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ABSTRACT. Generalizing a result of Furstenberg, we show that for every infinite
discrete group G, the Bernoulli flow 2€ is disjoint from every minimal G-flow.
From this, we deduce that the algebra generated by the minimal functions 2(G) is
a proper subalgebra of £*(G) and that the enveloping semigroup of the universal
minimal flow M(G) is a proper quotient of the universal enveloping semigroup
BG. When G is countable, we also prove that for any metrizable, minimal G-flow,
there exists a free, minimal flow disjoint from it and that there exist continuum
many mutually disjoint minimal, free, metrizable G-flows. Finally, improving a
result of Frisch, Tamuz, and Vahidi Ferdowsi and answering a question of theirs,
we show that if G is a countable icc group, then it admits a free, minimal, proxi-

mal flow.
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Let G be an infinite discrete group, whose identity element we denote by either
eg or just e. A G-flow (or a G-dynamical system) is a compact Hausdorff space X
equipped with an action of G by homeomorphisms. We will often denote the fact
that G acts on X by G ~ X. A subflow of X is a closed, G-invariant subset. A
G-flow X is called topologically transitive if for any two non-empty open subsets
UV C X thereisa g € G with gUNV # @. When X is metrizable this is
equivalent to the requirement that there is a transitive point; i.e. a point x € X
whose orbit Gx is dense. By Baire’s category theorem in a metric topologically

Date: January 2019.

2010 Mathematics Subject Classification. Primary 37Bos; Secondary 37B10, 54H20.

Key words and phrases. disjointness, minimal flows, Bernoulli flow, proximal flows, strongly irre-

ducible subshifts.



2 ELI GLASNER, TODOR TSANKOV, BENJAMIN WEISS, AND ANDY ZUCKER

transitive flow the set of transitive points is a dense G; subset of X. The flow X is
called minimal if every orbit is dense or, equivalently, if X has no proper subflows.

A central object in symbolic dynamics that one can construct for every discrete
group G is the Bernoulli flow 26 := {0,1}C; the action of G is given by (g -z)(h) =
z(hg). Sometimes one also considers more general finite alphabets instead of
2 = {0,1}. The Bernoulli flow is often called the Bernoulli shift and its subflows
are called subshifts or sometimes, flows of finite type.

The fundamental concept of disjointness of two dynamical systems, which is
central to this paper, was introduced by Furstenberg in his seminal work [F2].
Two G-flows X and Y are called disjoint (denoted by X L Y) if the only subflow
of X x Y that projects onto X and Y is X x Y itself. For X and Y to be disjoint,
at least one of them has to be minimal and if both of them are minimal, they are
disjoint iff X x Y is minimal.

In [F2], Furstenberg showed, among many other beautiful results, that for the
group of integers Z, the Bernoulli flow 27 is disjoint from every minimal flow and
then applied this to prove his famous Diophantine theorem: if ¥ is a non-lacunary
semigroup of integers and « is an irrational, then X« is dense in the circle R/Z.
The recent paper [HSY] characterizes the topologically transitive Z-flows which
are disjoint from all minimal flows.

Furstenberg also studied the smallest class of subshifts which contains all min-
imal subshifts and is closed under taking products, subflows and factors. Using
the disjointness result mentioned above, he proved that this class does not contain
the Bernoulli flow [F2, Theorem IIL.5] and conjectured [F2, p. 41] that a similar
result should hold if one starts with all minimal flows rather than the minimal
subshifts. This was confirmed in [GW1] for G = Z and in this paper, we prove it
for all discrete groups.

A more compact way to state that the Bernoulli flow 2© is not a factor of a
subflow of a product of minimal flows is to say that the closed algebra 2(G) C
(*(G) generated by the minimal functions is a proper subalgebra of (*(G). We
explain this equivalence in Section 9.

We can state our main theorem as follows.

Theorem 1.1. Let G be an infinite discrete group. Then the following hold:

(i) The Bernoulli flow 2 is disjoint from every minimal G-flow.

(ii) A(G) # £°(G).

When G is countable, Theorem 1.1, together with some techniques from the
theory of subshifts and Baire category methods, allows us to produce a multi-
tude of disjoint minimal flows for every group G. While for specific groups, it
is often not difficult to produce disjoint flows (for example, distal flows are al-
ways disjoint from proximal flows, and for the group of integers the collection of
circle rotations provides a continuum of pairwise disjoint minimal flows), it had
remained elusive to do this for all groups.

Recall that a flow G ~ X is called essentially free if for every g € G, the closed
set {x € X : ¢-x = x} has empty interior. When G is countable and the flow is
minimal, one can use the Baire category theorem to show that this is equivalent to
the existence of a free point (that is, a point x € X such that themap G > g+— g-x
is injective), in fact, a dense G; set of free points. A G-flow is called free if every
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point is free. For example, the Bernoulli flow 2C is essentially free but it is not
free.

Theorem 1.2. Let G be a countable, infinite group. Then the following hold:

(i) For every minimal, metrizable G-flow X, there exists a minimal, metrizable, and
free G-flow Y such that X 1 Y.

(ii) There exist continuum many mutually disjoint, free, metrizable, minimal G-
flows.

Note that the condition that X be metrizable is essential in item (i) above. The
universal minimal flow M(G) (which is never metrizable for infinite, discrete
G) is not disjoint from any minimal flow. In particular, this shows that if T is
a topological group for which M(T) is metrizable (and there is an abundance
of those, see, for example, [GW2] or [P2]), then there is no hope for a result
analogous to Theorem 1.2 to hold. However, the analogue of Corollary 1.4 below
is known to be true for some such groups (see [BZ]).

We apply Theorem 1.2 to characterize the underlying space of the universal
minimal flow M(G) whenever G is a countable, infinite group, generalizing re-
sults of [BB] and [T]. The definition of the Gleason cover “Gl” appears at the end
of Section 6.

Corollary 1.3. Let G be a countable, infinite group. Then M(G) = G1(2°).

Another way to say that some dynamic behaviors cannot be captured by the
minimal flows uses the theory of the enveloping semigroup. For every topologi-
cal group, there is a universal enveloping semigroup; if G is discrete, this is just
BG, the Stone—Cech compactification of G. Every topological group T also admits
a universal minimal flow M(T), a minimal flow that maps onto every other mini-
mal T-flow; for a discrete G, one can take, for example, any minimal subflow of
BG. Then one can ask whether the canonical map from the universal enveloping
semigroup to the enveloping semigroup of M(G) (see Section 9 for the defini-
tion) is an isomorphism. Often attributed to Ellis and sometimes called the “Ellis
problem”, this question appears in Auslander ([A], p. 120) and de Vries ([dV],
p- 391), and a negative answer was conjectured by Pestov ([P1], p. 4163) for all
non-precompact topological groups. For discrete groups, this question is equiva-
lent to the question whether 2(G) coincides with ¢*°(G) (see Section 9), and thus
in the second item of Theorem 1.1 we confirm the conjecture in this case.

Corollary 1.4. Let G be an infinite discrete group and let M(G) be its universal minimal
flow. Then the canonical map from BG to the enveloping semigroup of M(G) is not an
isomorphism.

Next we discuss briefly our strategy to prove Theorem 1.1. First we reduce
Theorem 1.1 to the existence of an essentially free, minimal flow with certain com-
binatorial properties (that we call the separated covering property, SCP in short).
Then for most of the paper, we assume that G is countable and depending on
its algebraic structure, we use different ideas to produce this flow. Recall that a
group G is maximally almost periodic (maxap) if it admits an injective homomor-
phism to a compact group; G is icc if every element of G other than eg has an
infinite conjugacy class. We show that, up to taking a quotient by a finite normal
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subgroup, every group either admits an infinite maxap normal subgroup or is
icc. In the first case, we use the equicontinuous action of the maxap subgroup
to produce a free, minimal G-flow with the SCP. In the second, we use a recent
breakthrough of Frisch, Tamuz, and Vahidi Ferdowsi [FTVF], who constructed,
for every icc group G, a faithful, metrizable, proximal flow. We improve faithful
to essentially free and then show that every proximal flow has the SCP. We then
indicate how the theorem for uncountable groups follows from the countable
case.

In Section 8, we develop a general method to construct free minimal flows
from essentially free ones, preserving many important properties (notably, dis-
jointness). Using it, we prove the following theorem, answering a question asked
in [FTVF].

Theorem 1.5. Every countable icc group admits a free, metrizable, proximal flow.

In fact, one can produce even continuum many mutually disjoint such flows
(cf. Remark 6.9).

In Section 9, we study the algebra 2(G) generated by the minimal functions
and prove Corollary 1.4. In Section 10, generalizing the results of [GW1] to arbi-
trary countable groups, we characterize the interpolation sets for the algebra 2(G).
Finally, in Section 11, we use our methods to produce for every countable group
minimal flows with large groups of automorphisms.

Throughout the paper, G denotes an infinite, discrete group. It is also assumed
to be countable in Sections 4, 5, 6, 10, and 11.

Addendum. After learning about our results and after this paper had been circu-
lated, Anton Bernshteyn [B] found a different proof of the fact that the Bernoulli
flow is disjoint from minimal flows using the Lovéasz Local Lemma.

Theorem 11.5 has been improved by the fourth author in [Z2]: there it is shown
that for any two countable groups G and H with G infinite, there exists a minimal
G-flow on the Cantor space such that H embeds in its automorphism group.

