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Abstract. We prove two theorems in the ergodic theory of infinite permutation
groups. First, generalizing a theorem of Nessonov for the infinite symmetric
group, we show that every non-singular action of a non-archimedean, Roelcke
precompact, Polish group on a measure space (Ω, µ) admits an invariant σ-finite
measure equivalent to µ. Second, we prove the following de Finetti type theorem:
if G y M is a primitive permutation group with no algebraicity verifying an
additional uniformity assumption, which is automatically satisfied if G is Roelcke
precompact, then any G-invariant, ergodic probability measure on ZM , where Z is
a Polish space, is a product measure.

1. Introduction

The theory of dynamical systems of Polish (non-locally compact) groups has
recently seen a rapid development, as many connections with combinatorics and
probability theory have emerged. This paper is a contribution to the ergodic theory
of infinite permutation groups, that is, dynamical systems that preserve a measure
or a measure class.

Infinite permutation groups arise naturally in a model-theoretic context as the
automorphism groups of countable structures. A particularly important class
of such groups, where the action remembers all model-theoretic information
and there is a perfect dictionary between model theory and permutation group
theory, is that of oligomorphic groups. Recall that a permutation group G ≤
Sym(M) is called oligomorphic if the diagonal action G y Mn has finitely many
orbits for every n. From a model-theoretic perspective, these are precisely the
automorphism groups of ℵ0-categorical structures. If one slightly relaxes this
condition and considers locally oligomorphic actions instead (an action is locally
oligomorphic if its restriction to any finitely many orbits is oligomorphic), there is
also a characterization in terms of topological groups that makes no mention of a
particular action. Recall that a topological group G is non-archimedean if it admits
a basis at 1G consisting of open subgroups and it is Roelcke precompact if for every
neighborhood U of 1G, there is a finite set F ⊆ G such that G = UFU. Then a
non-archimedean Polish group is Roelcke precompact iff it admits a continuous,
topologically faithful, locally oligomorphic action on a discrete countable set iff all
of its continuous actions on a discrete set are locally oligomorphic [T]. An action
of G on a discrete set M is topologically faithful if the associated homomorphism
G → Sym(M) is a homeomorphic embedding, where Sym(M) is equipped with
the pointwise convergence topology. Some (uninteresting, from a dynamical
perspective) examples of Roelcke precompact groups that cannot be represented
by faithful oligomorphic actions are the infinite compact non-archimedean groups,
i.e., the profinite groups.
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Roelcke precompact groups share some tameness properties with compact
groups. For example, the unitary representations of non-archimedean Roelcke
precompact groups can be completely classified [T]. However, in contrast to the
situation with compact groups, irreducible representations are usually infinite-
dimensional. This classification has proved helpful for studying their probability
measure-preserving (pmp, for short) actions. For example, an analogue of de
Finetti’s theorem holds for appropriate actions of such groups ([JT], also see below)
and Jahel and Joseph [JJ] have been able to classify the invariant random subgroups
of some of them.

The first part of this paper deals with non-singular actions of non-archimedean,
Roelcke precompact, Polish groups. A non-singular action is an action on a σ-finite
measure space that preserves the measure class; equivalently, it is an action on
the measure algebra by automorphisms, not necessarily preserving the measure.
This is a classical topic in ergodic theory with many applications. In a recent
development connected to permutation groups, Conley, Jahel and Panagiotopou-
los [CJP], extending a result of Ackerman, Freer, and Patel [AFP] for invariant
measures, described all subgroups H ≤ Sym(N) such that the homogeneous space
Sym(N)/H carries a measure for which the translation action is non-singular. In
a somewhat different direction, Neretin [N1] also studies non-singular actions of
some Polish groups.

Examples of non-singular actions can be obtained by starting with a system
that preserves a finite or a σ-finite measure and then taking a measure in the same
measure class. It turns out that for non-archimedean, Roelcke precompact, Polish
groups, this is all one can do, as our first main theorem shows.

Theorem 1.1. Let G be a non-archimedean, Roelcke precompact, Polish group and let
G y (Ω, µ) be a non-singular action. Then Ω can be represented as a disjoint countable
union

⊔
i Ωi of invariant subsets on each of which the action is isomorphic to an induced

action from a pmp action of an open subgroup of G. In particular, there exists a σ-finite
measure equivalent to µ which is preserved by G.

Induction is a standard construction in ergodic theory that takes an action
V y X of an open subgroup V ≤ G and produces a suitable action of G on the
disjoint union of [G : V] copies of X. See Subsection 3.2 for more details.

A slightly less detailed version of this theorem, in the special case where G is
the full symmetric group Sym(N), was obtained by Nessonov [N2].

It is instructive to compare Theorem 1.1 with the situation for compact groups.
An ergodic, non-singular action of a compact group G is conjugate to the action on
a homogeneous space G y G/H equipped with the quotient of the Haar measure,
which is finite, while an ergodic action of a Roelcke precompact, non-archimedean
group can preserve an infinite measure (for example, any transitive action on
a countably infinite set). Moreover, pmp actions of such groups can be very
complicated.

The proof of the theorem is based on the classification of the unitary repre-
sentations of such groups as well as on a new result concerning the algebraic
closure operator for locally oligomorphic actions: in model-theoretic terms, the
quasi-order on Meq given by a ∈ acleq b is well-founded (Theorem 2.4).

Theorem 1.1 reduces the study of non-singular actions of a group G satisfying
its hypotheses to pmp actions of its open subgroups, making the question of
understanding the pmp actions of these groups all the more interesting. This
problem is intimately connected to exchangeability theory in probability, which,
in most general terms, attempts to classify all possible distributions of random
variables (ξa : a ∈ M) invariant under the action of a certain permutation group
G ≤ Sym(M). This is equivalent to classifying the invariant measures for the
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shift action G y ZM, where, without loss of generality, one can take Z to be an
arbitrary fixed uncountable Polish space, for example, the interval [0, 1]. In view
of the ergodic decomposition theorem, one can also assume that the measure
is ergodic. The problem is easier the bigger the group G is (as there are fewer
invariant measures), and indeed, the first result of the theory is the classical de
Finetti theorem which states that the only such ergodic measures are the product
measures when G is the full symmetric group Sym(M). In probabilistic terms,
this means that the variables ξa are independent, identically distributed. While a
full classification with a reasonably general hypothesis on the permutation group
G ≤ Sym(M) (for example, oligomorphic) seems for the moment out of reach, in
the second part of the paper, we concentrate on isolating the optimal hypotheses
to obtain de Finetti’s conclusion of independence.

