Qis the smallest
t-relevant parabolic subgroup of G containing Q.

Example 1.3 — a) Itty,, denotes the type of minimal parabolic subgroups of G, theh parabolic
subgroup of G ismin-relevant. Indeed, for any two parabolic subgroups P ando® that QC P, there
exists a minimal parabolic subgroup contained in P but n@;ithis implies Osg¢, (Q) # Osg,,..(P),
hence Q is the largest parabolic subgroup stabilizing Q&Q).

b) Let V be a finite-dimensiond-vector space. We assume that@GLy and thatd is the type
of parabolic subgroups of PGLstabilizing a hyperplane. In this case, R@) is the projective space
P(V), i.e., the scheme of hyperplanes in V. Each parabolic suipg® of PGly is the stabilizer of
a well-defined flag V of linear subspaces, and two parabolic subgroups are d¢aguihand only if
the corresponding flags admit a common refinement, i.e. udftags of the same flag. It follows that
Osg(Q) is the closed subschenigV /W) of P(V), where W is the largest proper linear subspace of
V occurring in the flag V7, and therefore@-relevant parabolic subgroups of Pglare precisely the
stabilizers of flagg{0} c W C V), where W is any linear subspace of V.

We can now describe the canonical stratification on the cotifigal building % (G, k).

Theorem 1.4 — For any parabolic subgrou® of G, we use the mapglo It to embed%; (Qss, k)
into Osg(Q)2" C Pag(G)2".

(i) As a subset dPag(G)2", the building%(Qss K) is contained in%; (G, k).



(i) We have the following stratification by locally closed subse
@t(GJ() = |_| %)t(QS& k)>

t-relevantQ’s
where the union is indexed by the t-relevant parabolic sobgs ofG. The closure of the stra-
tum %, (Qss, K) is the union (iall strate; (Pss, k) with P C Q and is canonically homeomorphic
to the compactified building; (Qss, k).

(See RTWO09, Theorem 4.1].)

Example 1.5 — a) Suppose that= ty, is the type of minimal parabolic subgroups of G. This type
is non-degenerate and each parabolic subgroup ofiselevant, hence the boundary®t_ (G, k)
contains a copy of the building of for each proper parabolic subgroup Q of G.

b) Let V be a finite-dimensionat-vector space. We assume thatGGLy and thatt = J is
the type of parabolic subgroups of Plstabilizing a hyperplane. In this case, the boundary of
Z5(PGLy,K) is the union of the buildingsg(PGL(V /W), k), where W runs over the set of proper
non-zero linear subspaces of V.

(1.4) We now look at the compactified apartmekt(S k) of a maximal split torus S of G. The
apartment AS, k) is an affine space under the vector spa¢8)\= Homa, (X*(S),R), where X (S) =
Homy_gr (S,Gmy) is the group of characters of S. Lét= ®(G,S) C X*(S) denote the set of roots
of G with respect to S. With each parabolic subgroup P of Gainirtg S we associate i¥eyl cone

C(P)={ueV(S); (a,u) >0 forall rootsa of P},

which is a strictly convex rational polyhedral cone ifS). The collection of Weyl cones of parabolic
subgroups of G containing S is a compléa on the vector space (), i.e., a finite family of strictly
convex rational polyhedral cones stable under intersectirowhich any two cones intersect along
a common face, and satisfying the additional condition Yhe8) is covered by the union of these
cones.

Relying on thek-rational typet, we can define a new complete fan o(Sy, which we denote by
. The fan of Weyl cones will turn out to b&: . . First of all, if P is a parabolic subgroup of type
containing S, we define;(P) as the "combinatorial neighborhood" &P) in V(S), i.e.,

aP= U <.
Q parabolic
ScQcP
This is a convex rational polyhedral cone, andRJ is strictly convex if and only if the type is
non-degenerate. More precisely, the central isogeny & x H” introduced after Definition 1.1
corresponds to a decomposition®fas the unior®®’ U ®@” of two closed and disjoint subsets, and the
largest linear subspace of (@) is the vanishing locus ob”, namely

(@Y ={ueX*(S); (a,u)y =0 foralla e ®"}.

When P runs over the set of parabolic subgroups of G of tygel containing S, one checks that the
set.7;, consisting of the cones; @) together with their faces, induces a complete fan on theieutot
space \(S)/(®").

Any strictly convex rational polyhedral cone C in(8) has a canonical compactificati@) whose
description is nicer if we switch to multiplicative notatidor the real dual of X(S). Hence, we set
A(S) = Homap (X*(S),R-0) and use the isomorphisit — R-, X +— € in order to identify (S)
with A(S).

Let M denote the set of characteyss X*(S) such that(x,u) < 1 for anyu e C C A(S). Thisis a
finitely generated semigroup of'¥S) and the map

C— HomMon(M7]ov 1])7 U (X = <X,U>)



identifies C with the set Hopn (M, ]0,1]) of morphisms of unitary monoids, endowed with the
coarsest topology making each evaluation map continuoesdéfineC as the set Hogn (M, [0, 1])
endowed with the analogous topology; this is a compact spashiich C embeds as an open dense
subspace. Each complete fan of strictly convex rational polyhedral cones 0iiS) gives rise to a
compactification\(S)” of this vector space, defined by gluing together the comiizations of the
cones C= .%. More generally, one can compactify in this way any affinecepander\(S).
Proposition 1.6 — Let S be a maximal split torus o&. The compactified apartmedt (S k) is
canonically homeomorphic to the compactificatiorAd, k) / (d”) associated with the complete fan
Fi.

(See RTWO09, Proposition 3.35].)

The connection betweedrrelevant parabolic subgroups on the one hand and conesdimdpto
Z: on the other hand is the following.

Proposition 1.7 — For each parabolic subgrouf of G containingS, there is a smallest cor@ (Q)
in .%; containing the Weyl con&(Q). The following two conditions are equivalent:

() Qist-relevant;
(i) Q is the largest parabolic subgroup defining the c@hé€Q).

In particular, the mapQ — C;(Q) gives a one-to-one correspondence between t-relevanbphca
subgroups containin@ and cones in the fa¥;.

(See RTWO09, Remark 3.25].)

(1.5) For any parabolic subgroup Q of G containing S, the cof@{admits the following root-
theoretic description. Let P be a parabolic subgroup of tygsxulatory with Q. We have

Ci(P)={ze A(S); (a,2) < 1forall a € d(rad'(P°P),S)},
and G(Q) is the face of @P) cut out by the linear subspace
(C(Q)) ={zeA(S); (a,2) =1 foralla € d(Lg,S)Nd(rad'(PP),S)},
where rad(-) stands for the unipotent radical ang tenotes the Levi subgroup of Q associated with

S ([RTW09, Lemma 3.15]).

One deduces the following root-theoretical charactaomatf t-relevancy. Let S be a maximal
split torus of G. We fix a minimal parabolic subgroup & G containing S and writé for the
corresponding basis @(G,S), which we identify with the set of vertices in the Dynkin diag of
G. The map

{ parabolic subgroups of

containing S (} — {subsets o}, Q— Yo=AN®P(Lo,S)

is a bijection.
Proposition 1.8 — LetQ be a parabolic subgroup db. We denote by the subset of associated

with the parabolic subgroup of type t containifig and IetYNQ denote the union of the connected
components of g meetingA — Y.

() The parabolic subgroug is t-relevant if and only if for any roatr € A, we have
(@aeYyand a L Yg) = a €Yo

(i) More generally, the smallest t-relevant parabolic subgraaf G containing Q is associated
with the subset oA obtained by adjoining t g all roots in Y which are orthogonal to each
connected component ¥ meetingA — Y.

(i) The linear subspace &f(S) spanned by the cor@ (Q) is the vanishing locus 0?6:
(G(Q)) ={z€A(S); (0,2 =1 forall a € Yql.
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(For assertions (i) and (ii), seBRTWO09, Proposition 3.24] andjTW09, Remark 3.25, 2]. Asser-
tion (iii) follows from [RTWO09, Proposition 3.22] andqTWO09, Remark 3.25, 2].)

Here, orthogonality is understood with respect to a scaladyct on X (S) ®z R invariant under
the Weyl group ofP(G, S).

Remark 1.9 — Given a maximal split torus S and a parabolic subgroup Qadoing S, we have the
following inclusions of cones

¢(Q) =C5(Q) c &(Q) € Gy (Q)

for any k-rational typet. Up to a central isogeny, we can writg)las the product Lx L” of two
reductive groups such thathas non-degenerate restriction todnd trivial restriction to l. This
amounts to decomposing(Lg, S) as the union of two disjoint closed subsétd_’, S) and®(L",S),
with

®(L'.S) = (Yo)NP(G,S)

if we use the notation introduced in the preceding propmsitlt follows from the latter that the cone
Ci(Q) is the intersection of {4 (Q) with the linear subspace of(S) cut out by all roots irfd(L', S).

(1.6) Finally, we describe the stabilizer of a point& (G, k).

Theorem 1.10 — Let x be a point in%; (G, k) and letQ denote the t-relevant parabolic subgroup of
G corresponding to the stratum containing X.

1. There exists a largest smooth and connected closed subBoQp of G satisfying the following
conditions:
e R{(Q) is a normal subgroup dp and containgad(Q);
o for any non-Archimedean extensibifk, the subgrougR;(Q)(K) of G(K) acts trivially
on the stratum?(Qss K).
2. The canonical projectio®ss— Q/R;(Q) identifies the buildingss; (Qss, k) and Z(Q/R:(Q), k).
3. There exists a unique geometrically reduced k-analytigsuip Stak(x) of G2" such that, for
any non-Archimedean extensiiyk, the groupStaly;(x)(K) is the subgroup o6(K) fixing x
in %:(G,K).
4. We haveR;(Q)2" C Stalg;(x)2" ¢ Q*" and the canonical isomorphisn®"/R;(Q)2" =
(Q/Ri(Q))2" identifies the quotient grougstal(x)/R;(Q)2" with the affinoid subgroup
(Q/R:(Q))x of (Q/R(Q))*"attached in (1.1) to the point x o (Qss, k) = B(Q/Ri(Q),k).

(See RTWO09, Proposition 4.7 and Theorem 4.11].)

Remark 1.11 — If Q is a propet-relevant parabolic subgroup of G, then (@&j(k) is an unbounded
subgroup of &k). Since radQ) c Ri(Q) C Stak(x) for anyx € %;(Qss K), it follows that any point
lying in the boundary#; (G, k) — % (G, k) has an unbounded stabilizer ir(I3. If the typet is non-
degenerate, the converse assertion is true.

We can give a more precise description of the subgroup ®xk) of G(k) stabilizing a point
x of %,(G,k). Let us fix some notation. We pick a maximal split torus S of Gosghcompactified
apartment containg and set N= Normg(S). Let Q denote thé-relevant parabolic subgroup of G
attached to the stratum containirgand write L for the Levi factor of Q with respect to S. We set
L” =Ri(Q)NL and let L denote the semisimple subgroup of L generated by the isotedmost
simple components of L on whighis non-trivial. Both the product morphism k L” — L and the
morphism L' — Q/R;(Q) are central isogenies. We introduce also the split tor-$L’' N S)° and
S// — (L// ﬂ S)O.

Let N(k)x denote the stabilizer ofin the N(k)-action onA(S,k). Finally, we fix a special point
in A(S,k) and we recall that, for each roate ®(G,S), Bruhat-Tits theory endows the group, (k)
with a decreasing fiItratiorﬁUa(k)r}re[,wjm].
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Theorem 1.12 — Let x be a point inZ; (Q, k) and letQ denote the t-relevant parabolic subgroup of
G attached to the stratum containing x.

