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Exercice 1 (Axiomes.)

1.
2.

Donner un exemple d’un univers dans lequel 'axiome d’extensionnalité n’est pas vrai.

Montrer que 'axiome de ’ensemble vide est équivalent a 'existence d’un ensemble (autrement
dit au fait que V # 0).

Exercice 2 (Ensembles.) Soit x et y deux ensembles.

1.
2.

Montrer que x Uy et = Ny sont des ensembles.

Montrer que S(z) est bien un ensemble.

Exercice 3 (Ensembles.) Soient X et Y des ensembles.

1.
2.

Montrer que la paire (X,Y") est un ensemble.

Montrer que le produit cartésien X x Y est un ensemble.

Exercice 4 (Ensembles.) Soit X un ensemble et R une relation d’équivalence sur X. Vérifier que
chaque classe d’équivalence est un ensemble ainsi que le quotient X/R.

Exercice 5 (Axiome de fondation.) On rappelle que 'axiome de fondation est 1’énoncé suivant :
pour tout ensemble non vide z, il existe un ensemble y € z tel que y Nz = (). Vérifier que cet axiome
interdit l'existence d’ensembles x tels que x € z, ou l'existence de suites (x,)n<w telles que zp41 €
pour tout n.

Exercice 6 (Ensembles ordonnés : ordres totaux, bons ordres, ordres denses.)

1.

Montrer que toute partie finie d’un ensemble totalement ordonné est bien ordonnée par rapport
a la méme relation d’ordre.

Montrer que le produit cartésien de deux ensembles totalement ordonnés, muni de l'ordre
lexicographique défini & partir des deux ordres, est totalement ordonné. Que peut-on dire si les
deux ordres sont bons?

. On munit N de son bon ordre usuel, noté <. Montrer que si A C N est un sous-ensemble infini,

alors (A, <) est isomorphe a (N, <).

Soit (X, <) un ensemble totalement ordonné. Montrer que (X, <) est un bon ordre si et seule-
ment s’il ne contient pas de suite strictement décroissante d’éléments.

Montrer qu’un ensemble X muni d’un ordre total < est fini si & la fois < et son inverse définissent
des bons ordres sur X.

. On dira qu’une relation d’ordre total < définie sur un ensemble X est dense si pour tous a,b € X

distincts tels que a < b, il existe ¢ € X différent de a et de b tel que a < ¢ < b. Montrer que
si X et Y sont deux ensembles dénombrables densement ordonnés et qui ne sont ni majorés ni
minorés, alors ils sont isomorphes.

Exercice 7 (Plongements de bons ordres.) Un plongement d’un ensemble ordonné (X, <) dans
un autre (Y, <’) est une injection f : X — Y qui préserve l'ordre : pour tous z,2’ € X, f(z) < f(2)
si et seulement si z < 7/

1.
2.

Montrer que tout bon ordre dénombrable ou fini se plonge dans (Q, <).

Quels sont les bons ordres qui admettent un plongement dans (R, <) ?



Exercice 8 (Segments initiaux.)

A. Donner un exemple d’ensemble totalement ordonné (X, <) qui contient un segment initial propre
qui n’est pas de la forme {x € X|z < a} pour un certain a € X.

B. Soit (X, <) un ensemble totalement ordonné. Notons Ix I’ensemble des segments initiaux propres
de X et 0 : X — Ix qui associe a chaque x € X le segment initial propre X, = {y € X|y < z}.

1.
2.
3.

4.

Vérifier que o est injective.
Montrer que o est surjective si et seulement si (X, <) est un bon ordre.

Si (X, <) est un bon ordre, montrer que S(X) = X U {X} admet un bon ordre isomorphe &
(Jx,C), ou Jx est ’ensemble de tous les segments initiaux de X.

Que peut-on dire de X si pour tout x € X, x = X, 7

Exercice 9 (Propriétés élémentaires des ordinaux.)

1.

Montrer qu'un ordinal « est un entier naturel (donc, un ordinal fini) si, et seulement si, tout
sous-ensemble non vide de o a un plus grand élément.

. Montrer qu'un ordinal « est limite si et seulement si a = sup{3|3 € a}.

3. Montrer que si a, 8 sont deux ordinaux et f: a — 3 est strictement croissante alors a < .

4. Montrer que si A est une partie d’un ordinal «, alors ’appartenance définit sur A une relation

de bon ordre qui est isomorphe a un ordinal inférieur ou égal a a.

Exercice 10 (L’univers V et ’axiome de fondation.) On définit une hiérarchie d’ensembles
(V) indexée par les ordinaux en posant :

1.

0o="0;
at1 =P(Va);
Si « est limite, V, = U,B<a Vs.

Montrer que V, est un ensemble transitif pour tout a.

2. Montrer que § < a ssi Vg € V,, et que B < assi Vg C V.

3. Si x est un ensemble, on définit son rang rg(z) en posant

le plus petit v tel que x € V41 si un tel v existe.
rg(z) =

0 sinon.

Montrer que rg(a) = a pour tout ordinal .

