Des graphes orientés aux treillis complets：une nouvelle approche de l＇ordre faible sur les groupes de Coxeter．

François Viard
$$
\text { ICJ - Lyon } 1
$$

26 novembre 2015

Plan

（1）The initial motivation：reduced decompositions and balanced tableaux
（2）Coxeter groups，weak order and valued digraphs
（3）Root systems and Dyer＇s conjectures
（4）Perspectives

reduced decompositions of a permutation

－The symmetric group S_{n} is generated by simple transpositions $s_{i}=(i, i+1), i \in[n-1]$ ．

reduced decompositions of a permutation

- The symmetric group S_{n} is generated by simple transpositions $s_{i}=(i, i+1), i \in[n-1]$.
- Each permutation σ can be written as a product $s_{i_{1}} \cdots s_{i_{k}}=\sigma$ of simple transpositions. When k is minimal, we say that the word $s_{i_{1}} \cdots s_{i_{k}}$ is a reduced decomposition of σ.

reduced decompositions of a permutation

- The symmetric group S_{n} is generated by simple transpositions $s_{i}=(i, i+1), i \in[n-1]$.
- Each permutation σ can be written as a product $s_{i_{1}} \cdots s_{i_{k}}=\sigma$ of simple transpositions. When k is minimal, we say that the word $s_{i_{1}} \cdots s_{i_{k}}$ is a reduced decomposition of σ.
- Combinatorics of reduced decompositions is related to two families of tableaux: standard and balanced tableaux.

Reduced decompositions and standard tableaux

Definition

A partition of the integer n is a non－increasing sequence of non－negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$ ．

Ferrers diagram of the partition $\lambda=(4,3,3,1,1)$ ．

Reduced decompositions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$.

1	2	5	10
3	7	8	
4	9	11	
6			
12			

Standard tableaux of shape $\lambda=(4,3,3,1,1)$.

Reduced decompositions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$.

1	2	5	10
3	7	8	
4	9	11	
6			
12			

Standard tableaux of shape $\lambda=(4,3,3,1,1)$.

Theorem, Stanley (1984)

The number of reduced decompositions of the permutation [$n, n-1, \ldots, 2,1$] is equal to the number of standard tableaux of shape $(n-1, n-2, \ldots, 2,1)$.

Balanced tableaux (Edelman-Greene, 1987)

Definition of balanced tableaux

Set $T=\left(t_{\mathfrak{c}}\right)_{\mathfrak{c} \in \lambda}$ a tableau of shape λ. T is a balanced tableau if and only if for all boxes $\mathfrak{c} \in \lambda$ we have $\left|\left\{z \in H_{\mathfrak{c}}(\lambda) \mid t_{z}<t_{\mathfrak{c}}\right\}\right|=a_{\mathfrak{c}}$, where $a_{\mathfrak{c}}$ is the number of boxes on the right of \mathfrak{c} in λ, and $H_{\mathfrak{c}}(\lambda)$ is the hook based on \mathfrak{c} in λ.

6	7	4	11
3	5	1	
9	10	8	
2			
12			

Balanced tableaux (Edelman-Greene, 1987)

Definition of balanced tableaux

Set $T=\left(t_{\mathfrak{c}}\right)_{\mathfrak{c} \in \lambda}$ a tableau of shape λ. T is a balanced tableau if and only if for all boxes $\mathfrak{c} \in \lambda$ we have $\left|\left\{z \in H_{c}(\lambda) \mid t_{z}<t_{c}\right\}\right|=a_{c}$, where a_{c} is the number of boxes on the right of \mathfrak{c} in λ, and $H_{\mathfrak{c}}(\lambda)$ is the hook based on \mathfrak{c} in λ.

6	7	4	11
3	5	1	
9	10	8	
2			
12			

$$
\text { Arm length }=2
$$

Balanced tableaux (Edelman-Greene, 1987)

Definition of balanced tableaux

Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape $\lambda . T$ is a balanced tableau if and only if for all boxes $\mathfrak{c} \in \lambda$ we have $\left|\left\{z \in H_{c}(\lambda) \mid t_{z}<t_{c}\right\}\right|=a_{c}$, where a_{c} is the number of boxes on the right of \mathfrak{c} in λ, and $H_{\mathfrak{c}}(\lambda)$ is the hook based on \mathfrak{c} in λ.

