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reduced decompositions of a permutation

The symmetric group Sn is generated by simple transpositions
si = (i , i + 1), i ∈ [n − 1].

Each permutation σ can be written as a product si1 · · · sik = σ of
simple transpositions. When k is minimal, we say that the word
si1 · · · sik is a reduced decomposition of σ.

Combinatorics of reduced decompositions is related to two families of
tableaux: standard and balanced tableaux.
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Reduced decompositions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative
integers λ1 ≥ λ2 ≥ . . . such that

∑
i λi = n.

Ferrers diagram of the partition λ = (4, 3, 3, 1, 1).
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Standard tableaux of shape λ = (4, 3, 3, 1, 1).

Theorem, Stanley (1984)

The number of reduced decompositions of the permutation
[n, n − 1, . . . , 2, 1] is equal to the number of standard tableaux of shape
(n − 1, n − 2, . . . , 2, 1).



Balanced tableaux (Edelman-Greene, 1987)

Definition of balanced tableaux

Set T = (tc)c∈λ a tableau of shape λ. T is a balanced tableau if and only
if for all boxes c ∈ λ we have |{z ∈ Hc(λ) | tz < tc}| = ac, where ac is the
number of boxes on the right of c in λ, and Hc(λ) is the hook based on c
in λ.
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Definition of balanced tableaux

Set T = (tc)c∈λ a tableau of shape λ. T is a balanced tableau if and only
if for all boxes c ∈ λ we have |{z ∈ Hc(λ) | tz < tc}| = ac, where ac is the
number of boxes on the right of c in λ, and Hc(λ) is the hook based on c
in λ.
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Link between balanced tableaux, standard tableaux and
reduced decompositions

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of
shape λn = (n − 1, n − 2, . . . , 1) and reduced decompositions of
[n, n − 1, . . . , 1]. In particular, this implies that |Bal(λn)| = |SYT(λn)|.

Theorem, Edelman and Greene (1987)

For each partition λ, we have |Bal(λ)| = |SYT(λ)|.

The proof of this theorem is quite involved, and uses reduced
decompositions.

Can we find a more direct bijection between Bal(λ) and SYT(λ)?
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Filling algorithm
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How to construct balanced tableaux

Filling algorithm
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The resulting tableau is a balanced tableau. Furthermore, each
balanced tableau can be obtained by this way.

Despite many tests, this algorithm did not lead to a “direct” bijective
proof of the result of Edelman and Greene.

However, it allows us to generalize the definition of balanced tableaux
and to generalize the result of Edelman and Greene.



Generalizing the concept of balanced tableau

Definition

Let λ be a partition of n. A type T of shape λ is a filling of λ with
integers θ(c) satisfying the inequality

for all c ∈ λ, 0 ≤ θ(c) ≤ |Hc(λ)| − 1.
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We denote by Tab(T ) the set of all tableaux coming from a type T .

All tableaux are classified according to their type. Balanced and
standard tableaux are special classes of this classification.



Generalizing the result of Edelman and Greene

Definition

Let σ ∈ Sn, the permutation σ is called vexillary if and only if σ is
2143-avoiding.

Theorem, Stanley (1984)

If σ is vexillary, then there exists a partition λ(σ) such that

|Red(σ)| = |SYT(λ(σ))|.

Theorem, V. (2013)

Let σ ∈ Sn, if σ is vexillary, then there exists a type Tσ of shape λ(σ) such
that

|Tab(Tσ)| = |Red(σ)| = |SYT(λ(σ))|.
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A generalization of the filling algorithm to digraphs
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Such a sequence is called a peeling sequence of (G, θ).
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Initial sections of a peeling sequence and definition of
IS(G)

Consider L = [e, c , a, b, d , f ] the previous peeling sequence. The
initial sections of L are the following sets

L0 = ∅, L1 = {e}, L2 = {e, c}, . . . , L6 = {e, c , a, b, d , f }.