The groupStal(x)(k) is Zariski dense ifQ and is generated by the following subgroup<sek):

= N(K)x;

— all Ug (k) with a € d(rad'(Q), S);

— all Ug (k) with a € d(L",5");

— all Ug(K)_joga(y Witha € ®(L',S)

(See RTWO09, Theorem 4.14].)

An easy consequence of this description of stabilizers eésftifiowing generalization of well-
known properties of Bruhat-Tits buildings.

Theorem 1.13 — 1. LetSbe a maximal split torus d& and setN = Normg(S). The compactified
building %; (G, k) is the topological quotient dB(k) x A¢ (S, k) by the following equivalence relation:
(9.X) ~ (h,y) <= (Ine N(k), y=n-x and g *hn € Stal}(x)(k)) .

2. Let x and y be two points it (G, k).

(i) There exists a maximal split tor®in G such that x and y lie i\ (S,k).
(i) The groupStaly;(x)(k) acts transitively on the compactified apartments containin
(i) We have the followingnixed Bruhat decomposition

G(k) = Staks (x) (k)N(k)Staki (y) (k).

(See RTWQ9, Corollary 4.15 and Theorem 4.20].)
(1.7) Many statements listed above are proved by using an exfaicitula for the ma@; when G is
split.

Let P be a parabolic subgroup of G of typpand pick a maximal split torus S of G contained in P.
The morphism

rad'(P®) — ParG), g~ gPg *

is an isomorphism onto an open subscheme of@awhich we denote bf2(S,P). Let ®(G,S) be
the set of roots of G with respect to S. Since G is split, thaaehof a special poinb in A(Sk)

determines &°-Chevalley groury with generic fibre G. Any Chevalley basis in I(i€)(k°) leads to
an isomorphism of rat{P°P) with the affine space

|‘Lua ~ |‘LA1,
ac ac

whereW = ®d(rad'(P°P), S) = —d(rad'(P), S).
Proposition 1.14 — We assume that the growpis split and we use the notation introduced above.

(i) The mapd; sends the point o to the point 6X(S,P)2" corresponding to the multiplicative
(semi)norm
k[(XG)GELP:I — R}O, Z aVXV = max|av|
veNY v
(i) Using the point o to identify the apartmehtS, k) with the vector spaca(S) = Homap (X*(S),R~0),
the mapA(S) — ParG)®" induced byd; associates with an element u AfS) the point of
Q(S,P)@" corresponding to the multiplicative seminorm

k[(xa)aew] — R, z a\,x" — max|av| I‘L<u’a>v(f1)'
v ac

veNY

(See RTWO09, Proposition 2.18].)
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2. COMPARISON WITH GLUINGS

We show in this section that the compactifications defineiarD7] occur among the Berkovich
compactifications. Lek be a non-Archimedean local field and let G be a connected Bepiésk-
group. We consider a faithful and geometrically irredugibhear representatiop : G — GLy of
G. In [Wer07], a compactification@(G,k)p of the Bruhat-Tits building is constructed using the
combinatorics of weights fop. It only depends on the Weyl chamber face position of the éggh
weight of the representation.

(2.1)We fix a maximal split torus S in G and denotedy= ®(G, S) the root system of G with respect
to S. We denote by W the Weyl group®fand choose a W-invariant scalar produ¢t on the charac-
ter group X (S) of S, which we use to embed¥S) in the vector spacA(S) = Homap (X*(S),R-0)
via the map

X*(S) = A(S), x+— X,

Let A be a basis ofp. For every subset Y of\, we denote as inWer07] by P§ the standard
parabolic subgroup associated with Y; in particuld},i®the minimal parabolic subgroup of G con-
taining S and corresponding th The weights with respect to the action of S on V are called the
k-weights ofp. If T is a maximal torus containing S andkf/k is a finite extension splitting T, then
we have a natural projection

X*(T Rk k’) — X*(S®k k/) = X*(S)

and there exists a basls of ®(Gxy kK, T ®¢K) lifting A. With the basig\’ is associated a well-
defined character of @k k', thehighest weighfo(A’), whose restriction to S does not depend on any
choice made for Tk’ andA’. This character of S, denotéd(A), is called the highest-weight of p
with respect ta\; it defines an element in(S) lying in the Weyl conez(P3). Setting

Z={aeh; (Ao(d)a) =0},
the linear subspacgx = 1 ; a € Z} cuts out the only face af(P5) whose interior containao(A).
The purpose of this paragraph is to prove the following theor

Theorem 2.1 — Let T denote the type of the parabolic subgroBp. The compactified buildings
@(G,k)p and % (G, k) are canonically isomorphic, and is the only k-rational type satisfying this
condition.

Remark 2.2 — Up to conjugacy, it is clear that the parabolic subgrogmiBes not depend on the
choice of S and\. Therefore, thé-rational typet(P%) is canonically associated with the absolutely
irreducible representatiop. One the other hand, the theory of highest weights of irrdadieidinear
representations of split reductive groups singles outraliyua well-defined type(p) of parabolic
subgroups of G, maybe ndarational: the connected component £a(G) of ParG) is charac-
terized by the condition that, for any finite extensidrik splitting G, this component contains all
the maximal parabolic subgroups of G stabilizing a highest in V &y k' (see paragraph 4.1). We
conclude this article by establishing théP%) is the uniquek-rational type defining the same com-
pactification ofZ(G, k) as the type(p) (cf. [RTWO09, Appendix C]); equivalently, the compacti-
fication @(G,k)p defined in Wer07] is canonically isomorphic to the Berkovich compactifioati

Py (p) (G, K) (see Proposition 5.4).
Before proving this theorem, we can derive at once a commpandth the group-theoretic com-
pactification GR06].

Corollary 2.3 — Let tyin be the type of a minimal parabolic subgroup@f We denote by zc k)
the set of vertices in the Bruhat-Tits buildig(G,k). Then the closure of ) in the maximal
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Berkovich compactificatioms;_, (G,k) is G(k)-equivariantly homeomorphic to the group-theoretic
compactification oz -

Proof of corollary. By [GR06, Theorem 20], the group-theoretic compactificatiorYgf k) is G(k)-
equivariantly homeomorphic to the closure’f gy in the polyhedral compactification o#(G, k)
defined by E. Landvogt. ByWler07], we know that the latter compactification igk3-equivariantly
homeomorphic ta%(G, k)p wherep is any weight lying in the interior of some Weyl chamber, i.e.
such that Z= @ with the notation above. Our claim follows from Theorem 2.1. a

Recall that everk-weight of p is of the formAg(A) — 5 yeaNa 0 for certain non-negative integers
Ng. We denote byAo(A) —A] = {a € A; ng > 0} the support ofAg(A) — A. In [Wer07, Definition
1.1], a subset Y- A is calledadmissible if the set YU {Ag(A)} is connected in the following sense:
the graph with vertex set ¥ Ag(A) and edges between alland such that a|f) # 0 is connected.

The following lemma is well-known, at least in characteci€ [BT65, 12.16]. It is a link between
the abstract root-theoretic definition of admissibilityddts interpretation in terms of representations.

Lemma 2.4 — A setY C A is admissible if and only if there exists a k-weightwhose support
[Ao(A) — u] is equal toY .

Proof. For the sake of completeness, we show that this stateméds tvhatever the characteristic
of kis. In order to be short, we freely use the notation®di91, §24.B], which sums up the basic
results of representation theory of reductive groups ovgitrary fields. In particular, given G as
above, we denote by’Ethe unique Weyl G-module of highest weightand by P its unique irre-
ducible submodule (which in turn determine$)Ein characteristic 0, we have’ = E*. Note that
in the setting of this section, the G-module V is isomorphiséme B and remains irreducible after
extension of the ground field to the algebraic closurk. of

Let us first assume that Y is the support of some weight. Sihedrteducible module Fis
a submodule of the Weyl G-module! Fwe deduce that Y is the support of some weight for E
Moreover the Weyl module Ehas the same character formula as the irreducible moduligbést
weightA in characteristic 0, so the connectedness of the graph wodsideration comes from the
result in this casegT65, 12.16]. Note that we use the classification of semisimpbeigs in order to
find a group over a field of characteristic 0 having the sameesgmtations as G.

Conversely, let us assume that the graph Ao(A)} is connected. Recall that the set of weights
is stable under the spherical Weyl group. We investigatetfiesscase when Y is connected. We write
Y ={B1,B2,...,Bm} in such a way thaB, is connected tdo(4) (i.e., (Ao(A) | B1) # 0) and that for
anyi < mthere existsj < i such thatf; is connected teB; (i.e., (B | Bj) # 0). Then it is easy to
show by a finite induction oh < m, that the support of the weighgrs ,...rg (Ao(4)) is equal to
{B1,B2,... ,B}. Indeed, forl = 1 this is clear sinceg, (Ao(A)) = Ao(A) — Z(A(%ﬁl);lgﬂ B1; and to pass
from one step to the next one, we argue as follows. First, we:ha

-1
el y-Ip(Ao(B)) =Tg (AO(A) - _Z\CiBi> ,

with eachc; > 0 by induction hypothesis. This gives:

-1 -1 (p
rara g1 (Ao(B)) = Ao(B) — _;ciBi —2 (% B .;Ci%> &

which implies our claim by the numbering of tifigs and the fact thadp(A) is dominant.

In the general case, we use a numberingY¥,...Ys of the connected components of Y. The
previous argument shows that there is a weight, (sawith support equal to ¥. Then we note that
for eacha € Y1 and eacl € Y, we haverg(a) = a. This allows us to apply the previous argument,
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replacingAo(A) by p and Y by Y,. Our claim follows by induction on the number of connected
components of Y. a

(2.2) For every admissible subsetY A we set
Y*={ael; (alAds(d)) =0and(alY) =0}
and let G denote the cone iN(S) defined by the following conditions

a=1, foralla €Y
Ao(A)—A =1 for all k-weightsA such thafAg(A) —A] Z Y.

Identifying the additive and multiplicative duals of ¥S) via the mapR — R~o, X+ €, the cone
C8 c A\(S) is the closure of the subsef Fof V(S) = Homap (X*(S),R) defined in Wer07, section
2]. Itis shown in [loc. cit.] that \(S) is the disjoint union of the subset§ Fwhere Y runs over the
set of admissible subsets &f
Lemma 2.5 — Recall thatZ = @* and lett denote the type of the parabolic subgraeh

() A subsety of A is admissible if and only if each of its connected componeetistsA — Z.
(i) For any admissible subs#t of A, we have

C$ = CT(P$)~

(iii) The correspondencg +— P@uv* is a bijection between admissible subsetd @ind 7-relevant
parabolic subgroups containings,.

Proof. (i) This assertion is clear, since Y{Ao(A)} is connected if and only if each connected
component of Y contains a root € A with (a|Aq(A)) # 0, i.e., aroot i\ —Z.

(ii) Let Y be an admissible subset Af It follows from (i) and from Proposition 1.8 (iii) that the
linear spacda = 1; a € Y} cuts out a face of the cone 2 ), namely the cone EP%). Since this
subspace cuts out the facé 6f C5, it suffices to check that the cones(€5) and G coincide.

Let A’ be another basis of the root systabn If Ag(A') = Ag(A), then everyx in the Weyl cone
¢(PY) satisfies(Ao(A) — A)(x) > 1 for all k-weightsA, hence¢(PY) is contained in €. On the
other hand, every point in the interior of£Gs contained in the Weyl con@&(P%) for some basig\'.
By [Wer07, Proposition 4.4 and Lemma 2.1], this impliggA’) = Ao(A). Hence @, is equal to the
union of all Weyl conest(P2) with Ag(A) = Ag(&). By definition, the cone @P3) is the union of
all €(P%) such that the minimal parabolic subgrouf) B contained in B. Therefore, it remains to
check that\g(A) = Ao(&'), if and only if P& is contained in .

