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The static properties of the spherical p-spin interaction 
spin glass model are calculated using the replica method. 
It is shown that within the Parisi scheme the most general 
solution is the one-step replica symmetry breaking. The 
transition from the replica symmetric solution to the 
replica replica symmetry broken one is either continuous 
or discontinuous in q l - q o  depending on the strength of 
the external magnetic field. The model can be solved ex- 
plicitly for any p at any temperature and magnetic field. 
Below the transition we find an infinite number of 
metastable states. 

1. Introduction 

In the last years much effort has been spent to understand 
the low temperature phase of spin systems with random 
quenched couplings, namely spin glasses (SG). The main 
feature of these systems is that, due to frustration and to 
the randomness of the couplings, the free energy land- 
scape presents many minimum states, separated by very 
high barriers, not related by any symmetry one to an- 
other. As a consequence, the equilibrium state of the 
system at low temperatures may depend on its initial state, 
even in the thermodynamic limit, and the ergodicity is 
broken. In this scenario it is clear that even a mean field 
theory, which usually is the first step towards the under- 
standing of the phases, can be highly non-trivial. Indeed 
the infinte range Sherrington and Kirkpatrick (SK) model 
[1 ], for which the mean field solution should be correct, 
already exhibits the main problems of such systems. 

It is now generally believed that the SK model can be 
solved by using the replica trick. In this method one con- 
siders n non-interacting replicas of the system, which al- 
lows for replacing the quenched averages by the n ~ 0  
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limit of annealed averages. However, the breaking of the 
ergodicity in the low-temperature phase implies that the 
permutation symmetry between replicas is broken [2]. 
The general form of this breaking is, however, not known. 
Parisi proposed a specific form based on a hierarchical 
replica symmetry breaking [3] which, when the number 
of breaking is sent to infinity, produces a stable mean 
field theory [4]. This ansatz  has a natural interpretation 
in an ultra-metric organisation of the pure states of the 
system [5]. These results rely, however, on the particular 
replica symmetry breaking scheme. 

Some years ago Gross and M6zard [6] showed that 
an infinte range spin glass model with p-spin interaction 
(pSG) is solved exactly by the first step of the Parisi 
replica symmetry breaking scheme (1 RSB) in the limit 
p--*oo. In a subsequent work, Gardner found that there 
is a range of  temperature where the 1 RSB gives the cor- 
rect solution for anyp  > 2 [7]. This range shrinks to zero 
as p ~ 2 ,  whereas the lower transition temperature goes 
to zero for p ~ o o .  Thus this model is a good candidate 
for a better understanding of the replica symmetry break- 
ing. 

In these works the spins were Ising spins, and this 
makes it difficult to solve the model completely. It would 
then be useful to have a model which can be solved ex- 
actly, but which retains the main features of the Ising 
spin p SG. To this end, in this paper we consider a spher- 
ical version of the model which presents the required 
properties, namely it can be solved for any p and it has 
a 1 RSB phase. A soft-spin version o f t h e p S G  forp close 
to 2 was previously considered by Kirkpatrick and Thi- 
rumalai [8] in a context of a dynamical study. In the limit 
of hard spins model leads to static properties similar to 
those found by Gardner. 

In this paper we consider only the static properties of 
the spherical pSG. The dynamics will be discussed in a 
separate paper [9]. The paper is organised as follows. In 
Sect. 2 we introduce the model. In Sect. 3 the model is 
solved using the replica trick, but no assumption on the 
structure of the overlaps %8 is done. The replica sym- 
metric (RS) solution is discussed in Sect. 4, together with 
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its stability. In Sect. 5 the Parisi one-step replica sym- 
metry breaking solution is introduced. This is shown to 
be the most general solution of the model in the Parisi 
scheme. Details of the proof are in Appendix 2. In this 
section we also discuss the transitions from the RS to the 
1 RSB solution. These are of two kinds. For low magnetic 
fields the transition takes place discontinuously with a 
jump in q l -  q0" Above a critical field the transition be- 
comes continuous. The behaviour of some thermody- 
namic quantities at the transition is discussed in Sect. 6. 
Finally Sect. 7 is devoted to some conclusions and dis- 
cussion. In Appendix 3 the interested reader can find some 
details on the calculation of the eigenvalues of  the Gaus- 
sian fluctuations about the mean field theory for the 
1 RSB. 

2. The model 

The p-spin interaction spin glass spherical model de- 
scribes a system of N continuous spins ag with random 
quenched infinite range p-spin interactions. It is defined 
by the Hamiltonian 

N 

H = -  Z J i l , - . i p G i l ' ' ' G i p  - h  Z (7i" ( 2 . 1 )  
l ~ i l <  "'" < i p ~ N  i = 1  

The interaction strengths J~,... e,, are independent random 
variables which, for simplicity, can be taken to be Gaus- 
sian with zero mean and variance 

2 j2p ! 1 < i 1 < < ip < N. (2.2) 
( J i  .... ip) = 2 N P - 1  ; = " ' "  = 

This scaling with N ensures an extensive free energy, i.e. 
proportional to N. The spin variables o-; are continuous 
real variables which can range from - oe to + o% thus 
to make the model well defined, the global constraint on 
their magnitude (spherical constraint) 

N 

~, a 2 = N  (2.3) 
i = l  

is added. The trace on the spins is then defined as 

T r o ( . . - ) = 2  I /N j" 1-[ d~ O" ( - . - ) .  
i = 1  

(2.4) 

In the case p = 2, the model reduces to the spherical model 
introduced by Kosterlitz et al. [ 10]. 

Note that Tro (1) is equal to the surface of the N 
dimensional sphere with radius N ~/2. Its logarithm is the 
entropy S of the model at infinite temperature T. For 
large N it is given by: 

T ro (1 ) = e  s(~ 

= e N D  + I n  (2 =)1/2 7r - - l / 2  (1 + O (1/N)) (2.5) 

3. The replica method 

The static properties of the spherical p SG can be obtained 
by using the formalism introduced by Gross and M6zard 
for the Ising spin case [6]. 

For any fixed realization J of the couplings, the par- 
tition function of the system is given by 

Z[J ]  = Tr~ exp [ - f i l l [ J ] ]  (3.1) 

and the quenched free energy 

fiE= - In Z .  (3.2) 

The analytic computation of this average is a very difficult 
problem, even in simple cases as nearest neighbour one- 
dimensional models [ 11 ]. However, since the integer mo- 
ments of the partition function are easier to compute, the 
standard method for performing the averages over the 
quenched couplings is to introduce n non-interacting rep- 
licas of the system, calculate annealed averges and then 
take the limit to n ~ 0 .  In this approach the average free 
energy is obtained as 

f l F =  - lim 1_ ( Z n -  1) (3.3) 
n ~ 0  /a. 

where 

Zn= Tr~ exp [ -  fl ~I H~ ] 

=Troexp  [ ( ~  )2 ~ P! 
- -  N N p 

X Z (7ilo: {~il fl " " " ~ipO~ Gipfl 
1<=ii < . . .  <ip<=N 

Since we are eventually interested in the n ~ 0  limit, 
and in the thermodynamic limit N ~  oo we can calculate 
the above partition function only up to the first leading 
terms. For this we replace the restricted sum over 
i s < - - .  <t~,by 

