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non-local arguments which are dynamical, 
simplicial interpretation for field, quanta and 
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models 4d case (rank d = 4)

tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)
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conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them
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subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

extended geometric triangulations: tetrahedra with boundary data 
(triangle normal vectors) identified, and assigned parallel transports 
(of discrete connection) along paths connecting respective centers
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equivalently: constrained 4d area 2-forms:
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models 4d case (rank d = 4)

tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)
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angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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(discrete connection)
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI
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note: Riemannian case:

bIi , N
I 2 R4
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given the restriction to hypersurface orthogonal to N, in fact, the 4-vectors 
are equivalent to (obtained by a Lorentz rotation from) 3-vectors 
(orthogonal to the vector (1,0,0,0): bIi $ (0, bai ) bai 2 R3
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conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

g

g

g

g

1

2

3

4
subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

extended geometric triangulations: tetrahedra with boundary data 
(triangle normal vectors) identified, and assigned parallel transports 
(of discrete connection) along paths connecting respective centers
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equivalently: constrained 4d area 2-forms:
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

g

g

g

g

1

2

3

4

[T ⇤SL(2,C)]⇥4

<latexit sha1_base64="1bVfnsoVbD+tq710aSbi5NOorvo="></latexit>

phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

b b

b

b

1

2

3

4

N

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)
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note: Riemannian case:
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given the restriction to hypersurface orthogonal to N, in fact, the 4-vectors 
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can consider it part of classical phase space Phase space for tetrahedron
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conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them
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subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

extended geometric triangulations: tetrahedra with boundary data 
(triangle normal vectors) identified, and assigned parallel transports 
(of discrete connection) along paths connecting respective centers
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron
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can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
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Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:
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i ) = 0
X

i

BIJ
i = 0
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i = N I ^ bJ
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

(discrete connection)

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)

classical:

' : G⇥d ! C

(quantum) geometric conditions on TGFT quanta (tetrahedra):

or equivalently: b b
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Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
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i ) = 0
X

i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

note: Riemannian case:

bIi , N
I 2 R4
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given the restriction to hypersurface orthogonal to N, in fact, the 4-vectors 
are equivalent to (obtained by a Lorentz rotation from) 3-vectors 
(orthogonal to the vector (1,0,0,0): bIi $ (0, bai ) bai 2 R3
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can consider it part of classical phase space Phase space for tetrahedron

su(2) ' R3upon assigning a symplectic structure to vector space, one obtains the isomorphism:

[T ⇤SU(2)]⇥4
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conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them
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subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

extended geometric triangulations: tetrahedra with boundary data 
(triangle normal vectors) identified, and assigned parallel transports 
(of discrete connection) along paths connecting respective centers
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bi 2 R3 ' su(2)

geometricity constraints: simplicity + closure



b b

b

b

1

2

3

4

N
Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
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i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models 4d case (rank d = 4)

tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)b b
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Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:
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i ) = 0
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BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
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Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:
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i ) = 0
X

i

BIJ
i = 0
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i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron

(discrete connection)

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)

classical:

' : G⇥d ! C

spin foam models for 4d QG
classical tetrahedron in 4d (Lorentzian)
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b
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N

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

• intrinsic geometry fully characterized by:

normal vector to 3d hypersurface4 triangle vectors (with modulus equal to area)

all vectors lie in same hypersurface 
(spacelike if normal is timeline)

triangle vectors close 
(triangles form closed 3-cell)thus vectors are effectively

<latexit sha1_base64="ZCICMqyLkjnF3oBf4DkZbUjGsmU=">AAAB/XicbVC7TsMwFHXKq5RXeGwsFhUSU5UAAsYKFsaC6ENqQmS7TmvVcSLbQSpRxa+wMIAQK//Bxt/gtBmg5UiWjs65V/f44IQzpR3n2yotLC4tr5RXK2vrG5tb9vZOS8WpJLRJYh7LDkaKciZoUzPNaSeRFEWY0zYeXuV++4FKxWJxp0cJ9SPUFyxkBGkjBfYeDhj0mIBehPQA4+x2fH8S2FWn5kwA54lbkCoo0AjsL68XkzSiQhOOlOq6TqL9DEnNCKfjipcqmiAyRH3aNVSgiCo/m6Qfw0Oj9GAYS/OEhhP190aGIqVGETaTeUY16+Xif1431eGFnzGRpJoKMj0UphzqGOZVwB6TlGg+MgQRyUxWSAZIIqJNYRVTgjv75XnSOq65ZzXn5rRavyzqKIN9cACOgAvOQR1cgwZoAgIewTN4BW/Wk/VivVsf09GSVezsgj+wPn8ArReUug==</latexit>

bi 2 R3

so one can think of the edge vectors also as Lie algebra elementsnote that: su(2) ' R3 as vector spaces

• thus one can associate to a triangle the phase space:
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[T ⇤SU(2)]⇥4

• conjugate variables to the triangle vectors, encoding extrinsic geometric information: group elements
{gi} = discrete connection• the closure of the edge vectors (Lie algebra elements) translates into the 

invariance under the diagonal action of SU(2) on the conjugate group elements

• an equivalent characterization is more explicitly covariant:

• one can show that the two sets of data, with corresponding constraints, define same geometry

• indeed, one has (on solutions of the constraints):

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
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i

BIJ
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BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)

"simplicity constraints"

phase space:
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"simple bivectors"

(quantum) geometric conditions on TGFT quanta (tetrahedra):

or equivalently: b b
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Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
X

i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
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Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

Ai nI
i = bI

i 2 R3,1 bi · N = 0
X

i

bi = 0

note: Riemannian case:

bIi , N
I 2 R4

<latexit sha1_base64="GnwJtMFB2AiK8JT+HrL6VGjCgvY=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4kJJIQd0V3diNVLEPaNIwmU7aoZNJmJkIJRTc+CtuXCji1p9w5984abPQ1gMXDufcy733+DGjUlnWt7GwuLS8slpYK65vbG5tmzu7TRklApMGjlgk2j6ShFFOGooqRtqxICj0GWn5w6vMbz0QIWnE79UoJm6I+pwGFCOlJc/c9z3arZ3cdGvQoRw6IVID30/vxt2KZ5assjUBnCd2TkogR90zv5xehJOQcIUZkrJjW7FyUyQUxYyMi04iSYzwEPVJR1OOQiLddPLDGB5ppQeDSOjiCk7U3xMpCqUchb7uzG6Us14m/ud1EhWcuynlcaIIx9NFQcKgimAWCOxRQbBiI00QFlTfCvEACYSVjq2oQ7BnX54nzdOyXSlf3FZK1cs8jgI4AIfgGNjgDFTBNaiDBsDgETyDV/BmPBkvxrvxMW1dMPKZPfAHxucPbQGWxg==</latexit>

given the restriction to hypersurface orthogonal to N, in fact, the 4-vectors 
are equivalent to (obtained by a Lorentz rotation from) 3-vectors 
(orthogonal to the vector (1,0,0,0): bIi $ (0, bai ) bai 2 R3
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can consider it part of classical phase space Phase space for tetrahedron

su(2) ' R3upon assigning a symplectic structure to vector space, one obtains the isomorphism:

[T ⇤SU(2)]⇥4
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conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them
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subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

extended geometric triangulations: tetrahedra with boundary data 
(triangle normal vectors) identified, and assigned parallel transports 
(of discrete connection) along paths connecting respective centers
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bi 2 R3 ' su(2)
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equivalently: constrained 4d area 2-forms:
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all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:
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SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models
tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)

' : G⇥d ! C



b b

b

b

1

2

3

4

N
Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
X

i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

g

g

g

g

1

2

3

4

[T ⇤SL(2,C)]⇥4

<latexit sha1_base64="1bVfnsoVbD+tq710aSbi5NOorvo="></latexit>

phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models
tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)

' : G⇥d ! C

quantum:



b b

b

b

1

2

3

4

N
Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
X

i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space

g

g

g

g

1

2

3

4

[T ⇤SL(2,C)]⇥4

<latexit sha1_base64="1bVfnsoVbD+tq710aSbi5NOorvo="></latexit>

phase space:

(T ⇤
SO(3, 1))4 ' (so(3, 1)⇥ SO(3, 1))4 � (so(3)⇥ SO(3))4 ' (T ⇤

SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models
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one obtains the Hilbert space 

obtained from quantizing each component of the classical phase space, taking the tensor 
product of the resulting Hilbert spaces and then imposing the constraints at the quantum level

classical phase space can then be quantized (e.g. via geometric quantization)

for each component of phase space - example:

+ constraints
Htet
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note: 

• can work with constrained Hilbert space from the start or with 

"unconstrained space" and impose constraints at dynamical level

• constrained Hilbert space is subspace of unconstrained one if constraints 

imposed via projection operator (if 1st class at classical level)

Quantum geometry of single tetrahedron in group-theoretic variables

+ constraints
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note: 

• can work with constrained Hilbert space from the start or with 

"unconstrained space" and impose constraints at dynamical level

• constrained Hilbert space is subspace of unconstrained one if constraints 

imposed via projection operator (if 1st class at classical level)

Quantum geometry of single tetrahedron in group-theoretic variables

+ constraints

Fock space of quantum states

TGFT as a field theory of simplicial geometry

• define Hilbert space of states for quantum tetrahedron


• construct creation/annihilation operators on Fock space of quantum tetrahedra

• many-body quantum states = quantised tetrahedra

e.g. total space volume (extensive quantity):
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volume of single tetrahedron (from simplicial geometry)

• one can then define geometric operators on Fock space of quantum tetrahedra

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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Introduction and Motivation

Introduction and Motivation (III)

The type of group field theory we consider is defined in terms of a field �
on SO(4)4, creating an elementary building block of space:
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The group elements gi specify the geometry of the elementary tetrahedron by
giving the holonomies of the gravitational SO(4) connection along links dual to
the four faces (in Riemannian signature – the extension to SL(2,C) is doable but
more tedious [wip])
Invariance under SO(4) gauge transformations on the vertex:

