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L e nombre 114 381 625 757 888 867
669 235 779 976 146 612 010 218 296
721 242 362 562 561 842 935 706 935
245 733 897 830 597 123 563 958 705

058 989 075 147 599 290 026 879 543 541
est le produit de deux nombres pre-
miers ; lesquels? Martin Gardner posa
cette question aux lecteurs de Pour la
Science en octobre 1977, dans sa
rubrique de «Jeux mathématiques»,
mais une réponse ne fut donnée que
16 ans plus tard : en avril 1994, Paul
Leyland, de l’Université d’Oxford,
Michael Graff, de l’Université de
l’Iowa, et Derek Atkins, de l’Institut de
technologie du Massachusetts, iden-
tifièrent les deux facteurs, après avoir
distribué des parties de la tâche, grâce
au réseau Internet, à quelque 600 volon-
taires, qui laissèrent fonctionner sur
leurs ordinateurs, pendant de nom-
breuses nuits, le programme écrit par
Arjen Lenstra, du Centre de recherches
de la Société Bell Communications.

La multiplication de deux nombres,
même très grands, n’est pas compli-
quée : avec du papier et un crayon,
on calcule le produit de deux nombres
de 65 chiffres en une heure environ ;
par ordinateur, le calcul est immé-
diat. En revanche, l’opération inverse,
c’est-à-dire l’identification des facteurs
d’un produit, est très difficile, même
avec les calculateurs les plus rapides.

Les opérations mathématiques
telles que la multiplication et la facto-
risation sont à la base des systèmes
cryptographiques modernes : le cryp-
tage est rapide, mais le décryptage
est quasi impossible en pratique.

En 1978, Ronald Rivest, de l’Insti-
tut de technologie du Massachusetts,

Adi Shamir, de l’Institut Weizmann à
Rehovot (Israël), et Leonard Adleman,
de l’Université de Californie du Sud,
ont mis au point un protocole de cryp-
tage, nommé RSA d’après leurs initiales,
qui est fondé sur la factorisation : une
personne voulant recevoir des mes-
sages cryptés choisit deux nombres
premiers p et q, c’est-à-dire deux
nombres entiers naturels qui ne sont
divisibles que par 1 et par eux-mêmes ;
il calcule leur produit p × q et le rend
public, tout en conservant secrets les
facteurs (voir l’encadré de la page 90).
Pour crypter un message, il suffit de
connaître ce produit, nommé la clé
publique, tandis que, pour décrypter
un message, il faut connaître les fac-
teurs premiers p et q : si ceux-ci ont plus
de 150 chiffres, même les meilleures
méthodes connues et les ordinateurs
les plus puissants mettront 2 000 ans
pour les trouver. Ainsi, on fabrique faci-
lement des problèmes de factorisation,
mais on ne sait pas, aujourd’hui, les
résoudre en un temps raisonnable, si
les facteurs premiers sont trop grands.

Trouvera-t-on un jour une méthode
de factorisation rapide? Les Labora-
toires RSA ont organisé un concours
mondial de factorisation. Ils publient
des produits de grands nombres pre-
miers et récompensent leur factorisa-
tion (on peut consulter leur site sur le
réseau Internet : voir la bibliographie).

L’idée de mettre le public à contri-
bution est judicieuse : on ignore si la
factorisation est difficile par essence
ou si les mathématiciens n’ont pas
encore trouvé la méthode la plus habile.
Aussi la seule garantie de la sécurité
des procédés de cryptage est l’igno-

rance d’une méthode rapide de facto-
risation des nombres entiers.

L’étude de la factorisation date de
l’Antiquité : les mathématiciens d’alors
savaient déjà que chaque nombre natu-
rel est un produit de nombres premiers,
et que la décomposition en facteurs
premiers est unique, à l’ordre près. Par
exemple, 12 se décompose seulement
en 2 × 2 × 3. L’étude des propriétés
des nombres entiers naturels impose
souvent la décomposition en facteurs
premiers.

Les ordinateurs ont beaucoup
apporté à la théorie des nombres. Dans
cet article, nous verrons comment fonc-
tionnent les algorithmes modernes
de factorisation. Souvent les indica-
tions seront suffisamment précises
pour qu’une programmation soit pos-
sible sur un ordinateur personnel ; en
outre, une bibliothèque de programmes
nommée LiDIA est proposée sur le
réseau Internet (voir la bibliographie).

Les nombres de Fermat

Le juriste français Pierre de Fermat
(1601-1665), notamment célèbre pour
sa conjecture démontrée en 1997, pen-
sait avoir trouvé une méthode pour
fabriquer des nombres premiers aussi
grands que l’on voulait : à partir des
nombres entiers naturels i, il construi-
sait les nombres Fi = 22i+ 1, nommés
aujourd’hui nombres de Fermat. Les
quatre premiers nombres de Fermat
sont premiers : F0 = 220 + 1 = 3,
F1 = 221 + 1 = 5, F2 = 222 + 1 = 17,
F3 = 223 + 1 = 257 et F4 = 224 + 1 = 65 537.

Cependant, dès 1732, le mathéma-
ticien suisse Leonhard Euler trouva que

La factorisation 
des grands nombres
JOHANNES BUCHMANN

Les systèmes modernes de cryptage de données seront sûrs tant que 
la décomposition des nombres de plus de 100 chiffres en facteurs premiers restera
difficile. Toutefois les techniques de factorisation progressent rapidement.
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1. LA «MACHINES À CONGRUENCES» de l’officier français Eugène
Carissan (1880-1925). La manivelle fait tourner une roue dentée
qui entraîne un compteur (au premier plan sur la photographie supé-
rieure) et 14 couronnes indépendantes. Sur la photographie infé-
rieure, à droite, les quatre couronnes externes ont été enlevées et
le mécanisme apparaît. À chaque couronne est associé un nombre,
de l’intérieur vers l’extérieur : 19, 21, 23, 26, 29, 31, 34, 37, 41,
43, 47, 55 et 59. Sur la face supérieure, chaque couronne porte un
nombre de picots égal à ce nombre. Soit n un nombre à factoriser.
On utilise la relation n = x2 – y2 et l’on cherche des conditions sur x
pour que y2 soit un carré parfait. Si les valeurs permises de x sont
1, 7, 8, 13, 14 et 20 modulo 21, c’est-à-dire si le reste de la divi-
sion de x par 21 peut être 1, 7, 8, 13, 14, 20, alors on place un

