


a factorisation
des grands nomnres

Les systemes modernes de cryptage de données seront sdrs tant que
la décomposition des nombres de plus de 100 chiffres en facteurs premiers restera
difficile. Toutefois les techniques de factorisation progressent rapidement.
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est le produit de deux nombres pre-
miers; lesquels? Martin Gardner posa
cette question aux lecteurs de Pour la
Science en octobre 1977, dans sa
rubrique de «Jeux mathématiques»,
mais une réponse ne fut donnée que
16 ans plus tard : en avril 1994, Paul
Leyland, de I’Université d’Oxford,
Michael Graff, de I’Université de
I'lowa, et Derek Atkins, de I'Institut de
technologie du Massachusetts, iden-
tifierent les deux facteurs, aprés avoir
distribué des parties de la tache, grace
au réseau Internet, a quelque 600 volon-
taires, qui laisserent fonctionner sur
leurs ordinateurs, pendant de nom-
breuses nuits, le programme écrit par
Arjen Lenstra, du Centre de recherches
de la Société Bell Communications.

La multiplication de deux nombres,
méme trés grands, n’est pas compli-
quée : avec du papier et un crayon,
on calcule le produit de deux nombres
de 65 chiffres en une heure environ ;
par ordinateur, le calcul est immé-
diat. Enrevanche, I'opération inverse,
c’est-a-dire I'identification des facteurs
d’un produit, est trées difficile, méme
avec les calculateurs les plus rapides.

Les opérations mathématiques
telles que la multiplication et la facto-
risation sont a la base des systémes
cryptographiques modernes : le cryp-
tage est rapide, mais le décryptage
est quasi impossible en pratique.

En 1978, Ronald Rivest, de I'Insti-
tut de technologie du Massachusetts,

Adi Shamir, de I'Institut Weizmann a
Rehovot (Israél), et Leonard Adleman,
de I’Université de Californie du Sud,
ont misau pointun protocole de cryp-
tage, nommé RSA d’apreés leurs initiales,
qui est fondé sur la factorisation : une
personne voulant recevoir des mes-
sages cryptés choisit deux nombres
premiers p et g, c’est-a-dire deux
nombres entiers naturels qui ne sont
divisibles que par 1 et par eux-mémes;
il calcule leur produit p x g et le rend
public, tout en conservant secrets les
facteurs (voir I’encadré de la page 90).
Pour crypter un message, il suffit de
connaitre ce produit, nommé la clé
publique, tandis que, pour décrypter
un message, il faut connaitre les fac-
teurs premiers p et q: si ceux-ci ont plus
de 150 chiffres, méme les meilleures
méthodes connues et les ordinateurs
les plus puissants mettront 2 000 ans
pour les trouver. Ainsi, on fabrique faci-
lement des problémes de factorisation,
mais on ne sait pas, aujourd’hui, les
résoudre en un temps raisonnable, si
les facteurs premiers sont trop grands.
Trouvera-t-on un jour une méthode
de factorisation rapide? Les Labora-
toires RSA ont organisé un concours
mondial de factorisation. lls publient
des produits de grands nombres pre-
miers et récompensent leur factorisa-
tion (on peut consulter leur site sur le
réseau Internet : voir la bibliographie).
L’idée de mettre le public a contri-
bution est judicieuse : on ignore si la
factorisation est difficile par essence
ou si les mathématiciens n’ont pas
encore trouveé laméthode la plus habile.
Aussi la seule garantie de la sécurité
des procédés de cryptage est I'igno-

rance d’'une méthode rapide de facto-
risation des nombres entiers.

L’étude de la factorisation date de
I’Antiquité : les mathématiciens d’alors
savaient déja que chaque nombre natu-
rel est un produit de nombres premiers,
et que la décomposition en facteurs
premiers estunique, al’ordre pres. Par
exemple, 12 se décompose seulement
en 2 x 2 x 3, L'étude des propriétés
des nombres entiers naturels impose
souvent la décomposition en facteurs
premiers.

Les ordinateurs ont beaucoup
apporté a lathéorie des nombres. Dans
cetarticle, nous verrons comment fonc-
tionnent les algorithmes modernes
de factorisation. Souvent les indica-
tions seront suffisamment précises
pour qu’une programmation soit pos-
sible sur un ordinateur personnel ; en
outre, une bibliotheque de programmes
nommeée LiDIA est proposeée sur le
réseau Internet (voir la bibliographie).

Les nombres de Fermat

Le juriste francais Pierre de Fermat
(1601-1665), notamment célebre pour
sa conjecture démontrée en 1997, pen-
sait avoir trouvé une méthode pour
fabriquer des nombres premiers aussi
grands que I'on voulait : a partir des
nombres entiers naturels i, il construi-
sait les nombres F; = 22'+ 1, nommés
aujourd’hui nombres de Fermat. Les
guatre premiers nombres de Fermat
sont premiers : Fy= 22 + 1 = 3,
F,=22'+1=5F,=22+1=17,
F,=22%+1=257etF,=22"+1=65537.

Cependant, dés 1732, le mathéma-
ticien suisse Leonhard Euler trouva que
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1. LA «<MACHINES A CONGRUENCES» de I'officier francais Eugéne
Carissan (1880-1925). La manivelle fait tourner une roue dentée
qui entraine un compteur (au premier plan sur la photographie supé-
rieure) et 14 couronnes indépendantes. Sur la photographie infé-
rieure, a droite, les quatre couronnes externes ont été enlevées et
le mécanisme apparait. A chaque couronne est associé un nombre,
de I’intérieur vers I’extérieur : 19, 21, 23, 26, 29, 31, 34, 37, 41,
43, 47, 55 et 59. Sur la face supérieure, chaque couronne porte un
nombre de picots égal a ce nombre. Soit n un nombre a factoriser.
On utilise la relation n = x2 — y2 et I’on cherche des conditions sur x
pour que y? soit un carré parfait. Si les valeurs permises de x sont
1, 7, 8, 13, 14 et 20 modulo 21, c’est-a-dire si le reste de la divi-
sion de x par 21 peut étre 1, 7, 8, 13, 14, 20, alors on place un
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capuchon métallique sur les picots 1, 7, 8, 13, 14, 20 de la cou-
ronne 21. De méme pour les autres couronnes utilisées. On tourne
la manivelle et, quand les capuchons métalliques (les plots noirs)
des différentes couronnes sont alignés sur la barrette, un contact
électrique s’établit et un signal sonore retentit. Le nombre indiqué
sur le cadran a alors des chances d’étre un carré parfait. La
machine est particulierement adaptée pour la recherche de
nombres convenant pour le crible quadratique, utilisé pour la facto-
risation des nombres. Carissan prouva avec elle, en tournant la
manivelle pendant dix minutes, que 708 158 977 est un nombre
premier, en montrant qu’il s’écrit d’une seule maniére comme somme
de deux carrés : 19 2242 + 18 4012. La machine est aujourd’hui au
Conservatoire national des arts et métiers, a Paris.
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2. TOUTES LES COURONNES de la «<machine a congruences» ont
une position zéro (visible en rouge sur la photographie de
gauche, ou I’'on a enlevé la barrette métallique). Les couronnes
ne roulent pas seulement sur la roue dentée commune, mais