�(g1, g2, g3, g4) = �(g1h, g2h, g3h, g4h) , h ⇥ SO(4).
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note: quantum states and quantum fields/operators can be written in group, spin or Lie algebra representations
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
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i
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⇥
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i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Hv = Htetra

can define field (creation/annihilation) operators to move along Fock space

TGFT as a field theory of simplicial geometry

• define Hilbert space of states for quantum tetrahedron


• construct creation/annihilation operators on Fock space of quantum tetrahedra

• many-body quantum states = quantised tetrahedra

e.g. total space volume (extensive quantity):
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system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
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HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
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†
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.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@
Y

(i)

Z
[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂
†(gia), (4)

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@
Y

(i)

Z
[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂
†(gia), (4)

<latexit sha1_base64="5U6Y+O/1hTP9xc3f8cBmtlHPdsE=">AAACDHicbVDLSsNAFJ3UV62vqks3g0VwVRIRdSMU3XRZwT6gDWUynbRDJ5Mwc1MoIR/gxl9x40IRt36AO//GSZtFbT0wcOace7n3Hi8SXINt/1iFtfWNza3idmlnd2//oHx41NJhrChr0lCEquMRzQSXrAkcBOtEipHAE6ztje8zvz1hSvNQPsI0Ym5AhpL7nBIwUr9c6QUERpSIpJ72J/gWL/4TYKBIaqrsqj0DXiVOTiooR6Nf/u4NQhoHTAIVROuuY0fgJkQBp4KlpV6sWUTomAxZ11BJAqbdZHZMis+MMsB+qMyTgGfqYkdCAq2ngWcqs1X1speJ/3ndGPwbN+EyioFJOh/kxwJDiLNk8IArRkFMDSFUcbMrpiOiCAWTX8mE4CyfvEpaF1Xnqmo/XFZqd3kcRXSCTtE5ctA1qqE6aqAmougJvaA39G49W6/Wh/U5Ly1Yec8x+gPr6xdB5JvD</latexit>

Hv = Htetra



b b

b

b

1

2

3

4

N
Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
X

i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them
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can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
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+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models
tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)
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one obtains the Hilbert space 

obtained from quantizing each component of the classical phase space, taking the tensor 
product of the resulting Hilbert spaces and then imposing the constraints at the quantum level

classical phase space can then be quantized (e.g. via geometric quantization)

for each component of phase space - example:

+ constraints
Htet
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note: 

• can work with constrained Hilbert space from the start or with 

"unconstrained space" and impose constraints at dynamical level

• constrained Hilbert space is subspace of unconstrained one if constraints 

imposed via projection operator (if 1st class at classical level)

Quantum geometry of single tetrahedron in group-theoretic variables

+ constraints

2nd quantized geometric observables (simplicial areas, volumes, etc) see following

Fock space of quantum states

TGFT as a field theory of simplicial geometry

• define Hilbert space of states for quantum tetrahedron


• construct creation/annihilation operators on Fock space of quantum tetrahedra

• many-body quantum states = quantised tetrahedra

e.g. total space volume (extensive quantity):
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• one can then define geometric operators on Fock space of quantum tetrahedra

single field “quantum”: spin network vertex or tetrahedron
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The type of group field theory we consider is defined in terms of a field �
on SO(4)4, creating an elementary building block of space:
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The group elements gi specify the geometry of the elementary tetrahedron by
giving the holonomies of the gravitational SO(4) connection along links dual to
the four faces (in Riemannian signature – the extension to SL(2,C) is doable but
more tedious [wip])
Invariance under SO(4) gauge transformations on the vertex:

�(g1, g2, g3, g4) = �(g1h, g2h, g3h, g4h) , h ⇥ SO(4).
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L
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n⇣
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v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).
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Hv = Htetra

can define field (creation/annihilation) operators to move along Fock space

TGFT as a field theory of simplicial geometry

• define Hilbert space of states for quantum tetrahedron


• construct creation/annihilation operators on Fock space of quantum tetrahedra

• many-body quantum states = quantised tetrahedra

e.g. total space volume (extensive quantity):
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The group elements gi specify the geometry of the elementary tetrahedron by
giving the holonomies of the gravitational SO(4) connection along links dual to
the four faces (in Riemannian signature – the extension to SL(2,C) is doable but
more tedious [wip])
Invariance under SO(4) gauge transformations on the vertex:

�(g1, g2, g3, g4) = �(g1h, g2h, g3h, g4h) , h ⇥ SO(4).
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L
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V=0 sym

n⇣
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v ⌦H(2)
v ⌦ · · ·⌦H(V )
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⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Classical geometry in group-theoretic variables

equivalently: constrained 4d area 2-forms:

(BIJ
i 2 ^2R3,1 ' so(3, 1) , N I 2 T R3,1) NI (⇤BIJ

i ) = 0
X

i

BIJ
i = 0

BIJ
i = N I ^ bJ

i (⇠ ? e ^ e)
all geometric quantities (areas, edge lengths, 
angles) can be computed as functions of them

upon assigning a symplectic structure to vector space

equivalence is encoded in explicit 
relation between two sets of variables

can consider it part of classical phase space Phase space for tetrahedron

conjugate variables: group elements {gi} = discrete connection, encoding extrinsic geometry/curvature; 
parallel transports along paths dual (orthogonal) to the triangles

subject to the closure + simplicity constraints (imposed by symplectic 
reduction) defining a (symplectic) submanifold of the same phase space
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phase space:
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SO(3))4
+ constraints

in the end:

equivalence obtained after imposition of constraints

Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedronGFT (or "quantum geometric TGFT") models
tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action)

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)

' : G⇥d ! C

quantum:

Hilbert space
Hv = L2
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one obtains the Hilbert space 

obtained from quantizing each component of the classical phase space, taking the tensor 
product of the resulting Hilbert spaces and then imposing the constraints at the quantum level

classical phase space can then be quantized (e.g. via geometric quantization)

for each component of phase space - example:

+ constraints
Htet
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note: 

• can work with constrained Hilbert space from the start or with 

"unconstrained space" and impose constraints at dynamical level

• constrained Hilbert space is subspace of unconstrained one if constraints 

imposed via projection operator (if 1st class at classical level)

Quantum geometry of single tetrahedron in group-theoretic variables

+ constraints

2nd quantized geometric observables (simplicial areas, volumes, etc) see following

Fock space of quantum states

TGFT as a field theory of simplicial geometry

• define Hilbert space of states for quantum tetrahedron


• construct creation/annihilation operators on Fock space of quantum tetrahedra

• many-body quantum states = quantised tetrahedra

e.g. total space volume (extensive quantity):
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volume of single tetrahedron (from simplicial geometry)

• one can then define geometric operators on Fock space of quantum tetrahedra

single field “quantum”: spin network vertex or tetrahedron
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Introduction and Motivation

Introduction and Motivation (III)

The type of group field theory we consider is defined in terms of a field �
on SO(4)4, creating an elementary building block of space:
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The group elements gi specify the geometry of the elementary tetrahedron by
giving the holonomies of the gravitational SO(4) connection along links dual to
the four faces (in Riemannian signature – the extension to SL(2,C) is doable but
more tedious [wip])
Invariance under SO(4) gauge transformations on the vertex:

�(g1, g2, g3, g4) = �(g1h, g2h, g3h, g4h) , h ⇥ SO(4).
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv
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HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Hv = Htetra

can define field (creation/annihilation) operators to move along Fock space

TGFT as a field theory of simplicial geometry

• define Hilbert space of states for quantum tetrahedron


• construct creation/annihilation operators on Fock space of quantum tetrahedra

• many-body quantum states = quantised tetrahedra

e.g. total space volume (extensive quantity):
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• one can then define geometric operators on Fock space of quantum tetrahedra
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The group elements gi specify the geometry of the elementary tetrahedron by
giving the holonomies of the gravitational SO(4) connection along links dual to
the four faces (in Riemannian signature – the extension to SL(2,C) is doable but
more tedious [wip])
Invariance under SO(4) gauge transformations on the vertex:

�(g1, g2, g3, g4) = �(g1h, g2h, g3h, g4h) , h ⇥ SO(4).
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note: quantum states and quantum fields/operators can be written in group, spin or Lie algebra representations

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@
Y

(i)

Z
[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂
†(gia), (4)
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Hv = Htetra

TGFT, lattice gravity path integrals and spin foam models

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology 

(simplicial case: simplicial complexes obtained by gluing d-simplices)

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks ~ covariant LQG)


• lattice gravity path integrals         

(with group+Lie algebra variables)

Reisenberger,Rovelli, ’00

A. Baratin, DO, ‘11

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus
when expressed in Lie algebra representation

perturbative expansion gives sum over simplicial complexes


perturbative amplitudes = simplicial gravity path integrals with dynamical discrete geometry (edge lengths,...)

