Feuille d'exercices 3

Morphismes et quotients

Exercice 1. Soient $\varphi: G \to H$ et $\psi: H \to K$ deux morphismes de groupes. Alors la composition $\psi \circ \varphi: G \to K$ est encore un morphisme.

Exercice 2. Montrer qu'un morphisme injectif $\varphi \colon G \to H$ est la même chose qu'un isomorphisme entre G et un sous-groupe de H.

Un tel morphisme met en évidence une copie isomorphe de G dans H: on dit qu'il *plonge* G dans H. Ainsi, un morphisme injectif s'appelle aussi un *plongement*.

Exercice 3. Soit $\pi: G \to H$ un morphisme surjectif et soit $S \subseteq G$ tel que $\langle S \rangle = G$. Montrer que $\langle \pi(S) \rangle = H$.

Exercice 4. Montrer que:

- (a) $Z(G) \subseteq G$.
- (b) Plus généralement, si $H \le Z(G)$ alors $H \le G$.

Exercice 5. Soit *G* un groupe. Alors tout sous-groupe d'indice 2 de *G* est distingué.

Exercice 6. Soit G un groupe et $H \le G$ un sous-groupe. On suppose que H est d'ordre n, et que c'est l'unique sous-groupe de G d'ordre n. Montrer que H est distingué dans G.

Exercice 7. Soient K et H deux sous-groupes distingués de G, et supposons que $K \cap H = \{e\}$. Montrer que kh = hk pour tout $k \in K$ et $k \in H$. Est-ce la même chose que dire que KH = HK?

Exercice 8. Montrer que $K \subseteq H \subseteq G$ n'implique pas nécessairement $K \subseteq G$. *Indication*: penser au groupe diédral D_8 et à ses sous-groupes.

Exercice 9 (Le groupe quaternionique). Dans $G = GL(2, \mathbb{C})$, posons :

$$I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Pour ne pas confondre avec I, notons aussi la matrice identité I_2 par 1.

- (a) Calculer leurs carrés, ainsi que les produits IJ, JK, KI.
- (b) En déduire les produit JI, KJ, IK.
- (c) Déduire que

$$\langle I, J \rangle = \{\pm 1, \pm I \pm J, \pm K\}.$$

Ce groupe s'appelle le groupe quaternionique, noté Q_8 .

(d) Dresser la liste des sous-groupes de *Q*₈. Pour chacun, déterminer s'il est distingué ou non.

Exercice 10. Soit (G, +) un groupe abélien.

- (a) Montrer que l'application $\pi: G \times G \to G$, définie par $\pi(x, y) = x + y$ est un morphisme de groupes.
- (b) Dans le cas $G = \mathbf{R}$, décrire les fibres de π géométriquement.

Exercice 11. Soit *F* un corps.

(a) Considérons le groupe $G \le GL(2, F)$ défini par

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in F, ac \neq 0 \right\}.$$

Démontrer que l'application $\phi: G \to F^{\times}$ définie par

$$\phi(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = a$$

est un morphisme surjectif. Calculer son noyau.

(b) Soit $G \le GL(2, F)$ défini par

$$G = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in F \right\}.$$

Montrer que *G* est isomorphe au groupe additif de *F*.

Exercice 12. Montrer que si *G* est abélien alors tout sous-groupe de *G* est distingué.

Donner un exemple d'un groupe non-abélien dont tous les sous-groupes sont distingués.

Exercice 13. Soit $G = GL(2, \mathbf{Q})$ et soient

$$H = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} : a \in \mathbf{Z} \right\}, \quad g = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

Montrer que $gHg^{-1} \subseteq H$ mais que g ne normalise pas H.

Exercice 14. Trouver tous les sous-groupes distingués de D_8 et le type d'isomorphisme du quotient de D_8 par chacun d'entre eux.

