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Feuille d’exercices 1
Notion de groupe. Le groupe symétrique.

Légende
† Exercice à connaître mais qui ne sera pas nécessairement traité en TD.

* Exercice plus difficile et non-obligatoire.

Exercice 1. Déterminer lesquelles des opérations suivantes sont associatives et/ou commutatives :

(a) l’opération ∗ sur Z définie par a ∗b = a +b +ab ;

(b†) l’opération ∗ sur Q définie par a ∗b = (a +b)/5 ;

(c) l’opération ∗ sur Z×Z définie par (a,b)∗ (c,d) = (ad +bc,bd) ;

(d) l’opération ∗ sur R définie par a ∗b = max(a,b).

Exercice 2. Est-ce un groupe ? Si oui, est-il abélien?

• (R⋆, ·), (R⋆,+), où R⋆ = R \ {0}.

• (R>0, ·), (R>0,+).

• (Z,+), (Z, ·), (Z⋆, ·) ?

• (Z/nZ,+), (Z/nZ, ·).

• (R,∗) avec l’opération a ∗b = max(a,b).

• Notons par M(n,R), l’ensemble des matrices n ×n à coordonnées réelles. Muni de l’addition de
matrices, est-ce un groupe ? Et muni de la multiplication?

• Notons par GL(n,R) l’ensemble des matrices n ×n inversibles à coordonnées réelles. Muni de l’ad-
dition de matrices, est-ce un groupe? Et muni de la multiplication?

Dans la suite, sauf mention contraire explicite, nous utiliserons toujours la notation multiplicative.

Exercice 3. Soient G1 et G2 deux groupes.

(a) Montrer que l’ensemble G1 ×G2 muni de la loi de composition

(g1, g2) · (g ′
1, g ′

2) = (g1g ′
1, g2g ′

2)

est un groupe. On l’appelle le produit direct des groupes G1 et G2.

(b) Montrer que le produit direct G1 ×G2 est abélien si et seulement si les groupes G1 et G2 le sont.

Exercice 4. (a) Montrer qu’il existe un seul groupe à un élément. Il s’appelle le groupe trivial.

(b) Dresser la liste des tables de multiplication possibles pour un groupe à deux éléments {e, x} (où e
sera le neutre, et x ̸= e).

(c) Faire de même pour un groupe à trois élément {e, x, y}.

Exercice 5* (Loi associative généralisée). Soit G un groupe et soient x1, . . . , xk ∈ G . Montrer que dans
l’expression

x1 · x2 · · ·xk

l’ordre dans lequel on fait les multiplications n’est pas important et le résultat est toujours le même.
(Indication : induction sur k.)
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Exercice 6†. Soit G un groupe. Montrer que pour tout x, y ∈G :

e−1 = e (x y)−1 = y−1x−1, (x−1)−1 = x.

Énoncer les identités analogues en notation additive. A-t-on besoin de les démontrer elles aussi ?

Exercice 7. Soit G un groupe et x, y, z ∈G . Montrer que :

x = y ⇐⇒ zx = z y ⇐⇒ xz = y z ⇐⇒ x−1 = y−1.

En déduire que les applications suivantes sont des bijections de G avec lui-même :

• La translation à gauche par z : x 7→ zx.

• La translation à droite par z : x 7→ xz.

• L’inverse : x 7→ x−1.

Exercice 8. Soit G un groupe.
On rappelle que pour x ∈G et n ∈ N, on définit xn par récurrence : x0 = e et xn+1 = xn x. Puisque x−1

est déjà défini (c’est l’inverse !), nous définissons pour n ≥ 2 : x−n = (xn)−1. Ceci définit xn pour tout n ∈ Z.
Montrer que pour tout x ∈G et n,m ∈ Z :

x−n = (xn)−1, xm+n = xm xn , xmn = (xm)n .

Attention : pour certaines identités il y a plusieurs cas à considérer, selon si m, n (et m +n) sont positifs,
négatifs, ou nuls.

Traduire ces identités à la notation additive.

Exercice 9. Montrer qu’un groupe G dont tous les éléments x vérifient x2 = e est abélien.

Exercice 10. Soit G un groupe fini. Montrer qu’il existe un entier N ≥ 1 tel que, pour tout x ∈G , xN = e.

Exercice 11. Soit G le groupe (Z/12Z,+). Calculer les ordres de tous les éléments de G .

