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𝐅𝑞 dénote le corps fini à𝑞 éléments. On rappelle et admet le fait que tout sous-groupefini du groupe
multiplicatif d’un corps est cyclique.
Toutes les représentations de groupes sont de dimension finie sur C.
1. Lesquels des anneaux suivants sont principaux et lesquels sont factoriels :

Z[𝑥], Z[𝑖], R[𝑥], C[𝑥,𝑦], Z[√−5] ?

Justifier brièvement (une ou deux phrases par anneau) vos réponses.

Solution. Z[𝑖] etR[𝑥] sont des domaines euclidiens et doncprincipaux et factoriels.Z est factoriel
et donc Z[𝑥] est factoriel aussi. C[𝑥,𝑦] =C[𝑥][𝑦] est factoriel également.

Z[𝑥] n’est pas principal parce que l’idéal (2 𝑥) n’est pas principal (les seuls éléments de Z[𝑥]
qui divisent 2 et 𝑥 sont ±1). De manière similaire, l’idéal (𝑥 𝑦) n’est pas principal dans C[𝑥,𝑦].

Z[√−5] n’est pas factoriel (et donc pas principal non plus). En effet 6 = 2 ⋅ 3 = (1+√−5)(1−
√−5) et les éléments 2,3,1+√−5,1−√−5 sont irréductibles.

. Montrer que Z[𝑖]/𝐼 est fini pour tout idéal non nul 𝐼 ⊴ Z[𝑖]. (Indication : Utiliser le fait que 𝐼 est
principal et la division euclidienne.)

Solution. Comme Z[𝑖] est un anneau principal, il existe 𝛼 tel que 𝐼 = (𝛼). Soit 𝑥+ 𝐼 un élément
de Z[𝑖]/𝐼 . Alors il existe 𝑞 et 𝑟 tels que 𝑥 = 𝑞𝛼+𝑟 et 𝑁(𝑟) < 𝑁(𝛼). Donc 𝑟 + 𝐼 = 𝑥 + 𝐼 . Il reste à
remarquer qu’il n’y a qu’un nombre fini d’éléments de Z[𝑖] avec norme plus petite que 𝑁(𝛼).

. (a) Le corps 𝐅8 admet-il un sous-corps isomorphe à 𝐅4 ?

Solution. Non. En effet, supposons que 𝐾 ≤ 𝐅8 et [𝐅8 ∶ 𝐾] = 𝑑. Alors 8 = |𝐅8| = |𝐾|𝑑 ce qui
n’est pas possible si |𝐾| = 4.

(b) Soit 𝐹 =Q(𝛼1,…,𝛼𝑛) où 𝛼𝑖 ∈C,𝛼2
𝑖 ∈Q pour tout 𝑖. Montrer que 3√2 ∉ 𝐹.

Solution. Soit 𝐹𝑘 =Q(𝛼1,…,𝛼𝑘). On montre par récurrence sur 𝑘 que [𝐹𝑘 ∶Q] est une puis-
sance de 2. En effet, si 𝛼𝑘+1 ∈ 𝐹𝑘, alors 𝐹𝑘+1 = 𝐹𝑘 et sinon, le polynôme minimal de 𝛼𝑘+1 au
dessus de 𝐹𝑘 est de degré 2 et donc [𝐹𝑘+1 ∶ 𝐹𝑘] = 2. On conclut que [𝐹 ∶Q] est une puissance
de 2. Or [Q( 3√2) ∶ Q] = 3 (le polynôme minimal de 3√2 est 𝑥3 −2) et comme 3 ne peut pas
diviser une puissance de 2, on voit que 3√2 ∉ 𝐹.

. Soit 𝑝 un nombre premier et 𝑛 ∈N∖{0}.
(a) Montrer qu’il existe 𝛼 ∈ 𝐅𝑝𝑛 tel que 𝐅𝑝𝑛 = 𝐅𝑝(𝛼).

Solution. Le groupe multiplicatif de 𝐅𝑝𝑛 est cyclique; soit 𝛼 un générateur. Alors tout élé-
ment non nul de 𝐅𝑝𝑛 est une puissance de 𝛼 et, en particulier, 𝐅𝑝𝑛 = 𝐅𝑝(𝛼).

(b) Montrer qu’il existe un polynôme irréductible dans 𝐅𝑝[𝑥] de degré 𝑛.



Solution. Soit 𝛼 comme dans (a) et soit 𝑓 le polynôme minimal de 𝛼 sur 𝐅𝑝. Alors 𝑓 est irré-
ductible et deg𝑓 = [𝐅𝑝(𝛼) ∶ 𝐅𝑝] = [𝐅𝑝𝑛 ∶ 𝐅𝑝] = 𝑛.