capuchon métallique sur les picots 1, 7, 8, 13, 14, 20 de la cou-
ronne 21. De même pour les autres couronnes utilisées. On tourne
la manivelle et, quand les capuchons métalliques (les plots noirs)
des différentes couronnes sont alignés sur la barrette, un contact
électrique s’établit et un signal sonore retentit. Le nombre indiqué
sur le cadran a alors des chances d’être un carré parfait. La
machine est particulièrement adaptée pour la recherche de
nombres convenant pour le crible quadratique, utilisé pour la facto-
risation des nombres. Carissan prouva avec elle, en tournant la
manivelle pendant dix minutes, que 708 158 977 est un nombre
premier, en montrant qu’il s’écrit d’une seule manière comme somme
de deux carrés : 19 2242 + 18 4012. La machine est aujourd’hui au
Conservatoire national des arts et métiers, à Paris.
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F5, égal 4 294 967 297, était égal au
produit de 641 par 6 700 417 : F5 n’est
donc pas un nombre premier (on dit
que c’est un nombre composé). Puis,
150 ans plus tard, en 1880, F6 fut facto-
risé et, encore 90 ans plus tard, en 1970,
les deux facteurs premiers de F7 ont été
obtenus. Le nombre F8 a été décomposé
en 1980, et le nombre F9 en 1990.

Cette histoire des nombres de Fer-
mat montre combien la factorisation
est difficile : les mathématiciens
mirent 240 ans pour factoriser le
nombre de Fermat F7, à 39 chiffres, et,
même équipés d’ordinateurs ils ont
mis 20 ans à décomposer le nombre
F9, de 155 chiffres.

En revanche, il savaient que F7,
F8 et F9 n’étaient pas premiers bien
avant de connaître leurs facteurs :
on peut déterminer, grâce à un test
spécial, si un nombre est composé,
sans calculer ses facteurs. On s’assure
ainsi que la factorisation est possible,
avant de l’entreprendre.

Un test simple de primalité

Comment détermine-t-on qu’un
nombre est premier? On peut utiliser
le test de Fermat, c’est-à-dire examiner
si n est un diviseur de 2n–1–1 : Fermat
a prouvé que tout nombre premier n
(sauf 2) est diviseur de 22n–1. Par
exemple, 3, qui est premier, est un divi-
seur de 23–1 – 1, soit 3. Inversement, si
n n’est pas un diviseur de 2n–1 – 1, n
n’est pas premier. Par exemple, le
nombre 6 n’est pas un diviseur de
26–1 – 1, soit 31 ; il n’est pas premier.

Examinons un exemple plus com-
pliqué, afin d’apprécier l’utilité du test
de Fermat : le nombre 58 483 est-il
premier? On pourrait commencer
par calculer 258 482 – 1, puis chercher si
le résultat est un multiple de 58 483,
mais un calcul direct serait extrême-
ment long, car le nombre 258 482 – 1
s’écrit avec 17 604 chiffres. On utilise
plutôt l’arithmétique des congruences
(voir l’encadré de la page 91), pour obte-

nir un algorithme efficace, fondé sur
l’idée suivante : vérifier que 58 483
est un diviseur de 258 482 – 1 revient à
chercher si le reste de la division de
258 482 par 58 483 est 1.

Pour calculer ce reste, on effectue
une «exponentiation binaire». On com-
mence par écrire 58 483 comme une
somme de puissances de 2 :
58 482 = 215 + 214 + 213 + 210 + 26 + 25 +
24 + 2. Puis on utilise cette décomposi-
tion pour écrire le nombre 258 482 comme
un produit de puissances de 2 :
221 × 224 × 225 × 226 × 2210 × 2213 × 2214 ×
2215. Ensuite on calcule successivement
les restes des divisions par 58 483 de
220, 221, 222, 223... jusqu’à 2215. Le reste
de la division de 22i+1par 58 483, pour
n’importe quel nombre entier i, s’ob-
tient simplement à partir du reste pré-
cédent (celui de la division de 22i par
58 483) : on l’élève au carré, on divise
ce carré par 58 483, et on prend le reste
de cette division (voir la figure 3). Ainsi,
de proche en proche, on détermine le
reste par 58 483 de la division pour cha-
cune des puissances qui intervien-
nent dans le développement binaire de
58 482. On multiplie enfin tous ces
restes, mais en ne gardant, après chaque
multiplication, que le reste de la divi-
sion par 58 483. De cette façon, les résul-
tats intermédiaires restent de taille
raisonnable. On détermine ainsi que
le reste de la division de 258 482 par 58 483
est égal à celui du produit 4 × 7 053 ×
34 259 × 42 237 × 34 763 × 53 664 × 5010
× 10 893 : il est égal à 11 669. Pour sim-
plifier l’expression des résultats, les
mathématiciens écrivent : 258 482 ≡11 669
mod 58 483. Le signe ≡ se lit «congru
à» ; il indique que les expressions à sa
gauche et à sa droite ont le même reste
dans la division par le nombre indi-
qué après l’abréviation mod, laquelle
se lit «modulo».

2. TOUTES LES COURONNES de la «machine à congruences» ont
une position zéro (visible en rouge sur la photographie de
gauche, où l’on a enlevé la barrette métallique). Les couronnes
ne roulent pas seulement sur la roue dentée commune, mais

aussi sur des disques, dont les axes, fixés à l’axe de la roue den-
tée, font des angles de 120 degrés les uns avec les autres (à
droite). Seules les pointes portant un capuchon produisent le
contact dans la barrette métallique.

Le protocole de cryptographie RSA se fonde
sur le résultat suivant :

Soit p et q deux nombres premiers. On
pose n = pq. Si e est un nombre entier pre-
mier avec (p – 1)(q – 1), alors il existe un
nombre entier d positif, tel que, pour tout
A, Aed – A soit divisible par n.

(X et Y sont dits premiers entre eux si
leur seul diviseur commun est 1).
Le protocole est le suivant :

Alice choisit p, q, e (p et q premiers, et
e premier avec (p – 1)(q – 1).

