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4. SOUS-GROUPES DISTINGUÉS, GROUPES SYMÉTRIQUES ET ACTIONS DE GROUPES

(Corrigé partiel)

Exerice 2.1. Soit G un groupe et soient H, K deux sous-groupes distingués de G tels que H∩K = {e}.
Quels que soient les élémentsh∈ H etk∈ K, h−1k−1h∈ K puisque K est distingué et donch−1k−1hk∈ K ; on a de

mêmek−1h−1k∈ H et donch−1k−1hk∈ H. Comme H∩K = {e}, h−1k−1hk= e et donchk= kh.
Considérons l’applicationf : H×K → G, (h,k) 7→ hk. Il s’agit d’un homomorphisme de groupes puisque

f ((h,k)(h′,k′)) = f (hh′,kk′) = (hh′)(kk′) = hh′kk′ = hkh′k′ = f (h,k) f (h′,k′)

en vertu de ce qui précède. Si(h,k) ∈ H×K est contenu dans le noyau def , hk= e; on a alorsh = k−1 ∈ H∩K et
donch= k = e, ce qui prouve quef est injectif. L’image def étant le sous-groupe HK de G constitué des éléments de
la formehk, h∈ H etk∈ K, nous avons démontré que ce sous-groupe de G est isomorphe au groupe produit H×K.

1bis. Considérons plus généralement un groupe G et des sous-groupes distingués H1, . . . ,Hn de G. Quels que soient
les élémentsi et j de{1, . . . ,n}, HiH j = H jHi est un sous-groupe distingué de G : en effet, pour toushi ∈ Hi , h j ∈ H j

et g∈ G,
hih j = hih jh

−1
i hi = (hih jh

−1
i )hi ∈ H jHi et g(hih j)g

−1 = ghig
−1ghjg

−1 ∈ HiH j .

En raisonnant par récurrence surn, on en déduit que, pour touti ∈ {1, . . . ,n},

Ĥi = H1 . . .Hi−1Hi+1 . . .Hn

est un sous-groupe distingué de G.

Supposons maintenant que l’on ait Hi ∩ Ĥi = {e} pour tout i ∈ {1, . . . ,n}. Nous allons vérifier que, sous cette
hypothèse, le sous-groupe H1H2 . . .Hn de G est isomorphe au groupe produit H1×H2× . . .×Hn.

Observons tout d’abord que l’on ahih j = h jhi pour toushi ∈ Hi et h j ∈ H j si i 6= j puisque

h−1
j h−1

i h jhi ∈ Hi ∩H j ⊂ Hi ∩ Ĥi = {e}.

Il en découle que l’application

f : H1× . . .×Hn → G, (h1, . . . ,hn) 7→ h1 . . .hn

est un homomorphisme de groupes. Si(h1, . . . ,hn) appartient au noyau def , alorsh1 . . .hn = eet donc, pour touti, hi

est le produit desh−1
j avec 1≤ j ≤ n et j 6= i ; on a ainsihi ∈ Hi ∩ Ĥi = {e} pour touti et donch1 = . . . = hn = e.

L’homomorphismef est par conséquent injectif, et il réalise ainsi un isomorphisme du groupe produit H1× . . .×Hn

sur le sous-groupe H1 . . .Hn de G.

2. Soit maintenant G un groupe abélien fini d’ordren. Quel que soit le nombre premierp, on désigne par G(p)
l’ensemble des élémentsg de G dont l’ordre est une puissance dep ; il s’agit d’un sous-groupe de G car

ord(gh)|ord(g)ord(h)

en vertu de la commutativité de G, et ord(gh) est donc une puissance dep si tel est le cas de ord(g) et ord(h). Notons
que G(p) = {e} si p ne divise pas l’ordren de G puisque ord(g)|n pour toutg∈ G.

– Quel que soit le nombre premierp divisant n, G(p)∩ (G(q1) . . .G(qr)) = {e} si q1, . . . ,qr sont les facteurs
premiers den distincts dep : en effet, l’ordred d’un élémentg de G(q1) . . .G(qr) est un produit de puissances de
q1, . . . ,qr et ce ne peut être simultanément une puissance dep que sid = 1, c’est-à-direg = e. Comme tout sous-
groupe d’un groupe abélien est distingué, nous sommes en mesure d’appliquer le résultat de la question précédente et
nous en déduisons que l’homomorphisme

iG : ∏
p|n

G(p) → G, (gp)p|n 7→ ∏
p|n

gp

est un isomorphisme sur un sous-groupe de G. En fait, l’homomorphismeiG est surjectif : écrivons en effetn sous la
formen= ∏p|n pvp(n) et posonsmp = n/pvp(n) pour tout diviseur premierp den. Les nombres entiermp sont premiers
entre eux dans leur ensemble et l’on dispose par conséquent une relation de Bézout

1 = ∑
p|n

upmp.