TGFT, lattice gravity path integrals and spin foam models

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
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GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus
when expressed in Lie algebra representation

non-local combinatorial pattern



GFT (or "quantum geometric TGFT") models
two examples, expressed in generalised Fourier modes, i.e. (unitary) irreps of relevant group)



+ c.c.EPRL model

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15

both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15

both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
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This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
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space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
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tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:
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2
⊗ ... ⊗Hn4

2
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The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain
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where we are now using the 15j of SL(2, C) and
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where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:
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There are two operators related to the area of a triangle
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A4(f) :=
1
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(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2
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Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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and its projected (gauge fixed) counterpart:
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Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

<latexit sha1_base64="pK5IOO6vI5lMYEBwuno0FFRJJXQ=">AAACNXicbVDLSsNAFJ3UV62vqEs30SJUkJIUX8uiG5cV7AOaECaTSTt28mBmIpQha7/Grf0WF+7ErV8gOEm7sK0HLhzOuZd77/ESSrgwzXettLK6tr5R3qxsbe/s7un7Bx0epwzhNoppzHoe5JiSCLcFERT3EoZh6FHc9UZ3ud99xoyTOHoU4wQ7IRxEJCAICiW5+rEtCPWxtEMohhwx2cky97L25EroZefEhWeuXjXrZgFjmVgzUgUztFz9x/ZjlIY4EohCzvuWmQhHQiYIojir2CnHCUQjOMB9RSMYYu7I4pXMOFWKbwQxUxUJo1D/TkgYcj4OPdVZXLzo5eJ/Xj8VwY0jSZSkAkdouihIqSFiI8/F8AnDSNCxIhAxom410BAyiIRKb3FLfhuf+0TmGxkPeKbyshbTWSadRt26qjceLqrN21lyZXAETkANWOAaNME9aIE2QOAFvII3MNEm2of2qX1NW0vabOYQzEH7/gX7ZK11</latexit>

Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

SL(2,C) data mapped to SU(2) ones; almost SU(2) spin network states; Immirzi parameter

GFT (or "quantum geometric TGFT") models
two examples, expressed in generalised Fourier modes, i.e. (unitary) irreps of relevant group)



+ c.c.EPRL model

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles

5

can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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To do this, it is convenient to work in the spin representation, where the field operators
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where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)
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jv1jv2 ◆1◆2
mv1 ,mv2
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1
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X
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'̄ jva ◆a
mva
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5Y
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'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
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+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
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!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15

both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these

23

+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
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Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
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SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
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The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain
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where we are now using the 15j of SL(2, C) and
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where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
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1
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and its projected (gauge fixed) counterpart:

A3(f) :=
1
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(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s
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sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
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%K −
%L

γ
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Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore
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√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles

5

can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these

23

+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:
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any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles
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can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these
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+ c.c. reproduces EPRL-like spin foam amplitudes

Example: EPRL-like TGFT model

One of the main principles used in determining the form of K2 and V5 is that the
imposition of the simplicity constraints —which transform the 4D topological BF field
theory into a geometric theory with local degrees of freedom [60, 67–69]— can be achieved
by modifying the kernels of the 4D SL(2,C) BF Ooguri GFT model with conditions that
restrict the four bivectors xv labeling the triangular faces appearing in the simplicial
complexes dual to the Feynman diagrams of the theory to be simple bivectors [70, 71].
This is the GFT counterpart of the standard procedure followed in defining spin foam
models [60], and following this procedure gives the EPRL GFT model.

However, here we will not go through the details of this lengthy procedure; the inter-
ested reader is instead referred to [67, 71]. Instead, it will be su�cient for our purposes
to highlight one of the key properties of the GFT based on the EPRL spin foam model.

To do this, it is convenient to work in the spin representation, where the field operators
(1) are rewritten via the Peter-Weyl decomposition

b'(gv1 , gv2 , gv3 , gv4) =
X

jvi ,mvi ,nvi ,◆

b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

Ijv1jv2jv3jv4 ◆
nv1nv2nv3nv4

4Y

i=1

1

d(jvi)
Djva

mvinvi
(gvi), (12)

where dj = 2j + 1. Note while a generic function of SU(2)4 would have a more general
form, the gauge-invariance of the field operators is translated in the spin representation
to the presence of the intertwiners I labeled by ◆.

Then, using the shorthand notation

b'jv◆
mv

⌘ b'jv1jv2jv3jv4 ◆
mv1mv2mv3mv4

, (13)

the general GFT action for the case of simplicial interactions in the spin representation
has the form

S =
X

jvai
mvai ,◆a

'̄
jv1 ◆1
mv1

'
jv2 ◆2
m2 (K2)

jv1jv2 ◆1◆2
mv1 ,mv2

+
1

5

X

jvai
mvai ,◆a

" 
5Y

a=1

'̄ jva ◆a
mva

!
V̄5 +

 
5Y

a=1

'jva ◆a
mva

!
V5

#
, (14)

where V5 := V5(jv1 , . . . , jv5 ,mv1 , . . . ,mv5 , ◆1, . . . , ◆5), and of course each jva and mva rep-
resent the four j and m labels colouring the four links leaving the va spin network node.

The key property of the GFT based on the EPRL spin foam model is that (i) the
kinetic term contains a Kronecker delta between the j,m and intertwiner labels, and (ii)
the interaction term contains a Kronecker delta for the j labels colouring the links that

15
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both kinetic and interaction kernel contribute simple Kronecker deltas for j, m labels:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.

a - tetrahedra, (ab) triangles

5

can be written explicitly as follows. A basis
in L2(Spin(4)) is formed by the matrix elements

D(j+,j−)
q+q−,q′+q′−(g) of the irreducible representations. Here

g ∈ Spin(4), and the indices q± label a basis in the rep-
resentation j±. Then

π : D(j+,j−)
q+q−,q′+q′−(g) "→ D(j+,j−)

q+q−,q′+q′−(u) cq+q−

m cq′+q′−

m′ .

where u ∈ SU(2) and the cq+q−

m are the Clebsch-Gordan
coefficients that gives the embedding of the lowest (resp.
highest) SU(2) irreducible (where the m index lives) into
the representation (j+, j−). This construction defines
also an embedding from the SU(2) spin networks to the
Spin(4) spin networks on Γ. This is defined by the em-
bedding of L2

(

SU(2)×L
)

into L2
(

Spin(4)×L
)

defined by
the inclusion L2(SU(2)) ∼ Hf ⊂ L2(Spin(4)) followed
by the group averaging over Spin(4) at every node, as
determined by the constraint (4) (which, we recall, is im-
plemented by the dynamics).

Let us see how this construction affects the inter-
twiner spaces. We decompose the Hilbert space asso-
ciated with each face into representations. The simplic-
ity and cross-simplicity constraints, as discussed above,
are then imposed on each of these representations.
Consider four links, colored with the representations
(j+

1 , j−1 )...(j+
4 , j−4 ), satisfying (25), meeting at a given

node e of Γ. (This is the dual picture of four faces bound-
ing a given tetrahedron in the boundary of the triangula-
tion). Consider the tensors product of the corresponding
representation spaces He := H(j+

1 ,j−1 ) ⊗ ... ⊗ H(j+
4 ,j−4 ).

Define the constraint Ce :=
∑

i Mfi . Imposing Ce = 0
strongly on the states in H0 selects in each link the low-
est (resp. highest) SU(2) irreducible. Group averaging
over Spin(4) defines then the physical intertwiner space
for the node e. The projection from the Spin(4) to the
SU(2) intertwiner spaces is then given by:

π : InvSpin(4)(He) → InvSU(2)

(

Hj+
1 ±j−1

⊗ ... ⊗Hj+
4 ±j−4

)

C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )
"→ C

(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 q−

4 )

4
⊗

i=1

c
q+

i q−
i

mi .

Here C
(i+e ,i−e )

(q+
1 q−

1 )...(q+
4 ,q−

4 )
is the normalized intertwiner de-

fined by a virtual link carrying the (i+e , i−e ) representa-
tion. The corresponding embedding can be written in
the form:

f : InvSU(2) (Hk1 ⊗ ... ⊗Hk4) → InvSpin(4) (He)

im1...m4 "→

∫

Spin(4)
dg im1...m4

×
4
⊗

i=1

D
(1+γ)ki

2 ,
|1−γ|ki

2

q+
i q−

i ,q′+
i q′−

i

(g) c
q′+

i q′−
i

mi . (30)

We are now ready to define the vertex. For the details
of the derivation, see [24] and [7]. Following [2, 3, 7], the

amplitude of a single vertex bounded by ten SU(2) spins
jab, a, b = 1, ..., 5 and five SU(2) intertwiners ia is given
by

A(jab, ia) =
∑

i+a i−a

15j
(

(1+γ)jab
2 ; i+a

)

15j
(

|1−γ|jab
2 ; i−a

)

⊗

a

f ia

i+a i−a
(jab) (31)

where the 15j are the standard SU(2) Wigner symbols,
and

f i
i+i− := im1...m4Ci+i−

(q+
1 q−

1 )...(q+
4 q−

4 )

⊗

i=1...4

c
q+

i q−
i

mi . (32)

The partition function for an arbitrary triangulation, is
given by gluing these amplitudes together with suitable
edge and face amplitudes. It can be written as:

Z =
∑

jf ,ie

∏

f

df

∏

v

A(jf , ie), (33)

where

df := (|1 − γ|jf + 1) ((1 + γ)jf + 1) . (34)

IV. LORENTZIAN THEORY

The unitary representations in the principal series are
labelled by (n, ρ), where n is a positive integer and ρ real
[22, 23]. The Casimir operators for the representation
(n, ρ), are given by

C1 =
1

2

(

n2 − ρ2 − 4
)

, (35)

C2 = nρ. (36)

Up to ordering ambiguities, equation (17) reads now

nρ

(

γ −
1

γ

)

= ρ2 − n2. (37)

Solutions are given by either ρ = γn or ρ = −n/γ.
The existence of these two solutions reflects the two sec-
tors mentioned earlier with Immirzi parameter γ and
−1/γ. BF theory can not a priori distinguish between
these two sectors (see e.g. [20]). However, in our frame-
work, the second constraint (22) breaks this symmetry
and select the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diag-
onalizing L2. Therefore the constraints select the lowest
SU(2) irreducible representation in the decomposition of
H(n,ρ) =

⊕

k≥n/2 Hk. This choice of the lowest weight
corresponds to the usual notion of coherent states for the
non-compact SL(2, C) Lie group [25] (see also [26]). No-
tice that there is restriction on the value of γ as there
was in the Euclidean case.

Notice also that the continuous label ρ becomes quan-
tized, because n is discrete. It is because of this fact that
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n = 2j

from simplicity constraints:

6

any continuous spectrum depending on ρ comes out effec-
tively discrete on the subspace satisfying the simplicity
constraints.