Alice calcule n = pq et d, ce qui est facile.
Alice rend publics n et e (par exemple

en les publiant dans un annuaire).
Robert, qui veut communiquer une infor-

mation secrète à Alice, transforme son infor-

mation en un nombre entier A inférieur à n
(ou en plusieurs nombres si nécessaire)
avec un codage connu de tous.

Robert calcule le reste B de la division
de Ae par n, envoie B à Alice par un canal
qui n’a pas besoin d’être protégé (par
exemple en publiant B dans un journal).

Alice, pour décoder B, va calculer Bd ;
comme les restes de la division de Bd et de
Aed par n sont égaux à A, elle connaîtra A
et donc le message de Robert.
Sécurité du système RSA

La sécurité de ce codage à clé publique
repose sur la difficulté du calcul des fac-
teurs de n : quiconque les connaît peut
facilement calculer d et déchiffrer les mes-
sages envoyés par Robert à Alice.

Le système RSA
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L’application du test de Fermat,
finalement, indique que le nombre
58 483 n’est pas premier, puisque le
résultat n’est pas 1. Ce procédé est rela-
tivement rapide, mais il ne fournit
pas la décomposition en facteurs pre-
miers de 58 483.

La méthode 
des divisions successives

Quand on sait qu’un nombre n n’est
pas premier, comment peut-on le fac-
toriser? On cherche une décomposition
en  diviseurs propres, c’est-à-dire qui
ne sont égaux ni à 1 ni à n (les nombres
1 et n sont nommés diviseurs triviaux
de n) ; par exemple, 3 est un diviseur
propre de 12. Puis on examine si ces
diviseurs sont des nombres premiers.
S’ils ne le sont pas, on les décompose
à leur tour, jusqu’à ce que tous les
diviseurs soient premiers.

Par exemple, 12 =3 × 4. Le nombre
3 est premier, mais 4 est composé et
peut être factorisé : 4 = 2 ×2. La décom-
position complète de 12 s’écrit donc
12 = 2 ×2 ×3. Ainsi, dans un algorithme
de factorisation, la recherche d’un
facteur propre d’un nombre composé
est une opération fondamentale.

La méthode la plus simple est celle
des divisions successives : on divise
n par tous les nombres premiers 2, 3,
5, 7, 11, 13, 17, etc. (préalablement stoc-
kés dans une table), jusqu’à ce qu’une
division tombe juste. Dans le cas de
n = 58 483, on observe que le 51e

nombre premier, 233, est un diviseur
(58 483 = 233 ×251). On doit donc effec-
tuer 51 divisions avec reste pour trou-
ver ce facteur, ce qui reste possible,
mais quand le plus petit facteur pre-
mier p de n devient grand, les divi-
sions nécessaires sont de plus en plus
nombreuses (voir la figure 4), et la table
des nombres premiers nécessaires aux
calculs est de plus en plus grande. La
factorisation par divisions successives
ne convient que pour la recherche de
petits facteurs ; pour des facteurs plus
grands, une méthode fondamentale-
ment différente s’impose.

Les courbes elliptiques

En 1985, Hendrik Lenstra a trouvé un
algorithme de factorisation qui utilise
des courbes elliptiques. Ces objets
mathématiques, qui ont notamment
été employés par le mathématicien bri-
tannique Andrew Wiles dans sa
démonstration de la conjecture de Fer-

mat, sont également utilisés dans des
protocoles cryptographiques.

Dans la méthode des courbes ellip-
tiques comme dans le test de Fermat,
on effectue un calcul qui réussit si n est
un nombre premier et qui échoue
quand n est composé (ce que l’on sait,
par exemple, grâce à un test de Fermat
préliminaire) : au cours des calculs, on
doit à plusieurs reprises extraire le plus
grand diviseur commun (pgcd) de n et
d’autres nombres, et le calcul ne se

poursuit que si le pgcd est égal à 1,
c’est-à-dire si les deux nombres sont
premiers entre eux. Dans le cas con-
traire, ce pgcd est un diviseur de n, et
même un diviseur propre si on a de la
chance : l’objectif est alors atteint.

Du hasard intervient dans cette
méthode, car on a le choix entre un
grand nombre de courbes elliptiques
pour mener les calculs (voir la figure 7).
On en choisit une au hasard. Si elle ne
fournit pas de diviseur, on essaie la sui-

L es mathématiciens ont étendu les opéra-
tions courantes aux restes de divisions

des nombres entiers. Par exemple, quand on
divise 7 par 3, le quotient est 2 et le reste 1,
car 7 = 2 × 3 + 1. Pour les nombres négatifs,
le calcul est analogue. Le quotient de –7 par
3 est –3 et le reste est 2, car 3 × (–3) + 2 = –7.
Lors de la division de a par n, le reste est un
des nombres 0, 1, 2,..., n–1. On le note R(a,n).

Le plus grand diviseur commun (pgcd)
de deux nombres entiers naturels a1 et a2
est obtenu par l’algorithme d’Euclide. On
calcule la suite a3 = R(a1, a2), a4 = R(a2, a3),
etc. Après un certain nombre de divisions, le
reste est 0. Le pgcd de a1 et a2 est le dernier
reste non nul. Par exemple, le pgcd de a1 =631
et de a2 = 405 est obtenu de la façon suivante :
631/405 = 1 reste 226
405/226 = 1 reste 179
226/179 = 1 reste 47
179/47 = 3 reste 38
47/38 = 1 reste 9
38/9 = 4 reste 2
9/2 = 4 reste 1
2/1 = 2 reste 0.

Le dernier reste non nul est 1, donc le
pgcd de 405 et de 631 est 1. Les deux

nombres sont premiers entre eux. Lorsque
deux nombres entiers a et b donnent le
même reste dans la division par un entier
naturel n, on dit qu’ils sont congrus modulo
n et on écrit a ≡ b mod n. Par exemple,
10 ≡ 4 mod 3, car 10 et 4 donnent le reste
1quand on les divise par 3. On démontre
facilement que a ≡ b mod n si n est un
diviseur de b – a : le nombre 10 – 4 = 6
est divisible par 3.

