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5. GROUPES QUOTIENTS, ACTIONS DE GROUPES ET COMPLÉMENTS

Exercice 1.(Signature) Cet exercice a pour objet la définition de lasignatured’une permutation.

1. Étant donnée une permutationσ ∈Sn, on poseε(σ) = (−1)n−k, oùk est le nombre d’orbites deσ dans{1, . . . ,n}.
(i) Déterminer explicitementε(σ) lorsqueσ = 1 puis lorsqueσ est un cycle.
(ii) Étant données une permutationσ ∈ Sn et une transpositionτ ∈ Sn, démontrer que l’on aε(στ) = −ε(σ).

(Indication : si τ = (i, j), distinguer le cas où i et j appartiennent à desσ -orbites distinctes et le cas où i et j
appartiennent à la mêmeσ -orbite.)

(iii) Quelles que soient les transpositionsτ1, . . . ,τr ∈ Sn, démontrer que l’on aε(τ1 . . .τr) = (−1)r .

2. En utilisant la question précédente, prouver que l’applicationε : Sn →{−1,1} est un homomorphisme de groupes.

3. Démontrer que, sif : Sn → {−1,1} est un homomorphisme de groupes surjectif tel quef (τ) = −1 pour toute
transpositionτ , alors f = ε .

4. Justifier les trois interprétations suivantes de la signatureε(σ) d’une permutationσ ∈ Sn.
(i) Si σ = τ1 . . .τr est une expression deσ comme un produit de transpositions, la parité dem ne dépend pas du

choix des transpositions etε(σ) = (−1)m.
(ii) Une inversionde σ est une paire{i, j} d’éléments de{1, . . . ,n} tel quei < j et σ(i) > σ( j). Démontrer que

l’on a :

ε(σ) = (−1)nombre d’inversions deσ = ∏
1≤i< j≤n

σ(i)−σ( j)
i − j

.

(Indication : multiplierσ par des transpositions convenables pour faire baisser le nombre d’inversions et vérifier que
la seule permutation n’ayant aucune inversion est l’identité.)

(iii) Soit ρ : Sn → GL(n,Q) l’homomorphisme de groupes envoyant une permutationσ sur l’application linéaire
définie par

ρ(σ)(ei) = eσ(i).

Démontrer que l’on aε = det◦ρ .

Exercice 2.(Formule de Burnside) Soit G un groupe fini opérant sur un ensemble fini X. Pour tout élémentg∈ G, on
pose

Xg = {x∈ X | gx= x}.

1. Démontrer la formule

∑
x∈X

|StabG(x)| = ∑
g∈G

|Xg|.

(Indication : compter combien de fois un point x deX apparaît dans l’un des ensemblesXg, g∈ G...)
2. En déduire laformule de Burnside:

Nombre d’orbites de G dans X=
1
|G| ∑

g∈G

|Xg|.

3. Soit C un carré de sommetsa, b, c, d et de centreo. On considère le groupe G d’isométries du plan engendré par la
rotation de centreo et d’angleπ

2 et par la symétrie (orthogonale) par rapport à la diagonale(ac). Démontrer que G est
isomorphe à un sous-groupe d’ordre 8 deS4.
4. On colorie les sommets du carré C à l’aide dem≥ 1 couleurs. Deux coloriages de C sont identifiés s’il existe un
élémenth de H envoyant l’un sur l’autre.

(i) Énumérer tous les coloriages possibles lorsquem= 2.
(ii) En appliquant la formule de Burnside, démonter qu’il y a

m4 +2m3+3m2+2m
8

coloriages possibles.

Exercice 3.(Groupes diédraux) Étant donné un entiern≥ 1, on désigne par Pn le polygône régulier àn côtés dans un
plan euclidien orienté et on note Dn le groupe des isométries du plan qui préservent Pn, c’est-à-dire les isométriesf



telles quef (Pn) = Pn. Soit O le centre de Pn. On désigne parr la rotation de centre O et d’angle2π
n et pars la réflexion

par rapport à un axe de symétrie∆ de Pn.

1.Démontrer que Dn est un groupe fini d’ordre 2n ayant pour éléments les isométriessε rk, 0≤ k ≤ n− 1 et ε ∈
{0,1}.