Exercice 12. Soit G un groupe, x ∈G , et n ∈ N⋆.

(a) Soit m = ord(x) et supposons que m <∞. Montrer que xn = e ⇐⇒ m | n.

(b) Montrer que ord(x) = ord(x−1).

(c) Si ord(x) =∞, alors ord(xn) =∞.

(d) Si ord(x) = m <∞, alors ord(xn) = m/pgcd(m,n) = ppcm(m,n)/n.

Exercice 13. Pour n ∈ N⋆, soitϕ(n) le nombre des entiers 0 ≤ m < n qui sont premiers avec n. Ceci définit
une fonction ϕ : N⋆→ N⋆ appelée l’indicatrice d’Euler.

On fixe n ∈ N⋆, et on se rappelle que G = (Z/nZ,+) est un groupe additif.

(a) À l’aide de l’exercice précédent, montrer que l’ordre de tout membre de G est un diviseur de n (c’est
un cas particulier d’un théorème bien plus général).

(b) Montrer que G possède exactement ϕ(n) membres d’ordre n – lesquels?

(c) Plus généralement, si d | n, montrer que G possède exactementϕ(d) membres d’ordre d – lesquels?

(d) En déduire l’identité suivante :

n = ∑
d |n

ϕ(d).

Exercice 14. Montrer que si X est fini alors |SX | = |X |! (factorielle de |X |). En particulier, |Sn | = n!
Ceci est valable aussi lorsque X est vide, ou lorsque n = 0, avec la convention que 0! = 1 (c’est l’unique

valeur possible, pour que l’identité (n +1)! = n! · (n +1) soit valable aussi pour n = 0).
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Exercice 15†. Soit X un ensemble.

(a) Montrer que la composition de deux permutations de X est encore une permutation de X .

(b) Montrer que la composition de permutations est associative (pour tout dire, c’est vrai pour n’im-
porte quel composition d’applications, dès lors qu’elle est bien définie !)

(c) Montrer que l’application identité idX est neutre (à gauche, ou des deux côtés, comme il vous plaît)
pour la composition de permutations.

(d) Montrer que pour toute permutation σ ∈ SX il existe une permutation σ′ ∈ SX qui est sont inverse
pour la loi de composition (à gauche ou des deux côtés, encore).

(e) Montrer que SX , muni de la loi de composition, est un groupe.

Exercice 16. Montrer qu’un cycle σ= (x1 x2 . . . xm) est toujours une permutation, et qu’on a σk (xi ) = x j

si et seulement si j ≡ i +k mod m.

Exercice 17. Soit σ ∈ SX . Montrer que

(a) supp(σn) ⊆ supp(σ) pour tout n ∈ Z.

(b) supp(σ) = supp(σ−1).

(c) σ= e si et seulement si supp(σ) est vide.

(d) Si x ∈ supp(σ) alors σ(x) ∈ supp(σ), d’où σn(x) ∈ supp(σ) pour tout n ∈ N (voire n ∈ Z).

(e) Le cardinal de supp(σ) n’est jamais égal à un.

Exercice 18. (a) Calculer la décomposition en cycles et les ordres de tous les éléments de S3.

(b) Soient σ et τ les permutations suivantes dans S8 :

σ=
(
1 2 3 4 5 6 7 8
2 4 7 6 5 1 8 3

)
τ=

(
1 2 3 4 5 6 7 8
2 1 8 6 7 4 3 5

)
.

Trouver les décompositions en cycles disjoints des permutations suivantes : σ,σ−1,τ,σ2,στ.

(c) Soit σ= (1 2 3)(4 5)(6 7 8 9 10) ∈ S10. Calculer σ100.

Exercice 19. (a) Démonter qu’un élément de Sn est d’ordre 2 si et seulement s’il est le produit de trans-
positions disjointes.

(b) Soit p un nombre premier. Montrer qu’un élément de Sn est d’ordre p si et seulement s’il est le
produit de cycles disjoints d’ordre p. Montrer en donnant un exemple que ce n’est pas forcément
le cas si p n’est pas premier.

Exercice 20. L’ordre d’un m-cycle est m. Plus généralement, si σ est le produit de k cycles disjoints de
longueurs m1, . . . ,mk , alors ord(σ) = ppcm(m1, . . . ,mk ).

Donner un exemple où c’est faux lorsque les cycles ne sont pas disjoints (il en existe un dans S3).
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