4. Anneaux de Jacobson

(4.1) Soit X un espace topologique. Une partie Z est X est *localement fermée* si elle est de la forme $Z = U \cap F$, avec U ouvert et Y fermé. Une partie X_0 de X est *partout dense* si elle rencontre toute partie localement fermée non vide de X.

Soit A un anneau; on pose $X = \operatorname{Spec}(A)$ et on désigne par X_0 l'ensemble des points fermés de X, c'est-à-dire l'ensemble des idéaux maximaux de A. On dit que A est un anneau de Jacobson si X_0 est une partie partout dense de X.

Proposition 1 — Les conditions suivantes sont équivalentes :

- (i) A est un anneau de Jacobson;
- (ii) pour tout idéal premier $\mathfrak p$ de A et tout élément f de $A \mathfrak p$, $V(\mathfrak p) \cap D(f)$ rencontre X_0 ;
- (iii) tout idéal premier de A est l'intersection des idéaux maximaux les contenant.

Démonstration. (i) \Rightarrow (ii) Étant donnés un idéal premier $\mathfrak p$ de A et un élément f de A, la partie localement fermée $V(\mathfrak p)\cap D(f)$ de X est canoniquement isomorphe à l'ouvert principal $D(\overline{f})$ de Spec $(A/\mathfrak p)$, où \overline{f} désigne l'image de f dans $A/\mathfrak p$. Pour que cet ouvert soit vide, il faut et il suffit que \overline{f} soit nilpotent; comme l'anneau $A/\mathfrak p$ est intègre, cela revient à $\overline{f}=0$, i.e. $f\in\mathfrak p$.

- (ii) \Leftrightarrow (iii) Pour tout idéal premier $\mathfrak p$ de A et tout élément f de A, $X_0 \cap V(\mathfrak p) \cap D(f)$ est précisément l'ensemble des idéaux maximaux de A contenant $\mathfrak p$ et ne contenant pas f. L'équivalence des conditions (ii) et (iii) est donc claire.
- (ii) \Rightarrow (i) Considérons un fermé F et un ouvert U de X tels que $Z = U \cap F$ soit non vide. Si $\mathfrak p$ est un idéal premier de A contenu dans Z, F contient l'adhérence $V(\mathfrak p)$ de $\mathfrak p$; en outre, les ouverts principaux de X formant une base de la topologie, l'ouvert non vide $U \cap V(\mathfrak p)$ de $V(\mathfrak p)$ contient un ouvert non vide de la forme $D(f) \cap V(\mathfrak p)$ avec $f \in A \mathfrak p$. Finalement, $X_0 \cap Z \neq \emptyset$ et A est un anneau de Jacobson.

Remarque. Vu la condition (iii), tout quotient d'un anneau de Jacobson est encore un anneau de Jacobson.

Exemples. (i) Tout corps k est un anneau de Jacobson; il en est de même de l'anneau k[T]. (ii) \mathbb{Z} est un anneau de Jacobson.

- (iii) Pour qu'un anneau local A soit un anneau de Jacobson, il faut et il suffit que Spec(A) soit réduit à un point, i.e. que A ne possède qu'un seul idéal premier. Cette condition équivaut à dire que l'anneau réduit $A/\mathfrak{N}(A)$ est un corps.
- (iv) L'anneau $\mathbb{Z}_{(p)}$ obtenu en localisant \mathbb{Z} en un idéal maximal (p) n'est pas de Jacobson : $\operatorname{Spec}(\mathbb{Z}_{(p)})$ est formé d'un point fermé (p) et un point dense (0), et l'ouvert principal $\operatorname{D}(p)$ ne contient que (0).
- (4.2) Les anneaux de Jacobson possèdent une remarquable propriété de stabilité.

Théorème 2 — Soit A un anneau de Jacobson et soit $A \xrightarrow{\phi} B$ une A-algèbre de type fini.

- (i) B est un anneau de Jacobson.
- (ii) Pour tout idéal maximal \mathfrak{m}' de B, $\mathfrak{m}=\varphi^{-1}(\mathfrak{m}')$ est un idéal maximal de A et l'extension de corps résiduels $A/\mathfrak{m}\hookrightarrow B/\mathfrak{m}'$ est finie.

L'ingrédient essentiel pour démontrer ce théorème est le *lemme de normalisation de Noe-ther*, vu l'an dernier en *Algèbre 2*.

Lemme de Normalisation de Noether — Soient k un corps et R une k-algèbre de type fini intègre. Il existe des éléments $\xi_1, \ldots, \xi_n \in R$ algébriquement indépendants sur k tels que l'homomorphisme $k[\xi_1, \ldots, \xi_n] \hookrightarrow R$ soit entier.

On en trouvera une démonstration sous forme d'exercice dans le livre d'Atiyah et Macdonald, ainsi que dans Bourbaki, *Algèbre commutative*, Chap.V, §3.