Acknowledgements. We are grateful to Dana BartoSova whose talk “On a prob-
lem of Ellis and Pestov’s conjecture” held in Prague in the summer of 2016 rekin-
dled our interest in this problem as well as Omer Tamuz for explaining some of
the arguments in [FTVF]. We would also like to thank the anonymous review-
ers for a careful reading of the paper. Research on this project was partially
supported by the NSF grant no. DMS 1803489, the ANR grants AGRUME (ANR-
17-CE40-0026) and GAMME (ANR-14-CE25-0004), and Institut Universitaire de
France.

2. BERNOULLI DISJOINTNESS AND THE SEPARATED COVERING PROPERTY

In this section, we reduce the problem of showing that all minimal flows of a
group G are disjoint from the Bernoulli flow to the existence of an essentially free
G-flow with a certain combinatorial property.

If D C G is finite, we will say that two sets E1, E; C G are D-apart if DE; N
DE; = @. We will say that a subset E C G is D-separated if all of its elements are
D-apart, i.e., DgNDh =@ forall g,h € E, g # h.
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Definition 2.1. Let X be a minimal G-flow. We will say that X has the separated
covering property, or the SCP, if for every finite D C G and every open, non-empty
U C X, there exists a D-separated S C G such that s~y =X.

We remark that by the compactness of X, S can be taken to be finite.

If X is a G-flow, x € X, and U C X, we will denote the visiting times of x to U
by
Vis(x,U) ={g€G:g-x e U}.
Recall that a point x € X is called minimal if G - x is a minimal flow. A subset
S C G is called syndetic if there is a finite set F C G with FS = G. If F C G is
a finite set for which FS = G, we sometimes say that S is F-syndetic. The first
statement of the following lemma goes back to Gottschalk and Hedlund [GH].

Lemma 2.2. (i) A point x € X of a G-flow is minimal iff Vis(x, U) is syndetic for
every open neighborhood U of x.
(i) A subset S C G is syndetic iff the subflow G - 1g of 2C does not contain the
constant function zero.
(iii) A maximal F-separated set L is F~!F-syndetic.

Proof. We prove only the last statement. Let ¢ € G be given. If ¢ ¢ F~'FL then
FgNFL =@, whence L' = LU{g} is an F-separated set which properly contains
L; a contradiction. Thus F~FL = G. O

In the next proposition, we will show that the SCP is exactly the dynamical
property needed to prove that a minimal flow is disjoint from the Bernoulli flow.
We need the following lemma.

Lemma 2.3. The Bernoulli flow 2C has a free point whose orbit is dense.

Proof. Let |G| = «, let {g4+1 : @« < k} be an enumeration of G\ {e}, and let
P¢(G) = {Fat1 : & < x} list the finite subsets of G. We will build z € 26 free with
dense orbit in x-many stages, defining for each « < x a function z,: Sy — 2 for
some S, C G, with S, C Sp for « < B. When a < x, we will have |S,| < k. Set
zo = @, so also 5o = @. At limit stages, set z, = Up<a 2p- Suppose z, is defined
for # < x. Letting sq,...,s, enumerate 2Fa+1 find het1 € G and g, € G with
{Fat18s1s - Fut18sns {hat1}, {ha+18a+1}, Sa} pairwise disjoint; this is possible
because |Sq| < .

Set Sy 1 = U{Fﬂc+1gslz oo Fag 185, {has1}, {htx+1gtx+l}r S« }. For f € Fyyq and
i <mn, setzy1(fgs;) = si(f), and zu11(Mat1) = 0, Zar1(Mar18a+1) = 1. Continue
until z, is defined, then let z: G — {0, 1} be any function extending z,. Since z
extends z,,1, we have that g, - z|r,,, = s; and that gy 1 - 2(hat1) # z(hay1). It
follows that z is a free point with dense orbit as desired. g

Remark 2.4. When G is countable and X is metrizable, topologically transitive
and essentially free, then both the sets Xi and X, of transitive and free points
respectively, are dense G; sets, hence so is X N Xfree- In particular, this is true
for the flow X = 2C.

For the next proposition, we introduce some notation. Given a finite D C G
and some « € 2P, we let

Ny ={z€2%:z|p =a}
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be the corresponding basic open neighborhood in 26.

Proposition 2.5. Let X be a minimal G-flow. Then the following are equivalent:
(i) For every finite D C G, there is a D-separated S C G so that for every x € X,
S-x C X is dense.
(i1) X has the SCP.
(i) X L 26.
Proof. (i) = (ii). This is clear.

(ii) = (iii). To prove that X L 26, it suffices to show that for every z € 2C with
dense orbit and every x € X, G - (x,z) = X x 26. So fix zg € 2° with dense orbit
and xp € X. We also fix a finite D € G and some a € 2P, Letting U C X be
non-empty open, it suffices to find ¢ € G such that g-zp € N, and g-xp € U. By
the hypothesis, there exists a finite D-separated set S C G with S™1U = X. As
S is D-separated, the sets {Ds : s € S} are pairwise disjoint, thus we can define
B € 2P5 by B(ds) = a(d) ford € D,s € S. Let h € G be such that h - zg € Ng. In
particular, this implies that sh - zg € N, for all s € S. Finally, choose s € S such
that sh - xo € U. Now it is easy to check that ¢ = sh works.

(iii) = (i). Fix D C G finite and symmetric. Let zy € 2C be a free point with
a dense orbit. Let V 3 zy be open such that the sets {dV : d € D?} are pairwise
disjoint. This implies that Vis(zo, V') is D-separated. For any x € X, G- (x,zg) C
X x 26 is a subflow with full projections; as X L 26, this implies that G - (x, zg
X x 2C. Tt follows that Vis(zg, V) - (x,z9) € X x V is dense, so also Vis(zg, V) - x
X is dense.

Om

Corollary 2.6. Let X be a minimal G-flow and Y a G-flow which has a free transitive
point (in particular, if G is countable, one can take Y which is minimal and essentially
free). If X LY, then X has the SCP.

Proof. Apply the argument in the implication (iii) = (i) of Proposition 2.5. O

Notice that the SCP is inherited by factors: if X and Y are minimal, 7: X — Y
is a G-map, and X has the SCP, then so does Y. The next proposition will show
that for a fixed group G, if there is one essentially free minimal flow with the
SCP, then any minimal G-flow has the SCP.

When f: X — Y is a map and A C X, we sometimes write f[A] for {f(x) :
x € A}. We are going to use the following standard fact: if 77: X — Y is a G-map
between minimal G-flows, then 7 is quasi-open, i.e., t[U] has non-empty interior
for any non-empty, open U C X. To see this, let V C V C U with V open, non-
empty. Then by minimality, there is a finite F C G such that FV = X, implying

that Frr[V] O Frr[V] = Y. This implies that the closed set 77[V] C 7r[U] must have
non-empty interior.

Proposition 2.7. Let t: X — Y be a G-map between the minimal G-flows X and Y
with Y essentially free. Then if Y has the SCP, so does X.

Proof. Let D C G be given and let V C X a non-empty open subset. As 7t is
quasi-open, Int 77[V] is non-empty and we can replace V by 7~ (Int7[V]) N V.
We then have (for the new V) that 7[V] = U C Y is non-empty and open. As Y is
essentially free, by shrinking U and V if necessary, we may further assume that
the sets {dU : d € D} are pairwise disjoint.
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Pick xo € V and let yy = 7(xp). By minimality, for each x € 77~ !(yy), there
is an element gy € G and an open By 3 x such that gxBy C V. By compactness,
there exist finitely many elements xy,...,x, € w1 (yo), open sets By, ..., B, and
elements g1,...,g, € G such that for each i, we have that x; € B;, §;B; C V, and
Ui Bi 2 7 (yo)-

Note that the set F = {g1,...,¢u} is D-separated. Indeed, if g; # g; and
digi = ]g] for some dl‘,dj € D, then di 7'é d] and digiyO = d]g]yo However,
both g;yo and g;yo are in U (as g;x;, g;jx; € V) and this contradicts the fact that
d;un d]‘u =Q.

Let W > yo be open and small enough so that n’l(W) C U; B;; one can take
W = Y\ r[X \ U; Bj]. Use the SCP for Y to find a DF-separated set S such that
STIW =Y. As F7'V D U; B; 2 m~ (W), we now have that ST'F~1V = X. As
the set FS is D-separated, this completes the proof. g

Corollary 2.8. If the group G admits some minimal, essentially free flow with the SCP,
then all minimal G-flows have the SCP.

Proof. Let G ~ Y be a minimal essentially free G-flow with the SCP. Let X be any
minimal G-flow. Let Z C X x Y be a minimal subflow. Then, as Z extends Y, it
has the SCP by Proposition 2.7. On the other hand X is a factor of Z and therefore
it inherits the SCP. O

3. SEPARATED COVERING FOR MAXAP GROUPS

Recall that a G-flow X is equicontinuous if for every non-empty open U C X x X
containing the diagonal, there is another open V C X x X containing the diagonal
such that for any (x,y) € V and any g € G, we have (gx,gy) € U. A typical
example of an equicontinuous action is when G is a subgroup of a compact group
K and acts on K by left multiplication. In the presence of equicontinuity, it is not
difficult to show the separated covering property.

Lemma 3.1. Let G ~ X be a minimal G-flow and suppose that there is an infinite
subgroup H < G such that the action H ~ X is equicontinuous. Then G ~ X has the
SCP.