Quand on calcule le reste, pour une
expression compliquée qui inclut des addi-
tions, des soustractions ou des produits,
on peut remplacer tous les résultats inter-
médiaires par leur reste. Par exemple, si
l’on veut calculer le reste de 14 × (12 + 7)8

dans la division par 8, on remplace 14 par
6 (le reste de la division de 14 par 8) et 12
par 4, et l’on a : 14 × (12 + 7)8 ≡ 6 × (4 + 7)8

mod 8. Ensuite, on obtient 6 × (4 + 7)8 ≡
6 × 38 ≡ 6 × (32)4 ≡ 6 × (14) ≡ 6 mod 8. On
aurait aussi pu calculer 14 × (12 + 7)8 =
237 769 882 574, puis diviser le résultat
par 8 et prendre le reste. Avec la première
méthode, les résultats intermédiaires ne
dépassent jamais 7, ce qui rend les cal-
culs beaucoup plus rapides.

Congruences et calcul du plus grand
diviseur commun (pgcd)

3. LES RESTES DES DIVISIONS de 22i par 58 483 pour i compris entre 0 et 15. Pour trouver
ces valeurs, il n’est pas nécessaire de calculer les nombres 22i (qui peuvent être très grands) :
on utilise les restes précédemment calculés.

4. LE NOMBRE de nombres premiers inférieurs à 103, 106, etc. est aussi le nombre de divi-
sions qui sont nécessaires, dans la méthode des divisions successives, pour obtenir un fac-
teur premier de chaque taille respective.
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vante. H. Lenstra a démontré que, pour
tout nombre composé n, il existe des
courbes elliptiques qui fournissent
un diviseur.

Comme pour la méthode par divi-
sions successives, le temps nécessaire
pour trouver un diviseur par la
méthode des courbes elliptiques dé-
pend de la taille de ce diviseur. Cepen-
dant, cette méthode identifie en un
temps raisonnable les facteurs ayant
jusqu’à 30 chiffres (voir la figure 5).

Qu’est-ce qu’une courbe elliptique?
C’est un ensemble de points d’un plan,
dont les coordonnées x et y vérifient
l’équation y2 = x3 + ax + b. Les para-
mètres a et b sont des nombres entiers
choisis de telle sorte que 4a3 + 27b2

soit différent de 0 (voir la figure 6). Mal-
gré leur nom, les courbes elliptiques
n’ont qu’un rapport très éloigné avec
les ellipses. Elles sont parfois compo-
sées de plusieurs branches.

Les courbes elliptiques sont des
ensembles intéressants, car on peut défi-
nir une opération d’addition de leurs
points : à deux points P1 et P2 d’une
courbe elliptique, une construction géo-
métrique simple associe un troisième
point de la courbe, qui est nommé
P1 + P2. L’opération ainsi définie a des
propriétés analogues à l’addition des
nombres entiers : elle est associative (le
point (P + Q) + R est confondu avec
P + (Q + R)), commutative (le point
P + Q est le même que le point Q + P),
elle admet un élément neutre (c’est-à-
dire un point qui, ajouté à un point quel-
conque, ne change pas ce dernier) et
chaque point a un opposé (ou inverse,
tel que la somme du point et de son
opposé soit égale à l’élément neutre).

L’inverse –P d’un point P de la
courbe est le symétrique de P par rap-
port à l’axe des abscisses. En général,
on trouve la somme P1 + P2 de deux
points P1 et P2 en traçant la droite qui
passe par ces deux points : elle coupe
la courbe en un troisième point Q, dont
le symétrique –Q par rapport à l’axe
des abscisses est la somme cherchée,
P1 + P2 (voir la figure 6).

Quand P1 et P2 sont confondus, on
obtient le point P1 + P2, ou 2P1, en rem-
plaçant la droite P1P2 par la tangente
à la courbe elliptique au point P1. Enfin,
quand P1 est égal à –P2, la droite pas-
sant par P1 et P2 ne coupe pas la courbe
en un autre point ; on imagine alors
que la droite coupe la courbe à l’in-
fini. Pour cette raison, on ajoute aux
points de la courbe un point que l’on
se représente à l’infini et que l’on

nomme O ; on pose P1 – P1 = O. Le point
O est le zéro (l’élément neutre) de l’ad-
dition des courbes elliptiques.

L’addition de deux points peut
aussi se définir algébriquement. Si
P1 et P2 sont deux points de la courbe
elliptique de coordonnées (x1, y1) et (x2,
y2), alors : –P1 = (x1, –y1), P1 + P2 = O,
si P1 = –P2 ; P1 + P2 = P2, si P1 = O ;
P1 + P2 = P1, si P2 = O ; dans les autres
cas, on détermine la somme P1 + P2
en calculant d’abord un nombre λ par
les formules : λ = (y1 – y2)/(x1 – x2), si
P1 est différent de P2, et λ =
(3x1

2 + a)/2y1, si P1 est égal à P2. On
détermine finalement les coordonnées
(x3, y3) du point P3 = P1 + P2 par :
x3 = –x1 – x2 + λ2, et y3 = y1 + λ(x1 – x3).

Notons que, lorsque P1 est égal à –P2,
on pourrait étendre, d’une certaine
façon, le calcul de λ : en toute rigueur,
il est impossible, car la division par zéro
n’est pas définie, mais on peut aussi
admettre que l’élément neutre O pos-
sède des coordonnées infinies.

On peut utiliser ces formules sans
chercher à se représenter x et y comme

les coordonnées d’un point du plan.
Cette abstraction devient utile quand
les coordonnées des points considé-
rés ne sont pas des nombres réels : tant
qu’on peut additionner, soustraire,
multiplier ou diviser ces coordonnées,
on conserve les propriétés des courbes
elliptiques. Nous avons notamment
vu, à propos des congruences, que l’on
peut additionner, soustraire et multi-
plier des restes de divisions. Plus pré-
cisément, le reste de la division d’un
nombre entier par un nombre naturel
n peut prendre les valeurs 0, 1, 2, ...,
n – 1. On calcule avec ces restes comme
on le fait avec des nombres entiers,
mais, quand le résultat d’un calcul sort
de l’intervalle compris entre 0 et n – 1,
on le divise par n et on conserve le reste
de cette division. Par exemple, dans
l’ensemble des nombres modulo 12,
10 + 5 = 3 ; 1 – 2 = 11 (on utilise cou-
ramment ce calcul : 5 heures après 10
heures, il est 3 heures, et deux heures
avant 1 heure, il est 11 heures). On mul-
tiplie de même : par exemple, 4 × 5 = 8.

