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F, dénote le corps fini a g éléments. On rappelle et admet le fait que tout sous-groupe fini du groupe
multiplicatif d'un corps est cyclique.

Toutes les représentations de groupes sont de dimension finie sur C.

1.

3.

4.

Lesquels des anneaux suivants sont principaux et lesquels sont factoriels :

Z[x], Z[il, R[x], Clx,y], Z[V-5]?

Justifier brievement (une ou deux phrases par anneau) vos réponses.

Solution. Z[i] etR[x] sontdes domaines euclidiens et donc principaux et factoriels. Z est factoriel
et donc Z[x] est factoriel aussi. C[x, y] = C[x][y] est factoriel également.
Z|x] n'est pas principal parce que I'idéal (2 x) n’est pas principal (les seuls éléments de Z[x]
qui divisent 2 et x sont +1). De maniére similaire, I'idéal (x y) n'est pas principal dans C[x, y].
Z[\/—_S] n'est pas factoriel (et donc pas principal non plus). Eneffet6 =2-3 = (1 + \/—_5)(1 -
\/——5) etles éléments 2,3,1 + \/——5, 1- \/—_5 sont irréductibles. O

Montrer que Z[i]/I est fini pour tout idéal non nul I < Z[i]. (Indication : Utiliser le fait que I est
principal et la division euclidienne.)

Solution. Comme Z[i] est un anneau principal, il existe a tel que I = («). Soit x + I un élément
de Z[i]/I. Alors il existe g et r tels que x = ga +r et N(r) < N(a). Doncr+1 = x + 1. Il reste a
remarquer qu’iln’y a qu'un nombre fini d’éléments de Z[i] avec norme plus petite que N (). [

(a) Le corps Fg admet-il un sous-corps isomorphe a F,?

Solution. Non. En effet, supposons que K < Fg et [Fg : K] = d. Alors 8 = |Fg| = |[K|? ce qui
n'est pas possible si |K| = 4. O

(b) Soit F =Q(ay,...,a,) ol a; € C,a’ € Q pour tout i. Montrer que V2¢F.

Solution. Soit F;. = Q(a,, ..., a;). On montre par récurrence sur k que [F. : Q] est une puis-
sance de 2. En effet, si ay,, € F}, alors F;.,; = F}. et sinon, le polyndme minimal de «;.,; au
dessus de F;, est de degré 2 et donc [Fy,; : F;.] = 2. On conclut que [F : Q] est une puissance
de 2. Or [Q(\S/E) : Q] = 3 (le polynéme minimal de \3/5 est x°> —2) et comme 3 ne peut pas
diviser une puissance de 2, on voit que \3/5 ¢F. O

Soit p un nombre premier et 1 € N ~ {0}.

(a) Montrer qu'il existe a € F,. tel que F,» = F,(a).

Solution. Le groupe multiplicatif de F,. est cyclique; soit @ un générateur. Alors tout €lé-
ment non nul de F,» est une puissance de « et, en particulier, F,,» = F,,(a). O

(b) Montrer qu’il existe un polynome irréductible dans F,[x] de degré n.



Solution. Soit @ comme dans (a) et soit f le polynome minimal de a sur F,,. Alors f est irré-
ductible et degf = [F,(a) :F,] = [F,» : F,] = n. n

5. Soit F un corps et soit F sa cloture algébrique.

(a) Soiti: F — K un plongement de corps tel que K est algébrique au dessus de i (F). Montrer
qu'’il existe un plongement j: K — F tel que j o i = idp.

Solution. Soit K la cloture algébrique de K. Comme K est algébrique au dessus de F, K est
également une cloture algébrique de F. Par 'unicité de la cloture algébrique, K et F sont
isomorphes au dessus de F et on peut prendre pour j la restriction a K d’'un tel isomor-
phisme. O

(b) Soit F <K < F avec [K : F] < co. Montrer que les énoncés suivants sont équivalents :
(i) K estle corps de décomposition d’'un polynéme f € F[x].
(i) Pour tout plongement j: K — F qui fixe F, j(K) = K.
(iii) Tout polyndome irréductible de F[x] qui a une racine dans K se décompose dans K [x].

Solution. (i) = (ii). Soit A € K 'ensemble des racines de f et soit j un plongement comme
dans (ii). Alors K = F(A) et j(A) = A car j fixe les coefficients de f. Il s’en suit que j(K) = K.
(i) = (iii). Soit g € F[x] un polynéme irréductible et @ € K une racine de g. Soit § € F une
autre racine de g. Alors F(a) = F[x]/(g) = F(B). Soit i: F(B) — F(a) < K I'isomorphisme
qui envoie B sur « et fixe F. Par (a), il existe j: K — F tel que jo i = idp (). Maintenant par
(i), p=j(i(B)) =j(a) K.

