X.— REPRÉSENTATIONS DES GROUPES ABÉLIENS FINIS

Exercice.

- a) Soit V un \mathbb{C} -espace vectoriel de dimension finie. Soit $(f_i)_i$ une famille d'endomorphismes \mathbb{C} -linéaires diagonalisables de V qui commutent deux à deux. Montrer qu'il existe une base diagonalisation commune à tous les f_i .
- b) Soit G un groupe abélien fini. Montrer qu'une représentation irréductible $\rho: G \to \operatorname{GL}(V)$ est de degré 1 $(c-\grave{a}-d\dim V=1)$.
- c) Soit G un groupe abélien fini. On note \hat{G} l'ensemble des morphismes de groupes $\chi:G\to\mathbb{C}^\times.$

Posons $V=\mathbb{C}^G.$ Pour tout $g\in G,$ notons l'opérateur linéaire :

$$T_q: V \to V, f \mapsto T_q(f): x \mapsto f(xg)$$
.

Pour tout $\chi \in \hat{G}$, soit $V_{\chi} = \{v \in V : \forall g \in G, T_g(f) = \chi(g)f\}$. En utilisant la première question, montrer que $V = \bigoplus_{\chi \in \hat{G}} V_{\chi}$.

- d) Montrer que $V_{\chi} = \mathbb{C}\chi$ et en déduire que $|G| = |\hat{G}|$.
- e) On définit une structure de groupe pour \hat{G} avec la loi :

$$\forall g \in G, \forall \chi_1, \chi_2 \in \widehat{G}, \chi_1, \chi_2 : g \mapsto \chi_1(g)\chi_2(g)$$
.

Vérifier que \hat{G} est un groupe abélien fini.

- f) Montrer que $G \to \widehat{\widehat{G}}$, $g \mapsto \widehat{g} : \chi \mapsto \chi(g)$ est un isomorphisme pour tout groupe G abélien fini.
- g) On pose pour $f_1, f_2 \in V = \mathbb{C}^G$,

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{f_1(g)} f_2(g)$$
.

Vérifier que l'on obtient un produit scalaire hermitien pour V et que les $\chi \in \hat{G}$ forment une base orthonormée de V.

h) En déduire:

$$\forall \, g,h \in G, \, \frac{1}{|G|} \sum_{\chi \in \hat{G}} \overline{\chi(g)} \chi(h) = \left\{ \begin{array}{ll} 1 & \text{si } g = h \\ 0 & \text{sinon.} \end{array} \right.$$

- i) Déterminer \widehat{G} lorsque $G = \mathbb{Z}/n\mathbb{Z}$.
- j) En déduire que $G \simeq \hat{G}$ pour tout groupe abélien fini[†].
- k) On note $n = |G| = |\widehat{G}|$. On numérote les éléments de $G : g_1, ..., g_n$ et $\chi_1, ..., \chi_n$ les éléments de \widehat{G} . Montrer que $|\det(\chi_i(g_j))_{1 \le i,j \le n}|^2 = n^n$.
- l) En déduire que $\det^2(\chi_i(g_j))_{1 \leq i,j \leq n} = \pm n^n$. Indication : $\det(\overline{\chi_i}(g_j))_{1 \leq i,j \leq n} = \pm \det(\chi_i(g_j))_{1 \leq i,j \leq n}$.

 $[\]dagger.$ On admettra que tout groupe abélien fini est isomorphe à un produit de groupes cycliques.

m) Soit G un groupe abélien fini. Pour tout $g\in G,$ on choisit une variable $X_g.$ Démontrer la formule

$$\det(X_{gh^{-1}})_{g,h\in G} = \prod_{\chi\in \hat{G}} (\sum_{g\in G} \chi(g)X_g) \ .$$

Indication. Raisonner dans le $\mathbb{C}-espace$ vectoriel $\mathbb{C}G=\bigoplus_{g\in G}\mathbb{C}g$. Vérifier que les $\sum_{g\in G}\chi(g)g,\ \chi\in \widehat{G}$ forment une base de $\mathbb{C}G$ et déterminer pour toute famille $(a_g)_{g\in G}\in\mathbb{C}^G$ les matrices de l'application linéaire $\mathbb{C}G\to\mathbb{C}G$, $x\mapsto\sum_{g\in G}a_gg.x$ dans les bases $g,g\in G$ et $\sum_{g\in G}\chi(g)g,\ \chi\in \widehat{G}$.