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DECIDABILITY OF DEFINABILITY

MANUEL BODIRSKY, MICHAEL PINSKER, AND TODOR TSANKOV

Abstract. For a fixed countably infinite structure Γ with finite relational signature ô, we study the

following computational problem: input are quantifier-free ô-formulas φ0, φ1, . . . , φn that define rela-

tions R0 , R1, . . . , Rn over Γ. The question is whether the relation R0 is primitive positive definable from

R1, . . . , Rn , i.e., definable by a first-order formula that uses only relation symbols for R1, . . . , Rn , equal-

ity, conjunctions, and existential quantification (disjunction, negation, and universal quantification are

forbidden).

We show decidability of this problem for all structures Γ that have a first-order definition in an ordered

homogeneous structure ∆ with a finite relational signature whose age is a Ramsey class and determined

by finitely many forbidden substructures. Examples of structures Γ with this property are the order of the

rationals, the random graph, the homogeneous universal poset, the random tournament, all homogeneous

universalC -relations, andmanymore. We also obtain decidability of the problemwhenwe replace primitive

positive definability by existential positive, or existential definability. Our proof makes use of universal

algebraic and model theoretic concepts, Ramsey theory, and a recent characterization of Ramsey classes

in topological dynamics.

§1. Motivation and the main result. When studying a countably infinite relational
structure Θ, we often wish to knowwhat Θ can express by its relations; for example,
which other structures it interprets or defines. Concentrating on the latter, it would
bepleasant to have anoraclewhich, given two structuresΘ1,Θ2 on the samedomain,
tells us whether they define one another. If all structures we are interested in have
finite signature, this is the same as having an oracle which, given a structure Θ and
a relation R on the same domain, tells us whether R can be defined from Θ.
In this context, different notions of definability can be considered. The first
notion that comes to mind is probably first-order definability: an n-ary relation R
is first-order definable in Θ iff there is a first-order formula φ(x1, . . . , xn) over the
language of Θ such that for all n-tuples a of elements in Θ we have a ∈ R iff φ(a)
holds. Sometimes, however, other notions of definability, in particular syntactic
restrictions of first-order definability, are useful. One notion that is of importance
in theoretical computer science is primitive positive definability: a first-order formula
is called primitive positive iff it is of the form∃y1 . . . ∃ym. ø, whereø is a conjunction
of atomic formulas; and an n-ary relationR is primitive positive definable over Θ iff
it is first-order definable in Θ bymeans of a primitive positive formula φ(x1, . . . , xn).
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Primitive positive definability is of importance in the study of the constraint
satisfaction problem of Θ, denoted by CSP(Θ), in theoretical computer science. In
such a problem, the input consists of a primitive positive sentence ø (that is, a
primitive positive formula without free variables), and the question is whether ø is
true in Θ. Primitive positive definability of relations in Θ is important in the study
of CSP(Θ) because the CSP for an expansion of Θ by relations that are primitive
positive definable in Θ can be reduced (in linear time) to CSP(Θ).
We will present here conditions under which the oracle which is to tell us
whether a relation R has a primitive positive definition from a finite language
structure Θ can be a computer, i.e., under which the problem is decidable. In
order to make the problem suitable for an algorithm, we need a finite represen-
tation of the input of the problem, that is, the relation R and the structure Θ.
Our approach is to fix a base structure Γ with finite relational language, and to
assume that both R and Θ have a quantifier-free definition in Γ. We then rep-
resent R and Θ as quantifier-free formulas over Γ. Therefore, the input of our
problem are quantifier-free formulas φ0, . . . , φn in the language of Γ, of which
φ0 defines the relation R, and φ1, . . . , φn define the relations R1, . . . , Rn of Θ;
the question is whether there is a primitive positive definition of φ0 that uses
only relation symbols for R1, . . . , Rn . We denote this computational problem by
Exprpp(Γ).
An algorithm for primitive positive definability has theoretical consequences
in the study of the computational complexity of CSPs. It turns out that hard-
ness of CSP(Θ) can usually be shown by presenting primitive positive defini-
tions of relations for which it is known that the CSP is hard. Therefore, a pro-
cedure that decides primitive positive definability of a given relation can be a
useful tool to determine the computational complexity of CSPs. For the sim-
plest of countable structures, namely the structure (X ; =) having no relations
but equality, the decidability of Exprpp(Γ) has been stated as an open problem
in [3].
We will show here decidability of Exprpp(Γ) for a large class of structures Γ which
we will now define. Let ô be a finite relational signature. The age of a ô-structure
∆ is the class of all finite ô-structures that embed into ∆. We say that a class C of
finite ô-structures, and similarly a structure with age C , is

• finitely bounded (in the terminology of [17]) iff there exists a finite set of finite
ô-structures F such that for all finite ô-structures A we have A ∈ C iff no
structure from F embeds into A;

• Ramsey iff for all k ≥ 1 and for all H,P ∈ C there exists S ∈ C such that for
all colorings of the copies of P in S with k colors there exists a copy ofH in S
on which the coloring is constant (for background in Ramsey theory see [12]);

• ordered iff the signature ô contains a binary relation that is interpreted as a
total order in every A ∈ C .

A structure is called homogeneous iff all isomorphisms between finite induced
substructures1 extend to automorphisms of the whole structure. A structure Γ
is called a reduct of a structure ∆ with the same domain iff all relations in Γ are
first-order definable in ∆. We will prove the following.

1In this article, substructures are always meant to be induced; see [15].
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Theorem 1. Let ∆ be a structure which is ordered, homogeneous, Ramsey, finitely
bounded, and has a finite relational signature. Then for any reduct Γ of ∆ with finite
relational signature the problem Exprpp(Γ) is decidable.

Weremark that for finite structures Γ the problemExprpp(Γ) is in co-NEXPTIME

(and in particular decidable). For the variant where the finite structure Γ is part of
the input, the problemhas recently been shown tobe also co-NEXPTIME-hard [23].
Note that since ∆ is homogeneous, it has quantifier elimination, i.e., every relation
which is first-order definable in ∆ can be defined by a quantifier-free formula.
Hence, choosing Γ = ∆, we see that our requirement for the relations in Exprpp(Γ)
to be given by quantifier-free formulas does not restrict the range of relations under
consideration.
Examples of structures ∆ that satisfy the assumptions of Theorem 1 are (Q;<),
the Fraı̈ssé limit of ordered finite graphs (or tournaments [19]), the Fraı̈ssé limit
of finite partial orders with a linear extension [19], and the homogeneous universal
‘naturally ordered’C -relations. (For definition and basic properties of C -relations,
see [1], in particular Theorem 14.7. The fact that the homogeneous universal
naturally ordered C -relations have the Ramsey property follows from Theorem 4.3
in [18]; an explicit and elementary verification of theRamsey property for the binary
branching case can be found in [7].) CSPs of reducts of such structures are abundant
in particular for qualitative reasoning calculi in Artificial Intelligence. For instance,
our result shows that it is decidable whether a given relation from Allen’s Interval
Algebra [2, 22] is primitive positive definable in a given fragment of Allen’s Interval
Algebra.
As mentioned above, for Γ = (X ; =), the decidability of Exprpp(Γ) has been

posed as an open problem in [3]. Our results solve this problem, since (X ; =) is
definable in ∆ := (Q;<), which is ordered, homogeneous, Ramsey, and finitely
bounded: the Ramsey property for this structure follows from the classical Ramsey
theorem, and the other properties are easily verified.
Using similar methods, decidability of the analogous problem for other syntactic
restrictions of first-order logic can be shown in the same context. A formula is called
existential iff it is of the form ∃y1 . . . ∃ym . ø, where ø is quantifier-free. It is called
existential positive iff it is existential and does not contain any negations. For a ô-
structure Γ, we denote by Exprex(Γ) (Exprep(Γ)) the problem of deciding whether a

given quantifier-free ô-formula φ0 has an existential (existential positive) definition
over the structure with the relations defined by given quantifier-free ô-formulas
φ1, . . . , φn in Γ.