Proof. Let U C X be non-empty, open and let a finite D C G be given. Since the
action H ~ X is equicontinuous, it is pointwise minimal, i.e. H - x is a minimal
H-flow for each x € X. Fix xg € U. Equicontinuity of the H-action allows us
to find an open V > xg, V C U such that for all h € H, if h-xp € V, then
hV C U. Now recurrence implies that the set R = {h € H : h~'V C U} is
infinite. Let F C G be finite with FV = X. Write F = {fy,..., f;—1} and find
ho,...,hy_1 € R such that the set {foho, ..., fu_1h,_1} "' is D-separated. Finally,
Uiy filil D FV = X. 0

Recall that a group G is called maximally almost periodic (maxap) if admits an in-
jective homomorphism into a compact group (or, equivalently, a free equicontin-
uous flow). For example, residually finite groups and abelian groups are maxap.
The main result of this section is the following.
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Proposition 3.2. Suppose that G admits an infinite, normal subgroup H which is maxap.
Then G admits a free, minimal flow with the SCP.

Proof. Let H ~ K be a free, equicontinuous flow and let G/H ~ Y be any free
flow. Let s: G/H — G be a section for the quotient map 7w: G — G/H (i.e., such
that mos = idg,y) with s(H) = e and define the cocycle p: G x G/H — G by
p(g,w) = s(gw)1gs(w). Define the co-induced action G ~ K&/H by:

(g 0)(w) =p(g”"
It is easy to check that the restriction of this action to H is equicontinuous as the
action on each coordinate is the composition of the original action H ~ K with
an automorphism of H. Finally consider the product flow G ~ Y x K&/ (G acts
on Y via 1) and let Z be any minimal subflow. The flow Z is free and satisfies the
hypothesis of Lemma 3.1. O

,w)*l ~x(g*1w).

4. SEPARATED COVERING FOR PROXIMAL FLOWS

Next we turn our attention to proximal flows, which are diametrically opposed
to the equicontinuous flows considered in the previous section. We recall the
definition below; the interested reader can consult [G2] for more details.

Definition 4.1. (i) Two points x1,x in a flow G ~ X are called proximal if
there are y € X and a net g; from G with g;x; — y and g;x» — y. Notice
that if xq,xp € X are proximal and X is minimal, then for any y € X, we
can find a net g; in G as above. The flow X is called proximal if all pairs
of points in X are proximal. When X is proximal and minimal, then for
any finite collection x1,...,x, € X and any y € X, there is a net g; from
G with gjx; — y for each k < n. An extension 7: X — Y is proximal if all
points x1, xp with 7w(x1) = 7r(x) are proximal. A proximal extension of a
proximal flow is always proximal.

(i) A G-flow X is strongly proximal or a boundary if for every probability mea-
sure y on X there is anet g; € G and a point z € X with limg; -y = J,.
Clearly every strongly proximal flow is proximal.

(iii) Every topological group G admits a unique universal minimal proximal
flow denoted I1(G), and a unique universal minimal strongly proximal
flow denoted Il;(G). The latter is also called the Furstenberg boundary of
G and is sometimes denoted by JrG.

For the remainder of this section, we assume that G is countable. The groups
for which IT(G) is trivial are exactly the amenable groups (see [G2, II1.3.1. The-
orem]). The groups for which IT(G) is trivial are called strongly amenable and it
was proved in [FTVF] that those are exactly the groups with no icc quotients.
Kalantar and Kennedy [KK] showed that the action G ~ I1;(G) is free iff G is
C*-simple, i.e., if the reduced C*-algebra of G is simple. Extending the results of
[FTVF], we show below (cf. Section 8) that the action G ~ I1(G) is free iff G is
icc.

Combining some known disjointness results and our techniques from Sec-
tion 2, we can see that strongly proximal flows have the SCP. Recall first that
minimal, strongly proximal flows are disjoint from minimal flows that admit an
invariant measure (see [G2, Theorem II1.6.1]). Next, by [W], every group G admits
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an essentially free minimal flow with an invariant measure. Finally, Corollary 2.6
implies that IT;(G) has the SCP. Thus, by Corollary 2.8, if the action G ~ IT;(G)
is free (i.e., if G is C*-simple), then all minimal actions of G have the SCP. We do
not provide more details because in Corollary 4.5 we prove a more general result.

Recall that a point x € X is called minimal if G - x is a minimal flow. We have
the following basic fact.

Lemma 4.2. Let A be a finite alphabet. Then the minimal points in the Bernoulli flow
A are dense.

Proof. Let F C G be finite and let & € A be a function. We will show that the
open set N, = {z € A® : z|p = a} contains a minimal point. Let C C G be a
maximal F-separated subset of G. Let ag € A. Define z € A® by

2(g) = {Dé(f) if g= fcwith f e F,ceC,

ap if g ¢ FC.
By Lemma 2.2, C is syndetic and moreover a appears syndetically in every ele-
ment of G - z. Hence any minimal subset of G - z intersects Nj. g

The following definition comes from [G1] (there it is phrased in a different but
equivalent manner).

Definition 4.3. A G-flow X is called incontractible if for every n € N, the minimal
points in X" are dense.

The proposition below essentially follows from [G1, Theorem 4.2]. There one
imposes the additional condition that X is minimal, which is not necessary. Here
we present an elementary proof.

Proposition 4.4. Let X be an incontractible G-flow and let Y be a minimal, proximal
G-flow. Then X L Y.

Proof. Let W C X x Y be a subflow with full projections. We will show that
there exists y € Y such that X x {y} C W. As Y is minimal, this will show that
W = X x Y, as required.

First we will show that for every open cover Uj, ..., Ui of X, there exists a point
Yo € Y such that (U; x {yo}) "W # @ for all j. Let (xq,...,x) € Uy x --- x Uy
be minimal and let y; € Y be such that (xj,y;) € W. As Y is proximal, there
exists a net (g;) of elements of G and z € Y such that lim; g;y; = z for all j < k.
By passing to a subnet, we may assume that g;x; converges for all j and we put
x; = lim; g;x;. As (x1,...,x) is minimal, there exists a net (/;) of elements of G
such that lim; hl-x; = x; for all j. By passing to a subnet, we may assume that h;z
converges and we put yo = lim; ;z. It is now clear that (x;,y0) € W for all j.

Now for an open cover O, let y¢9 be as above and let y be a limit point of the
net (yo : O open cover of X) ordered by refinement. Then for every non-empty,
open U C X and every open neighborhood V 5 y, WN (U x V) # @. Thus
X x{y} CW. O

Conversely, it can be shown that if X is a G-flow such that X L Y for every
minimal proximal flow Y, and the set of minimal points is dense in X, then X is
incontractible.
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Corollary 4.5. The Bernoulli shift is disjoint from all minimal, proximal flows. In par-
ticular, all proximal flows have the SCP.

Proof. By Lemma 4.2, minimal points are dense in (A®)" = (A")C; thus AC is
incontractible and we can apply Proposition 4.4. O

A natural question one can ask is whether M(G) can be proximal. We will see
in Section 11 that for countable discrete groups this can never be the case.

5. SOME BASIC FACTS ABOUT STRONGLY IRREDUCIBLE SUBSHIFTS

Our next goal is to show that a large class of countable groups admit essentially
free proximal flows, so that we can apply the results of the previous section. Our
results and techniques here are inspired by the recent paper of Frisch, Tamuz,
and Vahidi Ferdowsi [FTVF], who showed that icc groups admit faithful, mini-
mal, proximal flows. In this, as well as in the next section, we assume that G is
countable.

Let A be a finite alphabet with |A| > 2 and recall that G ~ A® by (g-z)(h) =
z(hg). A subshift is a subflow of AC. The collection of subshifts forms a closed
subspace of K(A®), the hyperspace of compact subsets of A® equipped with
the Vietoris topology. To describe this topology, we introduce some notation. If
F C G is finite and « € AF, set N, = {z € A® : z|r = a}. Given K € K(A®) and
a finite F C G, let

Se(K) = {a € AT : KON, # @}
Then a basis of neighborhoods at K for the Vietoris topology is given by
{{K' € K(A®) : Sg(K') = Sp(K)} : F C G finite}.

It will also be helpful to consider more general shifts whose alphabet is a
Cantor space rather than a finite set. If A is finite, we have an action G ~ AN*XG
via (g-z)(n,h) = z(n,hg). The definitions of subshift and Vietoris topology in
this context are similar. In fact, we often view AC as a subshift of ANXG via the
inclusion i: AG — ANXG where we set i(z)(n,g) = z(g).

A subshift Z C ANXC is called strongly irreducible if for any n € N, there
is a finite D C G such that for any finite E;,E; € G which are D-apart and
any z1,zp € Z, there is x € Z with x|j,g, = ziljyxg,- (Here and below, we
use the notation [n] = {0,1,...,n —1}.) We will say that D witnesses the strong
irreducibility of Z for n. For a subshift Z C AC, we say Z is strongly irreducible iff
i[Z] is. In the case of a subshift Z C A®, we will also say that Z is D-irreducible
instead of strongly irreducible with witness D. For example, both ANXC and A
are strongly irreducible. In many ways, strongly irreducible subshifts behave like
the full Bernoulli shift but they offer more flexibility.

If F C G is finite and n € N, an (n, F)-pattern is just a function ¢: [n] x F — A.
If z € AN*G, we say that the pattern t appears in z if there exists ¢ € G such that
(& - 2)|jn)xr = t. Similarly, if V C G is finite, we say that ¢ € AlUXE appears in
u € AMXV if there is ¢ € G with Fg C V and u(k, fg) = t(k, f) for each f € F
and k € [n].

Lemma 5.1. () IfY € AN%G and 7 C BN*C are strongly irreducible, then so is
Y x Z C (A x B)NXG,
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(i) If Y € ANXC is strongly irreducible and ¢: Y — BN*C is a G-map, then
Z := ¢[Y] is also strongly irreducible.

