Des graphes orientés aux treillis complets : une nouvelle approche de l'ordre faible sur les groupes de Coxeter.

François Viard

ICJ - Lyon 1

26 novembre 2015

1 The initial motivation: reduced decompositions and balanced tableaux

2 Coxeter groups, weak order and valued digraphs

3 Root systems and Dyer's conjectures

reduced decompositions of a permutation

• The symmetric group S_n is generated by simple transpositions $s_i = (i, i + 1), i \in [n - 1].$

- The symmetric group S_n is generated by simple transpositions $s_i = (i, i + 1), i \in [n 1].$
- Each permutation σ can be written as a product s_{i1} · · · s_{ik} = σ of simple transpositions. When k is minimal, we say that the word s_{i1} · · · s_{ik} is a reduced decomposition of σ.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- The symmetric group S_n is generated by simple transpositions $s_i = (i, i + 1), i \in [n 1].$
- Each permutation σ can be written as a product s_{i1} ··· s_{ik} = σ of simple transpositions. When k is minimal, we say that the word s_{i1} ··· s_{ik} is a reduced decomposition of σ.
- Combinatorics of reduced decompositions is related to two families of tableaux: standard and balanced tableaux.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reduced decompositions and standard tableaux

Definition

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

Ferrers diagram of the partition $\lambda = (4, 3, 3, 1, 1)$.

Reduced decompositions and standard tableaux

Definition

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

1	2	5	10
3	7	8	
4	9	11	
6			
12			

Standard tableaux of shape $\lambda = (4, 3, 3, 1, 1)$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Reduced decompositions and standard tableaux

Definition

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

1	2	5	10
3	7	8	
4	9	11	
6			
12			

Standard tableaux of shape $\lambda = (4, 3, 3, 1, 1)$.

Theorem, Stanley (1984)

The number of reduced decompositions of the permutation $[n, n-1, \ldots, 2, 1]$ is equal to the number of standard tableaux of shape $(n-1, n-2, \ldots, 2, 1)$.

Definition of balanced tableaux

Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $|\{z \in H_c(\lambda) \mid t_z < t_c\}| = a_c$, where a_c is the number of boxes on the right of c in λ , and $H_c(\lambda)$ is the hook based on c in λ .

Definition of balanced tableaux

Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $|\{z \in H_c(\lambda) \mid t_z < t_c\}| = a_c$, where a_c is the number of boxes on the right of c in λ , and $H_c(\lambda)$ is the hook based on c in λ .

Definition of balanced tableaux

Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $|\{z \in H_c(\lambda) \mid t_z < t_c\}| = a_c$, where a_c is the number of boxes on the right of c in λ , and $H_c(\lambda)$ is the hook based on c in λ .

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_n = (n - 1, n - 2, ..., 1)$ and reduced decompositions of [n, n - 1, ..., 1]. In particular, this implies that $|\text{Bal}(\lambda_n)| = |\text{SYT}(\lambda_n)|$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_n = (n - 1, n - 2, ..., 1)$ and reduced decompositions of [n, n - 1, ..., 1]. In particular, this implies that $|\text{Bal}(\lambda_n)| = |\text{SYT}(\lambda_n)|$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem, Edelman and Greene (1987)

For each partition λ , we have $|Bal(\lambda)| = |SYT(\lambda)|$.

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_n = (n - 1, n - 2, ..., 1)$ and reduced decompositions of [n, n - 1, ..., 1]. In particular, this implies that $|\text{Bal}(\lambda_n)| = |\text{SYT}(\lambda_n)|$.

Theorem, Edelman and Greene (1987)

For each partition λ , we have $|Bal(\lambda)| = |SYT(\lambda)|$.

• The proof of this theorem is quite involved, and uses reduced decompositions.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_n = (n - 1, n - 2, ..., 1)$ and reduced decompositions of [n, n - 1, ..., 1]. In particular, this implies that $|\text{Bal}(\lambda_n)| = |\text{SYT}(\lambda_n)|$.

Theorem, Edelman and Greene (1987)

For each partition λ , we have $|Bal(\lambda)| = |SYT(\lambda)|$.

