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Introduction



Motivations

Why Tensor Field Theories are interesting?

• The melonic limit is easier to deal with than others: such as the
planar limit of matrix models,

• Look for hopefully non trivial CFT,

• Connection with the SYK model:
Edward Witten. “An SYK-Like Model Without Disorder”. In: J. Phys. A 52.47 (2019), p. 474002. doi: 10.1088/1751-8121/ab3752.
arXiv: 1610.09758 [hep-th]

I.R.Klebanov G.Tarnopolsky. “Uncolored Random Tensors, Melon Diagrams, and SYK Models”. In: (2017),

• Supersymmetry simplify computations and leads to a real
spectrum.
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Tensor Field Theories (TFT)

Tensor Field Theory
TFT are QFT built in terms of fields that are tensors of rank-r: φa1a2...ar
We focus on the case: r = 3.
Igor R. Klebanov, Fedor Popov, and Grigory Tarnopolsky. “TASI Lectures on Large N Tensor Models”. In: PoS TASI2017 (2018), p. 004. doi:
10.22323/1.305.0004. arXiv: 1808.09434 [hep-th]

Razvan Gurau. “Notes on Tensor Models and Tensor Field Theories”. In: (July 2019). arXiv: 1907.03531 [hep-th]

G : Φabc → Φ′
abc = Maa′

1 Mbb′
2 Mcc′

3 Φa′b′c′ G = O(N)3
(M1 ∈ O1(N), M2 ∈ O2(N), M3 ∈ O3(N))

We describe the theory in terms of an O(N)3-symmetryc Lagrangian L

G : L[Φabc] → L′[Φ′
abc] = L[Φabc]
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Invariants

• There is only one possible quadratic term: ΦabcΦabc.
• There are 3 quartic invariants:

Figure 1: Each vertex represents a field and each colored lines represents
two contracted indeces.

Ot = Φa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1

Op =
1
3
(Φa1b1c1Φa2b1c1Φa1b2c2Φa2b2c2 + perm.)

Odt = Φa1b1c1Φa1b1c1Φa2b2c2Φa2b2c2
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Large-N limit

We focus on a model with only Ot in L. And we study the large-N
limit

• Vector model: 1 index, snail digrams dominate, keep fixed gN.
• Matrix models: 2 indices , planar diagrams dominate, keep fixed
gN2.

• 3 indices (or more), melonic diagrams domiate, melonic
dominance keeping fixed g2N3

Melonic diagrams are a subset of planar diagrams and can be
summed exactly!
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The model

We have studied a supersymmetric and melonic model:

S[Φ, Φ̄] =
∫
ddx

∫
dθ2dθ̄2

(
Φ̄abcΦabc

)
+

∫
ddydθ2W[Φ] +

∫
ddȳdθ̄2W[Φ̄],

W[Φ] =
1
4
gΦabcΦadeΦfbeΦfdc,

• Φ and Φ̄ are chiral and anti-chiral fields.
• W[Φ] is the chiral superpotential.
• The total amount of supercharges is 4.
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Results

• Scaling dimension of Φ in the IR and large-N limit:
∆Φ = ∆Φ̄ = d−1

4 .
• Spectrum of bilinear operators.
• Stress-energy tensor, O(N) conserved currents.
• Large spin sector.
• Anomalous dimension of the Tetrahedral interaction.
• Results are: real, above unitarity bounds, matches with other
known results.
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Key equations: general

It is always possible to write:

• For the 2 point function G(x1, x2) ( SD equation ):

G−1(x1, x2) = G−1
0 (x1, x2)− Σ(x1, x2).

• For the 3 point function v(x1, x2, x3) ( BS equation ):∫
dxdx′K(x1, x2, x, x′)v(x, x′, x3) = v(x1, x2, x3).

Where Σ is the self-energy and K is the kernel.

Not always possible to solve them!
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Key equations: melonic

When melonic dominance occurs

• For the 2 pt function, relevant diagrams look like a melon.

• For the three point functions, relevant diagrams look like a
ladder. The kernel operator adds a rung to the ladder.
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Supersymmetry



Supersymmetry (SUSY)

SUSY
Supersymmetry: evade the Coleman-Mandula theorem

In the SUSY algebra: fermionic generators QI (supercharges) are
allowed.