This construction defines the projection from the
SL(2, C) boundary Hilbert space to the SU(2) space. For
a single D matrix, this projection reads (see the [7]):

π : L2 (SL(2, C)) −→ L2 (SU(2))

Dn,ρ
jqj′q′(g) #−→ Dn/2

qq′ (u) (38)

This also defines an embedding from the SU(2) Hilbert
space to the SL(2, C) space, given by inclusion followed
by group averaging over the Lorentz group.

As before, in order to extend this result to the complete
space H we have to define the projection for the inter-
twiners. Consider four links meeting at a given node e of
Γ, carrying representations (n1, ρ1)...(n4, ρ4), satisfying
the diagonal constraints. Consider the Hilbert space of
tensors between these representations: He := H(n1,ρ1) ⊗
... ⊗ H(n4,ρ4). Construct the constraint Ce :=

∑

i Mfi .
Imposing Ce = 0 strongly selects in each link the lowest
SU(2) along with the representations of the form ρ = nγ.
The last step is group averaging over SL(2, C) which de-
fines the physical intertwiner space for this node. The
projection is then given by:

π : InvSL(2,C) (He) −→ InvSU(2)

(

Hn1
2
⊗ ... ⊗Hn4

2

)

,

C(ne,ρe)
(j1,q1)...(j4,q4)

#−→ C(ne,ρe)
(

n1
2 ,q1),...(

n4
2 ,q4)

. (39)

The embedding is given by:

f : InvSU(2) (Hj1 ⊗ ... ⊗Hj4) −→ InvSL(2,C) (He) ,

im1...m4 #−→

∫

SL(2,C)
dg im1...m4

i=4
⊗

i=1

D(2ji,2jiγ)
(j′i,m

′
i)(ji,mi)

(g).

The boundary space is once again just given by the SU(2)
spin networks.

We are now ready to define the vertex. As before, we
obtain

A(jab, ia) =
∑

na

∫

dρa(n2
a + ρ2

a)

(

⊗

a

f ia
naρa

(jab)

)

15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) (40)

where we are now using the 15j of SL(2, C) and

f i
nρ := im1...m4 C̄nρ

(j1,m1)...(j4,m4)
, (41)

where j1...j4 are the representations meeting at the node.
The final partition function, for an arbitrary triangula-
tion, is given by gluing these amplitudes together with
suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie). (42)

V. AREA SPECTRA

There are two operators related to the area of a triangle
dual to the face f .

A4(f) :=
1

2
(#B)IJ(#B)IJ (43)

and its projected (gauge fixed) counterpart:

A3(f) :=
1

2
(#B)ij(#B)ij (44)

Classically, these two quantities are equal due to the con-
straint (13). After quantization this will not hold any-
more. This can be seen as follows. Since boosts do not
commute, it is not possible in the quantum theory to
physically implement a Lorentz frame exactly. Hence all
spacelike vectors are affected by quantum fluctuation in
the timelike directions. The relation between the two
quantities above is given by

A4 = A3 +

(

κγ2

γ2 − s

)2

sMf . (45)

Let us focus on A3, which is the standard canonical op-
erator considered in a canonical quantization of GR. We
can write

A3 =

(

κγ2

γ2 − s

)2
(

%K −
%L

γ

)2

. (46)

Using the constraints (17) and (22), we get with straight-
forward algebra

A3 = κ2γ2L2 (47)

for both euclidean and lorentzian signatures. The spec-
trum is therefore

Area =
√

A3 = 8π!G γ
√

k(k + 1). (48)

which is exactly the spectrum of LQG. This spectrum can
be compared with the continuous spectrum

Area ∼
1

2

√

4k(k + 1) − n2 + ρ2 + 4. (49)

that was previously obtained in covariant LQG, before
imposing the second class constraints (see [9]). Remark-
ably, imposing the simplicity constraints (17) and (22)
reduces the continuous spectrum (49) to the exact dis-
crete LQG spectrum (48).

Finally, we would like to point out that the ordering of
the Casimir operators for SU(2) and SL(2, C) required
to have meaningful simplicity constraints do not use the
usual ordering but seems to select an area spectrum with
a regular spacing such as j (or j + 1/2) instead of the
standard

√

j(j + 1). This issue deserves further investi-
gation.
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Ṽ5(jab, ia)

TGFT action

with:

in terms of constrained SL(2,C) irreps and contraction of SL(2,C) invariant tensors

note: 

• ambiguities in spin foam amplitudes ("measure factors") ---> parametrised by choice of kinetic kernel

• spin foam amplitudes can be factorised in terms of different face/vertex amplitudes ---> redefinition of 

kinetic and interaction kernels producing same Feynman amplitudes (but possibly different TGFT)

as in Engle, Livine, Pereira, Rovelli, '07 other formulations: Engle, Pereira, '08; Dona', Fanizza, Sarno, Speziale, '19; ....

4-simplex interaction 

K(2) =

Z
d�

X

ji,mi,◆

'̄ jv◆
mv

(�)
@2

@�2
'jv◆
mv

(�) (K (2)
2 )jv◆mv

, (37)

where the ' and '̄ field variables having the same arguments in the kinetic terms in the
action having imposed the Kronecker deltas, and

V =
X

ji,mi,◆i


'j1j2j3j4◆1
m1m2m3m4

(�)'j4j5j6j7◆2
m4m5m6m7

(�)'j7j3j8j9◆3
m7m3m8m9

(�)'j9j6j2j10◆4
m9m6m2m10

(�)'j10j8j5j1◆5
m10m8m5m1

(�)

⇥ Ṽ5(j1, . . . , j10; ◆1, . . . , ◆5)

�
, (38)

Note that the kinetic term has been truncated since, as explained above, we are considering
the small derivative limit in �.

A few comments on this GFT model are in order. First, it was not necessary to
assume the presence of any space-time symmetries in order to derive this action; in par-
ticular neither homogeneity nor isotropy were imposed. The simplicity of the GFT action
is a result of not only working with a particularly simple matter field (the minimally
coupled massless scalar field), but also the chosen discretization where the scalar field is
discretized on each 4-simplex. The simplicity of the GFT classical equations of motion can
be understood as the result of coarse-graining the small-scale complexity and obtaining
the hydrodynamical equations of motion for the collective behaviour. This interpretation
will be relevant in the following sections. Second, somewhat surprisingly from a purely
formal GFT viewpoint, the minimally coupled massless scalar field enters the GFT action
in exactly the same fashion as the standard time coordinate in ordinary quantum field
theory. The presence of the scalar field allows for the definition of a host of new relational
observations, but the above observation is stronger: the minimally coupled massless scalar
field can be used to define a global relational clock and thus provides a well-defined notion
of global time evolution in a di↵eomorphism invariant context. This will be particularly
useful in the cosmological context, but it is likely that this will be a powerful tool in a
number of other physical settings as well.

IV. GFT CONDENSATES

As in any interacting quantum field theory, it would be näıve to expect to be able to
solve the quantum dynamics exactly for realistic GFT models (and note that the situation
is potentially worse in the GFT context due to the background independence of GFT
models as well as the non-local nature of the quantum geometric interactions). Instead, the
appropriate strategy is to study simplified trial states and look for approximate solutions
that may capture the relevant properties of the physical setting of interest. Then, if these

23

+ c.c. reproduces EPRL-like spin foam amplitudes

SL(2,C) data mapped to SU(2) ones; almost SU(2) spin network states; Immirzi parameter

BC model

obtained by modding out the rotational subgroup SU(2) yielding the homogeneous space

SL(2,C)/SU(2), the bivectors of which are spacelike.8

In the interaction term of Eq. (2.3), the GFT fields enter with their timelike normal

integrated over separately, giving rise to the Barrett-Crane intertwiners [63, 77]

B
⇢i
jimi

⌘ B
⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

:=

Z

H
3

dX
4Y

i=1

D
(⇢i,0)
jimi00

(X). (2.10)

As a consequence, the GFT field assumes the form

Z

H
3

dX '(gv;X) =

2

4
Y

i

Z
d⇢i 4⇢

2

i

X

jimilini

3

5'
⇢i
jimi

B
⇢i
lini

Y

i

D
(⇢i,0)
jimilini

(gi). (2.11)

Altogether, the GFT action in terms of representation labels is computed by applying

Eq. (2.9) and Eq. (2.11)

S =

2

4
Y

i

Z
d⇢i 4⇢

2

i

X

jimi

3

5 '̄
⇢i
jimi

'
⇢i
jimi

Z

H
3

dX +
�

5

2

4
10Y

a=1

Z
d⇢a 4⇢

2

a

X

jama

3

5⇥

⇥
 

10Y

a=1

(�1)�ja�ma

!
{10⇢}BC'

⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

'
⇢4⇢5⇢6⇢7
j4�m4j5m5j6m6j7m7

⇥

⇥ '
⇢7⇢3⇢8⇢9
j7�m7j3�m3j8m8j9m9

'
⇢9⇢6⇢2⇢10
j9�m9j6�m6j2�m2j10m10

'
⇢10⇢8⇢5⇢1
j10�m10j8�m8j5�m5j1�m1

+ c.c,

(2.12)

where we observe the BC {10⇢}-symbol defined in Eq. (B.16) and a redundant integration

over the timelike normal. As presented in [62], the BC {10⇢}-symbol can be brought to

the form given in Eq. (B.17). After a successive re-definition of variables hi in Eq. (B.17),

one integration over SL(2,C) is redundant leading to a divergent factor, formally denoted

by vol(SL(2,C)). We then define the regulated BC {10⇢}-symbol

{10⇢}BC =: {10⇢}reg
BC

· vol(SL(2,C)). (2.13)

On the other hand, using the Cartan decomposition of the Haar measure on SL(2,C), given
in Eq. (A.19), it is clear that only the boost part of a redundant SL(2,C)-integration, i.e.
the hyperbolic part, is divergent while the rotation part yields a factor of one. Therefore,

redundant integrations over H3 and SL(2,C) diverge equally and kinetic and vertex terms

contain the same degree of divergence, allowing for a factorization of vol(SL(2,C)) in front

of the regulated action. Henceforth, we work with the regulated action from now on and

drop any indication of regularization for brevity.