P" Z = Z p(p-1)2 Z 
il < "'" d ip  il,...~ip il,il~=i3,...,ip 

which is correct to order O ( l /N2) .  
As in the Ising case, once the average over the cou- 

plings is performed, the effective Hamiltonian depends 
on the overlap function of the replicas 

1 N 

i ~=1 ~ ~ria' (3.5) 

For any finite n the matrix q is symmetric and positive 
semidefinite, q > 0. Note also that the spherical constraint 
(2.3) implies q~ = 1 for the diagonal elements. This, to- 
gether with the semipositiveness of q, leads to 

- l_<_q~_< 1 V~,f l .  (3.6) 
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The spin trace in (3.4) can be performed by introducing 
the constraints (2.3) and (3.5) by the conjugate variables 
,t ~ and A, ~ ( = 2 ~ ) using the relations 

+ioo N 
1= ~ 1-[ dq~, j" 1-[ ~ / d ) . ~  

q>O c~<fl --ic~ ~ < f l  

and 

( N _ i ~ =  1 2 )  ~Ia  ,r 
ot 

= f ]~[ ~ e x p  E 2 ~  Nq~= a 
--ioo ~ ~ i = l  

where use has been made of q~ = 1. One then gets 

+i~ N 
~ =  5 [ [  dq~a 5 1-[ 2n i  

q>O c~<:fl --ira ~ < f l  

+ ioo ~ e -NG 
•  I H ~ / d ) ' ~  (3.7) 

--ioo cr 

with 

(pJ)~ 
G[q, 2 ] -  4 ~' p ' 

+ ( B J)2 , 
~ N -  PtP- 1) 

+0o 
X ~  2 2 p -  ( a ~ a ~ ) q ~  2-1n f ]-[da~ 

where { - - - )  means spin average with the Hamiltonian 

1 7, A~ea~ae+Ph 7, a~. 
ctfl a 

The q~  integration can be restricted to the region where 
q is positive definite. 

The integral in the logarithm is Gaussian and, by shift- 
ing the 2 integration so that 2 gets sufficiently negative 
real part, it can be made well defined. The integral is 
easily performed to give 

(/~j)2 
2G[R, 2 ] =  - n l n ( 2 n ) - - - -  z~ qP~ 

2 ~p 

+z~ 2 ~  q~ + l n d e t ( - 2 )  

-J- ( ~ h ) 2  Z ( ~ - l ) c t f l  
~B 

+ ( f l J )  2 , 2 2 
q ~ - p t p - 1 )  y, (o~op>q;i ~. 

=,a 
(3.9) 

The correlation function (0 .2 a~ ) can be calculated from 
the Wick's theorem and expressed in terms of (a~ a ~ )  
and ( a n ) .  

3.1. The 2-integration 

In the limit of large N the integrals in (3.7) can be per- 
formed by saddle point method. Namely, Z n is given by 
the dominant extremum of G and the average free energy 
is 

flF/N= lim _1 G (3.10) 
n~0 n 

where G, evaluated at its dominant extremum, may in- 
clude the contributions of the Gaussian fluctuations to 
take into account the 0 (1/N) corrections. 

Due to the restriction q > 0 it is possible to integrate 
out the auxiliary variables ) ~  parallel to the imaginary 
axis yielding a real saddle point. In this way Z n is reduced 
to an integral over the overlaps q~p. The relevant part 
for the 2~B integration is 

0121 = q)[21 + 4 ~  (p - 1) ~, (a2= a2B> qp-2 
~B 

with 

(3.11) 

2 ~ [ 2 ] =  ~, 2~aq=p +lndet(-)~=a)+b 2 ~, (2-')=e 

=z~ 2 , ~ q ~ + l n d e t ( - A = a  - b 2 )  

,)2 
b2 - )=e +2-  (2 +O(n 3) (3.12) 

where we have introduced the parameters 

( p  j ) 2  

p = - ~ - - p  and b=Bh. 

In (3.12) we have explicitly retained the terms of order 
n2 since, even if they do not contribute to the saddle point, 
they may be relevant for the O (1 IN) corrections if there 
are eigenvalues of the Gaussian fluctuations with finite 
- in the n--+ 0 limit - degeneracy. 

The last term in (3.11) is of relative order 1IN and 
gives the O ( l /N)  corrections to the N ~  ~ saddle point 
value of 2. However, due to the stationarity of the saddle 
point, these will lead only to O (1/N 2) corrections to G 
and, therefore, this term can be neglected in evaluating 
the saddle point and the Gaussian fluctuations. 

The stationary point of G [2] is given by 

(a~ a ~ )  =q~p (3.13) 

which to lowest order in n reads 

)~p + b2 + (q-1),~ = O(n). (3.14) 

The integration of the Gaussian 2-fluctuations at the 
saddle point can be done by diagonalising q and gives 
the factor 
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N "]~'("- 1)/4 
2fr,/ n-"/2(det(q))-~ (3.15) 

The details are in the Appendix 1. These fluctuations are 
stable due to the restriction q > 0. Note that from the 
approximations made in (3.12) and (3.14) this result gives 
the correct 1/N contribution to G only up to order O (n). 

By inserting these results back into (3.7) and (3.9) one 
gets 

Zn=e~S(~) I 1-I ~ dq~p 
q>0 c~<fl 

• - N G o [ q l - G  ~ [q]+ O(1/N)] (3.16) 

with 

2Go[q] /~ ~, p 2 = - -  q~B-b ~ q ~ p  
P ~/~ ~B 

- l n d e t  (q) + ~  q=a (3.17) 

9 2 (ag~r~) lndet (3.18) 2 G 1 [q] = ~ (p -- 1 ) a~ B qp~ 2 _}_ (q) 

and 

( a 2 a ~ ) = l + 2 q 2 a - 2 b  4 q~qaa �9 (3.19) 

The last term in (3.17), of order n 2, has been retained 
since it may be relevant for the 1/N corrections. The 
above expressions give the correct result for the terms of 
order n, n 2 and n/N. 

3.2. The q-integration 

The remaining q-integration can be done also by saddle 
point method. The terms of relative order 1/N can again 
be neglected, and replaced by their value at the stationary 
point. 

The saddle point equation for q~a derived from Go 
reads, in the n ~ 0  limit, 

~tq~p- ~ + b 2 + (q-')~/~ = 0, ~ :l:fl. (3.20) 

The diagonal terms are fixed to 1 by the spherical con- 
straint. 

The second order variation of Go with respect to q,a 
gives the Gaussian q-fluctuations 

2fi2Go = --p (p-- 1) ~, qqB2(6q~l~)2 
~B 

+Tr(q-lOq) 2+b4 Oq~a (3.21) 

where (Oq)~a = c~q~ ( = Oqa~ ) is the fluctuation of q ~  
from the saddle point value (3.20). Since q~ = 1 by the 
spherical constraint, 6q~ ~ O. 

Note that for finite n( > 1)G0[q] has to be minimal 
at the stationary point, i.e. the eigenvalues of the fluc- 
tuations have to be positive. However, like in the SK 

model the dimension of the aq-space, n(n-1) /2 ,  be- 
comes negative in the limit n ~ 0  +. In this situation the 
role of negative and positive eigenvalues is switched and 
stability requires that G O [q] should be maximised [3, 12]. 