Theorem 2. Let ∆ be a structure which is ordered, homogeneous, Ramsey, finitely
bounded, and has a finite relational signature. Then for any reduct Γ of ∆ with finite
relational signature the problems Exprex(Γ) and Exprep(Γ) are decidable.

The assumptions on ∆ in our theorems fall into two classes: the conditions of be-
ing ordered, homogeneous, Ramsey, and having finite relational signature imposed
on ∆ generally allow for a relatively good understanding (in a non-algorithmic
sense) of the reducts of ∆. The recent survey paper [8] summarizes what we know
about reducts of such structures—their exciting feature is that many branches of
mathematics, including model theory, combinatorics, universal algebra, and even
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topological dynamics are employed in their study, and indirectly also in our al-
gorithm. The additional condition of being finitely bounded provides a finite
representation of ∆ via F used by our algorithm.
This paper is organized as follows. In Section 2 we show that the assumption
of ∆ being finitely bounded is necessary for our decidability result. We then turn
to the proof of Theorems 1 and 2: in Section 3 we cite preservation theorems of
the form “R is definable from Θ (in some syntactically restricted form of first-order
logic) if and only if certain functions on the domain of Θ (which functions depends
on the syntactic restriction) preserveR”. Section 4 is devoted to the use of Ramsey
theory in order to standardize functions that do not preserve R—if such functions
exist. Our decision procedure, presented in Section 5, then uses this standardization
of functions and the preservation theorems to check whether or not R is definable
from Θ. The paper ends with two sections containing further discussion and open
problems.

§2. Undecidability of definability. This section demonstrates that the assumption
in Theorem 2 of ∆ being finitely bounded is necessary. We use a class of homo-
geneous digraphs introduced by Henson [13]. A tournament is a directed graph
without self-loops such that for all pairs x, y of distinct vertices exactly one of the
pairs (x, y), (y, x) is an arc in the graph. For a set of finite directed graphs N , we
write Forb(N ) for the class of all finite directed graphs that do not embed any of
the structures fromN . For any setN of finite tournaments there exists a countably
infinite homogeneous directed graph Γ with age Forb(N ) (this can be shown by
amalgamation, see [15]). Moreover, those properties characterize Γ up to isomor-
phism. Henson specified an infinite setT of finite tournaments Λ1,Λ2, . . . with the
property that Λi does not embed into Λj if i 6= j; the exact definition of this set is
not important in what follows. But note that for two distinct subsetsN1 andN2 of
T the two sets Forb(N1) and Forb(N2) are distinct as well, and so are the respective
homogeneous digraphs with age Forb(N1) and Forb(N2). Since there are 2ù many
subsets of the infinite setT , there are also thatmany distinct homogeneous directed
graphs; they are often referred to asHenson digraphs.

Proposition 3. There exists a ordered directed graph ∆ which is homogeneous and
Ramsey such that Exprpp(∆) and Exprep(∆) are undecidable.

Proof. For any Henson digraph Γ, the class C of all expansions of the structures
in the age of Γ by a linear order is a Ramsey class; this can been shown by the partite
method [20]. Moreover, there exists a homogeneous ordered digraph ∆ with age C
(again by amalgamation, see [15]), and Γ is a reduct of ∆.
We show that non-isomorphic Henson digraphs Γ1 and Γ2 have distinct Exprpp
problems. In the following, let E denote a binary relation symbol that we use
to denote the edge relation in graphs. In fact, we show the existence of a first-
order formula φ1 over digraphs such that the input φ0 := E(x, y) and φ1 is a yes-
instance of Exprpp(Γ1) and a no-instance of Exprpp(Γ2), or vice-versa. Since there
are uncountably many Henson digraphs, but only countably many algorithms, this
clearly shows the existence ofHensondigraphsΓ such thatExprpp(Γ) is undecidable.
This finishes the proof since Γ is a reduct of an ordered homogeneous Ramsey
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structure ∆, as we have seen above, and Exprpp(∆) must be undecidable as well. The

same argument shows undecidability of Exprep(∆).
By the definition of Γ1 and Γ2, there exists a finite digraph Ω which embeds
into Γ1 but not into Γ2, or that embeds into Γ2 but not into Γ1. Assume without
loss of generality the former. Let s be the number of elements of Ω, and denote
its elements by a1, . . . , as . Let ø be the formula with variables x1, . . . , xs that has
for distinct i, j ≤ s a conjunct E(xi , xj) if E(ai , aj) holds in Ω, and a conjunct
¬E(xi , xj) ∧ xi 6= xj otherwise. Let φ1 be the formula ø ∧ E(xs+1, xs+2).
Let D1 be the domain of Γ1, and consider the relation R1 ⊆ (D1)s+2 defined by
φ1 in Γ1. Let R be a relational symbol of arity s + 2. Let Θ be the structure with
signature {R}, domain D1, and where R denotes the relation R1. It is clear that
∃x1, . . . , xs . R(x1, . . . , xs , x, y) is a primitive positive definition of E(x, y) in Θ.
Now consider the relationR2 defined by φ1 in Γ2 over the domainD2 of Γ2. Since
Ω does not embed into Γ2, the precondition of φ1 is never satisfied, and the relation
R2 is empty. Therefore, the structure (D2;R2) is preserved by all permutations
of D2, and the relation E(x, y) is not first-order (and in particular not primitive
positive) definable in (D2;R2). ⊣

We do not know whether there exists a homogeneous structure ∆ such that
Exprpp(∆) is undecidable and whose age equals Forb(N ) for a decidable classN of
finite structures.