- The proof of this theorem is quite involved, and uses reduced decompositions.
- Can we find a more direct bijection between $Bal(\lambda)$ and $SYT(\lambda)$?

Filling algorithm

Filling algorithm

Filling algorithm

Filling algorithm

Filling algorithm

Filling algorithm

Filling algorithm

• The resulting tableau is a balanced tableau. Furthermore, each balanced tableau can be obtained by this way.

<ロ> (四) (四) (四) (四) (四) (四) (四)

Filling algorithm

- The resulting tableau is a balanced tableau. Furthermore, each balanced tableau can be obtained by this way.
- Despite many tests, this algorithm did not lead to a "direct" bijective proof of the result of Edelman and Greene.

Filling algorithm

- The resulting tableau is a balanced tableau. Furthermore, each balanced tableau can be obtained by this way.
- Despite many tests, this algorithm did not lead to a "direct" bijective proof of the result of Edelman and Greene.
- However, it allows us to generalize the definition of balanced tableaux and to generalize the result of Edelman and Greene.

Generalizing the concept of balanced tableau

Definition

Let λ be a partition of n. A type \mathcal{T} of shape λ is a filling of λ with integers $\theta(\mathfrak{c})$ satisfying the inequality

for all
$$\mathfrak{c} \in \lambda$$
, $0 \leq \theta(\mathfrak{c}) \leq |H_{\mathfrak{c}}(\lambda)| - 1$.

3	3	2	0
1	2	1	
4	0	0	
1			
0			

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Definition

Let λ be a partition of *n*. A type \mathcal{T} of shape λ is a filling of λ with integers $\theta(\mathfrak{c})$ satisfying the inequality

for all
$$\mathfrak{c} \in \lambda$$
, $0 \leq \theta(\mathfrak{c}) \leq |H_{\mathfrak{c}}(\lambda)| - 1$.

• We denote by $Tab(\mathcal{T})$ the set of all tableaux coming from a type \mathcal{T} .

(中) (종) (종) (종) (종) (종)

Definition

Let λ be a partition of *n*. A type \mathcal{T} of shape λ is a filling of λ with integers $\theta(\mathfrak{c})$ satisfying the inequality

for all
$$\mathfrak{c} \in \lambda$$
, $0 \leq \theta(\mathfrak{c}) \leq |H_{\mathfrak{c}}(\lambda)| - 1$.

- We denote by $\operatorname{Tab}(\mathcal{T})$ the set of all tableaux coming from a type \mathcal{T} .
- All tableaux are classified according to their type. Balanced and standard tableaux are special classes of this classification.

Generalizing the result of Edelman and Greene

Definition

Let $\sigma \in S_n$, the permutation σ is called <u>vexillary</u> if and only if σ is 2143-avoiding.

Theorem, Stanley (1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ such that

 $|\operatorname{Red}(\sigma)| = |\operatorname{SYT}(\lambda(\sigma))|.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition

Let $\sigma \in S_n$, the permutation σ is called <u>vexillary</u> if and only if σ is 2143-avoiding.

Theorem, Stanley (1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ such that

 $|\operatorname{Red}(\sigma)| = |\operatorname{SYT}(\lambda(\sigma))|.$

Theorem, V. (2013)

Let $\sigma \in S_n$, if σ is vexillary, then there exists a type \mathcal{T}_{σ} of shape $\lambda(\sigma)$ such that

$$|\operatorname{Tab}(\mathcal{T}_{\sigma})| = |\operatorname{Red}(\sigma)| = |\operatorname{SYT}(\lambda(\sigma))|.$$

A generalization of the filling algorithm to digraphs

Initial sections of a peeling sequence and definition of IS(G)

• Consider L = [e, c, a, b, d, f] the previous peeling sequence. The initial sections of L are the following sets

$$L_0 = \emptyset, \ L_1 = \{e\}, \ L_2 = \{e, c\}, \dots, \ L_6 = \{e, c, a, b, d, f\}.$$

Initial sections of a peeling sequence and definition of $IS(\mathcal{G})$

• Consider L = [e, c, a, b, d, f] the previous peeling sequence. The initial sections of L are the following sets

$$L_0 = \emptyset, \ L_1 = \{e\}, \ L_2 = \{e, c\}, \dots, \ L_6 = \{e, c, a, b, d, f\}.$$

Definition

Let $\mathcal{G} = (G, \theta)$ be a pair of a simple acyclic digraph and a "compatible" valuation on its vertices (such a pair is called a simple acyclic <u>valued</u> <u>digraph</u>). We denote by $IS(\mathcal{G})$ the set constituted of all the initial sections of all the peeling sequences of \mathcal{G} .

