Feuille d'exercices 5

Sylow, produits semi-directs, classification

Dans les quatre premiers exercices nous fixons deux nombres premiers p < q, et nous cherchons à classifier les groupes d'ordre pq.

p désigne un nombre premier dans toute la fiche.

Exercice 1. Soit G un groupe d'ordre pq.

- (a) Montrer qu'il existe $x, y \in G$ tels que ord(x) = p et ord(y) = q.
- (b) En déduire que si G est abélien, alors il est isomorphe au groupe cyclique C_{pq} .

Exercice 2. Soit *G* un groupe d'ordre *pq*.

- (a) Montrer que G admet un unique q-Sylow, notons-le par H. Montrer que $H \cong C_q$ et $H \subseteq G$.
- (b) Soit *K* un *p*-Sylow de *G*. Montrer $K \simeq C_p$.
- (c) Montrer que *G* est un produit semi-direct de *H* et *K*.
- (d) Soit N_p le nombre des p-Sylows distincts de G. Montrer que N_p vaut 1 ou q.
- (e) En déduire que si $p \nmid q 1$, alors $N_p = 1$, $K \subseteq G$, et G est un produit direct de H et K.
- (f) En déduire que si $p \nmid q 1$, alors $G \simeq C_{pq}$.

Exercice 3. Soit $\alpha: C_p \to \operatorname{Aut}(C_q)$ un morphisme.

- (a) Rappeler la définition du produit semi-direct $G = C_q \rtimes_{\alpha} C_p$: quels sont ses membres? Sa loi?
- (b) Quel est l'ordre de G? Sous quelles conditions (sur les données p, q et α) G est-il abélien?
- (c) Montrer que le groupe ${\rm Aut}(C_q)$ est isomorphe à C_{q-1} (regarder les fiches précédentes).
- (d) Montrer que, si $p \mid q-1$, alors il est possible de choisir α de sorte que G soit non abélien.
- (e) Déduire que deux produits semi-directs $C_q \rtimes_{\alpha} C_p$ et $C_q \rtimes_{\beta} C_p$ non abéliens sont forcément isomorphes.

Exercice 4. Déduire des exercices précédents le Théorème de classification suivant :

Soit p < q deux nombres premiers.

- Si $p \nmid q-1$, alors à isomorphisme près il existe un unique groupe d'ordre pq, à savoir, le groupe cyclique C_{pq} .
- Si $p \mid q-1$ lors à isomorphisme près il existe exactement deux groupes d'ordre pq, à savoir, le groupe cyclique C_{pq} et l'unique produit semi-direct non abélien $C_q \times C_p$.
- **Exercice 5.** (a) Soit G un groupe d'ordre p^n . Montrer que pour tout k, $0 \le k \le n$, G admet un sousgroupe distingué N_k d'ordre p^k .
 - (b) En déduire que si G est un groupe fini et $p^k \mid |G|$, alors G admet un sous-groupe d'ordre p^k .

Exercice 6. Dans cet exercice on va calculer le groupe $Aut(D_8)$.

(a) Soient r et s les générateurs usuels de D_8 . Montrer que $|\operatorname{Aut}(D_8) \cdot r| \le 2$ et que $|\operatorname{Aut}(D_8) \cdot s| \le 4$. En déduire que $|\operatorname{Aut}(D_8)| \le 8$.

(b) En utilisant le fait que $D_8 \triangleleft D_{16}$, montrer que $\operatorname{Aut}(D_8) \cong D_8$.

Exercice 7. Montrer que tout p-Sylow de D_{2n} est distingué et cyclique pour tout p premier impair.

Exercice 8. Dans cet exercice on va étudier le groupe $SL(2, \mathbf{F}_3)$, où $\mathbf{F}_3 = \mathbf{Z}/3\mathbf{Z}$ est le corps à 3 éléments.

- (a) Rappeler quel est l'ordre de $SL(2, \mathbf{F}_3)$.
- (b) Trouver tous les 3-Sylows de $SL(2, \mathbf{F}_3)$.
- (c) Montrer que le groupe engendré par $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ est l'unique 2-Sylow de SL(2, \mathbf{F}_3) et qu'il est isomorphe à Q_8 .
- (d) Calculer le nombre de sous-espaces de dimension 1 de \mathbf{F}_n^n .
- (e) Montrer que

$$Z(\mathrm{SL}(2,\mathbf{F}_3)) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

(f) En considérant l'action de $SL(2, \mathbf{F}_3)$ sur l'ensemble des sous-espaces de \mathbf{F}_3^2 de dimension 1, montrer que $SL(2, \mathbf{F}_3)/Z(SL(2, \mathbf{F}_3)) \cong A_4$.

Exercice 9. Montrer que *G* n'est pas simple si l'ordre de *G* est :

- (a) $6545 = 5 \times 7 \times 11 \times 17$;
- (b) $1365 = 3 \times 5 \times 7 \times 13$:
- (c) $2907 = 3^2 \times 17 \times 19$.

Exercice 10. Soit G un groupe d'ordre 105. Montrer que si un 3-Sylow de G est distingué, alors G est abélien.

Exercice 11. Montrer que si A et B sont deux sous-groupes distingués de G tels que G/A et G/B sont abéliens, alors $G/A \cap B$ est abélien.