Soit alorsg∈ G et posonsgp = gupmp. Comme

gp
pvp(n)

= gp
nup = (gn)up = e

pour tout diviseur premierp den, l’ordre degp est une puissance dep et doncgp ∈ G(p). Puisque

g = g∑p|n upmp = ∏
p|n

gupmp = iG((gupmp)p|n),

cela montre queiG est surjectif. Nous avons ainsi démontré que le groupe G est isomorphe au produit direct de ses
sous-groupes G(p), p|n.

– Considérons finalement deux groupes abéliens finis G et H d’ordre n. Quels que soient l’homomorphisme de
groupesf : G→H et l’élémentg de G, l’ordre def (g) dans H divise l’ordre deg dans G et doncf (G(p))⊂H(p) pour
tout nombre premierp. Notant fp la restriction def au sous-groupe G(p), cela montre quefp est un homomorphisme
du groupe G(p) dans le groupe H(p). Réciproquement, si l’on dispose pour tout nombre premierp d’un homo-
morphisme de groupesϕp : G(p) → H(p), on définit un homomorphisme de groupesϕ : ∏p|n G(p) → ∏p|n H(p) en
posantϕ((gp)p∈|n) = (ϕp(gp))p|n et on en déduit un homomorphisme de groupesf : G→H en posantf = iH ◦ϕ ◦ i−1

G .
Cette discussion prouve que l’applicationf 7→ ( fp)p|n réalise une bijection entre l’ensemble des homomorphismesdu
groupe G dans le groupe H et l’ensemble des familles(ϕp)p|n d’homomorphismes des groupes G(p) dans les groupes
H(p). Les isomorphismes de G sur H correspondent aux familles(ϕp)p∈P constituées d’isomorphismes de G(p) sur
H(p), de sorte que les groupes abéliens G et H sont isomorphes si etseulement si, pour tout nombre premierp divisant
leur ordre, les groupes G(p) et H(p) sont isomorphes.

Remarque – Le résultat que l’on vient d’établir à la question2 constitue la première étape en vue de la classification
des groupes abéliens finis : pour comprendre un groupe abélien fini, il suffit de comprendre toutes ses composantes
p-primaires, qui sont des groupes plus élémentaires. La seconde étape fait l’objet de l’exercice 2 de la fiche 5.

Exercice 3.Soit G un groupe fini, soitp le plus petit facteur premier de|G| et soit H un sous-groupe de G d’indicep.
Nous allons démontrer que H est nécessairement un sous-groupe distingué de G.

1. Considérons l’action suivante de G sur l’ensemble G/H des classes à gauche modulo H :

G× (G/H)→ G/H, (g,aH) 7→ (ga)H.

(Attention, il y a une erreur dans l’énoncé !)
Soit K un sous-groupe de G et soitaH un élément de G/H. Le stabilisateur deaH dans K est le sous-groupe

constitué des élémentsk tels quekaH = aH, c’est-à-dire tels queka∈ aH ; c’est donc le sous-groupe Ka = K∩aHa−1.
L’orbite Oa deaH sous K est l’ensemble des classeskaH, k∈ K ; c’est un sous-ensemble de G/H dont le cardinal est
l’indice de Ka dans K :

|Oa| = (K : Ka).

Puisque l’ordre de K divise l’ordre de G en vertu du théorème de Lagrange, nous en déduisons que le cardinal de
Oa est un diviseur de l’ordre de G, compris entre 1 et|G/H| = (G : H) = p. Vu l’hypothèse initiale, cela conduit à
l’alternative suivante :

– soit |Oa| = p = |G/H|, auquel cas Oa = G/H ;
– soit |Oa| = 1, auquel cas Ka = K.

De deux choses l’une : s’il existe un élémenta∈ G/H tel que Oa soit de cardinalp, alors Oa = G/H et l’action du
groupe K sur G/H est transitive ; sinon,|Oa| = 1 pour toute classeaH ∈ G/H et le groupe K agit sur G/H en fixant
chaque élément (action triviale).

2. Le sous-groupe H de G ne peut certainement pas opérer transitivement sur G/H : en effet, H fixe la classe
eH = H de l’élément neutre dans G/H et il y a donc au moins deux orbites distinctes sous H dans G/H. Vu la
première question, nous en concluons que le groupe H opère sur G/H en fixant chaque élément : pour toush∈ H et
a∈ G,

haH = aH, c’est-à-dire a−1ha∈ H,

et H est donc un sous-groupe distingué de G.

Exercice 5.Soientσ =

(
1 2 3 4 5
2 1 4 5 3

)
et τ =

(
1 2 3 4 5
5 3 4 2 1

)
.