8
As our aim is to describe homogeneous cosmologies by condensates of tetrahedra forming spacelike

hypersurfaces, we do not consider the case of timelike tetrahedra here. However, note that the other solution

of the equation, namely ⇢i = 0, is obtained by modding out the subgroup SU(1, 1), i.e. by considering the

homogeneous space SL(2,C)/SU(1, 1), the normal of which is spacelike and the bivectors are timelike or

spacelike, see [65] for a detailed description.
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obtained by modding out the rotational subgroup SU(2) yielding the homogeneous space

SL(2,C)/SU(2), the bivectors of which are spacelike.8

In the interaction term of Eq. (2.3), the GFT fields enter with their timelike normal

integrated over separately, giving rise to the Barrett-Crane intertwiners [63, 77]

B
⇢i
jimi

⌘ B
⇢1⇢2⇢3⇢4
j1m1j2m2j3m3j4m4

:=

Z

H
3

dX
4Y

i=1

D
(⇢i,0)
jimi00

(X). (2.10)

As a consequence, the GFT field assumes the form

Z

H
3

dX '(gv;X) =

2

4
Y

i
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irreps of SL(2,C)

continuous SL(2,C) data; covariant "spin networks" states; no Immirzi parameter

GFT (or "quantum geometric TGFT") models
two examples, expressed in generalised Fourier modes, i.e. (unitary) irreps of relevant group)
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why interesting: rich and with many connections

• very rich quantum geometry (interplay of group& representation theory with simplicial 
geometry), full quantum many-body system (entanglement, ...), relation to tensor networks, .....

• close links with other QG formalisms:
• quantum states are spin networks, 2nd quantized version of canonical LQG


• Feynman amplitudes are spin foam amplitudes


• Feynman amplitudes are full simplicial gravity path integral
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why useful: 


many geometric/physical guidelines and tools, and potentially meaningful even in simple approximations

see following



Adding matter to quantum geometry:

mixed local/non-local GFTs



Adding scalar matter to GFT
TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action
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Ṽ L V

x

P� V� ?

P� V� �⇤ ?

exp(
i

~S
�
�
)

exp(
i

~S
�
�
) ? P� V�

PG VG Z�
�G ?

Z�
�G =

Z Y

f2�
DBf

Y

f2�⇤
dg`

Y

v2�⇤
d�v �(S�(Bf )) e

i
~(S

�
� +S

�
G)

S�
�

⌘

 
X

l2�⇤
Ṽl
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Ṽ L V

x

P� V� ?

P� V� �⇤ ?

exp(
i

~S
�
�
)

exp(
i

~S
�
�
) ? P� V�

PG VG Z�
�G ?

Z�
�G =

Z Y

f2�
DBf

Y

f2�⇤
dg`

Y

v2�⇤
d�v �(S�(Bf )) e

i
~(S

�
� +S

�
G)

S�
�

⌘

 
X

l2�⇤
Ṽl
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• continuum scalar field is 0-form - naturally discretized on vertices of dual of simplicial complex: 
discrete scalar field = real variable at each dual vertex (center of each 4-simplex) 


• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices


• domain of GFT field extended to include values of scalar fields
Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
'̂(gI ,�

a), '̂†
�
hI , (�

0)a
�i

= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
dn�

Z
dgI '̂

†(gI ,�
a)'̂(gI ,�

a) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =

Z
dn�

Z
dgI dg

0

I '̂
†(gI ,�

a)V (gI , g
0

I)'̂(g
0

I ,�
a) , (2.14b)

whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ⌘
Z

dn�

Z
dgI �

b'̂†(gI ,�
a)'̂(gI ,�

a) , (2.14c)

⇧̂b =
1

i

Z
dn�

Z
dgI


'̂†(gI ,�

a)

✓
@

@�b
'̂(gI ,�

a)

◆�
, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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• to apply relational strategy for the reconstruction of "quantum spacetime", need matter degrees of freedom

work with TGFT models for simplicial geometry coupled to single (free, massless) scalar field

• condensate coherent state:

9

similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,

thus indirectly of an internal time variable, that applies
at the level of the fundamental presentation of the the-
ory. It is not preceded by any sort of coarse-graining
procedure or continuum approximation.

This definition allows to derive a number of interest-
ing results, producing a promising e↵ective cosmological
dynamics from the fundamental quantum gravity formal-
ism. We will review some of these results in the next
subsection. At the same time, it is problematic, as we
are also going to discuss in the following. The main dif-
ficulty is that these operators have a distributional na-
ture, leading to divergences in the computation of several
physically relevant quantities. These divergences, we ar-
gue, indicate a fundamental problem with such definition,
rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop
in this work. A number of other, somewhat minor issues
with the above definition arise, motivating further the
search for an alternative route toward the extraction of
a relational dynamics from the theory. For example, the
operator corresponding to the scalar field momentum “at
given time �” it is not self-adjoint, and it has to be made
so by adding to it its hermitian conjugate operator.

B. Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics
from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
interpreted as continuum cosmological spaces. Two cri-
teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
tinuum geometries, they should be composed by
a very large (possibly infinite) number of GFT
quanta.

2. Second, they should encode some notion of homo-
geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
lectively described by a single function over the space of
geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry re-
quirement that has to be imposed on the collective func-
tion) to the minisuperpsace of homogeneous geometries
[40]. In turn, one way to achieve this simplified collec-
tive description is if one endows each fundamental spin-
network vertex/tetrahedron with the same information.
This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
literature. However, many di↵erent states can be con-
structed with this same prescription, basically because
GFT quanta, even if they are in the same configuration,
can still be “glued” one to another in di↵erent ways.

Coherent states. In [10], the simplest choice satisfy-
ing the two criteria above has been studied: states which
completely neglect all the connectivity information (ob-
viously, this could be at best an approximation to more
realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:

|�i = e�k�k2/2 exp

"Z
d�

X

~x

�~x(�)ĉ
†
~x(�)

#
|0i , (23)

and

ĉ~x(�) |�i = �~x(�) |�i . (24)

Isotropy. Besides homogeneity, cosmological geome-
tries are assumed to be (approximately) isotropic. In [10],
isotropy has been imposed as an additional restriction on
the condensate wave function, drastically simplifying the
e↵ective continuum dynamics. Notice that imposing a
particular symmetry on the condensate wave function is
in general very di↵erent from the symmetry reduction of
the microscopic deegrees of freedom, basically because
the condensate wave function is a macroscopic variable
(in the simple case of coherent condensate states this
point is somewhat obscured by the fact that the colllec-
tive wavefunction is also, at the same time, the individual
wavefunction of each tetrahedron in the system). In [10],
isotropy of the wave function has been imposed by re-
quiring the associated tetrahedra to be equilateral. The
condensate wave function can then be written as

�(gI ,�) =
1X

j=0

�j(�)I
jjjj,◆+
m1m2m3m4

I
jjjj,◆+
n1n2n3n4

⇥

p
d4(j)

4Y

i=1

Dj
mini

(gi) , (25)

where d(j) = 2j + 1, j are spin labels, Dj
mn are Wigner

representation matrices, ◆+ is the largest eigenvalue of
the volume operator compatible with j.
For the condensate wavefunction, we then have

�~x(�) ⌘ �{j,~m}(�) = �j(�)I
jjjj,◆+
m1m2m3m4

. (26)

9

similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,

thus indirectly of an internal time variable, that applies
at the level of the fundamental presentation of the the-
ory. It is not preceded by any sort of coarse-graining
procedure or continuum approximation.

This definition allows to derive a number of interest-
ing results, producing a promising e↵ective cosmological
dynamics from the fundamental quantum gravity formal-
ism. We will review some of these results in the next
subsection. At the same time, it is problematic, as we
are also going to discuss in the following. The main dif-
ficulty is that these operators have a distributional na-
ture, leading to divergences in the computation of several
physically relevant quantities. These divergences, we ar-
gue, indicate a fundamental problem with such definition,
rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop
in this work. A number of other, somewhat minor issues
with the above definition arise, motivating further the
search for an alternative route toward the extraction of
a relational dynamics from the theory. For example, the
operator corresponding to the scalar field momentum “at
given time �” it is not self-adjoint, and it has to be made
so by adding to it its hermitian conjugate operator.

B. Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics
from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
interpreted as continuum cosmological spaces. Two cri-
teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
tinuum geometries, they should be composed by
a very large (possibly infinite) number of GFT
quanta.

2. Second, they should encode some notion of homo-
geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
lectively described by a single function over the space of
geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry re-
quirement that has to be imposed on the collective func-
tion) to the minisuperpsace of homogeneous geometries
[40]. In turn, one way to achieve this simplified collec-
tive description is if one endows each fundamental spin-
network vertex/tetrahedron with the same information.
This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
literature. However, many di↵erent states can be con-
structed with this same prescription, basically because
GFT quanta, even if they are in the same configuration,
can still be “glued” one to another in di↵erent ways.

Coherent states. In [10], the simplest choice satisfy-
ing the two criteria above has been studied: states which
completely neglect all the connectivity information (ob-
viously, this could be at best an approximation to more
realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:

|�i = e�k�k2/2 exp

"Z
d�

X

~x

�~x(�)ĉ
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where � is a complex number. Now, it is easy to realize
that the CPSs introduced above (and, more generally any
coherent state of the GFT field of the form (20)) do not
satisfy the above equation for the operators X̂ and ⇧̂,
given explicitly in equations (18c), (18d):

h
X̂ + i�⇧̂

i
|�i 6=

h
hX̂i� + i� h⇧̂i�

i
|�i .

In particular, the state obtained at the left-hand-side of
this equation does not contain the vacuum state, while
the second one does. Typically, it is precisely the prop-
erty of being minimum uncertainty states for some oper-
ators satisfying a certain algebra, which defines coherent
states as being states behaving “as classical as possible”
with respect to those quantities. In this case, we are us-
ing states which are indeed coherent, but just according
to the GFT operators, for which they indeed are MUCs.
Still, they are not MUCs for X̂ and ⇧̂. It would be there-
fore surprising if these states turned out to fit perfectly a
classical description of a massless scalar field coupled to
geometry. And indeed, as we will see in Subsection VE,
this will not be the case.