. Soit 𝐹 un corps et soit 𝐹 sa clôture algébrique.
(a) Soit 𝑖 ∶ 𝐹 → 𝐾 un plongement de corps tel que 𝐾 est algébrique au dessus de 𝑖(𝐹). Montrer

qu’il existe un plongement 𝑗 ∶ 𝐾 → 𝐹 tel que 𝑗 ∘ 𝑖 = id𝐹 .

Solution. Soit 𝐾 la clôture algébrique de 𝐾 . Comme 𝐾 est algébrique au dessus de 𝐹, 𝐾 est
également une clôture algébrique de 𝐹. Par l’unicité de la clôture algébrique, 𝐾 et 𝐹 sont
isomorphes au dessus de 𝐹 et on peut prendre pour 𝑗 la restriction à 𝐾 d’un tel isomor-
phisme.

(b) Soit 𝐹 ≤ 𝐾 ≤ 𝐹 avec [𝐾 ∶ 𝐹] < ∞. Montrer que les énoncés suivants sont équivalents :
(i) 𝐾 est le corps de décomposition d’un polynôme 𝑓 ∈ 𝐹[𝑥].
(ii) Pour tout plongement 𝑗 ∶ 𝐾 → 𝐹 qui fixe 𝐹, 𝑗(𝐾) = 𝐾 .
(iii) Tout polynôme irréductible de 𝐹[𝑥] qui a une racine dans 𝐾 se décompose dans 𝐾[𝑥].

Solution. (i) ⇒ (ii). Soit 𝐴 ⊆ 𝐾 l’ensemble des racines de 𝑓 et soit 𝑗 un plongement comme
dans (ii). Alors 𝐾 = 𝐹(𝐴) et 𝑗(𝐴) = 𝐴 car 𝑗 fixe les coefficients de 𝑓. Il s’en suit que 𝑗(𝐾) = 𝐾 .
(ii) ⇒ (iii). Soit 𝑔 ∈ 𝐹[𝑥] un polynôme irréductible et 𝛼 ∈ 𝐾 une racine de 𝑔. Soit 𝛽 ∈ 𝐹 une
autre racine de 𝑔. Alors 𝐹(𝛼) ≅ 𝐹[𝑥]/(𝑔) ≅ 𝐹(𝛽). Soit 𝑖 ∶ 𝐹(𝛽) → 𝐹(𝛼) ⊆ 𝐾 l’isomorphisme
qui envoie 𝛽 sur 𝛼 et fixe 𝐹. Par (a), il existe 𝑗 ∶ 𝐾 → 𝐹 tel que 𝑗 ∘ 𝑖 = id𝐹(𝛽). Maintenant par
(ii), 𝛽 = 𝑗(𝑖(𝛽)) = 𝑗(𝛼) ∈ 𝐾 .
(iii) ⇒ (i). Soit 𝐾 = 𝐹(𝛼1,…,𝛼𝑛) et soit 𝑔𝑖 le polynôme minimal de 𝛼𝑖. Alors par (iii) tout 𝑔𝑖
se décompose dans 𝐾[𝑥] et 𝐾 est le corps de décomposition de 𝑓 = ∏𝑖 𝑔𝑖.

. Soit 𝜁 une racine 𝑛-ième de 1. Montrer que


{𝑑<𝑛∶pgcd(𝑑,𝑛)=1}

𝜁𝑑 ∈ Z.

(Indication : On pourrait utiliser les formules de Viète : si 𝑓(𝑥) = 𝑥𝑚+∑𝑖<𝑚 𝑎𝑖𝑥𝑖 est un polynôme
unitaire et 𝛼1,𝛼2,…,𝛼𝑚 sont ses racines, alors 𝑠𝑘(𝛼1,…,𝛼𝑚) = (−1)𝑘𝑎𝑚−𝑘, où 𝑠𝑘 est le 𝑘-ième
polynôme symétrique élémentaire. Commencer avec le cas où 𝜁 est une racine primitive.)

Solution. Si 𝜁 est primitive, alors Ξ ≔ {𝜁𝑑 ∶ 𝑑 < 𝑛,pgcd(𝑑,𝑛) = 1} est l’ensemble des racines du
polynôme cyclotomique Φ𝑛. Comme Φ𝑛 est unitaire à coefficients entiers, par les formules de
Viète, la somme de ses racines est un entier aussi.

Considérons maintenant le cas général. Soit 𝜉 une racine 𝑛-ième primitive et soit 𝜁 = 𝜉𝑎 avec
0 ≤ 𝑎 < 𝑛. Alors


{𝑑<𝑛∶pgcd(𝑑,𝑛)=1}

𝜁𝑑 = 
{𝑑<𝑛∶pgcd(𝑑,𝑛)=1}

𝜉𝑑𝑎 = 
𝜂∈Ξ

𝜂𝑎 .

C’est un polynôme symétrique en les racines de Φ𝑛 ; comme Φ𝑛 ∈ Z[𝑥] est unitaire, par les for-
mules de Viète et le théorème fondamental des polynômes symétriques, on obtient que la somme
s’exprime commeun polynôme à coefficients entiers en les coefficients deΦ𝑛 et c’est donc un en-
tier.

