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Les téléphones portables, écouteurs et objets connectés doivent être rangés dans les sacs en bas de
l’amphithéâtre.
Toutes les réponses doivent être justifiées. Le barème représente le poids relatif des exercices et est
donné à titre indicatif.

1. (p.) Les groupes (Z/3Z)× (Z/4Z) et (Z/2Z)× (Z/6Z) sont-ils isomorphes?

Solution. Non. Par le théorème chinois le premier groupe est cyclique et le deuxième ne l’est pas.
En effet, il a au moins deux éléments d’ordre 2 : (1,0) et (0,3).

. (p.) Soit 𝐺 = 𝑆6 le groupe des permutations de l’ensemble [6] = {1,2,3,4,5,6} et soit

𝐴 = {𝑎 ⊆ [6] ∶ |𝑎| = 3}.

Considérons l’action naturelle 𝐺 ↷𝐴 donnée par

𝜎 ⋅ {𝑥,𝑦,𝑧} = {𝜎(𝑥),𝜎(𝑦),𝜎(𝑧)} pour 𝜎 ∈ 𝐺,{𝑥,𝑦,𝑧} ∈ 𝐴.

Soit 𝑎 = [3] = {1,2,3} ∈ 𝐴 et soit 𝐺𝑎 le stabilisateur de 𝑎 dans 𝐺.
(a) Soit 𝜋 ∶ 𝐺𝑎 → 𝑆3 le morphisme donné par 𝜋(𝜎) = 𝜎|𝑎 , où 𝜎|𝑎 dénote la restriction de 𝜎 à

l’ensemble 𝑎. Montrer que 𝜋 est surjectif et que |ker𝜋| = 6.

Solution. Soit 𝜏 ∈ 𝑆3 et soit 𝜎 ∈ 𝑆6 définie par 𝜎(𝑖) = 𝜏(𝑖) si 𝑖 ∈ [3] et 𝜎(𝑖) = 𝑖 sinon. Alors
𝜎 ∈ 𝐺𝑎 et 𝜋(𝜎) = 𝜏 ce qui montre que 𝜋 est surjectif.
Soit 𝑏 = [6] ∖ 𝑎 et notons que 𝐺𝑎 stabilise 𝑏. En particulier on a un morphisme 𝜋′ ∶ 𝐺𝑎 →
Sym(𝑏), 𝜋′(𝜎) = 𝜎|𝑏 . On vérifie comme avant que 𝜋′|ker𝜋 ∶ ker𝜋 → Sym(𝑏) est un isomor-
phisme et donc |ker𝜋| = |Sym(𝑏)| = 6.

(b) Quel est l’ordre de 𝐺𝑎 ?

Solution. On a que |𝐺𝑎| = |ker𝜋| ⋅ |im𝜋| = 6 ⋅ 6 = 36.

(c) Déterminer l’orbite 𝐺 ⋅𝑎.

Solution. Onaque |𝐺⋅𝑎| = |𝐺|/|𝐺𝑎| = 720/36 = 20. D’autre part |𝐴| = ⒧63⒭ = 20. Comme𝐺⋅𝑎 ⊆
𝐴, on conclut que 𝐺 ⋅𝑎 = 𝐴.

(d) Quel est le type d’isomorphisme de 𝐺𝑎 ? (Indication : Décomposer 𝐺𝑎 en produit direct de
deux groupes.)

Solution. Soit𝜙 ∶ 𝐺𝑎 → Sym(𝑎)×Sym(𝑏) l’applicationdonnéepar𝜙(𝜎) = (𝜋(𝜎),𝜋′(𝜎). Comme
𝜋 et 𝜋′ sont des morphismes, 𝜙 en est un aussi. C’est une conséquence du raisonnement
dans (a) que 𝜙 est une bijection. 𝜙 est donc un isomorphisme de groupes et 𝐺𝑎 ≅ Sym(𝑎)×
Sym(𝑏) ≅ 𝑆3×𝑆3.

. (p.)



(a) Montrer que si 𝐺 est un groupe et 𝑁1 et 𝑁2 sont deux sous-groupes distingués de 𝐺, alors
𝑁1∩𝑁2 est un sous-groupe distingué de 𝐺.

Solution. Si 𝑔 ∈ 𝐺, alors 𝑔(𝑁1∩𝑁2)𝑔−1 = 𝑔𝑁1𝑔−1∩𝑔𝑁2𝑔−1 =𝑁1∩𝑁2.