In general, we have not exploited the possibilities, of-
fered by the second quantized formalism, to define coher-
ent states which would minimize the uncertainty relations
between X̂ and ⇧̂ in particular minimizing as much as
possible also the variance of the collective observable ⇧̂.
We have not done so because we are not aiming, in the
present context, to identify relational clocks that would
also be ideal (i.e., “as classical as possible”), but only
to define a good relational dynamics.Should we be in-
terested in imposing additional and more stringent semi-
classicality condition on our clock, we could for example
adapt to the GFT condensate context the techniques de-
veloped in [48] to construct coherent states for collective
variables in the LQG context.

Third, on the same line, we want to emphasize that,
given the specific form of a CPS with peaking function as
in (52), taking the limit ✏ ! 1 will not lead to a localiza-
tion of the wavefunction around ⇡0, as one would naively
guess. In fact, the very same assumption of the factor-
ization of the CPS wavefunction into a peaking function
and a �-dependent reduced wavefunction, implies that
the wavefunction in momentum space is given by the fol-
lowing convolution product

�f,✏(gI ,⇡;�0,⇡0) ⌘

Z
d⇡0⌘✏(⇡ � ⇡0;�0,⇡0)�̃(gI ,⇡

0) .

This shows immediately that, even if the Fourier trans-
form ⌘✏(⇡;�0,⇡0) of the peaking function is peaked on ⇡0,
the convolution integral is not going to be peaked on ⇡0.
More precisely, in the limit ✏ ! 1 (where ⌘✏(⇡;�0,⇡0)
is indeed peaked) the above equation becomes

�f,✏(gI ,⇡;�0,⇡0) ' N✏e
��2

0/(2✏)�̃(gI ,⇡ � ⇡0) ,

For instance, this implies that the expectation value of
the occupation number on the the factorized state in the

limit ✏ ! 1 is given by (see Section VD for examples of
this kind of computations)

hN̂i�f,✏;⇡0,�0
=

Z
d⇡

Z
dgI |�f,✏(gI ,⇡;�0,⇡0)|

2

' N
2
✏ e

��2
0/✏

Z
dgI

Z
d⇡|�̃(gI ,⇡)|

2 ,

which does not depend at all on the variable ⇡0. How-
ever, as we have already mentioned, the role of ⇡0 is cru-
cial in order to make the above states meet some semi-
classicality requirements (at least in some regimes), by
ensuring some control over the variance of the momen-
tum and the Hamiltonian operator.
Lastly, we remark that, as a consequence of the above

construction, the divergences that plague general n-point
“relational” operators in the prescription of [10], can
not be present in this framework. In fact, since we
use no redefinition of second-quantized operators to de-
fine relational quantities, but rather we stick to an ef-
fective “Schrödinger picture”, the commutation relations
between '̂ and '̂†, which ultimately produced the ill-
defined behavior of “relational” operators as defined in
[10], are in this case always compensated by an integra-
tion. In our framework, therefore, there is no need to
introduce smeared creation and annihilation operators
(see equations (47)) as proposed in [17] in order to tame
the aforementioned divergences12.

B. CPSs dynamics

Following the same procedure of [10], we can now ob-
tain the dynamical equations for the reduced wavefunc-
tion �̃ starting from the Schwinger-Dyson equation. We
need then to fully specify the GFT action S[', '̄], includ-
ing a massless scalar field. If such a field is minimally
coupled to gravity, one can use the symmetries of the
classical action (which are assumed to be present also at
the quantum level, and in the GFT amplitudes, which
generate simplicial gravity path integrals including a dis-
cretized scalar field [10]) to place strict constraints on the
GFT action. This, in general, can be written as

S = K + U + Ū , (54)

where K represents the kinetic term and U encodes inter-
actions. In the following, we will restrict our analysis only
to the kinetic term, thus neglecting interactions. How-
ever, contributions to the model coming from simplicial
interactions will be briefly discussed in Subsection VC.

12 Of course suitable smearing may well be needed to define rigor-
ously the full GFT Weyl algebra of observables; simply, it is not
our concern here.

18

Given the aforementioned symmetry assumptions, the
kinetic term can be written as [10]

K =

Z
dgI dhI

Z
d� d�0

⇥ '̄(gI ,�)K(gI , hI ; (�� �0)2)'(hI ,�
0) . (55)

1. Reduced wavefunction e↵ective dynamics

We content ourselves with extracting an e↵ective mean
field dynamics from the full set of Schwinger-Dyson equa-
tions, assuming that the relevant states for cosmologi-
cal dynamics are CPSs, and then an averaged relational
dynamics for interesting geometric observables from it.
Thus we only impose the equation

⌧
�S['̂, '̂†]

�'̂†(gI ,�0)

�

�✏;�0,⇡0

⌘

⌧
�✏;�0,⇡0

����
�S['̂, '̂†]

�'̂†(gI ,�0)

�����✏;�0,⇡0

�
= 0 , (56)

is satisfied, where |�✏;�0,⇡0i is the CPS with wavefunc-
tion (51) and with peaking function (52). After a change
of variable � � �0 ! �, and neglecting the contribution
from GFT interactions, the equation (56) becomes

Z
dhI d�K(gI , hI ;�

2)⌘✏(�;⇡0)�̃(gI ,�+ �0) = 0 .

As already done in [10], we now assume that the kinetic
kernel can be written in terms of a series expansion as

K(gI , hI ;�
2) =

1X

n=0

K(2n)(gI , hI)

(2n)!
�2n . (57)

Since, because of the function ⌘✏, the integral is peaked
around � = �0, we Taylor expand the reduced wavefunc-
tion �̃ around that point, so that the kinetic term con-
tribution can be written as
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where the apex on the reduced wavefunction indicates
the m-th derivative of the function with respect to the
massless scalar field variable, and where
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where H2n+m are Hermite polynomials of order 2n+m.

We now retain only the lowest order contributions,
truncating the above sum at order ✏, i.e., with the com-
bination 2n+m  2. We thus obtain

N✏

p

2⇡✏e�⇡2
0✏/2

Z
dhI K

(0)(gI , hI)


�̃(hI ,�0)

✓
1�

✏

4
H2

✓r
✏

2
⇡0

◆
K(2)(gI , hI)

K(0)(gI , hI)

◆

+ i

r
✏

2
H1

✓r
✏

2
⇡0

◆
�̃0(hI ,�0)�

✏

4
H2

✓r
✏

2
⇡0

◆
�00(hI ,�0)

�
.

Notice that the truncation at order 2n + m = 2 might
not be entirely understood as a truncation in powers of
✏. In fact, the features of the weight function I2n+m

depend on ✏ and on ⇡0 as well, so it might well be that, in
some regimes, this truncation is not allowed. However, as
discussed in detail in Appendix A, in the case of ⇡0✏ < 1,
such a truncation is possible.

The same computation can of course be performed in
the spin representation. After imposition of isotropy, one
finds the following equation of motion for the reduced

wavefunction �̃j :

�̃00
j (�0)� 2i⇡̃0�̃

0
j(�0)� E2

j �̃(�0) = 0 , (58)

where we have defined the following set of parameters:

⇡̃0 =
⇡0

✏⇡2
0 � 1

, (59a)

E2
j = ✏�1 2

✏⇡2
0 � 1

+
Bj

Aj
, (59b)

where the coe�cients Aj and Bj and wj are defined in
the same way as in [10].
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Given the aforementioned symmetry assumptions, the
kinetic term can be written as [10]

K =
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0) . (55)

1. Reduced wavefunction e↵ective dynamics

We content ourselves with extracting an e↵ective mean
field dynamics from the full set of Schwinger-Dyson equa-
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is satisfied, where |�✏;�0,⇡0i is the CPS with wavefunc-
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of variable � � �0 ! �, and neglecting the contribution
from GFT interactions, the equation (56) becomes
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where H2n+m are Hermite polynomials of order 2n+m.

We now retain only the lowest order contributions,
truncating the above sum at order ✏, i.e., with the com-
bination 2n+m  2. We thus obtain
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Notice that the truncation at order 2n + m = 2 might
not be entirely understood as a truncation in powers of
✏. In fact, the features of the weight function I2n+m

depend on ✏ and on ⇡0 as well, so it might well be that, in
some regimes, this truncation is not allowed. However, as
discussed in detail in Appendix A, in the case of ⇡0✏ < 1,
such a truncation is possible.

The same computation can of course be performed in
the spin representation. After imposition of isotropy, one
finds the following equation of motion for the reduced

wavefunction �̃j :
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where the coe�cients Aj and Bj and wj are defined in
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• TGFT fields including new real variable (value of scalar field)
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creation and annihilation operators for LQG open spin-
network vertices.

Starting from the above ladder operators, together
with the vacuum state |0i annihilated by all ĉ~xs (which
represents a “no-space state”), one can construct a Fock
space, whose n-particle states satisfy

ĉ~x |n~xi =
p
n~x |n~x � 1i ,

ĉ~x |n~xi =
p
n~x + 1 |n~x + 1i .

The Fock space introduced in this way is analogous to the
kinematical Hilbert space of LQG [38], though more “al-
gebraic” in spirit. This connection is useful because, as
we will see below, it o↵ers further guidance (in addition
to the one coming from simplicial geometry) to the geo-
metric interpretation and to the definition of geometric
operators like those defined in the LQG setting.