Definition

Let G = (G , θ) be a pair of a simple acyclic digraph and a “compatible”
valuation on its vertices (such a pair is called a simple acyclic valued
digraph). We denote by IS(G) the set constituted of all the initial sections
of all the peeling sequences of G.

From now on, we will study the properties of the poset (IS(G),⊆).
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Lattice structure of (IS(G),⊆)

Theorem, (V, 2014)

Let G = (G , θ) be a simple acyclic valued digraph. Then, the poset
(IS(G),⊆) is a graded complete meet semi-lattice. Furthermore, if G is
finite, then it is a complete lattice with V (G ) as maximal element.
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Möbius function of (IS(G),⊆)

Definition

For any locally finite poset (P,≤), the Möbius function of P is the
function µ from P × P to Z recursively defined by:

for all x ∈ P, µ(x , x) = 1;

for all x , y ∈ P, µ(x , y) = −∑x≤c<y µ(x , c).

Theorem, V. (2014)

Let A ∈ IS(G), we define:

N (A) = {z ∈ A | θ(z) = 0};
F(A) = {z ∈ A | A \ {z} ∈ IS(G)}.

We have the following two cases:

if N (A) = F(A), then µ(∅,A) = (−1)|N (A)|;

otherwise, µ(∅,A) = 0.
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Coxeter groups and weak order

Let W be a Coxeter group with generating set S .

Each w ∈W can be written as a product of a minimal number of
elements of S . This minimal number is denoted by `(w) and is called
the length of w .

We define the weak order ≤R on W as follows: w ≤R w ′ if and only
if there exists s1, . . . , sk in S such that

w ′ = ws1 · · · sk and `(w ′) = `(w) + k .

Note that (W ,≤R) is a complete meet semi-lattice in general, a
complete lattice when W is finite, and its Möbius function takes
values into the set {−1, 0, 1}.
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Toward the general case: root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W .
In particular, we have that:

Φ is a discrete subset of Rn on which W acts;
There exists a partition of Φ into two subsets Φ+ and Φ− = −Φ+,
separated by an hyperplane of Rn.

Definition

Let w ∈W , the inversion set of w is defined by

Inv(w) := Φ+ ∩ w
(
Φ−
)
.

Property

For all w ,w ′ ∈W , w ≤R w ′ if and only if Inv(w) ⊆ Inv(w ′).

Idea

We are looking for a G such that V (G) = Φ+ and the elements of IS(G)
are exactly the sets of the form Inv(w).
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Weak order on Sn and valued digraph
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1
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3

4

5
One can easilly represent the set

{(a, b) | 1 ≤ a < b ≤ n}
as a staircase tableau.

We implement an (implicit) digraph

structure on this diagram.

We say that there is an arc from c

to d iff d is in the hook based on c.

0

0

0

01

1

1

2

23

The outdegree of any box is an even

number.

We set θ(c) = outdegree(c)
2 .

Denote by A = (G, θ) the obtained pair.

We have IS(A) = {Inv(σ) | σ ∈ Sn}

and (IS(A),⊆) are isomorphic.

Therefore, we have that (Sn,≤R)



General result

Theorem, V. (2014-2015)

Each one of the following posets can be described with an explicit simple
acyclic valued digraph.

The weak order on Coxeter groups An, Bn, Dn, I2(n), E6, E7, E8 and

Ãn.

The flag weak order on Zr o Sn (Adin, Brenti and Roichman, 2011).

The up-set and down-set lattice of any finite poset.
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Proposition, V. (2014)

Let G = (G , θ) be a pair of a simple acyclic digraph G together with a
valuation θ on V (G ) such that 0 ≤ θ(z) ≤ d+(z) for all z ∈ V (G ), and
A ⊆ V (G ). Then, A ∈ IS(G) if and only if the following properties are
satisfied:

A is finite;

for all z ∈ A, θ(z) ≤ d+
A (z);

for all z ∈ V (G ) \ A, θ(z) ≥ d+
A (z).
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geometrical properties of root systems and inversion sets), the
resulting digraphs are not acyclic in general.

Therefore, our theory does not apply. Can we get rid of the
“acyclicity condition”?