From now on, we will study the properties of the poset $(IS(\mathcal{G}), \subseteq)$.

Lattice structure of $(IS(\mathcal{G}), \subseteq)$

Theorem, (V, 2014)

Let $\mathcal{G} = (G, \theta)$ be a simple acyclic valued digraph. Then, the poset $(IS(\mathcal{G}), \subseteq)$ is a graded complete meet semi-lattice. Furthermore, if G is finite, then it is a complete lattice with V(G) as maximal element.

Möbius function of $(IS(\mathcal{G}), \subseteq)$

Definition

For any locally finite poset (P, \leq) , the Möbius function of P is the function μ from $P \times P$ to \mathbb{Z} recursively defined by:

- for all $x \in P$, $\mu(x, x) = 1$;
- for all $x, y \in P$, $\mu(x, y) = -\sum_{x \le c < y} \mu(x, c)$.

Möbius function of $(IS(\mathcal{G}), \subseteq)$

Definition

For any locally finite poset (P, \leq) , the Möbius function of P is the function μ from $P \times P$ to \mathbb{Z} recursively defined by:

- for all $x \in P$, $\mu(x, x) = 1$;
- for all $x, y \in P$, $\mu(x, y) = -\sum_{x \leq c < y} \mu(x, c)$.

Theorem, V. (2014)

Let $A \in IS(\mathcal{G})$, we define:

•
$$\mathcal{N}(A) = \{z \in A \mid \theta(z) = 0\};$$

• $\mathcal{F}(A) = \{z \in A \mid A \setminus \{z\} \in IS(\mathcal{G})\}.$

We have the following two cases:

- if $\mathcal{N}(A) = \mathcal{F}(A)$, then $\mu(\emptyset, A) = (-1)^{|\mathcal{N}(A)|}$;
- otherwise, $\mu(\emptyset, A) = 0$.

 Each w ∈ W can be written as a product of a minimal number of elements of S. This minimal number is denoted by ℓ(w) and is called the length of w.

- Each w ∈ W can be written as a product of a minimal number of elements of S. This minimal number is denoted by ℓ(w) and is called the length of w.
- We define the weak order \leq_R on W as follows: $w \leq_R w'$ if and only if there exists s_1, \ldots, s_k in S such that

$$w' = ws_1 \cdots s_k$$
 and $\ell(w') = \ell(w) + k$.

- Each w ∈ W can be written as a product of a minimal number of elements of S. This minimal number is denoted by ℓ(w) and is called the length of w.
- We define the weak order \leq_R on W as follows: $w \leq_R w'$ if and only if there exists s_1, \ldots, s_k in S such that

$$w' = ws_1 \cdots s_k$$
 and $\ell(w') = \ell(w) + k$.

Note that (W, ≤_R) is a complete meet semi-lattice in general, a complete lattice when W is finite, and its Möbius function takes values into the set {−1,0,1}.

Toward the general case: root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W. In particular, we have that:

- Φ is a discrete subset of \mathbb{R}^n on which W acts;
- There exists a partition of Φ into two subsets Φ⁺ and Φ⁻ = −Φ⁺, separated by an hyperplane of ℝⁿ.

Toward the general case: root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W. In particular, we have that:

- Φ is a discrete subset of \mathbb{R}^n on which W acts;
- There exists a partition of Φ into two subsets Φ⁺ and Φ⁻ = −Φ⁺, separated by an hyperplane of ℝⁿ.

Definition

Let $w \in W$, the inversion set of w is defined by

$$\operatorname{Inv}(w) := \Phi^+ \cap w(\Phi^-).$$

Property

For all $w, w' \in W$, $w \leq_R w'$ if and only if $Inv(w) \subseteq Inv(w')$.

