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Abstract. We consider a hierarchical pinning model introduced by B. Derrida, V.
Hakim and J. Vannimenus in [3], which undergoes a localization/delocalization phase
transition. This depends on a parameter B > 2, related to the geometry of the hierarchi-
cal lattice. We prove that the phase transition is of second order in presence of disorder.
This implies that disorder smooths the transition in the so-called relevant disorder case,
i.e., B > Bc = 2 +

√
2.
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1. Model

The model we are going to introduce can be interpreted either as an infinite-dimensional
dynamical system or as a pinning model on a hierarchical lattice. We refer to [3], where
the model was introduced, or to [7], for the latter interpretation, and we mention only that
the parameter B in (1.2) is related to the geometry of the lattice. The mathematical un-
derstanding of disordered pinning models, hierarchical or not, has witnessed a remarkable
progress lately, cf. in particular [1], [2] and [4]–[8].

Let {ωn}n∈N be a sequence of i.i.d. random variables (with related probability distri-
bution denoted by P), with zero mean, unit variance and satisfying

M(β) := E[exp(βω1)] < ∞ ∀β > 0.

In Section 3 we will state our result in the particular case of Gaussian random variables,
ω1 ∼ N (0, 1).

We are interested in the dynamical system defined by the following initial condition and
recurrence equation

R
(i)
0 = exp (βωi − log M(β) + h) , (1.1)

R
(i)
n+1 =

R
(2i)
n R

(2i−1)
n + (B − 1)

B
, (1.2)

where B > 2, β > 0 and h ∈ R are fixed parameters.

One can easily note that for every n, the random variables {R(i)
n }i≥1, are i.i.d.. We are

mainly interested in the evolution of the probability law of R
(1)
n (let us call it Ln). R

(1)
n

is essentially the partition function of the pinning model at generation n [3]. One can

Date: May 16, 2008.

1



2 HUBERT LACOIN AND FABIO LUCIO TONINELLI

re-interpret this system as a dynamical system on probability laws, Ln+1 being the law of
Rn+1 given by

Rn+1 =
R

(1)
n R

(2)
n + (B − 1)

B
, (1.3)

where R
(i)
n i = 1, 2 are i.i.d. random variables with probability law Ln.

One can also study this dynamical system in a non-random set up, choosing β = 0 or,
equivalently, considering rn = ERn (respectively pure or annealed system). The recursion
becomes then

rn+1 =
r2
n + (B − 1)

B
, (1.4)

(with initial condition r0 = exp(h)), which is nothing but a particular case of the well-
known logistic map.

In any case, there exists a (non-random) quantity f(β, h) such that

lim
n→∞

1

2n
log Rn = f(β, h) almost surely w.r.t. P.

The convergence also holds in L1, and f(β, h) ≥ 0. For a proof of these statements see [4,

Theorem 1.1]. Observe that the non-negativity of f just follows from R
(i)
n ≥ (B − 1)/B

(cf. (1.2)). We call f(β, h) the free energy of the system, and we remark that f(β, .) is
increasing. We define the critical point

hc(β) = inf{h such that f(β, h) > 0}.
For an interpretation of hc(β) as the transition point between a delocalized and a localized
phase (h < hc(β) and h > hc(β), respectively) we refer to [4] and [3].

Our aim in this paper is to describe the influence of the disorder on the shape of the
curve f(β, .) around hc(β), and in particular to obtain a bound on the critical exponent
which governs the vanishing of f when hc(β) is approached from the localized phase.

2. Known results

In [4] various results have been obtained about the influence of disorder on the free
energy curve. We summarize the situation in the two following theorems. The first one
describes the behavior of the free energy around hc and the value of hc for the pure system
(β = 0). The second one concerns the behavior of hc(β) for small values of β, making a

distinction between two different situations: irrelevant disorder for B < 2 +
√

2 (critical
properties of the system are unchanged, for β small, with respect to β = 0) and relevant
disorder for B > 2 +

√
2 (the disordered system behaves very differently from the pure

one, for every β > 0). For this reason we will refer to Bc = 2 +
√

2 as the critical value of
B.

Theorem 2.1. [4] (Annealed system estimates). The function h 7→ f(0, h) is real analytic
except at h = hc := hc(0). Moreover hc = log(B − 1) and there exists c = c(B) > 0 such
that for all h ∈ (hc, hc + 1)

c(B)−1(h − hc)
1/α ≤ f(0, h) ≤ c(B)(h − hc)

1/α, (2.1)

where

α :=
log(2(B − 1)/B)

log 2
. (2.2)
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Theorem 2.2. [4] When B < 2 +
√

2 = Bc, there exists β0 such that for all 0 ≤ β ≤ β0,
hc(β) = hc(0). Moreover, for any ε > 0, one can find hε > hc(0) such that for any
h ∈ (hc(0), hε) we have

(1 − ε)f(0, h) ≤ f(β, h) ≤ f(0, h).