Proof. The first item is clear. For the second, let ¢: Y — BN*G be given, and fix
n € N. We can find N € N and finite symmetric F C G so that for every y € Y,
¢(Y)l[n)x {ec} depends only on y| [y r- It follows that for every ¢ € G, ¢(y) (] x (4
depends only on y|njxrg- If D C G witnesses that Y is strongly irreducible for
N, then DF will witness that ¢[Y] is strongly irreducible for n. O

Sometimes, we want to choose explicit witnesses to irreducibility. Let Z C
AN*G be strongly irreducible, n € N, and D C G witness that Z is strongly
irreducible for n. Then if Eq, E; C G are finite and D-apart, a; € S, f,)(Z), and
F C G is finite with E; C F, we let Confy(F,a1,a7) be some fixed element of
Sn,r)(Z) whose restriction to [n] x E; is a;.

Following [FTVF], define §(A) C K(A®) to be the closure of the strongly ir-
reducible subshifts with the finitely many constant configurations removed. We
define 8(AN) C K(AN*C) analogously, removing the configurations which do
not depend on the G coordinate. Then §(A) C K(A®) is a compact space, and
8(AN) C K(AN*G) is locally compact. These spaces are particularly well suited
for Baire category arguments, a fact heavily exploited in [FTVF].

Lemma 5.2. For every finite D, there exists a strongly irreducible subshift Y C 2 such
that for every y € Y, the set {g € G : y(g) = 1} is D-separated and non-empty.

Proof. By enlarging D if necessary, we may assume D to be symmetric. Let Y be
set of all y € 2C such that {g € G : y(g) = 1} is a maximal D-separated set. Then
Y is a subshift such that for all y € Y, the set {g € G : y(g) = 1} is D-separated
and non-empty. We will show that Y is D3-irreducible. Let E;,E; C G be finite
and D3-apart, and let y1, > € Y. First enlarge each E; to a set E! C D?E; so that

(i) If g € E!'\ E; we have y;(g) = 1.

(ii) For any h € E; with y;(h) = 0, there is g € D*h N E! with y;(g) = 1.
One can do this by noting that any maximal D-separated set is D?-syndetic by
Lemma 2.2. Therefore for any / as in item (ii), we can find ¢ € D?h with y;(g) = 1
and add it to E]. Write F; = {g € E/ : y;(§) = 1}. Notice that F; UF, is a D-
separated set and extend it to some maximal D-separated set S. Then 15 € Y and
(1s)] B = yi|Elg. Indeed, it is clear that F; C E/ N S. For the reverse inclusion, note
that if h € E/ \ F;, then by the properties of E/, we have that F; N D?h # ©; as S is
D-separated and F; C S, this implies that ¢ S. O

Given a subshift Z C AN*G  a finite F C G, and n € N, we say that Z is (n, F)-
minimal if for every z € Z, every t € S(,, r)(Z) appears in z. Notice that this occurs
iff for some finite V. C G, every t € S, r)(Z) appears in every u € S, v)(Z).

Proposition 5.3. The set {Z € $(AN) : Z is minimal} is dense Gs in S(AN). Similarly
for 8(A).

Proof. We only provide the proof for §(AN), the other case being similar.

Notice that a subshift Z C AN*G is minimal iff Z is (1, F)-minimal for each
n € N and F C G finite. By the remark before the statement of the proposition,
being (1, F)-minimal is an open condition, so being minimal is Gs. To prove
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that it is dense in §, by the Baire category theorem, it suffices to show that for
every strongly irreducible Z’, every n € N, and every finite F C G, there exists
a strongly irreducible Z such that for every z € Z, the set of (n, F)-patterns that
appear in z is exactly S, p) (z".

To do this, we employ the techniques of [FTVF]. Fix Z’, n, and F. Let V O F
be finite, symmetric, and contain the identity. Suppose V is large enough so that
we can find u € Z' such that u(, .y contains all (n, F)-patterns that appear in
Z'. Suppose moreover that V witnesses the strong irreducibility of Z’ for n. Let
Y C 2© be given by Lemma 5.2 with D = V5.

Next we define a continuous, equivariant map ¢: Z’ x Y — AN*G as follows.
Let (z/,y) € Z’' x Y be given and denote z = ¢(z',y). Let g € G.

e If m > n, then define z(m, g) = 0 for each g € G.
o If ¢ = kh, where y(h) =1and k € V, set z(m, g) = u(m, k) for each m < n.

e If there is no k € V3 such that y(kg) = 1, define z(m,g) = z'(m,g) for
each m < n.

e If ¢ = ki, where y(h) = 1and k € V3\ V, let

z(m,g) = Coan/(VS, (h- Z/)|[n]><(V5\V3)fu|[n}><V)(ml k)

for each m < n. The function Conf is defined after the proof of Lemma
5.1.

Finally, let Z = ¢(Z’ x Y). We will show now that for z = ¢(2/,y), the set of
(n, F)-patterns that appear in z is exactly S, ry(Z).

To see that every desired pattern does appear, find some 1 € G with y(h) = 1.
Then (h - z)jy)xv = u|[yxv, and every pattern from S, r)(Z') appears in u/(; v
by our choice of u.

To see that no new patterns appear, let ¢ € G. If FgNV3h = @ for every h € G
with y(h) =1, then (g 2)|jmxr = (§Z')mxF € S(n,p)(Z'). If there is € G with
y(h) = 1 and FgN V3h # @, then Fg C V°h. We then have for each f € F and
m < n that

(g-2)(m, f) = Confyr (V°, (h-2") |y (va\vay, #l) ) (m, f8H1).

So by the definition of Confy, we have (g - z)|(;jxr € S(nr)(Z') as desired. O

Recall that a group is called icc if the conjugacy class of every non-identity
element is infinite. The following is the main result of [FTVF].

Theorem 5.4 (Frisch-Tamuz-Vahidi Ferdowsi). Let G be an icc group and let A be a
finite alphabet. Then the set of minimal, proximal, faithful subshifts in S(A) is dense Gy
in §(A).

The authors of [FTVF] ask whether every icc group admits a free proximal
flow. We answer this question in Section 8 but as a preliminary step, here we
show that one can easily get essential freeness.

Proposition 5.5. If G is icc or torsion free, then every non-constant strongly irreducible
Z C AC is essentially free.
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Proof. To see that a subshift Z is essentially free, it suffices to show that for every
g € G\ {eg}, finite F C G, and every a € AF for which N, N Z # @, there
exists z € NyNZ and h € G such that z(hg) # z(h). Suppose now that Z is
D-irreducible for some finite D C G.

Suppose first that G is icc. Then the conjugacy class of g is infinite and therefore
there exists i € G such that h, hg, and F are D-apart. Let z1 € ZN N, let
23,23 € Z be such that zp(h) # z3(hg) (those exist because Z is non-constant). By
D-irreducibility, there is z € Z such that z|p = z1|f (so that z € N,), z(h) = z2(h),
and z(hg) = z3(hg) (so that z(h) # z(hg)).

Next suppose that G is torsion-free. Then the order of g is infinite and there
exists n € N and h € G such that i, hg", and F are D-apart. Then, as above, there
exists z € N, such that z(h) # z(hg"). Finally, there must exist k < n such that
z(hg*) # z(hg"*1), finishing the proof. O

Remark 5.6. Note that it is not true that strongly irreducible subshifts are essen-
tially free for all groups G. For example, if G has a finite normal subgroup N,
any strongly irreducible subshift of G/N is also one for G and it is not faithful.
We do not know whether this is the only obstruction.

Corollary 5.7. Let G be icc or torsion-free. Then {Z € S(A) : Z is essentially free} is
dense G in 8(A).

Proof. 1t follows from Proposition 5.5 that the collection of essentially free sub-
shifts is dense in §. That it is G; follows from the description in the first paragraph
in the proof of this proposition. O

We obtain the analogous statement for every group by considering shifts in
S(AN).

Proposition 5.8. The set {Z € S(AN) : Z is essentially free} is dense Gz in S(AN).

Proof. It remains to show that the set is dense. Suppose Z' is strongly irreducible,
let n € N, and let F C G be finite. Define ¢: Z' x ANXG — ANXG py

Z'(k,g) ifk<n,

4’(z’,y)(k/g) = {y(k—n,g) if k > n.

Then Z = ¢[Z’ x AN*C] is strongly irreducible, essentially free, and we have
S (Z) = Siup)(Z'). O

Combining Theorem 5.4 with Proposition 5.5, we obtain the following.

Corollary 5.9. Let G be a countable icc group. Then there exists a metrizable, essentially
free, minimal, proximal G-flow X.

We will use Corollary 5.9 to prove Theorem 1.5 in Section 8.
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6. DISJOINTNESS RESULTS

First we prove a slight strengthening of Proposition 2.5.

Lemma 6.1. Let X be a minimal G-flow with the SCP. Then X is disjoint from any
strongly irreducible subshift of ANXC.

Proof. Let Y C ANXC be a strongly irreducible subshift. Let U C X be non-empty
open. Let n € N, F C G be finite, and Ny, NY # @ for some a € 2/"*F, Let Z C
X x Y be a subflow with full projections. We need to show that ZN (U x N,) # @
in order to conclude that Z = X x Y.

Suppose D C G witnesses the strong irreducibility of Y for n. Let S C G be
DF-separated such that ST'U = X. Use the strong irreducibility of Y to find
y € Y with g- y|wxp = « for every g € 5. As Z C X x Y has full projections,
find x € X with (x,y) € Z, then find ¢ € S with gx € U. It follows that
(gx,8y) € ZN (U x Ng) as desired. O

We can now prove our first main result.