The integration of the Gaussian q-fluctuations can be 
done by diagonalising the quadratic form (3.21). If we 
denote by A v the eigenvalues of (3.21) and by nv their 
degeneracies, then the result of the integration is 

( v~i )--1/2 A~ v (3.22) 

Collecting all the terms the average free energy per spin 
f =  FIN in the N ~  oo limit finally reads 

f l f  = - s(oo) + 1- Go[q] 
n 

+Nn a,[ql+�89 +O(1/N 2) (3.23) 
v 

where the n-+0 limit is intended, and s =  S/N. 

4. Replica symmetric solution 

In order to evaluate G explicitly we have to impose some 
ansatz on the structure ofq. In the high temperature and/ 
or high magnetic field regime we expect only one pure 
state. Thus it is reasonable to take a replica symmetric 
(RS) ansatz 

q ~ a = ( 1 - q ) a ~ + q .  (4.1) 

For later use, it is useful to introduce also the inverse 
matrix q -  l 

(q-- l)e,O = A ~ a  + B (4.2) 

with 

A =(1 - q ) - '  

B = q (4.3) 
( l - q ) [ 1  + ( n -  1)q] 

q 
n+0 ( l - - q )  2"  

Inserting (4.1) into (3.17) yields for the extensive part of 
the free energy in the n ~ 0  limit 

2 Go(q)= ~ ( 1 - q P ) - b Z ( 1 - q )  
n p 

q (4.4) - i n ( l - q )  l - q "  

The saddle point equation, derived either from the sta- 
tionary point of (4.4) or inserting (4.1) and (4.2) into 
(3.20), is 

ltqp-1--}-b 2 -  q = 0 .  (4.5) 
(1 _q)2 



4.1. Stability of the RS solution 

In the replica symmetric ansatz ~2 Go becomes [see (3.21)] 

2fi2Go=A1 ~, (fiq~,~)2 + ZAB ~, fiq~,Sq~ 

§ 2 ( 4 . 6 )  

where 

A l = - -a  (1 --p) qP-~ + A 2 . (4.7) 

The eigenvalues of this quadratic form are solutions of 
the eigenvalue equation 

A l f iq~ + AB  ~, (~q~r + ~qr~) 

+ ( B 2 + b  4) ~, Oqya=AOq~p, c~*fl. (4.8) 

For finite n there are three different eigenvalues. 

1. The first is 

A l = _ p ( p _ l ) q P  2 + (  1 _ q ) - 2 ,  (4.9) 

n I = n (n - 3)/2 

and corresponds to eigenvectors for which 

~, ~ q ~ = 0  V~. 
B 

2. The second is 

A 2 = A 1 + ( n - 2 ) A B  , n 2 = n -  1 (4.10) 

corresponding to eigenvectors 

~, fiq~p=O but ~ , 6 q ~ - ~ 0 .  
~,a B 

3. Finally the third is 

A3=A2+nAB+n(n--1) (B2+b4) ,  n 3 = l  (4.11) 

and corresponds to eigenvectors such that 

~B 

Note that in the n ~ 0  limit A 2 = A  3. However, since the 
degeneracy of A 3 is 1, its O (n) terms will contribute to 
the 1/N corrections to the free energy f .  

The relevant eigenvalue for the stability of the RS 
solution depends on the sign ofq. It is A ] ifq > 0, whereas 
it is A 2 if q < 0. Note that A 1 corresponds to the critical 
eigenvalue found by de Almeida and Thouless for the SK 
model [ 13]. 

4.2. Solution of the RS saddle point equation 

Let us consider first the zero magnetic field case b = 0. 
In this case the saddle point equation (4.5) has always 
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the solution 

q = 0  (4.12) 

which is stable at any temperature, for 

A I = A 2 = I ,  ( p > 2 ) .  (4.13) 

In the case of b . 0  (4.5) has a solution 

0 < q < 1 for all T. (4.14) 

For even p an additional negative solution may also exist. 
This q < 0 solution is, however, always unstable since 
both A 1 and A 2 are negative. 

The relevant eigenvalue for the stability of the q > 0 
solution is A 1. Using the saddle point equation (4.5) and 
(4.9) the instability curve A 1 =  0 of the RS solution in 
the (T, h) plane has the parametric representation 

I 
( T/ j)2=P~(P~ 1) (1 - q)2 qp- 2 

(h/j)2 = ~ qp-1 
0 < q = < l  (4.15) 

This curve is shown in Fig. 1 forp = 3 and Fig. 2 forp = 10 
(full line). The qualitative shape remains unchanged for 
all p > 2. In particular for any p this line exhibits a critical 
point dh/dT= 0 for 

q c = l - 2 / p .  (4.16) 

At low temperature and field the saddle point equa- 
tion may have other solutions which appear discontinu- 
ously when the curve [q, q/(1 - q)2] is tangent to the curve 
[q, pqp-1 +ba],  i.e. 

d[q ] 
dq ( l - - q )  2 /xqP-l-b2 = A 2 = 0 "  (4.17) 

h/d 

:t.2 

I I I I 

.8 

.4 

k 

.2 .4 .6 .a 
T/J 

Fig. 1. The  lines A ~ =  0 (full line) and A 2---0 (dash-dot ted  line) for 
p = 3. The  square  marks  the critical point.  The  dash line is the m = 1 
line where the discont inuous t rans i t ion to the 1 RSB solution takes 
place 
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h/J 
I I I I 

6 

4 

2 

,1"  I I 

,2 .4 .5 .8 

T/J 

F i g .  2. The  lines A ~ = 0 (full l ine) and  A 2 = 0 (dash -do t t ed  line) for  
p=  10. The square marks the critical point. The dash line is the 
m = 1 line where the discontinuous transition to the 1 RSB solution 
takes place 

For  b = 0 the above equation is solved at Tae 0 by (4.16), 
and by q = 0 at T =  0. I fh  ~= 0 the value of q lies in between 
0 and qc. In the (T,h) plane the line A 2 = 0  has the par- 
ametric form 

I(T/J)2=P-~ ~ qp-2 (1--q)3 
~ l ~ q  O<q<=l -2 /p  

Q ( h / J ) 2 = 2 q p - I - P - 2 - p q  = (4.18) 

This curve is shown in Fig. 1 fo rp  = 3 and Fig. 2 fo rp  = 10 
(dash-dotted line). It  is interesting to note that the curve 
exhibits a cusp at 

q= - 2/p + l/(2/p)2 + t - Z i p  

since for this value both d T/dq and dh/dq are zero. The 
tangents to the two branches of  the curve are equal at 
the cusp. Even if the qualitative behaviour does not 
change with p, when the latter increases the full curve 
moves towards low temperatures. 

Inside the region bounded by the A 2 = 0 curve each 
solution of (4.17) splits in two distinct solutions, one with 
A 2 > 0 and one with A 2 < 0. All these solutions are, 
nevertheless, unstable since A 1 < 0, as can be easily seen 
on the border line A 2 = 0 ,  for A 1 < A 2 for any q > 0. For  
q--*0 both curves A~ = 0  and A 2 = 0  are tangent to the 
T-axis at the origin. 

The presence of unstable solutions in the region where 
the RS solution is stable is an indication that another 
stable solution different from the RS may exist. 