6	7	4	11
3	5	1	
9	10	8	
2			
12			

Arm length $=2$

$$
\left|\left\{z \in H_{c}(\lambda) \mid t_{z}<t_{c}\right\}\right|=2
$$

Link between balanced tableaux，standard tableaux and reduced decompositions

Theorem，Edelman and Greene（1987）

There exists a one－to－one correspondence between balanced tableaux of shape $\lambda_{n}=(n-1, n-2, \ldots, 1)$ and reduced decompositions of $[n, n-1, \ldots, 1]$ ．In particular，this implies that $\left|\operatorname{Bal}\left(\lambda_{n}\right)\right|=\left|\operatorname{SYT}\left(\lambda_{n}\right)\right|$ ．

Link between balanced tableaux, standard tableaux and reduced decompositions

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_{n}=(n-1, n-2, \ldots, 1)$ and reduced decompositions of $[n, n-1, \ldots, 1]$. In particular, this implies that $\left|\operatorname{Bal}\left(\lambda_{n}\right)\right|=\left|\operatorname{SYT}\left(\lambda_{n}\right)\right|$.

Theorem, Edelman and Greene (1987)

For each partition λ, we have $|\operatorname{Bal}(\lambda)|=|\operatorname{SYT}(\lambda)|$.

Link between balanced tableaux, standard tableaux and reduced decompositions

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_{n}=(n-1, n-2, \ldots, 1)$ and reduced decompositions of $[n, n-1, \ldots, 1]$. In particular, this implies that $\left|\operatorname{Bal}\left(\lambda_{n}\right)\right|=\left|\operatorname{SYT}\left(\lambda_{n}\right)\right|$.

Theorem, Edelman and Greene (1987)

For each partition λ, we have $|\operatorname{Bal}(\lambda)|=|\operatorname{SYT}(\lambda)|$.

- The proof of this theorem is quite involved, and uses reduced decompositions.

Link between balanced tableaux, standard tableaux and reduced decompositions

Theorem, Edelman and Greene (1987)

There exists a one-to-one correspondence between balanced tableaux of shape $\lambda_{n}=(n-1, n-2, \ldots, 1)$ and reduced decompositions of $[n, n-1, \ldots, 1]$. In particular, this implies that $\left|\operatorname{Bal}\left(\lambda_{n}\right)\right|=\left|\operatorname{SYT}\left(\lambda_{n}\right)\right|$.

Theorem, Edelman and Greene (1987)

For each partition λ, we have $|\operatorname{Bal}(\lambda)|=|\operatorname{SYT}(\lambda)|$.

- The proof of this theorem is quite involved, and uses reduced decompositions.
- Can we find a more direct bijection between $\operatorname{Bal}(\lambda)$ and $\operatorname{SYT}(\lambda)$?

How to construct balanced tableaux

Filling algorithm

How to construct balanced tableaux

Filling algorithm

2 0 0 -1 0 0 0 0 		

How to construct balanced tableaux

Filling algorithm

How to construct balanced tableaux

Filling algorithm

- The resulting tableau is a balanced tableau. Furthermore, each balanced tableau can be obtained by this way.

How to construct balanced tableaux

Filling algorithm

- The resulting tableau is a balanced tableau. Furthermore, each balanced tableau can be obtained by this way.
- Despite many tests, this algorithm did not lead to a "direct" bijective proof of the result of Edelman and Greene.

How to construct balanced tableaux

Filling algorithm

- The resulting tableau is a balanced tableau. Furthermore, each balanced tableau can be obtained by this way.
- Despite many tests, this algorithm did not lead to a "direct" bijective proof of the result of Edelman and Greene.
- However, it allows us to generalize the definition of balanced tableaux and to generalize the result of Edelman and Greene.

Generalizing the concept of balanced tableau

Definition

Let λ be a partition of n. A type \mathcal{T} of shape λ is a filling of λ with integers $\theta(\mathfrak{c})$ satisfying the inequality

$$
\text { for all } \mathfrak{c} \in \lambda, 0 \leq \theta(\mathfrak{c}) \leq\left|H_{c}(\lambda)\right|-1
$$

3	3	2	0
1	2	1	
4	0	0	
1			
0			

Generalizing the concept of balanced tableau

Definition

Let λ be a partition of n. A type \mathcal{T} of shape λ is a filling of λ with integers $\theta(\mathfrak{c})$ satisfying the inequality

$$
\text { for all } \mathfrak{c} \in \lambda, 0 \leq \theta(\mathfrak{c}) \leq\left|H_{c}(\lambda)\right|-1
$$

3	3	2	0	Filling	6	10	5	3
1	2	1			7	12	9	
4	0	0			11	2	4	
1				algorithm	8			
0					1			

- We denote by $\operatorname{Tab}(\mathcal{T})$ the set of all tableaux coming from a type \mathcal{T}.