Theorem 6.2. Let G be a countable, infinite group. Then every minimal G-flow has the
SCP and is thus disjoint from every strongly irreducible subshift. In particular every
minimal G-flow is disjoint from the Bernoulli flow 2C.

We recall that every group G admits a unique up to isomorphism universal
minimal flow M(G), which maps onto every minimal G-flow. One way to con-
struct M(G) is to consider the universal ambit G (the Stone-Cech compacti-
fication of G); then every minimal subflow of BG is isomorphic to M(G). In
particular, if G is infinite, M(G) is not metrizable.

We start with a lemma.

Lemma 6.3. Suppose that N <1 G is a finite, normal subgroup and H = G/N. Then if
M(H) has the SCP, so does M(G).

Proof. Let 0: G — H denote the quotient map and note that by the universal
property of BG, it extends to a map G — BH, which in turn restricts to a map
m: M(G) — M(H). It is not difficult to check that 7t is continuous, open, and
|N|-to-1, and for every open set U C M(G), 7~ (r[U]) = NU.

Let U C M(G) be open and let xg € U. Let D C G be finite and N-invariant.
For every a € N, choose f; € G such that f, -a-x9 € U. Moreover, choose the f,
in a way that the set F = {f,; : a € N} is D-separated. Let V be a neighborhood
of xp such that f; -a-V C U for all 2 € N. Using the SCP for M(H), let S’ C H be
a 0(DF)-separated subset of H such that S'~'7[V] = M(H). Let S C G be such
that 8]s: S — S’ is a bijection. Then S is DF-separated and S™!NV = M(G). As
F is D-separated and S is DF-separated, we obtain that FS is D-separated. We
finally note that

(FS)"'u =s7'F'u 2> s INV = M(G). O

Proof of Theorem 6.2. We will show that M(G) has the SCP. (This is sufficient by
Lemma 6.1.) Let F be the FC center of G consisting of all elements of G with finite
conjugacy classes. Note that F is a characteristic subgroup of G. We will consider
several cases.
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First, if F is finite, then G/F is icc and by Corollary 5.9 and Corollary 4.5, G/F
admits an essentially free, minimal flow with the SCP. Thus by Proposition 2.7,
M(G/F) has the SCP and by Lemma 6.3, so does M(G).

Suppose now that F is infinite and let Z be the center of F. Note that, as Z is
a characteristic subgroup of F, it is normal in G. We distinguish again two cases.
If Z is infinite, then we are done by Proposition 3.2. Finally, suppose that Z is
finite and let F/ = F/Z and G' = G/Z. We will check that F’ is residually finite.
Let {C; : i € N} enumerate the non-identity conjugacy classes of F and note that
each C; is finite. Define ¢: F — [;Sym(C;) by ¢(g) - (x;)icr = (gxig™)icr and
note that ker¢p = Z. Thus ¢ factors to an embedding of F/ into the profinite
group [[; Sym(C;). As F' is infinite and normal in G, Proposition 3.2 implies that
M(G’) has the SCP and thus, by Lemma 6.3, so does M(G). O

Next, we show how to produce minimal flows disjoint from any given metriz-
able minimal flow. We will use the following method to show that a given set is
Gs. If X and Y are compact Hausdorff spaces and Z C X x Y is a G; set, then the
set B C X defined by

YXEB <= WeY(xy €z

is also G;. To see this, note that (X x Y) \ Z is K, so letting 7x: X x Y — X be
the projection, the set mx[(X x Y) \ Z] is K, and B = X\ mx[(X x Y) \ Z].

Recall that if X is a compact space, we denote by K(X) the hyperspace of
closed, non-empty subsets of X equipped with the Vietoris topology. For basic
facts about this topology, we refer the reader to [K, 4.F].

Proposition 6.4. Let G be a countable, infinite group and let X be a metrizable minimal
G-flow. Then the set of subshifts disjoint from X is G5 in K(AN*G).

Proof. Let Z C ANXG pe a subshift. By definition, Z is disjoint from X iff
VK € K(X x AN*®) " K is not G-invariant or 71,(K) 2 Z or K 2 X x Z.

Here 71, denotes the projection to the second coordinate. The first two conditions
after the quantifier are open and the third is closed. As X is metrizable, so is
K(X x AN%G), and closed sets in the latter space are Gs. Thus the whole condition
after the quantifier is G; and we can conclude by applying the remark preceding
the proposition. O

Corollary 6.5. For any countable, infinite group G and any metrizable minimal G-flow
X, the set

{Z € 8(AN) : Z is minimal and essentially free and Z | X}
is dense Gg in $(AN).
Proof. By Proposition 5.3, the minimal subshifts form a dense G; subset of §(AN);
by Proposition 5.8, so do the essentially free ones. By Proposition 6.4, being

disjoint from X is a G5 condition and by Theorem 6.2, it is dense in §(AN). By
the Baire category theorem, the intersection of those three sets is dense Gs. [

We also have the following corollary, generalizing a result of [FT] (where it was
proved for amenable groups).
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Corollary 6.6. Let G be a countable, infinite group. Then the set of strongly irreducible
subshifts of G is not Gg.

Proof. Suppose that the set of strongly irreducible subshifts is G;. Then it is
comeager in 8§(A) and by Proposition 5.3 and the Baire category theorem, it fol-
lows that there exists a subshift which is both minimal and strongly irreducible.
This contradicts Theorem 6.2. U

A collection {X; : i € I} of minimal G-flows is called mutually disjoint if the
product [T;c; X; is minimal. Note that a collection is mutually disjoint iff every
finite subcollection is. For the next corollary, we will need the fact that the spaces
8(A) and 8(AN) are perfect.

Lemma 6.7. The spaces 8(A) and 8(AN) do not have isolated points.

Proof. We give the argument only for §(AN), the other case being similar. Given
a strongly irreducible Z C AN*C, we know by Lemma 6.1 and Theorem 6.2
that Z cannot be minimal. Therefore there are n € N and F C G finite such
that for some z € Z, the set of (n, F)-patterns appearing in z is a strict subset
of S(,r)(Z). However, the proof of Proposition 5.3 shows that there is some
strongly irreducible Z" with S, r)(Z") = S, r)(Z) and so that every (n, F)-pattern
in S, r)(Z') appears in every 2’ € Z. In particular, Z # Z', so §(AN) has no
isolated points. g

Corollary 6.8. For every countable, infinite group G, there exist continuum many mu-
tually disjoint, essentially free, minimal, metrizable G-flows.

Proof. Let & denote the Polish space of essentially free, minimal subshifts in
8(AN) and let

R,={(24,...,2,) € E" : Z4,...,Z, are mutually disjoint}.
By Corollary 6.5, we have that
V(Zl,ZZ,...,Zn_l) € R, V¥ZelZ Z L1 71 XX Zy_1

(here V* denotes the category quantifier “for comeagerly many”). Now the
Kuratowski-Ulam theorem (see, for example, [K, 8.41]) and an easy induction
imply that R, is comeager in Z" for every n. Finally, Lemma 6.7 and Mycielski’s
theorem (see, for example, [K, 19.1]) give us a Cantor set C C E of mutually
disjoint subshifts. U

Remark 6.9. The corollary above is quite flexible and by varying E, we can add
more comeager properties if desired. For example, for icc groups, this allows
to construct continuum many disjoint, essentially free (or, using the method of
Section 8, even free), minimal, proximal flows. To see that proximality is a dense
condition in §(AN), note that |J, S(A™) is dense in 8(AN), so we can apply Theo-
rem 5.4. (To view 8(A") as a subset of S(AN), just put some fixed letter a¢ in the
unused slots.) Proximality is also G, as a subshift X € 8§(AN) is proximal iff

Vi,ye AN CVe >0 xyeX — JgeGd(g-x,g-y) <e

where d is some fixed metric on AN*G.
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We can use the previous corollary to solve an open problem regarding the
homeomorphism type of the space M(G) given a countable group G. Recall
that if X is a topological space, the rr-weight of X, denoted mw(X), is the least
cardinal « for which there exists a family {U; : i < x} of open subsets of X such
that for every open V, there is i < x with U; C V. Balcar and Blaszczyk show
in [BB] that the space M(G) is homeomorphic to the Gleason cover of the space
27w(M(G)), Here the Gleason cover of a compact space X, denoted Gl(X), is just
the Stone space of the regular open algebra of X (we will revisit this construction
in Section 8). For a countable infinite group G, the largest possible value of
nw(M(G)) is ¢, the cardinality of the continuum; to show that this maximum is
attained, it suffices to find some minimal flow X with rw(X) = ¢. Balcar and
Btaszczyk provide such a flow for G = Z, and Turek [T] gives a construction for
any countable abelian G.

Now let G be any countable infinite group. Corollary 6.8 provides a family
{X; : i < ¢} of essentially free, minimal, metrizable flows with X = [T; X; min-
imal. In particular, each X; has a nontrivial underlying space. It follows that
nw(X) = c. This proves Corollary 1.3, which we restate below.

Corollary 6.10. Let G be a countable, infinite group. Then M(G) = GI(2°).

7. UNCOUNTABLE GROUPS

In this section, we indicate how to remove the countability assumption on G
in Theorem 6.2.

Theorem 7.1. Let G be a discrete group. Then every minimal flow has the SCP and is
disjoint from the Bernoulli flow 2.

