Fiche 4 – Espaces homogènes

Exercice 1 — Soit G un groupe topologique agissant sur un ensemble X. Soit x et y deux points de X appartenant à la même orbite sous G. Démontrer que les espaces G/G_x et G/G_y , munis de la topologie quotient, sont homéomorphes.

Exercice 2 (Matrices de rang r) — Soit m, n deux entiers naturels non nuls. On considère l'action de $GL_m(\mathbf{K}) \times GL_n(\mathbf{K})$ sur $M_{m,n}(\mathbf{K})$ définie par $(P,Q) \cdot A = PAQ^{-1}$.

- 1. Étant donné $r \in \{0, ..., \min\{m, n\}\}$, déterminer le stabilisateur G_r de la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
- 2. Expliciter la structure de groupe sur G_r . En déduire que G_r est isomorphe à un produit semi-direct topologique $N \rtimes_{\varphi} H$, où $N = M_{r,m-r}(\mathbf{K}) \oplus M_{n-r,r}(\mathbf{K})$ (vu comme un groupe pour l'addition), $H = GL_r(\mathbf{K}) \times GL_{m-r}(\mathbf{K}) \times GL_{n-r}(\mathbf{K})$ et φ est une action de H sur N que l'on précisera.

Exercice 3 (Groupes linéaires/orthogonaux et produit semi-direct) — Soit $n \in \mathbb{N} - \{0\}$.

- 1. Démontrer que $GL_n(\mathbf{R})$ est isomorphe à un produit semi-direct topologique de $SL_n(\mathbf{R})$ par \mathbf{R}^{\times} . Idem sur \mathbf{C} .
- 2. Démontrer que le groupe orthogonal $O_n(\mathbf{R})$ est isomorphe à un produit semi-direct topologique de $SO_n(\mathbf{R})$ par $\mathbf{Z}/2\mathbf{Z}$. Pour quelles valeurs de n ce produit est-il direct (c'est-à-dire isomorphe au produit direct des deux groupes)?

Exercice 4 (Connexité des groupes orthogonaux et unitaires) — Soit $n \in \mathbb{N} - \{0\}$. On considère l'action naturelle des groupes $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sur \mathbb{R}^n .

- 1. Déterminer le stabilisateur et l'orbite du premier vecteur de la base canonique.
- 2. Supposons $n \ge 2$. Démontrer que la sphère unité

$$\mathbf{S}^{n-1} = \{(x_1, \dots, x_n) \in \mathbf{R}^n \mid x_1^2 + \dots + x_n^2 = 1\}$$

est connexe. (Indication : on pourra raisonner sur des hémisphères ou bien utiliser une projection stéréographique).

- 3. Déduire de ce qui précède que \mathbf{S}^{n-1} est homéomorphe à l'espace homogène $SO_n(\mathbf{R})/SO_{n-1}(\mathbf{R})$, puis que le groupe $SO_n(\mathbf{R})$ est connexe pour tout $n \ge 1$. (*Indication*: raisonner par récurrence sur n en utilisant l'exercice 3).
- 4. Déterminer les composantes connexes de $O_n(\mathbf{R})$.
- 5. Adapter ce raisonnement pour démontrer que les groupes $U_n(\mathbf{C})$ et $SU_n(\mathbf{C})$ sont connexes.

Exercice 5 (Grassmaniennes) — Dans cet exercice, $\mathbf{K} = \mathbf{R}$ ou \mathbf{C} . Soit \mathbf{E} un \mathbf{K} -espace vectoriel de dimension finie $n \ge 1$ et soit $d \in \{1, \dots, n\}$. On désigne par $\mathbf{Gr}_d(\mathbf{E})$ l'ensemble des sous-espace de \mathbf{K} de dimension d (appelé grassmannienne).

1. Vérifier que le groupe GL(E) opère sur $Gr_d(E)$ via :

$$\forall g \in GL(E), \ \forall F \in \mathbf{Gr}_d(E), \ g \cdot F = g(F).$$

- 2. Démontrer que cette action est transitive.
- 3. Soit (e_1, \ldots, e_n) une base de E. Décrire matriciellement le stabilisateur du sous-espace $F_0 = \text{Vect}(e_1, \ldots, e_d)$ et le dévisser en un produit semi-direct de groupes classiques.

