THÉORIE DE GALOIS II

Exercice 1 (*Discriminant*) — Soit K un corps et soit $P \in K[T]$ un polynôme séparable sur K de degré n. On désigne par \mathcal{R} l'ensemble des racines de P dans une clôture algébrique de K.

- 1. Justifier que le groupe de Galois de l'extension $K[\mathscr{R}]/K$ s'identifie à un sous-groupe du groupe symétrique $\mathfrak{S}(\mathscr{R})$.
 - 2. Soit

$$D = (-1)^{\frac{n(n-1)}{2}} \prod_{x \neq y \in \mathcal{R}} (x - y)$$

Vérifier que D est un élément de K puis démontrer que, lorsque K est de caractéristique différente de 2, l'image de $Gal(K[\mathscr{R}]/K)$ dans $\mathfrak{S}(\mathscr{R})$ est contenue dans le groupe alterné $\mathfrak{A}(\mathscr{R})$ si et seulement si D est un carré dans K. (Indication : numéroter les racines ξ_1, \ldots, ξ_n de P et considérer l'élément $\prod_{i < j} (\xi_i - \xi_j)$ de $K[\mathscr{R}]$.)

3. Soit a le coefficient dominant de P. Démontrer les identités

$$a^{n}D = (-1)^{\frac{n(n-1)}{2}} \prod_{x \in \mathcal{R}} P'(x) \text{ et } a^{n-1}D = (-1)^{\frac{n(n-1)}{2}} n^{n} \prod_{x' \in \mathcal{R}'} P(x'),$$

où \mathscr{R}' est l'ensemble des racines de P' dans une clôture algébrique de K. En déduire D lorsque $P = T^2 + aT + b$ et lorsque $P = T^3 + pT + q$.

Exercice 2 (*Extensions cyclotomiques*) — Soit K un corps et soit $n \ge 1$ un entier naturel premier à la caractéristique de K. On désigne par $K(\mu_n)$ une extension de K engendrée par les racines n-èmes de l'unité.

- 1. Vérifier que l'extension $K(\mu_n)/K$ est galoisienne.
- 2. Démontrer qu'il existe un homomorphisme injectif de groupes et un seul

$$\chi: \operatorname{Gal}(\mathrm{K}(\mu_n)/\mathrm{K}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

tel que, pour toute racine *n*-ème de l'unité ζ et tout $\sigma \in \text{Gal}(K(\mu_n)/K)$,

$$\sigma(\zeta) = \zeta^{\chi(\sigma)}$$
.

- 3. Vérifier qu'il existe un unique polynôme unitaire et séparable $\Phi_n \in K[T]$ dont les racines dans toute clôture algébrique \overline{K} de K soient les racines primitives n-èmes de l'unité dans \overline{K} (c'est-à-dire les éléments d'ordre n dans \overline{K}^{\times}) puis justifier que l'homomorphisme χ est un isomorphisme si et seulement si le polynôme Φ_n est irréductible sur K.
- 4. On suppose $K = \mathbb{Q}$ dans cette question. Soit ζ une racine *n*-ème primitive de l'unité, de polynôme minimal $P \in \mathbb{Q}[T]$, soit p un nombre premier ne divisant pas n et soit $Q \in \mathbb{Q}[X]$ le polynôme minimal de ζ^p .
 - (i) Démontrer que les polynômes P et Q sont à coefficients entiers.
 - (ii) Prouver que $Q(T^p)$ divise P dans $\mathbb{Z}[T]$.
- (iii) En déduire que les réductions modulo p de P et Q ont un facteur irréductible commun dans $\mathbb{F}_p[T]$, puis que l'on a P = Q.
 - (iv) En conclusion, démontrer que le polynôme Φ_n est irréductible sur $\mathbb Q$ et à coefficients entiers.

Exercice 3 (Extensions cycliques : théorie de Kummer) — Soit K un corps et soit $n \ge 2$ un entier naturel. On suppose tout d'abord que le groupe $\mu_n(K)$ des racines n-èmes de l'unité dans K est d'ordre n.

1. Soit $a \in K^{\times}$ et soit α une racine du polynôme $T^n - a$ dans une clôture algébrique de K.

Démontrer que l'extension $K(\alpha)/K$ est galoisienne et que l'application

$$\operatorname{Gal}(\mathrm{K}(\alpha)/\mathrm{K}) \to \mu_{\mathbf{n}}(\mathrm{K}), \ \ \sigma \mapsto \frac{\sigma(\alpha)}{\alpha}$$

est un homomorphisme de groupes injectif, d'image le sous-groupe $\mu_d(K)$ où d est le plus petit entier ≥ 1 tel que $\alpha^d \in K$.

2. Soit L/K une extension galoisienne finie dont le groupe de Galois G est cyclique et d'ordre n, engendré par un élément σ .

