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4. SOUS-GROUPES DISTINGUES, GROUPES SYMETRIQUES ET ACTIONS DE GROUPES
(Corrigé partiel)

Exerice 2.1. Soit G un groupe et soient H, K deux sous-groupes distgdaéG tels que KK = {e}.

Quels que soient les élémeiiits H etk € K, h~tk—th € K puisque K est distingué et doic*k—thk € K ; on a de
mémekth~1k € H et donch~tk—thk € H. Comme HWK = {e}, h~tk—thk = e et donchk = kh.

Considérons I'applicatiori : H x K — G, (h,k) — hk. Il s’agit d’'un homomorphisme de groupes puisque

f((h,k)(h,K)) = f(hh kK) = (hH)(kK) = hhkK = hkHk' = f(h,k)f(h',K)
en vertu de ce qui précéde. @i k) € H x K est contenu dans le noyau dehk = e; on a alorsh =k 1 ¢ HNK et
donch =k =g, ce qui prouve qué est injectif. Limage def étant le sous-groupe HK de G constitué des éléments de
la formehk, h € H etk € K, nous avons démontré que ce sous-groupe de G est isomargiewgpe produit H K.
1bis. Considérons plus généralement un groupe G et degsouiges distingués Hl. .., H, de G. Quels que soient
les élémentset j de{1,...,n}, HiH; = H;H; est un sous-groupe distingué de G : en effet, pour ipagsH;, h; € H;
etge G,
hihj = hihjhi_lhi = (hihjhi_l)hi € HjH; et g(hihj)g‘l = ghg‘lghjg‘l € HiH;.
En raisonnant par récurrence syion en déduit que, pour tout {1,...,n},
Hi =Hi...Hi_1Hiz1... Hn
est un sous-groupe distingué de G.

Supposons maintenant que I'on aif hH; = {e} pour touti € {1,...,n}. Nous allons vérifier que, sous cette
hypothése, le sous-groupgtb ...H, de G est isomorphe au groupe produitH; x ... x Hp.
Observons tout d’abord que I'onhgh; = h;h; pour toush; € H; eth; € Hj sii # j puisque

hj_lhi_lhjhi €eHiNH; C Hiﬂ/l'\h = {e}
Il en découle que 'application

est un homomorphisme de groupes(l&i ..., h,) appartient au noyau di alorsh; ... h, = eet donc, pour tout, h;
est le produit deh;l avec 1< j<netj#i;onaainsh; € Hin ﬁi = {e} pour touti etdonch; =...=hy=e.
L’homomorphismef est par conséquent injectif, et il réalise ainsi un isomisrple du groupe produitHx ... x Hy
sur le sous-groupe H..H, de G.
2. Soit maintenant G un groupe abélien fini d’ordteQuel que soit le nombre premi@r on désigne par @)
I'ensemble des élémengsde G dont I'ordre est une puissanceigl s’'agit d’'un sous-groupe de G car

ord(gh)|ord(g)ord(h)

en vertu de la commutativité de G, et ¢gtl) est donc une puissance feai tel est le cas de ofd) et ord’h). Notons
que G p) = {e} si p ne divise pas 'ordre de G puisque or@) |n pour toutg € G.

— Quel que soit le nombre premigr divisantn, G(p) N (G(au)...G(qr)) = {e} si th,...,qr sont les facteurs
premiers den distincts dep : en effet, 'ordred d’'un élémentg de G(q;)...G(qr) est un produit de puissances de
di,--.,0 €t ce ne peut étre simultanément une puissance giee sid = 1, c’'est-a-direg = e. Comme tout sous-
groupe d’'un groupe abélien est distingué, nous sommes ameng'appliquer le résultat de la question précédente et
nous en déduisons que I’homomorphisme

ic:[]G(P) =G, (Fp)pn— ]9
pin pin
est un isomorphisme sur un sous-groupe de G. En fait, I'hoonphismeig est surjectif : écrivons en effetsous la

formen =y p* (" et posonsn, = n/p" (" pour tout diviseur premigp den. Les nombres entien, sont premiers
entre eux dans leur ensemble et I'on dispose par conséguemelation de Bézout

1="3 upmp.
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Soit alorsg € G et posonglp = g**™. Comme

Vp(n) nu nyu
gpp =0p b= (gM* =e

pour tout diviseur premiep den, I'ordre deg,, est une puissance geet doncg, € G(p). Puisque

g=g2en®™ = [ g™ =ic((g""™)pp):
pin
cela montre quég est surjectif. Nous avons ainsi démontré que le groupe Gsestdrphe au produit direct de ses
sous-groupes @), p|n.