§3. Preservation theorems. Let Γ be a reduct of a homogeneous finitely bounded
Ramsey structure ∆ with finite relational signature. Our algorithm for Exprpp(Γ) is
based on the fact that if R is not definable from Θ, then there exists a certain kind
of function which violates R; in order to decide whether or not R is definable, the
algorithm thus searches for such a function. In this section, we shall formulate this
fact in more detail.
A structure is called ù-categorical iff its first-order theory has exactly one count-
able model up to isomorphism. For an n-tuple a of elements of a structure ∆,
the type of a is the set of all first-order formulas over the signature of ∆ which
have n free variables x1, . . . , xn and which are satisfied by a. By a theorem of
Ryll-Nardzewski (see for example the textbook [15]), a structure is ù-categorical
iff it has only finitely many different types of n-tuples (called n-types), for each
n ≥ 1. From this characterization it is straightforward to see that structures which
are homogeneous and have a finite relational signature are ù-categorical; in par-
ticular, this is true for the structure ∆ of Theorems 1 and 2. For an n-tuple a of
elements of a structure ∆, the orbit of a is the set {α(a) | α ∈ Aut(∆)}, where
Aut(∆) denotes the automorphism group of ∆. It is well-known that a structure
is ù-categorical iff it has for every n ≥ 1 only finitely many orbits of n-tuples
(called n-orbits). Moreover, in ù-categorical structures two n-tuples have the
same type iff they have the same orbit (see again [15]). In particular, every n-
ary relation definable over an ù-categorical structure is a finite union of orbits of
n-tuples.
Clearly, when Θ is a reduct of a structure ∆, then Aut(Θ) ⊇ Aut(∆). Hence, if ∆
is ù-categorical, then so is Θ; therefore, all structures that appear in this paper are
ù-categorical.
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If R is an m-ary relation on a set D, and f: Dn → D is a finitary operation
on D, then we say that f preserves R iff f(r1, . . . , rn) (calculated componentwise)
is in R for all m-tuples r1, . . . , rn ∈ R. In other words, when ri = (r1i , . . . , r

m
i ) ∈ R

for all i ≤ n, we require that (f(r11 , . . . , r
1
n), . . . , f(r

m
1 , . . . , r

m
n )) ∈ R. Otherwise,

we say that f violates R. Observe that a permutation α acting on the domain of
a structure Θ is an automorphism iff both α and its inverse preserve all relations
of Θ. An endomorphism of a structure Θ with domain D is a unary operation
f: D → D which preserves all relations of Θ. A self-embedding of Θ is an injective
unary operation f: D → D which preserves all relations of Θ and all complements
of relations in Θ. A polymorphism of Θ is a finitary operation f: Dn → D which
preserves all relations of Θ.
We can now state the preservation theorem used by our algorithm. Statement (1)
is well-known in model theory and follows from the standard proof of the theorem
of Ryll-Nardzewski. Items (2) and (3) are consequences of the Theorem of Łos–
Tarski and theHomomorphism Preservation Theorem; for these theorems, see [15],
for the (straightforward) proofs of statements (2) and (3) see [9]. Item (4) is due to
Bodirsky and Nešetřil [6].

Theorem 4. Let Θ be an ù-categorical structure, and let R be a relation on its
domain.

(1) R has a first-order definition in Θ iff R is preserved by all automorphisms of Θ.
(2) R has an existential definition inΘ iffR is preserved by all self-embeddings ofΘ.
(3) R has an existential positive definition in Θ iff R is preserved by all endomor-
phisms of Θ.

(4) R has a primitive positive definition in Θ iff R is preserved by all polymorphisms
of Θ.

§4. Standardizing functions. Theorem4 tells us that if a relationR is not definable
in an ù-categorical structure Θ, then this is witnessed by a some finitary function
on the domain of Θ; the kind of function depends on the notion of definability. In
this section, we show that in the context of Theorems 1 and 2, this is even witnessed
by a function which shows a certain regular behavior, making the search for such
an (infinite!) function accessible to algorithms. We start by defining what we mean
by regular behavior.

4.1. Canonicity.

Definition 5. For a structure ∆ and n ≥ 1, we write S∆n for the set of all n-types
in ∆. The cardinality of S∆n is denoted by o

∆(n). We write S∆ :=
⋃
n≥1 S

∆
n . For an

n-tuple a ∈ ∆, we write tp∆(a) for the element of S∆n corresponding to a. We drop
the reference to the structure in this notation when the structure is clear from the
context.

Definition 6. A type condition between two structures Ξ and Ω is a pair (s, t),
where s ∈ SΞn and t ∈ S

Ω
n for the same n ≥ 1. A function f: Ξ → Ω satisfies a

type condition (s, t) iff for all n-tuples a = (a1, . . . , an) in Ξ of type s , the n-tuple
f(a) = (f(a1), . . . , f(an)) in Ω is of type t.
A behavior is a set of type conditions between two structures. A function has
behavior B iff it satisfies all the type conditions of the behavior B. For n ≥ 1, a
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behavior B is called n-complete iff for all types s ∈ SΞn there is a type t ∈ S
Ω
n such

that (s, t) ∈ B. It is called complete iff it is n-complete for all n ≥ 1.
A functionf: Ξ→ Ω is canonical (n-canonical) iff it has a complete (n-complete)
behavior.
For F ⊆ Ξ we say that f satisfies a type condition (s, t) on F iff for all n-tuples
a = (a1, . . . , an) in F of type s (in Ξ, not in the substructure induced by F ), the n-
tuple f(a) = (f(a1), . . . , f(an)) in Ω is of type t. The notions of having a behavior
on F and of being canonical on F are then defined naturally.

Observe that a complete behavior is just a function from SΞ to SΩ which respects
the sorts, i.e., n-types are sent to n-types. We remark that not every such function
is necessarily the behavior of a canonical function from Ξ to Ω, but every canonical
function from Ξ to Ω does define a function from SΞ to SΩ. A behavior is just a
partial function from SΞ to SΩ respecting the sorts.

Definition 7. For a relational structure ∆, we write n(∆) for the supremum of
the arities of the relations of ∆.

Suppose that n(Ξ) is finite and that Ξ has quantifier elimination, i.e., every first-
order formula in the language of Ξ is equivalent to a quantifier-free formula over Ξ;
this is in particular the case for the structure ∆ of Theorems 1 and 2, since homo-
geneity implies quantifier elimination. Then the type of any tuple in Ξ is determined
by the types of its subtuples of length n(Ξ). If moreover the same condition holds
for Ω (in particular, if Ω = Ξ), and we set n to be the maximum of n(Ξ) and n(Ω),
then a total function from SΞn to S

Ω
n automatically defines a total function from

SΞ to SΩ. In other words, a function f: Ξ → Ω is canonical iff it is n-canonical.
Note also that SΞk is finite for every k ≥ 1 since Ξ is ù-categorical (this follows
if Ξ has quantifier elimination and finite relational signature, cf. [15]). Therefore,
canonical functions can be represented by finite objects, namely by functions from
SΞn to S

Ω
n . Since Ω is ù-categorical as well, there are only finitely many functions

from SΞn to S
Ω
n , and hence there exist only finitely many complete behaviors between

Ξ and Ω, allowing an algorithm to check all of them. Roughly, our goal in the fol-
lowing is to prove that functions witnessing that a relation R is not definable in Θ
can be assumed to be canonical; it will turn out that this is almost true.

4.2. Calling Ramsey.

Lemma 8. Let Ξ be ordered Ramsey, let Ω be ù-categorical, and let f: Ξ → Ω be
a function. Then for all finite substructures F ⊆ Ξ there is a copy of F in Ξ on which
f is canonical.