This problem was already considered in [JT, Theorem 1.1], where it was proved
that the conclusion holds if G ≤ Sym(M) is a transitive oligomorphic permuta-
tion group with no algebraicity and weak elimination of imaginaries, and the
techniques used there were again based on the classification of the unitary repre-
sentations. The no algebraicity assumption (this means that the actions of stabilizers
of finite subsets A ⊆ M have infinite orbits outside of A) is clearly necessary; see
[JT, Example 5.1.2]. It is natural to try to replace weak elimination of imaginaries
by the weaker assumption of primitivity of the action but it is claimed in [JT, Ex-
ample 5.1.3] that this is not possible. However, the example contains a mistake
(cf. Remark 4.12) and primitivity is indeed sufficient, as follows from the theorem
below. Finally, the assumption of the action being oligomorphic is essential for
the methods of [JT] because a classification of the unitary representations is not
available for non-Roelcke precompact groups, but here we present a different
proof based entirely on probability theory that dispenses with this assumption.
The price we have to pay is an additional uniformity requirement in either of the
no algebraicity or the primitivity hypothesis. The precise definitions are given in
Section 4.

Theorem 1.2. Let G ≤ Sym(M) be a primitive permutation group with no algebraicity
such that at least one of the following two conditions holds:

(i) G y M has uniform non-algebraicity; or
(ii) Every stabilizer Ga is a boundedly maximal subgroup of G.

(If G is Roelcke precompact, then both conditions hold automatically under the other
hypotheses.)

Then any G-invariant, ergodic measure on [0, 1]M is a product measure.

Condition (ii) above is satisfied, for example, if the action G y M2 has finitely
many orbits but also in many other situations. This condition has been considered
in the pseudo-finite case in [LMT]. Both conditions (i) and (ii) are remnants of
compactness and are automatically satisfied if G is Roelcke precompact. Condition
(i) is also satisfied, for example, if M is a homogeneous structure whose age
is given by a first-order universal theory (or, equivalently, a collection of finite
forbidden configurations) and G = Aut(M). An important class of examples
where the hypotheses are not satisfied but the conclusion still holds is the rational
Urysohn space and some generalizations of it. In a very recent preprint [BJJ],
Barritault, Jahel, and Joseph manage to classify all unitary representations of its
isometry group and deduce, in particular, a version of Theorem 1.2.

Jahel and Perruchaud [JP] have constructed an example of a primitive action
G y M with no algebraicity, and an invariant measure on RM based on a Gaussian
random process, where the conclusion of the theorem does not hold, so the
uniformity conditions cannot be omitted. Finally, we note that the transitivity
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assumption is not essential; see Theorem 4.10 for the precise general statement of
the theorem.

The proof of Theorem 1.2 is based on a simple, general result that we believe to
be of independent interest (cf. Corollary 4.5 and Remark 4.8).

Theorem 1.3. Let G ≤ Sym(M) be a permutation group such that for every a ∈ M, the
orbits of Ga on M \ {a} are infinite. Let (ξa : a ∈ M) be random variables whose joint
distribution is G-invariant. Then they are conditionally independent over the tail σ-field.

Acknowledgments. I would like to thank Tomás Ibarlucía and Yuri Neretin for
bringing to my attention Nessonov’s article [N2], which inspired Theorem 1.1. I
am also grateful to Rémi Barritault, Colin Jahel, and Matthieu Joseph for useful
remarks on a preliminary version of the paper and to the anonymous referee for
useful suggestions.

2. Locally oligomorphic permutation groups

2.1. The lattice of algebraically closed sets. Let G be a non-archimedean, Roelcke
precompact, Polish group. All continuous actions of G on a discrete set N are locally
oligomorphic: i.e., for every n and every orbit G · a, there are only finitely many
orbits of the diagonal action G y (G · a)n [T, Theorem 2.4]. Equivalently, for any
tuple ā from N, every G-orbit splits into finitely many Gā orbits (here Gā denotes
the stabilizer of the tuple ā). It follows that if G acts locally oligomorphically on
N, then so does any of its open subgroups. The theory of locally oligomorphic
permutation groups is parallel to the one of ℵ0-categorical structures in model
theory, with the additional subtlety that one must allow infinitely many sorts.
Some of the theory was developed using permutation group theoretic language in
[ET]. In this section, we prove a well-foundedness result for a certain partial order
that will be crucial for the proof of Theorem 1.1.

Let G be Polish, Roelcke precompact and let G y M be a continuous action on
the countable set M. If D ⊆ M, we denote by GD the setwise stabilizer of D

GD := {g ∈ G : g · D = D},

and by G(D) the pointwise stabilizer:

G(D) := {g ∈ G : g · a = a for all a ∈ D}.

Borrowing some terminology from model theory, we will say that a set D ⊆ M is
definable if GD is open. Note that every finite set is definable.

We denote by Fin(M) the collection of finite subsets of M. If A ∈ Fin(M), we
define the algebraic closure of A by:

acl A = {b ∈ M : GA · b is finite}.

A subset D ⊆ M is algebraically closed if acl A ⊆ D for every finite A ⊆ D. A subset
D ⊆ M is locally finite if it intersects each G-orbit in a finite set.

Lemma 2.1. Let A ⊆ M be finite. Then acl A is definable, algebraically closed, and
locally finite.

Proof. We have that GA ≤ Gacl A, so Gacl A is open and acl A is definable. To see
that acl A is algebraically closed, let B ⊆ acl A be finite and let c ∈ acl B. Then
GB · c is finite, so (GA ∩ GB) · c is also finite. On the other hand, GA · B is finite,
so GA ∩ GB has finite index in GA, and therefore GA · c is also finite. Finally, local
finiteness follows from the fact that the action GA y G · c has only finitely many
orbits for any c ∈ M, and thus the union of the finite orbits is finite. �
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For the next lemma, recall that two subgroups of G are commensurate if their
intersection has finite index in both. If H ≤ G, the commensurator of H in G,
denoted by CommG(H), is the subgroup of all g ∈ G such that H and gHg−1

are commensurate. We also denote by NG(H) the normalizer of H in G. The
subgroup H is called self-commensurating if CommG(H) = H and self-normalizing
if NG(H) = H.

Lemma 2.2. Let D ⊆ M be definable, algebraically closed, and locally finite. Then the
following hold:

(i) There exists a finite A ⊆ D such that GA = GD and D = acl A.
(ii) For every g ∈ G, if gGDg−1 ∩ GD has finite index in GD, then g ∈ GD.

(iii) In particular, GD is self-commensurating and, therefore, self-normalizing.