(b) Soit 𝑛 un entier, 𝑛 ≥ 5. On rappelle que le groupe alterné 𝐴𝑛 est simple. Montrer que les seuls
sous-groupes distingués de 𝑆𝑛 sont {𝑒},𝐴𝑛 et 𝑆𝑛.

Solution. Soit 𝑁 ⊴ 𝑆𝑛 et soit 𝐻 = 𝑁 ∩𝐴𝑛. Par (a) et la simplicité de 𝐴𝑛, 𝐻 = 𝐴𝑛 ou 𝐻 = {𝑒}.
Si 𝐻 = 𝐴𝑛, comme [𝑆𝑛 ∶ 𝐴𝑛] = 2, on a deux possibilités : 𝑁 = 𝐴𝑛 ou 𝑁 = 𝑆𝑛. Soit maintenant
𝐻 = {𝑒}. Soit 𝜖 ∶ 𝑆𝑛 → {±1} le morphisme signature. Comme 𝐻 = {𝑒}, la restriction de 𝜖 à 𝑁
est injective ce qui implique que |𝑁| ≤ 2. Si |𝑁| = 1, alors 𝑁 = {𝑒} et si |𝑁| = 2, alors 𝑁 =
{𝑒,𝜏1⋯𝜏𝑘}, où les 𝜏𝑖 sont des transpositions de supports disjoints. Soit 𝜏1 = (𝑎 𝑏). Si 𝑘 = 1,
soient 𝑐,𝑑 deux éléments de [𝑛]∖{𝑎,𝑏}. Si 𝑘 ≥ 2, soit 𝜏2 = (𝑐 𝑑). Dans les deux cas, en posant
𝜎 = (𝑎 𝑐)(𝑏 𝑑), on a 𝜎𝜏𝜎−1 ≠ 𝜏, ce qui montre que 𝑁 ne peut pas être distingué dans ce
cas.

(c) En déduire que 𝑆𝑛 est engendré par les 4-cycles pour 𝑛 ≥ 5.

Solution. Les 4-cycles forment une classe de conjugaison, ce qui implique qu’ils engendrent
un sous-groupe distingué de 𝑆𝑛. Ce sous-groupe n’est pas un sous-groupe de 𝐴𝑛 car les 4-
cycles sont des permutations impaires ; donc par (b) c’est 𝑆𝑛 tout entier.

. (p.) Soit (Q,+) le groupe des nombres rationnels muni de l’opération d’addition.
(a) Montrer que tout sous-groupe de Q engendré par un nombre fini d’éléments est cyclique.

(Indication : On peut utiliser le fait que tout sous-groupe d’un groupe cyclique est cyclique.)

Solution. Soit 𝐻 = ⟨𝑝1/𝑞1,…,𝑝𝑘/𝑞𝑘⟩ avec 𝑝𝑖,𝑞𝑖 ∈ Z. Alors 𝐻 est un sous-groupe du groupe
cyclique ⟨1/(𝑞1⋯𝑞𝑘)⟩ et il est donc cyclique.

(b) Soit𝐴 unsous-groupenon trivial deQ et soit𝜙 ∶ Q/𝐴 →Qunmorphisme.Montrer que𝜙(𝑥) =
0 pour tout 𝑥 ∈Q/𝐴. (Indication : Montrer d’abord que tout élément deQ/𝐴 est d’ordre fini.)

Solution. Soit 𝜋 ∶ Q→ Q/𝐴 le morphisme quotient. Soit 𝑎 = 𝑝/𝑞 ∈ 𝐴, 𝑎 ≠ 0 et 𝑧 = 𝑘/𝑚 ∈ Q
avec 𝑝,𝑞,𝑘,𝑚 ∈ Z. Alors𝑚𝑝𝑧 = 𝑝𝑘 = 𝑞𝑘𝑎 ∈ 𝐴. Donc𝑚𝑝𝜋(𝑧) = 𝜋(𝑚𝑝𝑧) = 0, ce qui montre
que 𝜋(𝑧) est d’ordre fini. Comme 𝜋 est surjectif, tout élément deQ/𝐴 est d’ordre fini.
Soit maintenant 𝑥 ∈Q/𝐴. 𝑥 est d’ordre fini et donc 𝜙(𝑥) aussi. Or le seul élément d’ordre fini
dansQ est 0. Donc 𝜙 = 0.

. (p.) Soit 𝐺 un groupe fini d’ordre 𝑛 et supposons qu’il existe un diviseur premier 𝑝 de 𝑛 tel que
𝑛 > 𝑝 ≥√𝑛. Montrer que 𝐺 n’est pas simple. (Indication : Utiliser le théorème de Sylow.)

