Amenability and dynamics - Exercise Sheet 3

Exercice 1. Let (X, μ) and (Y, ν) be two standard probability spaces and denote by MALG (X) and $\operatorname{MALG}(Y)$ the corresponding measure algebras. Let $\phi: \operatorname{MALG}(X) \rightarrow \operatorname{MALG}(Y)$ be an isometric isomorphism (i.e., ϕ preserves the Boolean operations and the measure). Show that there exists a measure-preserving isomorphism $f: X \rightarrow Y$ such that for every $A \subseteq X$, $\phi([A])=[f(A)]$. Here $[A] \in \operatorname{MALG}(X)$ is the equivalence class of the set A under the eqiuvalence relation \sim given by

$$
A \sim B \Longleftrightarrow \mu(A \triangle B)=0
$$

Exercice 2. A measure-preserving action $\Gamma \curvearrowright(X, \mu)$ is said to have almost invariant sets if there exists a sequence $A_{1}, A_{2}, \ldots \subseteq X$ with $\mu\left(A_{n}\right)=1 / 2$ for all n such that for all $\gamma \in \Gamma$, $\mu\left(\gamma A_{n} \triangle A_{n}\right) \rightarrow 0$. Prove that if Γ is amenable, then all of its free actions admit almost invariant sets.

Exercice 3. Let E be a countable equivalence relation on the standard probability space (X, μ). Define the σ-finite measures M_{l} and M_{r} on E by

$$
\begin{aligned}
& M_{l}(A)=\int_{X}\left|A_{x}\right| \mathrm{d} \mu(x) \\
& M_{r}(A)=\int_{X}\left|A^{x}\right| \mathrm{d} \mu(x)
\end{aligned}
$$

where $A \subseteq E$. Here $A_{x}=\{y:(x, y) \in A\}$ and $A^{x}=\{(y:(y, x) \in A\}$. Show that E preserves μ iff $M_{l}=M_{r}$.

A measure-preserving equivalence relation E on the standard probability space (X, μ) is called amenable if there exists a sequence of Borel functions $\lambda^{n}: E \rightarrow \mathbb{R}, n \in \mathbb{N}$ such that

- $\lambda^{n} \geq 0$;
- For a.e. $x \in X$

$$
\left\|\lambda_{x}^{n}\right\|_{1}:=\sum_{y E x}\left|\lambda^{n}(x, y)\right|=1
$$

- For M_{l}-almost all $(x, y) \in E$, we have that $\lim _{n \rightarrow \infty}\left\|\lambda_{x}^{n}-\lambda_{y}^{n}\right\|_{1}=0$.

Compare this with the Reiter condition for groups.
Exercice 4. 1. Show that every hyperfinite equivalence relation is amenable.
2. Show directly that if $\Gamma \curvearrowright^{\alpha}(X, \mu)$ is a measure-preserving action and Γ is an amenable group, then the orbit equivalence relation E_{α} is amenable.
The Connes-Feldman-Weiss theorem states that every amenable equivalence relation is hyperfinite a.e.
Exercice 5. Let $\Gamma \curvearrowright^{\alpha}(X, \mu)$ be a free, measure-preserving action. Show that if the orbit equivalence relation is amenable, then Γ is amenable. In particular, the orbit equivalence relation of the Bernoulli shift $\mathbb{F}_{2} \curvearrowright 2^{\mathbb{F}_{2}}$ is not amenable.