5. Replica symmetry broken solution 

The analysis of  the last section leads to the conclusion 
that a replica symmetric ansatz cannot give a stable, and 
hence physical, solution of  the model in the full (T,h) 
plane. Moreover, the existence of  (unstable) solutions 

outside the RS instability region suggests that a replica 
symmetry broken (RSB) solution may lead to a larger 
free energy even outside the region A 1 < 0. 

In order to obtain the full solution we must break the 
replica symmetry, allowing q to depend, in general, on 
an infinite number of  parameters. The most general form 
of such a q is however not known. For  the SK model 
Parisi [3] proposed a particular ansatz of  hierarchical 
breaking of replica symmetry which seems to give the 
correct  solution of the SK model when the number of  
breaking is sent to infinity. I f  we use the same ansatz for 
this model, it is possible to show [see Appendix 2] that 
within the Parisi scheme the most general RSB solution 
is the Parisi one-step replica symmetry breaking (1 RSB). 

The Parisi 1 RSB is obtained by dividing the n • n q 
matrix in (n/m) • (n/m) blocks of  dimension m • m. I f  
ct . / 3  belong to one of the (n/m) diagonal blocks then 
q,~ = q l ,  otherwise q~a = q0 < q l .  This corresponds to 
group the n replicas into n/m clusters of  m replicas. Any 
two replicas c~ 4= fl within the same cluster have overlap 
ql, whereas replicas in different clusters have overlap 

qo g ql" 
Introducing the matrix e defined as 

I 1 i f e  and B are in a diagonal block 

e~a=  0 otherwise 
(5.1) 

q~p can conveniently be written as 

q,a -- (1 - ql) ~ p  + (ql - qo) e~p + qo- (5.2) 

It is also useful to introduce the eigenvalues of  q (with 
degeneracies) 

r/o = 1 -- ql ,  

rll = 1 - ( 1  - m ) q  1 -mqo ,  

r/2= 1 - ( 1  -rn)  q 1 - ( m - n ) q  o 

deg. = n ( m -  1)/m 

deg. = n/m - 1 

deg. = 1 

(5.3) 

and the inverse matrix q-~,  

(q -  1)~p = A6~p + B s ~  + C (5.4) 

with 

A = r / o  I 

B =  q ~ -  q0 _ q l -  q0 (5.5) 
r/o r/2 ,~o r/o r/1 

C = qo _ qo 
/71 /12 n ~ 0  /72 " 

Note that in the n--*0 limit 1/1 = r/2' and m ranges between 
0 and 1. 

Substituting the above expressions into (3.17) yields 
for the extensive part  of  the free energy in the n~O limit 

2_ Go[q]= _ p  [ l - ( 1 - m ) q l P - m q g ]  
n p 

_b2r/1  qo 1 in( r /0  m - 1  in(r/o). (5.6) 
r/t m rn 



The saddle point equations for qo and ql, obtained either 
for the stationary point of  (5.6) or from (3.20), read for 
n--*0 

/.tq p-1  + b 2 +  C = 0  

r + b2 + B + C=O. 

Each m (0 _< m < 1) corresponds 

(5.7) 

(5.8) 

to a thermodynamic 
phase. For  any T and h we take the one which maximises 
G O [12]. This leads to the additional equation 

-~-(qlP-qP)-(b2+C+m~ ) p  ( q , - q 0 )  

, 
m2 in = 0 (5.9) 

which has to be solved for 0 _< m _< 1. 
The quadratic form of the Gaussian q-fluctuations has 

for finite n nine eigenvalues, but the relevant ones are 
only two which, for n ~ 0 ,  read [see Appendix 3] 

A }~) = - /~  (p - 1) qp-2 + A 2 (5.10) 

Jl 0(3)= --[~ (p-- 1) qp--2-~" (A  + r o B )  2 . (5.11) 

The first eigenvalue, A }1), corresponds to fluctuations 
inside a cluster, while the second, A (03), between different 
clusters. 

5.1. The transition lines 

For  any value of m the RS solution q0 = q~ = q is a so- 
lution of  the 1 RSB equations, as can be checked by direct 
substitution. However, even if 1 RSB equations contain 
the RS solution, we have seen that this is not the correct 
one in the whole plane (T,h), and hence in general 
(5.7)-(5.9) will admit a different solution. The transition 
from the RS to the 1 RSB solution can be either con- 
tinuous, in the sense that q l -  qo goes continuously to 
zero at the transition, or discontinuous, i.e. q~ - q o  has a 
jump. The points where such transitions take place give 
the critical lines in the (T, h) plane. These yield the equiv- 
alent of  the de Almeida and Thouless line for the SK 
model [13]. 

The condition for a continuous transition can be found 
by solving the 1 RSB equations in the limit of  small q~ - %. 
A simple way of obtaining the equation of the continuous 
transition critical line is subtracting (5.7) from (5.8) and 
expanding the result for fixed temperature, field and m, 
about  q0 in powers of  ql - q0. One then gets to the lowest 
order 

ql - qo= - 2 

/~ (p - 1) qg-2  _ (1 - qo) -2 
X (5.12) 

(p - -1)  (p -- 2) q p 3 + 2 ( m - - 2 ) ( 1 - - q 0 )  -3"  

At the transition ql~qo~q and the right hand side of  
(5.12) must vanish. This leads to the critical line 
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1 
r p-2 ( l _ q ) 2 = 0  (5.13) 

where q is solution of the RS equation (4.5). This is the 
line where the RS solution becomes unstable, for it is 
nothing but A 1=0  [cf. (4.9) and (4.15)]. 

We have, however, not yet found the value of m. The 
1 RSB solution has a well defined m. Therefore, if the 
critical line is approached in the (T,h) plane from the 
1 RSB side along a m-line of  constant m, the solution at 
the transition wil lbe given by ql = q0 = q  with that value 
of m. This implies that m and q are related and may, and 
indeed does, discard a part  of  the line (5.13). 

Solving the full 1 RSB equations in the small q l -  q0 
limit leads, in addition to (5.13), to the relation 

p - 2  
m = ~ - q  ( l - q )  (5.14) 

where q is solution of (4.5) on the critical line. Since 
0 _< m _< 1 the above equation implies that the continuous 
transition takes place only on that part  of  the curve (5.13) 
which corresponds to 

l-2/p<=q<=l (5.15) 

i.e. the upper branch. This is the continuous line in Fig. 3. 
We then have the following scenario. When the critical 

line is approached from high temperatures and fields the 
RS solution becomes unstable and eventually the 1 RSB 
solution is continuously set up. The difference q l -  qo is 
zero at the transition, but m has a well defined value fixed 
by q at the transition through (5.14). Both eigenvalues 
A ~1) and A0 (3) are zero on the critical line, and positive 
below the transition. 

The continuous transition critical line ends at the 
critical point qc = 1 - 2 / 1 )  where m - -  1. Below this point 
the 1 RSB can only be reached discontinuously, i.e. with 

h/J 
i I I I 

1 . 2  / 

.S / / 
/ / / .;' 

l / . /  / ...-,,' 
/ / / / .  ...... 

