4. Sous-groupes distingués, groupes symétriques et actions de groupes

Exercice 1. Soit G un groupe. On fait opérer G sur l'ensemble de ses sous-groupes par automorphismes intérieurs : étant donnés un sous-groupe H de G et un élément $g \in G$, on pose $g.H = gHg^{-1}$.

Le stabilisateur d'un sous-groupe H sous cette action est le normalisateur de H dans G:

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\}.$$

- 1. Quel est le normalisateur d'un sous-groupe distingué ? Est-ce une caractérisation des sous-groupes distingués ?
- 2. Vérifier que N_G(H) est le plus grand sous-groupe de G dans lequel H soit distingué.
- 3. Déterminer le normalisateur du sous-groupe de \mathfrak{S}_4 engendré par les transposition (1,2) et (3,4).

Exercice 2. (Produit direct) 1. Soit G un groupe et soient H et K deux sous-groupes distingués de G tels que $H \cap K =$ {*e*}.

Montrer que l'on a hk = kh pour tous $h \in H$, $k \in K$. En déduire que $HK = \{hk \in G, h \in H \text{ et } k \in K\}$ est un sous-groupe de G isomorphe au groupe produit H × K.

- 2. Application. Soit G un groupe abélien fini d'ordre n. Pour tout nombre premier p, on désigne par G(p) l'ensemble des éléments de G dont l'ordre est une puissance de p.
 - Vérifier que G(p) est un sous-groupe de G (appelé la *composante p-primaire* de G).
 - Démontrer que G est isomorphe au produit direct des groupes G(p), p|n.
 - Démontrer qu'un groupe abélien H d'ordre n est isomorphe à G si et seulement si, pour tout diviseur premier p de n, les groupes G(p) et H(p) sont isomorphes.

Exercice 3. Soit G un groupe fini, soit p le plus petit facteur premier de |G| et soit H un sous-groupe de G d'indice p. L'objectif est de démontrer que H est distingué.

- 1. On considère l'action de G sur l'ensemble G/H des classes à gauche modulo H définie par g.aH = aH. Démontrer que tout sous-groupe de G opère soit transitivement, soit trivialement (c'est-à-dire fixe chaque point).
 - 2. En déduire que H est un sous-groupe distingué de G.

Exercice 4. Dresser la liste des éléments du groupe \mathfrak{S}_n ainsi que sa table de multiplication pour $2 \le n \le 4$.

Exercice 5. Soient
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$$
 et $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}$ dans \mathfrak{S}_5 .

1. Expliciter les permutations $\sigma \tau$, $\tau \sigma$, $\sigma^2 \tau$ et $\sigma \tau^{-1}$.

- 2. Déterminer l'ordre de σ , τ et $\sigma\tau$.
- 3. Écrire τ comme un produit de transpositions de la forme (i, i+1) $(1 \le i \le 4)$ puis comme un produit de transpositions de la forme (1,i) $(2 \le i \le 5)$.
 - 4. Décomposer σ en produit de cycles de supports disjoints. 5. Expliciter σ^{2008} et τ^{2008} .

Exercice 6. 1. Étant donné un cycle $c = (a_1, a_2, \dots, a_m)$ dans \mathfrak{S}_n , démontrer que l'on a

$$\sigma c \sigma^{-1} = (\sigma(a_1), \sigma(a_2), \dots, \sigma(a_m))$$

pour toute permutation $\sigma \in \mathfrak{S}_n$. En déduire que deux permutations sont conjuguées dans \mathfrak{S}_n si et seulement si les longueurs des cycles intervenant dans leur décomposition canonique en un produit de cycles disjoints sont les mêmes.

2. Déterminer toutes les classes de conjugaison dans \mathfrak{S}_5 .

Exercice 7. Les permutations suivantes sont-elles conjuguées dans \mathfrak{S}_7 ? Si oui, donner explicitement un élément τ de \mathfrak{S}_7 tel que $\sigma' = \tau \sigma \tau^{-1}$.

Exercice 8. Soit $n \ge 2$ un nombre entier. Démontrer que le groupe \mathfrak{S}_n est engendré par

- 1. les n-1 transpositions de la forme (i,i+1), $1 \le i \le n-1$ (Indication: récurrence sur n);
- 2. les n-1 transpositions de la forme (1,i), $2 \le i \le n$;
- 3. la transposition (1,2) et le *n*-cycle $(1,2,\ldots,n)$.

Exercice 9. On rappelle que le groupe alterné \mathfrak{A}_n est le sous-groupe de \mathfrak{S}_n constitué des permutations paires et on suppose $n \ge 3$.