Toward the general case: root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W. In particular, we have that:

- Φ is a discrete subset of \mathbb{R}^n on which W acts;
- There exists a partition of Φ into two subsets Φ⁺ and Φ⁻ = −Φ⁺, separated by an hyperplane of ℝⁿ.

Definition

Let $w \in W$, the inversion set of w is defined by

$$\operatorname{Inv}(w) := \Phi^+ \cap w(\Phi^-).$$

Property

For all
$$w, w' \in W$$
, $w \leq_R w'$ if and only if $Inv(w) \subseteq Inv(w')$.

Idea

We are looking for a \mathcal{G} such that $V(\mathcal{G}) = \Phi^+$ and the elements of $IS(\mathcal{G})$ are exactly the sets of the form Inv(w).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

<ロト <四ト <注入 <注下 <注下 <

One can easily represent the set $\{(a,b) \ | \ 1 \leq a < b \leq n\}$

as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.

We set $\theta(c) = \frac{\text{outdegree}(c)}{2}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 の々で

General result

Theorem, V. (2014-2015)

Each one of the following posets can be described with an explicit simple acyclic valued digraph.

- The weak order on Coxeter groups A_n , B_n , D_n , $I_2(n)$, E_6 , E_7 , E_8 and $\widetilde{A_n}$.
- The <u>flag weak order</u> on $\mathbb{Z}_r \wr S_n$ (Adin, Brenti and Roichman, 2011).
- The up-set and down-set lattice of any finite poset.

크

Is it possible to generalize this result to each Coxeter group?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Is it possible to generalize this result to each Coxeter group?

• When one try to "brutally" generalize the previous result (using geometrical properties of root systems and inversion sets), the resulting digraphs are not acyclic in general.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Is it possible to generalize this result to each Coxeter group?

• When one try to "brutally" generalize the previous result (using geometrical properties of root systems and inversion sets), the resulting digraphs are not acyclic in general.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Therefore, our theory does not apply. Can we get rid of the "acyclicity condition"?

Is it possible to generalize this result to each Coxeter group?

- When one try to "brutally" generalize the previous result (using geometrical properties of root systems and inversion sets), the resulting digraphs are not acyclic in general.
- Therefore, our theory does not apply. Can we get rid of the "acyclicity condition"?

Proposition, V. (2014)

Let $\mathcal{G} = (G, \theta)$ be a pair of a simple acyclic digraph G together with a valuation θ on V(G) such that $0 \le \theta(z) \le d^+(z)$ for all $z \in V(G)$, and $A \subseteq V(G)$. Then, $A \in IS(\mathcal{G})$ if and only if the following properties are satisfied:

- A is finite;
- for all $z \in A$, $\theta(z) \leq d^+_A(z)$;
- for all $z \in V(G) \setminus A$, $\theta(z) \ge d_A^+(z)$.
Toward the general case?

Is it possible to generalize this result to each Coxeter group?

- When one try to "brutally" generalize the previous result (using geometrical properties of root systems and inversion sets), the resulting digraphs are not acyclic in general.
- Therefore, our theory does not apply. Can we get rid of the "acyclicity condition"?

Proposition Definition

Let $\mathcal{G} = (G, \theta)$ be a pair of a simple acyclic digraph G together with a valuation θ on V(G) such that $0 \le \theta(z) \le d^+(z)$ for all $z \in V(G)$, and $A \subseteq V(G)$. Then, $A \in IS_{\infty}(G)$ if and only if the following properties are satisfied:

- A is finite;
- for all $z \in A$, $\theta(z) \le d_A^+(z)$;
- for all $z \in V(G) \setminus A$, $\theta(z) \ge d_A^+(z)$.

Let $\mathcal{G} = (G, \theta)$ be a pair of a digraph G together with a valuation θ on V(G) such that $0 \leq \theta(z) \leq d^+(z)$ for all $z \in V(G)$. Then, the poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is a complete lattice.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $\mathcal{G} = (G, \theta)$ be a pair of a digraph G together with a valuation θ on V(G) such that $0 \leq \theta(z) \leq d^+(z)$ for all $z \in V(G)$. Then, the poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is a complete lattice.