F., égal 4 294 967 297, était égal au
produit de 641 par 6 700 417 : F,n’est
donc pas un nombre premier (on dit
que c’est un nombre composé). Puis,
150 ans plus tard, en 1880, F, fut facto-
risé et, encore 90 ans plus tard, en 1970,
les deux facteurs premiers de F, ont été
obtenus. Le nombre Fya été décomposé
en 1980, et le nombre F,en 1990.

Cette histoire des nombres de Fer-
mat montre combien la factorisation
est difficile : les mathématiciens
mirent 240 ans pour factoriser le
nombre de Fermat F., a 39 chiffres, et,
méme équipés d’ordinateurs ils ont
mis 20 ans a décomposer le nombre
Fg, de 155 chiffres.

En revanche, il savaient que F,,
Fg et Fg n’étaient pas premiers bien
avant de connaitre leurs facteurs :
on peut déterminer, grace a un test
spécial, si un nombre est composé,
sans calculer ses facteurs. On s’assure
ainsi que la factorisation est possible,
avant de I’entreprendre.

Un test simple de primalité

Comment détermine-t-on qu’un
nombre est premier? On peut utiliser
le test de Fermat, c’est-a-dire examiner
si n est un diviseur de 2"1-1 : Fermat
a prouvé que tout nombre premier n
(sauf 2) est diviseur de 22"-1, Par
exemple, 3, qui est premier, estun divi-
seur de 23-1-1, soit 3. Inversement, si
n n’est pas un diviseur de 21— 1, n
n’est pas premier. Par exemple, le
nombre 6 n’est pas un diviseur de
261 _1, soit 31 ; il n’est pas premier.
Examinons un exemple plus com-
pliqué, afin d’apprécier I'utilité du test
de Fermat : le nombre 58 483 est-il
premier? On pourrait commencer
par calculer 258482 — 1 puis chercher si
le résultat est un multiple de 58 483,
mais un calcul direct serait extréme-
ment long, car le nombre 258482 _ 1
s’écrit avec 17 604 chiffres. On utilise
plutdt I'arithmétique des congruences
(voir I’encadré de la page 91), pour obte-

Le protocole de cryptographie RSA se fonde
sur le résultat suivant :

Soit p et g deux nombres premiers. On
pose n = pg. Si e est un nombre entier pre-
mier avec (p — 1)(q — 1), alors il existe un
nombre entier d positif, tel que, pour tout
A, Asd — A soit divisible par n.

(X et Y sont dits premiers entre eux si
leur seul diviseur commun est 1).

Le protocole est le suivant :

Alice choisit p, g, e (p et g premiers, et
e premier avec (p — 1)(q - 1).

Alice calcule n=pqetd, ce qui est facile.

Alice rend publics n et e (par exemple
en les publiant dans un annuaire).

Robert, qui veut communiquer une infor-
mation secrete a Alice, transforme son infor-

Le systéme RSA

mation en un nombre entier A inférieur a n
(ou en plusieurs nombres si nécessaire)
avec un codage connu de tous.

Robert calcule le reste B de la division
de A® par n, envoie B a Alice par un canal
qui n’a pas besoin d’étre protégé (par
exemple en publiant B dans un journal).

Alice, pour décoder B, va calculer BY ;
comme les restes de la division de BY et de
A% par n sont égaux a A, elle connaitra A
et donc le message de Robert.

Sécurité du systéme RsA

La sécurité de ce codage a clé publique
repose sur la difficulté du calcul des fac-
teurs de n : quiconque les connait peut
facilement calculer d et déchiffrer les mes-
sages envoyés par Robert a Alice.

L ] 1 n

aussi sur des disques, dont les axes, fixés a I’axe de la roue den-
tée, font des angles de 120 degrés les uns avec les autres (a
droite). Seules les pointes portant un capuchon produisent le
contact dans la barrette métallique.

nir un algorithme efficace, fondé sur
I’idée suivante : vérifier que 58 483
est un diviseur de 258482 _ 1 revient a
chercher si le reste de la division de
258482 par 58 483 est 1.

Pour calculer ce reste, on effectue
une «exponentiation binaire». On com-
mence par écrire 58 483 comme une
somme de puissances de 2
58 482 = 215 + 214 + 213 4 210 4 26 4 25 4
2%+ 2. Puis on utilise cette décomposi-
tion pour écrire le nombre 258462 comme
un produit de puissances de 2 :
221 x 924 x 225 x 228 x 2210 x 2213 x 9214
2215 Ensuite on calcule successivement
les restes des divisions par 58 483 de
220, 221, 222 223 jusqu’a 22'°. Le reste
de la division de 22*'par 58 483, pour
n’importe quel nombre entier i, s’ob-
tient simplement a partir du reste pré-
cédent (celui de la division de 22' par
58 483) : on I’éléve au carré, on divise
ce carré par 58 483, et on prend le reste
de cette division (voir lafigure 3). Ainsi,
de proche en proche, on détermine le
reste par 58 483 de la division pour cha-
cune des puissances qui intervien-
nentdans le développement binaire de
58 482. On multiplie enfin tous ces
restes, mais en ne gardant, aprés chaque
multiplication, que le reste de la divi-
sion par 58 483. De cette fagon, les résul-
tats intermédiaires restent de taille
raisonnable. On détermine ainsi que
le reste de la division de 258482 par 58 483
est égal a celui du produit 4 x 7 053 x
34259 x 42 237 x 34 763 x 53 664 x 5010
x 10893 il est égal a 11 669. Pour sim-
plifier 'expression des résultats, les
mathématiciens écrivent : 2°8482 =11 669
mod 58 483. Le signe = se lit «congru
a» ; il indique que les expressions a sa
gauche et a sa droite ont le méme reste
dans la division par le nombre indi-
qué apres I'abréviation mod, laquelle
se lit kmodulo».
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L'application du test de Fermat,
finalement, indique que le nombre
58 483 n’est pas premier, puisque le
résultat n’est pas 1. Ce procédé est rela-
tivement rapide, mais il ne fournit
pas la décomposition en facteurs pre-
miers de 58 483.