Let n be an element of Norg(S)(k) satisfyingnP3n=! = Pg and letw be its image in the Weyl
group W of®. Thenw(A) = A', hencew(Ag(A)) = Ao(4'). Besides, we havePon 1 = P@’@.

Assume that\g(A) = Ap(4'). Thenw fixes Ap(A), which implies thatw(Z) = Z since the scalar
product on X(S) is W-invariant. Besides, for eveny € A — Z there exists &-weight A such that
[Ao(A) —A] = {a} for {a} is an admissible subset &f Sincew(A) is a weight andv(Ap(A)) =
Mo(A), we deduce thaw(a) is a positive root foh. Hence B contains B = P&'.

Now assume that3= nP3n—1 is contained in . Thenn s contained in &, which implies that
wis in the Weyl group of the parabolidPHencew is a product of reflections corresponding to roots
in Z. Since roots in Z are perpendicularg(A), the corresponding reflections leawg(A) invariant
and therefore\g(A') = w(Ag(A)) = Ao(A).

(iii) Let Y be an admissible subset & By Proposition 1.8 (ii), the smallestrelevant parabolic
subgroup containing{Pis P4, where Y is obtained by adjoining to Y all roots in Z which are
perpendicular to each connected component of Y medtindZ, hence to Y by (i). It follows that
Y' =YUY*. Conversely, if B is a 1-relevant parabolic subgroup, then (€%) = C§ for some
admissible subset Y andiC= C(P$) by (i). It follows from what we have just said tha§ R,. is the
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smallestr-relevant parabolic subgroup containingy, Rence G(P2) = C§ = C.(P§_y.) and therefore
Z=YUY* a

Thus, the fan consisting of all polyhedral cone$ @incides with the fanZ; defined in (1.4).
Note that the typea is non-degenerate since the representatias faithful. Relying on RTWO09,
Proposition B.3], it is not hard to check that the identitygpnd the apartment £S,k) extends to a

homeomorphisnj between the compactificatiol; (S, k) = A(S,k) k) introduced in Definition 1.1
and the compactificatioA (S k), of A(S,k) defined from a different viewpoint infler07, Sect. 2]
(where it is simply denoted). This homeomorphism is compatible with the action of tmeugp
Normg(S)(k) on each space since this action is in both cases the uniqtiewous extension of the
standard action of Norg(S)(k) on A(S,k).

(2.3) Seen as a function(S) — R-o, each roota € ® has a continuous extensian: C — [0, o]
for every cone C in the fan#; over which eithera < 1 or a > 1; this is obvious if we write
C = Homyon (M, ]0,1]) andC = Homywon (M, [0,1]), where M is the saturated and finitely generated
semigroup in X(S) defined by

M={aeX*(S); ac<1}.
If T=tninis the type of a minimal parabolic subgroup, théhn is the Weyl fan and every roat
satisfiesoic < 1 orac > 1 for each cone @ 7, hence extends continuously to the corresponding

compactified vector spadg(S)”min. Since we have either < 1, a > 1 ora = 1 on the interior F
of each face F of @ %, , the extensiomwr of o to C satisfies

a‘CFf 0 |f alFo < 1,
O<Oic. < if qp=1,
a‘CF = 00 |f alFo > 1,

where G is the stratum ofC corresponding to the face F, namely the subset afefined by the

conditions
{ ¢ =0, forall ¢ € M such thatp # 1,

¢ >0, forall ¢ € Msuchthatpe=1.
This situation is illustrated by Figure 1 below with-6SL(3).

Fr

In general, we can always extend each r@db aupper semicontinuoufnctiona : A(S)” " —
[0, 0] by setting
a(x) =sup{ceR.g; xe {a >c}}.
This function coincides with the continuous extensiorogf to C for any cone C over whichr <

ora > 1. In general, given a cone C and a face F of C, the upper setimoons extensiom of a to
C satisfies

a‘CF =0 if ape < 1
O<Oc <o ifaeg=1

a‘CF =00 if qp > 1
dc. = ® otherwise

This follows easily from the existence of an affine functfnC —|0, 1] such thair = 1
This situation is illustrated by Figure 2 below, where=&L(3) andt is a type of maximal proper
parabolic subgroups.

With each pointx of A(S, k)p is associated inWer07] a subgroup R of G(k) defined as fol-
lows. Set N= Normg(S) and recall that Bruhat-Tits theory provides us with a desireafiltra-
tion {Uq (K)r }re[—w ) ON €aCH unipotent root groupgk), with Ug (K) _jog(e) = Ua (K) —0 = Uqa (K)
and Uy (K)_jog(0) = Ua(K)w = {1}. Then R is the subgroup of (k) generated by Rk)x = {n €
N(K); nx=x} and Uy (K) _joga(x) for all a € @.
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Let Q be ar-relevant parabolic subgroup of G containing S and denotk the Levi subgroup
of Q associated with S. We consider the following decompmsiof ® in mutually disjoint closed
subsets:

® = (- d(rad'(Q),S)) Ud(rad'(Q),S)Ud(L',S)Ud(L",S"),
where L’ and I’ are the normal and connected reductive subgroups of L sathttd natural mor-
phisms L x L” — L and L' — Q/R;(Q) are central isogenies, and whefeaBd $ are the connected
components of 8L’ and SVL” respectively (see the discussion before Theorem 1.12).iv&qu
lently, the subset(L’,S) of ®(L,S) is the union of root system®(H, S), where H runs over the
set of quasi-simple components of L on which the restricodrr is non-trivial, and®(L”,S") =
d(L,S)—P(L',S).

S

Lemma 2.6 — Let x be a point in the stratuid = A(S,k)/(C;(Q)) of A(S,k)
(i) For any roota in ®, we have:
a(x)=0and—a(x) = if ac d(rad’(Q%),S);
a(x)=cand—a(x)=0 if a e —d(rad'(Q°),S);
a(x) =—a(x) =oo if acdl”,S");
0<a(x) <o if aed,S).
(i) Py = Staki(x)(k).
Proof. (i) This assertion follows from the identities
d(rad(Q°),S) = {a € ®; a < 1 on the interior of G(Q)},
O, S)={aed; a=10onG(Q)}
and
®(L",8") ={a € ®; a takes values< 1 and > 1 on G(Q)}
(see Remark 1.9).

(i) This assertion follows immediately from (i) and frometlexplicit description of Sta}{x)(k) in
Theorem 1.12 since bothRnd Stal(x)(k) are the subgroups of (&) generated by Kk)x and all
Ua (K)_jogax, 0 € P. O

The compactification(G, k), defined in Wer07] is the topological quotient of &) x A(S, K)o
by the following equivalence relation:
(9.X) ~ (h,y) <= (3ne N(k), y=nx andg *hne P).

It follows immediately from assertion (ii) in the previowenhma and from the first assertion of Theo-
rem 1.13 that the canonical homeomorphism

GK) xASK " —> G(K) x A(SK),
induces a G)-homeomorphism between the compactified buildiggig G, k) and Z(G, k).

Uniqueness of thé-rational typet such that the compactification®(G,k), and %:(G,k) are
isomorphic is easily checked. For akyational typet’ satisfying this condition, the compactifica-
tions %+ (G, k) and % (G, k) are Gk)-equivariantly homeomorphic. This homeomorphism idegsifi
0-dimensional strata; taking stabilizers ik} we obtain two parabolic subgroups P aridPtypes
T andt’ respectively, which satisfy(R) = P'(k), hence P= P’ by Zariski density of rational points in
parabolics and, finallyt’ = 1.
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FIGURE 1. Compactified apartment i#(SL(3),k)
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FIGURE 2. Compactified apartment i##; (SL(3),k), with T # &

3. SEMINORM COMPACTIFICATION FOR GENERAL LINEAR GROUPS

We assume in this section that the non-Archimedean #elsl discretely valued. In the fol-
lowing, we study a particular compactification of the builgliz(PGLy,k) of PGLy, where V is
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a finite-dimensionak-vector space. From Berkovich’s point of view, this is thengactification
Z5(PGLy,k) associated with the flag variety B&PGLy ) = P(V), classifying flags of typ&(0) C

H C V), where H is a hyperplane of V. One can give another descniifdhis compactification as
the projectivization of the cone of non-zero seminorms othéreby extending Goldman-lwahori's
construction of the buildingZ(PGLy,k). This compactification of8(PGLy,k) should be seen as
the non-Archimedean analogue of the projectivization ef¢bne of positive semidefinite hermitian
matrices for a finite-dimensional complex vector spaceldtier being the ambient space for Satake
compactifications of symmetric spaces.

Starting with some reminder of Berkovich’s no®gr95] and of the third named author’s paper
[Wer04], we give an elementary description of the compactifiedding % 5(PGLy,k) and make
everything explicit: convergence of seminorms, strahizers. An important feature of this com-
pactification is the existence of a canonical retractio®(V )" — Z5(PGLy,k).

(3.1) Let S’V be the symmetric algebra of thevector space V. This is a grad&eblgebra of finite
type whose spectrum (whose homogeneous spectrum, regbgcis the affine spacé (V) (the
projective spac®(V), respectively):

A(V)=Spe¢S’V) and P(V) = Proj(S*V).

The underlying set of thk-analytic spacé\(V)a" consists of all multiplicative seminorms of\&
The underlying set of thke-analytic spac®(V)2"is the quotient of\(V)2"— {0} by homothety: two
non-zero seminorms,y are equivalent if there exists a positive real numbesuch that|f|(y) =
A" f|(x) for any natural integemn and any element € S"V.

Let . (V,Kk) be the set of all seminorms on the vector space V an®1éV k) be the quotient of
7 (V,k) — {0} by homothety: two non-zero seminormsndy on V are equivalent if there exists a
positive real numbeA € R-q such that f|(y) = A|f|(x) for any f € V. Since each (multiplicative)
seminorm on SV induces a seminorm on ¥ SV by restriction, we have a natural mapA (V)3"—

- (V,k) such thatr(x) = 0 if and only if x=0. This map is obviously compatible with the above
equivalence relations and therefore descends to amm&gV )2" — 2°(V,K).

A seminormx on thek-vector space V isliagonalizableif there exists a basié,...,eq) of V
such that for every = S ocicgaig& in 'V,

VI(x) = max|ai|&|(x).
Proposition 3.1 — Any non-zero seminorm on the k-vector speds diagonalizable.
Proof. As the absolute value ¢fis assumed to be discrete, this fact is established by FaBarid J.

Tits in [BT84b, Proposition 1.5 (i)]. It was initially proved by A. Weil ife locally compact casé&l

Diagonalizability of seminorms on V allows us to define a gdoal sectionj for both maps
1. Given a pointx in .”(V,k) — {0}, pick a diagonalizing basige,...,es) of V and consider the
multiplicative seminorm defined ort'8 by

d
> A€’ maxiA| D)]a](x)"i.

veNd
For any multiplicative seminormon SV inducingx on V, we have:
€"](2) = lal(2)" = l&l(x)",

hence

d
] \ _ Vi
> M| &) < mahul |2 = maxiav ] 9"

Thus, the seminorm which we have just defined &4 B maximal among multiplicative seminorms
on S(V) inducingx on V and therefore it does not depend on the basis we pickedl] lie denoted
by j(x). We also sef(0) =0. The mapj : . (V,k) — A(V)2" so obtained is obviously a section of
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T such thatj(x) = 0 if and only if x = 0. Moreover, this map is compatible with above equivalence
relations, hence descends to a map?”(V,k) — P(V)2"which is a section of.

