XI — Représentations du groupe symétrique \mathfrak{S}_3

Exercice.

Soit $G = \mathfrak{S}_3$. On note $\sigma = (1, 2, 3), \tau = (1, 2) \in G$.

a) Représentation standard du groupe symétrique. Pour tout $g \in \mathfrak{S}_3$ et tous $x_1, x_2, x_3 \in \mathbb{C}$, on pose

$$R(g) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_{g^{-1}(1)} \\ x_{g^{-1}(2)} \\ x_{g^{-1}(3)} \end{pmatrix} .$$

Montrer que l'on obtient ainsi une représentation de \mathfrak{S}_3 .

Soient $e_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$. Vérifier que $W = \mathbb{C}e_1 \oplus \mathbb{C}e_2$ est stable par R et que la représentation induite

$$r:\mathfrak{S}_3\to \mathrm{GL}(W)$$

est irréductible. Déterminer les matrices de $r(\sigma)$ et $r(\tau)$ dans la base (e_1, e_2) .

b) Le groupe du triangle. Soient $A_q = \begin{pmatrix} \cos \frac{2q\pi}{3} \\ \sin \frac{2q\pi}{3} \end{pmatrix}, q = 1, 2, 3$ et $T = \{A_1, A_2, A_3\}$.

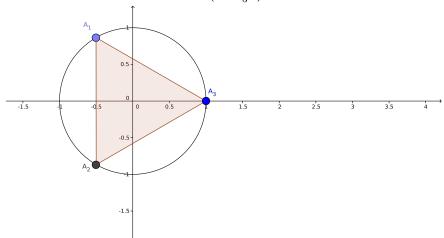


Figure 1 – le triangle T

On note $G_T = \{g \in O_2(\mathbb{R}) : g(T) = T\}$. Déterminer G_T .

Pour tout $g \in G_T$, soit $\sigma_g \in \mathfrak{S}_3$ tel que :

$$\forall i = 1, 2, 3, g(A_i) = A_{\sigma_g(i)}$$
.

Vérifier que $\Sigma: G_T \to \mathfrak{S}_3, g \mapsto \sigma_g$ est un isomorphisme de groupes. On obtient ainsi une représentation $\rho = \Sigma^{-1}: \mathfrak{S}_3 \to G_T \leqslant \mathrm{GL}_2(\mathbb{C})$.

Déterminer $\rho(\sigma)$ et $\rho(\tau)$. Vérifier que ρ est irréductible.

- c) Trouver un isomorphisme de représentations entre r et ρ .
- d) Toutes les représentations irréductibles de \mathfrak{S}_3 . Soit $\Re:\mathfrak{S}_3\to \mathrm{GL}(V)$ une représentation irréductible de degré >1.

- e) Pour tout $\lambda \in \mathbb{C}$, on notera V_{λ} l'espace propre de $\Re(\sigma)$ associé à λ , c-à-d $V_{\lambda} = \{v \in V : \Re(\sigma)(v) = \lambda v\}$. Montrer que $V = V_1 \oplus V_j \oplus V_{j^2}$ où $j = e^{\frac{2i\pi}{3}}$.
- f) Montrer que $\Re(\tau)(V_1) \leqslant V_1$, $\Re(\tau)(V_j) \leqslant V_{j^2}$, $\Re(\tau)(V_{j^2}) \leqslant V_j$.
- g) En utilisant que V est irréductible, montrer que $V_1=0$ et que $V_j\neq 0$.
- h) Soit $0 \neq e_1 \in V_j$. Soit $e_2 := \Re(\tau)(e_1)$. Montrer que $V = \mathbb{C}e_1 \oplus \mathbb{C}e_2$ et donner les matrices de $\Re(\sigma)$, $\Re(\tau)$ dans la base e_1, e_2 .