_ I .../...~. I . . . . . . . . . .  ~ ,,'l 
.2 .4 .6 .8 

T/J 
Fig. 3. The continuous transition critical line (full line) and the 
discontinuous transition critical line (dashed line) for p =  3. The 
square marks the critical point. The dotted line is the lower branch 
of the A ~ = 0 line. The dash-dotted lines are 1 RSB solutions with 
m= 1/2, 1/4, 1/8 and 1/16 



348 

a jump in q l -  %. Since m = 1 at qc, the discontinuous 
transition critical line is the m-line with m = 1. Even if 
the order parameter is discontinuous, the free energy re- 
mains continuous at the transition, for m = 1. However, 
on the left side of the critical line, i.e. low temperatures, 
the 1 RSB solution leads to an higher free energy. In Fig. 3 
we show both the continuous transition line (full line) 
and the discontinuous transition line (dashed line) for 
p = 3. The region bounded by these curves is where the 
1 RSB gives the maximum of the free energy. For  com- 
parision in Fig. 2 one can see these lines for p = 10. We 
stress that the qualitative shape of this curve does not 
depend on p ( > 2). However, the scale on the h-axis in- 
creases with p. The temperature T, on the other Side, is 
not too sensitive to p. 

The nature of the two transitions is very different. 
Indeed, while at the continuous transition critical line the 
RS solution becomes unstable, along the m = 1 line both 
the RS and the 1 RSB solutions are stable and give the 
same free energy. However, the 1 RSB leads to a larger 
value for the free energy below the transition. Thus we 
can expect the presence of metastable RS solutions. They 
appear on the m = 1 line and last till the lower branch of 
the curve (5.13) is reached, where the RS solution be- 
comes unstable. These states have a lower free energy. 

We conclude by noting that on the m = 1 line both 
eigenvalues A ~1) and Ao (3) are positive with A ~ > A 0  (3). 

The latter, in particular, is equal to the A ~ eigenvalue of 
the RS solution evaluated on this line. 

5.2. The O<_mN1 solution 

The 1 RSB equations (5.7)-(5.9) can be easily solved for 
any p, at least with the help of a computer, by rewriting 
them in a more convenient way. We now briefly outline 
how this can be achieved. The first step is to substract 
(5.7) from (5.8). This leads to an equation in which the 
explicit dependence on the magnetic field has disappeared 

p(qp 1 qop-i ) ql-qo (5.16) 
Fl0r/1 

A second equation without the magnetic field is obtained 
by inserting (5.7) into (5.9), 

P_ (qp_ qg)_U qg-i (q, _ qo) 
P 

q t - q ~  (*/s 
mr/l m2 In . (5.17) 

Next we note that the temperature T enters in (5.16) and 
(5.17) only through/~. Therefore by dividing (5.17) by 
(5.16) we can obtain an equation containing only qo, ql 
and rn. Dividing again the result by q l -  %, to have the 
same power of q0 and q~ at the numerator and denomi- 
nator, one finally ends up with 

(qP--qg)--P(ql--qo)q p-1 _ 1/o 

P(ql- q o ) ( q  p - 1  _qg-1) m(ql_qo ) 

(qT--q0)_] ~o In (~1~ " (5.18) 

The left hand side of (5.18) depends only on the ratio 
qo/qm (and p), while the right hand side is a function 
of  r/~/r/o. We can therefore introduce the variables x and 
y as  

qo=xql, 0_<x_< 1 (5.19) 

r/o = y r]l , 0 ~ y ~  1 (5.20) 

and write (5.18) as 

I 2 1--xP--pxP-I(I--x) 
Z=p ( l - - x ) ( 1  --x p-l) 

O<x,y,z< 1 (5.21) 
z = - 2 y  1 - y + l n y  = - 

(1 _ y ) e  

The problem is then reduced to solve these coupled equa- 
tions for 0 _<x_< 1 and a given p. The value of q0 and q~ 
are then obtained from (5.19) with 

1 - y  
ql = 1 - y [1 - m (1 - x)]" (5.22) 

We note that while the first equation (5.21) depends on 
p, the second one as a function of z does not depend on 
any parameter. It is the same for any choice of the pa- 
rameters of  the model. Once the function y (z) is known 
the 1 RSB solution can be easily found for any p. The 
plot o fy  (z) for 0 _< z < 1 is reported in Fig. 4. For  example 
the m-lines in the (T,h) plane can be drawn for anyp  by 
fixing m and varying x from 0 (h = 0) to 1 (continuous 
transition). For each value of x the corresponding value 
of  z is obtained from (5.21) and from this y. The values 
of  T and h can now be found from the 1 RSB equation 
(5.7) and (5.8), 
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Fig. 4. The  funct ion y (z) for 0 _< z N 1 
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(T/j)2=P (1 -q~)[1 - (1 -m)q~-mqo]  
2 ql - qo 

x(qf-~_qp 1) 

(h/ j )2_p (1 _q l ) (qp -1 -  q p -  l) 
2 (q~ ~qo)(l~U22m)q~-mqo] 

(5.23) 

P qg-1 .  
2 

(5.24) 

In this way we have obtained the m-lines shown in the 
Fig. 3 (dash-dotted lines) and the n =  1 critical line of  
Figs. 1-3. 

The above reformulation of  the 1 RSB equation is also 
useful from an analytical point of  view. For  example an 
expansion near x = 1 would give the solution near the 
continuous transition critical line. In this way one can 
find, e.g., (5.14). Similarly x = 0  for h = 0 ,  and hence an 
expansion for small x would give the solution for small 
field. 

f /a 
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Fig. 5. The free energy f as a function of T for h = 0 and p = 3. 
The upper line is the 1 RSB solution, while the lower line ths RS. 
The dashed line is the free energy of the metastable state with 
m= 1/2 

6. Thermodynamic properties 

In this section we shall discuss some thermodynamic 
properties of  the spherical pSG.  We shall consider first 
the case of  zero external field, since in this case the equa- 
tions simplify and this help for a better understanding of 
the discontinuous transition. The case of  non-zero exter- 
nal field does not present new qualitative features, as far 
as the discontinuous transition is concerned. 

6.1. Zero external field 

In this case the RS solution is q = 0, and the free energy 
in the high temperature phase is [see (4.4) with J =  1] 

1 
f ( T )  4 T Ts(oo) (6.1) 

Interestingly, this is of  the same form of the free energy 
in the high temperature phase of  the Ising spin case [6]. 
One has just to replace s ( ~ )  with the corresponding 
infinite temperature entropy which for the Ising spins is 
ln2. 

F rom (6.1) a simple calculation leads to the entropy 
per spin 

1 
s ( T ) -  4 T  2 + s ( ~ )  (6.2) 

so that s (T) becomes negative, as expected from the sim- 
ilarity with the Ising case, for T <  [4s(oo)] -1/2. Never- 
theless here this does not imply an instability in the model 
since for continuous variables the entropy is not strictly 
positive. 

At the critical temperature To(0 ) the 1 RSB solution 
appears with m = 1, q~ - q0* 0, q0 = 0 and the same free 
energy of the RS solution. When the temperature is fur- 
ther decreased, m becomes smaller than one and the 1 RSB 
solution leads to a larger free energy. In Figs. 5 and 6 we 
show the free energy as a function of T at h = 0 for p = 3 

f/d 

-'i.2 

- i  .4 '[~ 

,2 .4 .6 .E~ 
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Fig. 6. The free energy f as a function of T for h=0 andp= 10. 
The upper line is the 1 RSB solution, while the lower line ths RS. 
The dashed line is the free energy of the metastable state with 
m= 1/2 

and p = 10, respectively. The upper branch (full line) is 
the 1 RSB solution, while the lower branch (full line) is 
the RS solution. 

