Amenability and dynamics – Exercise Sheet 3

Exercice 1. Let (X, μ) and (Y, ν) be two standard probability spaces and denote by MALG(X) and MALG(Y) the corresponding measure algebras. Let $\phi: MALG(X) \to MALG(Y)$ be an isometric isomorphism (i.e., ϕ preserves the Boolean operations and the measure). Show that there exists a measure-preserving isomorphism $f: X \to Y$ such that for every $A \subseteq X$, $\phi([A]) = [f(A)]$. Here $[A] \in MALG(X)$ is the equivalence class of the set A under the equivalence relation \sim given by

$$A \sim B \iff \mu(A \triangle B) = 0.$$

Exercice 2. A measure-preserving action $\Gamma \curvearrowright (X, \mu)$ is said to have almost invariant sets if there exists a sequence $A_1, A_2, \ldots \subseteq X$ with $\mu(A_n) = 1/2$ for all n such that for all $\gamma \in \Gamma$, $\mu(\gamma A_n \bigtriangleup A_n) \to 0$. Prove that if Γ is amenable, then all of its free actions admit almost invariant sets.

Exercice 3. Let *E* be a countable equivalence relation on the standard probability space (X, μ) . Define the σ -finite measures M_l and M_r on *E* by

$$M_l(A) = \int_X |A_x| \,\mathrm{d}\mu(x)$$
$$M_r(A) = \int_X |A^x| \,\mathrm{d}\mu(x),$$

where $A \subseteq E$. Here $A_x = \{y : (x, y) \in A\}$ and $A^x = \{(y : (y, x) \in A\}$. Show that E preserves μ iff $M_l = M_r$.

A measure-preserving equivalence relation E on the standard probability space (X, μ) is called *amenable* if there exists a sequence of Borel functions $\lambda^n \colon E \to \mathbb{R}, n \in \mathbb{N}$ such that

- $\lambda^n \ge 0;$
- For a.e. $x \in X$

$$\|\lambda_x^n\|_1 \coloneqq \sum_{y E x} |\lambda^n(x, y)| = 1;$$

• For M_l -almost all $(x, y) \in E$, we have that $\lim_{n \to \infty} \|\lambda_x^n - \lambda_y^n\|_1 = 0$.

Compare this with the Reiter condition for groups.

Exercice 4. 1. Show that every hyperfinite equivalence relation is amenable.

2. Show directly that if $\Gamma \curvearrowright^{\alpha} (X, \mu)$ is a measure-preserving action and Γ is an amenable group, then the orbit equivalence relation E_{α} is amenable.

The Connes–Feldman–Weiss theorem states that every amenable equivalence relation is hyperfinite a.e.

Exercice 5. Let $\Gamma \curvearrowright^{\alpha} (X, \mu)$ be a *free*, measure-preserving action. Show that if the orbit equivalence relation is amenable, then Γ is amenable. In particular, the orbit equivalence relation of the Bernoulli shift $\mathbb{F}_2 \curvearrowright 2^{\mathbb{F}_2}$ is not amenable.