. Soit 𝐺 un groupe fini et 𝜙 ∶ 𝐺 → GL(𝑉) une représentation irréductible. Soit 𝑍(𝐺) le centre de 𝐺,
i.e., le sous-groupe défini par

𝑍(𝐺) = {𝑧 ∈ 𝐺 ∶ 𝑧𝑔 = 𝑔𝑧 pour tout 𝑔 ∈ 𝐺}.




(a) Montrer que 𝜙(𝑍(𝐺)) ⊆ {𝜆𝐼 ∶ 𝜆 ∈C}.

Solution. Soit 𝑧 ∈ 𝑍(𝐺). Alors 𝜙(𝑧) commute avec 𝜙(𝑔) pour tout 𝑔 ∈ 𝐺 et par le lemme de
Schur, 𝜙(𝑧) = 𝜆𝐼 pour un 𝜆 ∈C.

(b) La représentation 𝜙 est dite fidèle si ker𝜙 = {𝑒}. Montrer que si 𝐺 admet une représentation
irréductible et fidèle, alors 𝑍(𝐺) est cyclique.

Solution. Si 𝜙 est fidèle, le groupe 𝜙(𝑍(𝐺)) ≤ GL(𝑉) est isomorphe à 𝑍(𝐺) et par (a), il est
isomorphe à un sous-groupe fini de C× et donc cyclique.

. Soit 𝐺 un groupe fini et soit 𝜒 un caractère de 𝐺.
(a) Montrer que si 𝑔 ∈ 𝐺 avec ord(𝑔) = 𝑛, alors il existe des racines 𝑛-ièmes de 1 𝜁1,…,𝜁𝑑 telles

que

𝜒(𝑔𝑘) =
𝑑

𝑗=1

𝜁𝑘
𝑗 pour tout 𝑘.

Solution. On rappelle que toute matrice d’ordre 𝑛 est diagonalisable et ses valeurs propres
sont des racines 𝑛-ièmes de 1. Soit 𝜙 la représentation de 𝜒. Alors 𝜙(𝑔) est conjuguée à
diag(𝜁1,…,𝜁𝑑) et 𝜙(𝑔𝑘) est conjuguée à diag(𝜁𝑘

1 ,…,𝜁𝑘
𝑑 ). Comme la trace est invariante par

conjugaison, on a 𝜒(𝑔𝑘) = Tr(𝜙(𝑔𝑘)) = ∑𝑑
𝑗=1 𝜁𝑘

𝑗 .

(b) À partir de maintenant on suppose que 𝐺 = 𝑆𝑚, le groupe symétrique. Montrer que si 𝑔 ∈ 𝐺
et 𝑘 est un entier avec pgcd(𝑘,ord(𝑔)) = 1, alors 𝑔 et 𝑔𝑘 sont conjugués.

Solution. Soit 𝑔 = 𝜏1 ⋯𝜏𝑠 la décomposition en cycles disjoints de 𝑔. On note par |𝜏𝑖| la lon-
gueur du cycle 𝜏𝑖. Alors ord(𝑔) = ppcm(|𝜏1|,…, |𝜏𝑠|) et donc pgcd(𝑘, |𝜏𝑖|) = 1 pour tout 𝑖.
Il s’en suit que 𝜏𝑘

𝑖 est un cycle de la même longueur que 𝜏𝑖 et 𝑔𝑘 = 𝜏𝑘
1 ⋯𝜏𝑘

𝑠 est conjugué à
𝑔.

(c) Montrer que pour tout 𝑔 ∈ 𝑆𝑚, 𝜒(𝑔) ∈ Z. (Indication : On pourrait utiliser les deux parties
précédentes, le fait que 𝜒(𝑔) est un entier algébrique et l’exercice .)

Solution. Soit 𝑛 = ord(𝑔). On choisit 𝜁1,…,𝜁𝑑 comme dans (a) et on dénote Φ = {𝑘 < 𝑛 ∶
pgcd(𝑘,𝑛) = 1}. Comme 𝜒 est constant sur les classes de conjugaison de 𝐺, par (b) on a que
𝜒(𝑔𝑘) = 𝜒(𝑔) pour tout 𝑘 ∈ Φ. On obtient :

|Φ|𝜒(𝑔) = 
𝑘∈Φ

𝜒(𝑔𝑘) = 
𝑘∈Φ

𝑑

𝑗=1

𝜁𝑘
𝑗 = 

𝑗

𝑘∈Φ

𝜁𝑘
𝑗 .

Par l’exercice , ∑𝑘∈Φ 𝜁𝑘
𝑗 ∈ Z pour tout 𝑗. On conclut que 𝜒(𝑔) ∈ Q et comme c’est un entier

algébrique, c’est un entier.




