TOROIDAL DEFORMATIONS AND THE HOMOTOPY TYPE OF BERKOVICH SPACES

Amaury Thuillier

Lyon University

Toric Geometry and Applications Leuven, June 6-10, 2011

<ロ> (四) (四) (三) (三) (三)

CONTENTS

2 Toric varieties

3 Toroidal embeddings



▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Berkovich spaces

Toric varieties

Toroidal embeddings

Homotopy type

Berkovich spaces

▲ロト▲御ト▲ヨト▲ヨト ヨーのへぐ

Non-Archimedean fields

• A non-Archimedean field is a field k endowed with an absolute value $|\cdot|: k^{\times} \to \mathbb{R}$ satisfying the ultrametric inequality:

```
|a+b| \leq \max\{|a|, |b|\}.
```

We will always assume that $(k, |\cdot|)$ is complete.

- Morphisms are isometric.
- The closed unit ball $k^{\circ} = \{a \in k, |a| \le 1\}$ is a local ring with fraction field *k* and residue field \tilde{k} .

Examples:

- (i) *p*-adic numbers: $k = \mathbb{Q}_p$, $k^\circ = \mathbb{Z}_p$ and $\tilde{k} = \mathbb{F}_p$.
- (ii) Laurent series: if F is a field, k = F((t)), $k^{\circ} = F[[t]]$ and $\tilde{k} = F$. For $\rho \in (0, 1)$, set $|f| = \rho^{-\operatorname{ord}_0(f)}$.
- (iii) Any field *k*, with the trivial absolute value: $|k^*| = \{1\}$. Then $k = k^\circ = \tilde{k}$.

Specific features

- Any point of a disc is a center. It follows that two discs are either disjoint or nested, and that closed discs with positive radius are open. Therefore, the metric topology on *k* is totally disconnected.
- Any non-Archimedean field k has (many) non-trivial non-Archimedean extensions.

Example: the Gauß norm on k[t], defined by

$$\left|\sum_{n} a_{n} t^{n}\right|_{1} = \max_{n} |a_{n}|,$$

is multiplicative $(|fg|_1 = |f|_1 \cdot |g|_1)$, hence induces an absolute value on k(t) extending $|\cdot|$. The completion K of $(k(t), |.|_1)$ is a non-Archimedean extension of k with $|K^*| = |k^*|$ and $\widetilde{K} = \widetilde{k}(t)$. **Comparison:** any Archimedean extension of \mathbb{C} is trivial.

Non-Archimedean analytic geometry

- Since the topology is totally discontinuous, analycity is *not* a local property on kⁿ: there are too many locally analytic functions on Ω.
- J. TATE (60') introduced the notion of a rigid analytic function by restricting the class of open coverings used to check local analycity.
- V. BERKOVICH (80') had the idea to add (many) new points to k^n in order to obtain a better topological space.
- In BERKOVICH's approach, the underlying topological space of a *k*-analytic space X is always locally arcwise connected and locally compact. It carries a sheaf of Fréchet *k*-algebras satisfying some conditions.

Analytification of an algebraic variety

There exists an analytification functor $X \rightsquigarrow X^{an}$ from the category of *k*-schemes of finite type to the category of *k*-analytic spaces.

- A point of X^{an} can be described as a pair $x = (\xi, |\cdot|(x))$, where
 - ξ is a point of X;
 - $|\cdot|(x)$ is an extension of the absolute value of k to the residue field $\kappa(\xi)$.
- The completion of $(\kappa(\xi), |\cdot|(x))$ is denoted by $\mathcal{H}(x)$; this is a non-Archimedean extension of k.
- There is a unique point in X^{an} corresponding to a closed point ξ of X, because there is a unique extension of the absolute value to $\kappa(\xi)$ (since $[\kappa(\xi) : k] < \infty$ and k is complete).
- We endow X^{an} with the coarsest topology such that, for any affine open subscheme U of X and any $f \in \mathcal{O}_X(U)$, the subset $U^{an} \subset X^{an}$ is open and the function $U^{an} \longrightarrow \mathbb{R}$, $x \mapsto |f|(x)$ is continuous.