Proof. Set n := n(Ξ), and let m := oΩ(n). Now f defines a coloring of the
n-tuples in Ξ by m colors: the color of a tuple a is just the type of f(a) in Ω.
Note that if P, S are ordered structures, then coloring copies of P in S is the same
as coloring tuples of type tp(p), where p is any tuple which enumerates P—this is
because every copy of P in S contains precisely one tuple of type tp(p), and every
tuple of type tp(p) in S induces precisely one copy of P in S.
Given any finite substructure F of Ξ, enumerate all types of n-tuples that occur
in F by t1, . . . , tk . There is a substructure S1 of Ξ such that whenever all tuples of
type t1 in S1 are colored with m colors, then there exists a substructure H1 of S1
isomorphic to F on which the coloring is constant. Further, there is a substructure
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S2 of Ξ such that whenever all tuples of type t2 in S2 are colored with m colors,
then there exists a substructureH2 of S2 isomorphic to S1 on which the coloring is
constant. We iterate this k times, arriving at a structure Sk . Now going back the
argument, we find that Sk contains a copy of F on which all colorings are constant.
That means that f is canonical on this copy. ⊣

We remark that this lemma would be false if one dropped the order assumption:
consider for instance Ξ = (Q; =), Ω = (Q;<), and any injection from Ξ to Ω. In
that case, f is not canonical on any substructure F ⊆ Ξ with at least two elements.
We will now use Lemma 8 in order to show that for ordered homogeneous
Ramsey structures ∆ with finite relational signature, arbitrary functions from ∆ to
∆ generate canonical functions from ∆ to ∆. To introduce this notion, we make the
following observation. The set End(∆) of endomorphisms of a structure ∆ forms
a transformation monoid, i.e., it is closed under composition f ◦ g and contains
the identity function id. Moreover, it is closed (also called locally closed or local)
in the topological sense, i.e., it is a closed subset of the space DD , where D is the
domain of ∆ equipped with the discrete topology. This implies that if a set F of
functions from D to D preserves a set of given relations, then so does the smallest
closed monoid containing F. This motivates the following definition.

Definition 9. LetD be a set, g : D → D, and letF be a set of functions fromD
to D. We say that F generates g iff g is contained in the smallest closed monoid
containing F. For a structure ∆ with domain D and a function f: D → D, we
say that f generates g over ∆ iff {f} ∪Aut(∆) generates g. Equivalently, for every
finite subset F of ∆, there exists a term α0 ◦ (f ◦α1 ◦ · · · ◦f ◦αn), where n ≥ 0 and
αi ∈ Aut(∆) for 0 ≤ i ≤ n, which agrees with g on F .

Note that every operation f: D → D generates an operation g over ∆ that is
canonical as a function from ∆ to ∆, namely the identity operation. What we really
want is that f generates over ∆ a canonical function g which represents f in a
certain sense—it should be possible to retain specific properties of f when passing
to the canonical function. For example, when f violates a given relationR, then we
would like to have a canonical g which also violates R—this is clearly not the case
for the identity function. Unfortunately, f might be such that it violates a relation
R without generating any function that is canonical as a function from ∆ to ∆ and
that violates R.
We therefore have to refine ourmethod: wewould like to fix constants c1, . . . , cn ∈
∆ which witness thatf violatesR and then have canonical behavior relative to these
constants, i.e., on the structure (∆, c1, . . . , cn) which is ∆ enriched by the constants
c1, . . . , cn. In order to do this, wemust assure that (∆, c1, . . . , cn) still has theRamsey
property. This leads us into topological dynamics.

4.3. An escapade in topological dynamics. The goal of this subsection is to show
the following propositiofn by using a recent characterization of theRamsey property
in topological dynamics.

Proposition 10. Let ∆ be ordered homogeneous Ramsey, and let c1, . . . , cn ∈ ∆.
Then (∆, c1, . . . , cn) is ordered homogeneous Ramsey as well.

We remark that it is easy to see that the expansion of any homogeneous structure
by finitely many constants is again homogeneous, and that the nontrivial part of the
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proposition concerns theRamsey property. We do not know if the same proposition
holds if one does not assume ∆ to be ordered.
To prove the proposition, we use a theorem from [16]. A topological group is a
group (G ; ·) together with a topology on G such that (x, y) 7→ xy−1 is continuous
from G2 to G . A group action of G on a topological space X is continuous iff it is
continuous as a function from G × X into X .

Definition 11. A topological group is extremely amenable iff any continuous
action of the group on a compact Hausdorff space has a fixed point.

Theorem 12 (Kechris, Pestov, Todorcevic [16]). An ordered homogeneous struc-
ture is Ramsey iff its automorphism group is extremely amenable.

Thus the automorphism group of the structure ∆ in Proposition 10 is extremely
amenable. Note that the automorphism groupof (∆, c1, . . . , cn) is an open subgroup
of Aut(∆). The proposition thus follows from the following fact.

Lemma 13. Let G be an extremely amenable group, and letH be an open subgroup
of G . ThenH is extremely amenable.

Proof. Let H act continuously on a compact space X ; we will show that this
action has a fixed point. Denote by H\G the set of right cosets of H in G , i.e.,
H\G = {Hg : g ∈ G}. Denote by ð : G → H\G the quotient map and let
s : H\G → G be a section for ð (i.e., a mapping satisfying ð ◦ s = id) such that
s(H ) = 1. Let α be the map fromH\G ×G → H defined by

α(w, g) = s(w)gs(wg)−1.

For w ∈ H\G and g ∈ G , note that s(w)g and s(wg) lie in the same right coset of
H , namely wg, and hence the image of α is H . The map α satisfies2

α(w, g1g2) = s(w)g1g2(s(wg1g2))
−1

= s(w)g1s(wg1)s(wg1)
−1g2(s(wg1g2))

−1

= α(w, g1)α(wg1, g2).

As H is open, H\G is discrete. Hence, s is continuous, and therefore α is
continuous as a composition of continuousmaps. The co-induced actionG y XH\G

of G on the product space XH\G is defined by

(g · î)(w) = α(w, g) · î(wg).

To check that this action is continuous, it suffices to see that the map (g, î) 7→
(g · î)(w) from G × XH\G to X is continuous for every fixed w ∈ H\G . We
already know that α is continuous and that the action H y X is continuous. To
see that (g, î) 7→ î(wg) is continuous, suppose that (gn , în)n∈ù converges to (g, î).
Let w = Hk. As (gn)n∈ù converges to g and k−1Hk is open, we will have that
eventually gng−1 ∈ k−1Hk, giving that kgn(kg)−1 ∈ H , or, which is the same,
Hkgn = Hkg. We obtain that wgn = wg for sufficiently large n. Therefore the
sequence of the în(wgn) converges to î(wg).
By the extreme amenability of G , this action has a fixed point î0. Now we check
that î0(H ) ∈ X is a fixed point of the action H y X . Indeed, for any h ∈ H ,

2Such maps are called cocycles, and the given identity is called the cocycle identity.
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h · î0 = î0 and we have

î0(H ) = (h · î0)(H ) = α(H, h) · î0(Hh) = h · î0(H ),

finishing the proof. ⊣

We remark that recently, Miodrag Sokic has given a new purely combinatorial
proof of Proposition 10.

4.4. Minimal unary functions. Using Proposition 10, we can now prove a ‘can-
onization lemma’ that will be central in what follows.

