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Abstract. We study the complexity of isomorphism of classes of metric struc-
tures using methods from infinitary continuous logic. For Borel classes of locally
compact structures, we prove that if the equivalence relation of isomorphism
is potentially Σ0

2, then it is essentially countable. We also provide an equiva-
lent model-theoretic condition that is easy to check in practice. This theorem is
a common generalization of a result of Hjorth about pseudo-connected metric
spaces and a result of Hjorth–Kechris about discrete structures. As a different
application, we also give a new proof of Kechris’s theorem that orbit equivalence
relations of actions of Polish locally compact groups are essentially countable.

1. Introduction

The notion of Borel reducibility of definable equivalence relations was intro-
duced in the foundational paper of Friedman and Stanley [FS] and since then,
it has become a central part of modern descriptive set theory. In [FS], the au-
thors were interested in one specific kind of equivalence relations—isomorphism
of countable structures—and this still remains one of the best studied facets of
the general theory. This setting allows to use methods from descriptive set theory,
Polish group dynamics, and infinitary logic and their interplay leads to a rich and
detailed theory. It was further developed in the papers of Hjorth–Kechris [HK]
and Hjorth–Kechris–Louveau [HKL], where the Borel orbit equivalence relations
of the infinite symmetric group S∞ were studied in detail. We recommend the
book of Gao [G] as a general reference for the more basic results.

Hjorth’s work on turbulence [H3] and many papers by various authors follow-
ing it showed that a large class of equivalence relations coming from analysis can-
not be captured by isomorphism of countable structures. This fueled the research
on general orbit equivalence relations of Polish groups, mostly using methods
from dynamics and Baire category. In many cases, proofs were driven by intu-
ition from discrete model theory but no appropriate model-theoretic framework
was available to formalize these ideas and they were often translated to the lan-
guage of dynamics. Two notable examples are the papers of Becker [B1] and
Hjorth [H4] (see also Melleray [M]).

However, with the development of continuous logic in recent years, it is now
possible to use model theory directly in this more general setting. The work of
Gao and Kechris [GK] and Elliot, Farah, Paulsen, Rosendal, Toms, and Törnquist
[EFP+] showed that the class of equivalence relations reducible to isomorphism
of metric structures is exactly the same as those reducible to an orbit equivalence
relation of a Polish group action. A major difference with the discrete setting is
that countable structures can be thought of all having the same universe (some
fixed countable set) and then isomorphism is nothing but the orbit equivalence
relation of the natural action of S∞. This is very convenient for applying both
dynamical and model-theoretic methods. In the continuous setting, this is no
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longer possible and two approaches of encoding separable metric structures have
emerged in the literature. The first is encoding them as closed substructures of an
appropriately chosen universal and sufficiently homogeneous structure (for ex-
ample the Urysohn metric space). This is the approach taken in [GK] and [EFP+],
where the authors show that if one restricts the class of subspaces appropriately,
one can still recover isomorphism as the orbit equivalence relation of the isometry
group of the Urysohn space. However, the encoding for achieving this is often
cumbersome and the result is somewhat difficult to work with. An alternative
method, closer to the encoding of discrete structures, was used by Ben Yaacov,
Doucha, Nies, and Tsankov in [BDNT]. It is based on considering the values of
the continuous predicates on a countable dense subset of the structure and recov-
ering the whole structure from this information by taking the completion. This
encoding allows for many interesting topologies on the space of structures, given
by fragments of Lω1ω, as in the discrete setting. Its main disadvantage is that
one loses the group action, even though some dynamical methods, most notably
a version of the Vaught transform, are still available. In order to compare the two
methods, the reader may consult [BDNT] and the paper of Coskey and Lupini
[CL]: each proves a version of the López-Escobar theorem for the respective en-
coding.

First-order finitary logic is usually not expressive enough for descriptive set
theoretic applications. Because of Scott sentences and the López-Escobar theo-
rem, the logic that is usually employed for the study of the isomorphism equiva-
lence relation of discrete structures is Lω1ω, which allows for countable conjunc-
tions and disjunctions. A continuous Lω1ω logic was first studied by Ben Yaacov
and Iovino in [BI] and a continuous logic version of Scott analysis was developed
in [BDNT], laying the foundations for descriptive set theoretic applications.

In the beginning of this paper, we further develop the model theory of con-
tinuous Lω1ω logic and most notably the topometric structure of the type spaces.
Because of the lack of compactness, there are some additional difficulties when
compared with the usual continuous logic setting. Then, given an Lω1ω fragment
F and an F-theory T, we define a topology on the space Mod(T) of codes for
separable models of T. If ξ ∈ Mod(T), we denote by Mξ the model coded by ξ.
In analogy with the discrete setting, we identify precisely when an isomorphism
class of a model is Gδ.

Theorem 1.1. Let F be a fragment, T be an F-theory and ξ ∈ Mod(T). Let tF denote
the topology on Mod(T) given by the fragment F and let [ξ] denote the set of models in
Mod(T) isomorphic to Mξ . Then the following are equivalent:

(i) [ξ] is Π0
2(tF);

(ii) [ξ] is tF-comeager in [ξ]
tF ;

(iii) [ξ] is tF-non-meager in [ξ]
tF ;

(iv) Mξ is F-atomic.

Fragment topologies in a somewhat different setting have been previously con-
sidered by Ivanov and Majcher-Iwanow in [IMI]. A related topology, the one
generated by the atomic formulas, has also been studied, for example by Cúth,
Doležal, Doucha, and Kurka in [CDDK2, CDDK1]. If the fragment F is the one
of finitary logic and the theory T eliminates quantifiers, then the two topologies
coincide and this allows us to recover some results of [CDDK2, CDDK1] about
Banach spaces from our general theorem (cf. Corollary 4.5).

Next we turn to the study of the situation where the isomorphism equivalence
relation on models of a theory T has low Borel complexity. Recall that if Γ is a
pointclass, X is a standard Borel space and E is a Borel equivalence relation on
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X, then E is called potentially Γ if there is a Polish topology τ on X compatible
with its Borel structure such that E ⊆ X2 is Γ in τ × τ. E is called essentially count-
able if it is Borel reducible to a Borel equivalence relation with countable classes.
It is obvious that an essentially countable equivalence relation is potentially Σ0

2.
A somewhat surprising converse to this for orbit equivalence relations of S∞ is
due to Hjorth and Kechris [HK]. One possible proof goes through a third equiv-
alent model-theoretic condition that is easily verified in practice: isomorphism
on a class of countable structures is essentially countable iff there exists a frag-
ment F such that for each structure M in the class, there exists a tuple ā ∈ Mk

such that ThF(M, ā) is ℵ0-categorical. This theorem easily implies, for example,
that isomorphism (on a Borel class of) of finitely generated discrete structures is
essentially countable.

If one wants to generalize the theorem of Hjorth and Kechris to the continu-
ous setting, some care is needed. First, the result for S∞ as stated above simply
fails for general Polish groups. A simple way to see this is to consider the Ba-
nach space ℓ1 as an Fσ Polishable subgroup of RN; then the orbit equivalence
relation given by the translation action ℓ1 ↷ RN is Fσ but is not essentially count-
able [H3, Proposition 3.25]. The corollary about finitely generated structures also
spectacularly fails in the continuous setting: by combining several results in the
C∗-algebraic literature with a theorem of Sabok [S1], one sees that isomorphism
for singly generated C∗-algebras is universal for orbit equivalence relations of
Polish group actions (cf. Remark 6.7).

However, a form of the Hjorth–Kechris theorem is still true if one restricts to
isomorphism of locally compact structures. There is also an appropriate model
theoretic condition which is easy to check in applications (and implies the Hjorth–
Kechris one in the discrete setting). We call a type p rigid if for any two realiza-
tions (M, ā), (N, b̄) of p in separable models M and N, we must have that M and
N are isomorphic. Note, however, that the isomorphism need not send ā to b̄:
this is what makes this condition weaker than just saying that p is ℵ0-categorical
as a theory.

If T is a theory, we denote by ∼=T the equivalence relation of isomorphism of
models of T. The following is our main theorem.

Theorem 1.2. Let T be a countable Lω1ω theory such that all of its separable models are
locally compact. Then the following are equivalent:

(i) ∼=T is potentially Σ0
2;

(ii) There exists a fragment F such that for every ξ ∈ Mod(T), there is k ∈ N such
that the set

{ā ∈ Mk
ξ : tpF ā is rigid}

has non-empty interior in Mk
ξ ;

(iii) ∼=T is essentially countable.

This theorem has a number of corollaries. The notion of a pseudo-connected
locally compact metric space was introduced by Gao and Kechris in [GK] in or-
der to study the complexity of isometry of locally compact metric spaces. For
example, connected locally compact spaces and proper metric spaces are pseudo-
connected. It is easy to see that metric structures whose underlying metric space
is pseudo-connected satisfy condition (ii) above (in fact, all types realized in such
structures are rigid). So isomorphism of pseudo-connected metric structures is
an essentially countable equivalence relation. This recovers a theorem of Hjorth,
previously conjectured by Gao and Kechris (see [GK, Theorem 7.1]), for the pure
metric space case and in fact, we have used some of the ideas of his proof.
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Another well known result is Kechris’s theorem [K1] that orbit equivalence
relations of actions of Polish locally compact groups are essentially countable.
This is also an easy consequence of Theorem 1.2 after an appropriate encoding
(cf. Corollary 7.8).

We expect that the continuous infinitary logic framework we build will find
further applications in descriptive set theory. In view of this, in Section 2, we
develop fairly carefully the theory of type spaces, giving three equivalent defini-
tions for the metric on them used to define the topometric structure. Section 3 is
devoted to a self-contained proof of the omitting types theorem for Lω1ω continu-
ous logic (the theorem is originally due to Eagle [E1]). In Section 4, we define the
Borel space of models of a theory and the Polish topologies on it given by frag-
ments of Lω1ω. Finally, Sections 5 and 6 contain the proofs of our main results
and Section 7 is devoted to applications.

Acknowledgments. We would like to thank Itaï Ben Yaacov and Michal Doucha
for useful discussions and Ward Henson for providing references concerning the
model theory of Banach spaces. We are also grateful to the anonymous referee
for a careful reading of the paper, useful suggestions, and providing a reference.
Research on this paper was partially supported by the ANR project AGRUME
(ANR-17-CE40-0026) and the Investissements d’Avenir program of Université de
Lyon (ANR-16-IDEX-0005).