• In this new context, there is no general equivalent of peeling sequences.

(日) (四) (문) (문) (문)

Let $\mathcal{G} = (G, \theta)$ be a pair of a digraph G together with a valuation θ on V(G) such that $0 \leq \theta(z) \leq d^+(z)$ for all $z \in V(G)$. Then, the poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is a complete lattice.

- In this new context, there is no general equivalent of peeling sequences.
- The poset (IS_∞(G), ⊆) cannot describe the weak order on any Coxeter group, since weak order is not a complete lattice.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $\mathcal{G} = (G, \theta)$ be a pair of a digraph G together with a valuation θ on V(G) such that $0 \leq \theta(z) \leq d^+(z)$ for all $z \in V(G)$. Then, the poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is a complete lattice.

- In this new context, there is no general equivalent of peeling sequences.
- The poset (IS_∞(G), ⊆) cannot describe the weak order on any Coxeter group, since weak order is not a complete lattice.
- However, there are some conjectures of Dyer, about an extension of the weak order into a complete lattice.

First Dyer's conjecture

Definition

Let $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ with a, b > 0 and $A \subseteq \Phi^+$. We say that A is closed iff we have that if $\alpha, \beta \in A$, then $\gamma \in A$. We say that A is bi-closed iff both A and $\Phi^+ \setminus A$ are closed. We denote by $\mathcal{B}(\Phi^+)$ the set of the bi-closed sets of Φ^+ .

First Dyer's conjecture

Definition

Let $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ with a, b > 0 and $A \subseteq \Phi^+$. We say that A is <u>closed</u> iff we have that if $\alpha, \beta \in A$, then $\gamma \in A$. We say that A is bi-closed iff both A and $\Phi^+ \setminus A$ are closed. We denote by $\mathcal{B}(\Phi^+)$ the set of the bi-closed sets of Φ^+ .

Theorem, Pilkington (2006)

The inversion sets of any Coxeter group W are exactly the finite bi-closed sets.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Conjecture 1, Dyer (1993)

The poset $(\mathcal{B}(\Phi^+), \subseteq)$ is a complete lattice.

First Dyer's conjecture

Definition

Let $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ with a, b > 0 and $A \subseteq \Phi^+$. We say that A is <u>closed</u> iff we have that if $\alpha, \beta \in A$, then $\gamma \in A$. We say that A is bi-closed iff both A and $\Phi^+ \setminus A$ are closed. We denote by $\mathcal{B}(\Phi^+)$ the set of the bi-closed sets of Φ^+ .

Theorem, Pilkington (2006)

The inversion sets of any Coxeter group W are exactly the finite bi-closed sets.

Conjecture 1, Dyer (1993)

The poset $(\mathcal{B}(\Phi^+), \subseteq)$ is a complete lattice.

Goal

We are now looking for a valued digraph \mathcal{G} such that $IS_{\infty}(\mathcal{G}) = \mathcal{B}(\Phi^+)$.

Second Dyer's conjecture

Definition

Let $I = (\Phi^+, \preceq)$ be a total order. We say that I is a <u>reflection ordering</u> of Φ^+ if and only if for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ with a, b > 0, we have either $\alpha \preceq \gamma \preceq \beta$ or $\beta \preceq \gamma \preceq \alpha$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

Let $I = (\Phi^+, \preceq)$ be a total order. We say that I is a <u>reflection ordering</u> of Φ^+ if and only if for all $\alpha, \beta, \gamma \in \Phi^+$ such that $\gamma = a\alpha + b\beta$ with a, b > 0, we have either $\alpha \preceq \gamma \preceq \beta$ or $\beta \preceq \gamma \preceq \alpha$.

Proposition (Folklore ?)

If W is finite, then there is a one-to-one correspondence between maximal chains and (W, \leq_R) and reflection orderings of Φ^+ .

Conjecture 2, Dyer (1993)

Let C be a chain of $(\mathcal{B}(\Phi^+), \subseteq)$. Then, there exists a reflection ordering I of Φ^+ such that C is included in the set of the initial sections of I, and C is maximal if and only if we have equality.