Generalizing the concept of balanced tableau

Definition

Let λ be a partition of n. A type \mathcal{T} of shape λ is a filling of λ with integers $\theta(\mathfrak{c})$ satisfying the inequality

$$
\text { for all } \mathfrak{c} \in \lambda, 0 \leq \theta(\mathfrak{c}) \leq\left|H_{c}(\lambda)\right|-1
$$

3	3	2	0	$\xrightarrow{\text { Filling }}$	6	10	5	3
1	2	1			7	12	9	
4	0	0			11	2	4	
1				algorithm	8			
0					1			

- We denote by $\operatorname{Tab}(\mathcal{T})$ the set of all tableaux coming from a type \mathcal{T}.
- All tableaux are classified according to their type. Balanced and standard tableaux are special classes of this classification.

Generalizing the result of Edelman and Greene

Definition

Let $\sigma \in S_{n}$, the permutation σ is called vexillary if and only if σ is 2143-avoiding.

Theorem, Stanley (1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ such that

$$
|\operatorname{Red}(\sigma)|=|\operatorname{SYT}(\lambda(\sigma))|
$$

Generalizing the result of Edelman and Greene

Definition

Let $\sigma \in S_{n}$, the permutation σ is called vexillary if and only if σ is 2143-avoiding.

Theorem, Stanley (1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ such that

$$
|\operatorname{Red}(\sigma)|=|\operatorname{SYT}(\lambda(\sigma))|
$$

Theorem, V. (2013)

Let $\sigma \in S_{n}$, if σ is vexillary, then there exists a type \mathcal{T}_{σ} of shape $\lambda(\sigma)$ such that

$$
\left|\operatorname{Tab}\left(\mathcal{T}_{\sigma}\right)\right|=|\operatorname{Red}(\sigma)|=|\operatorname{SYT}(\lambda(\sigma))| .
$$

A generalization of the filling algorithm to digraphs

$$
G=(V, E)
$$

A generalization of the filling algorithm to digraphs

$$
G=(V, E) \quad \text { Consider } \theta: V \rightarrow \mathbb{N} \text { such that } \forall z \in V, 0 \leq \theta(z) \leq \text { outdegree of } z .
$$

$L=[$]

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :---: | :---: | :---: | :---: | :---: | :---: |

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :---: | :---: | :---: | :---: |

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :---: | :---: | :---: |
| Step 1: | |

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :---: | :---: | :---: |
| Step 1: | |

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :---: | :---: | :---: |

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :--- | :--- | :--- |

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :--- | :--- | :--- | :--- | :--- |

A generalization of the filling algorithm to digraphs

$G=(V, E) \quad$ Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z.

A generalization of the filling algorithm to digraphs

| $G=(V, E)$ | Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z. |
| :--- | :--- | :--- | :--- | :--- |

A generalization of the filling algorithm to digraphs

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z.		
			Step 1 : Consider each $z \in V$ such that 1) $\theta(z)=0$ 2) if $(y, z) \in E$, then $\theta(y) \neq 0$.
			Step 2 : Choose one of these vertices and add it to the list.
			Step 3 : Peeling process !
$L=[e, c]$			

A generalization of the filling algorithm to digraphs

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z.	
		Step 1: Consider each $z \in V$ such that 1) $\theta(z)=0$ 2) if $(y, z) \in E$, then $\theta(y) \neq 0$.
		Step 2 : Choose one of these vertices and add it to the list.
		Step 3 : Peeling process !
$L=[e, c, a]$		

A generalization of the filling algorithm to digraphs

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z.		
d (0)			Step 1 : Consider each $z \in V$ such that 1) $\theta(z)=0$ 2) if $(y, z) \in E$, then $\theta(y) \neq 0$.
			Step 2 : Choose one of these vertices and add it to the list.
			Step 3 : Peeling process !
$L=[e, c, a, b]$			