Proof. We use a technique introduced by Ellis in [E]. Let X be a minimal, free
G-flow. If K C G is a countable subgroup and p is a continuous pseudometric on
X, then
R(K,p) := {(x,y) € X*: p(kx,ky) = 0 for all k € K}

is a closed equivalence relation, and the quotient X/R(K,p) is a metrizable K-
flow. It was proved in [E, Proposition 1.6] that for any fixed p and any countable
subgroup K C G, there is a countable subgroup L with K € L C G such that
X/R(L,p) is minimal. Also, it follows from the proof of [MBT, Proposition 2.9]
(see also Proposition 8.3 below) that for any fixed K and any pj, there is a continu-
ous pseudometric p; such that R(K, p2) € R(K, p1) with X/R(K, p2) a free K-flow.
Alternating these steps countably many times, we see that for every countable
subgroup K C G and every continuous pseudometric p; on X, there are a count-
able supergroup L O K contained in G and a finer continuous pseudometric p,
with R(pa, L) C R(p1, K) such that X/R(L, p2) is minimal and free.

Whenever K C L are countable subgroups of G and p; and p; are contin-
uous pseudometrics on X with R(pp, L) € R(py,K), there is a natural K-map
7t(L,p2, K, 01): X/R(L,p2) = X/R(K, p1). We can now write

X =1im X/R(L,p)

where the inverse limit is taken over all pairs (L,p) with X/R(L,p) a minimal
free L-flow. For each pair (L,p) appearing in the inverse limit, we also have a
natural L-map 7t(L,p): X — X/R(L, p).
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Now let D C G be finite and U C X be non-empty open. We may assume
that U = {x € X : n(L,p)(x) € V} for some non-empty open V C X/R(L,p)
with D C L. Use Theorem 6.2 to find a finite D-separated S C L with S -y =
X/R(L,p). It follows that S~'U = X as desired. O

Remark 7.2. The reduction to the countable case can also be carried out by an
elementary substructure argument using the Léowenheim-Skolem theorem and
the fact that minimality, freeness, and the SCP can be expressed by first-order
sentences in appropriate structures.

8. FROM ESSENTIAL FREENESS TO FREENESS

In this section, we discuss a general method to produce free flows out of es-
sentially free ones, keeping many important properties. This will allow us to
improve several of the results of the previous sections.

If Y and X are G-flows, ¢: Y — X is a surjective G-map, and B C Y, we define
the fiber image of B by

¢an(B) = {x € X: 97 ({x}) C B}.
Note that if B is open, ¢gp(B) is also open. We say that ¢ is highly proximal if X is
minimal and ¢g, (B) is non-empty for every non-empty open B C Y. Equivalently,
¢ is highly proximal iff for every x € X and U C Y open, there exists g € G such
that ¢- ¢~ 1({x}) C U.
The following are some basic properties of highly proximal extensions.

Proposition 8.1. The following statements hold:

(i) Let ¢: Y — X be a highly proximal extension. Then Y is minimal and ¢ is a
proximal extension. In particular, if X is proximal, then Y is also proximal.
(i) Let ¢: Y — X be a highly proximal extension with X strongly proximal. Then
Y is strongly proximal.
(iii) Let X1, Xa, ..., Xyn be minimal G-flows which are mutually disjoint and let le —
X; be highly proximal extensions. Then X}, ..., X}, are also mutually disjoint.

Proof. (i) Let y1,y2 € Y with ¢(y1) = ¢(y2) = x. Let B C Y be non-empty open.
Then ¢, (B) is also non-empty open, so by minimality, we can find ¢ € G with
gx € ¢gp(B). In particular, we have gy1,gy> € B, showing that y; and y, are
proximal and that Y is minimal.

(ii) It is enough to show that for every open U C Y, every probability measure
pon Y, and every € > 0, there exists ¢ € G such that (g.«u)(U) > 1 —e€. Let
v = ¢sp and V = ¢g,(U). As X is strongly proximal and minimal and V # @,
there exists ¢ € G such that (g.v)(V) > 1—e¢. As ¢~ (V) C U, we are done.

(iii) It is easy to check that the extension [; X! — []; X; is highly proximal. By
hypothesis, []; X; is minimal; (i) implies that so is [T; X. U

Auslander and Glasner [AG] prove the existence and uniqueness of a universal
highly proximal extension for minimal flows. Given a minimal flow X, there is a G-
flow Sg(X) and a highly proximal G-map 7rx: Sg(X) — X through which every
other highly proximal map to X factors. An explicit construction of Sg(X) is
provided in [Z1]. When G is discrete, Sg (X) is just the Stone space of the Boolean
algebra of regular open sets in X and the map 7x: Sg(X) — X sends p € Sg(X)
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to the unique x € X such that every regular open neighborhood of x is a member
of p. Notice that since the regular open algebra of X is a complete Boolean
algebra, the space Sg(X) is extremally disconnected (and thus never metrizable
if X is infinite). We will need the following fact about extremally disconnected
spaces.

Fact 8.2 (Frolik [F1]). Let Z be a compact extremally disconnected space, and let f: Z —
Z be a homeomorphism. Then the set of fixed points of f is clopen.

The following is our main tool for producing free flows.

Proposition 8.3. Let X be a minimal, essentially free G-flow. Then Sg(X) is free.
Moreover, when G is countable, Sg (X) admits a metrizable factor which is also free.

Proof. The map 7x: Sg(X) — X, being a morphism of minimal flows, is quasi-
open (see the discussion before Proposition 2.7). It follows that Sg(X) must also
be essentially free. By Fact 8.2, this can only happen if Sg(X) is free.

For the second assertion, proceed as follows. For each non-identity g € G,
use the freeness of S;(X) and compactness to find a finite clopen partition Py of
Sc(X) so that for each A € Py, we have gAN A = @. Then use {P; : ¢ € G}
to generate a G-invariant subalgebra of the clopen algebra of Sg(X). As this
subalgebra is countable, the corresponding factor will be metrizable and free. [

Now we can prove the theorems from the introduction that require free flows.

Proof of Theorem 1.5. Let G be icc. By Corollary 5.9, there exists an essentially free,
minimal, proximal flow G ~ X. By Proposition 8.3, there exists a metrizable,
free, highly proximal extension X — X. By Proposition 8.1, X' is minimal and
proximal. g

Proof of Theorem 1.2. (i) By Corollary 6.5, there exists an essentially free, minimal,
metrizable Y L X. By Proposition 8.3, there is a metrizable, free, highly proximal
extension Y’ — Y. By Proposition 8.1, Y’ is minimal and disjoint from X.

(ii) By Corollary 6.8, there exists a family {X; : i € 280} of essentially free,
minimal, metrizable, mutually disjoint G-flows. By Proposition 8.3, there exist
free, metrizable, highly proximal extensions Xl{ — X;. By Proposition 8.1, the Xl'
are minimal and mutually disjoint. O

We end this section with an application to the universal proximal and strongly
proximal flows. The result about IT;(G) was proved in [BKKO] by a different
method.

Proposition 8.4. Let G be a discrete group. Then 11(G) and I15(G) are extremally
disconnected.

Proof. 1t follows from Proposition 8.1 and the universality of I1(G) and I1;(G)
that Sg(I1(G)) = II(G) and Sg(I1;(G)) = ITs(G). As universal highly proximal
extensions are always extremally disconnected, we have the result. 0
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9. THE ALGEBRA OF MINIMAL FUNCTIONS

Recall that a function ¢ € £%°(G) is called minimal if there exists a minimal flow
X and a point xg € X such that

(0.1) #(g) = f(g- %), for some f € C(X).

Note that in the above definition, instead of considering all possible minimal G-
flows X, we can restrict ourselves to the universal minimal flow M(G). We denote
by A(G) the closed subalgebra of /*(G) generated by all minimal functions.

Next, we explain how to view the algebra 2A(G) as the algebra of functions
on a certain compactification of G. Denote by E = E(M(G)) the enveloping semi-
group of the minimal flow G ~ M(G), i.e., the closure of G in the compact space
M(G)M(C) equipped with the product topology. E is a semigroup with the oper-
ation of composition of maps and it is right topological, i.e., for all g € E, the map
E > p — pq € E is continuous. E also acts naturally on M(G) by evaluation.
There is a canonical map G — E given by the action G ~ M(G), which is injec-
tive because the action is free (see [A, Chapter 8]). Thus we can identify G with a
subset of E. This gives us the following alternative representation of 2.

Proposition 9.1. A(G) = {f|g: f € C(E)}.

Proof. For simplicity of notation, we identify C(E) with a subalgebra of (*(G)
by the inclusion f +— f|g. Suppose first that ¢ € ¢*(G) is as given by (9.1).
Then there exists x € M(G) and f € C(M(G)) such that ¢(g) = f(gx). By
the definition of the topology of E, ¢ extends to a continuous function on E by
the formula ¢(p) = f(px) for p € E. As C(E) is a closed subalgebra of (°(G),
this gives us that 20(G) C C(E). The reverse inclusion follows from the Stone—
Weierstrass theorem: if p; # py € E, there exists x € M(G) and f € C(M(G))
such that f(p1x) # f(p2x) and thus the functions of the form (9.1) separate points
in E. 0

We let Q = 2¢ and identify it with the power set of G. We will consider it as
a Boolean ring, with addition being the operation & of symmetric difference and
multiplication that of intersection. Note that the shift action G ~ () is by ring
automorphisms. We continue to call G-invariant, closed subsets of () subshifts. If
X and Y are subshifts, welet XY ={xdy:x e X,y Y} and XY = {xy: x €
X,y € Y}. Note that X @ Y and XY are also subshifts.