Lemma 14. Let ∆ be ordered homogeneous Ramsey with finite relational signature,
f: ∆ → ∆, and let c1, . . . , cn ∈ ∆. Then f generates over ∆ a function which agrees
with f on {c1, . . . , cn} and which is canonical as a function from (∆, c1, . . . , cn) to ∆.

Proof. Let (Fi)i∈ù be an increasing sequence of finite substructures of (∆, c1,
. . . , cn) such that

⋃
i∈ù Fi = (∆, c1, . . . , cn). By Lemma 8, for each i ∈ ù we find

a copy F ′
i of Fi in (∆, c1, . . . , cn) on which f is canonical. By the homogeneity of

(∆, c1, . . . , cn), there exist automorphisms αi of (∆, c1, . . . , cn) sending Fi to F ′
i , for

all i ∈ ù. Since there are only finitely many type conditions for n((∆, c1, . . . , cn))-
tuples, we may assume that if f satisfies a type condition on F ′

i , then it satisfies the
same type condition on F ′

i+1. Then we can inductively pick automorphisms âi of
(∆, c1, . . . , cn) such that âi+1 ◦ f ◦ αi+1 agrees with âi ◦ f ◦ αi on Fi , for all i ∈ ù.
The union over the functions âi ◦ f ◦ αi : Fi → ∆ is a canonical function from
(∆, c1, . . . , cn) to ∆. ⊣

The set of all closed transformation monoids on a fixed domain D forms a
complete lattice with respect to inclusion; it is the lattice of all endomorphism
monoids of structures with domain D. Lemma 14 has the following interesting
consequence for this lattice.

Definition 15. LetN,M be closed monoids over the same domain. We say that
N is minimal aboveM iffM ( N andM ( R ⊆ N implies R = N for all closed
monoidsR .

Clearly, everyminimal monoid aboveM is generated by a single function together
withM ; such functions are called minimal as well (cf. [9]).

Lemma 16. LetΘ be a structurewith a finite relational signaturewhich is a reduct of
an ordered homogeneousRamsey structure∆ in a finite relational signature, and letN
be a minimal closed monoid above End(Θ). Then there exist constants c1, . . . , cn(Θ) ∈
∆ and a function f which is canonical as a function from (∆, c1, . . . , cn(Θ)) to ∆ such
thatN is generated by End(Θ) and f.

Proof. Pick any g ∈ N \ End(Θ). Since g /∈ End(Θ), there exist a relation
R of Θ and a tuple c := (c1, . . . , cn(Θ)) such that R is violated on this tuple. By
Lemma 14, g generates a function f over ∆ which is canonical as a function from
(∆, c1, . . . , cn(Θ)) to ∆ and which is identical with g on {c1, . . . , cn(Θ)}. Then f and
End(Θ) generateN. ⊣

Proposition 17. Let Θ be a finite relational signature reduct of an ordered homo-
geneous finite relational signature Ramsey structure ∆. Then there are finitely many
minimal closed monoids above End(Θ), and every closed monoid properly containing
End(Θ) contains a minimal one.
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Proof. Observe that if c, d are tuples of the same type in ∆, andf, g are canonical
functions from (∆, c) and (∆, d ) to ∆, respectively, and their (complete) behaviors
are identical, thenf and g generate one another over ∆. Thus, there are only finitely
many inequivalent (in the sense of ‘do not generate one another’) functions generat-
ing minimal monoids. The upper bound for minimal monoids is the following: set
j := o∆(n(Θ)) (there are that many inequivalent choices for the tuple of constants
of length n(Θ) in ∆). For every type of an n(Θ)-tuple c in ∆, set rc := o

(∆,c)(n(∆)).
Set r to be the maximum of the rc . Define moreover s := o∆(n(∆)). Then a bound
for the number of inequivalent minimal functions over End(Θ) is j · s r .
By the proof of Lemma 16, every closed monoid properly containing End(Θ)
contains a canonical function from (∆, c1, . . . , cn(Θ)) to ∆ which is not an element
of End(Θ), for constants c1, . . . , cn(Θ) ∈ ∆. Since there are only finitely many
inequivalent such functions, we conclude that there exists a finite setF of functions
such that every closedmonoid which properly contains End(Θ) contains an element
of F. It follows that every closed monoid properly containing End(Θ) contains a
minimal monoid. ⊣

4.5. Minimal higher arity functions. Since primitive positive definability is char-
acterized by finitary functions rather than unary functions (recall Theorem 4), we
have to generalize our method to higher arities.

Definition 18. Let Ξ1, . . . ,Ξm be a structures. For a tuple x in the product
Ξ1 × · · · × Ξm and 1 ≤ i ≤ m, we write xi for the i-th coordinate of x. The type of
a sequence of tuples a1, . . . , an ∈ Ξ1 × · · · × Ξm , denoted by tp(a1, . . . , an), is the
m-tuple containing the types of (a1i , . . . , a

n
i ) in Ξi for each 1 ≤ i ≤ m.

With this definition, also the notions of type condition, behavior, (n-)complete be-
havior, and (n-)canonical generalize in complete analogy from functions f: Ξ→ Ω
to functionsf: Ξ1×· · ·×Ξm → Ωwhose domain is a product. It is folklore that the
Ramsey property is not lost when going to products; for the reader’s convenience,
we provide a proof here.

Lemma 19 (The ordered Ramsey product lemma). LetΞ1, . . . ,Ξm be ordered and
Ramsey, and set Ξ := Ξ1 × · · · × Ξm. Let moreover a number k ≥ 1, an n-tuple
(a1, . . . , an) ∈ Ξ, and finite Fi ⊆ Ξi be given. Then there exist finite Si ⊆ Ξi with the
property that whenever the n-tuples in S := S1 × · · · × Sm of type tp(a

1, . . . , an) are
colored with k colors, then there is a copy of F := F1 × · · · × Fm in S on which the
coloring is constant.

Proof. Weuse induction overm. The base casem = 1 is trivial, so assumem > 1
and that the lemma holds form− 1. For all 1 ≤ i ≤ n, set c i := (ai1, . . . , a

i
m−1). By

the induction hypothesis, there exist finite Si ⊆ Ξi for all 1 ≤ i ≤ m − 1 such that
whenever its n-tuples of type tp(c1, . . . , cn) are colored with k colors, then there is a
copy ofF1×· · ·×Fm−1 inS1×· · ·×Sm−1 onwhich the coloring is constant. Let p be
the number of n-tuples of this type in S1×· · ·×Sm−1. Also by induction hypothesis,
there exists a finite Sm,1 ⊆ Ξm with the property that whenever its n-tuples of type
tp(a1m, . . . , a

n
m) are colored with k colors, then it contains a monochromatic copy

of Fm. Further, there is a finite Sm,2 ⊆ Ξm with the property that whenever its
subsets of this type are colored with k colors, then it contains a monochromatic
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copy of Sm,1. Continue constructing finite substructures of Ξm like that, arriving at
Sm := Sm,p.
We claim that S := S1 × · · · × Sm has the desired property. To see this, let a
coloring ÷ of the n-tuples in S of type tp(a1, . . . , an) be given. Let b(1), . . . , b(p) be
an enumeration of all the n-tuples in S1×· · ·×Sm−1 which have type tp(c1, . . . , cn).
For 1 ≤ i ≤ p and 1 ≤ j ≤ n, we write b(i)j for the j-th component of b(i) (note
that this component is an (m− 1)-tuple in S1× · · ·×Sm−1). Now for all 1 ≤ i ≤ p,
define a coloring ÷i of the n-tuples t = (t1, . . . , tn) in Sm of type tp(a1m, . . . , a

n
m) by

setting ÷i(t) := ÷(b(i)1 ∗ t1, . . . , b(i)n ∗ tn), where r ∗ s denotes the concatenation
of two tuples r, s . By thinning out Sm p times, we obtain a copy F ′

m of Fm in Sm
on which each coloring ÷i is constant with color q i . Now by that construction, all
n-tuples b(i) have been assigned a color q i , the assignment thus being a coloring
of all the n-tuples of type tp(c1, . . . , cn) in S1 × · · · × Sm−1. By the choice of that
product, there is a copy F ′