QI|Fermion〉 = |Boson〉, QI|Boson〉 = |Fermion〉.

Being fermions, QI obey to an anti-commutation relation

{QIα, Q̄Jβ̇} = 2σµ

αβ̇
PµδIJ (in 4d)

Supermultiplets
Due to the anti-commuting nature of fermionic generators, each
supermultiplet contains a finite number of states.

the more supercharges→ the bigger are supermultiplets

Adel Bilal. “Introduction to supersymmetry”. In: (Jan. 2001). arXiv: hep-th/0101055
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Super space-time and superfields

For each supercharge in the algebra Q we introduce an
associated Grassman variable θ

(xµ) → (xµ, θi), G(x, θ, θ̄, ω) = eixP+iθQ+iθ̄Q̄+ 1
2ωM

Superfields
Superfields are nothing but fields in superspace: Φ(x, θI, θ̄J)

We can always expand in Grassman variables and few terms survive

Φ(x, θ, θ̄) = f (x) + θψ(x)θ̄χ̄+ θθm(x)θ̄θ̄n(x) + θσµθ̄vµ(x)+
+ θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x),

This equation contains too many degrees of freedom.
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Chiral and anti-chiral multiplets

Covariant Derivatives
Covariant derivatives are defined requiring that they anti-commute
with supercharges

Dα = ∂α + iσµ

αβ̇
θ̄β̇∂µ,

D̄α̇ = ∂̄α̇ + iθβσµ
βα̇∂µ.

Chiral and anti-chiral fields
Chiral fields and anti-chiral fields can be defined requiring:

D̄α̇Φ = 0, DαΦ̄ = 0.

Φ(y, θ) = φ(y) +
√
2θψ(y)− θθF(y), yµ = xµ + iθσµθ̄

Φ̄(ȳ, θ̄) = φ̄(ȳ) +
√
2θ̄ψ̄(ȳ)− θ̄θ̄F̄(ȳ), yµ = xµ − iθσµθ̄ 12



3d superspace

The super algebra in 3 dimension takes the form

{QIα,QJβ} = 2iγµαβPµ,

γ0 =

(
0 −1
1 0

)
γ1 =

(
0 1
1 0

)
γ2 =

(
1 0
0 −1

)
.

N = 2→ Q = Q1 + iQ2 and Q̄ = Q1 − iQ2 brings the algebra in the
same form of N = 1 in 4d.

{Qα, Q̄β} = 2γµαβPµ + 2iεαβZ

Where the central charge Z is the momentum in the reduced
direction (say P3).
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Super conformal-multiplets

The recipe to build super-conformal multiplets is

• Defining a super-primary state |O〉 such that Kµ|O〉 = Sα|O〉 = 0
and with scaling dimension D|O〉 = ∆O|O〉

• Using the algebra

[D,Qα] = − 1
2
Qα, [D,Pµ] = −Pµ,

we find that

D (Pµ|O〉) = (∆O + 1) (Pµ|O〉) ,

D (Qα|O〉) =
(
∆O +

1
2

)
(Qα|O〉) .

Notice
Since Q2 ∼ P each descendant is also a super-descendant, but the
contrary is not true.

Clay Cordova, Thomas T. Dumitrescu, and Kenneth Intriligator. “Multiplets of Superconformal Symmetry in Diverse Dimensions”. In: JHEP 03

(2019), p. 163. doi: 10.1007/JHEP03(2019)163. arXiv: 1612.00809 [hep-th]
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Supersymmetric tensor model



The model

We study the model with chiral (and anti-chiral) fields and NQ = 4
supercharges

S[Φ, Φ̄] =
∫
ddx

∫
dθ2dθ̄2

(
Φ̄abcΦabc

)
+

∫
ddydθ2W[Φ] +

∫
ddȳdθ̄2W[Φ̄],

W[Φ] =
1
4
gΦabcΦadeΦfbeΦfdc.

• Superpotentials W and W̄ are exactly marginal in d = 3
• In the superpotentials we include only the Tetrahedron→
melonic dominance.

15



DSE (1)

Let G be the 2pt function. Let G0 be the propagator. Then

G = G0 + λ2G0G3G, λ2 = g2N3.