A generalization of the filling algorithm to digraphs

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z.	
(0) f		Step 1 : Consider each $z \in V$ such that 1) $\theta(z)=0$ 2) if $(y, z) \in E$, then $\theta(y) \neq 0$.
		Step 2 : Choose one of these vertices and add it to the list.
		Step 3 : Peeling process !
$L=[e, c, a, b, d]$		

A generalization of the filling algorithm to digraphs

$G=(V, E)$	Consider $\theta: V \rightarrow \mathbb{N}$ such that $\forall z \in V, 0 \leq \theta(z) \leq$ outdegree of z.	
		Step 1 : Consider each $z \in V$ such that 1) $\theta(z)=0$ 2) if $(y, z) \in E$, then $\theta(y) \neq 0$.
		Step 2 : Choose one of these vertices and add it to the list.
		Step 3 : Peeling process !
$L=[e, c, a, b, d, f] \longleftarrow$ Such a sequence is called a peeling sequence of (G, θ).		

Initial sections of a peeling sequence and definition of IS(G)

- Consider $L=[e, c, a, b, d, f]$ the previous peeling sequence. The initial sections of L are the following sets

$$
L_{0}=\emptyset, L_{1}=\{e\}, L_{2}=\{e, c\}, \ldots, L_{6}=\{e, c, a, b, d, f\} .
$$

Initial sections of a peeling sequence and definition of IS(G)

- Consider $L=[e, c, a, b, d, f]$ the previous peeling sequence. The initial sections of L are the following sets

$$
L_{0}=\emptyset, L_{1}=\{e\}, L_{2}=\{e, c\}, \ldots, L_{6}=\{e, c, a, b, d, f\} .
$$

Definition

Let $\mathcal{G}=(G, \theta)$ be a pair of a simple acyclic digraph and a "compatible" valuation on its vertices (such a pair is called a simple acyclic valued digraph). We denote by $I S(\mathcal{G})$ the set constituted of all the initial sections of all the peeling sequences of \mathcal{G}.

From now on, we will study the properties of the poset $(I S(\mathcal{G}), \subseteq)$.

Lattice structure of $(I S(\mathcal{G}), \subseteq)$

Theorem, (V, 2014)

Let $\mathcal{G}=(G, \theta)$ be a simple acyclic valued digraph. Then, the poset $(I S(\mathcal{G}), \subseteq)$ is a graded complete meet semi-lattice. Furthermore, if G is finite, then it is a complete lattice with $V(G)$ as maximal element.

Möbius function of $(I S(\mathcal{G}), \subseteq)$

Definition

For any locally finite poset (P, \leq), the Möbius function of P is the function μ from $P \times P$ to \mathbb{Z} recursively defined by:

- for all $x \in P, \mu(x, x)=1$;
- for all $x, y \in P, \mu(x, y)=-\sum_{x \leq c<y} \mu(x, c)$.

Möbius function of $(I S(\mathcal{G}), \subseteq)$

Definition

For any locally finite poset (P, \leq), the Möbius function of P is the function μ from $P \times P$ to \mathbb{Z} recursively defined by:

- for all $x \in P, \mu(x, x)=1$;
- for all $x, y \in P, \mu(x, y)=-\sum_{x \leq c<y} \mu(x, c)$.

Theorem, V. (2014)

Let $A \in I S(\mathcal{G})$, we define:

- $\mathcal{N}(A)=\{z \in A \mid \theta(z)=0\} ;$
- $\mathcal{F}(A)=\{z \in A \mid A \backslash\{z\} \in I S(\mathcal{G})\}$.

We have the following two cases:

- if $\mathcal{N}(A)=\mathcal{F}(A)$, then $\mu(\emptyset, A)=(-1)^{|\mathcal{N}(A)| ; ~}$
- otherwise, $\mu(\emptyset, A)=0$.

Coxeter groups and weak order

Let W be a Coxeter group with generating set S.

Coxeter groups and weak order

Let W be a Coxeter group with generating set S.

- Each $w \in W$ can be written as a product of a minimal number of elements of S. This minimal number is denoted by $\ell(w)$ and is called the length of w.

Coxeter groups and weak order

Let W be a Coxeter group with generating set S.