2. Fragments of continuous Lω1ω logic and type spaces

2.1. Lω1ω logic. We start by recalling the setting of Lω1ω continuous logic. We
mostly follow [BDNT], however, the exposition is simplified by the fact that we
do not need to keep careful track of moduli of continuity. A modulus of continuity
is a continuous function ∆ : [0, ∞) → [0, ∞) satisfying for all r, s ∈ [0, ∞):

• ∆(0) = 0;
• ∆(r) ≤ ∆(r + s) ≤ ∆(r) + ∆(s).

Suppose that ∆ is a modulus of continuity and that (X, dX) and (Y, dY) are metric
spaces. We say that a map f : X → Y respects ∆ if

dY( f (x1), f (x2)) ≤ ∆(dX(x1, x2)) for all x1, x2 ∈ X.

A signature L is a collection of predicate and function symbols and as is cus-
tomary, we treat constants as 0-ary functions. Throughout the paper, we assume
that L is countable. To each symbol P are associated its arity nP and its modulus of
continuity ∆P. In addition, if P is a predicate symbol, we associate to it its bound, a
compact interval IP ⊆ R where it takes its values. In a model M, predicate sym-
bols are interpreted as real-valued functions of the appropriate arity respecting
the modulus of continuity and the bound; similarly for function symbols. There
is always a special binary predicate for the metric, denoted by d. To make sense
of the modulus of continuity for symbols of arity greater than 1, we need to fix a
metric on tuples of elements of the model. By convention, if M is a model with
metric d and k ∈ N, we equip Mk with the metric given by

d(ā, b̄) = max
i

d(ai, bi).

Terms and atomic formulas are defined in the usual way. More general formu-
las are recursively defined as explained below; it is important to keep in mind that
every formula has a modulus of continuity and a bound that can be calculated
from its constituents. One can build new formulas using:
Finitary connectives: If ϕ and ψ are formulas and r ∈ Q, then ϕ + ψ, rϕ, and

ϕ ∨ ψ are again formulas. Here ϕ ∨ ψ is interpreted as max(ϕ, ψ) and we
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also define ϕ ∧ ψ := −(−ϕ ∨ −ψ) = min(ϕ, ψ) and ϕ .− ψ = (ϕ − ψ) ∨ 0.
The constant 1 is also a formula. By the lattice version of the Stone–
Weierstrass theorem (see [dJvR, Theorem 13.12]), these connectives suffice
to approximate any continuous combination of formulas.

Quantifiers: If ϕ(x, ȳ) is a formula, then supx ϕ and infx ϕ are also formulas.
Infinitary connectives: If {ϕn(x̄) : n ∈ N} are formulas with the same finite

set of free variables x̄ that respect a common continuity modulus and bound,
then

∨
n ϕn and

∧
n ϕn are also formulas. The symbol

∨
is interpreted

as a countable supremum and
∧

is interpreted as a countable infimum.
The condition that we impose ensures that the interpretations of these
formulas are still bounded, uniformly continuous functions.

We denote by Lω1ω(L) the collection of all formulas obtained as above.
The interpretations of formulas in a structure M are defined in the usual way.

We emphasize again that the interpretation of each formula of arity k is a uni-
formly continuous, bounded function Mk → R whose modulus of continuity and
bound can be calculated syntactically from the formula (and thus are the same
for all models). If ϕ(x̄) is a formula, we will denote by ϕM the interpretation of ϕ

in M. If ā ∈ Mk, we will often write ϕ(ā) instead of ϕM(ā). A sentence is a formula
with no free variables and a theory is a collection of conditions of the form ϕ = c,
where ϕ is a sentence and c ∈ R. A condition ϕ = c is satisfied in a structure M
if ϕM = c. A structure M is a model of the theory T, denoted by M |= T, if all
conditions in T are satisfied in M.

Definition 2.1. A fragment of Lω1ω(L) is a countable collection F ⊆ Lω1ω(L) that
contains all atomic formulas and is closed under finitary connectives, quantifiers,
taking subformulas, and substitution of terms for variables.

The smallest fragment is the finitary fragment Lωω(L) that contains no infinitary
formulas. If F is a fragment and T is a theory, we will say that T is an F-theory if
all sentences that appear in T are in F.

2.2. Type spaces. Let F ⊆ Lω1ω(L) be a fragment. The collection of F-formulas
over a fixed (finite or infinite) tuple of variables x̄ form a Riesz space Fx̄ with the
operations given by the finitary connectives defined above. If T is an F-theory,
we have a natural seminorm on this space given by:

(2.1) ‖ϕ‖T = sup{|ϕ(ā)| : M |= T, ā ∈ Mx̄}

The set {ϕ : ‖ϕ‖T = 0} is an ideal in Fx̄ and the completion of the quotient of Fx̄
by this ideal is an archimedean Banach lattice (with unit 1) that will be denoted
by Fx̄(T). Then we can define the space of approximately realizable types as follows:

Ŝx̄(T) = {p ∈ Fx̄(T)∗ : p(ϕ ∨ ψ) = p(ϕ) ∨ p(ψ) for all ϕ, ψ ∈ Fx̄(T)

and p(1) = 1}.

Ŝx̄(T) is clearly closed in the weak∗ topology, and therefore a compact space. We
will often write ϕ(p) or ϕp instead of p(ϕ).

The topology on Ŝx̄(T) is given by pointwise convergence on formulas, i.e.,
basic open sets are of the form

Jϕ < rK := {p ∈ Ŝx̄(T) : ϕ(p) < r},

where r ∈ Q and ϕ is a formula (and dually, Jϕ > rK = J−ϕ < −rK). This
topology is usually called the logic topology.



6 ANDREAS HALLBÄCK, MACIEJ MALICKI, AND TODOR TSANKOV

If |x̄| = n, we will also write Ŝn(T) for Ŝx̄(T). If M |= T and ā ∈ Mx̄, the type
of ā is defined by

ϕ(tp ā) = ϕ(ā) for all ϕ ∈ Fx̄(T).
Sometimes we also write tpF(ā) to specify the fragment if it is not understood
from the context. The set Sx̄(T) of realizable types (or just types) is defined by

Sx̄(T) = {tp(ā) : M |= T, ā ∈ Mx̄}.

If F is Lωω, then the compactness theorem tells us that every approximately real-
izable type is realizable, i.e., Ŝx̄(T) = Sx̄(T). For more general fragments, this is
usually not the case. A typical situation in which a type p is not realizable occurs
when for some infinitary formula Φ =

∧
k ϕk, we have that Φ(p) < infk ϕk(p).

Nonetheless, we still have the following.

Lemma 2.2. The set Sx̄(T) is dense in Ŝx̄(T).

Proof. Recall that the .− operation is defined by x .− y = (x − y) ∨ 0. Suppose that
for some formula ϕ(x̄) and r ∈ Q the open set Jϕ < rK ⊆ Ŝx̄(T) is non-empty. In
particular, there is p ∈ Ŝx̄(T) such that ϕ(p) < r. Then

p(r .− ϕ) = r .− p(ϕ) > 0,

which implies that ‖r .− ϕ‖T > 0. By the definition (2.1) of ‖·‖T , this means that
there is M |= T and ā ∈ Mx̄ such that ϕ(ā) < r. □

We will see later in Proposition 3.7 that Sx̄(T) is a Gδ set and therefore a Polish
space.

Next we see that the Banach lattice of formulas Fx̄(T) is isomorphic to the
lattice C(Ŝx̄(T)) of real-valued, continuous functions on Ŝx̄(T) equipped with
the sup norm. This is just a version of the Yosida representation theorem, see
[dJvR, Section 13].

Proposition 2.3. The map Γ : Fx̄(T) → C(Ŝx̄(T)) defined by

Γ(ϕ)(p) = p(ϕ)

is an isometric isomorphism of Banach lattices.

Proof. It is clear that Γ is a lattice homomorphism. To see that it is isometric, note
that, using Lemma 2.2,

‖Γ(ϕ)‖ = sup{|ϕ(p)| : p ∈ Ŝx̄(T)}
= sup{|ϕ(p)| : p ∈ Sx̄(T)}
= sup{|ϕ(ā)| : M |= T, ā ∈ Mx̄} = ‖ϕ‖T .

This implies that Γ is injective and that its image is closed. The image is dense by
the Stone–Weierstrass theorem, so Γ is also surjective. □
Remark 2.4. There is a subtle feature of continuous Lω1ω logic regarding types
and constants that can sometimes be confusing. In classical Lω1ω logic, as well
as in finitary continuous logic, if ϕ(c) is a formula containing a constant symbol
c, then we can replace all occurrences of c by a variable x and still obtain a valid
formula ϕ(x). In particular, a type in S1(T) is nothing but a complete theory in
the language expanded by a constant symbol extending T. In continuous Lω1ω

logic, this is no longer the case. For a simple example, consider the sentence∨
n
(n · ‖c‖ ∧ 1)

in the language of Banach spaces. This sentence evaluates to 1 if c 6= 0 and to
0 if c = 0 in any Banach space. However, replacing c by a variable yields an
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invalid formula because it does not respect the equicontinuity rule for infinitary
connectives (and indeed, its interpretation would be discontinuous at 0).

This feature of the logic is what allows to have Scott sentences for struc-
tures of the form (M, a), where the orbit Aut(M) · a is not closed. Note that
if b /∈ Aut(M) · a, then (M, a) ≇ (M, b). However, if ϕ(x) is any Lω1ω-formula
and b ∈ Aut(M) · a, then ϕM(a) = ϕM(b). So it is impossible to distinguish (M, a)
and (M, b) by a formula ϕ(x) in the language of M but it is possible to distin-
guish them by a sentence (in an appropriately rich fragment) if the language is
augmented by a constant symbol.

An important feature of type spaces in continuous logic is that, in addition
to the logic topology, they are also equipped with a metric, coming from the
metric on the models, which, in general, defines a finer topology. We recall that
a compact topometric space is a triple (X, τ, ∂), where X is a set, τ is a compact
Hausdorff topology on X and ∂ is a metric on X which is τ-lower semicontinuous
(i.e., the set {(x1, x2) ∈ X2 : ∂(x1, x2) ≤ r} is τ × τ-closed for every r ≥ 0) and
such that the topology defined by ∂ is finer than τ. We refer the reader to Ben
Yaacov [B3] for the general theory of topometric spaces.