Analytification of an algebraic variety

- If X = Spec(A) is affine, then X^{an} can equivalently be described as the set of multiplicative *k*-seminorms on A.
- The sheaf of analytic functions on X^{an} can be thought of as the "completion" of the sheaf \mathcal{O}_X with respect to some seminorms.
- The topology induced by X^{an} on the set of (rational) closed points of X is the metric topology. If the absolute value is non-trivial, these points are dense in X^{an}.
- X^{an} is Hausdorff (resp. compact; resp. connected) iff X is separated (resp. proper; resp. connected).
- The topological dimension of X^{an} is the dimension of X.

Example: the affine line

As a set, $\mathbb{A}_{k}^{1,an}$ consists of all multiplicative *k*-seminorms on *k*[t].

- Any $a \in k = \mathbb{A}^1(k)$ defines a point in $\mathbb{A}^{1,an}_k$, which is the evaluation at *a*, i.e. $f \mapsto |f(a)|$.
- For any $a \in k$ and any $r \in \mathbb{R}_{\geq 0}$, the map

$$\eta_{a,r}: k[t] \to \mathbb{R}, f = \sum_{n} a_n (t-a)^n \mapsto \max_n |a_n| r^n$$

is a multiplicative k-seminorm, hence a point of $\mathbb{A}_{k}^{1,an}$.

• It is an easy exercise to check that

$$\eta_{a,r} = \eta_{b,s} \Longleftrightarrow \begin{cases} r = s \\ |a - b| \le r \end{cases}$$

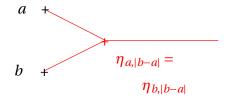
hence any two points $a, b \in k$ are connected by a path in $\mathbb{A}_{k}^{1,an}$.

• If k is algebraically closed and spherically complete, then all the points in $\mathbb{A}_k^{1,an}$ are of this kind.

In black (resp. red): points in $\mathbb{A}_k^{1,an}$ over a closed point (resp. the generic point) of \mathbb{A}_k^1 .

 $a = \eta_{a,0} \qquad \qquad \eta_{a,r}$

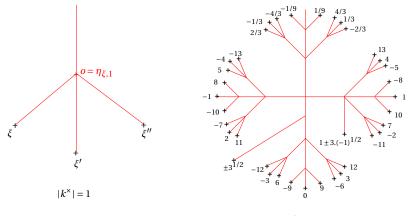
Two points $a, b \in k$ are connected in $\mathbb{A}_k^{1,an}$.



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Picture: more paths

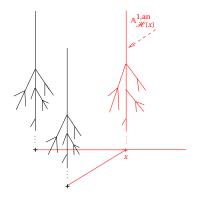
 $\mathbb{A}_k^{1,an}$ looks like a real tree, but equiped with a topology which is much coarser than the usual tree topology.



< <u>k</u>=Q3 () + () + (

One last picture

Using a coordinate projection $\mathbb{A}_{k}^{2,an} \to \mathbb{A}_{k}^{1,an}$, one can try to think of the analytic plane as a bunch of real trees parametrized by a real tree...



The fiber over *x* is the analytic line over the non-Archimedean field $\mathcal{H}(x)$.

Remark

Even if the valuation of k is trivial, analytic spaces over non-trivially valued fields always spring up in dim ≥ 2 .

Hence the trivial valuation is not so trivial!

・ロト・日本・日本・日本・日本 もくの

Homotopy type

BERKOVICH conjectured that any compact *k*-analytic space is locally contractible and has the homotopy type of a finite polyhedron.

Theorem (BERKOVICH)

- (i) Any smooth analytic space is locally contractible.
- (ii) If an analytic space X has a poly-stable formal model over k°, then there is a strong deformation retraction of X onto a closed polyhedral subset.

Recently, E. HRUSHOVSKI and F. LOESER used a model-theoretic analogue of Berkovich geometry to prove:

Theorem (H.-L.)

Let Y be a quasi-projective algebraic variety. The topological space Y^{an} is locally contractible and there is a strong deformation retraction of Y^{an} onto a closed polyhedral subset.