• Exploiting the analogy with the d = 4 N = 1 case, we can use the
standard form of the propagator:

G0(p, θ1, θ̄2) = 〈Φ(−p, θ1)Φ̄(p, θ̄2)〉0 =
e−2(θ̄2γµθ1)pµ

p2

• For the 2pt function G we use a conformal ansatz

G(p, θ1, θ̄2) = 〈Φ(−p, θ1)Φ̄(p, θ̄2)〉 = A2
e−2(θ̄2γµθ1)pµ

p2∆
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DSE (2)

− e2(θ̄1γµθ2)pµ

p2
= +2A42λ2

∫ ddk1
(2π)d

ddk2
(2π)d

JN=2(p, θ̄1, θ2)
p2|p− k1 − k2|2∆k2∆1 k2∆2 p2∆

,

JN=2(p, θ̄1, θ2) =
∫
d2θ′d2θ̄′′e2(θ̄1γ

µθ′pµ)e−2(θ̄
′′γµθ′)pµe2(θ̄

′′γµθ2)pµ .

Notice!

Integrated momenta running into
a loop cancel in the exponets !
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Results

Integrals over momenta can be performed.
Integrals over Grassman variables can be computed
straightforwardly.

∆ =
d+ 1
4

,

A42 =
1
8
(4π)d

λ2
Γ3(d+14 )Γ(3d−14 )

Γ3(d−14 )Γ( 3−d4 )

• ∆ is related to the dimension of Φ: ∆Φ = d
2 −∆ = d−1

4
• In d = 3− ε we find γΦ = ε

4
• We cannot set ε to 0.
• The super conformal algebra fixes the dimension of chiral
operators: ∆Φ = d−1

2 RΦ = d−1
4 .
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Bilinear operators

The possible bilinear operators are:

Φabc�
hΦabc, Φ̄abc�

hΦ̄abc

Φabc�
hD2Φabc, Φ̄abc�

hD̄2Φ̄abc

Φ̄abc�
hΦabc, Φ̄abc�

hD2Φabc.

• In blue: chiral or anti-chiral→ fixed dimension.
• In red: are not chiral or anti-chiral: but there are no corrections
at large N.

• In brown: receive radiative corrections: but it is sufficient to
study Φ̄abc�hΦabc

Φ̄D2Φ is a super-descendats of Φ̄Φ

D2
(
Φ̄Φ
)
=
1
2
DαDα

(
Φ̄Φ
)
=
1
2
Dα
(
Φ̄DαΦ

)
= Φ̄D2Φ,

DαΦ̄ = DαΦ̄ = 0.
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Scalar singlet sector (1)

We study the 3pt function of O = Φ̄abcΦabc with Φ and Φ̄. Super
conformal symmetry constrains its form. We choose the ansatz
Fedor K. Popov. “Supersymmetric tensor model at large N and small ε”. In: Phys. Rev. D 101.2 (2020), p. 026020. doi:

10.1103/PhysRevD.101.026020. arXiv: 1907.02440 [hep-th]

V(p, θ1, θ̄2) = 〈O(0)Φ(−p, θ1)Φ̄(p, θ̄2)〉 =
e−2(θ̄2γµθ1)pµ

p2∆+∆O
.

We require that it is an eigenfunction of the kernel

(KV) (p, θ1, θ̄2) = gN=2(∆O)V(p, θ1, θ̄2)

K(y1θ1, ȳ2θ̄2, y′θ′, ȳ′′θ̄′′) = 3λ2G2(y′θ′, ȳ′′θ̄′′)G(y1θ1, ȳ′′θ̄′′)G(ȳ2θ̄2, y′θ′)
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Scalar singlet sector (2)

gN=2(∆O) = −3
Γ(d+14 )Γ(3d−14 )Γ(d−14 − ∆O

2 )Γ( 3−d4 − ∆O
2 )

Γ(d−14 )Γ( 3−d4 )Γ(d+14 + ∆O
2 )Γ(3d−14 − ∆O

2 )
= 1.

The dimensions of operators are the solutions of gN=2(∆O) = 1.
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Figure 2: Plot in d = 2.8.

In d = 3− ε

∆Φ̄Φ = 1+ ε+ O(ε2)

∆Φ̄D2Φ = 2+ ε+O(ε2)
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Spinning singlet sector

Spinning bilinear operators: O(`) = Φ̄abc∂µ1 ..∂µ`
�hΦabc.