Proof. (i) Write H = GD. Let S0, S1, . . . be an enumeration of the orbits of G
on M. Let Ai =

⋃
j≤i Sj ∩ D. As D is locally finite, each Ai is finite. Moreover,

GA0 ⊇ GA1 ⊇ · · · and
⋂

i GAi = H. As H is open, by Roelcke precompactness, each
GAi contains only finitely many H-double cosets, so there is i such that GAi = H.
Let A = Ai. We check that acl A = D. The ⊆ inclusion follows from the fact that
D is algebraically closed. For the other, if a ∈ D, then GA · a = H · a ⊆ D ∩ G · a,
which is finite by the local finiteness of D.

(ii) If gGAg−1 ∩ GA has finite index in GA, then GAg · A is finite. Thus g · A ⊆
acl A = D, which implies that g · A ⊆ A. As A is finite, this means that g · A = A
and thus g ∈ GA = GD.

(iii) This follows directly from (ii). �

Lemma 2.3. Let D ⊆ M be definable, algebraically closed, and locally finite and let
H = G(D). Then:

(i) Every infinite GD-orbit in Fin(M) splits into infinite H-orbits;
(ii) Every G-orbit in Fin(M) splits into finitely many H-orbits.

Proof. (i) This follows from [ET, Lemma 2.4], noting that for K ≤ G and A ∈
Fin(M), the orbit K · A is infinite iff there exists a ∈ A with K · a infinite.

(ii) Note that H C GD and that GD/H acts faithfully on D with finite orbits.
It follows from [ET, Lemma 2.9] that the action GD/H y D is topologically
faithful, so GD/H is a profinite group. As every G-orbit splits into finitely many
GD-orbits by Roelcke precompactness, it suffices to show that every GD-orbit
splits into finitely many H-orbits. Let A ∈ Fin(M) and F ⊆ GD be finite such
that GD = HF(GA ∩ GD). Then F · A is a set of representatives for all H-orbits in
GD · A. �

Consider the quasi-order ≤ on Fin(M) defined by:

(2.1) A ≤ B ⇐⇒ A ⊆ acl B ⇐⇒ acl A ⊆ acl B ⇐⇒ GB · A is finite.

The second equivalence follows from Lemma 2.1.
This quasi-order gives rise to the equivalence relation ∼ on Fin(M) defined by:

A ∼ B ⇐⇒ A ≤ B and B ≤ A ⇐⇒ acl A = acl B.

At the level of stabilizers, A ≤ B iff GA ∩ GB has finite index in GB, and A ∼ B iff
GA and GB are commensurate. It follows from (2.1) that for all A, B ∈ Fin(M),

(2.2) A ⊆ B =⇒ A ≤ B.

For A ∈ Fin(M), we denote by [A] the ∼-equivalence class of A. If A, B ∈ Fin(M),
we write A < B if A ≤ B and A � B.
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Theorem 2.4. Let G be a non-archimedean, Roelcke precompact, Polish group and let
G y M be a continuous action on a discrete, countable set. Let the quasi-order ≤ be
defined as in (2.1). Then the following hold:

(i) The partial order (Fin(M)/∼,≤) is a lattice.
(ii) The relation < on Fin(M) is well-founded.

Proof. (i) Let A, B ∈ Fin(M). The least upper bound [A] ∨ [B] is given by [A ∪ B].
That [A ∪ B] is an upper bound follows from (2.2). If [C] ≥ [A], [B], then A ∪ B ⊆
acl C, so acl(A ∪ B) ⊆ acl C by Lemma 2.1.

For the greatest lower bound, let D = acl A ∩ acl B and note that D is alge-
braically closed and locally finite. It is also definable because G(A∪B) is a subgroup
of GD. Use Lemma 2.2 to find a finite D0 ⊆ D with D = acl D0 and GD = GD0 .
We show that [D0] = [A] ∧ [B]. It is clear that [D0] ≤ [A], [B]. If C ∈ Fin(M) is
such that C ≤ A, B, then C ⊆ acl A ∩ acl B, so acl C ⊆ acl A ∩ acl B = acl D0, and
it follows that C ≤ D0.

(ii) Suppose, towards a contradiction, that there exist A0, A1, . . . ∈ Fin(M) with
A0 > A1 > · · · . Let Di = acl Ai and note that Di ⊇ Di+1 and Ai ⊆ Dj for all i ≥ j.
Let Hi = G(Di)

, so that H0 ≤ H1 ≤ · · · .
We prove that for every i, the inclusion Hi · A0 ⊆ Hi+1 · A0 is proper. By

assumption, GAi+1 · Ai is infinite, so Hi+1 · Ai is also infinite by Lemma 2.3 (i). On
the other hand, Ai ⊆ acl A0, so GA0 · Ai is finite. Hence there exists g ∈ Hi+1 with
g−1 · Ai /∈ GA0 · Ai. We will show that g · A0 /∈ Hi · A0. Suppose, to the contrary,
that there is h ∈ Hi with h · A0 = g · A0. Then g−1h ∈ GA0 and g−1h · Ai = g−1 · Ai,
contradicting the fact that g−1 · Ai /∈ GA0 · Ai.

We obtained that H0 · A0 ( H1 · A0 ( · · · is an infinite strictly increasing
sequence of H0-invariant subsets of G · A0, which contradicts Lemma 2.3 (ii). �

2.2. The universal action and unitary representations. Let G be a Roelcke pre-
compact, non-archimedean, Polish group. Among all actions of G on a countable
set, there is a universal one that can be constructed as follows. Let (Vi : i ∈ I) be
a collection of representatives for the equivalence relation of conjugacy on open
subgroups of G. Note that the set I is countable by [T, Corollary 2.5]. Let

U =
⊔

i
G/Vi

and equip it with the left translation action. Note that for any open V ≤ G, there
exists a ∈ U with V = Ga. This implies, in particular, that the action G y U is
topologically faithful (see [ET, Lemma 1.9]). This action is universal in the sense
that every continuous, transitive action of G on a countable set embeds into it and
it is minimal with this property. If one wants to embed any continuous action of
G on a countable set, one has to take infinitely many copies of U.

If G is the automorphism group of an ℵ0-categorical structure M, then the set
U can be constructed model-theoretically essentially as the structure Meq.

The universal action has canonical representatives for the ∼-equivalence classes
discussed in the previous subsection. Define s : Fin(U) → U by

s(A) = the unique a ∈ U such that Ga = Gacl A.