Ber	covic	h ei	paces	
	ROVIC.	11.0	Juces	

Toric varieties

Toroidal embeddings

Homotopy type

Toric varieties

▲ロト▲園ト▲目ト▲目ト 目 のへで

Analytification of a torus

Let T denote a *k*-split torus with character group $M = Hom(T, \mathbb{G}_{m,k})$. Its analytification T^{an} is an analytic group, i.e. a group object in the category of *k*-analytic spaces.

• We have a natural (multiplicative) tropicalization map

$$t: \mathrm{T}^{\mathrm{an}} \longrightarrow \mathrm{M}^\vee_{\mathbb{R}} = \mathrm{Hom}_{\mathbb{A}}(\mathrm{M}, \mathbb{R}_{>0}), \ x \mapsto (\chi \mapsto |\chi|(x)).$$

- The fiber $T^1 = \{x \in T^{an} \mid \forall \chi \in M, |\chi|(x) = 1\}$ over 1 is the maximal compact analytic subgroup of T^{an} .
- There is a continuous and T(k)-equivariant section j of τ, defined by

$$\left|\sum_{\chi\in \mathbf{M}}a_{\chi}\chi\right|(j(u))=\max_{\chi}|a_{\chi}|\cdot\langle u,\chi\rangle.$$

Main point

We thus obtain a canonical realization of the cocharacter space $M_{\mathbb{R}}^{\vee}$ as a closed subset $\mathfrak{S}(T) = \operatorname{im}(j)$ of T^{an} (skeleton), together with a retraction $r_{\mathrm{T}} = j \circ \tau : T^{\operatorname{an}} \to \mathfrak{S}(T)$.

Berkovich spaces	Toric varieties	Toroidal embeddings	Homotopy type	
Orbits				
OIDIts				

Suppose that T^1 acts on some *k*-analytic space X.

- For each point $x \in X$ with completed residue field $\mathcal{H}(x)$, there exists a canonical rational point \underline{x} in the $\mathcal{H}(x)$ -analytic space $X \widehat{\otimes}_k \mathcal{H}(x)$ which is mapped to x by the projection $X \widehat{\otimes}_k \mathcal{H}(x) \to X$. The orbit of x is by definition the image of $T^1_{\mathcal{H}(x)} \cdot \underline{x}$ in X.
- For each $\varepsilon \in [0, 1]$, the subset

$$\mathrm{T}^{1}(\varepsilon) = \{ x \in \mathrm{T}^{\mathrm{an}} \mid \forall \chi \in \mathrm{M}, \; |\chi - 1| \leq \varepsilon \}$$

is a compact analytic subgroup of T^1 . Moreover, each orbit $T^1(\varepsilon) \cdot x$ contains a distinguished point x^1_{ε} .

• $(X = T^{an})$ Since $T^1(0) = \{1\}, T^1(1) = T^1, x_0 = x$ and $x_1^1 = r_T(x)$, this leads to a strong deformation retraction

$$[0,1] \times T^{an} \longrightarrow T^{an}, \ (\varepsilon, x) \mapsto x_{\varepsilon}^{1}$$

・ロト・日下・日下・日下・日 うらくの

onto $\mathfrak{S}(T)$.

Analytification of toric varieties

Let X be a toric variety under the torus T, with open orbit X_0 . Let $\mathfrak{S}(X)$ denote the set of T^1 -orbits in X^{an} (skeleton).

- The natural map $r_X : X^{an} \to \mathfrak{S}(X)$ has a canonical section $(T^1 \cdot x \mapsto x_1^1)$ which identifies $\mathfrak{S}(X)$ with a closed subset of X^{an} .
- The subset $\mathfrak{S}(X_0) = X_0^{an} \cap \mathfrak{S}(X)$ is an affine space with direction $\mathfrak{S}(T)$.
- The skeleton $\mathfrak{S}(X)$ is the closure of $\mathfrak{S}(X_0)$ in X^{an} . The embedding $\mathfrak{S}(X_0) \hookrightarrow \mathfrak{S}(X)$ is the partial compactification of the affine space $\mathfrak{S}(X_0)$ with respect to the fan of X in $\mathfrak{S}(T)$.
- The stratification of X by T-orbits O corresponds to a stratification of S(X) by affine spaces S(O) (under quotients of S(T)).
- There is a canonical strong deformation retraction of X^{an} onto $\mathfrak{S}(X)$.

