
Amenability and dynamics – Exercise Sheet 1
Exercises 3, 5 and 8 to turn in on 01/03/22

Invariant means
Exercice 1. Let G be an amenable group, and let m be an invariant mean on G. Given a
subgroup H of G, we denote by [G : H] the index of H in G. Prove that for every subgroup
H, we have m(H) > 0 if and only if [G : H] < +∞, and in this case m(H) = 1

[G:H] .

Exercice 2. Let G be a group. A subgroup H ≤ G is called coamenable in G if the action of
G on G/H is amenable. Consider a pair of subgroups H ≤ K ≤ G.

1. Show that if H is coamenable in G, then so is K. (Note: in contrast, this does not
imply that H is co-amenable in K; see Exercise 11.)

2. Assume that H is coamenable in K and K is coamenable in G. Show that H is coa-
menable in G. Deduce that if G admits a subgroup H which is both coamenable and
amenable, then G is amenable.

Exercice 3 (To turn in on 01/03/22 ). Let G be an amenable group.

1. Prove that there exists a mean m ∈ M(G) which is right-invariant, that is m(Ag) =
m(A) for every A ⊂ G and g ∈ G.

2. Prove that there exists a meanm ∈M(G) which is bi-invariant, that ism(gAh) = m(A)
for every g, h ∈ G and A ⊂ G.

Equidecomposability and the Banach–Tarski paradox
The goal of this exercise is to construct a free subgroup of SO(3,R). This subgroup was used
in the lectures to prove the Banach-Tarski paradox.

Exercice 4. Let R,S ∈ SO(3,R) be the rotations given by:

R =

 1/3 −2
√

2/3 0
2
√

2/3 1/3 0
0 0 1

 and S =

1 0 0
0 1/3 −2

√
2/3

0 2
√

2/3 1/3


and let φ : F2 → SO(3,R) be the homomorphism defined by φ(a) = R,φ(b) = S, where a and
b are the generators of the free group F2. Let e1, e2, e3 denote the standard basis vectors of
R3.
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1. Show that if w ∈ F2 is a reduced word whose last letter (on the right) is a or a−1, then

φ(w) · e1 = 1
3k

(xe1 + y
√

2e2 + ze3)

with x, y, z ∈ Z, k ∈ N>0, and y not divisible by 3. In particular, φ(w) 6= 1 for all such
w. (Hint: Argue by induction on the length of w.)

2. Conclude that the homomorphism φ is injective.

Exercice 5 (To turn in on 01/03/22 ). Show that the two intervals [0, 1] and [0, 1) are
equidecomposable subsets of R with respect to the group of translations.

Wreath products
The next exercises require the following notions.

Definition (Wreath product). Let L,B be two groups, with identity elements 1L, 1B. Denote
by ⊕BL the group of all functions f : B → L of finite support, that is such that f(b) = 1L

for all but finitely many b ∈ B. The group operation on ⊕BL is given by pointwise product
(within the group L), namely if f1, f2 ∈ ⊕BL then f1f2(b) = f1(b)f2(b). The group B acts on
⊕BL by automorphisms by shifting functions, via the formula b · f(c) = f(b−1c). The wreath
product of L and B, denoted L oB, is defined as the semi-direct product

L oB = (⊕BL) oB

taken with respect to this action. Explicitly, an element of L oB is a pair (f, b) with f ∈ ⊕BL
and b ∈ B, and the group operation on L oB is given by

(f1, b1)(f2, b2) = (f1(b1 · f2), b1b2).

Definition (Lamplighter group). Denote C2 = {0, 1} the cyclic group of order 2. The group
G = C2 o Z is called the lamplighter group.

Comment. The terminology lamplighter comes from a suggestive interpretation which helps
thinking about that group. Imagine that Z is an infinite street, and at each point of it there is
a lamp, which can be on or off. A city worker (the lamplighter) moves around the street and
can switch lamps on and off. Initially all lamps are off and the lamplighter is at position 0.
At each step, assuming the lamplighter is at position n, she can chose between the following
two moves:

(M) Move from position n to a neighbouring position n± 1

(S) Switch the status (on/off) of the lamp at position n

An element g = (f, n) ∈ C2 o Z can be interpreted as the result of finitely many moves of
such type: the number n is the current position of the lamplighter, and the configuration
f : Z→ C2 indicates which lamps are on.

2



Exercice 6 (Finite generation of wreath products). 1. Let first G = C2 o Z be the lamp-
lighter group. Let h ∈ G be the element h = (f, 0), where f : Z → C2 is given by
f(0) = 1 and f(n) = 0 for n 6= 0. Let t = (0, 1) (the first cordinate of t denotes the
constant function Z → C2 whose value is equal to 0). Show that h and t generate G.
(Hint: given g = (f, n) ∈ G, observe that replacing g by gt±1 corresponds to a move
(M), while replacing g by gh corresponds to (S)).