- Each $w \in W$ can be written as a product of a minimal number of elements of S. This minimal number is denoted by $\ell(w)$ and is called the length of w.
- We define the weak order \leq_{R} on W as follows: $w \leq_{R} w^{\prime}$ if and only if there exists s_{1}, \ldots, s_{k} in S such that

$$
w^{\prime}=w s_{1} \cdots s_{k} \text { and } \ell\left(w^{\prime}\right)=\ell(w)+k
$$

Coxeter groups and weak order

Let W be a Coxeter group with generating set S.

- Each $w \in W$ can be written as a product of a minimal number of elements of S. This minimal number is denoted by $\ell(w)$ and is called the length of w.
- We define the weak order \leq_{R} on W as follows: $w \leq_{R} w^{\prime}$ if and only if there exists s_{1}, \ldots, s_{k} in S such that

$$
w^{\prime}=w s_{1} \cdots s_{k} \text { and } \ell\left(w^{\prime}\right)=\ell(w)+k
$$

- Note that $\left(W, \leq_{R}\right)$ is a complete meet semi-lattice in general, a complete lattice when W is finite, and its Möbius function takes values into the set $\{-1,0,1\}$.

Toward the general case：root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W ． In particular，we have that：
－Φ is a discrete subset of \mathbb{R}^{n} on which W acts；
－There exists a partition of Φ into two subsets Φ^{+}and $\Phi^{-}=-\Phi^{+}$， separated by an hyperplane of \mathbb{R}^{n} ．

Toward the general case: root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W. In particular, we have that:

- Φ is a discrete subset of \mathbb{R}^{n} on which W acts;
- There exists a partition of Φ into two subsets Φ^{+}and $\Phi^{-}=-\Phi^{+}$, separated by an hyperplane of \mathbb{R}^{n}.

Definition

Let $w \in W$, the inversion set of w is defined by

$$
\operatorname{Inv}(w):=\Phi^{+} \cap w\left(\Phi^{-}\right) .
$$

Property

For all $w, w^{\prime} \in W, w \leq_{R} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$.

Toward the general case: root system and inversion sets

Let W be a Coxeter group of finite rank n and Φ be a root system of W. In particular, we have that:

- Φ is a discrete subset of \mathbb{R}^{n} on which W acts;
- There exists a partition of Φ into two subsets Φ^{+}and $\Phi^{-}=-\Phi^{+}$, separated by an hyperplane of \mathbb{R}^{n}.

Definition

Let $w \in W$, the inversion set of w is defined by

$$
\operatorname{Inv}(w):=\Phi^{+} \cap w\left(\Phi^{-}\right)
$$

Property

For all $w, w^{\prime} \in W, w \leq_{R} w^{\prime}$ if and only if $\operatorname{Inv}(w) \subseteq \operatorname{Inv}\left(w^{\prime}\right)$.

Idea

We are looking for a \mathcal{G} such that $V(\mathcal{G})=\Phi^{+}$and the elements of $I S(\mathcal{G})$ are exactly the sets of the form $\operatorname{Inv}(w)$.

Weak order on S_{n} and valued digraph

One can easilly represent the set
$\{(a, b) \mid 1 \leq a<b \leq n\}$
as a staircase tableau.

This box represents the couple $(2,5)$

Weak order on S_{n} and valued digraph

Hook based on the box $(2,5)$

One can easilly represent the set

$$
\{(a, b) \mid 1 \leq a<b \leq n\}
$$

as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

Weak order on S_{n} and valued digraph

Values of the valuation θ

One can easilly represent the set

$$
\{(a, b) \mid 1 \leq a<b \leq n\}
$$

as a staircase tableau．

We implement an（implicit）digraph structure on this diagram．

We say that there is an arc from c to d iff d is in the hook based on c ．

The outdegree of any box is an even number．

We set $\theta(c)=\frac{\text { outdegree }(c)}{2}$ ．

Weak order on S_{n} and valued digraph

Denote by $\mathcal{A}=(G, \theta)$ the obtained pair. We have $I S(\mathcal{A})=\left\{\operatorname{Inv}(\sigma) \mid \sigma \in S_{n}\right\}$

Therefore, we have that $\left(S_{n}, \leq_{R}\right)$ and $(I S(\mathcal{A}), \subseteq)$ are isomorphic.

One can easilly represent the set

$$
\{(a, b) \mid 1 \leq a<b \leq n\}
$$

as a staircase tableau.

We implement an (implicit) digraph structure on this diagram.

We say that there is an arc from c to d iff d is in the hook based on c.