- 4. Expliquer comment on définit la topologie sur $\mathbf{Gr}_d(\mathbf{E})$ de telle sorte que l'action précédente soit continue.
- 5. En munissant E d'un produit scalaire euclidien (si $\mathbf{K} = \mathbf{R}$) ou hermitien (si $\mathbf{K} = \mathbf{C}$), démontrer qu'il existe un sous-groupe *compact* de GL(E) agissant *transitivement* sur $\mathbf{Gr}_d(E)$. En déduire que, munie de la topologie définie ci-dessus, la grassmannienne est compacte.
- 6. Soit $F \subset E$ un sous-espace vectoriel de dimension d. Soit $(F_n)_n$ une suite de sous-espaces vectoriels de E de dimension d. Démontrer que les deux conditions suivantes sont équivalentes :
 - (i) la suite (F_n) converge vers F dans l'espace topologique $\mathbf{Gr}_d(E)$;
 - (ii) il existe une base (e₁,..., e_d) de F et, pour tout n, une base (e₁⁽ⁿ⁾,..., e_d⁽ⁿ⁾) de F_n telles que la suite (e_i⁽ⁿ⁾) converge vers e_i pour tout i ∈ {1,...,d}.

Exercice 6 (Le demi-plan de Poincaré) — Soit

$$\mathfrak{H} = \{ z \in \mathbf{C} \; ; \; \operatorname{Im}(z) > 0 \}$$

le demi-plan de Poincaré.

1. Vérifier que l'application

$$\varphi: \operatorname{SL}_2(\mathbf{R}) \times \mathfrak{H} \to \mathfrak{H}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto \frac{az+b}{cz+d}$$

est bien définie.

- 2. Démontrer que φ est une action continue de $\mathrm{SL}_2(\mathbf{R})$ sur \mathfrak{H} . Calculer le stabilisateur de i.
- 3. Démontrer que \mathfrak{H} est homéomorphe à $SL_2(\mathbf{R})/SO(2)$.

Exercice 7 (Continuité des racines d'un polynôme) — Le but de cet exercice est de voir que l'ensemble des racines complexes avec multiplicité d'un polynôme dépend continûment des coefficients de ce polynôme.

Pour tout n-uplet $z=(z_1,\ldots,z_n)\in \mathbb{C}^n$ et tout $k\in\{1,\ldots,n\}$, on note $e_k(z)$ la k-ième fonction symétrique élémentaire de z, définie par l'identité suivante dans $\mathbb{C}[X]$:

$$\prod_{i=1}^{n} (X - z_i) = X^n + \sum_{k=1}^{n} (-1)^k e_k(z) X^{n-k}.$$

- 1. Exprimer $e_k(z)$ en fonction des coordonnées de z (indication : développer le membre de gauche...).
- 2. Démontrer que l'application $e: \mathbb{C}^n \to \mathbb{C}^n$, $z \mapsto (e_1(z), \dots, e_n(z))$ est continue et surjective.
- 3. Démontrer que les fibres de e sont précisément les orbites de l'action du groupe symétrique \mathfrak{S}_n sur \mathbf{C}^n définie par

$$\forall \sigma \in \mathfrak{S}_n, \ \forall z = (z_1, \dots, z_n) \in \mathbf{C}_n, \ \sigma \cdot z = (z_{\sigma^{-1}(1)}, \dots, z_{\sigma^{-1}(n)}).$$

4. Pour tout $z=(z_1,\ldots,z_n)\in {\bf C}^n$, démontrer les inégalités

$$\forall i \in \{1, \dots, n\}, |z_i| \leq \max\{1, |e_1(z)|, \dots, |e_n(z)|\}.$$

- 5. Démontrer que l'image d'un fermé F par e est un fermé (indication : considérer une suite (w_m) dans e(F) convergeant vers $w \in \mathbb{C}^n$ et justifier que $e^{-1}(w_m)$ possède une valeur d'adhérence).
- 6. En déduire que e réalise un homéomorphisme entre $\mathbb{C}^n/\mathfrak{S}_n$ et \mathbb{C}^n .
- 7. Expliquer pourquoi le résultat précédent peut se reformuler comme suit : $si\ (P_k)$ est une suite de polynômes unitaires de degré n fixé qui converge vers un polynôme P (au sens de la convergence simple des coefficients), alors les racines de P_k convergent vers celles de P, au sens où l'on peut écrire

$$\begin{cases} P_k = \prod_{i=1}^n (X - \lambda_i^{(k)}) \\ P = \prod_{i=1}^n (X - \lambda_i) \end{cases} \text{ avec } \forall i, \ \lambda_i^{(k)} \to \lambda_i.$$