2. Generalise to show that if L and B are finitely generated groups, then L o B is finitely
generated.

Exercice 7. Prove that L o B is amenable (respectively elementary amenable, respectively
solvable) if and only if L and B are both amenable (respectively elementary amenable, re-
spectively solvable).

In the following exercise, we say that a sequence (Fn)n of finite subsets of a group G is a
right Følner sequence if for every g ∈ G we have |Fng4Fn|

|Fn| → 0 as n→∞. Note that (Fn)n is
a right Følner sequence if and only (F−1

n )n is a left Følner sequence.

Exercice 8 (To turn in on 01/03/22 ). Let L and B be countable amenable groups, and set
G = L o B. Let (Fn)n and (Tn)n be right Følner sequences for L and B respectively. For
n,m ∈ N, set

Km,n = {(f, b) ∈ L oB : b ∈ Tn, f(Tn) ⊂ Fm, f(x) = 1L if x /∈ Tn}.

Prove that there exists an increasing sequence (mn)n such that (Kmn,n)n is a right Følner
sequence for G.

Exercice 9. Let G = C2 o Z, the lamplighter group. Consider the set E ⊂ G given by

E = {(f, n) : n ≥ 0 and f(x) = 0 if x < 0 or x > n}.

Let h, t ∈ G be the elements as in Exercise 6(1). Show that ht(E), t(E) are disjoint subsets
of E such that E = ht(E) t t(E). Does this contradict the existence of an invariant mean on
G?

Complementary exercises
Exercice 10 (Amenability and growth). Let G be a finitely generated group, and S a finite
symmetric (i.e., such that S = S−1) generating set of G. The word length `S(g) of g ∈ G
(with respect to S) is minimal n such that g can be written as g = s1 · · · sn, with si ∈ S. For
n ∈ N. Denote by BS(n) = {g ∈ G : `S(g) ≤ n}. The function

bG(n) = |BS(n)|

is called the growth of G (with respect to S). We will say that G has exponential growth if
there exists a constant λ > 1 such that bG,S(n) ≥ λn for every n large enough. Otherwise, we
say that G has subexponential growth.
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1. Let T be another finite symmetric generating set of G. Prove that there exists a con-
stants C > 0 such that C−1`S(g) ≤ `T (G) ≤ C`S(g) for every g ∈ G and bT (C−1n) ≤
bS(n) ≤ bT (Cn) for every n. Deduce that the property whether G has exponential
growth or not does not depend on the choice of S.

2. Check that the free group F2 on 2 generators has exponential growth.

3. Prove that the sequence bS(n)
1
n admits a limit 1 ≤ v < +∞, and that v = 1 if and only

if G has subexponential growth.

4. Assume that G has subexponential growth. Show that there exists an increasing se-
quence (kn) of integers such that (BS(kn))n is a Følner sequence for G. Deduce that
groups of subexponential growth are amenable.

5. Show that the lamplighter group G = C2 oZ has exponential growth. Deduce that there
exist amenable groups of exponential growth.

Exercice 11 (Coamenability does not pass to subgroups). The goal of this exercise is to give
a construction, due to N. Monod and S. Popa, of a group G together with two subgroups
H < K < G such that H is coamenable in G but not in K (compare with Exercise 2).

Let L be an arbitrary group, and set G = L o Z. Let H = {(f, 0) : f(m) = 1L for m > 0}
and K = {(f, 0) : f(m) = 1L for m > 1}.

1. Observe that H ≤ K ≤ G.

2. For n ∈ N+, let Fn ⊂ G/H be the collection of cosets Fn = {(1L, j)H : n ≤ j ≤ 2n}.
Prove that (Fn) is a Følner sequence for the action of G on G/H. Deduce that H is
coamenable in H (see Exercise 2).

3. Prove that H is coamenable in K if and only if the group L is amenable. Deduce that
there exists a group G with subgroups H < K < G such that H is coamenable in G but
not in K

Exercice 12 (An elementary amenable, non virtually solvable group). Denote Sym(Z) the
group of all permutations of Z, and Symf (Z) its subgroup of finitely supported permutations,
that is those permutations σ such that the set {n : σ(n) 6= n} is finite. Let G ⊂ Sym(Z) be
the set of all permutations g ∈ Sym(Z) with the property that there exists N > 0 and α ∈ Z
such that g(n) = n+ α for every n /∈ [−N,N ].

1. Check that G is a subgroup of Sym(Z).

2. Prove that there exists a surjective homomorphism τ : G → Z such that ker τ =
Symf (Z).

3. Prove that G is elementary amenable.

4. Prove that G is not virtually solvable, that is, it does not admit a solvable subgroup of
finite index. (Hint: prove first that the subgroup of G consisting of finitely supported
alternating permutations is not virtually solvable).

5. Prove that G is finitely generated.
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