In what follows, it will be more convenient to work with subrings of () rather
than subalgebras of £*°(G). We can identify ) with the set of {0, 1}-valued func-
tions in ¢/*(G) by viewing elements of () as characteristic functions. This gives a
natural functorial correspondence between subrings of (2 and closed subalgebras
of {*°(G) generated by projections, such as 2 (see Lemma 9.3).

Following Furstenberg [F2], we will say that a subshift X C Q) is restricted if
for every proper subshift Y C ), we have that X &Y # Q. Note thatif X C Y
are subshifts and Y is restricted, then so is X. It is also clear that if X and Y
are restricted, then so is X @ Y. A point z € Q is restricted if the subshift G - z is
restricted. The arguments of [F2] give us the following.

Proposition 9.2. Let G be an infinite discrete group and let () be as above. Then the
following hold:
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(i) Every minimal subshift is restricted.
(ii) If X is a minimal subshift and Y is restricted, then XY is restricted.

Proof. These two facts are proved in Theorem IIl.1 and Proposition III.2 of [F2],
respectively. While Furstenberg only states these results for G = Z, the only thing
about Z that is used in the proofs is that () is disjoint from all of its minimal
subshifts, which holds for all G as we proved in Theorem 6.2. O

Recall that a point u € Q) is called minimal if G - u is a minimal subshift. Let
B C ) denote the ring generated by all minimal points. In view of the corre-
spondence alluded to above, we have the following.

Lemma 9.3. 2 is the closed algebra of (*(G) generated by B and B = AN Q. In
particular, to prove that 24 C (*(G), it suffices to show that B C Q).

Proof. Let first u € Q) be a minimal point. Let f, € C(Q)) be defined by f.(x) =
x(eg). Then putting Z = G - u, we see that u(g) = f.(¢-u) and thus u € 2. So
we conclude that B C 2. Thus, denoting by 2’ the closed algebra generated by
B, we have A’ C 2.

To prove the reverse inclusion, recall that M(G), the universal minimal flow of
G, can be represented as a subset of BG. In particular, clopen sets separate points
in M(G) and thus their characteristic functions generate a dense subalgebra of
C(M(G)). Let U C M(G) be clopen, let xyg € M(G) and let u € Q be defined by
u(g) = xu(g-xp) as in (9.1). It suffices to show that every such u is an element
of B. Define the G-map 7t: M(G) — Q by n(x)(g) = xu(g-x) and note that
u = 71(xq). Thus the flow G - u = 71(M(G)) is minimal and u € %B.

It only remains to show that AN Q C B. Observe that A N Q) is exactly the
set of projections in A and it forms a subring of (). (Note that for p,q € Q,
p@q=p+q—2pg; here + and — refer to the operations in the algebra (*(G).)
It follows from Proposition 9.1 that the Gelfand space of the algebra 2 is E. The
fact that 2( is generated by B means that the elements of ‘B separate the points of
E and E is zero-dimensional; by Stone duality, this implies that 8 corresponds to
the ring of clopen subsets of E, i.e., the ring of projections in 2. O

This leads us to the main theorem of this section.

Theorem 9.4. Let G be an infinite discrete group. Then A(G) C (= (G).

Proof. Let R C Q) denote the set of all restricted points. Note that, as no point
whose orbit is dense in () belongs to R, R is meager. Following [F2], we see
that B C R (which is enough by Lemma 9.3). Indeed, every point in B is of the

form u = Y/, H;(":l zjj with z;; minimal. Setting Z;; = G - z;;, we observe that
ueyil, H;("zl Zj; and the latter set is restricted by Proposition 9.2. O
Passing to the duals and combining with Proposition 9.1, the inclusion 2A(G) C

(*(G) yields a surjective map G — E(M(G)). Theorem 9.4 then translates to
the following.

Corollary 9.5. Let G be an infinite discrete group. Then the natural map G —
E(M(G)) is not injective.
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We end the section with a question inspired by our techniques. Given a count-
able discrete group G and S C G, let us say that S is a dense orbit set if for any
minimal G-flow X and any x € X, the set S-x C X is dense. For instance, it
follows from Theorem 6.2 that if Y C ANXG g strongly irreducible, U C Y is
non-empty open, and y € Y has dense orbit, then Vis(y, U) C G is a dense orbit
set.

Question 9.6. Characterize the dense orbit sets in countable, discrete groups.

10. THE IDEAL OF SMALL SETS

In [GW1], the authors showed that the inclusion 2(Z) C ¢*(Z) is proper (again
using Furstenberg’s work) by proving a more precise result characterizing the
interpolation sets for the algebra A(Z). Given a norm closed, translation invariant
subalgebra A of ¢*°(G) containing the constant functions, we say that a subset
A C G is an A-interpolation set if every bounded real-valued function on A can
be extended to a function in A. We write J4 = J4(G) for the collection of all
A-interpolation sets.

Definition 10.1. A subset B C G is called small if the unique minimal subsystem
in the orbit closure G-15 C Q = {0,1}C is the singleton 0 = 1p. Equivalently,
B C G is small iff for every finite F C G, the set {g € G : FgN B = @} is syndetic.

The small sets form an ideal on G, that is, the collection of small sets is closed
under taking subsets and finite unions. (See, for example, [BHM] for a proof.
In the terminology of [BHM], the small sets are precisely the sets which are not
piecewise syndetic.)

In [GW1], the authors characterize the interpolation sets for the algebra 2(Z)
of minimal functions on Z as precisely the small sets. Below, we generalize this
theorem to arbitrary countable groups.

We find it more convenient to use Boolean subalgebras of Q) = 2C rather than
closed subalgebras of (®(G). If X C 26 and B C G, we will say that X shat-
ters B if for all C C B, there exists x € X such that x| = xc. It follows from
the previous section that B is an 2l-interpolation set iff B shatters B. One way
to see this is the following. Recall that the algebra 2l is naturally isomorphic
to C(E) where E = E(M(G)). Let B C G and consider the algebra homomor-
phisms C(E) — (*(G) — (%°(B) (the second one being restriction). B is an
2-interpolation set exactly when the composition above is surjective. Dually, this
holds iff the composition BB — BG — E is injective. Dualizing again (using
Stone duality this time), this holds iff the map B — Q — 2B is surjective, i.e., iff
B shatters B.

Theorem 10.2. Let G be a countable, infinite, discrete group and let B C G. Then B
is shattered by B iff B is small. Moreover, if B is small, there exists a minimal subshift
X C Q) which shatters B.

Proof. The proof that if B shatters B, then B is small is carried out in the same way
as in [GW1] and we do not repeat it here. This is the part of the proof that uses
the fact that () is disjoint from all minimal flows and Furstenberg’s results. The
other direction does not directly generalize from [GW1] and we provide a proof
using our techniques from Section 5. This also gives a new proof for G = Z.
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Let B C G be small and let S C K(ZG) be the closure of those strongly
irreducible subshifts which shatter B. This collection is non-empty, as 2 € 8.
Moreover, shattering B is a closed condition, so every member of 8p shatters B.
We will show that the minimal subshifts in 8z form a dense G4 subset of Sg. We
have already seen in Proposition 5.3 that the minimal subshifts form a G; set. So
we show that they are dense using a similar argument as in Proposition 5.3.

Fix Z' a strongly irreducible B-shattering subshift, and fix F C G finite. Find
V C G finite symmetric, containing eg and u € Z’ such that u|y contains all
F-patterns appearing in Z'. We also assume that Z’ is V-irreducible. As in the
proof of Proposition 5.3, we will find a subshift Y with the property that members
of Y are at least V-separated and non-empty, and we will construct the map
¢: Z' x Y — 2C and the subshift Z = ¢(Z’ x Y) just as before. However, we need
to impose additional conditions on Y in order to ensure that Z shatters B.

Since B is small, there is a finite D C G such that for every ¢ € G, there is
h € G with V°h C Dg and V3hNB = @. Let X C 26 be the subshift of maximal
D3-separated sets, which is strongly irreducible by Lemma 5.2. Now form the
shift D¢ with alphabet D. We define ¢: D¢ x X — 2 by

P(w,x)(h) =1 < Jge€G x(¢)=1land h=w(g)g

and we set Y = Im(¢). In words, the elements of Y are formed by taking a
maximal D3-separated set and then moving each member by an element of D.
By Lemma 5.1, Y is strongly irreducible, so Z as constructed above is strongly
irreducible, and furthermore, every pattern in Sp(Z) = Sp(Z') appears in every
member of Z.

We now argue that Z shatters B. Let C C B, and using the fact that Z’ shatters
B, find z € Z' with z|p = xc. Let x € X be arbitrary. Define w € D¢ as follows:
for every g such that x(g) = 1, find h such that V°h C Dg\ B (this is possible
by the choice of D) and set w(g) = hg~'; if x(g) = 0, set w(g) arbitrarily. Then
let y = ¢(w, x). By construction, y has the property that whenever y(h) = 1, we
have V51N B = @. 1t follows that ¢(z,v) |5 = z|p = xc- O

11. MINIMAL FLOWS WITH LARGE AUTOMORPHISM GROUPS

In this section, G is again a countable, discrete group. Given a G-flow Y,
we let Aut(Y, G) denote the group of G-flow automorphisms of Y (that is, all
homeomorphisms of Y that commute with the action of G). We will generalize
the tools from Section 5 to produce G-flows Y such that Aut(Y, G) embeds any
compact metrizable group. Our main tool is a variant of the notion of a strongly
irreducible subshift, where we allow the “alphabet” to be an arbitrary compact
metric space (not necessarily zero-dimensional, as it was in Section 5).