Second-quantized observables. Starting from the field
operators, we can construct quantum observables of geo-
metric interest. The simplest one is the number operator,

N̂ ⌘

Z
dgI '̂

†(gI)'(gI) , (13)

which counts the number of quanta present in a given
state and whose eigenvalues distinguish between the n-
body sectors of the GFT Fock space. More generally,
one can consistently construct GFT “(m + n)-body op-
erators” Ôn+m, as

Ôn+m ⌘

Z
(dgI)

m(dhI)
n Om+n(g

1
I , . . . , g

m
I , h1

I , . . . , h
n
I )

⇥

mY

i=1

'̂†(giI)
nY

j=1

'̂(hj
I) , (14)

from the matrix elements Om+n defined either in a sim-
plicial geometric context between states associated to
quantized tetrahedra, or in the LQG context between
spin-network vertex states. The same kind of construc-
tion can be performed of course in any representation of
the relevant Hilbert space. For example, a generic two-
body operator can be written as

Ô2 =
X

~x~x0

O2(~x, ~x
0)c†~xc~x0 , (15)

where again O(~x, ~x0) are the matrix elements between,
e.g., spin-network states. All operators, like the volume
operator, we are interested in here, are two-body opera-
tors of this kind.
Coupling to a scalar field. With the later goal of

defining a notion of relational dynamics, it is useful to
add to the pure quantum geometric data additional ones
later to become a relational matter clock. The simplest
choice [10] is a minimally coupled free massless scalar
field (see [39] for a more detailed analysis and justifica-
tion of such matter coupling). The inclusion of this addi-
tional degree of freedom is been performed by modifying
the definition of the field operator:

'̂(gI) �! '̂(gI ,�) , (16)

so that the one-particle Hilbert space is now
L2(SU(2)4/SU(2) ⇥ R). So, each GFT atom carries a
value of the scalar field, which is then “discretized” on
the simplicial structures associated to GFT states and
(perturbative) amplitudes. The commutation relations
in (8a) has to be modified consistently, obtaining

⇥
'̂(gI ,�), '̂

†(hI ,�
0)
⇤
= I(gI , hI)�(�� �0) . (17)

Starting from this structure of the Fock space, operators
in the second quantization picture now involve integrals
over the possible values of the massless scalar field. For
instance, the number operator (13) takes the form

N̂ =

Z
d�

Z
dgI '̂

†(gI ,�)'̂(gI ,�) . (18a)

Another is the volume operator:

V̂ =

Z
d�

Z
dgI dg

0
I '̂

†(gI ,�)V (gI , g
0
I)'̂(g

0
I ,�) . (18b)

defined in terms of matrix elements of the first quantized
volume operator in the group representation (the first
quantized volume operator is instead diagonal in the spin
representation), and which adds up the volume contribu-
tions (individual 3-volumes) of all the tetrahedra in a
given GFT state (themselves not dependent on the value
of the discretized scalar field).

Having introduced new “pre-matter” degrees of free-
dom, one can find a new whole set of observables related
to them, which are the second-quantized GFT counter-
part of the standard observables of a scalar field, namely
polynomials in the scalar field and its derivatives. The
two fundamental ones are the scalar field operator and
the momentum operator [10]:

X̂ ⌘

Z
dgI

Z
d��'̂†(gI ,�)'̂(gI ,�) . (18c)

⇧̂ =
1

i

Z
dgI

Z
d�


'̂†(gI ,�)

✓
@

@�
'̂(gI ,�)

◆�
. (18d)

From the scalar field momentum operator and the vol-
ume operator one can in principle define an operator
corresponding to the energy density of the scalar field, of
obvious relevance for cosmological dynamics. For tech-
nical reasons, however, it is more convenient to define a
quantity with this interpretation in terms of expectation
values, as we will do in the following. Notice that all the
above operators are self-adjoint, as it should be.
Starting from them, in [10] new “relational operators”

Ô(�) have been defined, and in terms of these relational
operator one can indeed derive and e↵ective cosmologi-
cal dynamics, as we review in the next subsection, with
interesting results. The general idea is to simply define
them as the integrand in the general expression for ob-
servables Ô ⌘

R
d�Ô(�). For instance, the relational

number operator at “a time �” was defined as

N̂(�) =

Z
dgI '̂

†(gI ,�)'̂(gI ,�) ; (19)

with consequent extension of field operators, quantum states and operators on Fock space

Y. Li, DO, M. Zhang, '17

• TGFT interaction is local in scalar field variables


• TGFT kinetic term contains (infinite) 2nd derivatives of TGFT field wrt scalar field variable

TGFT models for QG coupled to scalar fields
Y. Li, DO, M. Zhang, '17

• kinetic term can be expanded in (2nd) derivatives wrt scalar field variable

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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P� Ṽ L

l P�

PG V�

4 VG
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action



Adding scalar matter to GFTTGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• continuum scalar field is 0-form - naturally discretized on vertices of dual of simplicial complex: 
discrete scalar field = real variable at each dual vertex (center of each 4-simplex) 


• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices


• domain of GFT field extended to include values of scalar fields
Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
'̂(gI ,�

a), '̂†
�
hI , (�

0)a
�i

= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
dn�

Z
dgI '̂

†(gI ,�
a)'̂(gI ,�

a) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =

Z
dn�

Z
dgI dg

0

I '̂
†(gI ,�

a)V (gI , g
0

I)'̂(g
0

I ,�
a) , (2.14b)

whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ⌘
Z

dn�

Z
dgI �

b'̂†(gI ,�
a)'̂(gI ,�

a) , (2.14c)

⇧̂b =
1

i
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Z
dgI


'̂†(gI ,�

a)

✓
@

@�b
'̂(gI ,�

a)

◆�
, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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• to apply relational strategy for the reconstruction of "quantum spacetime", need matter degrees of freedom

work with TGFT models for simplicial geometry coupled to single (free, massless) scalar field
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similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,

thus indirectly of an internal time variable, that applies
at the level of the fundamental presentation of the the-
ory. It is not preceded by any sort of coarse-graining
procedure or continuum approximation.

This definition allows to derive a number of interest-
ing results, producing a promising e↵ective cosmological
dynamics from the fundamental quantum gravity formal-
ism. We will review some of these results in the next
subsection. At the same time, it is problematic, as we
are also going to discuss in the following. The main dif-
ficulty is that these operators have a distributional na-
ture, leading to divergences in the computation of several
physically relevant quantities. These divergences, we ar-
gue, indicate a fundamental problem with such definition,
rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop
in this work. A number of other, somewhat minor issues
with the above definition arise, motivating further the
search for an alternative route toward the extraction of
a relational dynamics from the theory. For example, the
operator corresponding to the scalar field momentum “at
given time �” it is not self-adjoint, and it has to be made
so by adding to it its hermitian conjugate operator.

B. Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics
from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
interpreted as continuum cosmological spaces. Two cri-
teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
tinuum geometries, they should be composed by
a very large (possibly infinite) number of GFT
quanta.

2. Second, they should encode some notion of homo-
geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
lectively described by a single function over the space of
geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry re-
quirement that has to be imposed on the collective func-
tion) to the minisuperpsace of homogeneous geometries
[40]. In turn, one way to achieve this simplified collec-
tive description is if one endows each fundamental spin-
network vertex/tetrahedron with the same information.
This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
literature. However, many di↵erent states can be con-
structed with this same prescription, basically because
GFT quanta, even if they are in the same configuration,
can still be “glued” one to another in di↵erent ways.

Coherent states. In [10], the simplest choice satisfy-
ing the two criteria above has been studied: states which
completely neglect all the connectivity information (ob-
viously, this could be at best an approximation to more
realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:

|�i = e�k�k2/2 exp

"Z
d�

X

~x

�~x(�)ĉ
†
~x(�)

#
|0i , (23)

and

ĉ~x(�) |�i = �~x(�) |�i . (24)

Isotropy. Besides homogeneity, cosmological geome-
tries are assumed to be (approximately) isotropic. In [10],
isotropy has been imposed as an additional restriction on
the condensate wave function, drastically simplifying the
e↵ective continuum dynamics. Notice that imposing a
particular symmetry on the condensate wave function is
in general very di↵erent from the symmetry reduction of
the microscopic deegrees of freedom, basically because
the condensate wave function is a macroscopic variable
(in the simple case of coherent condensate states this
point is somewhat obscured by the fact that the colllec-
tive wavefunction is also, at the same time, the individual
wavefunction of each tetrahedron in the system). In [10],
isotropy of the wave function has been imposed by re-
quiring the associated tetrahedra to be equilateral. The
condensate wave function can then be written as

�(gI ,�) =
1X

j=0

�j(�)I
jjjj,◆+
m1m2m3m4

I
jjjj,◆+
n1n2n3n4

⇥

p
d4(j)

4Y

i=1

Dj
mini

(gi) , (25)

where d(j) = 2j + 1, j are spin labels, Dj
mn are Wigner

representation matrices, ◆+ is the largest eigenvalue of
the volume operator compatible with j.
For the condensate wavefunction, we then have

�~x(�) ⌘ �{j,~m}(�) = �j(�)I
jjjj,◆+
m1m2m3m4

. (26)
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where � is a complex number. Now, it is easy to realize
that the CPSs introduced above (and, more generally any
coherent state of the GFT field of the form (20)) do not
satisfy the above equation for the operators X̂ and ⇧̂,
given explicitly in equations (18c), (18d):

h
X̂ + i�⇧̂

i
|�i 6=

h
hX̂i� + i� h⇧̂i�

i
|�i .

In particular, the state obtained at the left-hand-side of
this equation does not contain the vacuum state, while
the second one does. Typically, it is precisely the prop-
erty of being minimum uncertainty states for some oper-
ators satisfying a certain algebra, which defines coherent
states as being states behaving “as classical as possible”
with respect to those quantities. In this case, we are us-
ing states which are indeed coherent, but just according
to the GFT operators, for which they indeed are MUCs.
Still, they are not MUCs for X̂ and ⇧̂. It would be there-
fore surprising if these states turned out to fit perfectly a
classical description of a massless scalar field coupled to
geometry. And indeed, as we will see in Subsection VE,
this will not be the case.