The outdegree of any box is an even number.
We set $\theta(c)=\frac{\text { outdegree }(c)}{2}$.

General result

Theorem, V. (2014-2015)

Each one of the following posets can be described with an explicit simple acyclic valued digraph.

- The weak order on Coxeter groups $A_{n}, B_{n}, D_{n}, I_{2}(n), E_{6}, E_{7}, E_{8}$ and $\widetilde{A_{n}}$.
- The flag weak order on $\mathbb{Z}_{r} 2 S_{n}$ (Adin, Brenti and Roichman, 2011).
- The up-set and down-set lattice of any finite poset.

Toward the general case?

Is it possible to generalize this result to each Coxeter group?

Toward the general case？

Is it possible to generalize this result to each Coxeter group？
－When one try to＂brutally＂generalize the previous result（using geometrical properties of root systems and inversion sets），the resulting digraphs are not acyclic in general．

Toward the general case？

Is it possible to generalize this result to each Coxeter group？
－When one try to＂brutally＂generalize the previous result（using geometrical properties of root systems and inversion sets），the resulting digraphs are not acyclic in general．
－Therefore，our theory does not apply．Can we get rid of the ＂acyclicity condition＂？

Toward the general case?

Is it possible to generalize this result to each Coxeter group?

- When one try to "brutally" generalize the previous result (using geometrical properties of root systems and inversion sets), the resulting digraphs are not acyclic in general.
- Therefore, our theory does not apply. Can we get rid of the "acyclicity condition"?

Proposition, V. (2014)

Let $\mathcal{G}=(G, \theta)$ be a pair of a simple acyclic digraph G together with a valuation θ on $V(G)$ such that $0 \leq \theta(z) \leq d^{+}(z)$ for all $z \in V(G)$, and $A \subseteq V(G)$. Then, $A \in I S(\mathcal{G})$ if and only if the following properties are satisfied:

- A is finite;
- for all $z \in A, \theta(z) \leq d_{A}^{+}(z)$;
- for all $z \in V(G) \backslash A, \theta(z) \geq d_{A}^{+}(z)$.

Toward the general case?

Is it possible to generalize this result to each Coxeter group?

- When one try to "brutally" generalize the previous result (using geometrical properties of root systems and inversion sets), the resulting digraphs are not acyclic in general.
- Therefore, our theory does not apply. Can we get rid of the "acyclicity condition"?

Proposition Definition

Let $\mathcal{G}=(G, \theta)$ be a pair of a simple acyclic digraph G together with a valuation θ on $V(G)$ such that $0 \leq \theta(z) \leq d^{+}(z)$ for all $z \in V(G)$, and $A \subseteq V(G)$. Then, $A \in I S_{\infty}(\mathcal{G})$ if and only if the following properties are satisfied:

- A is finite;
- for all $z \in A, \theta(z) \leq d_{A}^{+}(z)$;
- for all $z \in V(G) \backslash A, \theta(z) \geq d_{A}^{+}(z)$.

Structure of $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$

Theorem, V. (2015)

Let $\mathcal{G}=(G, \theta)$ be a pair of a digraph G together with a valuation θ on $V(G)$ such that $0 \leq \theta(z) \leq d^{+}(z)$ for all $z \in V(G)$. Then, the poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is a complete lattice.

Structure of $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$

Theorem，V．（2015）

Let $\mathcal{G}=(G, \theta)$ be a pair of a digraph G together with a valuation θ on $V(G)$ such that $0 \leq \theta(z) \leq d^{+}(z)$ for all $z \in V(G)$ ．Then，the poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is a complete lattice．
－In this new context，there is no general equivalent of peeling sequences．

Structure of $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$

Theorem, V. (2015)

Let $\mathcal{G}=(G, \theta)$ be a pair of a digraph G together with a valuation θ on $V(G)$ such that $0 \leq \theta(z) \leq d^{+}(z)$ for all $z \in V(G)$. Then, the poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is a complete lattice.

- In this new context, there is no general equivalent of peeling sequences.
- The poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ cannot describe the weak order on any Coxeter group, since weak order is not a complete lattice.

Structure of $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$

Theorem, V. (2015)

Let $\mathcal{G}=(G, \theta)$ be a pair of a digraph G together with a valuation θ on $V(G)$ such that $0 \leq \theta(z) \leq d^{+}(z)$ for all $z \in V(G)$. Then, the poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is a complete lattice.