Nous aurons également besoin du lemme suivant.

Lemme 3 — Soient $A \subset B$ deux anneaux intègres avec B entier sur A. Pour que B soit un corps, il faut et il suffit que A soit un corps.

Démonstration. Supposons que A soit un corps. Tout élément non nul b de B vérifie une relation de la forme $b^n + a_{n-1}b^{n-1} + \ldots + a_0 = 0$ avec $a_i \in A$. Comme B est intègre et $b \neq 0$, $a_0 \neq 0$ lorsque n est minimal; a_0 est alors inversible dans A et b est inversible dans B, d'inverse $a_0^{-1}(b^{n-1} + a_{n-1}b^{n-2} + \ldots + a_1)$. Ceci établit que B est un corps.

Supposons réciproquement que B soit un corps. Tout élément non nul a de A est inversible dans B et son inverse b vérifie une relation de la forme $b^n + a_{n-1}b^{n-1} + \ldots + a_0 = 0$ avec $a_i \in A$. En multipliant cette dernière par a^{n-1} , on obtient $b = -(a_{n-1} + \ldots + a_0 a^{n-1}) \in A$ et donc a est inversible dans A. Ceci établit que A est un corps.

Démonstration du théorème 2. (i) Posons X = Spec(A), Y = Spec(B) et désignons respectivement par X_0 et Y_0 l'ensemble des points fermés de X et Y.

Première étape : réduction – Il nous faut prouver que tout idéal premier $\mathfrak q$ de B et tout élément f de $B-\mathfrak q$, $V(\mathfrak q)\cap D(f)$ rencontre Y_0 . Le sous-espace $V(\mathfrak q)$ de Y étant fermé, $V(\mathfrak q)\cap Y_0$ est l'ensemble $V(\mathfrak q)_0$ de ses points fermés. Désignant par $\overline f$ l'image de f dans $B/\mathfrak q$, nous devons donc prouver que l'ouvert principal non vide $D(\overline f)\cong V(\mathfrak q)\cap D(f)$ de $\mathrm{Spec}(B/\mathfrak q)\cong V(\mathfrak q)$ contient un point fermé. Posons $\mathfrak p=\varphi^{-1}(\mathfrak q)$. Comme l'homomorphisme $A/\mathfrak p\hookrightarrow B/\mathfrak q$ induit par φ faisant de $B/\mathfrak q$ une algèbre de type fini sur l'anneau de Jacobson $A/\mathfrak p$, nous pouvons supposer que les anneaux A et B sont $int\`egres$ et que l'homomorphisme φ est injectif; il suffit en outre de prouver que tout ouvert principal non vide de Y rencontre Y_0 .

Deuxième étape : le cas d'un corps – Supposons que A = k soit un corps et soit $f \in B - \{0\}$; il faut montrer que l'ouvert principal $D(f) \cong \operatorname{Spec}(B[f^{-1}])$ contient un point fermé de Y. Soit $\mathfrak p$ un idéal premier de B maximal parmi ceux contenus dans D(f); l'existence de $\mathfrak p$ peut se déduire du lemme de Zorn, mais il est plus simple ici d'invoquer la noethérianité de B. En remplaçant au besoin B par la k-algèbre de type fini $B/\mathfrak p$ et f par son image dans $B/\mathfrak p$, il suffit de considérer le cas où $\mathfrak p=(0)$ est le point générique de Y.

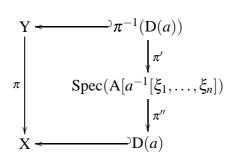
Dans cette situation, l'anneau B $[f^{-1}] = B[T]/(fT-1)$ est un corps car il est intègre et ne possède qu'un unique idéal premier. Tout comme B, cet anneau est par ailleurs une k-algèbre de type fini et le lemme de normalisation de Noether fournit donc un homomorphisme *entier* $k[\xi_1,\ldots,\xi_n]\hookrightarrow B[f^{-1}]$. L'anneau $k[\xi_1,\ldots,\xi_n]$ est un corps en vertu du lemme 3, donc n=0 et B $[f^{-1}]$ est une extension finie de k; on a par conséquent une relation de la forme $f^{-n}+a_{n-1}f^{-(n-1)}+\ldots+a_0=0$ avec $a_i\in k$, donc $f^{-1}=-(a_{n-1}+\ldots+a_0f^{n-1})\in B$ et B $[f^{-1}]=B$, d'où D(f)=Y et D $(f)\cap Y_0\neq\varnothing$. L'assertion (i) est donc établie lorsque A est un corps.

Troisième étape : le cas général – Il nous faut prouver que tout ouvert (principal) non vide U de Y rencontre l'ensemble Y_0 des points fermés de Y. Nous allons pour cela raisonner sur les fibres de l'application $\pi = {}^a \varphi : Y \to X$.