We equip the type spaces Ŝx̄(T) with a topometric structure as follows. The
topology τ is the logic topology defined earlier: namely, pointwise convergence
on formulas. We recall from [BDNT, Section 7] the metric ∂ on Ŝx̄(T) defined by:

(2.2) ∂(p, q) ≤ s ⇐⇒ ∀ϕ ∈ F
(

inf
ȳ

(
(d(x̄, ȳ) .− s) ∨ |ϕ(ȳ)− ϕ(p)|

))q
= 0.

This definition is somewhat cumbersome and in [BDNT] it is only verified that ∂ is
a metric on the set of realizable types. We will give an equivalent definition which
is easier to handle in some situations and, in particular, is obviously symmetric.
We define for p, q ∈ Ŝx̄(T):

(2.3) ∂(p, q) < s ⇐⇒ ∀U 3 p, V 3 q τ-open ∃M |= T, ā, b̄ ∈ Mx̄

tp(ā) ∈ U and tp(b̄) ∈ V and d(ā, b̄) < s.

Our first task is to reconcile the two definitions.

Proposition 2.5. The metrics defined by (2.2) and (2.3) are equal and (Ŝx̄(T), τ, ∂) is a
compact topometric space.

Proof. For the first two paragraphs of the proof, we denote the metric defined in
(2.2) by ∂′. First we check that ∂ ≤ ∂′. To that end, suppose that ∂′(p, q) ≤ s and
fix ϵ > 0 in order to show that ∂(p, q) < s + ϵ. Let U = Jϕ < rK 3 p and V 3 q
be given. By decreasing ϵ, we may assume that ϕ(p) < r − ϵ. From the density
of realizable types and (2.2), we know that there exists M |= T and b̄ ∈ Mx̄ such
that tp b̄ ∈ V and

M |= inf
ȳ

(
(d(b̄, ȳ) .− s) ∨ |ϕ(ȳ)− ϕ(p)|

)
< ϵ,

i.e., there exists ā such that d(ā, b̄) < s + ϵ and |ϕ(ā)− ϕ(p)| < ϵ, showing that
tp ā ∈ U and ∂(p, q) < s + ϵ, as required.

Next we show that ∂′ ≤ ∂. Suppose that ∂(p, q) < s in order to show that
∂′(p, q) ≤ s. Let ϕ ∈ F and ϵ > 0 be given. Denote by ψ(x̄) the formula on
the right-hand side of (2.2). Using (2.3), find M |= T and ā, b̄ ∈ Mx̄ such that
d(ā, b̄) < s, |ϕ(b̄)− ϕ(p)| < ϵ, and |ψ(ā)− ψ(q)| < ϵ. It is easy to see now that
ψ(ā) < ϵ, implying that ψ(q) < 2ϵ. As ϵ was arbitrary, this shows that ψ(q) = 0
as desired.
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Next we check that ∂ is a metric. It is obvious that ∂(p, p) = 0. Suppose next
that p 6= q in order to show that ∂(p, q) > 0. Let ϕ be a formula such that ϕ(p) < 0
and ϕ(q) > 1. If ∂(p, q) = 0, by (2.3), for every ϵ, there exist ā, b̄ with d(ā, b̄) < ϵ
and ϕ(ā) < 0, ϕ(b̄) > 1, contradicting the uniform continuity of ϕ.

That ∂ is symmetric follows directly from (2.3). Next we verify the triangle
inequality. Suppose that ∂(p1, p2) < s1 and ∂(p2, p3) < s3 in order to show that
∂(p1, p3) ≤ s1 + s3. Let U1 = Jϕ1 < rK 3 p1 and U3 = Jϕ3 < rK 3 p3 be given
τ-open sets and let ϵ be arbitrary such that ϕ1(p1), ϕ3(p3) < r − ϵ. Let

ψ1(x̄) = inf
ȳ

(
(d(x̄, ȳ) .− s1) ∨ |ϕ1(ȳ)− ϕ1(p1)|

)
,

ψ3(x̄) = inf
ȳ

(
(d(x̄, ȳ) .− s3) ∨ |ϕ3(ȳ)− ϕ3(p3)|

)
.

From (2.2), we know that ψ1(p2) = ψ3(p2) = 0. By Lemma 2.2, there exists a
model M and b̄ ∈ Mx̄ such that ψ1(b̄) < ϵ and ψ2(b̄) < ϵ. Then there exist
ā, c̄ ∈ Mx̄ such that ϕ1(ā) < r, ϕ3(c̄) < r, d(ā, b̄) < s1 + ϵ, d(b̄, c̄) < s3 + ϵ. By the
triangle inequality in M, d(ā, c̄) < s1 + s3 + 2ϵ. Thus tp ā ∈ U1, tp c̄ ∈ U3 and by
(2.3) and the fact that ϵ was arbitrary, we have that ∂(p1, p3) ≤ s1 + s3.

That ∂ is τ-lower semicontinuous follows directly from (2.2). We finally check
that the ∂-topology refines τ. Let (pi)i be a net that ∂-converges to p. We need to
check that for every formula ϕ, ϕ(pi) → ϕ(p). Let ϵ > 0 be given and let δ > 0 be
such that for all models M and ā, b̄ ∈ Mx̄, d(ā, b̄) < δ =⇒ |ϕ(ā)− ϕ(b̄)| < ϵ. We
have that for all sufficiently large i, there exist M, ā, b̄ ∈ Mx̄ such that |ϕ(pi)−
ϕ(ā)| < ϵ, |ϕ(p)− ϕ(b̄)| < ϵ, and d(ā, b̄) < δ, implying that |ϕ(pi)− ϕ(p)| < 3ϵ.
This concludes the proof of the proposition. □

Note that ∂(p, q) = ∞ iff there exists a sentence ϕ such that ϕp 6= ϕq (this can
happen when the theory T is not complete). Another important property of the
metric ∂ that follows directly from the definition is that for all M and all ā, b̄ ∈ Mx̄,
we have that ∂(tp ā, tp b̄) ≤ d(ā, b̄).

We will say that a formula ϕ(x̄) is 1-Lipschitz if its interpretation ϕ : Mx̄ → R
is a 1-Lipschitz function for any model M. Equivalently, ϕ respects the continuity
modulus ∆L defined by ∆L(r) = r. We denote by F1 the collection of 1-Lipschitz
formulas in the fragment F. The following proposition gives yet another useful
equivalent definition for ∂. A similar formula for the Lωω fragment was proved
by Ben Yaacov [B3].

Proposition 2.6. (i) Let ∆ be a continuity modulus and let ϕ(x̄) be a formula. Then
ϕ respects ∆ as a formula iff ϕ respects ∆ as a function (Sx̄(T), ∂) → R.

(ii) For all p, q ∈ Ŝx̄(T),

∂F(p, q) = sup
ϕ∈F1

|ϕ(p)− ϕ(q)|.

Proof. (i) For the (⇐) direction, note that for all M |= T and ā, b̄ ∈ Mx̄, we have:

|ϕ(ā)− ϕ(b̄)| = |ϕ(tp ā)− ϕ(tp b̄)| ≤ ∆(∂(tp ā, tp b̄)) ≤ ∆(d(ā, b̄)).

For the (⇒) direction, fix two types p, q ∈ Sx̄(T). Let ϵ > 0. Find a model
M |= T and ā, b̄ ∈ Mx̄ such that |ϕ(p) − ϕ(ā)| < ϵ, |ϕ(q) − ϕ(b̄)| < ϵ, and
d(ā, b̄) < ∂(p, q) + ϵ. Then

|ϕ(p)− ϕ(q)| ≤ |ϕ(ā)− ϕ(b̄)|+ 2ϵ ≤ ∆(d(ā, b̄)) + 2ϵ ≤ ∆(∂(p, q) + ϵ) + 2ϵ.

Taking ϵ → 0, we obtain the result.
(ii) If ϕ is a 1-Lipschitz formula, it follows from (i) that |ϕ(p)− ϕ(q)| ≤ ∂(p, q).
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Next, suppose that ∂(p, q) > s. By (2.2), there exists a formula ϕ(ȳ) such that
denoting

θ(x̄) = inf
ȳ

(d(x̄, ȳ) .− s) ∨ |ϕ(ȳ)− ϕ(p)|,

we have θ(q) = r > 0. Let

ψ(x̄) = inf
ȳ

d(x̄, ȳ) ∨ (s/r)|ϕ(ȳ)− ϕ(p)|

and note that ψ(x̄) is 1-Lipschitz. Note also that if p′ is a realizable type, then
ψ(p′) ≤ (s/r)|ϕ(p)− ϕ(p′)| (by taking ȳ = x̄ in the inf); taking a net of realizable
types p′ converging to p yields that ψ(p) = 0. On the other hand, we will check
that ψ(q) ≥ s. Let ϵ > 0 and let M |= T and ā ∈ Mx̄ be such that |ψ(q)−ψ(ā)| < ϵ
and θ(ā) > r − ϵ. Then we see that

ψ(q) ≥ ψ(a)− ϵ ≥ s(r − ϵ)

r
− ϵ

and letting ϵ → 0, we obtain ψ(q) ≥ s. □

3. Omitting types and atomic models

3.1. Isolated types and atomic models. If p ∈ Sn(T) and δ > 0, we will denote
by Bδ(p) the open ∂-ball around p of radius δ. A type p ∈ Sn(T) is called isolated
if it belongs to the τ-interior of Bδ(p) for every δ > 0 (or, in other words, if τ and
the ∂-topology coincide at p). This is equivalent to the formally weaker condition
that Bδ(p) has non-empty τ-interior for every δ [BDNT, Lemma 7.4]. A model M
is called atomic if for every n, all n-types realized in M are isolated. We have the
following basic lemma.

Lemma 3.1. The set of isolated types in Sn(T) is ∂-closed and τ-Gδ.

Proof. Let In = {p ∈ Sn(T) : p is isolated}. First it is clear that In is Gδ in τ
because by definition, In is exactly the set of points of continuity of the identity
map (Sn(T), τ) → (Sn(T), ∂) (see, e.g., [K2, Proposition 3.6]).

Suppose now that pk
∂−→ p and that pk ∈ In for all k. Let ϵ > 0. Then there

is k and δ such that Bδ(pk) ⊆ Bϵ(p). But by hypothesis, Bδ(pk) has non-empty
τ-interior, and therefore, so does Bϵ(p). By the remark above, this is sufficient to
conclude that p is isolated. □

An important property of atomic models is their uniqueness. The following
standard fact is proved by the usual back and forth argument.