Fix (X,d) a compact metric space, and form the G-flow X©, where G acts by
right shift. Write Fin(G) for the collection of finite subsets of G. If Y C X© is
a subflow and F € Fin(G), we define Sp(Y), the F-patterns of Y, to be the set
Se(Y) == {y|r : y € Y} C X'. Notice that Sp(Y) is compact, and a compatible
metric on Sp(Y) is given by

dp(ao, 1) = max{d(ao(f),a1(f)) : f € F}.
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In particular, we can view Sp(Y) as an element of K(XF), the space of compact
subsets of X' endowed with the Vietoris topology. A metric compatible with this
topology is the Hausdorff metric given by

dp(K,L) := max ({dp(y,L) :y € K} U{dp(K,z) : z € L}).

Let Sub(X®) C K(X®) be the collection of subflows of X©. This is a compact
subspace of K(X%). Another way to view the Vietoris topology on Sub(X©) is as
follows. The map
Q:Sub(X%) = [ K(X5)
FeFin(G)
given by Q(Y) = (Sp(Y))perin(G) is injective, and the Vietoris topology on Sub(X©)
makes () an embedding.

Given € > 0 and F € Fin(G), we say that Y is (e, F)-minimal if for every y € Y,
{(g-y)|r : § € G} is e-dense in Sp(Y), meaning that for every o € Sp(Y), there
is ¢ € G with dp(a, (§-y)|r) < €. Notice that Y is (e, F)-minimal iff for some
V € Fin(G) andeveryy € Y, {g-y: g € G,Fg C V} C Sp(Y) is an e-dense set.
This is an open condition on Sy (Y), so the (€, F)-minimal flows form an open
subset of Sub(X®). In particular, the minimal flows form a Gs subset, as a flow is
minimal iff it is (e, F)-minimal for every F € Fin(G) and every € > 0.

We now come to the key definition of this section.

Definition 11.1. We say that a subflow ¥ C XG is precisely irreducible if there
is V € Fin(G) such that for any Dy, D; € Fin(G) which are V-apart and any
Yo,y1 €Y, thereis y € Y with y|p, = y;|p, fori =0,1.

As with strong irreducibility, the requirement that Dy and D; above be finite
is not essential.

If X is finite, the precisely irreducible subshifts are exactly the strongly irre-
ducible ones; if X is a Cantor space, being precisely irreducible is strictly stronger
than being strongly irreducible in the sense of Section 5. The disadvantage of
this notion compared with strong irreducibility is that the family of precisely ir-
reducible subshifts is not closed under factors; however, this is the correct notion
for our purposes here.

Let § denote the closure of the precisely irreducible subflows (8 is non-empty
because XC is precisely irreducible). One can show that the minimal flows are
dense in 8§ and below we will prove an “invariant” version of this fact.

Let I' be a compact metrizable group and let 4 be a compatible left-invariant
metric on . We can also endow I'C with a I'-flow structure, where T acts by
left multiplication on each coordinate. This action commutes with the G-action,
so each v € T acts as a G-flow automorphism of TC. If Y C T'C is a G-subflow
which is also I'-invariant, then T also acts on Sp(Y) by left multiplication for each
F € Fin(G). Let 8t be the closure of those precisely irreducible subshifts which
are also I'-invariant; note that 8y # @, since I'G is a member.

The following proposition is an analogue of Proposition 5.3 in this setting.

Proposition 11.2. The minimal flows form a dense G4 subset of Sr.

Proof. Tt suffices to show that for every F € Fin(G) and every € > 0, the set of
(€, F)-minimal subshifts is open and dense in 8y. As openness was previously
discussed, we only show density. The proof mimics the proof of Proposition 5.3
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but avoids the use of a “Conf” function. Fix Y a precisely irreducible, I'-invariant
G-subflow. By enlarging F and shrinking € if needed, it is enough to find a pre-
cisely irreducible, I'-invariant G-subflow Z which is (e, F)-minimal and satisfies
EF(SF(Y), SF(Z)) < €.

Find u € Y and a symmetric V € Fin(G) with F C V such that {(g-u)|p: g €
G,Fg C V} is e-dense in Sp(Y). We may assume that V witnesses the precise
irreducibility of Y. Define Z C I'C by declaring that z € Z iff there isy € Y and a
maximal V°-separated set B C G such that all of the following hold:

(i) For every g € B, there exists v € T such that (g-z)|y = - uly.
(i) We have z|g\ 35 = Y|g\v3p-

(iii) For g € B, we have (g-z)|ys € Sys(Y).

By the precise irreducibility and I'-invariance of Y, given y € Y and B as above,
there exists z € Y which satisfies (i) and (ii) (and a fortiori (iii)). Thus Z # @. Z
is closed because it is obtained from the closed conditions (i)—(iii) by projecting
over the compact sets Y and the subshift of maximal V°-separated subsets of G.
Also, Z is clearly invariant under the actions of both G and I'. Conditions (ii) and
(iii) ensure that Sp(Z) C Sp(Y) and the choice of u and (i) ensure that Sp(Z) is
e-dense in Sp(Y). Finally, Z is (e, F)-minimal by the choice of u and the fact that
the sets B are syndetic.

Next we show that Z is precisely irreducible with witness V. Suppose
Do, Dy € Fin(G) are V?-apart and let z; € Z, i = 0,1. Find y; € Y and max-
imal V5—separated sets Bj C G which witness that z; € Z. Let C; = B; N V°D;
and let D! = D; UV5C; C VID;. Enlarge Cy U C; to a maximal V°-separated set
B C G. Using the precise irreducibility of Y, find y € Y with y|p = y;|p and
such that for ¢ € B\ (Dj U D}), we have g - y|y = u|y. Finally, define z € Z by
zlpr = zilp; and z|g\(pyupy) = Y6\ (pyup;)- One readily checks that this z verifies
the conditions (i)—(iii) with B and y. [l

Now let I' =TT, U(n), where U(n) is the n-dimensional unitary group. By the
Peter-Weyl theorem, I' embeds every compact metrizable group. Thus we obtain
a minimal G-flow Y such that Aut(Y, G) embeds every compact metrizable group.

We can push this even further by noting that the analogues of Lemma 6.1,
Corollary 6.5, and Corollary 6.8 hold for 8r. (The only proof which differs from
the one in Section 5 is the one for essential freeness; we prove this in Lemma 11.4
below.) Let {Y; : i < ¢} C 8t be minimal flows such that the product Y = [T; Y;
is minimal. Then the group I'“ embeds in Aut(Y, G) and as every automorphism
of Y lifts to an automorphism of the universal minimal flow M(G) (see [A, Chap-
ter 10, Exercise 1]), we obtain the following.

Theorem 11.3. Let G be a countable, infinite group. Then Aut(M(G), G) has cardinal-
ity 2%, the largest possible cardinality. In particular, M(G) is not proximal.

That M(G) is not proximal follows from the fact that it has non-trivial au-
tomorphisms: if v € Aut(M(G),G), then for any point x € M(G) such that
¥ -x # x, x and 1y - x are not proximal.

With a bit more work, we can also generalize a recent result of Cortez and
Petite [CP]. There, the authors show that every countable, residually finite group
can be realized as a subgroup of Aut(Y,Z) for some minimal, free Z-flow Y with
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Y a Cantor set. We generalize this in Theorem 11.5 but first we deal with essential
freeness for flows in Sr.

Lemma 11.4. Let X be a compact metric space with no isolated points. Then the essen-
tially free flows are dense Gy in 8. If I' is an infinite compact metrizable group, then the
same holds for Sr.

Proof. Notice that Y C XC is essentially free iff for every ¢ € G, every F € Fin(G),
every € > 0, and every e-ball U C Sp(Y), thereisy € Y withy|r € Uand gy # .
For fixed g, F, €, and U, this is an open condition, so being essentially free is G;.

To show that being essentially free is dense, suppose that Y is precisely irre-
ducible with witness V € Fin(G). Now let

Z={zeXC%:3yecYVeeG dyg),z(g) <e}

Then Z is essentially free (because X has no isolated points) and precisely irre-
ducible, also with witness V.

In the case concerning 8t (so X = I'), the exact same proof works, as the flow
Z considered above is I-invariant as long as Y and d are. O

Theorem 11.5. Let G be a countable infinite group, and let H be any countable maxap
group. Then there is a minimal, free G-flow Y with Y a Cantor set such that H embeds
into Aut(Y, G).

Proof. We may suppose that H C T' with I' a compact metrizable group. Let
X € 8r be a minimal, essentially free flow. Then by Proposition 8.3, Sg(X) is a
minimal, free G-flow. Let B = Clop(Sg(X)) be the complete Boolean algebra of
clopen subsets of Sg(X), or equivalently, the regular open subsets of X. Notice
that Aut(X, G) acts on B in the obvious way, so I' embeds into Aut(Sg(X),G).
Form a subalgebra By C B with the following properties:

e B is countable.

e B is G-invariant and H-invariant.

e For each g € G, there is a clopen partition Sg(X) = | ;-, A; with each
A;j € By so that for each i < n, we have gA; N A; = @.

Then letting Y to be the Stone space of By, we see that Y is a Cantor set and a
minimal, free G-flow such that H embeds into Aut(Y, G). O

We end with the following question: is there for every countable, infinite group
G a non-trivial minimal incontractible flow? Equivalently, is there a non-trivial
minimal flow which is disjoint from every minimal proximal flow?
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