Montrer que ’axiome de fondation est équivalent a 1’énoncé suivant : pour tout ensemble z, il
existe un ordinal v tel que x € V.

Montrer que la classe V = |, Vi, satisfait les axiomes de ZF. En déduire que si Z est consistant,
ZF aussi.

Exercice 11 (Somme ordinale.) Rappelons la définition par récurrence transfinie de la somme de
deux ordinaux « et [ :

o sif=0
a+B=1{8a+7) si B=25(7)
sup {a+&: £ < B}) sif est limite

Nous allons maintenant décrire une opération sur les bons ordres qui est équivalente :

1.

Soient A et B deux ensembles bien ordonnés. Montrer que I’on peut supposer qu’ils sont dis-
joints.



2. On suppose maintenantA N B = () et on considére X = A U B. Montrer que ’on peut définir
de maniere unique un bon ordre sur X prolongeant celui de A et celui de B (i.e. tel que l'ordre
de X induise ceux de A et de B) et tel que A soit un segment initial de X.

3. Montrer que si A et B sont respectivement isomorphes aux ordinaux « et 8 alors X est iso-
morphe & o + 8.

4. En déduire les propriétés suivantes de ’addition ordinale :

(a) associativité;
(b) non commutativité ;
(c) monotonie stricte a droite, i.e § < B =a+pB<a+p;
(d) régularité a gauche, i.e a + 5 =a+ B =p=4":
(e) non monotonie stricte & gauche et non régularité a droite ;
(f) a<ad =a+8<a +8.

Exercice 12 (Multiplication ordinale.) Rappelons la définition par récurrence transfinie du pro-

duit de deux ordinaux a et 3 :

0 sif=0
a.f =< (ay) +a sif=v+1
sup ({a.§: £ < B}) si [ est limite
Soient deux ordinaux « et 3, nous allons définir un bon ordre sur I'’ensemble a x § qui sera
isomorphe a l'ordinal a.f :

1. On munit « x 5 de l'ordre (anti-)lexicographique suivant
(’}/1,(51) < (")/2,52) ssi (51 < 52 ou ((51 = (52 & v < ")/2).

Montrer que cela définit un bon ordre sur o x .
2. Montrer que ce bon ordre est isomorphe & ’ordinal «a.(.
3. En déduire les propriétés suivantes de la multiplication ordinale :
(a) associativité;
(b) non commutativité ;
(c) sia>0et 8 <yalors a.f < a.v;
(d) sia < palors ay < fB.y;
(e) a(B+7)=af+ay;

Exercice 13 (Soustraction et division euclidienne sur les ordinaux.)
1. Montrer que ’on peut définir une opération © sur les ordinaux telle que pour tous les ordinaux
a, 8 on ait :
e aof=0sia<p

e f+(acf)=asia>p.
Donner un exemple d’ordinaux a >  tels qu’il n’existe pas d’ordinal v tel que v+ 8 = a.

2. Soient « et § deux ordinaux avec 3 # 0. Montrer qu'’il existe un unique couple d’ordinaux (v, )

tel que a = B.y+d et § < B.
(Indication : on pourra d’abord montrer qu’il existe 7’ tel que aw < 8.9 et que le plus petit tel

7' est successeur).



Exercice 14 (Puissance ordinale.) Rappelons la définition par récurrence transfinie de a@ > 0 a
la puissance 3 :

1 sif=0
o’ .« sif=v+1
sup ({af: &< ﬁ}) si 8 est limite

1. Vérifiez les propriétés suivantes pour a > 0, 3 et ~ trois ordinaux :

— sia>1et B >~alors & > a7,
— P =alft,

_ (aﬁ)’Y = af,

2. Montrer que si a et 8 sont dénombrables alors a est aussi dénombrable !

of =

3. Prouver qu'il existe un ordinal dénombrable ¢ tel que & = w®. Existe-t-il un ordinal tel que

§=¢v7

Exercice 15 (Développement de Cantor.) On souhaite ici démontrer que tout ordinal admet un
< développement en base w >, autrement dit que tout ordinal o non nul s’écrit de maniére unique

a=wn + ... +wn,,

avec sy, ..., q, des ordinaux tels que a; > ... > a;, et nq,...,n,, des entiers non nuls. On appelle ce
développement le développement de Cantor de c.

1. Montrer que pour tout ordinal o on a w® > a.

2. Montrer que pour tout ordinal a non nul il existe un unique couple (a1, n1) tel que
whln; <a<w(n;+1).

3. En déduire qu’il existe un unique 87 < w*! tel que a = w*nq + F1.
4. Montrer I'existence du développement de Cantor et son unicité.

5. Montrer que les ordinaux de la forme w® sont exactement les ordinaux 3 tels que pour tout
v < B onaity+ 8 =p.

6. En déduire le développement de Cantor de « + 8 connaissant le développement de Cantor de
« et celui de £.

B

1. en particulier, a” ne correspond PAS & I’ensemble des fonctions de 5 dans « : ¢a, c’est la puissance cardinale.