La méthode
des divisions successives

Quand on sait gqu’un nombre n n’est
pas premier, comment peut-on le fac-
toriser? On cherche une décomposition
en diviseurs propres, c’est-a-dire qui
ne sont égaux nialnian (lesnombres
1 et n sont nommeés diviseurs triviaux
de n) ; par exemple, 3 est un diviseur
propre de 12. Puis on examine si ces
diviseurs sont des nombres premiers.
S’ils ne le sont pas, on les décompose
a leur tour, jusqu’a ce que tous les
diviseurs soient premiers.

Par exemple, 12 =3 x 4. Le nombre
3 est premier, mais 4 est composé et
peut étre factorisé: 4 =2 x 2. Ladécom-
position compléte de 12 s’écrit donc
12=2x2x3. Ainsi, dans un algorithme
de factorisation, la recherche d’un
facteur propre d’un nombre composé
est une opération fondamentale.

Laméthode laplussimpleestcelle
des divisions successives : on divise
n par tous les nombres premiers 2, 3,
5,7,11,13,17, etc. (préalablement stoc-
kés dans une table), jusqu’ace qu’une
division tombe juste. Dans le cas de
n = 58 483, on observe que le 51¢
nombre premier, 233, est un diviseur
(58 483 =233 x 251). On doit donc effec-
tuer 51 divisions avec reste pour trou-
ver ce facteur, ce qui reste possible,
mais quand le plus petit facteur pre-
mier p de n devient grand, les divi-
sions nécessaires sont de plus en plus
nombreuses (voir lafigure 4), et latable
des nombres premiers nécessaires aux
calculs est de plus en plus grande. La
factorisation par divisions successives
ne convient que pour la recherche de
petits facteurs ; pour des facteurs plus
grands, une méthode fondamentale-
ment différente s’impose.

Les courbes elliptiques

En 1985, Hendrik Lenstra a trouvé un
algorithme de factorisation qui utilise
des courbes elliptiques. Ces objets
mathématiques, qui ont notamment
été employés par le mathématicien bri-
tannique Andrew Wiles dans sa
démonstration de la conjecture de Fer-
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mat, sont également utilisés dans des
protocoles cryptographiques.

Dans laméthode des courbes ellip-
tiqgues comme dans le test de Fermat,
on effectue un calcul qui réussit si n est
un nombre premier et qui échoue
quand n est composé (ce que I’on sait,
par exemple, grace a un test de Fermat
préliminaire) : au cours des calculs, on
doitaplusieurs reprises extraire le plus
grand diviseur commun (pgcd) de n et
d’autres nombres, et le calcul ne se

poursuit que si le pgcd est égal a 1,
c’est-a-dire si les deux nombres sont
premiers entre eux. Dans le cas con-
traire, ce pgcd est un diviseur de n, et
méme un diviseur propre sionade la
chance : I'objectif est alors atteint.

Du hasard intervient dans cette
méthode, car on a le choix entre un
grand nombre de courbes elliptiques
pour mener les calculs (voir lafigure 7).
On en choisit une au hasard. Si elle ne
fournit pas de diviseur, on essaie la sui-

T o 1 a 2 L] = E T
RESTE 2 1 = =5 T e 2 = q2z=7 =7 20
H = a b o) 11 iz 12 1 1=
RESTE 15 155 =1 2 T 210 bl B3 2 e S0 10556

3. LES RESTES DES DIVISIONS de 22! par 58 483 pour i compris entre O et 15. Pour trouver
ces valeurs, il n’est pas nécessaire de calculer les nombres 22' (qui peuvent étre trés grands) :

on utilise les restes précédemment calculés.

5 1f o* 1 108 0= 101
HOM ERES

FRBAIER=

INFERIEUFS 1&r TE43T 15 10 0 o [ -0 B [0 LR 1 [ 4 [0
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4. LE NOMBRE de nombres premiers inférieurs a 103, 108, etc. est aussi le nombre de divi-
sions qui sont nécessaires, dans la méthode des divisions successives, pour obtenir un fac-

teur premier de chaque taille respective.

es mathématiciens ont étendu les opéra-

tions courantes aux restes de divisions
des nombres entiers. Par exemple, quand on
divise 7 par 3, le quotient est 2 et le reste 1,
car 7=2 %3+ 1. Pour les nombres négatifs,
le calcul est analogue. Le quotient de —7 par
3est—3etleresteest2, car3 X (-3)+2=—7.
Lors de la division de a par n, le reste est un
desnombres0, 1,2,...,n—1.0nle note R(a,n).

Le plus grand diviseur commun (pgcd)
de deux nombres entiers naturels a, et a,
est obtenu par I'algorithme d’Euclide. On
calcule la suite a; = R(a,, a,), 8, = R(a,, a,),
etc. Aprés un certain nombre de divisions, le
reste est 0. Le pgcd de a, et a, est le dernier
reste non nul. Par exemple, le pgcd de a, =631
etdea, =405 est obtenu de lafagon suivante :
631/405 = 1 reste 226
405/226 =1 reste 179
226/179 = 1 reste 47
179/47 = 3 reste 38
47/38 = 1 reste 9
38/9 =4 reste 2
9/2 =4 reste 1
2/1=2reste 0.
Le dernier reste non nul est 1, donc le

pgcd de 405 et de 631 est 1. Les deux

Congruences et calcul du plus grand
diviseur commun (pgcd)

nombres sont premiers entre eux. Lorsque
deux nombres entiers a et b donnent le
méme reste dans la division par un entier
naturel n, on dit qu’ils sont congrus modulo
n et on écrit a = b mod n. Par exemple,
10 =4 mod 3, car 10 et 4 donnent le reste
lquand on les divise par 3. On démontre
facilement que a =b mod n si n est un
diviseur de b —a : le nombre 10 -4 =6
est divisible par 3.