Proposition 3.2. Let M and N be separable L-structures and suppose that there is a
fragment F such that M ≡F N and M and N are F-atomic. Then M ∼= N. □
3.2. Omitting types. The omitting types theorem is a fundamental tool in model
theory and one of the few that do not depend on compactness. The version for
classical Lω1ω logic is well known. In the continuous setting, the theorem (with
a somewhat different formulation) is due to Eagle [E1]. The statement below in
the case for finitary continuous logic is due to Ben Yaacov. We have preferred to
include the proof as we think it is shorter and easier to follow than the one in
[E1]. We also use some of the constructions in defining the fragment topologies
in the next section.

We fix a fragment F and a countable F-theory T. If Ξ ⊆ Sx̄(T), we will say that
a model M |= T omits Ξ if no type in Ξ is realized in M.

Theorem 3.3 (Omitting types). Let F be a fragment and let T be an F-theory. Suppose
that for every n, we are given a τ-meager and ∂-open set Ξn ⊆ Sn(T). Then there is a
separable model M |= T that omits all of the Ξn.
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Throughout this subsection we fix a fragment F and a theory T as in the theo-
rem. We will write ≺ to denote elementary substructures with respect to F.

The proof of the theorem depends on two lemmas. To state the first of them
we need to define the space of the types each of whose realizations enumerates a
countable, dense subset of an elementary substructure. One can easily show that
this is an intrinsic property of the type. More precisely, let x̄ = (x0, x1, . . .) be a
countably infinite tuple of variables and, for p ∈ Sx̄(T), define

(3.1) p ∈ Sen
x̄ (T) ⇐⇒ ∀ϕ ∈ F

(
inf

y
ϕ(y, x̄)

)p
= inf

j
ϕp(xj, x̄).

We will say that a type p ∈ Sx̄(T) enumerates a model if p ∈ Sen
x̄ (T). We have the

following simple lemma that justifies the name.

Lemma 3.4. Let M |= T, ā ∈ Mω, and let p = tp ā. Then

p ∈ Sen
x̄ (T) ⇐⇒ {ai : i ∈ ω} ≺ M.

Proof. This is just a reformulation of the Tarski–Vaught test, see [BBHU, 4.5 Propo-
sition]. In [BBHU], it is stated only for finitary continuous logic but the proof
works equally well in the Lω1ω setting. □

Lemma 3.5. Sen
x̄ (T) is a dense Gδ subset of Ŝx̄(T) in the topology τ.

Proof. First note that (3.1) can be rewritten as: for all ϕ ∈ F and for all r ∈ Q,

(3.2)
(

inf
y

ϕ(y, x̄)
)p

< r ⇐⇒ ∃j ϕp(xj, x̄) < r.

(The important direction is from left to right; the other is automatic for all p.) Let
Uϕ,r denote the Gδ subset of Ŝx̄(T) defined by (3.2).

If Φ =
∧

k ϕk is an infinitary formula in F, let

VΦ = {p ∈ Ŝx̄(T) : Φ(p) = inf
k

ϕk(p)}.

It is clear that VΦ can be written as: p ∈ VΦ iff for all r ∈ Q,

(3.3) Φ(p) < r =⇒ ∃k ϕk(p) < r,

which shows that VΦ is a Gδ set. It is also clear that all realizable types are in
VΦ, so by Lemma 2.2, each VΦ is dense. The proof of the lemma will be complete
when we show that each of the sets Uϕ,r is dense and that

(3.4) Sen
x̄ (T) =

⋂
ϕ,r

Uϕ,r ∩
⋂
Φ

VΦ.

First we check that each Uϕ,r is dense. Let Jψ < sK ⊆ Ŝx̄(T) be non-empty open.
By Lemma 2.2, there exists a realizable p with ψ(p) < s. Let ā |= p in some model
M. We may assume that

(
infy ϕ(y, x̄)

)p
< r. Then there exists b ∈ M such that

ϕ(b, ā) < r. Let n be larger than the indices of all variables that appear in ϕ or ψ.
Finally, define p′ = tp(a0, . . . , an−1, b, an+1, . . .). It is clear that p′ ∈ Jψ < sK∩Uϕ,r.

We finally verify (3.4). The ⊆ inclusion being clear, we check the other. Let
p ∈ Ŝx̄(T) belong to the intersection on the right-hand side. Let ā be a real-
ization of the Lωω part of p in some model N (this means that ϕ(ā) = ϕ(p)
for every ϕ ∈ Lωω). Such a realization exists by the compactness theorem. Let
M = {ai : i ∈ N}; we will check that ā realizes all of p in M (this will imply, in
particular, that M is a model of T). We proceed to prove by induction on for-
mulas that for every formula ϕ ∈ F, ϕM(ā) = ϕ(p). This is true by construction
for atomic formulas. The induction step for finitary connectives follows from
the definition of the type space. Let now ϕ(x̄) = infy ψ(y, x̄). Suppose first that
ϕ(p) < r. As p ∈ Uψ,r, we have that there exists j with ψp(xj, x̄) < r. By the
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induction hypothesis, ψM(aj, ā) < r, and so, ϕM(ā) < r. Conversely, suppose that
ϕM(ā) < r. Then there is b ∈ M such that ψM(b, ā) < r; as {ai : i ∈ N} is dense
in M, this means that there is j such that ψM(aj, ā) < r, and using that p ∈ Uψ,r,
this gives that ϕ(p) < r, concluding the argument for quantifiers. The induction
step for infinitary connectives follows from (3.3). This concludes the proof of the
lemma. □

For each s ∈ [N]<N, i.e., for each finite sequence of distinct natural numbers,
we define a map πs : Sen

x̄ (T) → S|s|(T) by(
ϕ(x0, . . . , x|s|−1)

)πs(p)
=

(
ϕ(xs0 , . . . , xs|s|−1)

)p.

Lemma 3.6. For each s ∈ [N]<N the map πs|Sen
x̄ (T) is an open and continuous surjection

for the topology τ.

Proof. Continuity is clear, so we proceed to prove that π is surjective and open.
Let p ∈ Sn(T); let M |= T and ā ∈ Mn be such that tp ā = p. By the downward
Löwenheim–Skolem theorem, we may assume that M is separable. Let b̄ be a
dense sequence in M with bi = asi for i < n. Then tp b̄ ∈ Sen

x̄ (T) and πs(tp b̄) = p.
To check that πs is open, let Jϕ(x̄) < rK be a basic open set in Sen

x̄ (T). Let
xi0 , . . . , xik−1

be all variables that appear in ϕ and are not among xs0 , . . . , xsn−1 . We
claim that

πs(Jϕ < rK) = J inf
xi0 ,...,xik−1

ϕ < rK.

We only check the inclusion ⊇. Let p belong to the right-hand side and let ā be a
realization of p in a separable model M. Then there exist b0, . . . , bk−1 in M such
that ϕ(ā, b̄) < r. Finally, we can complete āb̄ to a dense sequence c̄ such that
πs(tp c̄) = p. □

Lemmas 2.2 and 3.6 together give us the following.

Proposition 3.7. For every n, the set of realizable types Sn(T) ⊆ Ŝn(T) is dense Gδ and
therefore a Polish space.

We are finally ready to prove the omitting types theorem.

Proof of Theorem 3.3. Let x̄ be an infinite tuple of variables and consider the subset
A ⊆ Sen

x̄ (T) defined by

A =
⋃

s∈[N]<N

π−1
s (Ξ|s|).

As the preimage of a meager set by an open map is meager, Lemma 3.6 implies
that A is meager. As Sen

x̄ (T) is Polish, this implies that there is p ∈ Sen
x̄ (T) \ A.

Let ā be a realization of p and let M = {ai : i ∈ N}. We claim that M omits all
of the Ξn. Suppose not; then there is n, some q ∈ Ξn, and b̄ ∈ Mn such that
q = tp b̄ ∈ Ξn. As Ξn is ∂-open, there exists ϵ > 0 such that Bϵ(q) ⊆ Ξn. As
ā is dense in M, there exist s0, . . . , sn−1 such that d(b̄, (as0 , . . . , asn−1)) < ϵ. Then
tp(as0 , . . . , asn−1) ∈ Ξn, contradicting the fact that πs(p) /∈ Ξn. □

Remark 3.8. We note that the proof above gives the following stronger version of
Theorem 3.3 that will be used in the sequel. Namely, under the assumptions of
the theorem, for comeagerly many ξ ∈ Sen

x̄ (T), the model coded by ξ omits all of
the Ξn.
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4. Topologies generated by fragments

In the next sections, we are going to discuss the equivalence relation of iso-
morphism of separable models of a given theory T. In order to do this, we need
to define a suitable Polish topology (or at least a standard Borel structure) on
the set of these models. It is possible to do this in many different ways but the
most convenient one for us will be to use the space Sen

x̄ (T) of types enumerating
models defined in the previous section—it clearly codes all the separable mod-
els of T. It is worth noting at this point that this space and its standard Borel
structure do not depend on the fragment F that we have chosen; the topology,
however, does: if the fragment has more formulas, then the topology has more
open sets. By Lemma 3.5, this topology is Polish as long as the fragment F con-
tains all sentences in T. In order to avoid subscripts, it will also be convenient
for us to identify the variable xi with the natural number i. With this conven-
tion, our setting is equivalent to the usual approach in descriptive set theory to
consider structures defined on ω. We will denote by Mod(T) the standard Borel
space Sen

x̄ (T) and by tF the Polish topology on Mod(T) generated by the frag-
ment F. We will also denote by Mod(L) the space of all separable structures in
the signature L (i.e., the space of models of the empty theory).

Recall that if ξ ∈ Mod(T), we denote by Mξ the model enumerated by ξ, i.e.,
the structure {ai : i ∈ N} for any realization ā |= ξ. We write M ∼= N if the
models M and N are isomorphic and ξ ∼= η if Mξ

∼= Mη . We will also denote by
[ξ] = {η ∈ Mod(T) : η ∼= ξ} the isomorphism class of ξ. We will write M ≡F N
if the models M and N are elementarily equivalent with respect to F, that is, for
all sentences ϕ ∈ F, we have ϕM = ϕN .

Proposition 4.1. Let T be an F-theory, ξ, η ∈ Mod(T). Then Mξ ≡F Mη if and only

if [ξ]
tF

= [η]
tF .

Proof. For any sentence ϕ ∈ F and r ∈ R, the set {ξ ∈ Mod(T) : ϕξ = r} is
invariant under isomorphism and closed in Mod(T), so the backward direction
is clear.