When B > 2 +
√

2, we have for any β > 0, hc(β) > hc(0). Moreover we can estimate
the difference between the two: there exists C(B) > 0 such that for all β ≤ 1

C(B)−1β
2α

2α−1 ≤ hc(β) − hc(0) ≤ C(B)β
2α

2α−1 .

Finally, if B = Bc then

0 ≤ hc(β) − hc(0) ≤ e−C/β2
(2.3)

for some positive constant C.

It is a very interesting open problem to close the gap between the upper and lower
bound in (2.3). Let us mention that the arguments in [3] suggest that the upper bound is
the correct one, with an explicit prediction for the constant C.

When B ≥ Bc the previous theorem says nothing on the shape of the free energy around
hc(β); in particular, one may wonder if it is different from the one of the pure system. In
this spirit, we prove a general theorem on the effect of disorder on the phase transition
of the system. This theorem is the analog of what has been proved in [5]-[6] for the
non-hierarchical pinning model based on a renewal process.

3. Smoothness of the phase transition in presence of disorder

Assume that ω1 ∼ N (0, 1). We have:

Theorem 3.1. For every B > 2 there exists c(B) < ∞ such that for every β > 0 and
δ > 0 one has

f(β, hc(β) + δ) ≤ δ2

β2
c(B). (3.1)

Remark 3.2. In view of Theorem 2.1 and the definition of α, this shows that if B > Bc

(which corresponds to α > 1/2) and β > 0 the critical exponent of the transition is
different from that of the pure model, i.e. we have

lim inf
h→hc(β)+

log f(β, h)

log(h − hc(β))
≥ 2 > lim

h→hc(0)+

log f(0, h)

log(h − hc(0))
=

1

α
.

Proof of Theorem 3.1. Fix β > 0 and let h = hc(β). Let N ∈ N, ` ∈ N with ` < N and

IN (ω) := {1 ≤ j ≤ 2N−` : R
(j)
` ≥ exp(2`−1f(β, hc(β) + δ))}. (3.2)

Defining

p` := P(1 ∈ IN (ω)), (3.3)

one has P( dω)-a.s.

lim
N→∞

|IN (ω)|
2N−`

= p` (3.4)

from the strong law of large numbers and, for ` sufficiently large,

p` ≥ e−2`δ2/β2
. (3.5)
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To prove the latter estimate we proceed as in [5] and we use the classical entropic inequality

P(A) ≥ P̃(A) exp

(
− 1

P̃(A)

(
H(P̃|P) + e−1

))
(3.6)

which holds for every event A if the laws P and P̃ are mutually absolutely continuous, and

H(P̃|P) := E

(
dP̃

dP
log

dP̃

dP

)

denotes the relative entropy. Equation (3.5) then easily follows if we apply (3.6) with

A = {1 ∈ IN (ω)} and P̃ = P̃` being the law under which {ωn}n∈N are independent

Gaussian variables of unit variance and mean Ẽ ωn = (δ/β) for n ≤ 2` and Ẽωn = 0

otherwise. Indeed, in that case P̃(A) ≥ (3/4) for ` sufficiently large by the fact that

2−` log R` converges to f(β, hc(β)+ δ) in P̃-probability for ` → ∞ and the relative entropy

is immediately computed: H(P̃|P) = 2`(δ/β)2/2.

PSfrag replacements

level 0: the leaves
level 1

level ` + 1

level `

. . .

. . .a

level N : the root

Figure 1. The binary tree TN for N = 6. At level 0 are the leaves. Nodes (`, j) with
j ∈ IN (ω) are marked by full dots (here we have taken ` = 2), good nodes by empty
dots and bad nodes by squares. The dashed line includes all the descendents of the node

a.

Consider the binary tree TN with N + 1 levels (see Fig. 1): at level 0 are the leaves,
at level N is the root. Pairs (n, j) with 0 ≤ n ≤ N and 1 ≤ j ≤ 2N−n are called nodes
(leaves are also considered to be nodes). The number of nodes in TN is 2N+1 − 1. Given a
node (n, j) ∈ TN with n < N we call (n + 1, dj/2e) its father. The descendents of a node
(n, j) ∈ TN are defined in the natural way.

Given a node (n, j) ∈ TN with n > ` we say that it is a good node if there exists
i ∈ IN(ω) such that (`, i) is a descendent of (n, j). A node (n, j) with n ≥ ` will be called
bad if its father is good but he himself is not good (cf. Fig. 1). Note that descendents of
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bad nodes are neither good nor bad. If IN (ω) = ∅, by convention we say that the root is
a bad node, so that the root is always either bad or good. Let gN (ω) and bN (ω) be the
number of good and bad nodes in TN .