Quand on calcule le reste, pour une
expression compliquée qui inclut des addi-
tions, des soustractions ou des produits,
on peut remplacer tous les résultats inter-
médiaires par leur reste. Par exemple, si
I'on veut calculer le reste de 14 X (12 + 7)8
dans la division par 8, on remplace 14 par
6 (le reste de la division de 14 par 8) et 12
par4,etlona:14%(12+7)8=6%(4+7)8
mod 8. Ensuite, on obtient 6 X (4 + 7)8 =
6x3%8=6%(32)*=6%(1*)=6mod 8.0n
aurait aussi pu calculer 14 X (12 + 7)8 =
237 769 882 574, puis diviser le résultat
par 8 et prendre le reste. Avec la premiére
méthode, les résultats intermédiaires ne
dépassent jamais 7, ce qui rend les cal-
culs beaucoup plus rapides.




vante. H. Lenstra a démontré que, pour
tout nombre composé n, il existe des
courbes elliptiques qui fournissent
un diviseur.

Comme pour la méthode par divi-
sions successives, le temps nécessaire
pour trouver un diviseur par la
méthode des courbes elliptiques dé-
pend de lataille de ce diviseur. Cepen-
dant, cette méthode identifie en un
temps raisonnable les facteurs ayant
jusqu’a 30 chiffres (voir la figure 5).

Qu’est-ce qu’une courbe elliptique?
C’estun ensemble de pointsd’un plan,
dont les coordonnées x et y vérifient
I’égquation y?= x3+ ax + b. Les para-
metres a et b sont des nombres entiers
choisis de telle sorte que 4a + 27b?
soit différent de 0 (voir lafigure 6). Mal-
gré leur nom, les courbes elliptiques
n’ont qu’un rapport trés éloigné avec
les ellipses. Elles sont parfois compo-
sées de plusieurs branches.

Les courbes elliptiques sont des
ensembles intéressants, car on peut défi-
nir une opération d’addition de leurs
points : a deux points P, et P, d’une
courbe elliptique, une construction géo-
métrique simple associe un troisieme
point de la courbe, qui est nommé
P, + P,. L'opération ainsi définie a des
propriétés analogues & I'addition des
nombres entiers : elle est associative (le
point (P + Q) + R est confondu avec
P + (Q + R)), commutative (le point
P + Q est le méme que le point Q + P),
elle admet un élément neutre (c’est-a-
dire un pointqui, ajouté a un point quel-
congue, ne change pas ce dernier) et
chaque point a un opposé (ou inverse,
tel que la somme du point et de son
opposé soit égale a I’élément neutre).

L’inverse —P d’un point P de la
courbe est le symétrique de P par rap-
port a I’axe des abscisses. En général,
on trouve la somme P, + P, de deux
points P, et P, en tracant la droite qui
passe par ces deux points : elle coupe
la courbe en un troisieme point Q, dont
le symétrique —Q par rapport a I’axe
des abscisses est la somme cherchée,
P, + P, (voir lafigure 6).

Quand P, et P, sont confondus, on
obtientle pointP, +P,, ou 2P, en rem-
placant la droite P P, par la tangente
alacourbe elliptique au point P, . Enfin,
quand P, est égal a —P,, la droite pas-
sant par P, et P, ne coupe pas lacourbe
en un autre point ; on imagine alors
que la droite coupe la courbe a I'in-
fini. Pour cette raison, on ajoute aux
points de la courbe un point que I'on
se représente a I'infini et que I'on

nomme O ;onpose P, —P, =0. Le point
Oestle zéro (I'élément neutre) de I'ad-
dition des courbes elliptiques.

L’addition de deux points peut
aussi se définir algébriquement. Si
P, et P, sont deux points de la courbe
elliptique de coordonnées (x,, y,) et (x,,
y,), alors : =P, = (x,,-y,), P, + P, = O,
siP,=-P,;P,+P,=P,,siP, =0,
P, +P,=P,,siP,=0;dans les autres
cas, on détermine la somme P, + P,
en calculant d’abord un nombre A par
les formules : A = (y, = y,)/ (X, = X)), si
P, est différent de P, et A =
(3x,%2 + a)/2y,, si P, est égal a P,. On
détermine finalement les coordonnées
(X5, ¥3) du point P, =P, + P, par :
Xg ==X, =X, + A2, ety, =y, + A(X; — Xy).

Notons que, lorsque P, estégala—P,
on pourrait étendre, d’une certaine
facon, le calcul de A : en toute rigueur,
il estimpossible, car la division par zéro
n’est pas définie, mais on peut aussi
admettre que I’élément neutre O pos-
sede des coordonnées infinies.

On peut utiliser ces formules sans
chercher a se représenter x ety comme

WOk ERE TEMFE
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5. TEMPS DE FACTORISATION, par laméthode
des courbes elliptiques exécutée, sur un ordi-
nateur puissant : a gauche, on lit le nombre
de chiffres des nombres a factoriser et, a
droite, le temps moyen nécessaire pour
trouver un facteur ayant ce nombre de chiffres.
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6. LA COURBE ELLIPTIQUE (en rouge)
pour les parametres a = -4 et b = 2. Les
points P, et P2, de coordonnées respec-
tives (-2, -V2) et (0, v2) sont sur la courbe
elliptique, car ils vérifient son équation :
y2=x3+ax + b.

les coordonnées d’un point du plan.
Cette abstraction devient utile quand
les coordonnées des points considé-
rés ne sont pas des nombres réels : tant
gu’on peut additionner, soustraire,
multiplier ou diviser ces coordonnées,
on conserve les propriétés des courbes
elliptiques. Nous avons notamment
vu, a propos des congruences, que I’'on
peut additionner, soustraire et multi-
plier des restes de divisions. Plus pré-
cisément, le reste de la division d’un
nombre entier par un nombre naturel
n peut prendre les valeurs 0, 1, 2, ...,
n-1.On calcule avec ces restes comme
on le fait avec des nombres entiers,
mais, quand le résultat d’un calcul sort
de I'intervalle comprisentreOetn—-1,
on le divise par neton conserve le reste
de cette division. Par exemple, dans
I’ensemble des nombres modulo 12,
10+5=3;1-2=11 (on utilise cou-
ramment ce calcul : 5 heures aprés 10
heures, il est 3 heures, et deux heures
avant 1 heure, il est 11 heures). On mul-
tiplie de méme : par exemple, 4 x5=8.