From these figures one sees that in this model the 
entropy is always negative at low temperatures and di- 
verges as T--,0. Solving the 1 RSB equations in this limit 
shows that indeed the entropy diverges logarithmically as 
T ~ 0 .  The RS solution gives a stronger, T -2, singularity, 
and hence the RS entropy is lower than the 1 RSB one. 
This indicates the presence of freezing. 

The spin glass transition is of  the first order, as far as 
the order parameter  is concerned. However, due to the 
maximisation of the free energy, a genuine spin glass first 
order transition would have a negative latent heat [7]. 
Moreover, the order parameter  is a function and the dis- 
continuity appears on a set of  zero measure. These con- 
siderations lead to the conclusion that the transition must 
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Fig. 7. The  specific hea t  (lower line) and  the  susceptibili ty (upper  
line) as a func t ion  o f  T for h = 0 and  p = 3 

be of the second order in the thermodynamic sense [6, 7], 
i.e., in the sense that discontinuities or singularities can 
be seen only from the second derivatives of the free en- 
ergy. In Fig. 7 we report the susceptibility and the specific 
heat as a function of T for p = 3 and h = 0. 

An interesting feature is the presence of metastable 
states, i.e. of  states which are locally stable, but have 
smaller free energy. Consider for example the RS solu- 
tion. For  h = 0 it is stable for all temperatures [see (4.13)]. 
However it leads to a smaller free energy (see Figs. 5 and 
6). Other metastable states are obtained by solving the 
1 RSB equation (5.8) for b = 0 = q0 and m fixed. For  any 
m this equation has two solutions which appear for 
A2(3)=0, where they coincide, but are unstable since 
A }1) < 0. When the temperature is further decreased one 
of  the two solutions becomes stable leading to a recta- 
stable state. In Figs. 5 and 6 we show the free energy of 
one of these metastable states (m = 1/2) as function of  T 
for p = 3 and p = 10 (dashed line). The line starts from 
the point where the solution becomes stable, i.e. 
A ~) = 0. The free energy of  these m-states is always lower 
than of  the 1 RSB, but equals the latter at the point where 
that particular value of m is solution of (5.9) (see Figs. 5 
and 6). We note that due to this fact, the free energy of 
the 1 RSB solution can be seen as the envelope of the free 
energies of  all these metastables m-states. 

From Figs. 5 and 6 we see that there exists a particular 
value o f p  between 3 and 10 for which the critical tem- 
perature T~ (0) equals the temperature where the entropy 
becomes zero. For  larger value of  p the latter is always 
given by the RS value [4s (oo)]-~/2. Apart for this prop- 
erty, this special p has no other special features. 

6.2. Finite external field 

If the field is not zero we have to distinguish two cases: 
h < h~ and h > h c, where h~ is the value of  the field at the 
critical point qc = 1 - 2/p. Its value for anyp can be found 
by inserting qc into (4.15). For  T = 0  the critical field h 0 
takes the simple form 

(ho/J) 2 p(p?2) (6.3) 

For  h < h C the transition is discontinuous, and qual- 
itatively similar to the h = 0 case. The only difference is 
that the strength of the discontinuities at the transition, 
e.g. in the order parameter and specific heat, decreases 
as the field is increased and eventually vanishes at the 
critical point. The metastable states, which for h = 0 exist 
for any temperature below the transition, may now dis- 
appear at a temperature which depends on both h and 
m. This temperature can be found by the vanishing of 
the most relevant eigenvalue. For  example the RS met- 
astable state becomes unstable at the lower branch of the 
A 1 =  0 line, see e.g. Figs. 1-3. 

For  fields larger than h c the transition becomes con- 
tinuous. The RS solution is unstable at the transition and 
the 1 RSB state is continuously set up. The first discon- 
tinuities appear only on the third derivatives of the free 
energy, and hence the transition is thermodynamically of 
the third order. For  comparision we report in Fig. 8 the 
internal energy near the transitions as a function of T for 
p = 3. The upper line refers to the discontinuous transi- 
tion (h < he) while the lower line to the continuous tran- 
sition (h > hc). The square marks the point of the tran- 
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Fig. 8. The  internal  energy as a funct ion  o f  T for h < h~. (upper  
line) and  h > hc for p = 3. The  squares  m a r k  the t rans i t ion  
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Fig. 9. The  magne t i sa t ion  as a func t ion  o f  T for p = 3. The  upper  
line refers to h > h C, while the lower line to h < h c 
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sitions. The difference is evident. In Fig. 9 it is shown the 
magnetization as a function of T for p = 3. The freezing 
is clearly visible. 

The metastable states are present also below the con- 
tinuous transition. These are obtained solving the 1 RSB 
equation for a fixed value of m, i.e. without requiring the 
maximisation of the free energy with respect to m. It is 
clear that not all values of m will give locally stable states. 
This depends on the field, temperature and p, and is 
determined by the most relevant eigenvalue. We have 
verified numerically that these states do exist, even for 
fields larger than h o. 

7. Conclusions 

In this paper we have studied the static properties of the 
spherical pSG. Using the replica trick the model can be 
solved exactly for any temperature and field. As the 
spherical SK model, p = 2 in our case, the full replica 
symmetry broken phase is absent. However, for anyp  > 2 
the model presents at low temperatures and fields a 
replica symmetry broken phase which, in the Parisi 
scheme, corresponds to one-step replica symmetry break- 
ing (1 RSB). In this scheme this is the most general so- 
lution of the model. The analysis of the eigenvalues of 
the Gaussian fluctuations about the 1 RSB saddle point 
shows that the 1 RSB solution is stable in the full low 
temperature and field phase. In the limit p--+ 2 this region 
shrinks to zero and the usual SK spherical model is re- 
covered. This phase corresponds to the 1 RSB phase found 
in the Ising p-spin model for any p > 2 [6, 7]. However, 
the non-linearity of  the spherical model is not strong 
enough to produce a full replica symmetry breaking for 
lower temperatures [7]. 

The transition from the RS state to the 1 RSB takes 
places discontinuously or continuously, depending on the 
value of the external field. For  fields weaker than a critical 
value he, which depends on p, the transition is discontin- 
uous, as far as the order parameter is concerned. At the 
critical temperature a 1 RSB solution appears with m = 1 
and ql - q0 * 0. This solution has the same free energy of 
the RS. However when the temperature is lowered and 
m becomes smaller than 1, the 1 RSB leads to an higher 
free energy. At the transition the RS solution remains 
stable. It becomes unstable at a lower temperature where 
the relevant eigenvalue of the RS Gaussian fluctuations 
becomes zero. The value of this temperature depends on 
p and on the field h. In particular for h = 0 the RS solution 
is stable for all temperature. Even if the transition is 
discontinuous in q(x), it turns out to be thermo- 
dynamically of the second order, as can be seen from 
the thermodynamic quantities. Some of them have been 
discussed in Sect. 6. 

For  fields larger than h C the transition is continuous 
in q l -  %. At the transition the RS solution becomes 
unstable and a 1 RSB state is reached. The 1 RSB solution 
appears with ql - q0 = 0, but with a well defined value of 
m determined by the RS q at the transition. This tran- 
sition is thermodynamically of the third order, as can be 
seen studying the thermodynamic quantities. 