Given ω, one has the inequality

RN ≥ exp(f(β, hc(β) + δ)2`−1|IN (ω)|)B−gN (ω)

(
B − 1

B

)bN (ω)

, (3.7)

which will be proved in a moment. As a consequence, P( dω)-almost surely from (3.4)

0 = f(β, hc(β)) ≥ p`

2
f(β, hc(β) + δ) − lim inf

N→∞
2−N

(
gN (ω) log B + bN (ω) log

(
B

B − 1

))
.(3.8)

Now it is obvious that, if IN (ω) is not empty, gN (ω) is bounded above by the total number
of points of Tdlog2 |IN (ω)|e, plus |IN (ω)|(N − ` − blog2 |IN (ω)|c). In formulas,

gN (ω) ≤ |IN (ω)|(2 + N − blog2 |IN (ω)|c − `), (3.9)

with the convention that 0 log 0 = 0. Letting N → ∞, almost surely one has via (3.4) and
(3.5)

lim inf
N→∞

2−NgN (ω) ≤ 2−`p` (2 − log2 p`) ≤ p`
δ2

β2 log 2
(1 + o`(1)), (3.10)

where o`(1) denotes a quantity which vanishes for ` → ∞.
As for the last term in (3.8), write IN (ω) = {x1(ω), x2(ω), . . . , } with xr(ω) < xr+1(ω).

Then we have

bN (ω) ≤ 2

|IN (ω)|+1∑

r=1

log2(xr(ω) − xr−1(ω) + 1) (3.11)

with the convention that x0(ω) := 1 and x|IN (ω)|+1 := 2N−`. This can be proven as follows
(see Fig. 2). Let 1 < r ≤ |IN (ω)| and ar be the first common ancestor of (`, xr−1(ω))
and (`, xr(ω)). Let π1 (respectively π2) denote the unique path without self-intersections
which leads from ar to (`, xr−1(ω)) (resp. from ar to (`, xr(ω))). Let L be the number of
times the walk π1 makes a move to the left, and R the number of times π2 makes a move
to the right. Then the number of bad nodes which are enclosed by the paths π1 and π2,
call it br, equals br = L + R − 2 (cf. Figure 2). On the other hand,

xr(ω) − xr−1(ω) − 1 ≥ 2L−1 + 2R−1 − 2 ≥ 2(L+R)/2 − 2 (3.12)

from which one deduces that br ≤ 2 log2(xr(ω) − xr−1(ω) + 1). Similarly one proves that
the number of bad nodes which are descendents of the first common ancestor of (`, 1) and
(`, x1(ω)) (respectively, of (`, x|IN (ω)|) and (`, 2N−`)) is at most 2 log2(x1(ω)) (resp. at

most 2 log2(2
N−` − x|IN (ω)| + 1)) and Eq. (3.11) is proven.

Using Jensen’s inequality for the logarithm, from Eqs. (3.11) and (3.5) one has almost
surely

lim inf
N→∞

2−NbN (ω) ≤ 2−`+1p` log2

(
1

p`

)
≤ 2p`

δ2

β2 log 2
. (3.13)

Putting together Eqs. (3.8), (3.10) and (3.13) and taking ` large one obtains then (3.1)
for a suitable c(B).

It remains to prove (3.7), and we will do that by induction on N − `. We need only
consider the case where IN(ω) 6= ∅ (i.e., the root is a good node) otherwise (3.7) reduces
to RN ≥ (B−1)/B which is evident from (1.3). For N − ` = 1, Eq. (3.7) is easily checked
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PSfrag replacements

π1

π2

ar

Figure 2. Again, the binary tree TN for N = 6, ` = 2 and nodes (`, j) with j ∈ IN (ω)
marked by full dots. The two big full dots denote nodes xr−1(ω) and xr(ω) (r = 5 in the
figure) and their first common ancestor ar is the root. The paths π1, π2 are marked by
thicker lines and follow the arrows. Empty circles mark left turns in π1, and right turns
in π2 (note that ar contributes both to L and to R). Squares mark bad nodes which are
between paths π1 and π2.

using the definition of good and bad sites and the basic recursion (1.3). Assume therefore

that the statement holds for N − ` < k, and let N = ` + k. Call T (1)
N−1 and T (2)

N−1 the two
trees of depth N − 1 which originate from the root. Since the root is assumed to be good,
the following statements are true:

• gN (ω) equals the number g
(1)
N−1(ω) of good sites in T (1)

N−1 plus the number g
(2)
N−1(ω)

of good sites in T (2)
N−1 plus one;

• bN (ω) equals b
(1)
N−1(ω) + b

(2)
N−1(ω) (with obvious notations).

From (1.3) we have RN ≥ R
(1)
N−1R

(2)
N−1/B which, in view of the induction hypothesis, reads

RN ≥ exp(F (β, hc(β) + δ)2`−1|IN (ω)|) (3.14)

×
(

B − 1

B

)b
(1)
N−1(ω)+b

(2)
N−1(ω)

B−[1+g
(1)
N−1(ω)+g

(2)
N−1 ].

Thanks to the two observations above, this coincides with inequality (3.7) and the proof
is complete. �
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