Assume now that Mξ ≡F Mη . Fix ϕ(x̄) ∈ F, r ∈ R, and u ∈ Nx̄ and suppose
that [ξ] ∩ Jϕ(u) < rK 6= ∅. Then(

inf
x̄

ϕ(x̄)
)η

=
(

inf
x̄

ϕ(x̄)
)ξ

< r,

so there exists b̄ in Mx̄
η such that ϕMη (b̄) < r. But this means that there exists

ζ ∈ [η] such that ϕζ(u) < r, i.e., [η] ∩ Jϕ(u) < rK 6= ∅. Thus, [ξ]
tF

= [η]
tF . □

Corollary 4.2. For any ξ ∈ Mod(T), ThF(Mξ) is ℵ0-categorical if and only if [ξ] is
closed in the topology tF.

Proof. If ThF(Mξ) is ℵ0-categorical, then [ξ] = {η : Mη ≡F Mξ}, which is a closed
set. The converse follows from Proposition 4.1. □

Theorem 4.3. Let F be a fragment, let T be an F-theory and let ξ ∈ Mod(T). Then the
following are equivalent:

(i) [ξ] is Π0
2(tF);

(ii) [ξ] is tF-comeager in [ξ]
tF ;

(iii) [ξ] is tF-non-meager in [ξ]
tF ;

(iv) Mξ is F-atomic.

Proof. (i) ⇒ (ii) ⇒ (iii). This is clear.



CONTINUOUS LOGIC AND BOREL EQUIVALENCE RELATIONS 13

(iii) ⇒ (iv). Suppose that Mξ is not atomic and let T′ = ThF(Mξ). Then there
exists n ∈ N and a type p0 ∈ Sn(T′) realized in Mξ which is not isolated. By

Theorem 3.3 and Remark 3.8, for comeagerly many η ∈ Mod(T′) = [ξ]
tF , Mη

omits p0, implying that η ≇ ξ.
(iv) ⇒ (i). By the uniqueness of atomic models (Proposition 3.2), a model M is

isomorphic to Mξ iff M is an F-atomic model of T′ = ThF(Mξ). Let In ⊆ Sn(T′)
be the set of isolated types. It follows from Lemma 3.1 that In is Gδ and that for
every n and every model M, the set {ā ∈ Mn : tp ā ∈ In} is closed. Thus we have:

η ∈ [ξ] ⇐⇒ ∀u ∈ N<N tpη(u) ∈ I|u|,

which is clearly a Gδ condition. □

A different, coarser topology tqf on the space of models Mod(T) often consid-
ered in the literature is the one generated by the atomic formulas (rather than all
formulas in a certain fragment). Then in order to ensure that this topology is Pol-
ish, one usually restricts to ∀∃-theories, i.e., theories axiomatized by conditions
of the form

sup
x̄

inf
ȳ

ϕ(x̄, ȳ) ≤ 0

with ϕ a quantifier-free finitary formula. This topology is harder to handle theo-
retically because of the lack of quantifiers and its heavy dependence on the choice
of signature but is easier to compute with in practice. Fortunately, in some com-
mon situations, the topology tqf coincides with the topology t0 generated by the
fragment Lωω(L): namely, when the theory T is model-complete. Recall that
an Lωω-theory is model-complete if every embedding between models of T is el-
ementary. Equivalently, every formula is equivalent to a formula of the form
infȳ ψ(x̄, ȳ) with ψ quantifier-free (see, e.g., [B2, Corollary A.5]). In particular, if a
theory eliminates quantifiers, it is model-complete. We have the following corol-
lary of Theorem 4.3, which gives a characterization of Gδ isomorphism classes in
the topology tqf in the space of models of a model-complete theory.

Corollary 4.4. Let T0 be a ∀∃-theory and let T ⊇ T0 be an Lωω(L)-theory. Let ξ ∈
Mod(T) and consider the statements:

(i) [ξ] is Gδ in (Mod(T0), tqf);
(ii) Mξ is an atomic model of its Lωω-theory.

Then (i) ⇒ (ii) and if T is model-complete, we have equivalence.

Proof. (i) ⇒ (ii). As the topology t0 is finer than tqf, we have that [ξ] is a Gδ set in
t0, so we can apply Theorem 4.3.

(ii) ⇒ (i). We will show that the topologies tqf and t0 coincide on Mod(T). Let
{ξ : ϕξ(u) < r} be a basic open set in t0, where ϕ is a Lωω formula and u ∈ Nk.
By model-completeness of T, there exists a quantifier-free formula ψ(x̄, ȳ) such
that

ϕ(b̄) = inf
ȳ

ψ(b̄, ȳ), for all M |= T, b̄ ∈ Mk.

Thus,
ϕξ(u) < r ⇐⇒ ∃v ∈ Nk ψξ(u, v) < r

and the latter is clearly an open condition on ξ in tqf.
Thus (Mod(T), tqf) is Polish and therefore a Gδ subset of (Mod(T0), tqf). Now

Theorem 4.3 implies that [ξ] is Gδ in (Mod(T), t0) and thus Polish in both t0 and
tqf. Therefore [ξ] is Gδ in Mod(T0). □
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As an illustration of these ideas, we explain how to recover some results from
the recent papers [CDDK2] and [CDDK1] of Cúth, Doležal, Doucha, and Kurka.
We consider the signature of Banach spaces with function symbols for addition
and multiplication by scalars and a predicate symbol for the norm. Let T0 be
the theory of Banach spaces (this is a universal theory because a substructure
of a Banach space in this signature is still a Banach space). Some examples of
ℵ0-categorical Banach spaces are the Gurarij space and Lp([0, 1]) for 1 ≤ p < ∞.
Moreover, the Gurarij space and Lp([0, 1]) for p 6= 4, 6, 8, . . . eliminate quantifiers.
The ℵ0-categoricity and quantifier elimination for the Gurarij space follow from
its homogeneity and the Ryll-Nardzewski theorem. For Lp, it follows from Hen-
son [H1] that Lp is ℵ0-categorical as a Banach lattice and it is again a consequence
of the Ryll-Nardzewski theorem that a reduct of an ℵ0-categorical structure is
ℵ0-categorical. For quantifier elimination for Lp, for p 6= 4, 6, . . ., see [HI, Exam-
ple 3.18] and Lusky [L]. Finally, it is an unpublished result of Henson that the
Lp Banach spaces are model-complete for all p ≥ 1. We are grateful to Ward
Henson for explaining to us the subtleties of the model theory of the Lp spaces
and providing the references. See also [BBH] for more details.

Corollary 4.5 (Theorem 3.1 in [CDDK2] and Theorem 3.4 in [CDDK1]). The isom-
etry classes of the Gurarij space and Lp for p ≥ 1 are Gδ sets in (Mod(T0), tqf).

Proof. We can apply Corollary 4.4 but as pointed out by the referee, there is an al-
ternative proof available in this case: because of model completeness, the theories
are ∀∃-axiomatizable and ℵ0-categoricity implies that their models are exactly the
isometry classes of the spaces under consideration. (To see that model-complete
theories are ∀∃-axiomatizable, one can apply the usual argument from classi-
cal logic: it follows from the definition that they are inductive and the proof of
Tarski’s theorem that inductive theories are ∀∃-axiomatizable goes through.) □

Remark 4.6. The results in [CDDK2] and [CDDK1] are more detailed. For exam-
ple, they show in addition that these isomorphism classes are Gδ-complete.

Remark 4.7. The setup in [CDDK2] and [CDDK1] is slightly different from ours.
They consider a countable-dimensional vector space V over Q and they param-
etrize separable Banach spaces by pseudo-norms on V (cf. [CDDK2, Defini-
tion 1.1]). If 〈e1, e2, . . .〉 is a basis for V and we denote by P the Polish space
of pseudo-norms on V with the topology inherited from RV , we can define a
map Φ : Mod(T0) → P by

‖
n

∑
i=1

aiei‖Φ(ξ) = ‖
n

∑
i=1

aixi‖ξ ,

where a1, . . . , an ∈ Q, (xi)i denote the variables of the type ξ, and ‖·‖ξ denotes
as usual the evaluation of the corresponding quantifier-free formula at ξ. The
image of Φ is the collection of all pseudo-norms ‖·‖ such that {e1, e2, . . .} is dense
in (V, ‖·‖) and it is easy to see that Im Φ is dense Gδ in P. Moreover, Φ is a
homeomorphism between (Mod(T0), tqf) and its image. As a matter of fact, in
[CDDK1, Theorem 3.4] the space P∞ of infinitely-dimensional spaces is consid-
ered, however it is a Gδ subset of P.

5. The isomorphism equivalence relation: the general case

Recall that if Γ is a pointclass, a Borel equivalence relation E on a standard
Borel space X is called potentially Γ if there exists a Polish topology τ on X com-
patible with the Borel structure such that E is in Γ with respect to the topology
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τ × τ. Recall that, for a countable Lω1ω(L)-theory T, ∼=T denotes the equivalence
relation of isomorphism on Mod(T).

The main results of the next two sections are generalizations to the metric
setting of two theorems of Hjorth and Kechris [HK] that characterize smooth and
essentially countable isomorphism relations. The first one works for arbitrary
metric structures and is just a combination of the characterizations of atomic and
ℵ0-categorical structures from the previous section and the well-known fact that
an equivalence relation is smooth iff it is potentially Π0

2 iff it is potentially closed.
We start by recalling a consequence of the metric version of the López-Escobar

theorem from [BDNT]: if X ⊆ Mod(L) is Borel and invariant under isomorphism,
then there exists a sentence ϕ ∈ Lω1ω(L) such that p ∈ X iff ϕp = 0.

Theorem 5.1. Let T be a countable Lω1ω(L)-theory. Then the following are equivalent:
(i) ∼=T is smooth;

(ii) There exists a fragment F such that for every ξ ∈ Mod(T), the theory ThF(Mξ)
is ℵ0-categorical;

(iii) There exists a fragment F such that for every ξ ∈ Mod(T), Mξ is F-atomic.

Proof. (i) ⇒ (ii). Let Y be a Polish space and let f : Mod(T) → Y be a Borel
mapping such that ξ ∼= η if and only if f (ξ) = f (η). Let {Un}n∈N be a countable
basis for Y. Then

ξ ∼= η ⇐⇒ ∀n
(
ξ ∈ f−1(Un) ⇔ η ∈ f−1(Un)

)
.

Now, each f−1(Un) is an invariant Borel set, so by the López-Escobar theorem
cited above, for each n ∈ N, there are Lω1ω(L)-sentences ϕn and ψn such that
f−1(Un) = Mod(ϕn = 0) and f−1(X \Un) = Mod(ψn = 0). Let F be the fragment
generated by {ϕ0, ψ0, . . .}. Then in the Polish topology tF, each isomorphism
class is closed. Corollary 4.2 then implies that for each ξ ∈ Mod(T), ThF(Mξ) is
ℵ0-categorical.