1 × · · · × F ′
m−1 of F1 × · · · × Fm−1 in S1 × · · · × Sm−1

on which that coloring is constant, say with value q. But that means that if a
tuple (d 1, . . . , d n) ∈ F ′

1 × · · ·×F ′
m has type tp(a

1, . . . , an), then ÷(d 1, . . . , d n) = q,
proving our statement. ⊣

We now generalize the notion of a transformation monoid to higher arities.
Denote the set of all polymorphismsof∆byPol(∆). Irrespectively of the structure∆,
this set contains all finitary projections and is closed under composition. Sets of
finitary functions with these two properties are referred to as clones—for a survey
of clones on infinite sets, see [11]. In addition, the clone Pol(∆) is a closed subset
of the sum space of the spaces DD

n

, where D is again taken to be discrete; such
clones are called closed, local, or locally closed (cf. the corresponding terminology
for monoids before). This means that if a setF of finitary functions on a domainD
preserves a set of given relations, then so does the smallest closed clone containingF,
motivating the following extension of Definition 9.

Definition 20. Let D be a set, g : Dm → D, and let F be a set of finitary
operations onD. We say thatF generates g iff g is contained in the smallest closed
clone containing F. For a structure ∆ with domain D and a function f: Dn → D,
we say that f generates g over ∆ iff {f} ∪ Aut(∆) generates g. Equivalently, for
every finite subset F of ∆m , there exists an m-ary term built from f, Aut(∆), and
projections, which agrees with g on F .

As before, finitary functions on ordered homogeneous Ramsey structures gener-
ate canonical functions, and we can add constants to the language.

Lemma 21. Let ∆ be ordered homogeneous Ramsey with finite relational signa-
ture, and let f: ∆m → ∆. Let moreover finite tuples c1 = (c11 , . . . , c

n1
1 ), . . . , cm =

(c1m, . . . , c
nm
m ) of constants in ∆ be given. Then f generates over ∆ anm-ary operation

g on ∆ which is canonical as a function from (∆, c1) × · · · × (∆, cm) to ∆ and which
agrees with f on all tuples (cj11 , . . . , c

jm
m ).

Proof. Since the proof is almost identical with the proof of Lemma 14, we only
sketch it.
The first step is to see that whenever Fi ⊆ (∆, ci) are finite for 1 ≤ i ≤ n, then
there exist copies F ′

i ⊆ (∆, ci) of Fi such thatf is canonical on F
′
1×· · ·×F ′

m; this is
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proven exactly the same way as Lemma 8, using Lemma 19 instead of the classical
Ramsey property.
From here on, the proof is exactly the same as the proof of Lemma 14. ⊣

The set of all closed clones on a fixed domain D forms a complete lattice with
respect to inclusion; it is the lattice of all polymorphism clones of structures with
domain D. This lattice has been investigated in universal algebra (see [21]).

Definition 22. For closed clones C ,D on the same set, we say thatD isminimal
above C iff C ( D and C ( E ⊆ D implies E = D for all closed clones E . Every
minimal closed clone above C is generated by C plus a single function f outside C ;
we call such a function f minimal above C if there is no function of smaller arity
which generates (together with C ) the same closed clone as f.

Lemma 21 allows us to find theminimal clones above a closed clone on an ordered
homogeneous Ramsey structure. The main difference here compared with monoids
is that the arities of minimal canonical functions are not bounded a priori, which
means that there could be infinitely many minimal clones. The following lemma,
which has been observed in [5], yields a bound on the arities of minimal functions.

Lemma 23. Let Θ be a structure, m ≥ 1, and let R ⊆ Θn be a relation which
intersects precisely m n-orbits of Θ. If a function f: Θp → Θ violates R, then f
generates over Θ a function of arity m which violates R, too.

Proof. Let O1, . . . , Om be the orbits of Θ that are intersect R, and fix ar-
bitrary tuples si ∈ Oi . Since f violates R, there exist r1, . . . , rp ∈ R such
that f(r1, . . . , rp) /∈ R. Say that bi ∈ Oji , for all 1 ≤ i ≤ p, and choose
for all 1 ≤ i ≤ p an automorphism αi of Θ sending sji to ri . The func-
tion g(x1, . . . , xm) := f(α1(xi1), . . . , αp(xip )) has arity m and violates R since
g(s1, . . . , sm) = f(r1, . . . , rp) is not in R. ⊣

Proposition 24. Let Θ be a finite relational signature reduct of an ordered homo-
geneous Ramsey structure ∆ with finite relational signature. Then there are finitely
many minimal closed clones above Pol(Θ), and every closed clone containing Pol(Θ)
contains a minimal one.

Proof. Let R1, . . . , Rn be the relations of Θ. If f is a minimal operation above
Pol(Θ), then it violates a relation Ri . By Lemma 23, it generates over Θ a function
of arity oΘ(ki), where ki is the arity of Ri , which still violates Ri . Setting m to
be the maximum of the oΘ(ki) where 1 ≤ i ≤ n, we get that every minimal clone
above Pol(Θ) is generated by a function of arity at most m. By Lemma 21, such
functions can be made canonical—the rest of the proof is just like the proof of
Proposition 17. ⊣

If one wishes to determine the minimal clones above the endomorphism monoid
of a structure Θ, then there is a bound on the arities of minimal functions which
only depends of the number of 2-orbits of the structure Θ, rather than the number
of orbits of possibly longer tuples as in the preceding proof.

Definition 25. Let D be a set, and let f: Dm → D be an operation on D. Then
f is called essentially unary iff there exist 1 ≤ i ≤ m and F : D → D such that
f(x1, . . . , xm) = F (xi). Conversely, f is called essential iff it is not essentially
unary.
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Proposition 26. Let Θ be any relational structure for which oΘ(2) is finite. Then
every minimal closed clone above End(Θ) is generated by a function of arity at most
2 · oΘ(2)− 1 together with End(Θ).