La division pose des problèmes par-
ticuliers. Une division est analogue à
une multiplication par l’inverse, et l’in-
verse de x est l’élément y qui vérifie
xy = 1. Par exemple, pour n = 12, l’in-
verse de 5 est 5, car 5 × 5 = 25 et 25 ≡ 1
mod 12. En revanche, 4 n’a pas d’in-
verse car 4y a plusieurs solutions, 3, 6
ou 9, modulo 12. On ne divise sim-
plement que si n est un nombre pre-
mier. On calcule l’inverse grâce à la
série d’opérations de l’algorithme clas-
sique de la division.

Avec cet ensemble de restes muni
de ces opérations de bases, on définit
également une courbe elliptique. Le
cas le plus simple est celui où le module
(le nombre par rapport auquel on prend
le reste) est un nombre premier p. Les
paramètres a et b de la courbe doivent
être des nombres compris entre 0 et
p – 1 tels que 4a3 + 27b2 ne soit pas
congru à 0 modulo p. La courbe est
constituée du point O et des points
associés aux couples (x, y) de nombres
compris entre 0 et p – 1 qui vérifient la
congruence y2 ≡ x3 + ax + b mod p. Les
formules pour l’addition restent
inchangées, mais on remplace tous
les nombres qui se présentent par le
reste de leur division par p.

Par exemple, pour p = 5, a = 1 et
b = –1 (cette écriture est une simplifi-
cation de p = 5 ; a ≡1 mod 5 ; b ≡4 mod 5),
les points P1 et P2 de coordonnées res-
pectives P1 = (1, 1) et P2 = (2, 2) sont
des points de la courbe elliptique. Pour

5. TEMPS DE FACTORISATION, par la méthode
des courbes elliptiques exécutée, sur un ordi-
nateur puissant : à gauche, on lit le nombre
de chiffres des nombres à factoriser et, à
droite, le temps moyen nécessaire pour
trouver un facteur ayant ce nombre de chiffres.

6. LA COURBE ELLIPTIQUE (en rouge)
pour les paramètres a = –4 et b = 2. Les
points P1 et P2, de coordonnées respec-
tives (–2, –√2) et (0, √2) sont sur la courbe
elliptique, car ils vérifient son équation :
y2 = x3 + ax + b.
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calculer les coordonnées (x3, y3) du point
P3 = P1 + P2, on applique les formules
indiquées précédemment, mais avec
les règles de la congruence, et l’on
obtient x3 = 3 et y3 = 2. Effectivement,
(3, 2) est un point de la courbe.

L’ensemble E(p) des points des
courbe elliptique modulo p n’a qu’un

nombre fini d’éléments, compris entre
p – 2√p + 1 et p + 2√p + 1. En essayant
tous les couples de nombres possibles,
on trouve que la courbe elliptique E(5),
pour a = 1 et b = 4, est constituée des
neuf éléments (3,3), (3,2), (0,3), (0,2),
(1,4), (1,1), (2,3), (2,2) et O (voir la
figure 7).

La méthode de factorisation par les
courbes elliptiques repose sur une
observation du mathématicien fran-
çais Joseph Louis Lagrange (1736-
1813) : quand on additionne un élément
d’un groupe fini à lui-même autant
de fois qu’il y a d’éléments dans le
groupe, on obtient l’élément neutre.

7. LES COURBES ELLIPTIQUES E(p), pour p = 5. Chaque case cor-
respond à un couple de paramètres (a,b) ; la coordonnée a croît de
bas en haut, et b de gauche à droite, chacune variant de 0 à 4. Dans
chaque case, les coordonnées croissent également de 0 à 4 : chaque
élément du groupe est représenté par un disque de couleur à la
position correspondante. L’élément neutre O (cercle noir) est indi-
qué au milieu de la case, bien que ses coordonnées soient infinies.
Par exemple, le groupe pour a = 0 et b = 1 est représenté par la
deuxième case en partant de la gauche dans la ligne inférieure : il
contient les éléments (0,1), (0,4), (2,2), (2,3), (4,0) et O. Dans

chaque groupe, une flèche rouge relie O à un autre élément x. Les
multiples de celui-ci (x, x + x, x + x + x, etc.) sont reliés par une
chaîne de flèches rouges qui finit de nouveau sur O : c’est ce que
l’on nomme un cycle. Certains groupes contiennent plus d’un cycle
(marqués par des couleurs différentes). La couleur de chaque
cercle désigne le nombre d’éléments du cycle auquel il appartient.
Sur cet exemple très simple, on voit que, pour un couple (a,b) choisi
au hasard, la probabilité qu’il soit inutilisable (parce qu’il n’y a pas
de courbe elliptique) ou improductif (parce qu’un groupe présentant
la même structure à déjà été trouvé) est faible.
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Dans l’exemple considéré, neuf fois
n’importe quel élément de E(5) est égal
à O (on écrit comme d’habitude 2P pour
P + P, 3P pour P + P + P, etc.).

Vérifions-le pour P = (1, 1). On
obtient successivement : 2P = (2, 2), 4P
= 2 × (2P) = (0, 2), 8P = 2 × (4P) = (1, –1)
et 9P = 8P + P = (1, –1) + (1, 1) = O. Cet
exemple montre qu’au lieu d’addi-
tionner neuf fois P, on peut employer
la même astuce que pour l’exponen-
tiation binaire : on calcule la suite 2P,
4P,..., 2mP et, pour le résultat final, on
additionne les puissances de deux dont
on a besoin. Ainsi le temps de calcul
reste raisonnable, même pour un très
grand nombre à la place de 9.

Comment employer les courbes
elliptiques pour trouver des diviseurs
d’un nombre composé? Cherchons, par
exemple, un diviseur de n = 35. On choi-
sit une courbe elliptique modulo 35,
c’est-à-dire deux nombres entiers a et
b tels que 4a3+ 27b2 ne soit pas divisible
par 35 : retenons, par exemple, a = 1 et
b = –1. On obtient bien une courbe ellip-
tique, mais on ne peut pas toujours
additionner ses points : dans les for-
mules intervient un inverse modulo

n, qui n’existe pas toujours, car 35 est
composé. On essaie malgré tout : le cal-
cul échoue, mais la manière dont il
échoue donne l’information cherchée.