Ladivision pose des problémes par-
ticuliers. Une division est analogue a
une multiplication par I'inverse, et I'in-
verse de x est I’élément y qui vérifie
xy = 1. Par exemple, pour n =12, I'in-
versede5est5,car5x5=25¢et25=1
mod 12. En revanche, 4 n’a pas d’in-
verse car 4y a plusieurs solutions, 3, 6
ou 9, modulo 12. On ne divise sim-
plement que si n est un nombre pre-
mier. On calcule I'inverse grace a la
série d’opérations de I'algorithme clas-
sique de la division.

Avec cet ensemble de restes muni
de ces opérations de bases, on définit
également une courbe elliptique. Le
cas le plus simple est celui ou le module
(le nombre par rapport auguel on prend
le reste) est un nombre premier p. Les
paramétres a et b de la courbe doivent
étre des nombres compris entre 0 et
p — 1 tels que 4a3 + 27b? ne soit pas
congru a 0 modulo p. La courbe est
constituée du point O et des points
associés aux couples (x, y) de nombres
comprisentre 0 et p—1 qui Vérifient la
congruence y2 =x3 +ax + b mod p. Les
formules pour I'addition restent
inchangées, mais on remplace tous
les nombres qui se présentent par le
reste de leur division par p.

Par exemple, pourp=5,a=1et

= -1 (cette écriture est une simplifi-
cationdep=5;a=1mod5;b=4mod5),
les points P, et P, de coordonnées res-
pectives P, = (1, 1) et P, = (2, 2) sont
des points de la courbe elliptique. Pour
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calculer les coordonnees (x,, y,) du point
P, =P, +P,, on applique les formules
indiquées précédemment, mais avec
les régles de la congruence, et I’on
obtient x, = 3 et y, = 2. Effectivement,
(3, 2) est un point de la courbe.
L’ensemble E(p) des points des
courbe elliptique modulo p n’a qu’un

nombre fini d’éléments, compris entre
p-2Vp+1letp+ 2Vp+ 1. Enessayant
tous les couples de nombres possibles,
on trouve que lacourbe elliptique E(5),
pour a =1eth = 4, est constituée des
neuf éléments (3,3), (3,2), (0,3), (0,2),
(1,4), (1,1), (2,3), (2,2) et O (voir la
figure 7).

La méthode de factorisation par les
courbes elliptiques repose sur une
observation du mathématicien fran-
¢ais Joseph Louis Lagrange (1736-
1813) : quand on additionne un élément
d’un groupe fini a lui-méme autant
de fois qu’il y a d’éléments dans le
groupe, on obtient I’élément neutre.

Paede corxbe

Fae d= courbe

dlipique, =
432 v =0 mad 5

alipfique , =r
du P27 wd=0mad 5

Paed= courbe
olipfque, =r
Gu P DT w0 mad 5

Paed= courbe
olipfque, =r
Gu P ST w0 mad 5

aal
N

Pae d= coarbe

dlipfque, =r

G P27 wilF=0 mad 5

ik

&

7. LES COURBES ELLIPTIQUES E(p), pour p = 5. Chaque case cor-
respond a un couple de parametres (a,b) ; la coordonnée a croit de
bas en haut, et b de gauche a droite, chacune variant de 0 & 4. Dans
chaque case, les coordonnées croissent également de 0 &4 : chaque
élément du groupe est représenté par un disque de couleur a la
position correspondante. L’élément neutre O (cercle noir) est indi-
gué au milieu de la case, bien que ses coordonnées soient infinies.
Par exemple, le groupe pour a = 0 et b = 1 est représenté par la
deuxiéme case en partant de la gauche dans la ligne inférieure : il
contient les éléments (0,1), (0,4), (2,2), (2,3), (4,0) et O. Dans
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chaque groupe, une fleche rouge relie O a un autre élément x. Les
multiples de celui-ci (x, X + X, X + X + X, etc.) sont reliés par une
chaine de fléeches rouges qui finit de nouveau sur O : c’est ce que
I’on nomme un cycle. Certains groupes contiennent plus d’un cycle
(marqués par des couleurs différentes). La couleur de chaque
cercle désigne le nombre d’éléments du cycle auquel il appartient.
Sur cet exemple trés simple, on voit que, pour un couple (a,b) choisi
au hasard, la probabilité qu’il soit inutilisable (parce qu’il n’y a pas
de courbe elliptique) ou improductif (parce qu’un groupe présentant
la méme structure a déja été trouveé) est faible.



Dans I’exemple considéré, neuf fois
n’importe quel élément de E(5) est égal
a0 (on écritcomme d’habitude 2P pour
P +P,3P pourP +P+P,etc.).
Vérifions-le pour P = (1, 1). On
obtient successivement : 2P = (2, 2), 4P
=2x(2P)=(0,2),8P=2x(4P)=(1,-1)
et9P =8P +P=(1,-1) +(1,1)=0.Cet
exemple montre qu’au lieu d’addi-
tionner neuf fois P, on peut employer
la méme astuce que pour I’exponen-
tiation binaire : on calcule la suite 2P,
4P,..., 2P et, pour le résultat final, on
additionne les puissances de deux dont
on a besoin. Ainsi le temps de calcul
reste raisonnable, méme pour un tres
grand nombre a la place de 9.
Comment employer les courbes
elliptiques pour trouver des diviseurs
d’un nombre composé? Cherchons, par
exemple, un diviseur de n=35. On choi-
sit une courbe elliptigue modulo 35,
c’est-a-dire deux nombres entiers a et
b tels que 4a%+ 27b? ne soit pas divisible
par 35: retenons, par exemple,a=1et
b=-1.On obtient bien une courbe ellip-
tique, mais on ne peut pas toujours
additionner ses points : dans les for-
mules intervient un inverse modulo

n, qui n’existe pas toujours, car 35 est
composé. On essaie malgré tout: le cal-
cul échoue, mais la maniere dont il
échoue donne I'information cherchée.