Indeed, by Lemma 2.1 and Lemma 2.2, Gacl A is an open subgroup of G. Let Vi be
the representative of its conjugacy class that appears in the definition of U and
let g ∈ G be such that gVig−1 = Gacl A. Then one can take a = gVi. To verify
uniqueness, note that GgVi = gVig−1. By the construction of U, if GgVi = GhVj

, then

Vi = Vj and h−1g ∈ NG(Vi). By Lemma 2.2, Vi is self-normalizing, so hVi = gVi.
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It is easy to check that A ∼ s(A) for all A ∈ Fin(U) and that s is idempotent in
the sense that s({s(A)}) = s(A) for all A ∈ Fin(M). Thus the set

A := {s(A) : A ∈ Fin(U)},

which we also identify with a subset of Fin(U) by confounding a with {a}, is a
complete section for ∼ and (A,≤) ∼= (Fin(U)/∼,≤).

We recall that a unitary representation of G is a continuous action on a complex
Hilbert space H by unitary isomorphisms. If G y M is any continuous action on
a countable set, we have a natural representation G y `2(M). The representation
G y `2(U) is universal in the following sense.

Fact 2.5 ([T, Theorem 4.2], [JT, Fact 3.1]). Let G be a Roelcke precompact, non-
archimedean, Polish group, and let G y U be its universal action. Then every unitary
representation of G is isomorphic to a subrepresentation of a direct sum of copies of `2(U).

Let now G y H be a unitary representation of G. For a ∈ A, we denote

Ha = {ξ ∈ H : Ga · ξ is finite}.

It is clear that Ha is a closed subspace of H and that Ha ⊆ Hb for a ≤ b.
If H1,H2,H3 are closed subspaces of a Hilbert space H with H2 ⊆ H1 ∩H3, we

write
H1 ⊥

H2
H3

if the orthogonal complements of H2 in H1 and in H3 are orthogonal. If p1, p2, p3
denote the orthogonal projections on H1,H2,H3, respectively, this is equivalent to
p3 p1 = p2 p1.

The next proposition is similar to [JT, Proposition 3.2]; see also [BIT].

Proposition 2.6. Let G be a non-archimedean, Roelcke precompact, Polish group and let
G y U be the universal action of G. Let G yπ H be a unitary representation. Then, for
all a, b ∈ A,

(2.3) Ha ⊥
Ha∧b

Hb.

Proof. First we check the condition for H = `2(U). The main observation is that

Ha = { f ∈ `2(U) : supp f ⊆ acl a}.

Notice that the subspace on the right-hand side is closed. To see the ⊆ inclusion,
let f ∈ Ha be such that Ga · f is finite. Then there is an open finite-index subgroup
V ≤ Ga which fixes f . If we suppose that there is b ∈ M \ acl a such that f (b) 6= 0,
we have that f is constant on V · b, which is infinite, and this contradicts the fact that
f ∈ `2(U). Conversely, write acl a =

⋃
i Ai, where each Ai is finite, Ga-invariant,

and Ai ⊆ Ai+1. Then for each f with supp f ⊆ acl a, we have that f χAi → f and
Ga · ( f χAi ) is finite for each i. Now, recalling that acl(a ∧ b) = acl a ∩ acl b, the
conclusion is clear for H = `2(U).

From Fact 2.5, we have that π is a subrepresentation of a direct sum of copies of
`2(U). If K and H are two representations and a ∈ A, then (H⊕K)a = Ha ⊕Ka, so
it is clear that (2.3) passes to direct sums. To see that it passes to subrepresentations,
denote by PH

a the projection onto Ha and observe that (2.3) can be equivalently
written as PH

b PH
a = PH

a∧bPH
a . Let now K ⊆ H be a subrepresentation and suppose

that (2.3) holds for H. Then Ha = Ka ⊕K⊥
a , and similarly for b and a ∧ b. Then

we have, for any ξ ∈ K,

PK
b PK

a ξ = PH
b PH

a ξ = PH
a∧bPH

a ξ = PK
a∧bPK

a ξ. �
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We conclude this section with a variant of a well-known lemma. First, we have
the following (see, e.g., [T, Lemma 3.1]).

Lemma 2.7. Let G be a non-archimedean group and let G y H be a unitary representa-
tion. Let (Vi : i ∈ I) be a basis of open subgroups at 1G. Then the set

{ξ ∈ H : ∃i ∈ I Vi · ξ = ξ}
is dense in H.

Corollary 2.8. Let G be a Roelcke precompact, non-archimedean, Polish group, and let
G y H be a unitary representation. Let the set A and the subspaces Ha for a ∈ A be
defined as above. Then

⋃
a∈AHa is dense in H.

Proof. Let ξ ∈ H be arbitrary and let ε > 0. Recalling that every open subgroup
of G is the stabilizer of some point in U, by Lemma 2.7, there exists ξ0 ∈ H and
b ∈ U such that Gb · ξ0 = ξ0 and ‖ξ − ξ0‖ < ε. Let a ∈ A be such that acl a = acl b.
Then Ga ∩ Gb has finite index in Gb, so Ga · ξ0 is finite and ξ0 ∈ Ha. �

3. Non-singular actions of Roelcke precompact, non-archimedean groups

3.1. Non-singular actions. Let (Ω,B, µ) be a σ-finite measure space and let N =
{B ∈ B : µ(B) = 0} be its null ideal. The measure algebra MALG(µ) is the quotient
Boolean algebra B/N. We denote by Aut∗(µ) the group of automorphisms of the
Boolean algebra MALG(µ). Another way to view Aut∗(µ) is as the group of all
bi-measurable bijections g of Ω which preserve the null ideal (or, equivalently,
such that g∗µ is equivalent to µ), where two such bijections are identified if they
are equal on a co-null set. The ∗ in the notation Aut∗(µ) is there to distinguish it
from its subgroup Aut(µ) consisting of the transformations which also preserve
the measure µ. Note that Aut∗(µ) only depends on the measure class of µ; in
particular, we can always replace µ by a probability measure.

Aut∗(µ) embeds into the unitary group U(L2(Ω)) via its Koopman representation:

(3.1) (g · f )(x) =
( dg∗µ

dµ

)1/2
(x) f (g−1 · x), for g ∈ Aut∗(µ), f ∈ L2(Ω),

where dg∗µ
dµ denotes the Radon–Nikodym derivative. The Hilbert space L2(Ω) is

also endowed with the structure of a (complex) Banach lattice, where the positive
elements are the positive functions and the elements of the image of the embedding
of Aut∗(µ) are precisely the elements of U(L2(Ω)) preserving the order. Thus the
image of Aut∗(µ) in U(L2(Ω)) is closed and we equip Aut∗(µ) with the group
topology coming from this embedding.

