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Motivation

The Kontsevich Model

2, A3
ZKont _ / D¢e—NTr(E¢ +59¢ )7
Hy

where external matrix E € M(N, C) hermitian and A € C, has connection to a
lot of areas in mathematics and physics

» counting large maps

computing intersection number of moduli space

>

» 2D quantum gravity

» computing volumes of hyperbolic spaces
>

constructing quantum field theory on a noncommutative space

Alexander Hock
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Motivation

What is with the Quartic analogue of the Kontsevich Model
z - / D¢67NTr(E¢2+%¢4)7
Hy

where external matrix E € M(N, C) hermitian and A € C? Does it have
connections to
» counting large maps?
» computing intersection number of moduli space?
» 2D quantum gravity?
» computing volumes of hyperbolic spaces?
| 4

constructing quantum field theory on a noncommutative space!

Alexander Hock
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QOutline

1. Topological Recursion (TR) of the Kontsevich Model and hermitian
1-Matrix Model
2. Reminder of the hermitian 2-Matrix Model
P> The spectral curve with genus zero assumption
» Mixed-boundary correlators
> General loop equations
3. The Quartic Model
> Definition of the (generalized) correlation functions
> Perturbative expansion into Feynman graphs
» The spectral curve

> General loop equations
P> Some results

4. Work for the future

Alexander Hock
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taken from wikipedia.org/wiki/ Topological_recursion

Alexander Hock
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TR of the Kontsevich Model

ZKont — / D¢6_NTY(E¢2+%¢3),
Hy

Let ex be the distinct eigenvalues of E with multiplicity rx. Then the correlation
functions are defined for pairwise distinct e, as connected correlation functions

<¢P1P1 ¢P2P2 . '¢Pbe>C

The aim is to compute all correlation functions which is done by TR
The spectral curve (genus zero assumption) is

x(z) =72 t1,

A r
vz =z - Ek: X’(Sk)(:k )

with f = x(ek), ie. ex = /e +t1,and ty = —% >, T

Alexander Hock
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The correlation functions are special points on the spectral curve of the
meromorphic forms wg,p

9g.006.2X" (£, )X (€p2)

(x(ep) = (x(2p))?

Then, TR computes all correlation functions for 2g +b—2 >1
[Eynard,Orantin '07]

Xl(apl)"X/(pr)<¢plpl¢l3292"'(bpbpb)C = Z Nz*zgib“’g.b(‘fpn s Epy) — - 5g,05b,1x'(5m)ep1-

g

!
wg,b+1(20, ..., z) = Res |:K(zo,z) dz<wg,1,b+2(z, —z,J)+ Z w141 (2, Newp 171 41(—2, [/)):| )
z—0

hth'=g
1el’'=J
_ A / _
where K(z,z) = TR0 E ) and the sum > excludes (h, /) = (0,0)

and (h,I) = (g,J), and
wo1(2) = x'(2)y(~2)

1
UJO,Q(ZI, 22) = m

We have one branch point at z = 0 and the global Galois-involution o(z) = —z

Alexander Hock
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TR of the Hermitian 1-Matrix Model

The partition function is

ZlM:/ DMe—NTV(M)
Hy

with polynomial potenial V(x) = 27:2 tix' with t; € R.
The correlation function are (formally) defined

1 1 1
Tr Tr . .
< x1— M x — M I‘bel\/l>c
Also here, TR computes all correlation functions with the spectral curve (genus
zero assummption)

K
with V/(x(z)) = Z:;& uk (2" +z7%)

Alexander Hock
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The relation between the correlation function and the meromorphic forms is

1 1 1
T 2
X1(Zl) - M er(ZQ) - M rXb(Zb) — M>C

. 0g,00b2x1(21)x3(22) 1 , ,

_ 2-2g—b _ 0g,00b,2X1(21)%2 1

= E N we,b(21, -, 2b) (@) - a(z)? + 50¢.00p1x1(21) V' (3a(21))
g

X{(21)~~th:(2b)<Tr

Also here, TR computes all correlation functions for 2g + b —2 > 1
[Eynard,Orantin '07]

!
we,b+1(20, .., 2) = Res {K(Zo’z)dz(wg—l,m(zv1/Z’J)+ Z wh,um(z’/)wh/,wm(l/z,//))]7
z—+1

hth' =g
Igl'=J
1
where K(z,z) = Wﬁfz)) and the sum 3" excludes (h, /) = (0,0) and

(h, 1) =(g,J), and
wo1(z) = x'(2)y(1/2)
_ 1
wo,z(Zl,Zz) = 7(21 — 22)2.