Exercice 12. Soit K un groupe cyclique, soit H un groupe arbitraire et soient ϕ_1, ϕ_2 deux morphismes $K \to \operatorname{Aut}(H)$. Si K est infini, supposons en plus que ϕ_1 et ϕ_2 sont injectifs. Supposons que $\phi_1(K)$ et $\phi_2(K)$ sont conjugués dans $\operatorname{Aut}(H)$: i.e., il existe $\sigma \in \operatorname{Aut}(H)$ tel que $\sigma \phi_1(K) \sigma^{-1} = \phi_2(K)$.

- (a) Montrer qu'il existe $a \in \mathbb{Z}$ tel que $\sigma \phi_1(k) \sigma^{-1} = \phi_2(k)^a$ pour tout $k \in K$.
- (b) Montrer que l'application $\psi: H \rtimes_{\phi_1} K \to H \rtimes_{\phi_2} K$ définie par

$$\psi((h, k)) = (\sigma(h), k^a)$$

est un morphisme.

(c) En construisant un inverse montrer que ψ est bijectif et conclure que les groupes $H \rtimes_{\phi_1} K$ et $H \rtimes_{\phi_2} K$ sont isomorphes.

Exercice 13 (Classification des groupes d'ordre 30). Soit G un groupe d'ordre 30. On note par n_p le nombre de p-Sylows de G.

- (a) Montrer que $n_3 = 1$ ou $n_5 = 1$. (*Indication*: Sinon $n_3 = 10$ et $n_5 = 6$ et on peut arriver à une contradiction en comptant les éléments d'ordre 3 et d'ordre 5.)
- (b) En déduire que G admet un sous-groupe H d'ordre 15 qui est distingué et cyclique.
- (c) Montrer que G admet un sous-groupe K d'ordre 2 et en déduire que $G \cong H \rtimes_{\phi} K$.
- (d) Montrer que Aut $(C_{15}) \cong (\mathbf{Z}/15\mathbf{Z})^{\times} \cong C_4 \times C_2$.
- (e) En considérant tous les morphismes $C_2 \to \operatorname{Aut}(\mathbf{Z}/15\mathbf{Z})$, montrer que G est isomorphe à l'un des quatre groupes suivants : C_{30} , $C_3 \times D_{10}$, $C_5 \times D_6$, D_{30} .

(f) Montrer que dans la liste ci-dessus tous les groupes sont distincts.

Exercice 14. (a) Construire un groupe non abélien d'ordre 75.

(b) Classifier tous les groupes d'ordre 75 (il y en a 3).

Exercice 15. Classifier tous les groupes d'ordre 28 (il y en a 4).

Exercice 16 (Preuve alternative du théorème de Sylow). Dans cet exercice on va démontrer que tout groupe fini admet des sous-groupes de Sylow.

- (a) Montrer que si $H \le G$ et si P est un p-Sylow de G, alors il existe $x \in G$ tel que $xPx^{-1} \cap H$ est un p-Sylow de H. (*Indication* : Considérer l'action $H \curvearrowright G/P$.)
- (b) Soit

$$P = \{(a_{ij}) \in GL(n, \mathbb{F}_p) : a_{ii} = 1 \text{ pour tout } i \text{ et } a_{ij} = 0 \text{ pour tous } i > j\}$$

le sous-groupe de matrices triangulaires supérieures strictes. Montrer que P est un p-Sylow de $GL(n, \mathbb{F}_p)$.

- (c) Montrer que tout groupe fini G se plonge dans $GL(n, \mathbf{F}_p)$ pour un n bien choisi.
- (d) Conclure que tout groupe fini admet un *p*-Sylow.

Exercice 17. Soit G un groupe. La *série centrale ascendante* de G est définie par récurrence comme suit : $Z_0(G) = \{e\}$, $Z_{i+1}(G) = \pi_i^{-1}(Z(G/Z_i(G)))$ où $\pi_i \colon G \to G/Z_i(G)$ est le morphisme quotient. Le groupe G est appelé *nilpotent* s'il existe n tel que $G = Z_n(G)$. Par exemple tout groupe abélien G est nilpotent car $G = Z_1(G)$.

- (a) Vérifier que $Z_0(G) \le Z_1(G) \le \cdots$ est une suite ascendante de sous-groupes distingués de G.
- (b) Montrer que tout *p*-groupe fini est nilpotent.
- (c) Montrer que le groupe de Heisenberg

$$H = \begin{pmatrix} 1 & \mathbf{R} & \mathbf{R} \\ 0 & 1 & \mathbf{R} \\ 0 & 0 & 1 \end{pmatrix}$$

est nilpotent.

- (d) Montrer que si G_1 et G_2 sont nilpotents, alors $G_1 \times G_2$ l'est aussi.
- (e) Montrer qu'un groupe fini est nilpotent ssi il est le produit direct de ses sous-groupes de Sylow, i.e., tous ses sous-groupes de Sylow sont distingués. (*Indication* : Pour le sens difficile, on peut commencer par démontrer que si H < G, alors $H < N_G(H)$.)
- (f) Montrer qu'un groupe fini G est nilpotent ssi pour tous $x, y \in G$ avec pgcd(ord x, ord y) = 1, on a que xy = yx.
- (g) Montrer que D_{2n} est nilpotent ssi n est une puissance de 2.