If f ∈ L2(Ω), we denote by supp f ∈ MALG(µ) the support of f , which is the
set of x ∈ Ω such that f (x) 6= 0. Note that if f1, f2 ∈ L2(Ω) are positive, then

f1 ⊥ f2 ⇐⇒ supp f1 ∩ supp f2 = ∅.

Definition 3.1. Let G be a topological group. A non-singular action of G on the
σ-finite measure space (Ω,B, µ) is a continuous homomorphism G → Aut∗(µ).
The action is called ergodic if it has no fixed points in MALG(µ) apart from 0 and
1. The action preserves the measure µ (as opposed to just the measure class) if the
image of the homomorphism is in the subgroup Aut(µ), i.e., µ(g · E) = µ(E) for
all E ∈ MALG(µ).

Remark 3.2. An action on MALG(µ) as above is often called in the literature a
Boolean action. It is clear that any pointwise Borel action of G on Ω such that
g∗µ ∼ µ for all g ∈ G gives rise to a Boolean action. The converse, for pmp
actions and non-archimedean Polish groups, is also true, as shown by Glasner and
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Weiss in [GW, Theorem 2.3]. Theorem 3.4 below implies that the same holds for
non-singular actions of Roelcke precompact, non-archimedean, Polish groups.

The following lemma gives a simple criterion for a non-singular action to
actually preserve a measure.

Lemma 3.3. Let G y (Ω,B, µ) be a non-singular action. Then the following are
equivalent:

(i) The action G y L2(Ω) has a non-zero fixed vector;
(ii) There is a probability measure ν ≺ µ, which is G-invariant.

Proof. (i) ⇒ (ii). Suppose that f0 ∈ L2(Ω) with ‖ f0‖ = 1 is fixed. Then | f0| is
also fixed and positive of norm 1. Let ν be the probability measure defined by
dν
dµ = | f0|2. Then, for every g ∈ G, using the equation (3.1), we have( dν

dµ

)1/2
=

( dg∗µ

dµ

)1/2( dg∗ν

dg∗µ

)1/2
=

( dg∗ν

dµ

)1/2
,

showing that ν is invariant.
(ii) ⇒ (i). We will check that

( dν
dµ

)1/2 ∈ L2(Ω) is invariant. Indeed,(
g ·

( dν

dµ

)1/2)
(x) =

( dg∗µ

dµ

)1/2
(x)

( dν

dµ

)1/2
(g−1 · x)

=
( dg∗µ

dµ

)1/2
(x)

( dg∗ν

dg∗µ

)1/2
(x)

=
( dg∗µ

dµ

)1/2
(x)

( dν

dg∗µ

)1/2
(x) =

( dν

dµ

)1/2
(x). �

If G yαi (Ωi,Bi, µi), i ∈ I is a countable family of non-singular actions, one can
form the disjoint union action on

⊔
i Ωi with measure ∑i µi defined by:

g ·
⊔

i
Ai =

⊔
i

g · Ai.

Note that this action is never ergodic unless possibly if |I| = 1.

3.2. Induced actions. In this subsection, we recall the standard construction of
induction. Let G be a topological group and let V ≤ G be an open subgroup of
countable index. We denote by ξ the counting measure on G/V. If V yσ (Ω,B, µ)
is a non-singular action, we can construct an action of G on (G/V × Ω,P(G/V)⊗
B, ξ ⊗ µ) as follows. Let s : G/V → G be a section for the quotient map G → G/V,
i.e., a map such that s(gV) ∈ gV for all g ∈ G. Define the cocycle c : G×G/V → V
by

(3.2) c(g, hV) = s(ghV)−1gs(hV)

and note that it satisfies the cocycle identity:

c(g1g2, hV) = c(g1, g2hV)c(g2, hV) for g1, g2, h ∈ G.

Then one can define the induced action IndG
V(σ) of G on MALG(ξ ⊗ µ) by

g · ({hV} × A) = {ghV} × σ(c(g, hV)) · A for g, h ∈ G, A ∈ MALG(µ).

The action does not depend on the choice of the section s (up to conjugacy). Note
that if σ preserves the measure µ, then IndG

V(σ) preserves the measure ξ ⊗ µ. Also,
if σ is ergodic, then so is IndG

V(σ).
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3.3. A classification theorem for non-singular actions.

Theorem 3.4. Let G be a Roelcke precompact, non-archimedean, Polish group and
let G y (Ω,B, µ) be a non-singular action. Then there exist countably many self-
commensurating, open subgroups (Vi : i ∈ I) of G and measure-preserving actions
Vi yαi (Ωi,Bi, µi), with each µi a probability measure, such that the original action
G y Ω is isomorphic to the disjoint union

(3.3)
⊔

i
IndG

Vi
(αi).

In particular, every non-singular action of G is isomorphic to a measure-preserving action
(with a possibly infinite measure) and every ergodic such action is of the form IndG

V(α),
where V and α are as above.

Proof. First, we show that there is a non-null G-invariant set E ∈ MALG(µ) such
that the action of G on E is isomorphic to IndG

V(α) as above. Let H = L2(Ω, µ)
and consider the Koopman representation κ of G on H given by (3.1). Let (A,≤)
and the subspaces Ha for a ∈ A be defined as in Subsection 2.2. By Corollary 2.8,⋃

a∈AHa is dense in H, so there exists a with Ha 6= 0. By Theorem 2.4, there is a
<-minimal element a ∈ A with Ha 6= 0.

Let f0 ∈ Ha be non-zero with Ga · f0 = { f0, . . . , fn} finite. Then fa := ∑j | f j|
is a Ga-invariant positive element of Ha and, after normalizing, it gives rise to a
Ga-invariant probability measure νa ≺ µ as in Lemma 3.3. Let E = supp νa and
note that E is Ga-invariant. Let T be a set of representatives of the cosets in G/Ga
with 1G ∈ T. We will show that for t1 6= t2 ∈ T, t1 · E ∩ t2 · E = ∅. It suffices to see
that for t 6= 1G, t · E ∩ E = ∅. By Proposition 2.6, Ha ⊥Ha∧t·a Ht·a. We also have
that t−1 · a /∈ acl a by Lemma 2.2, so a ∧ t · a < a and by the choice of a, Ha∧t·a = 0.
Now

( dνa
dµ

)1/2
= fa ∈ Ha and

( d(t·νa)
dµ

)1/2
= t · fa ∈ Ht·a. This shows that the two

Radon–Nikodym derivatives are orthogonal, so the measures νa and t · νa have
disjoint supports, i.e., E ∩ t · E = ∅, as desired.