We have branch points at z = £1 and the global Galois-involution o(z) =1/z

Alexander Hock
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Hermitian 2-Matrix Model

The partition function is

Z2I\/I _ / DMl,Z)MzefNTr[VI(M1)+V2(M2)7M1M2:|
Hn

with potenials V4(x) = Z ! tix" and Va(x Z % %x' with t, f € R.
The correlation functions are

Rty E— >nTr ST )

s=

for n 4+ m non-mixed (one color) boundaries and / mixed boundaries with 2k;

color changes

10

Alexander Hock
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The correlation functions ]._Lnll Trx_lMl> (all boundaries with the same
- J

color) are computed by TR [Chekov, Eynardc, Orantin '06]. After genus zero
assumption is the spectral curve [Eynard '02]

dy

O

x(p) =yp + Z o
i=0

di
y(p) =2 +> 8.
P

In particular, for equal potentials Vi = V5 follows 8; = «; — x(p)=y(1/p).
which is the global Galois-involution of the hermitian 1-Matrix Model.
The function y(p) is of the same form as in the hermitian 1-Matrix model.

The number of branch points (dx(p) = 0) depends on the potential

11

Alexander Hock
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The correlation functions defined on the spectral curve are [Eynard, Orantin '08]

1

1, 1 -z 1
> ONTEHE (550, Sy Py @t @) = ([ [ (N2 + Trg) [ 1 [
s dysmin(S15 52, 0y S PL,y oy Pmi G, -, Gn) ( ki1 T+ 5’_) - x(p;) — My o y(gs) = M2/
& J= =

i=1

01,00m,20n,0 i 01,00m,00n,2
(x(p1) = x(p2))*> ~ (v(q1) — y(a2))

+01,00m16n0(y(p1) — VA (x(p1))) + 61,00m,00n1(x(q1) — V5(¥(q1)))

with
1 1 1 1
Tr— =Tr .
rSi x(pi1) — M1 y(gin) — M2 " y(qix) — M2

and the set S; = [pi,1, gi1s -+, Gi k-

The solutions of H€) are given by an extension of Topological Recursion

Alexander Hock
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Examples of solutions [Eynard, Orantin...]

> All H o and HOOn are given by TR
> The spehere with one-colored boundary is HS?B;O(P) = V{(x(p)) — y(p)

» The sphere with one bicolored boundary is

E(x(p),y(q))
L e e BT )

where E(x(p), y(q)) = —tq4 H (x(p )) and y(q) = y(g' )
> All H® and H®

0;m;n 1;m;n

(g)

are computed in a closed (triangular) system by
knowing Hy:

» The general result of H,((‘lg)” p

k:mn Needs recursively (in Euler-characteristic)
all previous results

13

Alexander Hock
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Loop equation in the 2-Matrix [Eynard, Orantin '08]

(W(p1.1) = Y(g10) = Polapy ) Vi (@) B (81,82, Spr, i) =
oy Hi oo ) HE " i (S1S2, - Spe i s 00)

+Eh EAUB:{Z,‘-‘J} E[)J HJ(CJ:L,)kA;‘I‘;LJ‘ (Sl: SA; Pr: (]J)Hlt(:,-,h‘l),qum,M (SBSPLIPM/IE QN/J)

+ 2 AU B={2,0) Zf;l:? 2oig H;El),a+1,kﬁgm,‘;|m,|_” ({P1.as @ras - Prky Gk F- SBI PMyL; ANJT)

—h —h
» HS,I‘;A g {PLAAL Pl a— 10101 },SA;px:q.v)*Hf,l‘.’(A;m;m ({PL.asgL1 - Pla1,91.0a—1},SAPTA7)

' v . 2(pr.a)—=(p11)
+2 im0 2 (Pea)—2(p1.1)