Proposition Definition

Let G = (G , θ) be a pair of a simple acyclic digraph G together with a
valuation θ on V (G ) such that 0 ≤ θ(z) ≤ d+(z) for all z ∈ V (G ), and
A ⊆ V (G ). Then, A ∈ IS∞(G) if and only if the following properties are
satisfied:

A is finite;

for all z ∈ A, θ(z) ≤ d+
A (z);

for all z ∈ V (G ) \ A, θ(z) ≥ d+
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Structure of (IS∞(G),⊆)

Theorem, V. (2015)

Let G = (G , θ) be a pair of a digraph G together with a valuation θ on
V (G ) such that 0 ≤ θ(z) ≤ d+(z) for all z ∈ V (G ). Then, the poset
(IS∞(G),⊆) is a complete lattice.

In this new context, there is no general equivalent of peeling
sequences.

The poset (IS∞(G),⊆) cannot describe the weak order on any
Coxeter group, since weak order is not a complete lattice.

However, there are some conjectures of Dyer, about an extension of
the weak order into a complete lattice.
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First Dyer’s conjecture

Definition

Let α, β, γ ∈ Φ+ such that γ = aα + bβ with a, b > 0 and A ⊆ Φ+. We
say that A is closed iff we have that if α, β ∈ A, then γ ∈ A. We say that
A is bi-closed iff both A and Φ+ \ A are closed. We denote by B(Φ+) the
set of the bi-closed sets of Φ+.

Theorem, Pilkington (2006)

The inversion sets of any Coxeter group W are exactly the finite bi-closed
sets.

Conjecture 1, Dyer (1993)

The poset (B(Φ+),⊆) is a complete lattice.

Goal

We are now looking for a valued digraph G such that IS∞(G) = B(Φ+).
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Second Dyer’s conjecture

Definition

Let I = (Φ+,�) be a total order. We say that I is a reflection ordering of
Φ+ if and only if for all α, β, γ ∈ Φ+ such that γ = aα+ bβ with a, b > 0,
we have either α � γ � β or β � γ � α.

Proposition (Folklore ?)

If W is finite, then there is a one-to-one correspondence between maximal
chains and (W ,≤R) and reflection orderings of Φ+.

Conjecture 2, Dyer (1993)

Let C be a chain of (B(Φ+),⊆). Then, there exists a reflection ordering I
of Φ+ such that C is included in the set of the initial sections of I , and C is
maximal if and only if we have equality.
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Observation

Peeling sequences in the finite acyclic case satisfy exactly the
condition of the second Dyer’s conjecture.

Can we generalize the notion of peeling sequence to the sets IS∞(G)?

Answer

Yes! But not for all valued digraphs.
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Projective valued digraphs

Theorem, V. (2015)

There exists a family of infinite valued digraphs G, called projective, such
that there exists a set PS∞(G) of total orderings of V (G) such that each
chain of (IS∞(G),⊆) is included in the initial sections of an element of
PS∞(G), with equality if and only if the chain is maximal.

G1

G2

z2

G3

z2

z3

G4

z2

z3

z4



Projective valued digraph and Dyer’s conjectures

Theorem, V. (2015)

There exists a projective valued digraph G such that:

1 V (G) = Φ+, B(Φ+) ⊆ IS∞(G) and each reflection ordering of Φ+ is
in PS∞(G).

2 The poset (IS∞(G),⊆) is an algebraic ortho-lattice.

3 We have that B(Φ+) = IS∞(G) iff PS∞(G) is the set of the reflection
orderings of Φ+.

In general, such a valued digraph is not unique, and in general, we
have

IS∞(G) ⊂ B(Φ+).

However, after many tests, I conjecture that at least one of them
satisfies point IS∞(G) = B(Φ+).
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Some perspectives

Continue to study Dyer’s conjectures using valued digraphs.

The result about the Tamari lattice takes place in a more general
study of Cambrian lattices and semi-lattices. Can we describe all
Cambrian lattices using valued digraph? Are there connections with
cluster algebras?

Thank you for your attention!
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