— Considérons finalement deux groupes abéliens finis G et Hd'o. Quels que soient 'homomorphisme de
groupesf : G — H et I'’élémentg de G, I'ordre def (g) dans H divise I'ordre dg dans G et doné¢ (G(p)) C H(p) pour
tout nombre premiep. Notantf, la restriction def au sous-groupe (), cela montre qué, est un homomorphisme
du groupe Gp) dans le groupe ). Réciproquement, si I'on dispose pour tout nombre prerpiefun homo-
morphisme de groupefy, : G(p) — H(p), on définit un homomorphisme de groups [, G(p) — [pnH(P) €n
posantd ((9p) pe|n) = (@p(9p)) pin €L ON €N déduit un homomorphisme de groupe& — H en posanf =iyo¢ oigl.
Cette discussion prouve que I'applicatibr- (f,),, réalise une bijection entre I'ensemble des homomorphigtues
groupe G dans le groupe H et 'ensemble des familgg ,» d’nomomorphismes des groupesg} dans les groupes
H(p). Les isomorphismes de G sur H correspondent aux fanfifigi,c » constituées d'isomorphismes de i sur
H(p), de sorte que les groupes abéliens G et H sont isomorphesesiletment si, pour tout nombre premedivisant
leur ordre, les groupes(®) et H(p) sont isomorphes.

Remarque — Le résultat que I'on vient d’établir a la questBbeonstitue la premiére étape en vue de la classification
des groupes abéliens finis : pour comprendre un groupe abélig il suffit de comprendre toutes ses composantes
p-primaires, qui sont des groupes plus élémentaires. Largie étape fait I'objet de I'exercice 2 de la fiche 5.

Exercice 3.Soit G un groupe fini, soip le plus petit facteur premier d&| et soit H un sous-groupe de G d’indipe
Nous allons démontrer que H est nécessairement un sougegdistingué de G.
1. Considérons l'action suivante de G sur I'ensemblél@es classes a gauche modulo H :

Gx (G/H) — G/H, (g,aH) — (ga)H.

(Attention, il y a une erreur dans I'énoncg !

Soit K un sous-groupe de G et saitl un élément de @H. Le stabilisateur daH dans K est le sous-groupe
constitué des élémernitgels quekaH = aH, c’est-a-dire tels qukac aH ; c’est donc le sous-groupe= K naHa 1.
L'orbite O, deaH sous K est 'ensemble des clasg&esl, k € K; c’est un sous-ensemble de/id dont le cardinal est
I'indice de Ky dans K :

|Oal = (K: Ka).
Puisque l'ordre de K divise I'ordre de G en vertu du théorérmd.dgrange, nous en déduisons que le cardinal de
O, est un diviseur de I'ordre de G, compris entre 1&tH| = (G : H) = p. Vu I'hypothése initiale, cela conduit a
l'alternative suivante :

— s0it|O4| = p=|G/H|, auquel cas @=G/H;

— s0it|O4| = 1, auquel cas K= K.

De deux choses I'une : s'il existe un élémernt G/H tel que Q soit de cardinalp, alors Q = G/H et I'action du
groupe K sur GH est transitive ; sinonO4| = 1 pour toute classaH € G/H et le groupe K agit sur @ en fixant
chaque élément (action triviale).