(iii) = (i). Soit K = F(a,, ..., a,,) et soit g; le polynéme minimal de «;. Alors par (iii) tout g;
se décompose dans K [x] et K est le corps de décomposition de f =]; g;. O

6. Soit { une racine n-ieéme de 1. Montrer que

Y (el

{d<n:pgcd(d,n)=1}

(Indication : On pourrait utiliser les formules de Viete : si f(x) = x™ +Y;.,, a;x" estun polynome
unitaire et a;,a,, ..., a,, sont ses racines, alors s.(ay,...,a,,) = (-1)*a,,_, oi1 s; est le k-ieme
polyndme symétrique élémentaire. Commencer avec le cas o1 { est une racine primitive.)

Solution. Si { est primitive, alors = := {{¢ : d < n,pgcd(d, n) = 1} est 'ensemble des racines du
polyndéme cyclotomique ®,. Comme ®,, est unitaire a coefficients entiers, par les formules de
Viete, la somme de ses racines est un entier aussi.

Considérons maintenant le cas général. Soit ¢ une racine n-iéme primitive et soit { = {“ avec
0<a < n.Alors
d _ Z Eda _ Z a
“= =Y n%
{d<n:pged(d,n)=1} {d<n:pgcd(d,n)=1} nez

C’est un polynome symétrique en les racines de ®,,; comme ®,, € Z[x] est unitaire, par les for-
mules de Viete et le théoreme fondamental des polynémes symétriques, on obtient que la somme
s’exprime comme un polyndme a coefficients entiers en les coefficients de ®@,, et c’est donc un en-
tier. O

7. Soit G un groupe fini et ¢: G — GL(V') une représentation irréductible. Soit Z(G) le centre de G,
i.e., le sous-groupe défini par
Z(G)={z€G:zg = gz pourtout g € G}.
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(a)

(b)

Montrer que ¢p(Z(G)) < {AI: 1 € C}L.

Solution. Soit z € Z(G). Alors ¢p(z) commute avec ¢(g) pour tout g € G et par le lemme de
Schur, ¢p(z) = AI pourun A € C. O

La représentation ¢ est dite fidele si ker ¢p = {e}. Montrer que si G admet une représentation
irréductible et fidele, alors Z(G) est cyclique.

Solution. Si ¢ est fidele, le groupe ¢(Z(G)) < GL(V) est isomorphe a Z(G) et par (a), il est
isomorphe a un sous-groupe fini de C* et donc cyclique. O

8. Soit G un groupe fini et soit y un caractere de G.

(a)

(b)

(c)

Montrer que si g € G avec ord(g) = n, alors il existe des racines n-iemes de 1 {3, ...,{, telles
que

d
x@gH=% (jk pour tout k.
j=1

Solution. On rappelle que toute matrice d’'ordre n est diagonalisable et ses valeurs propres
sont des racines n-iemes de 1. Soit ¢ la représentation de y. Alors ¢(g) est conjuguée a
diag((;,...,{4) et ¢p(g*) est conjuguée a diag(¢F, ... ,CL’;). Comme la trace est invariante par
conjugaison, on a y(g*) = Tr(¢(g*)) = Z}]l:l (jk. O

A partir de maintenant on suppose que G = S,,, le groupe symétrique. Montrer que si g € G
et k est un entier avec pgcd(k,ord(g)) = 1, alors g et g¥ sont conjugués.

Solution. Soit g = 1, --- 7, la décomposition en cycles disjoints de g. On note par |7;| lalon-
gueur du cycle 7;. Alors ord(g) = ppcm(|1,],...,|7,|) et donc pged(k, |7;|) = 1 pour tout i.
I s’en suit que Tf est un cycle de la méme longueur que 7; et g~ = ¥ .- 7¥ est conjugué a

g L]

Montrer que pour tout g € S,,, x(g) € Z. (Indication : On pourrait utiliser les deux parties
précédentes, le fait que y(g) est un entier algébrique et I'exercice 6.)

Solution. Soit n = ord(g). On choisit {;, ...,{; comme dans (a) et on dénote ® = {k < n :
pged(k, n) = 1}. Comme y est constant sur les classes de conjugaison de G, par (b) on a que
y(g%) = y(g) pour tout k € ®. On obtient :

d
Plx(g) =Y x(g9)=2 X=X 2 ¢

ke® ked j=1 Jj ked

Par l'exercice 6, ) jcqp ¢ ;“ € Z pour tout j. On conclut que y(g) € Q et comme c’est un entier
algébrique, c’est un entier. O