At the critical point, joining the continuous and 
the discontinuous transitions, the RS q is equal to qo = 
1 -  2/p. Therefore in the limit p ~ 2  (p--+ o o) the discon- 
tinuous (continuous) transition disappears, in agreement 
to what is found in the Ising case [6, 7]. 

An interesting feature of this model is the presence of  
metastable states, i.e. states which are locally stable but 
nevertheless have lower free energy. These are 1 RSB 
states with a given value of m. For  h < ho one of  these 
metastable states is the RS solution. The region of exis- 
tence of each of these states can be obtained from the 
most relevant eigenvalue of the Gaussian fluctuations, 
and in general depends on both h and p. For  h = 0 all 
these states are stable for all temperatures. These states 
exist in the full phase of low temperatures and low fields. 

The metastable states are not relevant for the static 
properties of the model. These are indeed obtained from 
the state with the largest free energy. The exchange of 
minimum with maximum is due to the n--+0 limit of the 
replica trick. Nevertheless they may have some relevance 
for the dynamics of the model, which takes place in the 
space of random couplings searching for the free energy 
with maximal probability [ 12]. 

AC thanks the Sonderforschungsbereich 237 for financial sup- 
port and the Universitfit-Gesamthochschule of Essen for kind 
hospitality, where part of this work was done. 

Appendix 1. The Gaussian 2-fluctuations 

In this appendix we derive (3.15). As discussed in Sect. 3 
the relevant part for the Gaussian/t-fluctuations at the 
saddle point is given by (3.12). This can be further sim- 
plified by noting that the last term is of O (n 2) and hence 
will give, after integration, only a contribution of order 
0 (n2/N), which can be neglected. Thus we are left with 

2 q~0 [2] = ~, 2 ~  q=a + in det ( - ) ~ B  - b 2). (AI.1) 
e-fl 

The first variation with respect to 2 leads to the saddle 
point equation (3.14). The second variation evaluated at 
the saddle point, 

a2~0 = - � 8 9  (AI.2) 

gives the Gaussian fluctuations about the saddle point. 
They contribute to Z n with the factor [cf. (3.7)] 

+ioo N +ico ~ N -  

--iov ~ < f l  -- ira u 

 exp 

The quadratic form in the exponent can be diagonalised 
by performing a rotation in the ~2 space. This leads to 

+~ N +~ ~ N  
I 17[ 2rrd;%~ ' I ]-[ 2 * r  dgt~ 
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= ( N ~  7r ./2 (~</3 Gq/~)-l/2(~q~) -1/2 
(A1.4) 

where G are the eigenvalues of the matrix q. Using the 
identities 

]--[ G = d e t ( q ) ,  1-[ Gq/~=(de t (q ) )  ~-~ (11.5)  

(3.15) follows. 

Appendix 2. Parisi RSB solution 

In this appendix we show that within the Parisi RSB 
scheme, the most general solution for the spherical p S G  
is the one-step RSB. The Parisi ansatz for GB can be 
described by means of  the following recursive algorithm: 

(i) First breaking: the n replicas are grouped in n/m 1 
clusters of rn~ replicas, Any two replicas ~ =~ fl within the 
same cluster have overlap G ,  = ql, whereas replicas in 
different clusters have overlap G~=qo<ql . The n• 
matrix q is hence divided into (n/rnl)• (n/ml) blocks of 
size m I • m 1 . Inside the blocks on the diagonal G ,  = ql, 
whereas in the others G ,  = %- 
(ii) Second breaking: each cluster of size rn 1 is broken 
into m 1/m 2 sub-clusters of m 2 replicas. Any two replicas 

=t= fl in the same sub-cluster have overlap G~ = q2 > ql, 
the others overlaps remain unchanged. As a conse- 
quence each of the n/rn~ diagonal blocks is divided in 
(mi/m2) • (ml/rn2) sub-blocks of size m 2 • m 2. In the dia- 
gonal sub-blocks ql is replaced by q2. 

Iterating this procedure one obtains a general k-breaking 
situation defined by, 

n>m 1>=mz>... =>m~> 1 (A2.1) 

qo<=ql <=q2<= " �9 " <=qk-l <=qk �9 

Note that in the limit n ~ 0  the m~ become continuous 
variables between 0 and 1, and the inequalities in (A2.1) 
are reversed, i.e. for n = 0 : 0 = < m  1=<m2=< �9 �9 �9 _<_ink=< 1. 

The matrix q obtained after k steps of this procedure 
is conveniently parametrised by the function x (q), which 
equals the fraction of  pairs of replicas with G~ ~ q, 

k 

x(q)=n+ ~ (mi+l-mi)O(q-qi) ,  
i:0 (A2.2) 

m o - = n , ' m k +  1 --  1. 

In the limit of infinite k, q becomes continuous and we 
can define q (x) as the inverse of x (q). 

For  a generic k-step RSB, the eigenvalues of q are 

1 

dqx(q), deg.: 1 
o (A2.3) 

dqx(q), deg. :n  m,+~ 
qi 

Inserting these into (3.17), neglecting the last term of  
order O(n2), and replacing the sums by integrals, one 
gets after a little of  algebra, 

2 1 
- Go = - / z  j" dqx(q)q p - ~ - b  2 ~ dqx(q) 
?l 0 0 

q~ dq 
- J ' l  

o ~dq 'x (q ' )  
q 

in (1 - qk). (A2.4) 

The saddle point equation is obtained by varying this 
expression with respect to x (q), 

2 i 

- f G o =  j" dqfx(q)F(q)  
t/ 0 

where 
q 

F ( q ) =  - - /Aq p - 1  - b 2  + I 
o 

and 

dq" 

( i  dq" x(q"))2 

(A2.5a) 

(A2.5b) 

k 

f ix(q) = ~, (frni+l--fmi)O(q--qi) 
i = 0  

k 

- ~, (mi+~ - mi),5 ( q -  q,) 3q~. (A2.6) 
i ~ 0  

By requiring the stationarity of G o with respect to the q/ 
and the rn~ one gets, respectively 

F ( q , ) = 0 ,  O<_i<_k (A2.7) 

qi  

dqF(q)=O, 1Ni<_k. (A2.8) 
qi--I  

The function F(q) is continuous in q, hence (A2.8) 
implies that betwen any two successive qi there must by 
at least two extrema of  F(q). If we denote these by Qj, 
then the extrema condition F" (Q j ) =  0 reads 

A(Qj)=- - p  ( p -  1) Q p - 2 +  dqx(q) 

o r  

1 

dqx(q)=[p(p-1)] - l /2Q l-p~2 at Qj. 
Q 

= 0  (A2.9) 

(A2.10) 

Alternatively, the solutions of(A2.10)define the Qj. This 
equation, however, admits not more than two solutions, 
since the left hand side is a concave function, whereas 
the right hand side is convex. As a consequence only one- 
step RSB is possible. 

A continuous replica symmetry breaking is also not 
allowed since in this case (A2.9) would be identically 
valid. F o rp  > 2 this would imply that x (q) is a decreasing 
function, which we exclude since dx/dq is the probability 
density of the overlaps [3]. The A (Q) turn out to be the 



relevant eigenvalues of the fluctuation matrix calculated 
in Appendix 3. 