[‘Hﬁlk‘,,kL/u:”;m;n({S] s Pisos Qios Pioat1s - o Qi s Pils - o s Pia—1s Gia—1 }» ST/(1i} PM; AN)

pl,n:;h..j

m o Hk[_;m—lm(sl.;PM/(i}(ﬁlN)‘
Jr21:1 P =(p:)—z(p1.1)

Fey 1
2 ale wray—ain
1
[Hiilgle,ﬁlykw“)zmm({P1,1, G- -Ploa—t: Qa1 fs APLas Qe - - PLE- Gk > SL/(1} PM: AN)

PLI=P

—1

*Hé,{l,;)cl,c.“,kwm;mm({Pl,m q,15 - Pra-15 Q1,n—1}: {Pl,m Tas -+ -P1,k1:411,k1}: SL/{1}; P QN)]
-1

+Hl£i;m)+1;n(SK;p1Jb Pa; qN)~

Alexander Hock
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The Quartic Model

The partition function is
z = / D¢67NTY(E¢2+%¢4)
Hy

with E be hermitian N x N-matrix with d € N (postive) distinct eigenvalues
(ex)k=1,...d, each of mutliplicity rx and A € R..

The correlation function for pairwise distinct eigenvalues €, is defined by

<¢p}p§ ¢p§p§ "¢p,1v1 Py ¢pfp§ : '¢pfp§ : '¢pﬁ,b pb >c

with b number of boundaries of length each of length N;

15

Alexander Hock
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Generalized Correlation Function

We define (formally) for pairwise distinct e, and ey, the generalized
J
correlation function by
Fby - Thpy, 8eb18eb2...8ebm <¢P}P%¢P;p§ "¢P}V1P%¢pfp§"¢pfpé’" pk/bpf>c

and say, it has m + b boundaries.

Relation between Quartic Model <+ 2-Matrix Model

boundary labelled by b; <+ non-mixed boundary

boundaries labelled by p/ <  mixed boundary

Alexander Hock
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Spectral Curve of the Quartic Model

Define the (genus zero) spectral curve by
x(z) = R(2)
¥(z) = =R(=2),

. A Ik
with R(z):=z— N Zk: Rz 1en) e» = R(gp).

In particular, y(z) is of the same form as in the Kontsevich model

Both functions are related by x(z)=-y(-z) which is the global Galois-involution
o(z) = —z of the Kontsevich model

The number of branch points dx(z) = 0 depends on the number of distinct
eigenvalues of E

Alexander Hock
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Correlation functions on the spectral curve

The correlation functions are special points on the spectral curve of the
differential forms

2—2g—b(g) e
ZN T (€b1'€b2'“'gbm|€p%’€p;’“’gpll\l1|€p%’“|€pf’“78”klbl)
g
o by tbp, 8eb18eb2...6ebm <¢P%P%¢p%p%"¢p}vlp% ¢P§P§"¢pr§"¢l)k/bpf>c

Om,20g,00,0 | Om,104,00b,0 A I
+(€bl_eb2)2+ \ (eb1+N;ek_ebl)a

where e, = R(ep) and ¢, in the physical sheet, i.e. limyx_oep, = ¢
p p p p p P

Alexander Hock
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Results

Theorem [H. Grosse, R. Wulkenhaar, AH '19]

For x(z) = R(z) and y(z) = —R(—z) with R(z) =z — 4 >, m and
e» = R(ep), we find

T (2) =y(2)

7’(0)(|z,w|) :y 1 HX(W)_X(_?)

W) —y(—2) L1 5wy =)

with x(z) = x(2') and z # 2.

the same as in the 2-Matrix model by identifying

Alexander Hock
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S Umle, w| T )

@) ;..
(R(w) = R(=2))T® (ur; ...; um|z, w|T|) — %Z rkT (R(

Miinster 20

ex) — R(2)
=50,m00,1 70,0 — )\{ > T K |z, wlZ' ) TP (K 2|7))
TWI'=7, (K,I,h)#(0,0,0)
KWK ={u1;..;um}
h+h'=g
(I 2 T — TE (K | wl T m & (i oyl
(h) TUUK 2|Z) — T (K w|Z']) 0 T (ur; .. ;.. um|ui, w|T|)
+ 2 TOkwI) R(w) — R(2) * 2 3R(w) R(u) — R(2)
TWI'=J i=1
KWK ={uy;..;um}
h+h'=g