(ii) ⇒ (iii). This follows from Corollary 4.2 and Theorem 4.3.
(iii) ⇒ (i). By Theorem 4.3, for any ξ ∈ Mod(T), [ξ] is Gδ in the topology tF.

Then [G, Theorem 6.4.4] implies that ∼=ϕ is smooth. Alternatively, ThF(Mξ) is a
complete isomorphism invariant for ξ. □

Next we aim to characterize Σ0
2 isomorphism classes. We will make use of this

in the next section.
For the proof of the next lemma, we will need Vaught transforms in the space

Mod(T) as developed in [BDNT]. For a separable structure M, we let

D(M) =
{

ȳ ∈ MN : {yi : i ∈ N} is dense in M
}

.

D(M) is clearly a Gδ set in MN, and therefore a Polish space. If ξ ∈ Mod(T),
denote by π : D(Mξ) → [ξ] the surjective map given by

(5.1) ϕπ(y)(u) = ϕMξ (y(u0), . . . , y(un−1)) for all ϕ ∈ F, u ∈ Nn, y ∈ D(Mξ).

In order to describe open sets in D(M), it will be convenient to have a pseudo-
metric defined on tuples of elements of M of different length. For m, n ≤ ω with
min(m, n) < ω and ā ∈ Mm, b̄ ∈ Mn, we define:

d(ā, b̄) = max{d(ai, bi) : i < min(m, n)}.

For M |= T, r > 0, and u ∈ N<N, let BD(M)
r (u) = {y ∈ D(M) : d(y, u) < r}.

The quantifiers ∃∗ and ∀∗ mean as usual “for non-meagerly many” and “for
comeagerly many”, respectively. For A ⊆ Mod(T), u ∈ N<N, and k > 0, we
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define the sets A4 and A4u,k by

ξ ∈ A4 ⇐⇒ ∃∗y ∈ D(Mξ) π(y) ∈ A;

ξ ∈ A4u,k ⇐⇒ ∃∗y ∈ BD(M)
1/k (u) π(y) ∈ A.

For a Polish space X and a Baire measurable function f : X → R, we define
inf∗x∈X f (x) by

inf∗
x∈X

f (x) < s ⇐⇒ ∃∗x ∈ X f (x) < s, for s ∈ R.

For a Borel subset A ⊆ Mod(T) and k ∈ N, define the function U∗k
A : Mod(T)×

Nk → R by
U∗k

A (ξ, u) = inf∗
y∈D(Mξ )

χA(π(y)) ∨ kd(y, u).

Here χA denotes the characteristic function of A. Note also that

(5.2)
(
∀∗y ∈ B

D(Mξ )

1/k (u) π(y) ∈ A
)
⇐⇒ U∗k

A (ξ, u) ≥ 1.

The main significance of the function U∗k
A is that it can be captured by a formula.

More precisely, the following holds.

Theorem 5.2 ([BDNT, Theorem 6.3]). Let T be a countable Lω1ω(L) theory, let A ⊆
Mod(T) be a Borel subset, and let k ∈ N. Then there exists an Lω1ω(L) formula ϕA,k(x̄)
with k free variables such that

U∗k
A (ξ, u) = ϕ

ξ
A,k(u), for all ξ ∈ Mod(T), u ∈ Nk.

The statement of [BDNT, Theorem 6.3] uses a slightly different metric on tuples
from our d for the definition of U∗k

A but the proof is still valid.
We are finally ready to state our next lemma, which allows us to represent

invariant Σ0
2 sets for an arbitrary Polish topology on Mod(T) as Σ0

2 sets for a
topology of the form tF for a fragment F in a uniform way.

Lemma 5.3. Let F be a fragment and let T be a countable F-theory. Let t be a Polish
topology on Mod(T) whose open sets are Borel subsets of Mod(T). Then there exists
a fragment F′ ⊇ F such that for every Σ0

2(t)-set A ⊆ Mod(T), every u ∈ N<N, and
k > 0, we have that A4, A4u,k ∈ Σ0

2(tF′). In particular, if ∼=T is potentially Σ0
2, then

there exists a fragment F′ ⊇ F such that every isomorphism class is Σ0
2(tF′).

Proof. Let B be a countable basis of closed sets for the topology t, so that every
t-closed set is an intersection of elements of B. Let F′ be the fragment generated
by F and the formulas {ϕB,k : B ∈ B, k ∈ N} as given by Theorem 5.2. Let now
A ∈ Σ0

2(t) be arbitrary and let An,m for n, m ∈ N be such that An,m ∈ B and
A =

⋃
n
⋂

m An,m. Then we have:

ξ ∈ A4u,k ⇐⇒ ∃∗y ∈ B
D(Mξ )

1/k (u) ∃n ∀m π(y) ∈ An,m

⇐⇒ ∃n ∃∗y ∈ B
D(Mξ )

1/k (u) ∀m π(y) ∈ An,m

⇐⇒ ∃n ∃u′ ∈ N<N
(

dMξ (u′, u) ≤ 1/k and

∃k′ ∈ N ∀∗y ∈ B
D(Mξ )

1/k′ (u′) ∀m π(y) ∈ An,m

)
⇐⇒ ∃n ∃u′ ∈ N<N

(
dMξ (u′, u) ≤ 1/k and ∃k′ ∀m ϕ

ξ
An,m ,k′(u

′) ≥ 1
)

.

As both sets {ξ : dξ(u′, u) ≤ 1/k} and {ξ : ϕ
ξ
An,m ,k′(u

′) ≥ 1} are tF′ -closed, we get

that A4u,k ∈ Σ0
2(tF′).
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Next we prove the statement in the final sentence of the lemma. Suppose that
∼=T is potentially Σ0

2. Then there exists a Polish topology t on Mod(T) such that
∼=T is Σ0

2 in t × t. In particular, every isomorphism class [ξ] is Σ0
2(t). On the other

hand, [ξ]4 = [ξ], so we can apply the main statement of the lemma to find the
desired fragment F′. □

The following definition is important for characterizing Σ0
2 isomorphism classes.

Definition 5.4. Let F be a fragment and let T be an F-theory. We will say that
a type p ∈ Sk(T) is rigid if whenever (M, ā) and (N, b̄) are two realizations of p
with M and N separable, then M ∼= N.

Proposition 5.5. Let F be a fragment, let T be an F-theory, and let ξ ∈ Mod(T).
Suppose that [ξ] is a Σ0

2 set in tF. Then there exists k > 0 such that the set

{ā ∈ Mk
ξ : tpF(ā) is rigid}

has non-empty interior in Mk
ξ .

Proof. Let [ξ] =
⋃

n An, where each An is a closed set in tF. Write M = Mξ and
let π : D(M) → [ξ] be the map defined by (5.1). By the Baire category theorem,
there exists n0 ∈ N such that π−1(An0) has non-empty interior. For brevity, put
A = An0 . We may assume that π−1(A) contains an open set U of the form

U = {y ∈ D(M) : d(y, ā0) < r}
for some k ∈ N and ā0 ∈ Mk. We claim that for every ā ∈ Br(ā0), tpF ā is rigid.

Indeed, fix such an ā and let (N, b̄) ≡F (M, ā) with N separable. We will find
an enumeration z ∈ D(N) such that π(z) ∈ π(U) ⊆ A ⊆ [ξ], which will imply
that N ∼= M. Choose z ∈ D(N) arbitrary such that z|k = b̄. Now given n ∈ N,
a formula ϕ(x0, . . . , xn−1) ∈ F, and ϵ > 0, we need to find y ∈ D(M) such that
d(y, ā0) < r and |ϕM(y|n)− ϕN(z|n)| < ϵ. We may assume that n ≥ k, ϕ ≥ 0 and
ϕN(z|n) = 0. We have

(
infx̄ ϕ(b̄, xk, . . . , xn−1)

)N
= 0. As (M, ā) ≡F (N, b̄), this

implies that there exists ē ∈ Mn−k such that ϕM(āē) < ϵ. Now it is enough to
take y|n = āē and prolong it arbitrarily. □

We finish with a lemma that says that the collection of rigid types is not too
complicated.

Lemma 5.6. Let F be a fragment, let T be an F-theory and suppose that the equivalence
relation ∼=T is Borel. Then for every k ∈ N, the set

{p ∈ Sk(T) : p is rigid}
is Π1

1.

Proof. Let u = (0, . . . , k − 1) and note that for p ∈ Sk(T),

p is rigid ⇐⇒ ∀ξ, η ∈ Mod(T) tpMξ u = tpMη u = p =⇒ Mξ
∼= Mη

and isomorphism being Borel, the latter condition is clearly Π1
1. □

6. The isomorphism equivalence relation: locally compact structures

The following is our main theorem about the complexity of isomorphism of
locally compact structures and this section is devoted to its proof.

Theorem 6.1. Let T be a countable Lω1ω(L) theory such that all of its separable models
are locally compact. Then the following are equivalent:

(i) ∼=T is potentially Σ0
2;
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(ii) There exists a fragment F such that T is an F-theory and for every ξ ∈ Mod(T),
there is k ∈ N such that the set

{ā ∈ Mk
ξ : tpF ā is rigid}

has non-empty interior in Mk
ξ ;

(iii) ∼=T is essentially countable.

If M is a structure and F is a fragment, let

ΘF
n (M) = {p ∈ Sn(ThF(M)) : M realizes p}.

If F is understood, we will often omit it from the notation.
If (Z, d) is a metric space, z0 ∈ Z and r > 0, we denote by

Br(z0) = {z ∈ Z : d(z, z0) < r} and B′
r(z0) = {z ∈ Z : d(z, z0) ≤ r}

the open and closed balls with center z0 and radius r, respectively. If Z is in
addition locally compact, denote

ρZ(z0) = sup{r ∈ R : Br(z0) is compact} = sup{r ∈ R : B′
r(z0) is compact}.

If there is no danger of confusion, we will usually omit the subscript Z in ρZ. If
ξ ∈ Mod(T) for some theory T, we will often write ρξ instead of ρMk

ξ
for some

Cartesian power k that is understood from the context.
The next lemma collects some basic facts about type spaces of theories with

locally compact models.