- 1. Démontrer que le produit de deux transpositions est un produit de 3-cycles.
- 2. En déduire que le groupe \mathfrak{A}_n est engendré par les 3-cycles.
- 3. Démontrer que tout élément de \mathfrak{A}_n peut s'écrire sous la forme d'un produit de carrés d'éléments de \mathfrak{S}_n .

Exercice 10. 1. Combien y a-t-il d'éléments dans \mathfrak{S}_8 qui se décomposent en un produit de trois cycles disjoints, deux de longueur 2 et un de longueur 3?

2. Combien y a-t-il de *m*-cycles dans \mathfrak{S}_n ?

Exerice 11. Soit
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 3 & 2 & 1 \end{pmatrix} \in \mathfrak{S}_6$$
.

1. Quel est le nombre d'inversions de σ ? En déduire la signature de cette permutation.

- 2. Décomposer σ en un produit de cycles disjoints et en déduire son ordre.
- 3. Justifier que σ^{2006} est un produit de transpositions disjointes puis les déterminer explicitement.
- 4. Combien y a-t-il d'éléments dans la classe de conjugaison de σ ?
- 5. Décomposer σ en un produit de transpositions de la forme (1,i), $2 \le i \le 6$.

Exercice 12. Décrire les classes de conjugaison dans $GL(N, \mathbb{C})$.

Exercice 13. (Commutateurs et groupe dérivé) Soit G un groupe. Étant donnés deux éléments x et y de G, leur commutateur est par définition l'élément $[x,y] = x^{-1}y^{-1}xy$.

On appelle groupe dérivé de G le sous-groupe D(G) de G engendré par les commutateurs $[x,y], x, y \in G$.

- 1. À quelle condition sur G a-t-on $D(G) = \{e\}$?
- 2. Vérifier que D(G) est un sous-groupe distingué de G.
- 3. Démontrer que le groupe quotient G/D(G) est abélien puis vérifier que, pour tout homomorphisme f de G dans un groupe abélien, Ker(f) contient D(G).

Exercice 14. (Groupe dérivé du groupe \mathfrak{S}_n) On utilise les notations de l'exercice précédent.

- 1. Si n > 5, démontrer que deux 3-cycles sont toujours conjugués par un élément de \mathfrak{A}_n .
- 2. On suppose encore $n \ge 5$. Étant donné un 3-cycle $\sigma \in \mathfrak{A}_n$, démontrer qu'il existe une permutation $\tau \in \mathfrak{A}_n$ telle que $\sigma = [\sigma, \tau]$. (*Indication : écrire* $\sigma = \sigma^{-1}\sigma^2$)
 - 3. En déduire que l'on a $D(\mathfrak{A}_n) = \mathfrak{A}_n$ pour $n \ge 5$. (Indication : utiliser l'exercice 9)
 - 4. Démontrer que l'on a $D(\mathfrak{S}_n) = \mathfrak{A}_n$ pour tout $n \geq 2$. (1)

Exercice 15. Soit p un nombre premier et soit G un groupe fini dont le cardinal est une puissance de p. Le but de cet exercice est de démontrer que le centre de G n'est pas réduit à l'élément neutre.

- 1. Supposons que G opère sur un ensemble fini X et désignons par X^G l'ensemble des points fixes de X sous G. Démontrer que l'on a $|X| \equiv |X^G| \pmod{p}$.
 - 2. Déduire de la question précédente que le centre de G n'est pas réduit à l'élément neutre.

Exercice 16. (Théorème de Cauchy) Soit G un groupe fini d'ordre n et soit p un diviseur premier de n. Le but de cet exercice est de démontrer que G contient un élément d'ordre p.

On considère l'ensemble $X=\{(x_1,\ldots,x_p)\in G^p\mid x_1\ldots x_p=e\}$ et on note σ le cycle dans $\mathfrak{S}(X)$ défini par $\sigma(x_1, x_2, \dots, x_p) = (x_2, x_3, \dots, x_p, x_1).$

Déterminer le cardinal de X, l'ordre de la permutation σ et l'ensemble de ses points fixes. Finalement, conclure.

⁽¹⁾ étant donné un corps k, Évariste Galois (1811-1832) a décrit une correspondance très précise entre les propriétés des groupes finis et celles des racines x des équations algébriques f(x) = 0, où $f \in k[T]$ est un polynôme. Dans ce dictionnaire, les résultats 3 et 4 impliquent le fait suivant : il est en général impossible de résoudre une équation de degré ≥ 5 en n'utilisant que des racines n-èmes successives! (Voir par exemple le livre Théorie de Galois de J.-P. Escoffier, chez Dunod)