1.στ =

(
1 2 3 4 5
3 4 5 1 2

)
, τσ =

(
1 2 3 4 5
3 5 2 1 4

)
, σ2τ =

(
1 2 3 4 5
4 5 3 2 1

)
, στ−1 =

(
1 2 3 4 5
3 5 1 4 2

)
.



2 & 4. La décomposition deσ en produit de cycles de supports disjoints estσ = (1,2)(3,4,5) ; on a donc ord(σ) =
ppcm(2,3) = 6.

La décomposition deτ est produit de cycles de supports disjoints estτ = (1,5)(2,3,4) ; on a donc ord(τ) =
ppcm(2,3) = 6.

La permutationστ est le cycle(1,3,5,2,4) ; on a donc ord(στ) = 5.

3. Partons deτ = (1,5)(2,3,4). En conjuguant le cycle(1,5) par la transposition échangeant 1 et 2, on obtient
(1,5) = (1,2)(2,5)(1,2) (voir la première question de l’exercice suivant), puis

(1,5) = (1,2)(2,3)(3,5)(2,3)(1,2) = (1,2)(2,3)(3,4)(4,5)(3,4)(2,3)(1,2).

On a d’autre part(2,3)(2,3,4) = (3,4), donc(2,3,4) = (2,3)(3,4), et finalement

τ = (1,2)(2,3)(3,4)(4,5)(3,4)(2,3)(1,2)(2,3)(3,4).

Enfin,(2,3) = (1,2)(1,3)(1,2) et (3,4) = (1,3)(1,4)(1,3), donc

τ = (1,5)(2,3)(3,4) = (1,5)(1,2)(1,3)(1,2)(1,3)(1,4)(1,3).

5. En vertu de la décomposition canonique des permutationsσ et τ ,

σ2008= (1,2)2008(3,4,5)2008 = (3,4,5) et τ2008= (1,5)2008(2,3,4)2008 = (2,3,4)

car 2008≡ 0 (mod 2) et 2008≡ 1 (mod 3).

Exercice 6.1. Soitc = (a1, . . . ,am) un cycle de longueurm dansSn ; rappelons que, par définition,c est la permu-
tation de{1, . . . ,n} égale à l’identité sur le complémentaire de{a1, . . . ,am} et telle quec(a1) = a2, . . . ,c(am−1) =
am,c(am) = a10.

Considérons une permutationσ dansSn. Pour touti ∈ {1, . . . ,m},

σcσ−1(σ(ai)) = σ(c(ai)) =

{
σ(ai+1) si i ≤ m−1
σ(a1) si i = m

.

D’autre part, pour tout élémentk de {1, . . . ,n} n’appartenant par à{σ(a1), . . . ,σ(am)}, σ−1(k) n’appartient pas à
{a1, . . . ,am}, doncc(σ−1(k)) = σ−1(k) et finalementσcσ−1(k) = k. Nous venons de vérifier que la permutation
σcσ−1 est le cycle(σ(a1), . . . ,σ(am)).

Nous allons maintenant vérifier que deux éléments deSn sont conjugués si et seulement si les longueurs des cycles
intervenant dans leurs décompositions canoniques en produits de cycles de supports disjoints sont les mêmes (voir
l’exercice suivant pour deux exemples explicites).

C’est une condition nécessaire. Soitτ ∈Sn une permutation et soitτ = ∏i∈I ci la décomposition deτ en un produit
de cycles de supports disjoints. Quelle que soit la permutation σ ∈ Sn, στσ−1 = ∏i∈I σciσ−1 est une décomposition
deτ en produit de cycles de supports disjoints en vertu de ce qui précède. Comme la décomposition d’une permutation
en produit de cycles de supports disjoints est unique à l’ordre des facteurs près et comme les cyclesci et σciσ−1 ont
la même longueur, nous en déduisons que la condition est nécessaire.

C’est une condition suffisante. Considérons réciproquement deux permutationsσ1,σ2 ∈Sn dont les décomposition
en produit de cycles de supports disjoints s’écrivent sous la forme

σ1 = ∏
i∈I

c(1)
i et ∏

i∈I

c(2)
i

avec longueur
(

c(1)
i

)
= longueur

(
c(2)

i

)
pour tout i ∈ I. Désignant respectivement par E(1)

i et E(2)
i les supports des

cyclesc(1)
i etc(2)

i , on peut choisir pour touti ∈ I une bijectionτi de E(1)
i sur E(2)

i telle que

τic
(1)
i τ−1

i = c(2)
i ;

en effet, si l’on écritc(1)
i = (a(1)