• Peeling sequences in the finite acyclic case satisfy exactly the condition of the second Dyer's conjecture.

- Peeling sequences in the finite acyclic case satisfy exactly the condition of the second Dyer's conjecture.
- Can we generalize the notion of peeling sequence to the sets $IS_{\infty}(\mathcal{G})$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Peeling sequences in the finite acyclic case satisfy exactly the condition of the second Dyer's conjecture.
- Can we generalize the notion of peeling sequence to the sets $IS_{\infty}(\mathcal{G})$?

Answer

Yes! But not for all valued digraphs.

There exists a family of infinite valued digraphs \mathcal{G} , called projective, such that there exists a set $PS_{\infty}(\mathcal{G})$ of total orderings of $V(\mathcal{G})$ such that each chain of $(IS_{\infty}(\mathcal{G}), \subseteq)$ is included in the initial sections of an element of $PS_{\infty}(\mathcal{G})$, with equality if and only if the chain is maximal.

《曰》 《聞》 《理》 《理》 三臣

Projective valued digraph and Dyer's conjectures

Theorem, V. (2015)

There exists a projective valued digraph \mathcal{G} such that:

- $V(\mathcal{G}) = \Phi^+$, $\mathcal{B}(\Phi^+) \subseteq IS_{\infty}(\mathcal{G})$ and each reflection ordering of Φ^+ is in $PS_{\infty}(\mathcal{G})$.
- 2 The poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is an algebraic ortho-lattice.
- We have that B(Φ⁺) = IS_∞(G) iff PS_∞(G) is the set of the reflection orderings of Φ⁺.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Projective valued digraph and Dyer's conjectures

Theorem, V. (2015)

There exists a projective valued digraph \mathcal{G} such that:

- $V(\mathcal{G}) = \Phi^+$, $\mathcal{B}(\Phi^+) \subseteq IS_{\infty}(\mathcal{G})$ and each reflection ordering of Φ^+ is in $PS_{\infty}(\mathcal{G})$.
- **2** The poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is an algebraic ortho-lattice.
- We have that $\mathcal{B}(\Phi^+) = IS_{\infty}(\mathcal{G})$ iff $PS_{\infty}(\mathcal{G})$ is the set of the reflection orderings of Φ^+ .
 - In general, such a valued digraph is not unique, and in general, we have

$$\mathsf{IS}_\infty(\mathcal{G})\subset\mathcal{B}(\Phi^+).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Projective valued digraph and Dyer's conjectures

Theorem, V. (2015)

There exists a projective valued digraph \mathcal{G} such that:

- $V(\mathcal{G}) = \Phi^+$, $\mathcal{B}(\Phi^+) \subseteq IS_{\infty}(\mathcal{G})$ and each reflection ordering of Φ^+ is in $PS_{\infty}(\mathcal{G})$.
- **2** The poset $(IS_{\infty}(\mathcal{G}), \subseteq)$ is an algebraic ortho-lattice.
- We have that B(Φ⁺) = IS_∞(G) iff PS_∞(G) is the set of the reflection orderings of Φ⁺.
 - In general, such a valued digraph is not unique, and in general, we have

$$\mathsf{IS}_\infty(\mathcal{G})\subset\mathcal{B}(\Phi^+).$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• However, after many tests, I conjecture that at least one of them satisfies point $IS_{\infty}(\mathcal{G}) = \mathcal{B}(\Phi^+)$.

The Tamari lattice

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

The Tamari lattice

Ė

999

• Continue to study Dyer's conjectures using valued digraphs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Continue to study Dyer's conjectures using valued digraphs.
- The result about the Tamari lattice takes place in a more general study of Cambrian lattices and semi-lattices. Can we describe all Cambrian lattices using valued digraph? Are there connections with cluster algebras?

▲口> ▲圖> ▲理> ▲理> 三理 ---

- Continue to study Dyer's conjectures using valued digraphs.
- The result about the Tamari lattice takes place in a more general study of Cambrian lattices and semi-lattices. Can we describe all Cambrian lattices using valued digraph? Are there connections with cluster algebras?

Thank you for your attention!