Proposition 3.2 — (i) For any points x . (V,k) and ze A(V)2"with 7(z) = x, we have
z< j(x).
(i) If we equip the sets”(V, k) and 2" (V, k) with the natural actions of the groujgsLy andPGLy

respectively, then the maps 7 (V,k) — A(V)aand1: A(V)2"— . (V.,K) (j : Z(V,k) —
P(V)2andt:P(V)a"— 2°(V,k), respectively) are equivariant.

Proof (i) We checked this inequality in the discussion above wtidéning j.

(i) It is enough to prove that the mags: . (V,k) — A(V)® and 1 : A(V)?" — “(V,k) are
GLy (k)-equivariant. This is trivially true for since this map sends a seminorm dV 3o its re-
striction to V= S'V. For any elementg € .#(V,k) — {0} andg € GLy (k), the pointz= g~1j(gx)
of A(V)3" satisfiest(z) = g~11j(gx) = g lgx= x, henceg~!j(gx) < j(x) according to (i). Substi-
tuting gx to x andg to g~ in this inequality, we obtaimgj(x) = gj(g~'gx) < j(gx) and therefore
J(9%) = gj(x). O

In the special case of the semisimple group RGInd of the flag variety?(V) = Pai(PGLy),
whered is the type of parabolic subgroups stabilizing a hyperplen¥, this elementary picture
provides us with an alternative description of the geneoaistruction of RTWO09, 2.4], recalled
in section 1. We thus recover the classical realization eflihilding Z(PGLy,k) as the space of
norms on V up to homothety@163], [BT84b]) and the construction of a compactification in terms
of seminorms \Wer04].

Proposition 3.3 — There exists one and only one map%s(PGLy,k) — 2°(V,k) such that the
diagram

_ 3
Z5(PGLy, k) —— Pag(PGLy, k)"

|

2 (V,K)

i

is commutative. This map has the following properties:
(i) itis bijective andPGLy-equivariant;
(i) it identifies Z(PGLy,k) with the subset of2"(V,k) consisting of all homothety classes of
norms onV; more generally, given a subspa®é of V, 1 identifies the stratursz(V /W, K)
of %5(PGLy, k) with the subset of2"(V,k) consisting of all homothety classes of seminorms
onV with kernelW;
(iii) for any maximal split torug in PGLy, the map identifies the compactified apartmekg (T, k)
in Z5(PGLy,k) with the set of homothety classesTotliagonalizable seminorms o (i.e.,
seminorms which are diagonalizable in a basid/ofonsisting of eigenvectors for the maximal
split torus inGLy lifting T).

Proof. If it exists, such a mapis unique sincg is injective.

The existence of follows easily from the explicit description of the mdyg recalled in (1.7).
Pick a maximal split torus T in PGLand a basigey, . .., eq) of V consisting of eigenvectors for the
maximal split torus in Gl lifting T. Using Proposition 1.14, one sees that the figpealizes a bijec-
tion between the compactified apartmént(T, k) and the subset d(V)3" consisting of homothety
classes of all multiplicative seminormson SV satisfying the following condition: there exist non-
negative real numbews, ..., Cq, Not all equal to zero, such theg, Ave’|(X) = max, |Ay| [o<i<d G -
The subsefs (As(T,k)) of P(V)2"is therefore the image undg¢of the subset27(V, k) of 2" (V, k)
consisting of homothety classes of all T-diagonalizabliserms on V (i.e., diagonalizable by the
split maximal torus of Gl liting T). SinceZ5(PGLy,k) is the union of all compactified apartments
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associated with maximal tori in PGl.the image of the magf; is therefore contained in the image
of j. This observation establishes the existence of the apiplicg it also proves (iii).

The mapi is injective, because so 5. Surjectivity follows from the fact that?”(V,K) is the
union of the subsets?7(V,k), where T runs over the set of maximal split tori in RLTo see
that the map is PGLy (k)-equivariant, it suffices to observe thats the compositiort 35 of two
equivariant maps. Indeed, sintg¢=id »-(y k),

jTds = jTji = Ji

and thustds = 1.

We now check (ii). Let W be alinear subspace of V and considen@nornxon V. The pointj(x)
in P(V)2"belongs to the subspa&¢V /W)2" of P(V)2"if and only if the seminornj(x) : S°V — R>g
factors through the canonical homomorphisfivS- S*(V/W). By multiplicativity, this is the case
if and only if x vanishes identically on W. Since the stratw#{PGLy )y, k) of A5(PGLy,K) is the
preimage unde#f s of the space

P(V/ W) — (] P(V/W)™,
WCW/'CV

we conclude that identifies this stratum with the subspace 8f(V,k) consisting of homothety
classes of seminorms on V with kernel W; in particular, thegpns a bijection betwee®(PGLy, k)
and the set of homothety classesnofmson V. O

We can introduce a natural topology & (V,k): equip the set”(V,k) with the coarsest topology
such that each evaluation mép— |v|(x), v € V) is continuous and consider the quotient topology on
Z (V,K). The mapr : P(V)2"— 2°(V,K) is obviously continuous. If the field is locally compact,
then the mag : .2 (V,k) — P(V)2"is continuous (see point (ii) below).

Proposition 3.4 — The set2(V, k) is equipped with the topology which we have just defined.

(i) The map : %5(PGLy,k) — 2 (V,K) is continuous and, for any maximal split tortisn PGLy,
it induces a homeomorphism between the compactified apartng T, k) and the subspace
27(V,k) of Z°(V,k) consisting of homothety classesTetliagonalizable seminorms oh

(i) If kis locally compact, the mapis a homeomorphism and the map.2"(V,k) — P(V)®"is a
homeomorphism onto its image.

Proof. (i) Continuity of 1 is obvious if we write this map as the compositiofis. Given a maximal
split torus T in PGly, the mapi induces a continuous bijection between the compact spga¢E)
and its image in2"(V,k); this map is a homeomorphism since the topological spad®/,k) is
Hausdorff.

(ii) If the field k is locally compact, the topological spaég;(PGLy, k) is compact and the contin-
uous bijection onto the Hausdorff topological spack (V,k) is a homeomorphism. The mdy is
a homeomorphism onto its image; writing the mjags the compositios? 51—, we see that the same
is true forj. O

The topology which we consider off”(V,K) is relevant only if the fieldk is locally compact. In
general, we have to modify it and endo# (V,k) with the topology deduced from#s(PGLy,k)
via the bijectioni. Equivalently, pick a maximal split torus T in PGLendow 27(V,k) with the
coarsest topology such that all evaluatig®ms— |v|(x), v € V) are continuous and equif”(V,k)
with the quotient topology deduced from the surjective map

G(k) X %T(V>k) - ‘%(V>k)> (gax) = g-X
The above identification betwee# ;(PGLy,k) and.2"(V,k) allows us to describe the subgroup

of PGLy fixing a given pointx of 2°(V,k). Let W be the kernel ok and let P be the parabolic
subgroup of PG, stabilizing W. The subgroup of PGl(k)(k) fixing x is contained in Fk); this
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is the extension of the maximal bounded subgroup of Pglk) fixing the norm (induced by) on
V /W by the subgroup of {K) acting trivially on W.

More explicitly, if (ep,...,eq4) IS a basis of V diagonalizingc and chosen so that A
Sparten, . ..,€q4), then RK) is the subgroup of lower triangular block matrices

( SHm GL(dJ(Zl—m,k) >

modulo homothety. Moreover, if the basis can be chosen daxthatisfies|e|(x) = 1 for anyi €
{0,...,m—1},i.e., ifxis a vertex ofZ"(V /W, k), then its stabilizer in PG|(K) is a conjugate of the

subgroup of matrices
k*-GL(m,k°) 0
< * GL(d+1-mKk) >
modulo homothety.

(3.2) Assuming that the fielk is locally compact, we complete our description ﬁif(V,Nk) =
Z5(PGLy,k) in terms of seminorms. We fix a bagie, ...,e4) of V and denote by T and the
corresponding split maximal tori in PGland GLy respectively. We also denote bythe norm on V

defined by
d
ag| (o)
2

K(0) ={g€GLyv(k); g-o=o0}.

Proposition 3.5 — A complete set of representatives for the actiorisbf, (k) on .7 (V, k) — {0}
consists of all non-zerd-diagonalizable seminorms x an satisfying0 < |eg|(X) < ... < |e1|(X) <
leo|(X) < g, where g> 1 generates the groufk™|.

(i) The set% of non-zeroT-diagonalizable seminorms x ovi satisfying0 < |eg|(X) < ... <
lex](x) < |ep|(Xx) is a fundamental domain for th€(o)-action on. (V, k) — {0}.
Proof. (i) Since each seminorm on V is diagonalizable by some malxaplit torus, it follows from
conjugacy of maximal split tori that each orbit of G(k) in .7 (V,k) — {0} meets the set%(V, k)
of non-zeroT- -diagonalizable seminorms.

Let @ be a generator of the maximal ideal kff, i.e., |m| =q 1< 1 generatesk™|, and pick
v € Nd+1, By definition of the Gly-action on.#”(V,k) — {0}, diag@") - o is the T-diagonalizable

seminorm on V such that

& |(diag@”) -0) = |diag(™ ") - &|(0) = | "e(0) =q".
Accordingly, for any permutatiow € Sq.1 the permutation matrix(w) maps aT-diagonalizable
seminormx to the T-diagonalizable seminorm(w) - x satisfying

l&(n(w) - x) = In(w) " - & |(x) = |ey-15) | (¥)-
Combining these two observations, one checks immedidtatyetach Gl;(k)-orbit in .7 (V,k) — {0}
meets the subset ofx(V,k) consisting of seminormssuch that
0<[aa|(X) <. <ef(x) < [eof(¥) <1

(ii) As in (i), one easily shows that any(K)-orbit meetsz’.

For any poinkin 27(V,k), we can extend to a seminorm on the exterior algelx&V as follows:
defining as usuat as the producg, A ... A g, for any subset & {i1,...,im} Of {0,...,d} with
i1 < ... <Ip, We set

&[(x) ﬂ\a! and ‘Zaa(x)

_org%ya,\

and set

= maxia|-[&](x)
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Pickx in .7%(V,k) and assume that we hagex € %(V, k) for someg € K(0). If we use the basis
(ev,...,€q) to identify V with k%+1, then K(o) is the subgroup Gld + 1,k°) of GL(d + 1,k). For
eachme {1,...,d}, this observation implies immediately

maxfa|(g-X) = max|A™g - (x) = maxje) (¥,

where the maximum is taken over all subsets{0,...,d} of cardinalitym. If we assume that both
x andg- x belong to%’, it follows recursively thate|(g-x) = |&|(x) for anyi € {0,...,d}, hence

g-x = Xx. Therefore, each (0)-orbit contains a unique point lying &' 0

Convergence of seminorms up to homothetye examine now the convergence of sequences in
Z (V,k), from which one can recover th& (V,Kk) is a compactification of the Bruhat-Tits building
2B (PGLy,k).

Let (z,) be a sequence af-diagonalizable seminorms. We say that this sequennerimalized
from belowif |g|(z,) > 1 for alli € {0,...,d} and alln > 0 such thate|(z,) # 0. Furthermore, we
say that(z,) is distinguishedf there exists a non-empty subset I{d, ..., d} such that:

& |(zn)
l&j[(zn)

(b) foranyi e landj € {0,...,d} —I, the sequenc

(a) for anyi, j € I, the sequenc

) converges to a positive real number;
n

lej|(zn)
lel(zn)

) converges to 0.
n

In this situation, we s Yz = limy (Iej\(zq)) for anyi, j € I and we say that | is thiandex set at
infinity of the sequencéz,).

The following proposition describes the convergence ofisages in27(V, k). We recall thats’
denotes the subset of%(V,k) consisting of seminormsz satisfying 0< |eg|(X) < ... < |e1](X) <
€] (X).