2. Vérifier l’identitésrs−1 = r−1. En déduire la table de multiplication du groupe Dn. Pour quelles valeurs den ce
groupe est-il commutatif ?

3. Déterminer l’ordre de chacun des éléments de Dn. En déduire que le groupe D4 n’est pas isomorphe au groupe
H8 des quaternions.

4. Soit G un groupe engendré par des élémentsa et b tels que ord(a) = n, ord(b) = 2 et ord(ab) = 2. Démontrer
que G est isomorphe au groupe Dn.

Exercice 4.(Classification des groupes abéliens finis) L’objet de cet exercice est la détermination de tous les groupes
abéliens finis à isomorphisme près ; en particulier, on va démontrer que tout groupe abélien est isomorphe à un produit
de groupes abéliens cycliques.

I. Soit p un nombre premier et soit G un groupe abélien fini dont l’ordreest une puissance dep. Quel que soit
r ≥ 0, on désigne par Gr le sous-groupe de G formé des élémentsg tels quegpr

= e; cela définit une suite croissante

{e} = G0 ⊂ G1 ⊂ . . . ⊂ Gr ⊂ Gr+1 ⊂ . . .G

de sous-groupes de G et Gr = G si r est suffisamment grand. Enfin, pourr ≥ 1, on pose Vr = Gr/Gr−1.
1. Déterminer explicitement les suites(Gr)r≥0 et (Vr)r≥1 dans chacun des trois cas suivants :

G = Z/p3Z, G = Z/p2Z×Z/pZ et G= Z/pZ×Z/pZ×Z/pZ.

2. Soitr ≥ 1. Justifier que l’on axp = 1 pour tout élémentx du groupe Vr puis en déduire que l’application

Z/pZ×Vr → Vr , (m,x) 7→ xm

fait de Vr un espace vectoriel de dimension finie sur le corpsFp = Z/pZ. On poseδ (r) = dimFp(Vr).
3. Soient 1≤ s≤ r. Vérifier que l’homomorphisme de groupes G→G, g 7→ gr−s induit une applicationFp-linéaire

injectiveus
r : Vr → Vs. La suite(δ (r))r≥1 est par conséquent décroissante.

4. Fixonsr ≥ 1 tel que G= Gr . On choisitd(r) = δ (r) élémentsgr,1, . . . ,gr,δ (r) de Gr dont les images par la
projection canonique Gr → Vr forment une base de Vr surFp ; ensuite, pour touts∈ {1, . . . , r −1}, on choisitd(s) =
δ (s)− δ (s+ 1) élémentsgs,1, . . . ,gs,d(s) de Gs dont les images par la projection canonique Gs → Vs constituent une
base d’un supplémentaire deus

s+1(Vs+1) dans Vs.
(i) Étant donnés des entiers naturelsms,i, 1≤ s≤ r et 1≤ i ≤ d(s), démontrer que l’identité

g
mr,1
r,1 . . .g

mr,d(r)

r,d(r) . . .g
ms,1
s,1 . . .g

ms,d(s)

s,d(s) . . .g
m1,1
1,1 . . .g

m1,d(1)

1,d(1) = 1

implique
ms,i ≡ 0 (mod ps)

pour tout 1≤ s≤ r et 1≤ i ≤ d(s).
(ii) En déduire que le groupe G est isomorphe au groupe produit

∏
s≥1

(Z/psZ)d(s) .

5. Étant donnér ≥ 1, démontrer que l’on a|Gr | = pδ (1)+...+δ (r). En déduire que G contient exactement(pδ (r) −

1)pδ (1)+...+δ (r−1) éléments d’ordrepr .
6. Soient H un autre groupe abélien fini d’ordre une puissancede p et soit δ ′(r) la dimension duFp-espace

vectoriel Hr/Hr−1 (r ≥ 1). Démontrer que le groupe H est isomorphe à G si et seulementsi δ (r) = δ ′(r) pour tout
r ≥ 1.

II. Soit G un groupe abélien fini.
1. En utilisant la seconde question de l’exercice 2 de la fiche4, déduire de ce qui précède que G est isomorphe à un

produit de groupes cycliques.

2. Démontrer qu’un groupe abélien fini H est isomorphe à G si etseulement si, pour tout nombre entier naturelm,
G et H ont le même nombre d’éléments d’ordrem.