- In this new context, there is no general equivalent of peeling sequences.
- The poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ cannot describe the weak order on any Coxeter group, since weak order is not a complete lattice.
- However, there are some conjectures of Dyer, about an extension of the weak order into a complete lattice.

First Dyer's conjecture

Definition

Let $\alpha, \beta, \gamma \in \Phi^{+}$such that $\gamma=a \alpha+b \beta$ with $a, b>0$ and $A \subseteq \Phi^{+}$. We say that A is closed iff we have that if $\alpha, \beta \in A$, then $\gamma \in A$. We say that A is bi-closed iff both A and $\Phi^{+} \backslash A$ are closed. We denote by $\mathcal{B}\left(\Phi^{+}\right)$the set of the bi-closed sets of Φ^{+}.

First Dyer's conjecture

Definition

Let $\alpha, \beta, \gamma \in \Phi^{+}$such that $\gamma=a \alpha+b \beta$ with $a, b>0$ and $A \subseteq \Phi^{+}$. We say that A is closed iff we have that if $\alpha, \beta \in A$, then $\gamma \in A$. We say that A is bi-closed iff both A and $\Phi^{+} \backslash A$ are closed. We denote by $\mathcal{B}\left(\Phi^{+}\right)$the set of the bi-closed sets of Φ^{+}.

Theorem, Pilkington (2006)

The inversion sets of any Coxeter group W are exactly the finite bi-closed sets.

Conjecture 1, Dyer (1993)

The poset $\left(\mathcal{B}\left(\Phi^{+}\right), \subseteq\right)$ is a complete lattice.

First Dyer's conjecture

Definition

Let $\alpha, \beta, \gamma \in \Phi^{+}$such that $\gamma=a \alpha+b \beta$ with $a, b>0$ and $A \subseteq \Phi^{+}$. We say that A is closed iff we have that if $\alpha, \beta \in A$, then $\gamma \in A$. We say that A is bi-closed iff both A and $\Phi^{+} \backslash A$ are closed. We denote by $\mathcal{B}\left(\Phi^{+}\right)$the set of the bi-closed sets of Φ^{+}.

Theorem, Pilkington (2006)

The inversion sets of any Coxeter group W are exactly the finite bi-closed sets.

Conjecture 1, Dyer (1993)

The poset $\left(\mathcal{B}\left(\Phi^{+}\right), \subseteq\right)$ is a complete lattice.

Goal

We are now looking for a valued digraph \mathcal{G} such that $I S_{\infty}(\mathcal{G})=\mathcal{B}\left(\Phi^{+}\right)$.

Second Dyer's conjecture

Definition

Let $I=\left(\Phi^{+}, \preceq\right)$ be a total order. We say that I is a reflection ordering of Φ^{+}if and only if for all $\alpha, \beta, \gamma \in \Phi^{+}$such that $\gamma=a \alpha+b \beta$ with $a, b>0$, we have either $\alpha \preceq \gamma \preceq \beta$ or $\beta \preceq \gamma \preceq \alpha$.

Second Dyer's conjecture

Definition

Let $I=\left(\Phi^{+}, \preceq\right)$ be a total order. We say that I is a reflection ordering of Φ^{+}if and only if for all $\alpha, \beta, \gamma \in \Phi^{+}$such that $\gamma=a \alpha+b \beta$ with $a, b>0$, we have either $\alpha \preceq \gamma \preceq \beta$ or $\beta \preceq \gamma \preceq \alpha$.

Proposition (Folklore ?)

If W is finite, then there is a one-to-one correspondence between maximal chains and $\left(W, \leq_{R}\right)$ and reflection orderings of Φ^{+}.

Conjecture 2, Dyer (1993)

Let \mathcal{C} be a chain of $\left(\mathcal{B}\left(\Phi^{+}\right), \subseteq\right)$. Then, there exists a reflection ordering I of Φ^{+}such that \mathcal{C} is included in the set of the initial sections of I, and \mathcal{C} is maximal if and only if we have equality.

Observation

- Peeling sequences in the finite acyclic case satisfy exactly the condition of the second Dyer's conjecture.

Observation

- Peeling sequences in the finite acyclic case satisfy exactly the condition of the second Dyer's conjecture.
- Can we generalize the notion of peeling sequence to the sets $I S_{\infty}(\mathcal{G})$?