Proposition 3.6 — Let(x,) be a sequence of points it (V,K).
(i) Up to going over to a subsequence, there exists a sequepce #;(V,K) lifting (x,) and
an element w 0641 such that the sequen¢a(w)z,) is normalized from below, distinguished
and contained i1 B
(i) Assume thatx,) comes from a sequen¢s,) of points in¢” normalized from below and distin-
guished, with index set at infinity We havedim (x,) = X.., where X, is the homothety class of
the T-diagonalizable seminormé defined by picking an element ilo&nd setting

- alz) it e,
el(z)={ Flz "IEL
4](2) {o ol
(iii) The topological space?” (V,k) is metrizable and compact. It contains the Bruhat-Titsdiog
of PGLy (k) as a dense open subset.

Proof. (i) Let (z,) be any sequence istz(V,K) lifting (x,). The seminornz, is non-zero, so the real
numbery,, defined as the minimum of the finite 4g& ((z,) ; 0<i < d and|g|(z,) # 0}, is positive.
For An = L, the sequencéA, - z, n>o is normalized from below. It is therefore enough to show
that any sequence i3 (V, k) which is normalized from below admits a distinguished sgbsece,
up to multiplication by a permutation matriXw). For simplicity, let us denote again fg,) such a
sequence.

Foreach > 0, there exist§, € {0,1,...,d} such thate, |(z,) = max<i<d{|&|(z:)}. The sequence
(in)n takes its values in a finite set, so up to extracting, we maymasghat it is constant. By iterating
the same argument, we finde Sq.,1 such that:

el (zn) = lew)l(zn) = ... = |eww)l(zn)
for anyn > 0, that is such that the sequer(cgw 1) - z,) lies in%.
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Note that sinc€z,) is normalized from below, we haye,q)|(z,) > 1 for eachn > 0. For each

{0,1,...,d}, let us se3; = limsup, mg)‘l(é”n)); we have: 1= By > 1 > ... > 4 > 0. Up to extracting,
8wy | (zn)

we may assume that = B for eachi. Define | as the subset ¢0,...,d} consisting o
hat li a0 [Z0) B f hi fi h b 0 d isti f

indicesi such thai3; > 0; note that | contains 0 by assumption, hence is non-emtyafyi, j € I,
the sequence

€w(i)| (zn) _ |ew(i)|(2n) _ |ew(0)|(2n)
iy |(z0) o) (Zn)  1€w(j)l(Zn)
converges to the positive real num%rwhereas foranyelandj € {0,...,d} — I the sequence

i) (Z0) _ [8w(i)| () [8w(o)|(Zn)
&) (Zn)  [8w(0)l(z0) &)l (20)

converges t(%f = 0. Thus, the sequenda(w1) - z,) is distinguished.

(ii) Let (z,) be a sequence iz (V,K) liting (x,), which we assume to be normalized from below
and distinguished. Let | denote its index set at infinity.c8in

lerd(Z) _ lerl(zo) [ejl(z) _ Jel(2)
le|(Zh)  el(zo) lerf(zo)  [&i](2Z0)

for anyi,j,¢ €1, the 'Nr-diagonalizable seminormad, and zJ, define the same homothety class in
2 (V,K). Giveni € |, the seminorny}, = |&|(z,) - z, satisfies

' ler|(zn) :{ lerl(Z) i p |

lim |e =lim 81(z)
m [e[(yn) = in a|(z0) 0 if £€{0,...,d}—1

since the sequende,) is distinguished and thus the sequen(n;dg converges to the seminorgy in
7 (V,k) —{0}.

(i) Let ko denote a dense and countable subfieldk ahd let \f be akp-vector subspace of V
such that V= Vo ®y, k; this is a dense and countable subset of V. Each non-zermeamion V is
completely determined by its restriction tgMence the map

S (V,K) = RV, xi— (vi— |V[(X))

is a continuous injection. Sincg’(V,k) is locally compact, this injection is a homeomorphism
of .(V,k) onto its image. This map induces a homeomorphisn®ofV,k) onto a subspace of
RVe /R- o and, since the latter topological space is metrizable, v {¥,k).

It follows from (ii) that the image2 of ¢ in 2°(V,k) is compact. The mapr: K(0) x 2 —
Z (V,k) induced by the Gi.(k)-action is continuous, and it is surjective by Propositio§, Jii).
Since K0) ~ GLq.1(k®), the source is compact; as the target is Hausdorff, comesswf.2” (V, k)
follows.

Identifying the Bruhat-Tits building#(PGLy,k) with the subspace ofZ (V,k) consist-
ing of classes of norms on V, the complementary subspacg/,k) — Z(PGLy,k) = K(0) -
(2N (2 (V,k)— Z(PGLy,k))] is closed and therefor@(PGLy, k) is open in2(V,k). Density is
obvious. O

Orbit structure We have already observed in Proposition 3.3 that the caabimientification

Z (V,K) = %5(PGLy,k) transforms the natural stratification & 5(PGLy, k) into the stratification

of Z°(V,k) by kernels: with each point of 27 (V,k) is associated the non-zero linear subspace
V(x) ={veV; |v|(x) =0} and two pointx,y € 2" (V,k) belong to the same stratum ifX) =V (y).

The set of strata is indexed by the set of non-zero linearpades of V and the stratum associated
with a linear subspace W is canonically isomorphic to théding % (PGLy k).
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Given any pointx of 27(V,k), its stabilizer in PGl,(k) is the extension of a maximal compact
subgroup of PG vy (K) by PGLyx (K), and its Zariski closure is the parabolic subgroup fixing
V(x).

All these assertions can be easily proved starting from dfi@ition of 2”(V, k), without knowing
the structure of the Berkovich compactificatiogis(PGLy,k). One can also show that the unique
closed orbit for the PGl-action on.2"(V, k) consists of the homothety classes of seminorms of the
form|.|o ¢, where¢ is a non-zero linear form on V; this orbit is PG(k)-equivariantly homeomor-
phic toP(V)(k), i.e., to the set of hyperplanes in V.

(3.3)We end this section on the compactified buildi#g (PGLy, k) with a couple of technical results
to be used in the next paragraph.
Recall that, for any Banadkalgebra A and any non-Archimedean extensiotk,Khe formula

||f|| :inf{max|)\i|-||fi||; AeK, fieAandf :Zfi®)\i}
iel <

defines a seminorm on the K-algebrazfK and that A2yK is the Banach K-algebra one gets by
completion BGR84, 2.1.7 and 3.4.3]. The following definition is due to Berkdvi[Ber90, Sect.
5.2].

Definition 3.7. — LetX be a k-analytic space. A point x Mis peakedf, for any non-Archimedean
extensiorK /k, the norm on the Banadk-algebra.# (x)®K is multiplicative.

Let x be a peaked point oK. For any non-Archimedean extensid¢/k, the norm on
' (X)@kK defines a point inZ (7 (x)&kK) and ok (x) denotes its image under the canonical
map.///(%”(x)@kK) — X@kK.

Remark 3.8 — For a pointx in a k-analytic space X, being peaked or not depends only on the
completed residue field?’ (x).

Lemma 3.9 — For any point x inP(V)2", there exists a point y id\(V)2" lifting x and such that
H(X) = A (y). In particular, each peaked point x i&(V)2" can be lifted to a peaked point in
A(V)an,

Proof. This is obvious since the canonical mapV)(K) — {0} — P(V)(K) is surjective for any field
extension Kk. 0

Proposition 3.10 — Let x be a peaked point &(V)". For any discretely valued non-Archimedean
fieldK extending k, the canonical injection 8f (V,k) into 2" (V,K) maps the point(x) to the point
T(0k(X)).

Proof. Consider a peaked poigin A(V)a"lifting x and denote by (y)k the image off (y) under the
canonical injection2”(V,k) — 2" (V,K). We want to showr (y)k = 1(0k(Y))-

The pointok (y) in A(V ®kK)2" is the multiplicative seminorm on*8V @ K) = (S°V) @k K
defined by

|f|(ok(y)) = inf{rpeallx|)\i||fi|(y); AieK,fieS'Vandf = Z fi®)\i}.
le
Hence
|fl(T(ok(y))) = inf{meallx|)\i||fi|(y); AeK, fiesSlV=Vandf= Z fi®)\i}
! i€

forany f e VekK.
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Pick a basigey, ...,eq) of V diagonalizingt(y). Givenf = i, fi ® Aj in V @K, we can write
fi = Yo<j<aij€j, and

maxAif|fil(y) = max|A;| Jmax laij|[ejl(y)

= max max/Ailla;i||e:
max max|Ai[aj e (¥)

;)\iaij

max( il il(y) > [F1(T(¥)).

WV

max
o<j<d

;[ (y)-

We conclude that

hencel f|(T(y)k) < [f[(Tok(y))-
The converse inequality is obvious: for ahy= 5 o<j<qai& in V @K,
[fl(tok(y)) = Ifl(ok(y)) < max|ae](ok(y))

o<i<d

< maxfa|le|(y) = [fl(T(y)x)l

o<i<d
and we finally get
T(y)k = Tok(y)-

4. SATAKE COMPACTIFICATIONS VIA BERKOVICH THEORY

In [Sat6(, Satake considers a Riemannian symmetric spae&s$K of non-compact type. Using
a faithful representatiop of the real Lie group G in PSIn,C), he embeds S in the symmetric space
H associated with PSh, C), which can be identified with the space of all positive dedifiermitian
n x n-matrices of determinant 1. Observing that H has a natunaipeetificationH, namely the
projectivization of the cone of all positive semidefiniteri@ian n x n-matrices, Satake defines the
compactification of S associated wijthas the closure of S iH.

In this section and the next one, we present an analogousrectien for Bruhat-Tits buildings
from two different viewpoints. Let G be a semisimple conedagroup over a discretely valued non-
Archimedean fielk. A faithful and absolutely irreducible linear represeiataip : G — GLy of G in
some finite dimensiona&-vector space V can be used to embed the building of G in tHdibgiof
SLy, hence in any compactification of the latter, and we get a emtifiration of2(G, k) by taking
the closure. The Berkovich compactification®@{SLy,k) corresponding to parabolics stabilizing a
hyperplane has an elementary description as the space ofaems up to scaling on V and will be
the non-Archimedean analogue of the projective cone ofdeimite hermitian matrices.

The difference between this section and the next one lieka@nconstruction of the map from
AB(G,K) to Z(SLy, k). Whereas functoriality of buildings is a delicate quesiiogeneral, it is quite
remarkable that Berkovich theory allow us to attach veryjlyasd in a completely canonical way
amapp : B(G,k) — B(PGLy,k) to each absolutely irreducible linear representaparG — GLy .
General results of E. Landvogt on functoriality of buildéngill be used in the next section.

(4.1) The mapp : Z(G,k) — Z°(V,k). Let G be a semisimple connect&ejroup and consider a
projective representatiop : G — PGLy, which we assume to tebsolutely irreducible We start by
showing that the morphism naturally leads to a continuous andkFequivariant map : (G, k) —
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Z (V,k), whose formation commutes with scalar extension and whosge lies in the building
PB(PGLy,k).

The two main ingredients in the definition pfare the retractiom : P(V)" — 27(V,k), defined
in 3.1, and the following well-known fact.

Proposition 4.1 — (i) For any field extensiofK /k and any Borel subgroup of G®kK, there
exists one and only orte-point of P(V) invariant underB.
(i) There exists a unique k-morphigm Bor(G) — P(V) such that: for any field extensidf/Kk,
the mappx : Bor(G)(K) — P(V)(K) sends a Borel subgroup to the uniqueK-point of P(V)
invariant underB.

Proof. We use the following two results:

1. If the fieldk is algebraically closed, then for each Borel subgroup Bor(G)(k) there exists
one and only one point i?(V)(k) invariant under Bk) [Che05 Exposé 15, Proposition 6 and
Corollaire 1].

