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5. GROUPES QUOTIENTS, ACTIONS DE GROUPES ET COMPLEMENTS

Exercice 1.(Signaturg Cet exercice a pour objet la définition designatured’'une permutation.

1. Etant donnée une permutatiore &,,, on posee(o) = (—1)"K, otk est le nombre d’orbites de dans{1,...,n}.

(i) Déterminer explicitement (o) lorsqueo = 1 puis lorsques est un cycle.

(i) Etant données une permutatianc &, et une transpositiom € &, démontrer que I'on &(oT1) = —£(0).
(Indication : sit = (i, ]), distinguer le cas ou i et j appartiennent & desorbites distinctes et le cas ou i et j
appartiennent a la méme-orbite.)

(ii) Quelles que soient les transpositions. .., 1, € &y, démontrer que l'on a(11...7;) = (—1)".

2. En utilisant la question précédente, prouver que I'apgibne : S, — {—1,1} est un homomorphisme de groupes.

3. Démontrer que, sf : 65 — {—1,1} est un homomorphisme de groupes surjectif tel f(® = —1 pour toute
transpositionr, alorsf = €.

4. Justifier les trois interprétations suivantes de la $ige& (o) d’une permutatioro € &,.

() Si 0 = 11... 1, est une expression de comme un produit de transpositions, la pariténdae dépend pas du
choix des transpositions efo) = (—1)™.

(i) Une inversionde o est une pairdi, j} d’éléments d€/1,...,n} tel quei < j eto(i) > o(j). Démontrer que
l'ona: ) _

E,’(U) _ (_1)nombre d'inversions de _ G('). — U(J)
1<i<j<n =]

(Indication : multiplier o par des transpositions convenables pour faire baisser tebre d’inversions et vérifier que
la seule permutation n'ayant aucune inversion est I'idrjti

(i) Soit p : 6, — GL(n,Q) 'hnomomorphisme de groupes envoyant une permutadicur I'application linéaire
définie par

p(o)(&) = e€q)-

Démontrer que I'on @ = deto p.

Exercice 2.(Formule de BurnsideSoit G un groupe fini opérant sur un ensemble fini X. Pour t@meéntg € G, on
pose
X9={xe X |gx=x}.

X;\Stab;(x)] :ggs\xg\.

(Indication : compter combien de fois un point xXde@pparait dans I'un des ensembl¥8, ge G..))
2. En déduire ldormule de Burnside

1. Démontrer la formule

Nombre d’orbites de G dans % @ %\Xg\

3. Soit C un carré de sommeisb, ¢, d et de centr@. On considére le groupe G d’isométries du plan engendrépar |
rotation de centre et d’angle] et par la symétrie (orthogonale) par rapport a la diagofsde Démontrer que G est
isomorphe a un sous-groupe d’ordre 8@lg
4. On colorie les sommets du carré C a l'aidendes 1 couleurs. Deux coloriages de C sont identifiés s'il existe u
élémenth de H envoyant I'un sur l'autre.

(i) Enumérer tous les coloriages possibles lorsaue 2.

(il) En appliquant la formule de Burnside, démonter qu’il y a

m* + 2m3 + 3m? +2m
8

coloriages possibles.

Exercice 3.(Groupes diédrauxEtant donné un entier> 1, on désigne parHe polygdne régulier a cotés dans un
plan euclidien orienté et on note, e groupe des isométries du plan qui préserventcRst-a-dire les isométriek



telles quef (Pn) = P,. Soit O le centre de POn désigne parla rotation de centre O et d’ang?# et parsla réflexion
par rapport a un axe de symétfiale R,.

1.Démontrer que Pest un groupe fini d’ordrerRayant pour éléments les isométrigst, 0< k <n—1 ete ¢
{0,1}.

2. Vérifier l'identitésrs* = r 1. En déduire la table de multiplication du groupg. Pour quelles valeurs dece
groupe est-il commutatif ?

3. Déterminer 'ordre de chacun des éléments geHh déduire que le groupesM’est pas isomorphe au groupe
Hg des quaternions.

4. Soit G un groupe engendré par des élémaresb tels que orda) = n, ord(b) = 2 et ordab) = 2. Démontrer
qgue G estisomorphe au groupg.D

Exercice 4.(Classification des groupes abéliens fjri%objet de cet exercice est la détermination de tous leaggs
abéliens finis a isomorphisme preés ; en particulier, on vaoiérar que tout groupe abélien est isomorphe a un produit
de groupes abéliens cycliques.

I. Soit p un nombre premier et soit G un groupe abélien fini dont I'oreseune puissance ge Quel que soit
r > 0, on désigne par Ge sous-groupe de G formé des élémertsls queg? = e; cela définit une suite croissante

{e}=GpcGiC...CcG CG1C...G

de sous-groupes de G et 6 G sir est suffisamment grand. Enfin, paur 1, on pose V= G;/G,_;.
1. Déterminer explicitement les suitéS;, )r>o et (Vr)r>1 dans chacun des trois cas suivants :

G=7/p°%, G=7/p’ZxZ/pZ et G=171/pZxZ/pZx Z/pZ.
2. Soitr > 1. Justifier que I'on &” = 1 pour tout élément du groupe Y puis en déduire que I'application
Z]pZ x Ny — V¢, (MX)— X"

fait de V; un espace vectoriel de dimension finie sur le cdtps= Z/pZ. On posed(r) = dimg, (V).

3. Soient 1< s<r. Vérifier que I'homomorphisme de groupes-&G, g— g'~*°induit une applicatioff p-linéaire
injectiveu? : V; — V. La suite(d(r)),>1 est par conséquent décroissante.

4. Fixonsr > 1 tel que G= G;. On choisitd(r) = 3(r) élémentsg;,...,05r) de G dont les images par la
projection canonique G- V, forment une base de,\surF,; ensuite, pour tous € {1,...,r — 1}, on choisitd(s) =
O(s) — O(s+1) élémentsyss, ..., 0s4(s) de G dont les images par la projection canonique-GVs constituent une
base d’un supplémentaire dg ;(Vs;1) dans \4.

(i) Etant donnés des entiers naturels, 1 <s<ret1<i <d(s), démontrer que l'identité

My 1 My d(r) Ms 1 Msd(s) m 1
gr’l "‘gr,d(r) ...gSl "‘gsd(s) ...ng

ngj‘(’%) =1
implique
ms; = 0 (mod p®)
pour tout 1< s<retl<i<d(s).
(ii) En déduire que le groupe G est isomorphe au groupe produi
7.)p°2)% .
sg( /P°Z)
5. Etant donné > 1, démontrer que I'on &G, | = p?M+-+2(") En déduire que G contient exactemeép?(") —
1) pdM+--+8(—1) gléments d’ordrep’.
6. Soient H un autre groupe abélien fini d’ordre une puissalecp et soitd’'(r) la dimension duF ,-espace
vectoriel H /H;_1 (r > 1). Démontrer que le groupe H est isomorphe a G si et seulesnéiit) = &'(r) pour tout
r>1.

Il. Soit G un groupe abélien fini.
1. En utilisant la seconde question de I'exercice 2 de la iglEduire de ce qui précéde que G est isomorphe a un
produit de groupes cycligues.

2. Démontrer qu’un groupe abélien fini H est isomorphe a G séetement si, pour tout nombre entier natumel
G et H ont le méme nombre d’éléments d’ordne