N (
b A T s oy umlw, 2,22y | TN = TO (s umlw, 27, 2zl T\{I7)

N Z Z R(z}) - R(2)

B=2 j=1
" TE D (i i tml2| W] T|) = TE D (wri i um| w|w|T])
R(w) - R(2)

+ T € ;s um; 2]z, w|j|)}7

— Structurally the same as in the 2-Matrix model

Alexander Hock
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More Results

Algebraic/recursive equation for Ny >2, g =0, b=1

TO(zaks2, 0, 20, 21 ) TO (|22, ., 2k11]) — TO (22651, oo 20]) TO (|21, 22, ..., 224])
(x(z2k41) = x(20,)) (X(20,) = x(2py ) ’

N
=
T(O)(|Z1722, an]) = —/\Z
k=1

of 2-Matrix model, genus g = 0, one

mixed-boundary

Alexander Hock
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Two Boundaries [J. Branahl, R. Wulkenhaar, AH '20]

Oy — L 1 1
Tz w) x'(z)x’(w) <(z w)? + (z+ W)2>

Oyl wl) = O (1 w 3] 1 1 1
T (vlz,wl) = AT (|2, |)ax(v){x/(z)(y(z)fy(*W))(erz+ vfz)
1

T 6@ )W)y (W)
d ) . .
- ; X' (Wh)(x(2) = x(— i) (v T T W;)}

— Both solutions are linear combinations of the corresponding solutions in the
2-Matrix model

TO(z;w) = HD o(z:w) — HEYy (2 —w) + 3H o (— 2 —w)
TO(|z,w]) = HO ({2, —w}iv) — H9, ({2, —w}i —v)

22

Alexander Hock
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Pair of pants

2D? [ 1
Ox(z)0x(v)ox(u) Lx"(u)y’(—

TO(z;v;u) = u)(z-&-u)(v—:!l—quviU)

+ x’(v) ’(—1v)(z—|—v)(uj—v + ui v)

+Z DX (B (z—ﬁ,)(viﬁ;—i_v—lﬂi)(uiﬁf—i_u—lﬁi

where 3; are the branch points x'(3;) = 0.

Again, T(O)(z; v; u) is a linear combination of the corresponding solutions in

the 2-Matrix model H\%)o, H\%,, H, and HY,

23

)l

Alexander Hock
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Genus g = 1 disc

A Ax"(0)
8((0))22 | 16(x(0))’22 Z8ﬁ2x”(ﬁ)y( 5)(z— B

X ()T (2) = -

1 ///(61)
2 Z {- 8y (Bx"(B)(z — Bt 240" (B)2y' (B (z — Fr)?

i=1

n y"'(B1) _ x""(Bi)y" (Bi)
48x"(Bi)(y'(Bi)*(z — Bi)*  48(x"(B))*(y'(B1))*(z — Bi)?

n x"" (1) _ (x"(B)) }
48(x"(B:)2y" (Bi)(z — Bi)?  48(x"(Bi))*y'(Bi)(z — Bi)2 )’

where the last three lines are the general solution of TR for a genus zero
spectral curve

The first line differs from TR

Alexander Hock
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Summary: Relations between the Models

o(z)=1/z o(z) = -z

@ eqUivalence

same y(z)
%

]
~)
~J
e same y(z)

x(z) = y(1/z) x(z) = —y(-2)

25

Alexander Hock
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Work for the future

» Analyzing the linear combination the corrlation functions are built of

From mathematics perspective

» Study of more general spectral curves (beside the genus zero assumption)

» What is the corresponding moduli space?

» Does the previous procedure apply to other models with global
Galois-involutions?

From physics perspective
» Performing the conitnuum limit d — oo with infinitly many distinct
eigenvalues e, — construction of a qunatum field theory
> Feynman graph expansion yields iterative integrals
» For ecxc — oo renormalization gets necessary (UV-limit)
> For instance (D = 2), g = % and r, =1 yields R(z) = z + Alog(1 + z)
» In D = 4, the spectral dimension reduces to Dy = 4 — 2% with

arcsin( A7)
™

R(z) = zzFi(ax,1 — ax;2| — z) and ay =
» Constructing generating functions of iterated integrals

Alexander Hock
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