Analytification vs tropicalization

Let X be a toric *k*-variety under the torus T.

- The partially compactified affine space $\mathfrak{S}(X)$ is the standard tropicalization of X. We realized it as a closed subset of X^{an} , and the retraction $r_X : X^{an} \to \mathfrak{S}(X)$ is the tropicalization map.
- For any closed subscheme Y of X, the subset $r_X(Y^{an}) \subset \mathfrak{S}(X)$ is the standard tropicalization of Y with respect to the toric embedding $Y \hookrightarrow X$.

Let Y be a quasi-projective *k*-variety. We can consider the category of equivariant embeddings of Y in toric varieties. This leads to an inverse system of maps $r_X : Y^{an} \rightarrow r_X(Y)$.

Theorem (S. PAYNE)

The map $\lim_{\longrightarrow} r_X$ induces a homeomorphism

$$Y^{an} \xrightarrow{\sim} \varprojlim r_X(Y)$$
.

Berkovich spaces

Toric varieties

Toroidal embeddings

Homotopy type

Toroidal embeddings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Let X be a normal variety over k.

An open immersion $X_0 \hookrightarrow X$ is a toroidal embedding without self-intersection if each point of X has a neighborhood U equipped with an étale morphism $\pi : U \to Z$ to a toric variety Z such that $U \cap X_0 = \pi^{-1}(Z_0)$. There is a unique stratification on X lifting locally the toric stratifications.

Example

Assume that X is smooth and let D be a strict normal crossing divisor on X (i.e. locally defined by a product of distinct local coordinates). Then the open immersion $X - D \hookrightarrow X$ is a toroidal embedding.

Analytification

Let *k* be a field endowed with the trivial absolute value. We consider a toroidal embedding $X_0 \hookrightarrow X$ with X irreducible.

• Since X is irreducible, there is a distinguished point $o \in X^{an}$, corresponding to the trivial absolute value on k(X).

Theorem (BERKOVICH, T.)

- (i) There exists a unique pair (𝔅(X₀, X), r_X), consisting of a closed subset 𝔅(X₀, X) ⊂ X^{an} and a retraction r_X : X^{an} → 𝔅(X₀, X), which lifts the pair (𝔅(Z), r_Z) for any étale chart to a toric variety Z.
- (ii) The open subset $\mathfrak{S}(X_0, X) \cap X_0^{an}$ is naturally a conical polyhedral complex with integral structure and vertex o.

Example

If X_0 is the complement of a normal crossing divisor, then $\mathfrak{S}(X_0, X)$ is the cone over the incidence complex of D.

Toroidal deformation

Theorem (BERKOVICH, T.)

The strong deformation retraction of an analytic toric varietiy Z^{an} onto its skeleton $\mathfrak{S}(Z)$ has a canonical extension to toroidal embeddings.

- For any étale chart $U \rightarrow Z$ to a toric variety, the action of the formal torus $\widehat{T_1} \simeq \text{Spf}(k[[t_1, ..., t_d]])$ lifts canonically to U.
- This induces an action of

$$\widehat{\mathsf{T}_1}^{\mathrm{an}} = \bigcup_{\varepsilon \in [0,1)} \mathsf{T}^1(\varepsilon)$$

on U^{an}.

• Whereas the action of $\widehat{T_1}$ on U depends on the chart, the orbits of $T^1(\varepsilon)$ are well-defined for any $\varepsilon \in [0, 1)$. The strong deformation retraction of X^{an} onto $\mathfrak{S}(X_0, X)$ follows.

An application to singularities

Assume now that X_0 is the complement of a strict normal crossing divisor D on a smooth variety X with incidence complex $\Delta(D)$.

The open subspace $X_0^{an} - r_X^{-1}(o)$ has a deformation retraction onto $\mathfrak{S}(X_0, X) - \{o\} \simeq \Delta(D) \times (0, 1)$, hence is homotopy equivalent to $\Delta(D)$.

Theorem (D. STEPANOV, T.)

Let X be an irreducible algebraic variety over a perfect field k. For any two proper morphisms $f_i: X_i \to X$ such that X_i is regular, $D_i = f_i^{-1}(Y)_{red}$ is a strict normal crossing divisor and f_i is an isomorphism over X – Y, the incidence complexes of D_1 and D_2 have the same homotopy type.