Note that for the RS solution the m e do not appear, 
and (A2.7) reduces to the RS saddle point equation. 

We finally note that from the above equations it fol- 
lows also that qo = 0 for h = 0. In fact, otherwise there 
exist three extrema of F(q) since (A2.7) implies 

F(O) = F(qo) = F(q~) = 0 

which is not possible. 

Appendix 3. Eigenvalues of the Gaussian q-fluctuations 
for 1 RSB 

In this appendix we briefly report the derivation of the 
eigenvalues of the Gaussian q-fluctuations for the 1 RSB 
solution. The quadratic form to be diagonalised is ob- 
tained by inserting (5.2) and (5.4) into (3.21), 

2 ~ 2 G 0  = - / 2  ( p -  1) 

• [q~ 2+e~(qf-2-qp-2)](6q~p)2 
~B 

+ A  2 E (6q p)2+B fr(  q) 
~B 

-L (C2-~- b 4) dq~/3 +2ABTr(~qe~q) 

+ 2 A C ~, (~q 6q)~  + 2 BC ~, (6qe ~q)~r 

~ ~ (A3.1) 

The eigenvalues of this quadratic form are solutions of 
the eigenvalue equation 

[A 2 - ~  (p - 1) qp-2] 6q~,,~ 

- ~ (p - 1) ( qp -2_  qg-2) e ~  Oq~a + B 2 (e~qe)~/~ 

+ (C 2 + b 4) ~, ~q,6 + AB [(e6q)~, + (0qe)~,] 
y,5 

+ AC ~, (Oq~y +6qar) 
Y 

+ BC ~, [(e0q)~y + (a0q),y] =AOq~a (A3.2) 

which is valid for e ~ ft. The diagonal term of 0q are 
identically zero from the spherical constraint. 

The eigenvectors can be devided in three classes, cor- 
responding to different types of fluctuations. This can be 
seen by representing the replicas on a tree-diagram. Here, 
since we have only one replica symmetry breaking, there 
will be only n/m branches (clusters), and each terminates 
with m smaller branches (replicas). Then, roughly speak- 
ing, there are three different types of fluctuations: 1) one 
which involves the overlaps of one replica with other m 
replicas; 2) one which involves the overlaps o fm replicas 
with other m replicas; 3) one which involves the overlaps 
of one cluster as a whole with the other clusters as a 
whole. Consequently we will call the first type "l-re" fluctua- 

353 

tions, the second "m-m" fluctuations, and the last "clus- 
ter-cluster" fluctuations. 

1. The 1-m fluctuations. These fluctuations satisfy the 
constraint 

(e~q)~  = 0, Vc~, fl (A3.3) 

and covers a sub-space of dimension 

n ( n - 1 )  n 2 n ( ~ )  
~- - 1 (A3.4) 

2 m 

This sub-space contains two eigenvalues. 
The first, 

A(~ --IJ(p--1)q~ 2+A2' (A3.5) 

no(D _ n - -2~  5 (n--m)(m-- 1) 2 

corresponds to fluctuations between two different clusters 
for which have all diagonal blocks of Oq equal to zero, 
i.e. 

e~Oq~ =O, V~,fl.  (A3.6) 

The second, 

A~ 1)= --/~ ( p - -  1 ) q p - 2 + A 2, 
(13.7) 

n ~ l )  _ n (m - 3) 
2 

is associate to the orthogonal fluctuations, i.e., fluctua- 
tions in the same cluster. In this case the off-diagonal 
blocks of 0q are zero, 

(1 -e~e)Oq~p--0 ,  Ve, fl.  (A3.8) 

2. The m-m fluctuations. 
tuations is 

The constraint for these fluc- 

(eOqe)~ = 0, Vc~, ft .  (A3.9) 

If we also require that (A3.3) is not satisfyed, then these 
fluctuations are orthogonal to the first class. This leads 
to a sub-space of dimension 

n 2 n 2 

m m 5" 
(A3.10) 

The eigenvalue equation can be reduced to this sub-space 
by multiplying it by e~/~ and summing over ft. This sub- 
space contains again two eigenvalues corresponding to 
diagonal and off-diagonal fluctuations. 

The fluctuations between different clusters, for which 

e~p (e~q),a = 0, V~,f l ,  (A3.11) 

give the eigenvalue 

A0 (2)= --/l (p-- 1 )qp -2+A (A +mB),  
(A3.12) 
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The second eigenvalue corresponds to fluctuations in 
the same cluster, 

(1 - e ~ )  (ec~q)~ = 0, V~,f l ,  (A3.13) 

and reads 

A ~ 2 ~ = _ l z ( p _ l ) q f  2 

+ A [A § ( m -  2) (B + C)],  (A3.14) 

nl 2~=-n ( m -  1). 
m 

3. The cluster-cluster fluctuations. For this fluctuations 
the clusters are considered as single entities. The space 
dimensionality of this sub-space, orthogonal to the first 
two classes, is 

2m +1  . (A3.15) 

The eigenvalue equation can be reduced to this sub-space 
by multiplying it on both sides by e and summing on c~ 
and/3. This sub-space for finite n contains five different 
eigenvalues, of which only one corresponds to off-diag- 
onal fluctuations. The other four are combinations of 
diagonal and off-diagonal fluctuations. In the limit n--,0 
these four eigenvalues reduce to two. Since the clusters 
are considered as single entities, the fluctuations can be 
described by defining the cluster matrix Qv, as 

Q , n = ( e 0 q e ) ~  with ~ v , / 3 ~ r l  (A3.16) 

where v and r/ are cluster indices. 
The first eigenvalue is 

A0 (3) = --/A (p -- 1) qg-2 § (A § rnB) 2 , 
(A3.16) 

This corresponds to the only purely off-diagonal fluc- 
tuations in this sub-space for which 

IQv~ = 0  
Vv (A3.17) 

~ Qv , l=0 .  

For  finite n there are two different sub-spaces which 
correspond to mixed fluctuations. The first is given by 
the vector for which 

I v ~ Q ~ v = 0  (13.18) 

Z Q~, = 0 .  
r / i v  

These eigenvectors give the two eigenvalues 

A (~)=�89 IT+  TI/'TY---- 4A ] 1,2 (A3.19) 

with degeneracies 

n(3~ _ n _ 1 (A3.20) 1,2--  m 

where 

T=A(o3~+A" + D + R  (A3.21) 

A = (Ao  (3) -4- D) (A'  + R) - DR (A3.22) 

and 

A '  = - r  ( p -  1)ql p-2 

+ (A + m B) 2 - B (2 A + roB) (A 3.23) 

D = ( n -  2m) C(A +mB)  (A3.24) 

R = 2 ( m -  1) C(A § mB). (A3.25) 

Finally the last two eigenvalues correspond to eigen- 
vectors for which (A3.18) are not satisfied. These eigen- 
values "~3,41 (3~ have the same form (A3.19) o f A  ~ but with 
degeneracies 

n(3) = 1 (A3.26) 3,4 

and D replaced by 

O = 2 ( n - m )  C ( A + m B )  

+ n ( n -  m) (C 2 + b 4). (A3.27) 

Note that these two eigenvalues become equal to A (3) in 1,2 
the limit n ~ 0 .  However, their dependence on n is relevant 
for the O(1/N) correction to the free energy since their 
degeneracy is finite for n ~ 0 .  
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