Exercice 15. Soit F un corps. Montrer que $SL(n,F) \subseteq GL(n,F)$ et calculer le type d'isomorphisme du quotient.

Exercice 16. Soit G un groupe. Montrer que si G/Z(G) est cyclique, alors G est abélien.

Exercice 17. Montrer que $(\mathbf{Q}, +)$ n'a pas de sous-groupes propres d'indice fini.

Exercice 18. Montrer que S_4 n'a pas de sous-groupe isomorphe à Q_8 .

Exercice 19. Soit G un groupe. Soit Aut(G) l'ensemble des automorphismes de G, muni de la loi de composition d'applications. Alors Aut(G) est un groupe, nommé le *groupe d'automorphismes* de G.

On pourrait le montrer ou bien directement, ou bien en montrant que $Aut(G) \leq S_G$.

Exercice 20. Soit G un groupe et $x, y \in G$. On appelle xyx^{-1} le *conjugué* de y par x. Pour $x \in G$ fixé, définissons $\varphi_x \colon G \to G$ par

$$\varphi_x(y) = xyx^{-1}.$$

Cette application est la *conjugaison par x*.

- (a) Montrer que pour tout $x \in G$, l'application $\varphi_x \colon G \to G$ est un morphisme.
- (b) Montrer que pour tout $x, y \in G$, on a $\varphi_x \circ \varphi_y = \varphi_{xy}$.
- (c) Montrer que $\varphi_e = \mathrm{id}_G$.

(d) En déduire que $\varphi_x \in \text{Aut}(G)$ pour tout $x \in G$.

Exercice 21. Soit *G* un groupe, $N \le G$. Soient $S \subseteq G$, $T \subseteq N$ tels que $G = \langle S \rangle$, $N = \langle T \rangle$.

- (a) Montrer que si pour tout $s \in S$, $sTs^{-1} \subseteq N$ et $s^{-1}Ts \subseteq N$, alors $N \subseteq G$.
- (b) Si *N* est fini il suffit de demander que $sTs^{-1} \subseteq N$ pour tout $s \in S$.

Exercice 22. Grâce à l'Exercice 20, on peut définir une application

$$\Phi: G \to \operatorname{Aut}(G), \qquad \Phi(x) = \varphi_x.$$

- (a) Montrer que Φ est un morphisme de groupes.
- (b) Montrer que $\ker \Phi = Z(G)$.
- (c) Soit $\psi \in \text{Aut}(G)$ et $x \in G$. Montrer que $\psi \circ \varphi_x \circ \psi^{-1} = \varphi_{\psi(x)}$. En déduire que

$$\operatorname{img}\Phi \subseteq \operatorname{Aut}(G)$$
.

Remarque. Un automorphisme de G qui peut s'écrire sous la forme φ_x s'appelle un automorphisme *intérieur*. L'ensemble des automorphismes intérieurs est notée Inn(G):

$$\operatorname{Inn}(G) = \{\varphi_x : x \in G\} = \operatorname{img}\Phi.$$

Nous avons montré que $Inn(G) \le Aut(G)$. Le groupe quotient Aut(G)/Inn(G) est noté Out(G), et ses membres s'appellent des automorphismes *extérieurs* (bien que ce ne soient pas des automorphismes).

Exercice 23. Continuant l'Exercice 22, montrer que G est abélien si et seulement si Φ est le morphisme trivial.

Exercice 24. Soit *G* un groupe finitel que $x^2 = e$ pour tout $x \in G$.

- (a) Rappeler pourquoi *G* est abélien.
- (b) Montrer que |G|, l'ordre de G, est une puissance de 2. *Indication* : pour $x \in G \setminus \{e\}$, considérer le quotient $G/\langle x \rangle$.

Exercice 25. Soit *G* un groupe et $x, y \in G$. On appelle

$$[x, y] = xyx^{-1}y^{-1}$$

le commutateur de x et y.

Montrer que [x, y] = e si et seulement si xy = yx (d'où son nom).