V`
µ1..µ`

(p, θ1, θ̄2) = 〈O(`)(0)Φ(−p, θ1)Φ̄(p, θ̄2)〉 =
e−2(θ̄2γµθ1)pµ

p2∆+∆`+`
pµ1 ...pµ`

.

gN=2(∆`, `) = −(−1)`3
Γ
(
3(d−1)

4

)
Γ
(d+1

4
)
Γ
(d−1

4 + `−∆`

2 −
)
Γ
( 3−d

4 + ∆`+`
2
)

Γ
( 3−d

4
)
Γ
(d−1

4
)
Γ
(
3(d−1)

4 + `−∆`

2

)
Γ
(d+1

4 + ∆`+`
2
) .

� � � � � �
Δℓ=�

-���

-���

���

���

���

���

�=�
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Large spin

• In d = 3− ε

∆` = 2∆Φ + `+
3(−1)`

4`+ 2
ε+ O(ε2)

• For any d: ∆` = 2∆Φ + `+ γ and we can expand in small γ

γ ' 1
e

6(−1)`Γ
(
3(d−1)

4

)
Γ
(d+1

4
)

Γ
( 3−d

4
)
Γ
(d−1

4
)
Γ
(d−1

2
) 1
`2∆Φ

+ ..., e = 1,+3,−3.

� �� �� ��� ���
ℓ���

���

���

���

���

���
Δ-ℓ

� = �

Figure 3:
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Non singlet sector

The possible irreps are 10:

(v, v, v)⊗ (v, v, v) ∼ (s, s, s)⊕ (s, s, t)⊕ (s, s,a)⊕ (s, t, t)⊕ ...

We checked which irrp gets corrections in the large N

(s, s, s) : gN=2(∆O) = 1
(s, s,a) : gN=2(∆O) = −3
(s, s, t) : gN=2(∆O) = 3

� � � � � � �
Δ

-�

-�

-�

�

�

�

�

�=�

(s,s,s)

(s,s,t)

(s,s,a)
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Perturbative check

In perturbation theory we find

γΦ =
ε

4
.

(
∂β

∂λ

)
ij
=

 2ε 0 0
2ε 12λp 0 0
2ε 12λdt 0 0

 .

• The two null eigenvalues corresponds to two exactly marginal
operators Op e Odt

• The eigenvalue 2ε means that an anomalous dimension for Ot is
generated.

∆t = 2+ ε+ O(ε2) = ∆Φ̄D2Φ

J.A. Gracey et al. “a-function for N = 2 supersymmetric gauge theories in three dimensions”. In: Phys. Rev. D 95.2 (2017), p. 025005. doi:

10.1103/PhysRevD.95.025005. arXiv: 1609.06458 [hep-th]
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Remarks

We need to interpret the anomalous dimension of Ot

Being chiral we did not expect γOt 6= 0!

In the IR, a multiplet recombination must happen→ and Ot became
a super descendant of Φ̄Φ: D2

(
Φ̄Φ
)
∝ Ot.

Clay Cordova, Thomas T. Dumitrescu, and Kenneth Intriligator. “Multiplets of Superconformal Symmetry in Diverse Dimensions”. In: JHEP 03

(2019), p. 163. doi: 10.1007/JHEP03(2019)163. arXiv: 1612.00809 [hep-th]

U(1) explicit symmetry breaking
The free theory has an additional U(1) symmetry: rotating Φ and Φ̄

(but not θ and θ̄). The superpotential W[Φ] in d < 3 is relevant and, in
the IR breaks explicitely U(1). We expect

D2(Φ̄Φ) = B

B being an operator that breaks U(1). We guess B = Ot because it has
the correct scaling dimension and R-charge!
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Conclusions

Conclusions

• Spectrum of bilinear operators: real and above unitarity bound
(also in d=2)
Chi-Ming Chang, Sean Colin-Ellerin, and Mukund Rangamani. “Supersymmetric Landau-Ginzburg Tensor Models”. In: JHEP 11

(2019), p. 007. doi: 10.1007/JHEP11(2019)007. arXiv: 1906.02163 [hep-th]

• The structure of superspace with NQ = 4 helps us:
non-renormalization theorems, chiral-antichiral fields

• We observed a multiplet recombination
• Results in the large spin sector

Future directions

• Investigate the large spin sector with analytical bootstrap
• Compute the 1

N corrections
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