Solution. Supposons que 𝐺 est simple. Soit 𝑛𝑝 le nombre de 𝑝-Sylows de 𝐺. Alors 𝑛𝑝 ≡ 1(mod 𝑝)
et 𝑛𝑝 ∣ 𝑛/𝑝 ≤ 𝑝. Ceci implique que 𝑛𝑝 = 1 et donc 𝐺 a un unique 𝑝-Sylow 𝑃 qui doit être distingué.
Comme 𝐺 est simple, ceci implique que 𝑃 = 𝐺, donc |𝐺| = 𝑝𝑘, 𝑘 ≥ 2. Par un résultat du cours,
le centre de 𝐺 est non trivial. Comme 𝐺 est simple, ceci implique que 𝐺 est abélien. Enfin on sait
qu’un groupe abélien est simple ssi son ordre est un nombre premier. Comme ce n’est pas le cas
pour 𝐺, c’est une contradiciton.

. (p.) Soit 𝐴 un groupe abélien, soit 𝐻 un groupe, et soit 𝜙 ∶ 𝐻 → Aut(𝐴) un morphisme. Considé-
rons le produit semi-direct 𝐺 =𝐴⋊𝜙𝐻 .
(a) On rappelle que 𝑍(𝐺) dénote le centre de 𝐺. Montrer que

𝑍(𝐺) = {(𝑎,ℎ) ∈ 𝐴⋊𝜙𝐻 ∶ ℎ ∈ 𝑍(𝐻),𝜙(ℎ) = id et 𝜙(𝑘)(𝑎) = 𝑎 pour tout 𝑘 ∈𝐻}.




Solution. On a pour (𝑎,ℎ), (𝑏,𝑘) ∈ 𝐺 :

(𝑎,ℎ)(𝑏,𝑘) = (𝑎𝜙(ℎ)(𝑏),ℎ𝑘), (𝑏,𝑘)(𝑎,ℎ) = (𝑏𝜙(𝑘)(𝑎),𝑘ℎ).

Pour voir l’inclusion ⊇, supposons que ℎ ∈ 𝑍(𝐻),𝜙(ℎ) = id et 𝜙(𝑘)(𝑎) = 𝑎 pour tout 𝑘. Alors
(𝑎,ℎ)(𝑏,𝑘) = (𝑎𝑏,ℎ𝑘) = (𝑏𝑎,𝑘ℎ) = (𝑏,𝑘)(𝑎,ℎ) pour tout (𝑏,𝑘) ∈ 𝐺. Pour l’autre inclusion,
on sait que (𝑎,ℎ)(𝑏,𝑘) = (𝑏,𝑘)(𝑎,ℎ) pour tout (𝑏,𝑘) ∈ 𝐺. En mettant 𝑘 = 𝑒, on obtient
𝑎𝜙(ℎ)(𝑏) = 𝑏𝑎 = 𝑎𝑏 et donc 𝜙(ℎ)(𝑏) = 𝑏 pour tout 𝑏 ∈ 𝐴, i.e., 𝜙(ℎ) = id. Maintenant pour
(𝑏,𝑘) arbitraire, on a 𝑎𝑏 = 𝑏𝜙(𝑘)(𝑎) = 𝜙(𝑘)(𝑎)𝑏 et ℎ𝑘 = 𝑘ℎ. Ceci implique que 𝜙(𝑘)(𝑎) = 𝑎
et ℎ ∈ 𝑍(𝐻).

(b) Notons par 𝐶2 le groupe cyclique d’ordre 2 et considérons le cas où 𝐴 = 𝐶2 ×𝐶2, 𝐻 = 𝐶2 et
𝜙(𝑡)(𝑥,𝑦) = (𝑦,𝑥) pour tout (𝑥,𝑦) ∈ 𝐴, où 𝑡 est l’élément non trivial de 𝐶2. Dans ce cas, cal-
culer le centre de 𝐺 explicitement.

Solution. En utilisant (a), on voit que 𝑍(𝐺) = {𝑒,((𝑡,𝑡),𝑒)}.

(c) (Bonus) Le groupe𝐺 de (b) est isomorphe à un groupe qu’on connaît. Lequel? (Il suffit d’iden-
tifier le groupe et un isomorphisme. Il n’y a pas besoin d’expliciter les calculs.)

Solution. 𝐺 est isomorphe à 𝐷8. Si 𝑟 et 𝑠 sont les générateurs standard de 𝐷8, un isomor-
phisme est donné par 𝑟 ↦ ((𝑡,𝑒),𝑡),𝑠 ↦ ((𝑒,𝑒),𝑡).