Exercice 26. Soit G un groupe. Le sous-groupe engendré par tous les commutateurs, noté G', s'appelle le *groupe dérivé* de G:

$$G' = \langle [x, y] : x, y \in G \rangle.$$

- (a) Montrer que $G' \subseteq G$.
- (b) Montrer que G/G' est abélien.
- (c) Montrer que si H est un groupe abélien quelconque et $\varphi \colon G \to H$ un morphisme, alors $G' \le \ker \varphi$ et il existe un unique morphisme $\psi \colon G/G' \to H$ tel que $\psi \circ \pi_{G'} = \varphi$. Autrement dit, il existe un unique ψ qui rend le diagramme suivant commutatif :

$$G \xrightarrow{\pi_{G'}} G/G'$$

$$\varphi \xrightarrow{\downarrow \psi} H$$

Exercice 27. Nous proposons de calculer le groupe $\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}, +)$, pour $n \ge 2$. Pour cela, nous allons utiliser la structure d'anneau $(\mathbf{Z}/n\mathbf{Z}, +, \cdot)$. Un membre de $\mathbf{Z}/n\mathbf{Z}$ sera noté $\overline{k} = k + n\mathbf{Z}$, avec $k \in \mathbf{Z}$. Nous avons déjà (ou nous le montrerons en amont) que $\mathbf{Z}/n\mathbf{Z}$ admet deux opérations, + et \cdot , définies par

$$\overline{k} + \overline{\ell} = \overline{k + \ell}, \qquad \overline{k} \cdot \overline{\ell} = \overline{k \cdot \ell}.$$

En particulier, ces deux opération sont bien définies, et + est simplement la loi du groupe quotient $\mathbf{Z}/n\mathbf{Z}$

- (a) Montrer que la multiplication sur $\mathbb{Z}/n\mathbb{Z}$ est associative, avec neutre $\overline{1}$.
- (b) Un élément $x \in \mathbf{Z}/n\mathbf{Z}$ est dit *inversible* s'il existe $y \in \mathbf{Z}/n\mathbf{Z}$ tel que $xy = yx = \overline{1}$. L'ensemble des membres inversibles de $\mathbf{Z}/n\mathbf{Z}$ sera noté $(\mathbf{Z}/n\mathbf{Z})^{\times}$. Montrer que $((\mathbf{Z}/n\mathbf{Z})^{\times}, \cdot)$ est un groupe.
- (c) Soit $\varphi \in \text{Aut}(\mathbb{Z}/n\mathbb{Z})$, et posons $\widehat{\varphi} = \varphi(\overline{1}) \in \mathbb{Z}/n\mathbb{Z}$. Montrer que $\varphi(x) = x\widehat{\varphi}$ tout $x \in \mathbb{Z}/n\mathbb{Z}$.
- (d) Montrer que si $\varphi, \psi \in \text{Aut}(\mathbf{Z}/n\mathbf{Z})$, alors $\widehat{\varphi \circ \psi} = \widehat{\varphi}\widehat{\psi}$, et que $\widehat{\mathrm{id}} = \overline{1}$.
- (e) En déduire que pour tout $\varphi \in \operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}, +)$, $\widehat{\varphi}$ est inversible, et que l'application $\varphi \mapsto \widehat{\varphi}$ est un morphisme $\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}, +) \to ((\mathbf{Z}/n\mathbf{Z})^{\times}, \cdot)$.
- (f) Montrer que c'est un isomorphisme, d'où notre conclusion :

$$\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}, +) \cong ((\mathbf{Z}/n\mathbf{Z})^{\times}, \cdot).$$

Exercice 28. Utilisant les mêmes idée que dans Exercice 27, montrer que $\operatorname{Aut}(\mathbf{Z}, +) \cong (\mathbf{Z}^{\times}, \cdot) = \{\{\pm 1\}, \cdot\}$.