Observation

- Peeling sequences in the finite acyclic case satisfy exactly the condition of the second Dyer's conjecture.
- Can we generalize the notion of peeling sequence to the sets $I S_{\infty}(\mathcal{G})$?

Abstract

Answer Yes! But not for all valued digraphs.

Projective valued digraphs

Theorem, V. (2015)

There exists a family of infinite valued digraphs \mathcal{G}, called projective, such that there exists a set $P S_{\infty}(\mathcal{G})$ of total orderings of $V(\mathcal{G})$ such that each chain of $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is included in the initial sections of an element of $P S_{\infty}(\mathcal{G})$, with equality if and only if the chain is maximal.

Projective valued digraph and Dyer's conjectures

Theorem, V. (2015)

There exists a projective valued digraph \mathcal{G} such that:
(1) $V(\mathcal{G})=\Phi^{+}, \mathcal{B}\left(\Phi^{+}\right) \subseteq I S_{\infty}(\mathcal{G})$ and each reflection ordering of Φ^{+}is in $P S_{\infty}(\mathcal{G})$.
(2) The poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is an algebraic ortho-lattice.
(3) We have that $\mathcal{B}\left(\Phi^{+}\right)=I S_{\infty}(\mathcal{G})$ iff $P S_{\infty}(\mathcal{G})$ is the set of the reflection orderings of Φ^{+}.

Projective valued digraph and Dyer's conjectures

Theorem, V. (2015)

There exists a projective valued digraph \mathcal{G} such that:
(1) $V(\mathcal{G})=\Phi^{+}, \mathcal{B}\left(\Phi^{+}\right) \subseteq I S_{\infty}(\mathcal{G})$ and each reflection ordering of Φ^{+}is in $P S_{\infty}(\mathcal{G})$.
(2) The poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is an algebraic ortho-lattice.
(3) We have that $\mathcal{B}\left(\Phi^{+}\right)=I S_{\infty}(\mathcal{G})$ iff $P S_{\infty}(\mathcal{G})$ is the set of the reflection orderings of Φ^{+}.

- In general, such a valued digraph is not unique, and in general, we have

$$
I S_{\infty}(\mathcal{G}) \subset \mathcal{B}\left(\Phi^{+}\right)
$$

Projective valued digraph and Dyer's conjectures

Theorem, V. (2015)

There exists a projective valued digraph \mathcal{G} such that:
(1) $V(\mathcal{G})=\Phi^{+}, \mathcal{B}\left(\Phi^{+}\right) \subseteq I S_{\infty}(\mathcal{G})$ and each reflection ordering of Φ^{+}is in $P S_{\infty}(\mathcal{G})$.
(2) The poset $\left(I S_{\infty}(\mathcal{G}), \subseteq\right)$ is an algebraic ortho-lattice.
(3) We have that $\mathcal{B}\left(\Phi^{+}\right)=I S_{\infty}(\mathcal{G})$ iff $P S_{\infty}(\mathcal{G})$ is the set of the reflection orderings of Φ^{+}.

- In general, such a valued digraph is not unique, and in general, we have

$$
I S_{\infty}(\mathcal{G}) \subset \mathcal{B}\left(\Phi^{+}\right)
$$

- However, after many tests, I conjecture that at least one of them satisfies point $I S_{\infty}(\mathcal{G})=\mathcal{B}\left(\Phi^{+}\right)$.

The Tamari lattice

2	1	0				
1	0					
0		\mathcal{A}_{3}	\longrightarrow	2	1	0
:---	:---	:---				
A_{1}	A^{1}					
A_{1}	0					
0						
0		$\mathcal{A}_{3}^{\uparrow}$				

The Tamari lattice

Some perspectives

- Continue to study Dyer's conjectures using valued digraphs.

Some perspectives

－Continue to study Dyer＇s conjectures using valued digraphs．
－The result about the Tamari lattice takes place in a more general study of Cambrian lattices and semi－lattices．Can we describe all Cambrian lattices using valued digraph？Are there connections with cluster algebras？

Some perspectives

- Continue to study Dyer's conjectures using valued digraphs.
- The result about the Tamari lattice takes place in a more general study of Cambrian lattices and semi-lattices. Can we describe all Cambrian lattices using valued digraph? Are there connections with cluster algebras?

Thank you for your attention!