2. Le sous-groupe H de G ne peut certainement pas opéreititrement sur GH : en effet, H fixe la classe
eH = H de I'élément neutre dans /8 et il y a donc au moins deux orbites distinctes sous H dafid. Gu la
premiére question, nous en concluons que le groupe H opef&/stien fixant chaque élément : pour tdus H et
acgG,

haH = aH, c'est-a-dire a ‘haeH,
et H est donc un sous-groupe distingué de G.
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2 & 4. La décomposition de en produit de cycles de supports disjointsest (1,2)(3,4,5) ; on a donc orflo) =

ppcm2,3) =
La décomposition deg est produit de cycles de supports disjoints Bst (1,5)(2,3,4); on a donc ordr) =

ppcm2,3) =
La permutatiorot est le cycle(1,3,5,2,4) ; on adonc orfo 1) =

3. Partons da = (1,5)(2,3,4). En conjuguant le cyclél,5) par la transposition échangeant 1 et 2, on obtient
(1,5) =(1,2)(2,5)(1,2) (voir la premiere question de I'exercice suivant), puis

(1,5) = (1,2)(2,3)(3,5)(2,3)(1,2) = (1,2)(2,3)(3,4)(4,5)(3,4)(2,3)(1,2).

On a d'autre part2,3)(2,3,4) = (3,4), donc(2,3,4) = (2,3)
=(1,2)(2,3)(3,4)(4,5)(3,4)

3),

2)

(3,4), et finalement
3)(1,2)(2,3)(3,4).

(2,
Enfin, (2,3) = (1,2)(1,3)(1,2) et(3,4) = (1,3)(1,4) donc

1,4)(
=(1,5)(2,3)(3,4) = (1,5)(1,2)(1,3)(1,2)(1,3)(1,4)(1,3).
5. En vertu de la décomposition canonique des permutaticets,
0-2008: (17 2)2008(37 47 5)2008: (37 47 5) et T2008 (1 5)2008(2 3 4)2008 (27 37 4)

car 2008= 0 (mod 2 et 2008= 1 (mod 3.

1,
1

)

Exercice 6.1. Soitc = (ay,...,an) un cycle de longueum dans&,, ; rappelons que, par définition,est la permu-
tation de{1,...,n} égale a l'identité sur le complémentaire f&,...,an} et telle quec(ay) = a,...,c(am-1) =
am, C(am) = &10.

Considérons une permutatiendansS,,. Pour touti € {1,...,m},

oo atwy =t ~{ 5357 31<0

D’autre part, pour tout élémemtde {1,...,n} n'appartenant par &o(ay),...,o(am)}, o0~1(k) n'appartient pas a
{ag,...,am}, doncc(o~1(k)) = o—1(k) et finalementoco~(k) = k. Nous venons de vérifier que la permutation
oco~lestle cycleo(ay),...,o(an)).

Nous allons maintenant vérifier que deux élémentSgleont conjugués si et seulement si les longueurs des cycles
intervenant dans leurs décompositions canoniques en isatiicycles de supports disjoints sont les mémes (voir
I'exercice suivant pour deux exemples explicites).

C’est une condition nécessaioitT € &, une permutation et soit= [J;¢ ¢; la décomposition de en un produit
de cycles de supports disjoints. Quelle que soit la perioatat € G, 010! = [i; 0cio~! est une décomposition
det en produit de cycles de supports disjoints en vertu de cerquéde. Comme la décomposition d’'une permutation
en produit de cycles de supports disjoints est unique arkodes facteurs prés et comme les cyclest oc,o~* ont
la méme longueur, nous en déduisons que la condition estsaoe

C’est une condition suffisant€onsidérons réciproguement deux permutatmng, € G, dont les décomposition
en produit de cycles de supports disjoints s'écrivent satdigrme

(1) (2)
o=[]c’ et C
[]e e T)e

avec longueu c,(l>> Iongueur( c >> pour touti € I. Désignant respectivement pafltet I:f les supports des
cyclesc( ) etcl(z) on peut choisir pour todte | une bijectiont; de Efl sur Efz telle que

(2)