Lemma 6.2. Let F be a fragment, let T be an F-theory, and let M be a separable, locally
compact model of T. Let Φ : (Mn, d) → (Sn(T), ∂) be defined by Φ(ā) = tpF ā. Then
the following hold:

(i) Φ is a contraction for the metrics d on Mn and ∂ on Sn(T);
(ii) If ā ∈ Mn and r < ρ(ā), then Φ(B′

r(ā)) = B′
r(Φ(a)). In particular, B′

r(tp ā) ⊆
Θn(M) and B′

r(tp ā) is ∂-compact;
(iii) If Br(ā) is an open ball with r ≤ ρ(ā), then Φ(Br(ā)) = Br(Φ(ā)). In particu-

lar, Φ is an open map Mn → (Sn(T), ∂);
(iv) The set Θn(M) is open in (Sn(T), ∂) and the space (Θn(M), ∂) is locally com-

pact and separable.

Proof. (i) This is clear.
(ii) Let p ∈ Sn(T) be such that ∂(p, tp ā) ≤ r. Then by the definition (2.2) of ∂,

there is a sequence (b̄i)i∈N of elements of B′
r(ā) such that for every F-formula ϕ,

ϕM(b̄i) → ϕ(p) and lim supi→∞ d(b̄i, ā) ≤ r. Let b̄ be a limit point of the b̄i. Then
b̄ |= p and d(b̄, ā) ≤ r, as required.

(iii) Let Br(ā) be an open ball around ā with r < ρ(ā). Using (ii), we have that

Φ(Br(ā)) = Φ(
⋃

r′<r

B′
r′(ā)) =

⋃
r′<r

Φ(B′
r′(ā)) =

⋃
r′<r

B′
r′(Φ(ā)) = Br(Φ(ā)).

We conclude by observing that, as M is locally compact, the sets {Br(ā) : ā ∈
Mn, r < ρ(ā)} form a basis for the topology of Mn.

(iv) This follows from (iii) and the fact that the open, continuous image of a
locally compact space is locally compact. □

For a fixed τ-open set U ⊆ Sn(T) and ϵ > 0, define the following equivalence
relation RU,ϵ(M) on U ∩ Θn(M):

p RU,ϵ q ⇐⇒ ∃p0, . . . , pk ∈ U p0 = p and pk = q and ∀i < k ∂(pi, pi+1) < ϵ.

Note that each RU,ϵ-class is ∂-open, so by Lemma 6.2, there are only countably
many of them.
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Lemma 6.3. Let M be locally compact. Then for every p ∈ Θn(M), there exist a basic

τ-open U and ϵ > 0 such that [p]RU,ϵ

∂
is ∂-compact and contained in Θn(M). In

particular, [p]RU,ϵ

τ
is τ-compact and [p]RU,ϵ

τ ⊆ Θn(M).

Proof. Use Lemma 6.2 to find ϵ > 0 such that B′
2ϵ(p) is ∂-compact and contained in

Θn(M). Then the τ-topology and the ∂-topology coincide on B2ϵ(p) and therefore
there exists a basic τ-open U ⊆ Sn(T) such that p ∈ U and U ∩ B2ϵ(p) ⊆ Bϵ(p).
This implies that [p]RU,ϵ ⊆ Bϵ(p). As B′

ϵ(p) is τ-closed, we obtain that [p]RU,ϵ

τ ⊆
B′

ϵ(p) ⊆ Θn(M). Furthermore, [p]RU,ϵ

τ
, being a ∂-closed subset of the ∂-compact

set B′
ϵ(p), is ∂-compact and therefore also τ-compact. □

Lemma 6.4. Let T be a countable Lω1ω(L) theory such that all of its separable models
are locally compact, and let k ∈ N. Then the following maps are Borel:

(i) Mod(T)× Nk → R, (ξ, u) 7→ ρξ(u);
(ii) Mod(T)× Nk × R+ → K(Sk(T)), (ξ, u, r) 7→ B′

r(tpξ u) if r < ρξ(u) and ∅,
otherwise. Here K(Sk(T)) denotes the collection of τ-compact subsets of Sk(T)
equipped with the Vietoris topology.

Proof. (i) We consider for simplicity of notation the case k = 1. For r ∈ R+, we
have:

ρξ(u) > r ⇐⇒ ∃r′ > r B
Mξ

r′ (u) is totally bounded

⇐⇒ ∃r′ > r ∀ϵ > 0 ∃v0, . . . , vm−1 ∈ N ∀w ∈ N

dξ(u, w) < r′ =⇒ ∃i < m dξ(vi, w) < ϵ

and this is clearly Borel (the quantifiers on r′ and ϵ can be taken over the ratio-
nals).

(ii) We need to check that for any basic τ-open U ⊆ Sk(T), the set

W = {(ξ, u, r) ∈ Mod(T)× Nk × R+ : r < ρξ(u) and B′
r(tp

ξ u) ∩ U 6= ∅}
is Borel. Let U = Jϕ < sK for some formula ϕ. We have that:

(ξ, u, r) ∈ W ⇐⇒ r < ρξ(u) and ∃s′ < s ∀r′ > r Br′(tp
ξ u) ∩ Jϕ < s′K 6= ∅

⇐⇒ r < ρξ(u) and ∃s′ < s ∀r′ > r ∃v ∈ Nk

dξ(u, v) < r′ and ϕξ(v) < s′,

which is clearly Borel. The left to right direction of the first equivalence is clear.
To go from right to left, suppose that the right-hand side holds. For n ∈ N, let
pn ∈ Br+1/n(tpξ u) be such that ϕ(pn) < s′. It follows from Lemma 6.2 (ii) that
ρ(tpξ u) ≥ ρξ(u) > r, so we may assume that the sequence pn ∂-converges to
some p. Then ϕ(p) ≤ s′ < s and ∂(p, tpξ u) ≤ r, so p ∈ B′

r(tpξ u) ∩ U. The second
equivalence follows from Lemma 6.2 (iii). □

Lemma 6.5. Suppose that T is a theory satisfying item (ii) of the statement of Theo-
rem 6.1. Then ∼=T is Borel.

Proof. Fix a fragment F satisfying the condition in item (ii) of Theorem 6.1. We
will show that

(6.1) Mξ
∼= Mη ⇐⇒ ∀k ∀u ∈ Nk ∀r < ρξ(u) ∃v ∈ Nk tpη v ∈ B′

r(tp
ξ u),

where the types are taken with respect to F. Suppose first that Mξ
∼= Mη and let

f : Mξ → Mη be an isomorphism. Let k, u and r be given. Then any v ∈ f (Br(u))
works because tpη v = tpξ f−1(v).
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Now suppose that the right-hand side of (6.1) holds. Let k be such that

{ā ∈ Mk
ξ : tp ā is rigid}

has non-empty interior in Mk
ξ . Let u ∈ Nk and r < ρξ(u) be such that for all

ā ∈ B′
r(u), tpξ ā is rigid. It follows from Lemma 6.2 that every p ∈ B′

r(tpξ u) is
realized in Mξ and is rigid. The hypothesis implies that some p ∈ B′

r(tpξ u) is
realized in Mη . Thus Mξ and Mη realize a common rigid type, so they must be
isomorphic. This concludes the proof of (6.1).

Finally, it follows from Lemma 6.4 that the condition in the right-hand side of
(6.1) is Borel. □
Proof of Theorem 6.1. (i) ⇒ (ii). This follows from Lemma 5.3 and Proposition 5.5.

(ii) ⇒ (iii). By a well-known result of Kechris (see [H2, Lemma 5.2]), in or-
der to prove that ∼=T is essentially countable, it suffices to produce a standard
Borel space Y and a Borel map Ψ : Mod(T) → Y such that the image of each
isomorphism class is countable and the images of different classes are disjoint.
Let Y =

⊔
k K(Sk(T)) and define Ψ as follows: for a given ξ ∈ Mod(T), choose

k ∈ N and u ∈ Nk such that p = tpξ u is rigid, choose a basic τ-open U ⊆ Sk(T)
and a rational ϵ > 0 such that Lemma 6.3 holds for p, and set Ψ(ξ) = [p]RU,ϵ

τ
. We

check that this can be done in a Borel way. First, by Lemma 6.5, the equivalence
relation ∼=T is Borel. Now Lemma 5.6 implies that the set

W = {(ξ, u) ∈ Mod(T)× N<N : tpξ u is rigid}
is Π1

1 and by assumption, each section Wξ for ξ ∈ Mod(T) is non-empty. Then
by number uniformization [K2, Theorem 35.1], there exists a Π1

1 set W∗ ⊆ W
such that for all ξ ∈ Mod(T), there is a unique u ∈ N<N such that (ξ, u) ∈ W∗.
If for u ∈ N<N,we denote Wu

∗ = {ξ : (ξ, u) ∈ W∗}, we have that Mod(T) =⊔
u∈N<N Wu

∗ . As each of the sets Wu
∗ is Π1

1 and Mod(T) is Borel, this implies that
each Wu

∗ is Borel. Thus W∗ is the graph of a Borel map Φ : Mod(T) → N<N such
that tpξ Φ(ξ) is rigid for all ξ ∈ Mod(T). Write u = Φ(ξ), k = |u| and p = tpξ u.
Next, for Lemma 6.3 to hold, we need that 2ϵ < ρξ(u) and U ∩ B′

2ϵ(p) ⊆ B′
ϵ(p).

Thus ϵ and U can also be chosen in a Borel way by Lemma 6.4. Finally, note that
[p]RU,ϵ

τ
= U ∩ Bϵ(p)

τ
and this is again Borel. Indeed, for a τ-open V ⊆ Sk(T), we

have

U ∩ Bϵ(p)
τ ∩ V 6= ∅ ⇐⇒ Bϵ(p) ∩ U ∩ V 6= ∅

⇐⇒ ∃v ∈ Nk dξ(u, v) < ϵ and tpξ v ∈ U ∩ V

and this is a Borel condition.
As there are only countably many choices for k, U and ϵ, RU,ϵ has only count-

ably many classes, and for isomorphic M and N, Θk(M) = Θk(N), we obtain that
the image of each isomorphism class is countable. Suppose now that Ψ(ξ) = Ψ(η)
for some ξ, η ∈ Mod(T). This implies that there exists k ∈ N and ā ∈ Mk

ξ such
that p = tp ā is rigid and p ∈ Ψ(ξ) = Ψ(η) ⊆ Θ(Mη). In particular, Mη realizes p
and by rigidity, we must have Mξ

∼= Mη .
(iii) ⇒ (i). This is obvious. □
We conclude this section with two remarks comparing Theorem 6.1 to the

analogous result of Hjorth and Kechris about discrete structures and showing
with examples that natural modifications of Theorem 6.1 fail.