Quel que soit le point $\mathfrak p$ de X, la fibre $\pi^{-1}(\mathfrak p)$ de π au-dessus de $\mathfrak p$ est canoniquement homéomorphe au spectre de la $\kappa(\mathfrak p)$ -algèbre $B\otimes_A \kappa(\mathfrak p)$. S'il est non vide, nous venons de prouver que l'ouvert $U\cap\pi^{-1}(\mathfrak p)$ de $\pi^{-1}(\mathfrak p)$ rencontre $\pi^{-1}(\mathfrak p)_0$. D'autre part, si le point $\mathfrak p$ est fermé, la fibre $\pi^{-1}(\mathfrak p)$ est un sous-espace fermé de Y et donc $\pi^{-1}(\mathfrak p)\cap Y_0=\pi^{-1}(\mathfrak p)_0$. Ainsi, il suffit d'établir que l'ouvert U rencontre l'une des fibres de π au-dessus d'un point fermé de X.

Nous allons prouver que $\pi(U)$ contient un ouvert non vide de X; comme, par hypothèse, X_0 est (partout) dense dans X, ceci impliquera $U \cap \pi^{-1}(X_0) \neq \emptyset$ et donc $U \cap Y_0 \neq \emptyset$.

Considérons le point générique η de X et observons que $\kappa(\eta)$ est le corps des fractions de A. La $\kappa(\eta)$ -algèbre de type fini $B \otimes_A \kappa(\eta)$ s'identifie canoniquement au localisé de l'anneau intègre B par rapport à la partie multiplicative $\varphi(A) - \{0\}$ et donc est intègre. En vertu du lemme de normalisation de Noether, nous disposons d'un homomorphisme entier $\kappa(\eta)[\xi_1,\ldots,\xi_n] \hookrightarrow B \otimes_A \kappa(\eta)$. Considérons un ensemble *fini* I de générateurs de la A-algèbre B ; chaque élément de I est racine d'un polyôme unitaire à coefficients dans $\kappa(\eta)$ et il existe donc $a \in A - \{0\}$ tel que chaque élément de I soit en fait racine d'un polyôme unitaire à coefficients dans $A[a^{-1}]$, de sorte que l'anneau $A[a^{-1}]$ soit entier sur le sous-anneau $A[a^{-1}][\xi_1,\ldots,\xi_n]$. Nous obtenons ainsi un diagramme commutatif



où π' (resp. π'') désigne l'application associée à l'homomorphisme entier $A[a^{-1}][\xi_1,\ldots,\xi_n]\hookrightarrow B\otimes_A\kappa(\eta)$ (resp. à l'homomorphisme canonique $A[a^{-1}]\to A[a^{-1}][\xi_1,\ldots,\xi_n]$). L'espace Y étant irréductible, l'intersection des ouverts non vides U et $\pi^{-1}(D(a))$ est un ouvert non vide. Nous savons par ailleurs que l'application π'' est ouverte (section 3, proposition 11) et que l'image de tout ouvert non vide par l'application π' contient un ouvert non vide (section 3, proposition 12). Finalement, $\pi(U)$ contient un ouvert non vide de X et ceci achève la démonstration de l'assertion (i).

- (ii) Comme $\kappa(\mathfrak{m}')=B/\mathfrak{m}$ est un corps, l'homomorphisme $A/\mathfrak{m}\hookrightarrow \kappa(\mathfrak{m}')$ induit par φ se prolonge au corps des fractions $\kappa(\mathfrak{m})$ de A/\mathfrak{m} . On déduit immédiatement du lemme de normalisation de Noether et du lemme 3 que l'extension de corps $\kappa(\mathfrak{m})\hookrightarrow \kappa(\mathfrak{m}')$ est finie. Il existe par suite un élément f de $A-\mathfrak{m}$ tel que le corps $\kappa(\mathfrak{m}')$ soit entier sur le sous-anneau $A/\mathfrak{m}[\overline{f}^{-1}]$, lequel est alors un corps en vertu du lemme 3. On a donc $V(\mathfrak{m})\cap D(f)=\{\mathfrak{m}\}$ et, comme A est un anneau de Jacobson, $\mathfrak{m}\in X_0$.
- (4.3) Le théorème précédent montre qu'il y a au moins deux classes remarquables d'anneaux de Jacobson :
 - (i) les algèbres de type fini sur un corps ;

(ii) les Z-algèbres de type finiles algèbres de type fini sur un corps.

Corollaire 4 (Nullstellensatz, version faible) — Soit k un corps algébriquement clos. Pour toute k-algèbre de type fini, l'application

$$\operatorname{Hom}_{\mathbf{k}-\mathbf{alg}}(\mathbf{A},k) \to \operatorname{Spec}(\mathbf{A}), \ u \mapsto \ker(u)$$

réalise une bijection sur l'ensemble des idéaux maximaux de A. En particulier, tout idéal maximal de $k[T_1,...,T_n]$ est de la forme $(T_1-t_1,...,T_n-t_n)$ avec $(t_1,...,t_n) \in k^n$.