1 =G

r.c( )r

en effet, sil'on ecrlt: (a1 ,- )) etc (a1 - )) il suffit de poser, (al(( )) = al(f). Comme él) N Egl) =
Ei( ' EE ) = I sii = j, il existe alors une unique buectlon

—JEW - E@ = JEP

iel icl



coincidant aveg; sur EV pour touti € I. Enfin, les sous-ensembles'Eet E? de{1,...,n} ayant le méme cardinal,
on peut prolonger en une permutation dgl, ..., n} en choisissant n'importe quelle bijection fie ..., n} — E® sur
{1,...,n} —E®@. Par construction de, ¢V 11 = ¢® pour touti € I et donc

o T = |'| eV l= |'| c? = oy.
IS IS

Nous avons ainsi vérifié que la condition est suffisante.

2. En vertu de la question précédente, il y a sept classesnjiggedson danss :

- {1},

— I'ensemble des transpositions,

— I'ensemble des cycles de longueur 3,

— I'ensemble des cycles de longueur 4,

— I'ensemble des cycles de longueur 5,

— I'ensemble des produits de deux transpositions de supgdisibints,

— I'ensemble des produits d’'une transposition et d’'un cgelédongueur 3 de supports disjoints.

Exercice 7.1. Les décompositions canoniquesalet g’ sont
=(1,5)(2,3,4)(6,7) et o' =(1,2,5)(3,7)(4,6).

Puisque les longueurs des cycles figurant dans chacune déamspositions sont les mémes — en I'occurence, deux
cycles de longueur 2 et un cycle de longueur 3 — les permuotadicet o’ sont conjuguées. Définissons &7 par

1(1)=3,1(5)=7,16)=4,17)=6,12) =113 =2 1(4) =5;
ona
tor ! = (1,51 (23,41 (6,71t
= (1(1),71(9)(1(2),7(3 ),T(4))(T(6),T(7))
= (3,7)(46)(125) =

2.0naoc =(1,2,6,7)(3,5,4) eta’ = (1,3,4)(2, 6)( 7) ; comme les cycles apparaissant dans les décompositions
canoniques des permutatiooset o’ n'ont pas les mémes longueurs, ces permutations ne sonopasuees.

Exercice 16.Soit G un groupe fini d’ordra et soitp un nombre premier divisamt

L'ensemble X= {(X4,...,Xp) € GP | X1...Xp = €}, ol e est I'élément neutre de G, est de cardin&i!. En effet,

I'application
GP1 Gp, (X]_, ... ,Xp,l) — (X]_, s Xp-1, (X]_ . Xp,]_)_l)

réalise une bijection entrefG! et X.

La permutatioro est d'ordrep; en effet,o # id etoP =id, donc ordo) = p.

La permutatioro fixe le point(xy,...,Xp—1,Xp) de X si et seulement si

O (X1, ,Xp—1,Xp) = (X2,. .., Xp, X1) = (X1,...,Xp—1,Xp),

donc si et seulement %i = x» = ... = Xp_1 = Xp. Par conséquent, l'application G GP, g+ (g,9,...,9) induit une
bijection entre le sous-ensemilg € G | g° = e} de G et I'ensemble X des points fixes de dans X. Observons que
X9 est non vide puisqu’il contient I'élémeie e, ..., e).

L'action du groupeZ sur X définie pam.x = 0" (x) induit une action du groupe cycliqu&/pZ puisqueo est
d’ordre p. Si un pointx de X n’est pas fixé pao, son stabilisateur est un sous-groupe stricZdeZ (c’est-a-dire
distinct du group€/ pZ) et donc est réduit a I'élément neutre ; I'orbitexdest alors de cardingd. Vu I'équation aux
classes

X=X+ Y |0

orbites O non réduites
aun élément

et le fait quep divise |X| = |G|P~1, nous en déduisons quedivise |X9|. Enfin, commgX?| > 1, la permutatioro a
au moinsp points fixes distincts dans X et il existe par conséquent é@meéhtg de G tel quey # e etgP = e. Nous
avons ainsi démontré que le groupe G contient au moins ure@édordrep (théoréme de Cauchy).