Étant donnés un élément α de L et une racine n-ème de l'unité $\zeta \in \mu_n(K)$, on appelle résolvante de Lagrange de α et ζ l'élément (ζ, α) de L défini par

$$(\zeta,\alpha) = \alpha + \zeta^{-1}\sigma(\alpha) + \zeta^{-2}\sigma^{2}(\alpha) + \ldots + \zeta^{1-n}\sigma^{n-1}(\alpha).$$

- (i) Vérifier que l'on a $\sigma(\zeta, \alpha) = \zeta(\zeta, \alpha)$ et en déduire que $(\zeta, \alpha)^n$ appartient à K.
- (ii) Supposons que ζ soit une racine primitive de l'unité et que l'on ait $L = K(\alpha)$. Démontrer qu'il existe un entier $k \ge 1$ tel que $(\zeta, \alpha^k) \ne 0$ (*Indication : appliquer le lemme de Dedekind*) et en déduire que L est le corps de décomposition du polynôme $T^n (\zeta, \alpha^k)^n$.
- 3) On ne suppose plus que le polynôme $T^n 1$ soit scindé sur K mais on fait seulement l'hypothèse que n est premier à la caractéristique de K. Soit $a \in K$ et soit L un corps de décomposition du polynôme $T^n a$.
- (i) Vérifier que le polynôme $T^n 1$ est scindé sur L. On note K_1 l'extension de K dans L engendrée par les racines n-èmes de l'unité.
- (ii) Vérifier que les extensions L/K_1 et K_1/K sont galoisiennes et démontrer que leurs groupes respectifs s'identifient à des sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ et $\mu_n(L)$.
 - (iii) Décrire complètement le groupe de Galois de l'extension L/K.

Exercice 4 (Résolution par radicaux) — Soit K un corps de caractéristique 0 et soit L/K une extension finie galoisienne de groupe G.

On dit que l'extension L/K est résoluble par radicaux s'il existe une tour d'extensions de corps

$$K = K_0 \subset K_1 \subset \ldots \subset K_r$$

telle que

- pour tout $i \ge 0$, K_{i+1} s'obtienne à partir de K_i par adjonction d'une racine n-ème d'un élément de K_i ;
- − L \subset K_r.

En utilisant l'exercice précédent, démontrer que l'extension L/K est résoluble par radicaux si et seulement si le groupe G est *résoluble*, c'est-à-dire si et seulement s'il existe une suite de sous-groupes

$$(1) = G_r \le G_{r-1} \le \ldots \le G_1 \le G_0 = G$$

telle que, pour tout $i \ge 0$, G_{i+1} soit distingué dans G_i et le groupe quotient G_i/G_{i+1} soit abélien.

Exercice 5 (*Résolution par radicaux réels*) — Soit K un sous-corps de \mathbb{R} et soit L une extension galoisienne finie de K dans \mathbb{R} .

- 1. Considérons un nombre réel $\alpha \in \mathbb{R}$ et un entier naturel $m \ge 1$ tel que $\alpha^m \in K$. Notant d le plus petit entier strictement positif tel que $\beta = \alpha^d \in L$, démontrer que l'extension $K(\beta)/K$ est de degré au plus 2.
- 2. Déduire de ce qui précède que, si l'extension L/K peut s'obtenir par extraction successives de racines n-èmes réelles, alors [L:K] est une puissance de 2.

Exercice 6 (Résolution par radicaux des équations de degré inférieur à 3) — Soit K un corps de caractéristique distincte de 2 et 3.

- 1. Interpréter la résolution usuelle de l'équation $x^2 + ax + b = 0$ du point de vue de la théorie de Galois.
- 2. Soit $P = T^3 + pT + q \in K[T]$; on suppose que P est irréductible et on rappelle que son discriminant est $D = -4p^3 27q^2$.
 - (i) Quelles sont les possibilités pour le groupe de Galois d'un corps de décomposition L de P au-dessus de K?

Soit K' l'extension de K obtenue en adjoignant les racines cubiques de l'unité et soit L' un corps de décomposition de P au-dessus K'; on désigne par ρ une racine cubique primitive de l'unité dans K' et on note x_1 , x_2 , x_3 les racines de P dans L'.

- (ii) Justifier que le groupe $Gal(L'/K'(\sqrt{D}))$ est cyclique. Ayant fixé un générateur σ , écrire les trois résolvantes de Lagrange $(1,x_1)$, (ρ,x_1) et (ρ^2,x_1) puis expliciter les éléments $(1,x_1)^3$, $(\rho,x_1)^3$ et $(\rho^2,x_1)^3$ de $K'(\sqrt{D})$. Expliciter également l'élément $(\rho,x_1)(\rho^2,x_1)$ de K'.
- (iii) Exprimer les racines x_1 , x_2 et x_3 de P en fonction des résolvantes $(1,x_1)$, (ρ,x_1) et (ρ^2,x_1) puis en déduire l'expression de x_1 , x_2 et x_3 en fonction des coefficients de P.