Plus précisément, on choisit un
nombre entier naturel k (nous verrons
comment par la suite) Pour notre
exemple, prenons k = 9. On essaie d’ad-
ditionner k fois le point P = (2, 2) avec
lui-même, par la méthode que nous
avons considérée pour E(5). On obtient
2P = (0, 22), 4P = (16, 19), 8P = (7, 13).
Ensuite, quand on veut calculer
9P = 8P + P = (7, 13) + (2, 2), on doit tout
d’abord évaluer λ et, pour cela, diviser
par 7 – 2 = 5 modulo 35. Cette division
est impossible, car 5 n’a pas d’inverse
modulo 35. On a donc finalement obtenu
ce que l’on cherchait : 5 est un diviseur
propre de 35! Notons que, dans le cas
général, le nombre dont on ne trouve pas
d’inverse n’est pas nécessairement un
diviseur de n, c’est le pgcd de n et de ce
nombre qui est un diviseur.

Les calculs échouent pour k = 9,
parce que 5 est un diviseur de 35, et
que 9 est le nombre d’éléments de E(5).
Les calculs auraient aussi échoué pour
tout multiple de 9. Pour comprendre

pourquoi, examinons la relation entre
E(35) et E(5) : comme on peut le véri-
fier sur les relations qui définissent ces
courbes elliptiques, on peut «projeter»
tout élément P1 de E(35) sur un élément
P2 de E(5), en réduisant ses coordon-
nées modulo 5 ; l’élément associé à 9P1
est alors confondu avec 9P2. Faisons
maintenant un raisonnement par l’ab-
surde : si on pouvait calculer 9P1 dans
E(35), ce qui impliquerait de pouvoir
calculer un λ fini, alors les coordon-
nées de 9P1 seraient finies ; en les rédui-
sant modulo 5, on obtiendrait aussi des
coordonnées finies pour 9P2 : c’est
impossible, puisque, d’après l’obser-
vation de Lagrange, 9P2 est l’élément
neutre du groupe fini à 9 éléments E(5),
et que ses coordonnées sont infinies.

Comment choisir le nombre k? Si
on cherche un facteur premier d’en-
viron six chiffres, on choisit le nombre
k de façon qu’il soit multiple du plus
grand nombre possible de nombres de
six chiffres qui n’ont pas de facteurs
premiers trop gros. Alors, on a de
bonnes chances pour que k soit un mul-
tiple du nombre d’éléments (nommé
cardinal) de E(p), que l’on ne connaît
pas (p est le diviseur premier cherché).
En effet, nous avons vu que le cardi-
nal de E(p) est compris entre p – 2√p + 1
et p + 2√p + 1 : ce nombre est donc au
plus du même ordre de grandeur que
p. D’autre part, le plus souvent, il n’est
pas lui-même un nombre premier, et
est donc décomposable en facteurs pre-
miers plus petits, qui, si on a de la
chance, sont aussi des facteurs premiers
de k. Lorsque l’on essaie de calculer k
fois un élément de E(n), on teste la divi-
sibilité de n par tous ces nombres pre-
miers d’un seul coup.

Pour trouver un nombre k appro-
prié, on choisit un nombre B et on cal-
cule k comme le produit de nombres
premiers inférieurs à B. Par exemple,
pour chercher des facteurs à au plus
six chiffres, on choisit B = 147. On prend
alors k = 27 × 34 × 53 × 72 × 112 × 13 × 17
× 19 × ... × 139.

En général, la méthode des courbes
elliptiques ne donne pas de résultat
avec la première courbe elliptique choi-
sie. On essaye plusieurs courbes, c’est-
à-dire plusieurs paires de paramètres
a et b. Plus B est grand, plus grand est
le nombre de courbes que l’on doit
essayer (voir la figure 8). Ensuite, si la
méthode n’a toujours pas trouvé de
diviseur, on est à peu près sûr que le
nombre n n’a pas de diviseur de l’ordre
de grandeur que l’on s’est fixé. En effet,

8. LA MÉTHODE DES COURBES ELLIPTIQUES trouve un diviseur d’un nombre n à peu près
indépendamment de la taille de n. La longueur de la recherche croît avec l’ordre de gran-
deur du diviseur cherché. Ce tableau indique, dans la première ligne, cet ordre de grandeur
en nombre de chiffres ; dans la deuxième ligne, on a indiqué le nombre B qui permet de
déterminer le nombre k ; dans la troisième ligne apparaît le nombre de courbes elliptiques
que l’on devra tester pour trouver un diviseur.

9. POUR DÉTERMINER de très grands facteurs d’un nombre n, on emploie le crible quadra-
tique. Lors de l’exécution de l’algorithme, on doit construire un système d’équations linéaires
qui, selon la taille de n, peut contenir un nombre considérable d’équations.

10. LORS DU CRIBLE QUADRATIQUE, on choisit des nombres carrés (m – u)2 proches du
nombre n à décomposer (ici, n = 7429). Le nombre u (première ligne) numérote ces
nombres carrés. On calcule la différence de chacun avec n (deuxième ligne ; m = 86) et on
divise ces valeurs par le nombre qui constitue la base de chaque crible. Par exemple, pour
u = 1, on divise (m + u)2 – n, soit 140, par 2, puis encore par 2, puis encore par 2, pour obte-
nir 35 : le crible par 2 conduit à cette valeur.
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lorsque la courbe E(p) varie (c’est-à-
dire lorsqu’on essaie différentes valeurs
de a et b), les éléments de E(p) sont assez
régulièrement répartis entre p – 2√p + 1
et p + 2√p + 1 : on a donc de bonnes
chances (sans en être complètement
sûr) que k soit un multiple du cardi-
nal de certaines de ces courbes, ce qui
permettra de découvrir le facteur p.