Proof. Both spaces $(X_1)_0^{an} - r_{X_1}^{-1}(o_1)$ and $(X_2)_0^{an} - r_{X_2}^{-1}(o_2)$ are homeomorphic to a punctured tubular neighborhood of Y^{an} in X^{an}.

Berkovich spaces

Toric varieties

Toroidal embeddings

Homotopy type

Homotopy type

▲ロト▲園ト▲目ト▲目ト 目 のへで

Problem

As before, let *k* be a field endowed with the trivial absolute value. Given an irreducible *k*-scheme of finite type X, we would like to understand the **homotopy type** of X^{an} . **Observation:** If X is smooth, then X^{an} is **contractible**. Indeed, $X \hookrightarrow X$ is a toroidal embedding and $\mathfrak{S}(X,X) = \{o\}$.

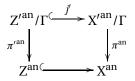
Theorem (J.A. DE JONG)

There exist a proper closed subset Z of X and a proper morphism $X' \rightarrow X$ endowed with an admissible action of a finite group Γ , such that:

- (i) X' is smooth over a finite extension of k;
- (ii) $Z' = f^{-1}(Z)_{red}$ is a strict normal crossing divisor;
- (iii) the morphism $(X' Z')/\Gamma \rightarrow X Z$ induced by f is radicial.

Question: is it possible to describe the homotopy type of X^{an} from such a desingularization?

DE JONG's theorem gives a cartesian diagram of topological spaces



where π^{an} is proper and induces a homeomorphism over $X^{an} - Z^{an}$.

Fundamental Lemma

If the closed immersion *j* is a cofibration (homotopy lifting property), then

$$\mathbf{X}^{\mathrm{an}} \sim \mathbf{X'}^{\mathrm{an}} / \Gamma \ \sqcup_{\pi,1} \ \left(\mathbf{Z'}^{\mathrm{an}} / \Gamma \right) \times [0,1] \ \sqcup_{0,\pi'} \ \mathbf{Z}^{\mathrm{an}}.$$

Tubular neighborhoods

Let D be a strict normal crossing divisor on a smooth *k*-variety X. There exists a function $\tau : X^{an} \to [0, 1]$ locally equal to |f| for any local equation f of D.

Definition

The tubular neighborhood of D in X is the k-analytic space

 $T_{X|D} = \tau^{-1}([0,1)).$

By a careful analysis of the formal torus action on X, one proves the

Theorem (Tubular Theorem, 1)

There is a strong deformation retraction of $T_{X|D}$ onto D^{an} . In particular, the closed immersion $D^{an} \hookrightarrow X^{an}$ is a cofibration.

Another application to singularities

Theorem

Let X be a smooth and irreducible k-variety endowed with an admissible action of a finite group G. Assume that the singular locus of X/G is smooth (e.g. isolated singularities). For any resolution of singularities, the incidence complex of the exceptional divisor is contractible.

Proof. On the one hand, the analytic space X^{an}/G is contractible. On the other hand, it is homotopy equivalent to the suspension of the incidence complex.

Theorem

Let X be any k-variety and let $X_{\bullet} \to X$ be a cubical resolution of X obtained by iterated resolutions of singularities. Then the geometric realization of $\pi_0(X_{\bullet})$ is homotopy equivalent to X^{an} .

Homotopy type of analytic spaces

Let D be a strict normal crossing divisor on a smooth *k*-variety X.

Theorem (Tubular theorem, 2)

There is a strong deformation retraction of X^{an} onto $\mathfrak{S}(X_0, X) \cup D^{an}$.

- By induction on the dimension, this result implies that the analytification of any algebraic variety over *k* has a strong deformation retraction onto a closed polyhedral subspace.
- Similar arguments apply more generally for any discretely valued non-Archimedean field (work over k°) and give an alternative proof of HRUSHOVSKI-LOESER's theorem.
- Assuming discrete valuation, a suitable version of DE JONG's theorem holds locally for any separated non-Archimedean analytic space (U. HARTL). By standard arguments on cubical spaces, one can deduce that any such space is homotopy equivalent to a locally finite polyhedron.