Denote the probability measure-preserving action of Ga on (E, νa) by α. We
will see that the actions IndG

Ga
(α) and G y

⊔
t∈T t · E are isomorphic. In order to

make the isomorphism more transparent, we choose the section s : G/Ga → G
appearing in the definition of the cocycle (3.2) to have image T, i.e,

s(gGa) = t ⇐⇒ t ∈ T and tGa = gGa.

Now define a map

Φ : MALG(IndG
Ga
(α)) → MALG(

⊔
t∈T

t · E, ∑
t

t · νa)

by

Φ({tGa} × D) = t · D for t ∈ T, D ∈ MALG(E, νa).

It is straightforward to check that Φ is an isomorphism.
To conclude with the proof of the theorem, we apply Zorn’s lemma. Let D be

the collection of all elements of MALG(µ) which are G-invariant and such that the
restriction of the action of G to them is of the form (3.3), and order it by inclusion.
If C ⊆ D is a chain, we can always find a cofinal set C′ ⊆ C, which is countable,
because (C,⊆) is isomorphic to ({µ(C) : C ∈ C},≤) ⊆ (R,≤). It is clear that⋃
C′ is an upper bound for C. Let D be a maximal element of D. If D 6= Ω, we

can apply what we already proved to the action of G on Ω \ D and contradict its
maximality. �
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4. A generalization of de Finetti’s theorem

In this section, we prove a classification result for some specific pmp actions of
permutation groups, inspired by de Finetti’s theorem. We let G ≤ Sym(M) be a
permutation group with M countable. We equip G with the topology inherited
from Sym(M), so that G becomes a non-archimedean group, and consider pmp
actions of G continuous for this topology. (We call a pmp action G y (Z, µ)
continuous if the corresponding morphism G → Aut(µ) is continuous.) One loses
nothing if one requires in addition that G is a closed subgroup of Sym(M): every
continuous action of G extends to its closure in Sym(M). Moreover if G is closed
(i.e., Polish), then every Borel pmp action G y (Z, µ) on a standard probability
space gives rise to a continuous homomorphism G → Aut(µ). Our main goal is
to classify, under suitable assumptions on G, the G-invariant Borel probability
measures on the space Ω := [0, 1]M under the shift action

(g · ω)(a) = ω(g−1 · a), ω ∈ Ω, a ∈ M.

It will be helpful to adopt a probabilistic viewpoint. For each a ∈ M, we consider
the projection ξa : Ω → [0, 1], ξa(ω) = ω(a) as a random variable and the problem
becomes to classify all possible G-invariant distributions µ of the variables (ξa : a ∈
M). A σ-field of events corresponds simply to a closed subalgebra of MALG(µ).
If G ⊆ MALG(µ) is a σ-field, we denote by EG the conditional expectation relative
to G. We let L2(G) be the closed subspace of L2(Ω) consisting of G-measurable
functions and recall that EG restricted to L2(Ω) is the orthogonal projection on
L2(G). If A is a collection of events or random variables, we denote by 〈A〉 the
σ-field generated by A.

The tail σ-field is a classical object in the study of random processes; here
we will define a dynamical variant of it that exists in any pmp G-system for a
permutation group G.

Definition 4.1. Let G ≤ Sym(M) be a permutation group and let G y (Z, µ) be a
continuous pmp action. For a finite A ⊆ M, we denote

FA := {E ∈ MALG(µ) : g · E = E for all g ∈ G(A)}.

If a ∈ M, we write Fa instead of F{a}. If D ⊆ M is an arbitrary subset, we let

FD :=
⋃{

FA : A ⊆ D finite
}

.

We define the invariant σ-field as

J := F∅ = {E ∈ MALG(µ) : g · E = E for all g ∈ G}.

The action G y (Z, µ) is ergodic if J is trivial. Finally, we define the dynamical tail
σ-field as

T :=
⋂
{FM\A : A ⊆ M finite}.

We note that FC ⊆ FD for all C, D ⊆ M, g · FD = Fg·D, and g · T = T for all
g ∈ G. It follows from Lemma 2.7 that

(4.1) FM = MALG(µ).

The following permutation group lemma is well-known. See, for example,
[H, Lemma 4.2.1] for a proof.

Lemma 4.2 (Neumann). Let G ≤ Sym(M) be a permutation group. Then the following
are equivalent:

• The orbits of G are infinite;
• For all finite A, B ⊆ M there exists g ∈ G with g · A ∩ B = ∅.
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Proposition 4.3. Suppose that the action G y M has infinite orbits. Then J ⊆ T.

Proof. Let E ∈ J. It follows from (4.1) that there exists a finite set A ⊆ M and a FA-
measurable event E′ with µ(E4E′) < ε. If B ⊆ M is any finite set, by Lemma 4.2,
there is g ∈ G with g · A ∩ B = ∅. By invariance of E, this implies that for any B,
there is an FM\B-measurable event E′′ (namely, E′′ = g · E′) with µ(E4E′′) < ε.
Taking limits as B exhausts M and ε → 0, we obtain that E ∈ T. �

If G1,G2,G3 are three σ-fields, we write G1 ⊥⊥G2 G3 to denote that G1 and G3
are conditionally independent over G2. We refer to [K] for the basic properties of
conditional independence.

Proposition 4.4. Let G ≤ Sym(M) be a permutation group and let A ⊆ G be such that
the orbits of the action G(A) y M \ A are infinite. Let G y (Z, µ) be any continuous
pmp action. Then FA ⊥⊥T FM\A.

Proof. Let M =
⋃

n Sn with Sn finite and increasing and let Gn = FM\Sn . Then
G0 ⊇ G1 ⊇ · · · and

⋂
n Gn = T. Let B ⊆ M \ A be finite. Using Lemma 4.2, for

each n, find gn ∈ G(A) such that gn · B ∩ Sn = ∅, so that, in particular, Fgn ·B ⊆ Gn.
Let now ξ be any bounded FA-measurable random variable. Note that g · ξ = ξ
for all g ∈ G(A).

Let ε > 0. By reverse martingale convergence [D, Theorem 5.6.3], we have
EGn ξ → ET ξ in L2; let n be such that ‖EGn ξ‖ − ‖ET ξ‖ < ε (here ‖·‖ is the
L2-norm). We have:

‖ET∨FB ξ‖ = ‖Egn ·T∨Fgn ·B
gn · ξ‖

= ‖ET∨Fgn ·B
ξ‖

≤ ‖EGn∨Fgn ·B
ξ‖

= ‖EGn ξ‖ ≤ ‖ET ξ‖+ ε.