Proof. Let D be a minimal closed clone above End(Θ). If all the functions
in D are essentially unary, then D is generated by a unary operation together
with End(Θ) and we are done. Otherwise, let f be an essential operation in D .
Then one can verify that f violates the 3-ary relation P3 defined by the formula
(x = y)∨(y = z). The assertion then follows fromLemma 23: the 3-ary subrelation
of P3 defined by the formula x = y clearly consists of oΘ(2) orbits in Θ; similarly,
the 3-ary subrelation defined by y = z consists of the same number of orbits.
Since P3 is the union of these two subrelations, and since the intersection of the
two subrelations consists of exactly one orbit (namely, the triples with three equal
entries), we obtain 2 · oΘ(2)− 1 different orbits for tuples in P3. ⊣

Consider the situation where the structure Θ in Proposition 26 is a reduct of a
structure ∆, a situation we are often interested in. Then since ∆ has at least as many
2-orbits as Θ, we can also write 2 · o∆(2)− 1 for the arity bound in the proposition.
This gives us a uniform bound for all reducts Θ of ∆ which is independent of Θ.

§5. The algorithm. We now present the algorithm proving Theorem 1; the proof
of the two statements of Theorem 2 is a subset. The input to the algorithm are
quantifier-free formulas φ0, . . . , φn over Γ which define relations R0, . . . , Rn on the
domain D of Γ. Set Θ to be the reduct (D;R1, . . . , Rn) of Γ, and write R := R0.
We will decide whether there is a primitive positive definition of R in Θ.

5.1. Operationalization. If there is no such definition, then since Θ is ù-
categorical, by Theorem 4 there is a polymorphism f of Θ which violatesR; we call
f a witness. Our algorithm will now try to build a witness. If it fails to do so, then
R is primitive positive definable in Θ; otherwise, it is not.

5.2. Arity reduction. Let k be the arity of R. By Lemma 23, if there exists a
witness, then there exists also a witness of arity equal to the number N of those
k-orbits in Θ that intersect R. By assumption, Γ has a first-order definition in an
ordered homogeneous structure ∆ that is finitely bounded, Ramsey, and has finite
relational signature. The number N is not larger than oΘ(k), which is not larger
than oΓ(k) since Aut(∆) ⊆ Aut(Γ) ⊆ Aut(Θ). Since ∆ is homogeneous,m := o∆(k)
equals the number of non-isomorphic substructures of size k. Since the maximal
arity of ∆ is n = n(∆), we have m ≤ 2O(k

n). The algorithm now tries to detect a
witness of arity m.

5.3. Ramseyfication. If f is a witness of arity m, then there are k-tuples c1, . . . ,
cm ∈ R such that f(c1, . . . , cm) /∈ R. By Lemma 21, f generates over ∆ an m-ary
function g which is canonical as a function from (∆, c1) × · · · × (∆, cm) to ∆ and
which agrees withf on allm-tuples whose i-th component is taken from the k-tuple
ci for all 1 ≤ i ≤ m. In particular, g still violates R and preserves Θ, and hence is a
witness, too. Our algorithm thus tries to find a witness of this form.

5.4. Finite representation. Let n := max(s, n(∆), 3), where s is the maximal size
of the finitely many finite forbidden substructures of ∆. Since n ≥ n(∆), a function
from (∆, c1) × · · · × (∆, cm) to ∆ is canonical iff it is n-canonical. Such functions
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can thus be represented as functions from S(∆,c1)n ×· · ·×S(∆,cm)n to S∆n . Note that the

type space S(∆,ci )n only depends on the type of ci in ∆. Since o
∆(k) is finite, there are

only finitely many choices of types for each tuple ci—our algorithm tries all such
choices. Since ∆ has a finite relational signature, and is homogeneous, the types of
a tuple are given by the substructure induced by the tuple in ∆, and hence those
choices can be made effectively. For each choice for the types of the ci , and for each

function ó from S(∆,c1)n × · · · × S(∆,cm)n to S∆n , the algorithm checks whether ó is the
behavior of a witness.

5.5. Verification. Given ó, we verify the following.

• (Compatibility.) If ó is a behavior of a canonical operation, then for all

1 ≤ k ≤ n it must also be extendible to a function from S(∆,c1)k × · · · × S(∆,cm)k

to S∆k . This is possible in the following situation: if s is an n-type, then it has
certain k-subtypes t, i.e., projections of tuples of type s onto k coordinates
satisfy t. Now products of k-subtypes are automatically sent to a k-subtype
under ó: if s1, . . . , sm are n-types and I ⊆ {1, . . . , n} is a set of size k inducing
k-subtypes ti of si , then I induces a k-subtype of ó(s1, . . . , sm). Our algorithm
checks for n-types p1, q1, . . . , pm, qm and all I, J ⊆ {1, . . . , n} that if I and J
induce identicalk-subtypes inpi and qi , respectively, then they induce identical
k-subtypes in ó(p1, . . . , pm) and ó(q1, . . . , qm)—otherwise, ó is rejected as a
candidate. If on the other hand ó satisfies this condition, then it naturally
extends to a function from S(∆,c1) × · · · × S(∆,cm) to S∆ respecting arities, and
we can compute the value of this function for every argument. In the following,
we write ó for this extended function.

• (Violation.) SinceR has a first-order definition in ∆, and automorphisms of ∆
preserve first-order formulas, it follows thatR is a unionof orbits, i.e., ifa, b are
of the same type, thena ∈ R iff b ∈ R. Set t := ó(tp(∆,c1)(c1), . . . , tp(∆,cm)(cm)).
Our algorithm checks that t is not a type in R, since we only want to accept ó
if it is the behavior of an operation which violates R on c1, . . . , cm.

• (Preservation.) For every relation Ri from Θ, we check that ó “preserves” Θ
as follows: write p for the arity of Ri . For all p-types t1, . . . , tm of tuples in
Ri , we verify that ó(t1, . . . , tm) is the type of a tuple in Ri ; otherwise we reject
ó.

We now argue that the algorithm finds a ó satisfying our three conditions if
and only if there is an m-ary polymorphism of Θ that violates R. It is clear that
the type function of a witness will satisfy all the conditions, so one direction is
straightforward. For the opposite direction, suppose that ó is accepted by our
algorithm. We build a canonical operation from (∆, c1)× · · ·× (∆, cm) to ∆ in three
steps. Let ô be the signature of ∆.
We first construct an infinite structure Π with domainDm and signature ô ∪{∼},
where ∼ is a new binary relation symbol, as follows. For all (a1, b1), . . . , (am, bm) ∈
D2 with types t1, . . . , tm in (∆, c1), . . . , (∆, cm), respectively, if the 2-typeó(t1, . . . , tm)
contains x1 = x2 then we set (a1, . . . , am) ∼ (b1, . . . , bm). Note that since n ≥ 3 and
because of the compatibility constraints and transitivity of equality,∼ then denotes
an equivalence relation onDm. The other relations of Π are defined as follows. Let
R be a k-ary relation from ô. We add the k-tuple ((a11 , . . . , a