2. If the group G is split ovek, then for each Borel subgroup8Bor(G) (k) there exists at least
one point inP(V)(k) invariant under Bk) [Bor91, Proposition 15.2].

(i) Let K/k be a field extension, pick an algebraic closuredf K and consider the separable
closure K of K in K2. Given a Borel subgroup B in &K, assertion 2 provides a¥point of P(V),
sayX, invariant under the group (B®). Since the K-scheme B is smooth, the subsg is dense
in B, hencex is invariant under BK?) and assertion 1 provides uniqueness of this point.

For anyy € Gal(K®/K), the pointy-x in P(V)(K9) is invariant under the grougB(K®) = B(KS®);
uniqueness implieg- x = x and therefore this point belongs to the suli®at)(K) of P(V)(K®). We
have thus established existence and uniqueness @& Bnvariant point inP(V)(K). We still have
to check that this point is fixed by B, i.e., that its imagéPitV ) (S) is invariant under the group(B)
for any K-scheme S.

First step— The functorK-Sch— Sets S+ Stalys)(x) is representable by a closed subgroup,
sayll, of G.

As a direct verification shows, the functor 8eh— Sets S— Stalpg, (s)(X), is represented by
a closed and smooth subgroup & PGLy. LetT1 denote the K-schemegRpg,, G. The second
projectionlm — G is a closed immersion arid represents the functor Stgtx) since

N(S) = {(g,9") € G(S) x Po(S) ; p(g) =d'} = Stalkys) ()

for any K-scheme S.

Second step- The subgrouB of G is contained ir1.

Since B is a reduced closed subscheme of G, the inclus{&?)BZ M(K?) implies the inclusion
B C N as subgroups of G and we have thus established that the K»poirP(V) is invariant under
B. Note also thafl (which may not be smooth) is a generalized parabolic sulpyofuG since it
contains a Borel subgroup.

(ii) Pick a finite Galois extensiok' /k splitting G together with a Borel subgroup B ofs k', and
let x be the onlyk’-point of P(V) invariant under B. By (i), the map

G(S) = P(V)(S), g—g-X

factors through the canonical projection($3 — G(S)/B(S) for any k'-scheme S. Thanks to the
functorial identification GS)/B(S)=Bor(G)(S), gB(S) — g(B @k S)g~! [SGA3, Exposé XXVI,
Corollaire 5.2] we thus get a morphism of functgrsBor(G k') — P(V ®k') and define therefore
ak’-morphismp : Bor(G®kk') — P(V ®kk') such that, for ank'-scheme S and any B Bor(G)(S),
p(B") =g-xif B’ =gBg~t, g€ G(S). In particular, for any field extension /&, the mapp associates
with a Borel subgroup Be Bor(G)(K) the only K-point ofP(V) invariant under B
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By definition, thek’-morphism
p : Bor(G) @kk = Bor(Gayk) — P(V &kk) =P(V) @kK
commutes with the natural action of Gelk) and thusp descends to k=-morphism
p :Bor(G) — P(V)
satisfying the required condition. O

Proposition 4.2 — There exists a largest type t of parabolic subgroup&sfich that the morphism
p : Bor(G) — P(V) factors through the canonical projectidBor(G) — Pag(G). The so-obtained

morphismPag(G) — P(V) induces a homeomorphism betwdeay (G)2" and a closed subspace of
P(V)a".

Proof. Assume temporarily that the group G is split, pick a Borelggobp B of G and lek = p(B)
be the onlyk-point of P(V) invariant under B. If we denote byl the stabilizer ok in G, then the
underlying reduced scheni#@®d is the largest parabolic subgroup of G stabiliziglndeed, since
we have proved above thitis a closed subgroup containing B, the reduced schéhweyk?)"®%is a
smooth closed subgroup of& k? containing Bk k3, hence a parabolic subgroup of$zk?. As G
is split, there exists a unique parabolic subgroup P of Gaioing B such thatM ©yk?¥)"®4 = Py k2.
This identity implies P= "4, hencel"™d is a parabolic subgroup of G stabilizing Since each
parabolic subgroup Q of G is smooth, Q is a subgroupldf it stabilizes x, and thereford1d
contains any parabolic subgroup of G stabilizingNote also that the type &1 does not depend
on the choice of B by k)-conjugacy of Borel subgroups and equivariance of the map

The morphisnp : G/B — P(V) induces a map
G/M—P(V)
which is a monomorphism in the categorykeéchemes. Since the imagemis a closed subset of

P(V) by properness of Bo6), this map is a closed immersion. Moreover, we have an exgoesee
of k-groups

e——n/ned —— g/nred 2 G/ e

andn/M"Yis a finite and connectedgroup schemegGA3, Exposé VIA, 5.6], hence the morphism
p is universally injective, i.e., induces an injection bedneK-points for any extension K ¢f Lett
denote the rational type of G defined B9 Composingp with the morphism @GN — P(V) induced
by p, we see thap factors through the canonical projection of B8j onto Pay(G). The induced
morphismf : Paf(G) — P(V) is universally injective. At the analytic level, the assded mapfa"is

a continuous injection, hence a homeomorphism onto a clegleset of?(V)2" since PaiG)2" and
P(V)3" are compact.

In general, we pick a finite Galois extensiéfyk splitting G and sef” = Gal(k'|k). For any
y € T, there exists a unique-rational typet;, such that the morphisifp, = p @y factors through
Pag (G®kK'). The family{t}} r is a Galois orbit, hence defines a typef parabolic subgroups of
G, and the morphisrp factors through the canonical projection of B8) onto Pay(G) by Galois
descent. O

The above construction associates a well-defined ratigpal of parabolic subgroups of G with
the representatiop.

Definition 4.3 — Let p be an absolutely irreducible projective representatidnr— PGLy. Its co-
typet(p) is the largest rational type t o& such that the canonical morphism: Bor(G) — P(V)
factors through the projection @or(G) ontoPag(G).

Remark 4.4 — This definition is obviously related to the theory of thglmést weight: if B is a
Borel subgroup of G, then thepoint p(B) of P(V) is a hyperplane of V invariant under B, hence
a line in V¥ invariant under B in the contragredient representafioriThe corresponding character
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of B is the highest weight gb with respect to B. This observation is the reason why we thiced
the cotypeof the representatiop; thetypeof p should be defined as the cotype of the contragredient
representation, i.e., the type of the largest paraboligmup stabilizing a highest weight line in V.

Composing the maps

B(G,K) —2 Bor(G)™ -2 P(V)a — e 27(V, k),

we obtain a natural map

P #B(G,k) — Z(V,K),
canonically associated with the homomorphigsmG — PGLy. Since all these maps are continuous
and equivariant, so ig.

(4.2) The main properties gb are easily established. We first consider compatibilityhveitalar
extension. -

Proposition 4.5 — For any discretely valued non-Archimedean fiklegxtending k, the natural di-
agram

B(G,K) =+ 27V K)

| |

A(G,k) — 2 (V,K)
is commutative.

The proof of this proposition relies on the following lemm&e recall that, ifx is a peaked point
of ak-analytic space X and if Kk is a non-Archimedean extension, theg(x) denotes the canonical
lift of x to X&kK (see Definition 3.7).

Lemma 4.6 — For any rational type t o5 and any point x in; (G, k), the pointd; (x) of Pag(G)2"
is peaked. Moreover, given a non-Archimedean extenjdq the pointoi (9;(x)) of Pag(G)2"2K
is the image of x under the map

S 1 % (G,K) — Par(G oK) = Pag(G)2"&K.

Proof. Let us first consider a finite Galois extensikiik splitting G and consider a poin¢ in
%:(G,K). By Proposition 1.13, the point (x') is contained in some big ce® of Paf(G @kK').
Choosing an isomorphisii,w—Uq for each rootr of G @y k' with respect to a maximal split torus
T containing S»y k' leads to an isomorphist},~Q @, k. Then the poini;(X') corresponds to a
seminorm on the algebk[&y, ..., &) of the form

n
> g’ — maxay| rlci"i,
v v i=

wherec,...,c, are non-negative real numbers, not all equal to zero (withctimvention &= 1).
Such a seminorm defines a peaked poirmEr‘?” [Ber90, Sect. 5.2] and the poird (X) is therefore
peaked.

In general, pick a pointin %;(G,k) and letx, denote its image i#(G, k'), wherek' /k is a finite
Galois extension splitting G. We consider the complete@tivesfield .7 (9;(x)) of J;(x). The point
9t (%) induces a norm on thi€-Banach algebra#’(J;(x)) @k k' with respect to which the descent
datum is an isometry (note tha#’(3;(x)) ®k K is finite extension ok’). Since the point; (¢ ) is
peaked, this norm is universally multiplicative. BRTWO09, Lemma A.10], it follows that the norm
induced ons# (5 (x)) is also universally multiplicative, hence the pofh(x) is peaked.

In order to prove the second assertion, consider a point %;(G,k) and let K/k be a non-
Archimedean extension. Since the pofhtx) is peaked, the Banach norm on the K-Banach algebra
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(9 (X)) @K coming from the absolute value 6# (3 (x)) is multiplicative. On the other hand, the
point J; (xk ) also defines a multiplicative norm on this K-Banach algefreo such norms necessar-
ily coincide, hencegk (9;(X)) = 9 (X ). O
Proof of Proposition 4.5Let K be a discretely valued non-Archimedean field extendinDenoting
byt the cotype of the representatipnthe morphisnp : Bor(G) — P(V) factors through the canon-
ical projection BofG) — Pag(G) and leads to a homeomorphism between (3" and a closed
subset of?(V)2" (Proposition 4.2). Pick a pointin Z(G, k). The pointp(Jd;(x)) of P(V)3"is peaked
sinceZ (p8i(x)) = (9 (x)) andd;(x) is a peaked point of P4G)2" (Lemma 4.6). Moreover, we
have the identities

Ok P (X) = P Ok 9t (X) = Pt (X).

The conclusion finally follows from Proposition 3.10: theimis p(x) = Tpd(x) and pk(x) =
TPk 9t (X) = Tok Pt (X) coincide in2"(V,K). O

Proposition 4.7 — The image of the map : #(G,k) — 2°(V,K) is contained in the open stratum
PB(PGLy,k) of 27 (V,k).

Proof. Assume that there exists a poiin %#(G, k) whose image under the mapis not contained
the open stratung(PGLy k) of 2 (V,k). Under this hypothesis, the poiptx) = TpJ4(x) lies in
2 (V,k)NP(V/W)a" for some non trivial linear subspace W in V, hefis, (x) € P(V /W)2". Now
consider the following diagram

Bor(G)a —— P(V)an

|

Bor(G) — P(V)

in which the vertical arrows are the maps sending a poaitX@", seen as a multiplicative seminorm
on the algebrasx (U) of some open affine subset U of X, to the point of the scheme Xelefi
by the prime ideal kée) € Spec¢Ox (U)) (where X= Bor(G), or X = P(V)). The pointx (p(x),
respectively) is mapped to the generic point of @r(to the generic point dP(V /W), respectively).
Since the diagram above is commutative, it follows that tleephismp maps the generic point of
Bor(G) to the generic point oP(V /W), hence maps Bo6) into the strict linear subspadV /W)

of P(V). Hence it would follow thato maps G into the nontrivial parabolic subgroup of RGL
stabilizingP(V /W), thereby contradicting the irreducibility @f. O

(4.3) We now state and prove the main result of this section.