As this is true for all ε, we obtain that ‖ET∨FB ξ‖ = ‖ET ξ‖, whence ET∨FB ξ =
ET ξ, showing that FA and FB are independent over T [K, Proposition 5.6]. �

Corollary 4.5. Let G ≤ Sym(M) be a permutation group such that for every a ∈ M, the
orbits of Ga on M \ {a} are infinite. Let G y (Z, µ) be a continuous pmp action. Then
the σ-fields Fa are conditionally independent over T.

Proof. To prove the conclusion, it suffices to check that for every a ∈ M and finite
B ⊆ M with a /∈ B, Fa ⊥⊥T FB. This follows from Proposition 4.4 applied with
A = {a}. �

Proposition 4.6. Let G ≤ Sym(M) and G y (Z, µ) satisfy the assumptions of Corol-
lary 4.5. Then:

T ∩
∨

a∈M
Fa =

∨
a∈M

T ∩ Fa.

Proof. Let G =
∨

a Fa. Let a1, . . . , an be distinct elements of M and let, for each i, ξi
be a bounded Fai -measurable random variable. Then, by Corollary 4.5,

(4.2) ET ξ1 · · · ξn = (ET ξ1) · · · (ET ξn).

For every g ∈ Gai , we have that g · ET ξi = Eg·T g · ξi = ET ξi, so ET ξi ∈ Fai . In
particular, ET ξ1 · · · ξn is G-measurable, so also T ∩ G-measurable. As ET∩G ET =
ET∩G, this implies that ET ξ1 · · · ξn = ET∩G ξ1 · · · ξn. Linear combinations of
variables of the form ξ1 · · · ξn generate a dense subspace of L2(G), so ET ξ1 · · · ξn
generate a dense subspace of L2(T ∩ G). However, by (4.2), each of them belongs
to

∨
a T ∩ Fa and we are done. �
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For the rest of the section, we will specialize to the action G y ([0, 1]M, µ),
where µ is an arbitrary invariant probability measure. We recall that ξa denotes the
projection on the coordinate a. In particular, MALG(µ) = 〈ξa : a ∈ M〉 = ∨

a Fa.
In this setting, we also have the usual tail σ-field.

Definition 4.7. Let (ξa : a ∈ M) be a collection of random variables. Then the tail
σ-field is

T0 =
⋂{

〈ξa : a ∈ M \ A〉 : A ⊆ M finite
}

.

Remark 4.8. We note that Proposition 4.4 and Corollary 4.5 remain true if one
replaces T with T0. In the proofs, one simply needs to replace the σ-fields FA (for
A ⊆ M) by F′

A defined by
F′

A = 〈ξa : a ∈ A〉.

In fact, under a somewhat stronger hypothesis on the action G y M, the two
tail σ-fields coincide. We recall that G y M has no algebraicity if for every finite
A ⊆ M, the action G(A) y M \ A has infinite orbits.

Proposition 4.9. Suppose that the action G y M has no algebraicity. Then T = T0.

Proof. As ξa is Fa-measurable for every a ∈ M, the inclusion T0 ⊆ T is clear. For
the converse, let E ∈ T, let C ⊆ M be finite, and let ε > 0. There exists a finite
A ⊆ M and E′ ∈ 〈ξa : a ∈ A〉 with µ(E4E′) < ε. As E ∈ T, there also exists a
finite B ⊆ M with B ∩ A = ∅ and E′′ ∈ FB such that µ(E4E′′) < ε. Using the no
algebraicity assumption and Lemma 4.2, let g ∈ G(B) be such that g · A ∩ C = ∅.
Then g · E′ ∈ 〈ξa : a ∈ M \ C〉 and

µ(E4g · E′) ≤ µ(E4E′′) + µ(E′′4g · E′)

≤ ε + µ(E′′4E′) ≤ 3ε.

As C and ε were arbitrary, this shows that E ∈ T0. �

In order to motivate the next definition, we recall some terminology and facts
from model theory. For a permutation group G ≤ Sym(M), we will say that
two finite tuples ā, b̄ ∈ Mn have the same type (notation: tp ā = tp b̄) if they are
in the same G-orbit for the diagonal action G y Mn. Two countable tuples ā, b̄
have the same type if for all n ∈ N, tp(ā|n) = tp(b̄|n). It is easy to see that having
no algebraicity is equivalent to the following condition: for every n ∈ N, every
b̄ ∈ Mn, and a ∈ M not from b̄, there exists a′ 6= a such that tp(b̄a) = tp(b̄a′).
We will need the following uniform version for infinite tuples. Say that M has
uniform non-algebraicity if for all (possibly infinite) tuples b̄ from M and a ∈ M not
from b̄, there exist b̄′, a′, a′′ such that a′ 6= a′′ and tp(b̄′a′) = tp(b̄′a′′) = tp(b̄a). We
note that uniform non-algebraicity implies non-algebraicity. The converse holds
in the presence of compactness (for example, if G y M is oligomorphic or, more
generally, if M is a homogeneous structure whose age is given by a first-order
universal theory and G is its automorphism group).

Recall that a permutation group G ≤ Sym(M) is called transitive if there is
only one orbit and a transitive permutation group is called primitive if there are
no non-trivial G-invariant partitions of M. A transitive action is primitive iff the
stabilizer Ga is a maximal subgroup of G for every (some) a ∈ M. We will say
that Ga is boundedly maximal if there is d ∈ N such that for every g /∈ Ga, every
element of G can be written as a word of length at most d in g, g−1, and elements
of Ga. This is automatic for primitive actions if there are only finitely many orbits
of G on M2 but can also happen in other situations. For a classification in the
pseudo-finite case, see [LMT].
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Theorem 4.10. Let G ≤ Sym(M) be a permutation group with no algebraicity such that
for every a ∈ M, the stabilizer Ga is a maximal subgroup of M (i.e., the action on every
orbit is primitive). Suppose, moreover, that at least one of the following conditions holds:

(i) G y M has uniform non-algebraicity; or
(ii) for any a ∈ M, Ga is boundedly maximal.

Let G y Ω := [0, 1]M be the shift action and let µ be an invariant probability measure.
Then T = J. In particular, the projections ξa are conditionally independent over J and if
the action is ergodic, the measure µ is a product measure.

Proof. The inclusion J ⊆ T follows from Proposition 4.3.
For the other inclusion, by Proposition 4.6, it suffices to show that for every

a ∈ M, Fa ∩ T ⊆ J. Let E ∈ Fa ∩ T. As E ∈ T, for every n, there exists a finite
Bn ⊆ M with a /∈ Bn and En ∈ FBn such that µ(E4En) < 1/n.