1
m), . . . , (a

k
1 , . . . , a

k
m)) to

the relation R of Π if and only if R(x1, . . . , xk) is contained in ó(t1, . . . , tm), where
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ti is the type of the tuple (a1i , . . . , a
k
i ) ∈ D

k in (∆, ci). Since n ≥ n(∆) ≥ k, this is
well-defined by the compatibility item of our algorithm.
The quotient structure Π/∼ is defined to be the ô-structure whose domain is the
setDm/∼ of all equivalence classes of∼, andwhereR(E1, . . . , Ep) holds for a p-ary
R ∈ ô andE1, . . . , Ep ∈ D/∼ if and only if there are b1 ∈ E1, . . . , bp ∈ Ep such that
R(b1, . . . , bp) holds in Π. The final step is to show that there exists an embedding f
of Π/∼ into ∆. By ù-categoricity of ∆ and a standard compactness argument (see,
e.g., Lemma 2 in [4]), it suffices to show every finite substructure Ω of Π/∼ embeds
into ∆. This follows from the fact that none of the forbidden substructures embeds
into Ω, since n ≥ s , where s is the size of the largest obstruction.
Finally, observe that the mapping g from Dm to D that maps every u in Dm to
f(u/∼) (where u/∼ denotes the∼-equivalence class of u in Π) is a polymorphism of
Θ by the preservation item of the algorithm, and that g violates R by the violation
item of the algorithm. ⊣
Note that our algorithm is even uniform in ∆, that is, we could make ∆ part of
the input by specifying the finitely many forbidden substructures in the signature
of ∆, and quantifier-free definitions of the relations of Γ in ∆.

§6. Application illustration: Allen’s Interval Algebra. Our algorithm can be ap-
plied in many situations that are of interest in temporal and spatial reasoning. In
this section we illustrate this by verifying the assumptions of our decidability result
in a well-known setting from temporal reasoning, known asAllen’s Interval Algebra.
Many computational problems studied in temporal and spatial reasoning can
be formulated as CSPs for ù-categorical structures. One of the examples is the
network satisfaction problem for Allen’s Interval Algebra, and for all its fragments.
Allen’s Interval Algebra can be viewed as a relational structure Γ with domain
D = {(a, b) ∈ Q2 | a < b} and which contains a binary relation {((a, b), (c, d )) |
(Q;<) |= φ(a, b, c, d )} for every first-order formula φ; we refer to [10] for a formal
definition of relation algebras, and their use in temporal and spatial reasoning.
A fragment of Allen’s Interval Algebra is a binary structure obtained from Γ by
dropping some of the relations of Γ. Clearly, Γ and all its fragments have finitely
many orbits of n-tuples, for all n, and are thereforeù-categorical by the theorem of
Ryll-Nardzewski.
We verify that Γ is ordered, homogeneous, Ramsey, and finitely bounded. Theo-
rem 1 then shows that primitive positive definability in fragments of Allen’s Interval
Algebra is decidable. Note that the lexicographic ordering on D is first-order de-
finable over (Q;<), and therefore Γ is ordered. It has been observed by Hirsch
(Corollary 18 in [14]) that Γ is even homogeneous. The example given after Corol-
lary 45 in [8] discusses how to derive the fact that Γ is Ramsey from the fact that
(Q;<) is Ramsey. We finally have to show the following.

Proposition 27. Allen’s Interval Algebra Γ is finitely bounded.

Proof. Let ô be the signature of Γ. LetF be the set of all 3-element ô-structures
that do not embed into Γ. We claim that the age of Γ is precisely Forb(F ), i.e., the
set of finite ô-structures that do not embed any of the structures from F . Clearly,
the age of Γ is contained in Forb(F ). Conversely, let Λ be a finite ô-structure that
does not embed into Γ.
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We construct a structure Λ′ with signature ≤ from Λ in the following way. For
each element v of Λ we have two elements v1 and v2 in Λ′. If R(u, v) holds in Λ for
someR ∈ ô, let φ(a, b, c, d ) be the first-order formula that definesR over (Q;<). If
φ implies a ≤ c over (Q;<) then we set u1 ≤ v1 in Λ′. Similarly, if φ implies a ≤ d ,
b ≤ c, or b ≤ d , then we add u1 ≤ v2, u2 ≤ v1, or u2 ≤ v2 to Λ′, respectively.
Observe that when x, y are elements of Λ′ such that x ≤ y and y ≤ x holds in Λ′,
then for any other element z of Λ′ we have x ≤ z if and only if y ≤ z, and z ≤ x
if and only if z ≤ y. Let Λ′′ be the structure obtained from Λ′ by successively
removing elements x when there exists another vertex y such that x ≤ y and y ≤ x.
We claim that Λ′′ does not embed into (Q;≤). Suppose otherwise that h is such
an embedding. Let g : Λ → D be defined by (u, v) 7→ (h(u), h(v)); one can verify
that g is an embedding of Λ into Γ, a contradiction to our assumptions.
Since (Q;≤) is finitely bounded by structures of size at most three, and Λ′′ does
not embed into (Q;≤), there exists a structure ∆′′ of size at most three that embeds
into Λ′′ but does not embed into (Q;≤). For each element x of ∆′′ there must be a
y such that (x, y) ∈ D or (y, x) ∈ D. Let ∆ be the structure induced by those pairs;
since ∆′′ has at most three elements, the same holds for ∆. Then the structure ∆ is
inF since it does not embed into Γ, but it embeds into Λ, which is what we wanted
to show. ⊣

Corollary 28. For Allen’s Interval AlgebraΓ the problem Exprpp(Γ) is decidable.

§7. Discussion and open problems. We presented an algorithm that decides prim-
itive positive definability in finite relational signature reducts Γ of structures that
are ordered, Ramsey, homogeneous, finitely bounded, and with finite relational
signature. All of those structures Γ are ù-categorical. While the condition for Γ
might appear rather restrictive at first sight, it is actually quite general: we want to
point out that we do not require that Γ is Ramsey, we only require that Γ is definable
in a Ramsey structure. We do not know of a single homogeneous structure Γ with
finite relational signature which is not a reduct of an ordered homogeneous Ramsey
structure with finite relational signature.

Problem 29. Does every structure which is homogeneous in a finite relational sig-

nature have a homogeneous expansion by finitely many relations such that the resulting

structure is Ramsey?

A variant of this problem is the following.

Problem 30. Does every ù-categorical structure have an ù-categorical expansion
which is Ramsey?

Note that our method is non-constructive: the algorithm does not produce a
primitive positive definition in case that there is one. It is an interesting open
problem to come up with bounds on the number of existential variables that suffice
for a primitive positive definition of R in Θ. For many structures Γ of practical
interest, such as (Q;<) or the random graph, our algorithm can certainly be tuned
so that Exprpp(Γ) becomes feasible for reasonable input size; in particular, the
gigantic Ramsey constants involved in the proofs of our results do not affect the
running time of our procedure.
Another important open problem is whether the method can be extended to
show decidability of our computational problem for first-order definability instead
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of primitive positive, existential positive, and existential definability; we denote
this computational problem by Exprpp(Γ). By the theorem of Ryll-Nardzewski,
first-order definability is characterized by preservation under automorphisms, i.e.,
surjective self-embeddings. But the requirement of surjectivity is difficult to deal
with in our approach.

Problem 31. Let ∆ be a structure which is ordered, homogeneous, Ramsey, finitely
bounded, and has a finite relational signature, and let Γ be a reduct of ∆ with finite
relational signature. Is the problem Exprfo(Γ) decidable?
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