Le temps de calcul de cette méthode
dépend donc principalement de la taille
du diviseur premier recherché, et à peine
de celle du nombre à factoriser. Si un
nombre de 1 000 chiffres a un diviseur
de 20 chiffres, on trouve celui-ci assez
facilement. En revanche, le temps de
calcul croît très vite avec la taille du plus
petit facteur. La méthode des courbes
elliptiques convient bien pour la
recherche de facteurs qui ont jusqu’à 30
chiffres. À ce jour, le plus grand fac-
teur premier trouvé par cette méthode,
à 47 chiffres, fut découvert par Peter
Montgomery, au Centre de mathéma-
tiques et d’informatique d’Amsterdam.

Le crible quadratique

Pour la recherche de diviseurs encore
plus grands d’un nombre n, on emploie
une autre méthode : l’idée est de trou-
ver des nombres entiers naturels X et
Y tels que n soit un diviseur de X2 – Y2.

En effet, si n divise X2 – Y2, il divise
aussi (X – Y)(X + Y). Si n n’est pas un
diviseur de X – Y ou de X + Y, alors
un diviseur propre de n doit diviser
X – Y, et un autre diviseur propre de
n doit diviser X + Y. Ainsi le plus
grand diviseur commun de n et de
X – Y, par exemple, est plus grand que
1, et donc est l’un des diviseurs cher-
chés. Choisissons par exemple
n = 7 429, X = 227 et Y = 210. Le nombre
7 429 est un diviseur de X2 – Y2,
puisque X2 – Y2 = 7 429, mais il n’est
pas un diviseur de X – Y = 17 ni un
diviseur de X + Y = 437. Le pgcd de
17 et de 7 429 est 17, et c’est un divi-
seur propre de 7 429.

Comment trouve-t-on X et Y? On
établit d’abord un système d’équations
linéaires ; puis on détermine X et Y à
partir des solutions de ce système. Le
nombre d’équations dépend de la taille
du nombre à factoriser ; pour un
nombre de 120 chiffres il faut à peu près
245 000 équations pour autant d’in-
connues (voir la figure 9). Contrairement
à la méthode des courbes elliptiques,
c’est la taille du nombre à factoriser,
et non la taille du facteur cherché, qui
détermine le temps de calcul.

En premier lieu, on se donne une
suite de carrés ayant deux proprié-
tés : ils sont proches de n et leur diffé-
rence avec n est, au signe près, un
produit de petits nombres premiers.
Pour n = 7429, les carrés 832, 872 et 882

conviennent, car les différences sont
des produits des nombres premiers 2,
3, 5 et 7 :
832 – 7 429 = –540 = (–1) × 22 × 33 × 5
872 – 7 429 = 140 = 22 × 5 × 7
882 – 7 429 = 315 = 32 × 5 × 7.

Quand on multiplie certaines de
ces lignes les unes par les autres, les
exposants des décompositions s’addi-
tionnent. Si la somme des exposants
est paire pour chaque facteur pre-
mier, alors le produit est un carré. Par
exemple, (872 – 7 429) × (882 – 7 429) =
22 × 32 × 52 × 72 = (2 × 3 × 5 × 7)2 = 2102.

Dès lors, pour trouver X et Y, on n’a
plus qu’à appliquer une fois de plus
les règles des calculs de congruences.
On écrit : (87 ×88)2 ≡ (872 – 7 429) × (882-
7 429) mod 7 429. Donc (87 ×88)2 ≡2102

mod 7 429. Dans cette équation, on peut
encore remplacer 87 × 88 par son reste
dans la division par 7 429, et on obtient
2272 ≡ 2102 mod 7 429, ce qui signifie
que 7 429 est un diviseur de 2272 – 2102.
On peut donc prendre X = 227 et
Y = 210. Ces valeurs pour X et Y four-
nissent le diviseur 17 de 7 429, comme
on l’a vu précédemment.

Parmi les relations dont on dispose
(elles sont très nombreuses, en géné-
ral), on doit extraire celles qui se com-
binent en un carré de la façon décrite.
À cette fin, on construit un système
d’équations linéaires : à chaque rela-
tion, on associe une inconnue, qui
prend la valeur 1 si la relation est
employée dans la construction du carré,
et 0 dans le cas contraire. Dans notre
exemple, le système a trois incon-
nues, λ1, λ2 et λ3. Le produit de ces rela-
tions peut être écrit ainsi:
((–1) × 22 × 33 × 5)λ1 × (22 × 5 × 7)λ2 × (32

× 5 × 7)λ3,

ou bien, en utilisant les règles de cal-
cul de puissances :
(–1)λ1× 22λ1+2λ2 × 33λ1+2λ3 × 5λ1+λ2+λ3 ×
7λ2+λ3.

Comme ce produit doit être un carré,
tous les exposants doivent être pairs :

λ1 ≡ 0 mod 2
λ1 + λ2 + λ3 ≡ 0 mod 2
λ2 + λ3 ≡ 0 mod 2.

La première équation concerne le
facteur –1, la deuxième 5 et la troisième
7. Les exposants des facteurs 2 et 3 étant
pairs dans tous les cas, ils ne nécessi-
tent pas d’équation. On peut résoudre
le système d’équations par une
méthode classique d’algèbre linéaire,
en prenant garde de calculer modulo
2. On obtient λ1 = 0, λ2 = λ3 = 1, et, à par-
tir de là, on trouve X et Y comme on
l’a déjà vu.

Enfin, comment trouve-t-on les rela-
tions elles-mêmes? On utilise un pro-
cédé de crible, auquel l’algorithme
du «crible quadratique» doit son nom :
on cherche des carrés de nombres dont
la différence avec n se décompose en
petits facteurs premiers.

On fixe d’abord les nombres pre-
miers qui peuvent intervenir dans les
relations. Dans l’exemple considéré
précédemment, on a pris 2, 3, 5 et 7.
Pour traiter le signe, on ajoute le
nombre –1. L’ensemble de ces nombres
premiers forme ce que l’on appelle la
base des facteurs.

Ensuite on calcule des carrés de
nombres qui sont proches de n. Pour
cela, on prend le plus grand nombre
entier m inférieur à √n. Dans l’exemple,
il s’agit de m = 86. Les carrés de
nombres au voisinage de n sont alors
(m – 3)2= 832, (m – 2)2 = 842, (m – 1)2 =852,
m2 = 862, (m + 1)2 = 872, (m + 2)2 = 882,...,
et en général tous les (m + u)2, où u est
un nombre entier positif ou négatif petit
par rapport à m.