Suppose now that (i) holds and let the tuple b̄ enumerate the set
⋃

n Bn. By
uniform non-algebraicity, there exist b̄′ and a′ 6= a′′ with tp(b̄a) = tp(b̄′a′) =
tp(b̄′a′′). Let g ∈ G be such that g · a = a′ and let E′ = g · E. In particular, E′ ∈ Fa′ .
Let B′

n ⊆ B′ be such that there is hn ∈ G satisfying hn · Bn = B′
n and hn · a = a′.

This implies that hn · E = E′. Let E′
n = hn · En, so that we have µ(E′

n4E′) < 1/n
and E′

n ∈ FB′
n
. Let gn ∈ G(Bn) be such that gn · a′ = a′′, so that gn · E′ ∈ Fa′′ . We

have:
µ(gn · E′4E′) ≤ µ(gn · E′4E′

n) + µ(E′
n4E′) ≤ 2/n.

Taking limits as n → ∞, we obtain that E′ ∈ Fa′′ . Thus E′ is fixed by both Ga′

and Ga′′ . As the orbit Ga′ · a′′ is infinite, we must have that 〈Ga′ , Ga′′〉 ) Ga′ , so by
maximality of Ga′ , E′ is fixed by G. Therefore, so is E = g−1 · E′.

Suppose now that (ii) holds and let d be such that for every h /∈ Ga, every
element of G can be written as a word of length at most d in h, h−1, and elements
of Ga. Let ε > 0 and let n > (4d2)/ε2. By the no algebraicity assumption, there
is h ∈ G(Bn), h /∈ Ga. Let E′ = h · E, so that µ(E4E′) < 2/n. Let ξ = 1E and note
that

(4.3) ‖ξ − h · ξ‖ = ‖ξ − h−1 · ξ‖ = µ(E4E′)1/2 < ε/d.

Let g ∈ G be arbitrary. By assumption, there exist g1, . . . , gd ∈ Ga and ε1, . . . , εd ∈
{±1} such that g = hε1 g1 · · · hεd gd. Notice that for every ξ ′ ∈ L2(Ω) and any gi,

‖ξ − ξ ′‖ = ‖ξ − gi · ξ ′‖

and for any εi, using (4.3),

‖ξ − hεi · ξ ′‖ ≤ ‖hεi · ξ − hεi · ξ ′‖+ ‖hεi · ξ − ξ‖ ≤ ‖ξ − ξ ′‖+ ε/d.

So, by induction, ‖ξ − g · ξ‖ < ε and this holds for all g ∈ G. Let η be the unique
element of minimal norm in the closed convex hull of G · ξ. Then ‖ξ − η‖ ≤ ε and
η is G-invariant. As ε was arbitrary, we conclude that ξ is fixed by G, so E ∈ J.

Finally, the last claim follows from Corollary 4.5. �

Corollary 4.11. Suppose that G ≤ Sym(M) is a primitive, oligomorphic permutation
group with no algebraicity. Let G y [0, 1]M be the shift action. Then any G-invariant,
ergodic measure on [0, 1]M is of the form λ⊗M, where λ is a probability measure on [0, 1].

Proof. If the permutation group G ≤ Sym(M) is oligomorphic, it satisfies both
conditions (i) and (ii) of Theorem 4.10. Indeed, (i) follows from the no algebraicity
assumption and the compactness theorem for first-order logic (by considering M
as an ℵ0-categorical structure) and (ii) follows from primitivity and the fact that
each Ga has only finitely many double cosets in G. �
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Remark 4.12. Corollary 4.11 is a strengthening of [JT, Theorem 1.1] because instead
of weak elimination of imaginaries, one requires just primitivity of the action. It
is claimed in [JT, Example 5.1.3] that primitivity is not sufficient. However, the
example presented there is incorrect because it does have algebraicity. To see
this, observe that, in the notation of [JT, Example 5.1.3], for any c, d ∈ S1, we
have that |R(c) ∩ R(d)| ≤ 1. Indeed, if a, b ∈ R(c) ∩ R(d), then c, d ∈ R(a) ∩ R(b),
contradicting the condition in the age. In fact, by the extension property of Fraïssé
limits, |R(c) ∩ R(d)| = 1 for all c, d ∈ S1. This means that the algebraic closure
in S0 is non-trivial: take a1, b1, a2, b2 with R(ai) ∩ R(bi) = {ci} with c1 6= c2. Then
R(c1) ∩ R(c2) is a singleton, which is in the algebraic closure of a1, b1, a2, b2.

We end the paper with several examples of non-oligomorphic groups where
Theorem 4.10 applies. All of the examples are constructed as appropriate Fraïssé
limits.

Example 4.13. Let UZ be the integer Urysohn space, i.e., the Fraïssé limit of all
finite metric spaces with integer-valued metric. It is well-known that this is an
amalgamation class and it is not difficult to check that the action Iso(UZ) y UZ
satisfies condition (i) and the other hypotheses of Theorem 4.10. However, it does
not satisfy condition (ii) (and it is not oligomorphic). Indeed, let a ∈ UZ be any
point and let g /∈ Ga. Then any element of G which can be written as a word of
bounded length in elements of Ga and g, g−1 can move the point a only a bounded
distance from itself. Theorem 4.10 for UZ is not new—it was already proved in
[BJJ]—but this example is a good illustration for the type of situations where
condition (ii) fails.

Example 4.14. Let L = {Ri : i ∈ N} be a signature with infinitely many binary
relations. Let F1 be the Fraïssé class of all finite L-structures such that all relations
are symmetric and for every pair of points, exactly one relation holds. Let M1 be
its Fraïssé limit. Then the action Aut(M1) y M1 is not oligomorphic (because it
has infinitely many orbits on pairs) and it satisfies both conditions (i) and (ii) of
Theorem 4.10.

Next consider the Fraïssé class F2 in the same signature where, in addition, one
forbids monochromatic triangles, i.e., configurations {Ri(a, b), Ri(b, c), Ri(c, a)}
for all i ∈ N, and let M2 denote the Fraïssé limit. Then condition (ii) holds but
(i) fails. To see this, let a ∈ M2 and let b̄ be an infinite tuple such that Ri(a, bi)
for all i. Then it is impossible to have two distinct points a′, a′′ which have the
type of a over a copy b̄′ of b̄: Ri(a′, a′′) must hold for some i and this will create a
monochromatic triangle {a′, a′′, b′i}.
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