Plus précisément, on choisit un
nombre entier naturel k (nous verrons
comment par la suite) Pour notre
exemple, prenons k =9. On essaie d’ad-
ditionner k fois le point P = (2, 2) avec
lui-méme, par la méthode que nous
avons considérée pour E(5). On obtient
2P = (0, 22), 4P = (16, 19), 8P = (7, 13).
Ensuite, quand on veut calculer
9P =8P +P=(7,13) + (2, 2), on doit tout
d’abord évaluer A et, pour cela, diviser
par 7 —2 =5 modulo 35. Cette division
est impossible, car 5 n’a pas d’inverse
modulo 35. Onadonc finalement obtenu
ce que I'on cherchait : 5 est un diviseur
propre de 35! Notons que, dans le cas
général, le nombre dont on ne trouve pas
d’inverse n’est pas nécessairement un
diviseur de n, c’est le pgcd de n et de ce
nombre qui est un diviseur.

Les calculs échouent pour k = 9,
parce que 5 est un diviseur de 35, et
que 9estle nombre d’éléments de E(5).
Lescalculs auraient aussi échoué pour
tout multiple de 9. Pour comprendre

MO EFE
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8. LA METHODE DES COURBES ELLIPTIQUES trouve un diviseur d’un nombre n & peu prés
indépendamment de la taille de n. La longueur de la recherche croit avec I’ordre de gran-
deur du diviseur cherché. Ce tableau indique, dans la premiére ligne, cet ordre de grandeur
en nombre de chiffres ; dans la deuxiéme ligne, on a indiqué le nombre B qui permet de
déterminer le nombre k ; dans la troisieme ligne apparait le nombre de courbes elliptiques

que I’'on devra tester pour trouver un diviseur.
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9. POUR DETERMINER de trés grands facteurs d’un nombre n, on emploie le crible quadra-
tique. Lors de I’exécution de I’algorithme, on doit construire un systéme d’équations linéaires
qui, selon la taille de n, peut contenir un nombre considérable d’équations.

o -3 -2 =1 o 1 2 2
LT 40 =272 -2 -2 140 1= b fo
CRELEFARZ =125 =1 25 12
CHRELEFARZ = =17 =11 2= 11
CHELEFARS =1 T T
CHELEFART 1 1

10. LORS DU CRIBLE QUADRATIQUE, on choisit des nombres carrés (m — u)? proches du
nombre n a décomposer (ici, n = 7429). Le nombre u (premiére ligne) numérote ces
nombres carrés. On calcule la différence de chacun avec n (deuxieme ligne ; m = 86) et on
divise ces valeurs par le nombre qui constitue la base de chaque crible. Par exemple, pour
u =1, ondivise (m + u)? - n, soit 140, par 2, puis encore par 2, puis encore par 2, pour obte-
nir 35 : le crible par 2 conduit a cette valeur.

pourquoi, examinons la relation entre
E(35) et E(5) : comme on peut le véri-
fier sur les relations qui définissent ces
courbes elliptiques, on peut «projeter»
tout élément P, de E(35) sur un élément
P, de E(5), en réduisant ses coordon-
néesmodulo5; I’éléement associé a 9P,
est alors confondu avec 9P,. Faisons
maintenant un raisonnement par I’ab-
surde : si on pouvait calculer 9P, dans
E(35), ce qui impliquerait de pouvoir
calculer un A fini, alors les coordon-
nées de 9P, seraient finies ; en les rédui-
sant modulo 5, on obtiendrait aussi des
coordonnées finies pour 9P, : c’est
impossible, puisque, d’aprés I’'obser-
vation de Lagrange, 9P, est I’élément
neutre du groupe fini a9 éléments E(5),
et que ses coordonnées sont infinies.

Comment choisir le nombre k? Si
on cherche un facteur premier d’en-
viron six chiffres, on choisit le nombre
k de facon qu’il soit multiple du plus
grand nombre possible de nombres de
six chiffres qui n’ont pas de facteurs
premiers trop gros. Alors, on a de
bonnes chances pour que k soit un mul-
tiple du nombre d’éléments (nommé
cardinal) de E(p), que I'on ne connait
pas (p est le diviseur premier cherché).
En effet, nous avons vu que le cardi-
nal de E(p) estcomprisentrep-2vp+1
etp + 2Vp + 1:ce nombre est donc au
plus du méme ordre de grandeur que
p. D’autre part, le plus souvent, il n’est
pas lui-méme un nombre premier, et
estdonc décomposable en facteurs pre-
miers plus petits, qui, si on a de la
chance, sont aussi des facteurs premiers
de k. Lorsque I’on essaie de calculer k
fois un élément de E(n), on teste la divi-
sibilité de n par tous ces nombres pre-
miers d’un seul coup.

Pour trouver un nombre k appro-
prié, on choisit un nombre B et on cal-
cule k comme le produit de nombres
premiers inférieurs a B. Par exemple,
pour chercher des facteurs a au plus
six chiffres, on choisit B=147. On prend
alorsk=2"x3*x53x72x112x 13 x 17
x19 x ... x 139.

En général, laméthode des courbes
elliptiques ne donne pas de résultat
avec la premiere courbe elliptique choi-
sie. On essaye plusieurs courbes, c’est-
a-dire plusieurs paires de parameétres
aeth. Plus B est grand, plus grand est
le nombre de courbes que I’on doit
essayer (voir la figure 8). Ensuite, si la
méthode n’a toujours pas trouvé de
diviseur, on est a peu prés sar que le
nombre n n’a pas de diviseur de I’ordre
de grandeur que I'on s’est fixé. En effet,
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lorsque la courbe E(p) varie (c’est-a-
dire lorsqu’on essaie différentes valeurs
deaeth), les éléments de E(p) sont assez
régulierement répartis entre p—2vp+1
et p + 2vVp + 1 : on a donc de bonnes
chances (sans en étre complétement
sar) que k soit un multiple du cardi-
nal de certaines de ces courbes, ce qui
permettra de découvrir le facteur p.
Le temps de calcul de cette méthode
dépend donc principalement de la taille
dudiviseur premier recherché, eta peine
de celle du nombre a factoriser. Si un
nombre de 1 000 chiffres a un diviseur
de 20 chiffres, on trouve celui-ci assez
facilement. En revanche, le temps de
calcul croit trés vite avec la taille du plus
petit facteur. La méthode des courbes
elliptiques convient bien pour la
recherche de facteurs qui ont jusqu’a 30
chiffres. A ce jour, le plus grand fac-
teur premier trouvé par cette méthode,
a 47 chiffres, fut découvert par Peter
Montgomery, au Centre de mathéma-
tiques et d’informatique d’ Amsterdam.