Enfin on se fixe l’intervalle de crible,
c’est-à-dire le domaine des nombres
u avec lesquels on veut travailler. On

11. POUR UNE VERSION améliorée du crible quadratique, dont les détails ne peuvent pas
être donnés ici, on a besoin, selon la taille du nombre n à factoriser, de différentes tailles
pour l’intervalle de crible (l’intervalle où l’on cherche des carrés convenables) et pour la
base de facteurs (l’ensemble des facteurs premiers par lesquels doivent être divisibles les
carrés réduits).
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écrit les différences des carrés à n (nom-
més les carrés réduits) dans une liste
(voir la figure 10).

On détermine maintenant les car-
rés réduits dont tous les facteurs pre-
miers sont dans la base de facteurs. On
pourrait utiliser la méthode des divi-
sions successives, mais un procédé
de crible est plus rapide : pour trou-
ver quels carrés réduits sont divisibles
par un nombre premier p, on détermine
tous les nombres u compris entre 0 et
p – 1 pour lesquels (m + u)2 – n est
divisible par p. À partir d’une valeur
trouvée pour u, on trouve d’autres
valeurs en ajoutant ou en soustrayant
des multiples de p à cette valeur de u.

Dans l’exemple, le crible par 2 s’ap-
plique de la façon suivante : comme
(m + 1)2 – n (égal à 140) est divisible par
2, il en est de même pour (m – 1)2 – n,
(m – 3)2 – n et (m + 3)2 – n. On divise
ces nombres par 2 jusqu’à ce que l’on
obtienne un nombre impair (troisième
ligne de la figure 10).

Le crible par 3 fonctionne de la
même manière : on constate que m2 – n
et (m + 2)2 – n sont divisibles par 3. En
partant de u = 0 et u = 2, on se déplace
par pas de longueur 3 vers la droite et
vers la gauche, et on divise tant qu’on
le peut par 3 les nombres ainsi obte-
nus. Par la même méthode, on crible
par les autres nombres premiers de la
base de facteurs. Partout où il y a un
1 à la fin de la liste, on peut décom-
poser le carré réduit sur la base de
facteurs. On détermine la décomposi-
tion à l’aide de la méthode des divi-
sions successives.

Ici, nous avons décrit la plus simple
version du crible quadratique. La tech-
nique est plus vieille que l’ordinateur :
l’officier français Eugène Olivier Caris-
san (1880-1925) construisit une machine
mécanique avec laquelle on peut effec-
tuer le crible pour plusieurs nombres
premiers à la fois (voir la figure 1).

Pour décomposer un nombre de
100 chiffres, on doit encore apporter
de nombreuses améliorations. La base
de facteurs et l’intervalle du crible
deviennent gigantesques. Pour avoir
une idée de leur ordre de grandeur,
examinons les paramètres de la fac-
torisation de RSA-120, un nombre de
120 chiffres que les Laboratoires RSA
avaient donné à factoriser. La base de
facteurs contenait 245 810 éléments, et
le système d’équations à résoudre
245 810 inconnues et 252 222 équations.
Le calcul aurait duré environ 50 ans
sur une seule machine. Pour factori-

ser le nombre de 129 chiffres qui ouvre
l’article, c’est aussi le crible quadra-
tique qui fut employé.

Parallélisation

En dehors de l’amélioration de l’algo-
rithme, l’emploi simultané d’un grand
nombre d’ordinateurs accélère la fac-
torisation. On peut utiliser soit des cal-
culateurs parallèles (mais ils sont très
chers), soit des systèmes partagés,
par exemple des réseaux de machines
qui sont très peu utilisées pendant la
nuit ou le week-end.

À Sarrebrück, nous utilisons un
réseau de 250 terminaux répartis sur
le campus. Le système LiPS (Library
for Parallel Systems), que nous avons
mis au point, reconnaît automati-
quement quand une machine n’est
pas sollicitée par son utilisateur prin-
cipal, et il lance alors, par exemple,
une factorisation. Quand l’utilisa-
teur principal veut de nouveau tra-
vailler sur sa machine, LiPS arrête le
programme de factorisation et le
réveille de nouveau dès que la
machine est libre. LiPS expédie enfin
les résultats des calculs à l’ordina-
teur qui les centralise.

Même sur notre système réparti,
le crible quadratique demande plu-
sieurs semaines de calculs pour la fac-
torisation d’un nombre de 130 chiffres.
Le temps de calcul est doublé chaque
fois que l’on ajoute trois chiffres, car les
carrés réduits que l’on crible sont à peu
près de la taille de √n.

Les algorithmes plus rapides, mais
reposant sur le même principe que le
crible quadratique doivent obtenir des

relations grâce à la décomposition de
nombres plus petits (de l’ordre non
plus de √n, mais de n à la puissance
1/3 ou 1/4, par exemple). Le seul algo-
rithme clairement meilleur, sur ce point,
que le crible quadratique est le crible
algébrique, qui a décomposé le nombre
de Fermat F9.

Avec le crible algébrique, un
ensemble d’équipes dont nous faisons
partie a décomposé un nombre RSA de
130 chiffres, en avril 1996. Les spécia-
listes s’attendent à ce qu’un crible algé-
brique amélioré puisse, dans un petit
nombre d’années, factoriser un nombre
quelconque de 160 chiffres. Ce serait
un pas important, car les nombres com-
posés qui sont employés dans la plu-
part des systèmes RSA ont moins de
160 chiffres : l’utilisation de tels sys-
tèmes RSA ne serait plus sûre.

La factorisation des nombres
naturels est-elle un problème diffi-
cile? Pour le moment, oui : aucun
algorithme au monde ne peut retrou-
ver les facteurs d’un produit de deux
nombres premiers de 150 chiffres.
De tels produits constituent donc
une bonne base pour la sécurité de
protocoles cryptographiques, mais
pour combien de temps?

Les mathématiciens, malgré des
siècles de recherche, n’ont pas encore
trouvé un algorithme de factorisation
réellement rapide : est-ce suffisant pour
affirmer que ce problème est difficile
en soi? Non : grâce au développement
des ordinateurs, des algorithmes ont
déjà été découverts, et rien ne laisse
supposer que les progrès considérables
des 20 dernières années touchent déjà
à leur fin.
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