Démonstration. Tout homomorphisme de k-algèbres $u:A\to k$ étant surjectif, $\ker(u)$ est un idéal maximal de A. Réciproquement, si \mathfrak{m} est un idéal maximal de A, alors l'extension de corps $k\hookrightarrow A/\mathfrak{m}$ est finie en vertu du théorème 2 et donc $k=\mathfrak{A}/\mathfrak{m}$ puisque le corps k est algébriquement clos. Les applications $u\mapsto \ker(u)$ et $\mathfrak{m}\mapsto (A\to A/\mathfrak{m}=k)$ sont donc des bijections réciproques entre $\operatorname{Hom}_{\mathbf{k}-\mathbf{alg}}(A,k)$ et l'ensemble des idéaux maximaux de A.

Faisant $A = k[T_1, ..., T_n]$, on obtient

$$k^n \cong \operatorname{Hom}_{\mathbf{k-alg}}(k[T_1, \dots, T_n], k) \xrightarrow{\sim} \{\operatorname{id\'eaux\ maximaux\ de\ } k[T_1, \dots, T_n]\}$$

$$(t_1, \dots, t_n) \longmapsto (T_1 - t_1, \dots, T_n - t_n).$$

Corollaire 5 (Nullstellensatz, version forte) — *Soit k un corps algébriquement clos et soit* \mathfrak{I} *un idéal de k*[T_1, \ldots, T_n].

- (i) Pour que l'idéal \Im soit propre, il faut et il suffit qu'il admette un zéro dans k^n .
- (ii) Pour qu'un polynôme $f \in k[T_1, ..., T_n]$ s'annule sur l'ensemble $V(\mathfrak{I}) \cap k^n$ des zéros de \mathfrak{I} dans k^n , il faut et il suffit que f appartienne à la racine de \mathfrak{I} , i.e. qu'il existe un nombre entier $n \ge 1$ tel que $f^n \in \mathfrak{I}$.

Démonstration. (i) L'idéal \mathfrak{I} de $k[T_1, \ldots, T_n]$ est propre si et seulement s'il est contenu dans un idéal maximal \mathfrak{m} . D'après le corollaire précédent, $\mathfrak{m} = (T_1 - t_1, \ldots, T_n - t_n)$ avec $(t_1, \ldots, t_n) \in k^n$, i.e. $f(t_1, \ldots, t_n) = 0$ pour tout $f \in \mathfrak{I}$.

(ii) D'après le corollaire précédent, dire qu'un polynôme $f \in k[T_1, \ldots, T_n]$ s'annule identiquement sur l'ensemble $V(\mathfrak{I}) \cap k^n$ des zéros de \mathfrak{I} dans k^n équivaut à dire que f appartient à tous les idéaux maximaux de $k[T_1, \ldots, T_n]$ contenant \mathfrak{I} . Comme $k[T_1, \ldots, T_n]$ est un anneau de Jacobson en vertu du théorème f0, tout idéal premier est l'intersection des idéaux maximaux le contenant; on en déduit que la racine de f1, qui est l'intersection de tous les idéaux premiers de f2, ce qui prouve notre assertion.

Corollaire 6 — Les conditions suivantes sont équivalentes pour toute famille (f_i) de polynômes dans $\mathbb{Z}[T_1, \ldots, T_n]$:

- (i) les f_i engendrent un idéal propre de $\mathbb{Z}[T_1, \ldots, T_n]$;
- (ii) il existe un nombre premier p tel que les f_i aient un zéro commun dans un corps fini de caractéristique p.

Démonstration. Soit \mathfrak{I} l'idéal de $\mathbb{Z}[T_1,\ldots,T_n]$ engendré par les f_i . Pour que la \mathbb{Z} -algèbre de type fini $A = \mathbb{Z}[T_1,\ldots,T_n]/\mathfrak{I}$ soit non nulle, il faut et il suffit qu'elle possède un idéal maximal \mathfrak{m} et, si tel est le cas, il découle du théorème 2 que $\mathfrak{m} \cap \mathbb{Z}$ est un idéal maximal de \mathbb{Z} , donc engendré par un nombre premier p, et que l'extension de corps $\mathbb{F}_p \hookrightarrow A/\mathfrak{m}$ est finie. Ainsi, l'idéal \mathfrak{I} est propre si et seulement s'il existe un homomorphisme de l'anneau $mathbbZ[T_1,\ldots,T_n]/\mathfrak{I}$ dans un corps fini, donc si et seulement si les f_i admettent un zéro commun dans un corps fini.