1 , . . . ,a(1)
m ) etc(2)

i = (a(2)
1 , . . . ,a(2)

m ), il suffit de poserτi(a
(1)
k ) = a(2)

k . Comme E(1)
i ∩E(1)

j =

E(2)
i ∩E(2)

j = ∅ si i 6= j, il existe alors une unique bijection

τ : E(1) =
⋃

i∈I

E(1)
i → E(2) =

⋃

i∈I

E(2)
i



coïncidant avecτi sur E(1)
i pour touti ∈ I. Enfin, les sous-ensembles E(1) et E(2) de{1, . . . ,n} ayant le même cardinal,

on peut prolongerτ en une permutation de{1, . . . ,n} en choisissant n’importe quelle bijection de{1, . . . ,n}−E(1) sur

{1, . . . ,n}−E(2). Par construction deτ , τc(1)
i τ−1 = c(2)

i pour touti ∈ I et donc

τσ1τ−1 = ∏
i∈I

τc(1)
i τ−1 = ∏

i∈I

c(2)
i = σ2.

Nous avons ainsi vérifié que la condition est suffisante.

2. En vertu de la question précédente, il y a sept classes de conjugaison dansS5 :
– {1},
– l’ensemble des transpositions,
– l’ensemble des cycles de longueur 3,
– l’ensemble des cycles de longueur 4,
– l’ensemble des cycles de longueur 5,
– l’ensemble des produits de deux transpositions de supports disjoints,
– l’ensemble des produits d’une transposition et d’un cyclede longueur 3 de supports disjoints.

Exercice 7.1. Les décompositions canoniques deσ et σ ′ sont

σ = (1,5)(2,3,4)(6,7) et σ ′ = (1,2,5)(3,7)(4,6).

Puisque les longueurs des cycles figurant dans chacune de cesdécompositions sont les mêmes – en l’occurence, deux
cycles de longueur 2 et un cycle de longueur 3 – les permutationsσ et σ ′ sont conjuguées. Définissonsτ ∈ S7 par

τ(1) = 3, τ(5) = 7, τ(6) = 4, τ(7) = 6, τ(2) = 1, τ(3) = 2, τ(4) = 5 ;

on a

τστ−1 = τ(1,5)τ−1τ(2,3,4)τ−1τ(6,7)τ−1

= (τ(1),τ(5))(τ(2),τ(3),τ(4))(τ(6),τ(7))

= (3,7)(4,6)(1,2,5) = σ ′.

2. On aσ = (1,2,6,7)(3,5,4) etσ ′ = (1,3,4)(2,6)(5,7) ; comme les cycles apparaissant dans les décompositions
canoniques des permutationsσ et σ ′ n’ont pas les mêmes longueurs, ces permutations ne sont pas conjuguées.

Exercice 16.Soit G un groupe fini d’ordren et soitp un nombre premier divisantn.
L’ensemble X= {(x1, . . . ,xp) ∈ Gp | x1 . . .xp = e}, où e est l’élément neutre de G, est de cardinalnp−1. En effet,

l’application
Gp−1 → Gp, (x1, . . . ,xp−1) 7→

(
x1, . . . ,xp−1,(x1 . . .xp−1)

−1)

réalise une bijection entre Gp−1 et X.
La permutationσ est d’ordrep ; en effet,σ 6= id et σ p = id, donc ord(σ) = p.
La permutationσ fixe le point(x1, . . . ,xp−1,xp) de X si et seulement si

σ(x1, . . . ,xp−1,xp) = (x2, . . . ,xp,x1) = (x1, . . . ,xp−1,xp),

donc si et seulement six1 = x2 = . . . = xp−1 = xp. Par conséquent, l’application G→ Gp, g 7→ (g,g, . . . ,g) induit une
bijection entre le sous-ensemble{g∈ G | gp = e} de G et l’ensemble Xσ des points fixes deσ dans X. Observons que
Xσ est non vide puisqu’il contient l’élément(e,e, . . . ,e).

L’action du groupeZ sur X définie parn.x = σn(x) induit une action du groupe cycliqueZ/pZ puisqueσ est
d’ordre p. Si un pointx de X n’est pas fixé parσ , son stabilisateur est un sous-groupe strict deZ/pZ (c’est-à-dire
distinct du groupeZ/pZ) et donc est réduit à l’élément neutre ; l’orbite dex est alors de cardinalp. Vu l’équation aux
classes

|X| = |Xσ |+ ∑
orbites O non réduites
à un élément

|O|

et le fait quep divise |X| = |G|p−1, nous en déduisons quep divise |Xσ |. Enfin, comme|Xσ | ≥ 1, la permutationσ a
au moinsp points fixes distincts dans X et il existe par conséquent un élémentg de G tel queg 6= e et gp = e. Nous
avons ainsi démontré que le groupe G contient au moins un élément d’ordrep (thèorème de Cauchy).