Le crible quadratique

Pour la recherche de diviseurs encore
plus grands d’un nombre n, on emploie
une autre méthode : I'idée est de trou-
ver des nombres entiers naturels X et
Y tels que nsoit un diviseur de X2-Y?2,

En effet, si n divise X2-Y?, il divise
aussi (X-Y)(X +Y).Sinn’est pasun
diviseur de X - Y ou de X + Y, alors
un diviseur propre de n doit diviser
X =Y, et un autre diviseur propre de
n doit diviser X + Y. Ainsi le plus
grand diviseur commun de n et de
X =Y, parexemple, est plus grand que
1, et donc est I'un des diviseurs cher-
chés. Choisissons par exemple
n=7429,X=227etY =210. Le nombre
7 429 est un diviseur de X2 - Y2,
puisque X2 — Y2 =7 429, mais il n’est
pas un diviseur de X — Y =17 ni un
diviseur de X + Y = 437. Le pgcd de
17 et de 7 429 est 17, et c’est un divi-
seur propre de 7 429.

Comment trouve-t-on X et Y? On
établitd’abord un systéme d’équations
linéaires ; puis on détermine X etY a
partir des solutions de ce systéme. Le
nombre d’équations dépend de la taille
du nombre a factoriser ; pour un
nombre de 120 chiffres il faut a peu pres
245 000 équations pour autant d’in-
connues (voir lafigure 9). Contrairement
a la méthode des courbes elliptiques,
c’est la taille du nombre & factoriser,
et non la taille du facteur cherché, qui
détermine le temps de calcul.

© POUR LA SCIENCE - N° 251 SEPTEMBRE 1998

O ERE
DECHFFRES DE &

T 20 110 120

TAILLEDE LA ERZE
DES FACTEUFRS FREMIERS | 2 o
{EM MILLIEF=)

o 1

TAILLEDE L'INTEFNALLE

DECHEL ECERN MILUC ) e 5

= E = " 1& 2

11. POUR UNE VERSION améliorée du crible quadratique, dont les détails ne peuvent pas
étre donnés ici, on a besoin, selon la taille du nombre n & factoriser, de différentes tailles
pour I'intervalle de crible (I'intervalle ou I’'on cherche des carrés convenables) et pour la
base de facteurs (I’ensemble des facteurs premiers par lesquels doivent étre divisibles les

carrés réduits).

En premier lieu, on se donne une
suite de carrés ayant deux proprié-
tés : ils sont proches de n et leur diffé-
rence avec n est, au signe prés, un
produit de petits nombres premiers.
Pour n = 7429, les carrés 832, 872 et 882
conviennent, car les différences sont
des produits des nombres premiers 2,
3,5et7:
832-7429=-540=(-1) x22x 33 x5
872-7429=140=22x5x%x7
882-7429=315=32x5x7,

Quand on multiplie certaines de
ces lignes les unes par les autres, les
exposants des décompositions s’addi-
tionnent. Si la somme des exposants
est paire pour chaque facteur pre-
mier, alors le produit est un carré. Par
exemple, (872 -7 429) x (882 -7 429) =
22x32x52x72=(2x3x5x7)2=2102,

Des lors, pour trouver XetY,onn’a
plus qu’a appliquer une fois de plus
les régles des calculs de congruences.
On écrit: (87 x 88)2=(872-7 429) x (882-
7429) mod 7 429. Donc (87 x 88)2=210?
mod 7 429. Dans cette équation, on peut
encore remplacer 87 x 88 par son reste
dans ladivision par 7 429, et on obtient
2272 = 2102 mod 7 429, ce qui signifie
que 7 429 est un diviseur de 2272 - 2102
On peut donc prendre X = 227 et
Y =210. Ces valeurs pour X et Y four-
nissent le diviseur 17 de 7 429, comme
on I'a vu précédemment.

Parmi les relations dont on dispose
(elles sont trés nombreuses, en géné-
ral), on doit extraire celles qui se com-
binent en un carré de la fagon décrite.
A cette fin, on construit un systéme
d’équations linéaires : a chaque rela-
tion, on associe une inconnue, qui
prend la valeur 1 si la relation est
employée dans la construction du carré,
et 0 dans le cas contraire. Dans notre
exemple, le systéme a trois incon-
nues,A;, A, etA,. Le produit de ces rela-
tions peut étre écrit ainsi:

((-1) x 22 x 33 x BYM x (22 x 5 x T)*2 x (32
x5 x 7)As,

ou bien, en utilisant les régles de cal-
cul de puissances :
(_1))\1)( 22)\1+2)\2 x 33)\1+2)\3 x 5)\1+)\2+)\3 x
7)\2+)\3

Comme ce produit doit étre un carré,
tous les exposants doivent étre pairs :

A =0mod 2
A+ A, +A;=0mod 2
A, + A, =0 mod 2.

La premiére équation concerne le
facteur -1, ladeuxiéme>5 et la troisieme
7. Les exposants des facteurs 2 et 3 étant
pairs dans tous les cas, ils ne nécessi-
tent pas d’équation. On peut résoudre
le systéme d’équations par une
méthode classique d’algébre linéaire,
en prenant garde de calculer modulo
2.0nobtientA;=0,A,=A,=1,et, apar-
tir de 13, on trouve X et Y comme on
I'a déja vu.

Enfin, comment trouve-t-on les rela-
tions elles-mémes? On utilise un pro-
cédé de crible, auquel I’algorithme
du «crible quadratique» doit son nom:
on cherche des carrés de nombres dont
la différence avec n se décompose en
petits facteurs premiers.

On fixe d’abord les nombres pre-
miers qui peuvent intervenir dans les
relations. Dans I’exemple considéré
précédemment, on a pris 2, 3,5et 7.
Pour traiter le signe, on ajoute le
nombre -1. L’ensemble de ces nombres
premiers forme ce que I’'on appelle la
base des facteurs.