Theorem 4.8 — Let k be a discretely valued non-Archimedean field @&walsemisimple connected
k-group. We consider a finite-dimensional k-vector spd@nd an absolutely irreducible projective
representatiorp : G — PGLy.
(i) The mapp : #(G,k) — 2°(V,k) extends continuously to the compactificatiof(G,k) —
By () (G, K). o
(i) The induced map is an injection & ;)(G,K) into 2" (V,k).
(iii) If the field k is locally compact, the mapextends to a homeomorphism betw@g@m(G,k)

and the closure gb(#(G,k)) in 2°(V,K).

Proof. Sett =t(P).
(i) The morphismp : Bor(G) — P(V) factors through the canonical projection: Bor(G) —
Pag(G) and leads to a homeomorphism between(@3f" and a closed subset BfV)2" (Proposition
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4.2). The diagram

Paf(G)2"

is commutative (useTWO09, section 4.2] for the left-hand side triangle) and hencewadl us to
write the mapp as the compositiompd;. For any maximal split torus S in G, the restriction @f
to the apartment £S,k) extends continuously to its closufg(S,k) in Pag(G)2". Since the image
of %;(G,k) into Pag(G)3"is the union of these closures when S runs over all maximél tepi of
G, the mapgp extends to%;(G,k). This extension is continuous, for it is(l§-equivariant and its
restriction toA¢(S,K) is continuous.

(ii) Let us now prove that the mag (G,k) — 27 (V,k) extendingp, for which we keep the
notation p, is injective. The fact that compatibility g with scalar extension is proved only for
discretely valued non-Archimedean extensionk wf Proposition 4.5 is a slight difficulty.

Given two pointsx,y € %(G,k) with p(x) = p(y), we will show that G(k?) = Gy(k?), where
Gx = Stak}(x) and G, = Stal(y). Since the fiel is discretely valued, it follows from its description
as a disjoint union of buildings (cf. Theorem 1.4) that thenpactified building%; (G, k) carries a
(poly-)simplicial decomposition and, by application ofuBat-Tits theory to each stratum, the fixed-
point set of Stalg(x)(k) is precisely the facet of;(G,k) whose interior contains the poirt Now,
since two distinct points af8; (G, k) belong to disjoint facets of4;(G, k') for a large enough finite
extensiork’/k, the equality G(k?) = Gy(k?) impliesx ='y.

_ d
We pick a pointxin 7(G,k) and set Gy = p~* (Statfay, (9(x)) - This is an analytic sub-
group of G", and
Gpx (K) ={g€ G(K) ; p(g)p(x) =p(x)}

for any non-Archimedean extensioryK Given any finite extensiok /K, it follows from Proposition
4.5 that G (k') contains G(k'). We have therefore &k C Gy (k?), and we will now prove
that equality holds. Notice that, if the poixris rational (i.e., if it becomes a vertex over some finite
extension ok), then the inclusion @Gk®) C Gy (k) implies G, C G,y by density.

Notation— The pointx belongs to a stratum S. Let-P Stali(S) denote the correspondirtg
relevant parabolic subgroup of G and letRR;(P) denote the largest connected, smooth and normal
subgroup of G acting trivially on Ogd). Similarly, the poinfo(x) belongs to a stratutbof 2" (V,K);
we sefll = Stalpgy, (£) and we let B(IT) denote the largest connected, smooth and normal subgroup
of M acting trivially onZ. Up to replacingk by a finite extension, we may assume that the reduced
subschemes’P= p~1(M)™®d and R = p~1(R5(IN))™ are smooth subgroups of G. Note thét iR
connected and invariant if.P

First step— The group G(k) is Zariski-dense in P (Theorem 1.12) apdmaps Gy (K) into
M(k). Since P is reduced, the inclusion(®&) C G, (k) implies thatp maps P intd1 and therefore
P = p~%(M)"®dis a parabolic subgroup of G containing P.

This parabolic subgroup’Rlefines a stratum’$h %;(G, k), the only one it stabilizes. We have
Sc S since Pc P, and S= S if and only if P= P for P ist-relevant. In order to establish the last
identity, we let R= R;(P') denote the largest smooth connected and normal subgroupactiRg
trivially on Osg(P').

Second step— We now prove that the parabolic subgroups P ancbincide.



31

Since P = p~1(N)"™Y, the morphismp maps the closed subscheme @BQ of Pag(G) to the
closed subscheme Qg€1) of P(V). By constructionp is universally injective (i.e., purely insepa-
rable), hence the induced map @&¢)(K) — Osgs(M)(K) is injective for any extension K df. It
follows that any elemerd of R”(K) acts trivially on OsgP')(K), which implies that the action of'R
on the reduced scheme Qg?) is itself trivial. As the subgroup 'Ris smooth, connected and normal
in P, we deduce that Ris contained in Rby maximality of the latter. On the other hand®Ris
trivially contained in R", hence in G y), since any element acting trivially orl fixes S pointwise.

We consider now the quotient group-HP'/R’, which is semisimple and satisfie§S %(H, k).
Thanks to the inclusion 'Rc R/, this group is also a quotient of /R”. Since P= p~1(MN)"™d and
R’ = p~1(Rs(IN))™4, we get a canonical morphism

p: PR’ p=Y(M1)/p~Y(Rs(M)) = =/R5(T)

which is finite. By construction, we have'® C G, € P and G, /R"*" = p (I p(x))" hence
Gp(x/R"*"is bounded inP'/R")*" for pis finite. It follows that G /R"*" is a bounded in P

Since G(k%) C Gy (k?), the discussion above shows that the stabiliggy/R’) (k*) of xin H(k?)
is bounded. By Remark 1.11, this amounts to saying xhaélongs to the open stratum 6f=
%#:(H,Kk), hence 5= S and P=P.

Third step— We have just proved that the subgroup(k?) of G(k?) is contained in the parabolic
subgroup P and has bounded image in the quotient grougP¥R. The inclusion G(k?) C Gpx (K
implies G(k?) = G,y (k?) since(Gx/R?")(k?) = Gx(k?)/R(k?) is a maximal bounded subgroup of
H(Kk?). -

(iii) If the field k is locally compact, the continuous extension @t %(G,k) — 2°(V,K) to
@t(f,)(G, k) is continuous injection between two locally compact spakesce is a homeomorphism
on its image. O
(4.3) We end this section by establishing a natural and expectgzefy ofp.

Proposition 4.9 — For any maximal split toru$ of G, there exists a maximal split tordsof PGLy
containingp(S) and such thap mapsA (S, k) into A(T, k).

Proof. For any finite extensiof’/k, we normalize the metrics so that the canonical embeddings
B(G,k) — #B(G,K) andZ(PGLy,k) — #B(PGLy, k') are isometric.

Given a maximal split torus S of G, our first goal is to find anrapant A of Z(PGLy,k) con-
taining the image of AS k).

Let T be a maximal split torus of PGLcontainingp(S) and letx be a point in AS,k). For any
se S(k), we havep(s-x) = p(s) - p(x) andp(s) - A(T,k) = A(T,k), hence

dist(g(s-x),A(T,k)) - dist(g(x),A(T,k)) .

More generally, we have
dist(B(s-x),A(T,k’)) - dist(B(x),A(T,k’)>

for any finite extensio’ /k and anys € S(k'). Since the points of AS, k) belonging to the orbit ok
under $K') for some finite extensiok’ /k are dense (in AS,k)), it follows that dist(B(z),A(T, k)>

is independent of € A(S,k). Now, the existence of a maximal split torus df PGL, such that
p(S) C T"andp(x) € A(T',k), hence such thai(A(S k)) C A(T’,k), follows immediately from the
next two facts:

1. the set of distances pf(x) to apartments i¥(PGLy k) is discrete;
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2. given a maximal split torus T of PGLsuch thatp(S) C T andp(x) ¢ A(T,k), there exists a
maximal split torus Tof PGLy satisfyingp(S) ¢ T' and

dist (B(x),A(T’,k)> < dist(B(x),A(T,k)) .

The first assertion follows easily from the (poly-)simpdicstructure on(PGLy, k), hence from
the fact that the field is discretely valued. Let us then prove the second assertion

For any poinz € A(S,k), let p(z) denote the unique point of (&, k) satisfying
dist <B(z), p(z)) — dist (B(z),A(T, k))

and observe that the image of the map
p:A(SK) —A(T.K), z— p(2)

is an affine subspace under the imagé\@) in A(T).

We now use the (poly-)simplicial structure ofRk). Suppose that there exists a paimt A(S, k)
such that ) belongs to the interior of an alcowe Any path inZ(PGLy,k) from p(z) to a point
lying outside AT,k) contains an initial segmeiip(z),Z] with Z € dc and[p(z),Z[C c. Applied to
the geodesic patfp(z), p(2)], this observation leads to a contradiction if ((igt(z),A(T,k)) >0,
since then

dist<g(z),A(T, k)) - dist(g(z), p(z)) < dist(g(z),z) < dist<g(z),A(T, k)) .

Therefore, sinc@(x) ¢ A(T,k), the affine subspacg(A(S,k)) of A(T,K) is contained in some root
hyperplane i, = {a =r}, wherea € X*(T) is a root whose restriction to S is triviafys = 1, and
r € |k*|. By folding A(T,k) along H, ,, we will obtain a new apartment e®(PGLy,k) which is
closer top(A(S,k)).

Letxp = p(X),X1,...,% = p(X) denote the successive vertices of the simplicial decortipnsof
[0(x), p(x)] induced by the (poly-)simplicial structure &8 (PGLy,k). There exists an elementof

a(K)r satisfying the following two conditions:

(@) A(T,k)Nu-A(T,k) is the half-apartmenfa <r};

(b) u-A(T,k) = A(uTu~1 k) contains|x, 1, %n).
Since ajs = 1, we havesus* = u for any s € S(k) and thusp(S(K')) stabilizes the apartment
A(uTu LK) for any finite extensionk’/k. Setting N= Normpgy, (UTu™1), the stabilizer of
A(uTu 1K) in PGLy (K) is the group NK'), hencep(S(k')) c N(K') for any finite extensiork’/k
and thusp(S) C N since both S and N are reduck@roups. By connectedness, it follows that S is
contained in N = uTu1.

We have

dist (B(x),A(uTu’l, k)) < dist(p(x), % 1) = dist(p(x), Xn) — dist(xq_1,%,) < dist (B(x),A(T, k))

sincex,_1 # Xn. This concludes the proof of assertion 2 above.

We have just proved that there exists a maximal split torusfTPGLy such thatp(S) c T’
andp(A(S,k)) C A(T',k). Thanks to compatibility op with finite field extensions, the inclusion
p(A(S,k)) C A(T’,k) holds more generally after any such extension. As befofelldws thatp(S)

is contained in T= Normpg, (T")° and this completes the proof. O

Remark 4.10 — Given two semisimple connectddgroups G, H and a homomorphisin: G —

H, the above proof applies more generally to any continuaas@k)-equivariant map#(G, k) —
2(H,K) which is compatible with finite extensions kf the apartment of any maximal split torus S
of G is mapped to the apartment of a maximal split torus of Haioing f (S).
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Functoriality of buildings with respect to group homomadgphs has been studied by Landvogt in
[Lan0Q]. Given a complete discretely valued fietdvith perfect residue field and two semisimple
connectedk-groups G and H, Landvogt proved that each homomorpHisi® — H gives rise to a
non-empty set of Gk)-equivariant and continuous maps: %2(G,k) — %(H,k). By construction,
each such map i®ral, i.e., maps the apartment of a maximal split torus S of G taffs@tment of a
maximal split torus of H containing(S). In the special case where-HPGLy, and f is an absolutely
irreducible representation, the mépntroduced in this section is an instance of Landvogt's maps

The canonical nature of the mapraises two obvious questions: is the set of Landvogt's maps
reduced to an element whehnis an absolutely irreducible representation? If no, isd¢hemway to
single outf without using Berkovich geometry?