Remark 6.6. One may ask whether it is possible to replace the notion of a rigid
type in Theorem 6.1 with the requirement that the type (considered as a theory)
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has an atomic model. (Indeed, this is the condition used by Hjorth and Kechris
in the discrete case.) We first note that in classical logic, every rigid type admits
an atomic model. This is simply because if p is rigid, then Sn(p) is countable for
every n and in every countable Polish space, isolated points are dense. However,
this fails in continuous logic as can be seen from the following example. Let G
denote the Gurarij Banach space. This is the Fraïssé limit of finite-dimensional
Banach spaces and it is ℵ0-categorical in the Lωω fragment. Then there exists a
four-dimensional subspace E ⊆ G such that the theory of G with parameters for
E does not admit an atomic model (see Ben Yaacov–Henson [BH, Example 6.6]).
For us, this means that if ē ∈ G4 is a basis for E, then tp ē does not admit an
atomic model. However, this type is rigid because Th(G) is ℵ0-categorical. We
do not know a similar example for locally compact structures but strongly suspect
that one exists (allowing arbitrary fragments).

Remark 6.7. Another easy consequence of the Hjorth–Kechris result is that iso-
morphism of finitely generated discrete structures is an essentially countable
equivalence relation. This also fails in the continuous setting as can be seen
by combining several results from the literature as follows. Thiel and Winter
[TW1, Theorem 3.8] have proved that separable, Z-stable C∗-algebras are singly
generated and Toms and Winter [TW2, Theorem 2.3] have shown that approxi-
mately divisible, separable C∗-algebras are Z-stable. It follows from the proof of
the main theorem in Elliott [E2] that separable, simple, AI algebras are approxi-
mately divisible, and finally, Sabok [S1] has proved that the isomorphism relation
for separable, simple, AI algebras is bi-reducible with the universal equivalence
relation given by a Polish group action. By combining all of this, we conclude that
isomorphism for singly generated C∗-algebras is universal for orbit equivalence
relations of Polish group actions.

7. Pseudo-connected metric structures and a theorem of Kechris

In this section, we use some basic model theory and Theorem 6.1 to deduce
a generalization of a theorem of Hjorth about pseudo-connected locally compact
metric spaces. We also show how to apply this to recover a theorem of Kechris
about orbit equivalence relations of actions of locally compact Polish groups.

We recall from [GK] the definition of a pseudo-connected space. Let (Z, d) be a
locally compact metric space. We define a reflexive, transitive relation E∗ on Z by

(7.1) x E∗ y := ∃z0, z1, . . . , zn ∀i = 0, . . . , n − 1

d(zi, zi+1) < ρ(zi) and z0 = x and zn = y

and we let E be the symmetrization of E∗:

x E y ⇐⇒ x E∗ y and y E∗ x.

The pseudo-component of z ∈ Z, denoted by C[z], is its E-equivalence class and we
call Z pseudo-connected if it has only one pseudo-component. Examples of pseudo-
connected locally compact metric spaces are the connected spaces and the proper
metric spaces (spaces where every closed ball is compact).

Remark 7.1. Our model-theoretic setting is limited to bounded structures, so,
strictly speaking, the example of proper metric spaces does not fall into our
framework. It is possible to treat unbounded structures in several ways. One
is to replace the distance predicate d by infinitely many predicates {dn}n∈N de-
fined by dn = d ∧ n (and take d1 as the “official” distance used to define the
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moduli of continuity). Then one needs to add the axiom

inf
x,y

∨
n

1 ∧ (n − dn(x, y)) = 1

which states that d(x, y) is finite for all points x, y.
Another possibility is to replace the metric d by d′ = d/(1 + d) which is

bounded by 1. Then the condition of being proper is replaced by the condition
that every closed ball of radius less than 1 is compact and the new space is still
pseudo-connected. Note that both encodings preserve the equivalence relation of
isomorphism.

Recall that if M is a model and A ⊆ M, the algebraic closure of A is defined by

acl A :=
⋃
{D ⊆ M : D is Lωω-definable from A and compact}.

See [BBHU, Section 9] for the definition of definable sets and more details on the
algebraic closure operator. We will only use the notion of algebraic closure for
the finitary fragment Lωω , so that all results of [BBHU] apply.

We have the following basic fact about pseudo-components.

Proposition 7.2. Let M be a locally compact metric structure and let a ∈ M. Then
C[a] ⊆ acl a.

Proof. Let b ∈ M and r < ρ(b). We will show that the compact ball B′
r(b) is

definable from b. We will apply [BBHU, Proposition 9.19 (2)] to the predicate
d(x, b) .− r. If the condition (2) is not verified, there exists ϵ > 0 such that for
every n there exists a point bn with d(bn, b) < r + 1/n and d(bn, B′

r(b)) ≥ ϵ. As
r < ρ(b), we may assume that bn → b′ but then d(b, b′) ≤ r and d(b′, B′

r(b)) ≥ ϵ,
contradiction.

Now the conclusion of the proposition follows from the definition (7.1) and
the transitivity of the algebraic closure operator (see [BBHU, Proposition 10.11

(2)]). □
Proposition 7.3. Let F be a fragment and let T be an F-theory such that all models of
T are pseudo-connected. Then for every model M |= T and every c ∈ M, the theory
ThF(M, c) is ℵ0-categorical.

Proof. Suppose that (N, b) ≡F (M, c). In particular, (N, b) ≡Lωω
(M, c), so there

exists a model K and Lωω-elementary embeddings f : M → K and g : N → K
with f (b) = g(c). We have from Proposition 7.2 that M = acl c and similarly, as
N |= T, N is also pseudo-connected, so N = acl b. By [BBHU, Corollary 10.5], we
have that

f (M) = acl f (b) = acl g(c) = g(N),
so g−1 ◦ f is an isomorphism M → N sending b to c. □
Corollary 7.4 (cf. [GK, Theorem 5.7]). Let L be a signature, let F be a fragment of
Lω1ω(L) and let T be an F-theory such that all models of T are pseudo-connected. Let c
be a constant symbol that does not appear in L. Let T′ be the theory T considered in the
expanded language L ∪ {c}. Then the equivalence relation of isomorphism on Mod(T′)
is smooth.

Proof. This follows from Proposition 7.3 and Theorem 5.1. □
The next result is a generalization of a theorem of Hjorth ([GK, Theorem 7.1]).

Corollary 7.5. Let T be a theory such that all of its models are pseudo-connected. Then
∼=T is essentially countable.

Proof. This follows from Proposition 7.3 and Theorem 6.1. □
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Remark 7.6. Corollary 7.5 also holds if one replaces “are pseudo-connected” with
“have finitely many pseudo-components”. Indeed, if C1, . . . , Cn are the pseudo-
components of a structure M, then ∏i Ci is open in Mn and for every ā ∈ ∏i Ci,
we have that M = acl ā, so the same argument works.

As another application of the results from the previous section, we present
a new proof of a theorem of Kechris from [K1], stating that orbit equivalence
relations induced by continuous actions of locally compact Polish groups are
essentially countable. First, we need a way of encoding group actions as metric
structures.

Let Z be a compact metrizable space and let G ≤ Homeo(Z) be a closed, CLI
subgroup. (Recall that a Polish group is CLI if its left uniformity is complete
iff its right uniformity is complete. All Polish locally compact groups are CLI.)
Denote by α the action G ↷ Z. We will reduce the orbit equivalence relation Eα

to isomorphism of metric structures with underlying space (G, d), where d is a
fixed, right-invariant, compatible metric on G.

Define the metric du on Homeo(Z) by

(7.2) du(h1, h2) = sup{δ(h1 · z, h2 · z) : z ∈ Z},

where δ is some fixed compatible metric on Z bounded by 1. Note that du restricts
to a compatible, right-invariant metric on G and therefore the metrics du and d
are uniformly equivalent.

Let {zi}i∈N be a dense sequence in Z. Let ∆ be a modulus of continuity such
that every unary predicate on G which is 1-Lipschitz with respect to du respects
∆ with respect to d. Let L be the language consisting of the metric d and the
unary predicates {Pi}i∈N respecting ∆. Let T be the theory consisting of the Scott
sentence of the metric space (G, d). For each z ∈ Z, define an L-structure M(z)
with universe (G, d) and predicates defined on G by

Pz
i (h) = δ(h · z, zi).

As each Pz
i is 1-Lipschitz with respect to du, it respects ∆, so M(z) is a valid L-

structure which is also a model of T. Also, the predicates Pz
i code z uniquely: if

Pz
i (1G) = Pz′

i (1G) for all i, then z = z′.

Proposition 7.7. The map Z → Mod(T) given by z 7→ M(z) is a Borel reduction from
Eα to isomorphism of models of T.

Proof. One easily checks that the map G → G, h 7→ hg is an isomorphism M(z) →
M(g · z).

Conversely, suppose that f : M(z) → M(z′) is an isomorphism and let h0 =
f (1G). Then

Pz
i (1G) = Pz′

i (h0) = Ph0·z′
i (1G) for all i,

whence z = h0 · z′. □
Corollary 7.8 (Kechris [K1]). Let G ↷ X be a Borel action of a locally compact Polish
group G on a Polish space X. Then its orbit equivalence relation is essentially countable.

Proof. Let F(G) denote the space of closed subsets of G. It carries a compact
Polish topology with basic open sets of the form

{F ∈ F(G) : F ∩ U1 6= ∅, . . . , F ∩ Un 6= ∅, F ∩ K = ∅},

where U1, . . . , Un ⊆ G are open and K ⊆ G is compact. There is a natural action
G ↷ F(G) by left translation and it is well-known that the action G ↷ F(G)N is
universal for Borel actions of G [BK, Theorem 2.6.1]. Thus it suffices to prove that
the orbit equivalence relation of this action is essentially countable.
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Let d′ be any proper, right-invariant, compatible metric on G (see Struble [S2])
and let d = d′/(1+ d′), so that d is right-invariant and (G, d) is pseudo-connected
and bounded. The action G ↷ F(G)N gives an embedding of G as a closed sub-
group of Homeo(F(G)N). Let the language L and the theory T be defined as
in the discussion preceding Proposition 7.7. By Proposition 7.7, the orbit equiv-
alence relation of the action G ↷ F(G)N is Borel reducible to isomorphism of
models of T. As T contains the Scott sentence of (G, d), all models of T are
pseudo-connected, so we can apply Corollary 7.5 to deduce that ∼=T is an essen-
tially countable equivalence relation. This concludes the proof. □
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