Ensuite on calcule des carrés de
nombres qui sont proches de n. Pour
cela, on prend le plus grand nombre
entier minférieur avn. Dans I'exemple,
il s’agit de m = 86. Les carrés de
nombres au voisinage de n sont alors
(m-3)>=83?%, (Mm-2)>=84%, (m—-1)?=852,
m2=862, (m+1)2=872, (m+2)2=882,...,
et en général tous les (m + u)?, ou u est
un nombre entier positif ou négatif petit
par rapport a m.

Enfin on se fixe I'intervalle de crible,
c’est-a-dire le domaine des nombres
u avec lesquels on veut travailler. On



écrit les différences des carrés an (nom-
meés les carrés réduits) dans une liste
(voir la figure 10).

On détermine maintenant les car-
rés réduits dont tous les facteurs pre-
miers sont dans la base de facteurs. On
pourrait utiliser la méthode des divi-
sions successives, mais un procédé
de crible est plus rapide : pour trou-
ver quels carrés réduits sont divisibles
par un nombre premier p, on détermine
tous les nombres u compris entre 0 et
p — 1 pour lesquels (m + u)2 - n est
divisible par p. A partir d’'une valeur
trouvée pour u, on trouve d’autres
valeurs en ajoutant ou en soustrayant
des multiples de p a cette valeur de u.

Dans I’exemple, le crible par 2 s’ap-
plique de la fagon suivante : comme
(m+1)2—n (égal 4 140) est divisible par
2, il en est de méme pour (m —1)2—n,
(m=3)2-net (m+ 3)2-n. On divise
ces nombres par 2 jusqu’a ce que I'on
obtienne un nombre impair (troisieme
ligne de la figure 10).

Le crible par 3 fonctionne de la
méme maniére : on constate que m?—n
et (m + 2)2—n sont divisibles par 3. En
partantde u=0etu =2, on se déplace
par pas de longueur 3 vers la droite et
vers la gauche, et on divise tant qu’on
le peut par 3 les nombres ainsi obte-
nus. Par la méme méthode, on crible
par les autres nombres premiers de la
base de facteurs. Partout ou il y a un
1 a la fin de la liste, on peut décom-
poser le carré réduit sur la base de
facteurs. On détermine la décomposi-
tion a I'aide de la méthode des divi-
sions successives.

Ici, nous avons décrit la plus simple
version du crible quadratique. Latech-
nique est plus vieille que I’'ordinateur :
I’officier frangais Eugene Olivier Caris-
san (1880-1925) construisit une machine
mécanique avec laquelle on peut effec-
tuer le crible pour plusieurs nombres
premiers a la fois (voir la figure 1).

Pour décomposer un nombre de
100 chiffres, on doit encore apporter
de nombreuses améliorations. La base
de facteurs et I'intervalle du crible
deviennent gigantesques. Pour avoir
une idée de leur ordre de grandeur,
examinons les paramétres de la fac-
torisation de RSA-120, un nombre de
120 chiffres que les Laboratoires RSA
avaient donné & factoriser. La base de
facteurs contenait 245 810 éléments, et
le systéme d’équations a résoudre
245810 inconnues et 252 222 équations.
Le calcul aurait duré environ 50 ans
sur une seule machine. Pour factori-

ser le nombre de 129 chiffres qui ouvre
I’article, c’est aussi le crible quadra-
tique qui fut employé.

Parallélisation

En dehors de I'amélioration de I'algo-
rithme, I'emploi simultané d’'un grand
nombre d’ordinateurs accélére la fac-
torisation. On peut utiliser soit des cal-
culateurs paralléles (mais ils sont trés
chers), soit des systemes partagés,
par exemple des réseaux de machines
qui sont trés peu utilisées pendant la
nuit ou le week-end.

A Sarrebruck, nous utilisons un
réseau de 250 terminaux répartis sur
le campus. Le systéme LiPs (Library
for Parallel Systems), que nous avons
mis au point, reconnait automati-
guement quand une machine n’est
pas sollicitée par son utilisateur prin-
cipal, et il lance alors, par exemple,
une factorisation. Quand I'utilisa-
teur principal veut de nouveau tra-
vailler sur sa machine, LiPs arréte le
programme de factorisation et le
réveille de nouveau dés que la
machine est libre. LiPS expédie enfin
les résultats des calculs a I’ordina-
teur qui les centralise.

Méme sur notre systéme réparti,
le crible quadratique demande plu-
sieurs semaines de calculs pour la fac-
torisation d’un nombre de 130 chiffres.
Le temps de calcul est doublé chaque
fois que I'on ajoute trois chiffres, car les
carrés réduits que I'on crible sonta peu
pres de la taille de vn.

Lesalgorithmes plus rapides, mais
reposant sur le méme principe que le
crible quadratique doivent obtenir des

relations grace a la décomposition de
nombres plus petits (de I’ordre non
plus de vn, mais de n a la puissance
1/30u 174, par exemple). Le seul algo-
rithme clairement meilleur, sur ce point,
que le crible quadratique est le crible
algébrique, qui adécomposé le nombre
de Fermat F,,

Avec le crible algébrique, un
ensemble d’équipes dont nous faisons
partie adécomposé un nombre RSA de
130 chiffres, en avril 1996. Les spécia-
listes s’attendentace qu’uncrible algé-
brique amélioré puisse, dans un petit
nombre d’années, factoriser un nombre
guelconque de 160 chiffres. Ce serait
un pas important, car les nombres com-
posés qui sont employés dans la plu-
part des systémes RSA ont moins de
160 chiffres : I'utilisation de tels sys-
témes RSA ne serait plus sdre.

La factorisation des nombres
naturels est-elle un probléme diffi-
cile? Pour le moment, oui : aucun
algorithme au monde ne peut retrou-
ver les facteurs d’un produit de deux
nombres premiers de 150 chiffres.
De tels produits constituent donc
une bonne base pour la sécurité de
protocoles cryptographiques, mais
pour combien de temps?

Les mathématiciens, malgré des
siecles de recherche, n’ont pas encore
trouvé un algorithme de factorisation
réellement rapide : est-ce suffisant pour
affirmer que ce probléme est difficile
ensoi? Non: grace au développement
des ordinateurs, des algorithmes ont
déja été découverts, et rien ne laisse
supposer que les progres considérables
des 20 derniéres années touchent déja
aleur fin.
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