5. SATAKE COMPACTIFICATIONS VIA LANDVOGT’'S FUNCTORIALITY

In this last section, we present another approach to Satkgactifications using Landvogt's
results on functoriality of Bruhat-Tits buildings. As bedo G is a connected, semisimple group over
a non-Archimedean local fiekl We fix a faithful, absolutely irreducible representatmnG — GLy
for some finite-dimensionak-vector space V. Using results frorhgn00], the representatiom
defines a continuous, (®)-equivariant embedding.. : (G, k) — %£(SLy,k).

As in the previous section, we want to use one fixed compaatiiic of 2(SLy,k) on the right-
hand side and take the closure of the image#o6, k) to retrieve (G, k),,. For functoriality reasons,
the natural candidate for this compactificationZéfSLy, k) is Z(SLy,k)iq for the identical represen-
tation id : Sly — GLy. According to Theorem 2.1%(SLy,K)iq = %nr(SLy,k), wherertis the type
of parabolics stabilizing a line in V. This space was studigldVer01] and is canonically isomorphic
to Z5(SLvv,k), where V' denotes the dual vector space. It can be identified with thenuof all
Bruhat-Tits buildings#(SLy/,k), where V runs through the linear subspaces of V. lts points can
be described as seminorms oM Mp to scaling and vertices correspond bijectively to the bibety
classes of fre&°-submodules (of arbitrary rank) in V.

In the following, we letr denote the uniquk-rational type such tha®(G, k), = %.(G,k), whose
existence was established in section 2. It will eventualiy tout that we can replaceby the (non
necessarilk-rational) typet(p) naturally associated witp.

(5.1) We recall some results oL an00], applied to the representatigm: G — GLy. Since G is
semisimple, it is equal to its derived group. Hemceomes from a representatign: G — SLy, for
which we use the same notation.

Let S be a maximal split torus in G with normalizer N, and |€84) denote the corresponding
apartment inZ(G, k). Choose a special vertexin A(S, k). By [Lan00], there exists a maximal split
torus T in Sly containingp(S), and there exists a point in the apartment AT, k) of T such that the
following properties hold:

1. There is a unique affine mapA(S,k) — A(T,k) such thai(o) = 0. Its linear part is induced
byp:S—T.

2. The mag satisfieso(Px) C Fyi(x) for all x € A(S,k), where R denotes the stabilizer of the point
X with respect to the (k)-action on%(G,k), and I?(X) denotes the stabilizer of the poirk)
with respect to the Sf(k)-action on%(SLy, k).

3. The mapp. : A(S,k) — A(T,k) — A(SLy,k) defined by composing with the natural em-
bedding of the apartment(A&,k) in the building Z(SLy,k) is N(k)-equivariant, i.e., for all
x € A(S,k) andn € N(k) we havep, (nx) = p(n)p.(X).
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These properties imply thak, : A(S,k) — %(SLy,k) can be continued to a map : #(G,k) —
2 (SLy, k), which is continuous and @&)-equivariant. By Ean00, 2.2.9], p. is injective and isomet-
rical, if the metric on#Z(G, k) is normalized correctly.

We want to show thap, can be extended to a map : %(G,K), = %B:(G,k) — %n(SLy,K).
Besides, we prove that this map of compactified buildingstifles %+ (G,k) as a topological ¢k)-
space with the closure @k, (%(G,K)) in Zx(SLy,Kk).

(5.2) Let us first look at compactified apartments# (G, k) and % (SLy,k).

Let (ep,...,e4) be a basis of V consisting of eigenvectors of T and denotgoby. ., X4 the corre-
sponding characters of T. The map

A(T) = (Ro0)*™, u— ((u,Xi))o<i<d

identifies/A(T) with the subset ofR-q)%+? consisting of vectorér, ...,rq) satisfyingrg...rq = 1.
The fan onA(T) defining the compactificatioA (T, k) of A(T,k) consists of all faces of the cones
Co,...,Cq, Where

Ci={(ro,..-,rd) € (R=0)"; ro-...-.rg=1 andr; >r;, forallj}.

The weights of the representatiprwith respect to the torus S are the imageg®f . ., xg under the
projection X (T) — X*(S) deduced from the morphism: S— T, i.e., the restrictions oXo, .- ., Xd
to S. Settinghi = (xi)|s for alli € {0,...,d} and identifying as abovA(T) = Homap (X*(T),R~0)
with a subset of R-0)%+?, the dual map

[ 1 A(S) = Hompap (X*(S), R=0) — (Ru0)*+
is simply defined by

U ({Ai,U))ocicq -
This is an embedding since the representagias faithful.

Lemma 5.1 — The preimage underof the fan# generated by Cy,...,Cq} is the fanZ; onA(S).
Proof. By definition,
1HC) = {ue A(S); (Ai,u) = (Aj,u), forallj} ={uecA(S); (Ai—Aj,u) > 1, forallj}.

Given a basid of ®(G,S) ¢ X*(S), we denote by £ the corresponding minimal parabolic subgroup
of G containing S and byip(A) the highesk-weight of p with respect to B; we also recall that the
Weyl conee(P%) is defined by the conditiong > 1 for all a € A. If Ag(A) = A;, thenAi — Aj is a
linear combination with non-negative coefficients of eletseofA and thus ~1(C;) containse(P5).
Therefore, it follows from the proof of Lemma 2.5 that'(C;) contains the cone

CT(P%) = U Q:(Pg)
Ao(A’)A: Ao(B)
if Aj is the highest weight gb with respect to .

The inclusion G(P3) c 1~1(C;) is in fact an equality. If it were not, then1(C;) would meet
the interior of some Weyl con&(P4) with Ag(&') # Ai. SettingAo(A') = A;, it would follow that
1~}(CiNC;) contains a poink of ¢(P4)°. Such a situation cannot happen: on the one hapil,c
CiNCj implies Ai(x) = Aj(x); on the other hand}; — A; is a non-zero linear combination with non-
negative coefficients of elements&f henceA; — A; > 1 on&(P4)° and thush(x) > Ai(x).

We have therefore 1(C;) = C;(P5) if A; is the highesk-weight of p with respect to B, whereas
171(Cp) is empty if A; doesn't occur among the highdstveights ofp. We have checked that the
fans.Z; andi~1(.%) have the same cones of maximal dimension; since each faoe istérsection
of suitable cones of maximal dimension, it follows th&t = 1 ~1(.%). 0
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By the preceding lemma, the affine mapA(S k) — A(T,k) can be extended to a continuous
injective map
i Ar(S k) — Ag(T,k)
which is a homeomorphism & (S, k) onto the closure df(A(S,k)) in Ax(T,k).

(5.3) As recalled in Section 2%.(G,k) = %(G,k), can be described as the quotient ofk{x
A:(S,k) by the following equivalence relation:

(9,X) ~ (h,y) if and only if there exists an element N(k)
such thanx=y andgthne P,.

Here R is defined as £= N(k)xUyx, where NK)x is the subgroup of Kk) fixing x, and where {J
is generated by all filtration stepsa(K) _jogz(x) in the root group 4 (k), with

a(x) =sup{ce R.p:xe{a(-—0) >c}.

Similarly, Z(SLy,k) can be described as the quotient of,Bk) x K_,T(T,k) with respect to the
analogous equivalence relation involving the stabilizeugs B for x € An(T,K).

Composing : A;(S,k) — Ax(T,k) with the embedding oA (T,k) in %,(SLy,k), we obtain a
continuous and therefore(K)-equivariant map,, : A; (S, k) — Zn(SLy,K).

Now we want to continue this map to the compactified build#ig(G, k).

Lemma 5.2 — For every xc A;(S k) we havep(Py) C P,,.,, whereP, denotes the stabilizer of x in

i)’
G(k) and Pi’(x) denotes the stabilizer ofx) in SLy (k).

Proof. If x € A(S,k), the claim holds by (5.1), property 2. In general, we haye=RJ(K)xN (k)x
where NK)y is the stabilizer of in N(k). Sincep, : A;(S k) — Zn(SLy,k) is N(k)-equivariant,
we findp(N(K)x) C Pi’(x). The group UK)y is generated by all lK)x = Uq (K) _joga(x) for a € ored
Hence it suffices to show(Uq (K)x) C Pi’(x) for all a € o',

If 0 < a(x) < », then there exists a sequeneg) of points in A(S k) converging towardg and
such thata (x) = a(x,) for all n, hence Y (k)x = U4 (K)x, for all n. By (5.1), property 2, it follows
that p(Uq (K)x) C p(Px,) is contained in ﬁm)' Sincei(x,) converges towardgx) and Sly (k) acts
continuously onZ(SLy,k), this impliesp(Uq (K)x) C Pi’(x).

If a(x) =0, then U (k)x = {1} and there is nothing to prove.

It remains to address the case whar) = «, hence U (k)x = Uq (k). There exists a sequence
(%) of points in A(S k) converging tax and such that linx (x,) = o (observe thak belongs to the
closure of each half-spadex (- — 0) > c}, with ¢ € Rx¢). Any elementu of U4 (K) lies in one of the
filtration steps U (k),; since this filtration is decreasing belongs to Y (k)x,, hence to the stabilizer
Py,, if nis big enough. By Landvogt’s results, this implies tjpgt)) is contained in ﬁ’xn) for n big
enough. Since Sk(k) acts continuously o ,(SLy,k), it follows thatp(u) is indeed contained in
P{ and the proof is complete. O

It follows immediately from the lemma above that the nat@ék)-equivariant map
G(k) x A¢(S,k) — Zn(SLv.K), (9,%)— p(9)-P.(X)

factors through the equivalence relation defini#g(G, k) and thus induces a (®)-equivariant and
continuous map

D, B1(G,K) — Bn(SLy,k)
extending Landvogt's map..
Theorem 5.3 — The mapp, : %:(G,k) — %n(SLy,K) is a G(k)-equivariant homeomorphism of
%1 (G,k) onto the closure gb,.(#(G,k)) in Bn(SLy,kK).
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Proof. The image of the compact spag# (G,k) underp, is closed, hence it contains the closure
of p.(%(G,k)). On the other hand, any poigtin p.(%(G,k),) is of the formz= p(g) - p,.(x) for
someg € G and some € A (S k). If (x,) is a sequence of points in(&, k) converging towards,
then(p(9) - p..(Xn)) is a sequence of points p).(A(G,k)) converging towardsg, hencezis contained
in the closure of.(%(G,k)). Injectivity follows from the fact that any two points 68 (G,k) are
contained in one compactified apartment by Theorem 1.13 (i).

Therefore, the map, is a continuous bijection betwee#i; (G, k) and the closure b, (%(G,k))

in Z(SLy,k). Since both spaces are compact, this is a homeomorphism. 0

(5.4) We complete this work by identifying therational typer appearing in Theorems 2.1 and 5.3.

Proposition 5.4 — The typet is the unique k-rational type defining the Berkovich comifiaation
Py (p)(G,K). Equivalently, we have

@(Gv k)P = gt(p) (Gv k)

and any Landvogt map. : #(G,k) — %(SLy,k) extends to &G(k)-equivariant homeomorphism
between#, (G, k) and a closed subspace @f(SLy,k).

Proof. Applying Theorem 4.8 to the contragredient represeniafipthe Berkovich mag pro-
vides us with a &)-homeomorphism betwee#; , (G, k) and a closed subspace@f;(SLyv,k) =

PBn(SLv,k). Since this map is toral (Proposition 4.9), it satisfies d@bors 1 to 3 of (5.1) and we de-
duce from Theorem 5.3 that the compactificatiofis,, (G, k) and%: (G, k) are Gk)-homeomorphic.
Thus, 1 is the uniquek-rational type defining the same Berkovich compactificaigrthe type(p)
naturally attached to the absolutely irreducible repregem p (see RTWO09, Appendix CJ). O
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