Partiel d'ATN

Durée 2 heures

LES DOCUMENTS NE SONT PAS AUTORISÉS

Problème 1 Déterminer le plus petit entier naturel dont les restes modulo 7, 8 et 9 sont respectivement 1, 2 et 3.

Problème 2 Soit S l'ensemble des nombres premiers de la forme 4k+3 avec $k \in \mathbb{N} \setminus \{0\}$.

- 1. Montrer que le produit de deux nombres entiers de la forme 4k + 1 est aussi de cette forme.
- 2. Étant donné un sous-ensemble fini $F \subset S$, on note

$$p(F) = 3 + 4 \prod_{p \in F} p.$$

En utilisant p(F) montrer que S est infini.

Problème 3 Soit $\mathbb{Q}_p = \{\frac{n}{p^k} : n \in \mathbb{Z} \text{ et } k \in \mathbb{N} \}$ où p est un nombre premier. Notons que \mathbb{Q}_p est un groupe par rapport à l'addition. Soit H un sous-groupe de \mathbb{Q}_p .

- 1. Soit x un élément de H tel que $\frac{x}{p}$ n'appartient pas à H. On se propose de démontrer que les classes $\frac{x}{p^i} + H$, $i \in \mathbb{N}$, sont deux à deux distinctes.
 - (a) Soit $i, j \in \mathbb{N}$ tels que i > j. Montrer que si $\frac{x}{p^i} \frac{x}{p^j} \in H$ alors $\frac{x}{p^{i-j}}$ appartient à H
 - (b) Conclure.
- 2. On suppose que $[\mathbb{Q}_p : H] < \infty$.
 - (a) Montrer que $H \cap \mathbb{Z} = m\mathbb{Z}$, où m est un entier strictement positif.
 - (b) Montrer que p ne divise pas m. (Indication : On pourrait démontrer que H = pH.)
 - (c) Montrer que si $x \in H$ alors $\frac{x}{p^r} \in H$ pour tout $r \in \mathbb{Z}$. (Indication : On pourrait utiliser 1.) En déduire que $m\mathbb{Q}_p \subset H$.
 - (d) Montrer que $m\mathbb{Q}_p = H$.
 - (e) Étant donnés $n \in \mathbb{Z}$ et $k \in \mathbb{N}$ montrer qu'il existe $0 \le s < m$ tel que $\frac{n}{p^k} + H = s + H$. (Indication : On pourrait utiliser l'identité de Bézout pour les nombres m et p^k qui sont premiers entre eux.) En déduire que l'indice de H dans \mathbb{Q}_p est égal à m.
- 3. Soit $\mathcal{N}_p = \{m \in \mathbb{N} : m > 0 \text{ et } p \text{ ne divise pas } m\}$. Pour chaque $m \in \mathcal{N}_p$ on pose $H_m = m\mathbb{Q}_p$.

- (a) Montrer que $\{H_m: m \in \mathcal{N}_p\}$ représente l'ensemble de tous les sous-groupes d'indice fini de \mathbb{Q}_p et que $H_m = H_{m'}$ implique m = m'.
- (b) Montrer que $H_m \supset H_{m'}$ si et seulement si m divise m'. De plus, $[H_m : H_{m'}] = \frac{m'}{m}$.
- (c) Montrer que $H_m \cap H_{m'} = H_k$ où $k = \operatorname{ppcm}(m, m')$. (Indication : On pourrait démontrer que $m\mathbb{Z} \cap m'\mathbb{Z} = k\mathbb{Z}$.)
- 4. On désigne par $\overline{\mathbb{Q}}_p$ le groupe quotient \mathbb{Q}_p/\mathbb{Z} . Montrer que $\overline{\mathbb{Q}}_p$ n'admet pas de sous-groupes d'indice fini propres. (Rappelons qu'un sous-groupe H d'un groupe G est dite propre si $H \neq G$.)