In general, we have not exploited the possibilities, of-
fered by the second quantized formalism, to define coher-
ent states which would minimize the uncertainty relations
between X̂ and ⇧̂ in particular minimizing as much as
possible also the variance of the collective observable ⇧̂.
We have not done so because we are not aiming, in the
present context, to identify relational clocks that would
also be ideal (i.e., “as classical as possible”), but only
to define a good relational dynamics.Should we be in-
terested in imposing additional and more stringent semi-
classicality condition on our clock, we could for example
adapt to the GFT condensate context the techniques de-
veloped in [48] to construct coherent states for collective
variables in the LQG context.

Third, on the same line, we want to emphasize that,
given the specific form of a CPS with peaking function as
in (52), taking the limit ✏ ! 1 will not lead to a localiza-
tion of the wavefunction around ⇡0, as one would naively
guess. In fact, the very same assumption of the factor-
ization of the CPS wavefunction into a peaking function
and a �-dependent reduced wavefunction, implies that
the wavefunction in momentum space is given by the fol-
lowing convolution product

�f,✏(gI ,⇡;�0,⇡0) ⌘

Z
d⇡0⌘✏(⇡ � ⇡0;�0,⇡0)�̃(gI ,⇡

0) .

This shows immediately that, even if the Fourier trans-
form ⌘✏(⇡;�0,⇡0) of the peaking function is peaked on ⇡0,
the convolution integral is not going to be peaked on ⇡0.
More precisely, in the limit ✏ ! 1 (where ⌘✏(⇡;�0,⇡0)
is indeed peaked) the above equation becomes

�f,✏(gI ,⇡;�0,⇡0) ' N✏e
��2

0/(2✏)�̃(gI ,⇡ � ⇡0) ,

For instance, this implies that the expectation value of
the occupation number on the the factorized state in the

limit ✏ ! 1 is given by (see Section VD for examples of
this kind of computations)

hN̂i�f,✏;⇡0,�0
=

Z
d⇡

Z
dgI |�f,✏(gI ,⇡;�0,⇡0)|

2

' N
2
✏ e

��2
0/✏

Z
dgI

Z
d⇡|�̃(gI ,⇡)|

2 ,

which does not depend at all on the variable ⇡0. How-
ever, as we have already mentioned, the role of ⇡0 is cru-
cial in order to make the above states meet some semi-
classicality requirements (at least in some regimes), by
ensuring some control over the variance of the momen-
tum and the Hamiltonian operator.
Lastly, we remark that, as a consequence of the above

construction, the divergences that plague general n-point
“relational” operators in the prescription of [10], can
not be present in this framework. In fact, since we
use no redefinition of second-quantized operators to de-
fine relational quantities, but rather we stick to an ef-
fective “Schrödinger picture”, the commutation relations
between '̂ and '̂†, which ultimately produced the ill-
defined behavior of “relational” operators as defined in
[10], are in this case always compensated by an integra-
tion. In our framework, therefore, there is no need to
introduce smeared creation and annihilation operators
(see equations (47)) as proposed in [17] in order to tame
the aforementioned divergences12.

B. CPSs dynamics

Following the same procedure of [10], we can now ob-
tain the dynamical equations for the reduced wavefunc-
tion �̃ starting from the Schwinger-Dyson equation. We
need then to fully specify the GFT action S[', '̄], includ-
ing a massless scalar field. If such a field is minimally
coupled to gravity, one can use the symmetries of the
classical action (which are assumed to be present also at
the quantum level, and in the GFT amplitudes, which
generate simplicial gravity path integrals including a dis-
cretized scalar field [10]) to place strict constraints on the
GFT action. This, in general, can be written as

S = K + U + Ū , (54)

where K represents the kinetic term and U encodes inter-
actions. In the following, we will restrict our analysis only
to the kinetic term, thus neglecting interactions. How-
ever, contributions to the model coming from simplicial
interactions will be briefly discussed in Subsection VC.

12 Of course suitable smearing may well be needed to define rigor-
ously the full GFT Weyl algebra of observables; simply, it is not
our concern here.
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Given the aforementioned symmetry assumptions, the
kinetic term can be written as [10]

K =

Z
dgI dhI

Z
d� d�0

⇥ '̄(gI ,�)K(gI , hI ; (�� �0)2)'(hI ,�
0) . (55)

1. Reduced wavefunction e↵ective dynamics

We content ourselves with extracting an e↵ective mean
field dynamics from the full set of Schwinger-Dyson equa-
tions, assuming that the relevant states for cosmologi-
cal dynamics are CPSs, and then an averaged relational
dynamics for interesting geometric observables from it.
Thus we only impose the equation

⌧
�S['̂, '̂†]

�'̂†(gI ,�0)

�

�✏;�0,⇡0

⌘

⌧
�✏;�0,⇡0

����
�S['̂, '̂†]

�'̂†(gI ,�0)

�����✏;�0,⇡0

�
= 0 , (56)

is satisfied, where |�✏;�0,⇡0i is the CPS with wavefunc-
tion (51) and with peaking function (52). After a change
of variable � � �0 ! �, and neglecting the contribution
from GFT interactions, the equation (56) becomes

Z
dhI d�K(gI , hI ;�

2)⌘✏(�;⇡0)�̃(gI ,�+ �0) = 0 .

As already done in [10], we now assume that the kinetic
kernel can be written in terms of a series expansion as

K(gI , hI ;�
2) =

1X

n=0

K(2n)(gI , hI)

(2n)!
�2n . (57)

Since, because of the function ⌘✏, the integral is peaked
around � = �0, we Taylor expand the reduced wavefunc-
tion �̃ around that point, so that the kinetic term con-
tribution can be written as

1X

n=0

1X

m=0

Z
dhI

K(2n)(gI , hI)

(2n)!

�̃(m)(hI ,�0)

m!
I2n+m(⇡0, ✏) ,

where the apex on the reduced wavefunction indicates
the m-th derivative of the function with respect to the
massless scalar field variable, and where

I2n+m(⇡0, ✏) ⌘ N✏

Z
d��2n+me��2/(2✏)+i⇡0✏

= N✏

p

2⇡✏ (�i)2n+m @2n+m

@⇡2n+m
0

e�⇡2
0✏/2

= N✏

p

2⇡✏

✓
i

r
✏

2

◆2n+m

e�⇡2
0✏/2

⇥H2n+m

✓r
✏

2
⇡0

◆
,

where H2n+m are Hermite polynomials of order 2n+m.

We now retain only the lowest order contributions,
truncating the above sum at order ✏, i.e., with the com-
bination 2n+m  2. We thus obtain

N✏

p

2⇡✏e�⇡2
0✏/2

Z
dhI K

(0)(gI , hI)


�̃(hI ,�0)

✓
1�

✏

4
H2

✓r
✏

2
⇡0

◆
K(2)(gI , hI)

K(0)(gI , hI)

◆

+ i

r
✏

2
H1

✓r
✏

2
⇡0

◆
�̃0(hI ,�0)�

✏

4
H2

✓r
✏

2
⇡0

◆
�00(hI ,�0)

�
.

Notice that the truncation at order 2n + m = 2 might
not be entirely understood as a truncation in powers of
✏. In fact, the features of the weight function I2n+m

depend on ✏ and on ⇡0 as well, so it might well be that, in
some regimes, this truncation is not allowed. However, as
discussed in detail in Appendix A, in the case of ⇡0✏ < 1,
such a truncation is possible.

The same computation can of course be performed in
the spin representation. After imposition of isotropy, one
finds the following equation of motion for the reduced

wavefunction �̃j :

�̃00
j (�0)� 2i⇡̃0�̃

0
j(�0)� E2

j �̃(�0) = 0 , (58)

where we have defined the following set of parameters:

⇡̃0 =
⇡0

✏⇡2
0 � 1

, (59a)

E2
j = ✏�1 2

✏⇡2
0 � 1

+
Bj

Aj
, (59b)

where the coe�cients Aj and Bj and wj are defined in
the same way as in [10].
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1X

n=0

1X

m=0

Z
dhI

K(2n)(gI , hI)

(2n)!

�̃(m)(hI ,�0)

m!
I2n+m(⇡0, ✏) ,

where the apex on the reduced wavefunction indicates
the m-th derivative of the function with respect to the
massless scalar field variable, and where

I2n+m(⇡0, ✏) ⌘ N✏

Z
d��2n+me��2/(2✏)+i⇡0✏

= N✏

p

2⇡✏ (�i)2n+m @2n+m

@⇡2n+m
0

e�⇡2
0✏/2

= N✏

p

2⇡✏

✓
i

r
✏

2

◆2n+m

e�⇡2
0✏/2

⇥H2n+m

✓r
✏

2
⇡0

◆
,

where H2n+m are Hermite polynomials of order 2n+m.

We now retain only the lowest order contributions,
truncating the above sum at order ✏, i.e., with the com-
bination 2n+m  2. We thus obtain

N✏

p

2⇡✏e�⇡2
0✏/2

Z
dhI K

(0)(gI , hI)


�̃(hI ,�0)

✓
1�

✏

4
H2

✓r
✏

2
⇡0

◆
K(2)(gI , hI)

K(0)(gI , hI)

◆

+ i

r
✏

2
H1

✓r
✏

2
⇡0

◆
�̃0(hI ,�0)�

✏

4
H2

✓r
✏

2
⇡0

◆
�00(hI ,�0)

�
.

Notice that the truncation at order 2n + m = 2 might
not be entirely understood as a truncation in powers of
✏. In fact, the features of the weight function I2n+m

depend on ✏ and on ⇡0 as well, so it might well be that, in
some regimes, this truncation is not allowed. However, as
discussed in detail in Appendix A, in the case of ⇡0✏ < 1,
such a truncation is possible.

The same computation can of course be performed in
the spin representation. After imposition of isotropy, one
finds the following equation of motion for the reduced

wavefunction �̃j :

�̃00
j (�0)� 2i⇡̃0�̃

0
j(�0)� E2

j �̃(�0) = 0 , (58)

where we have defined the following set of parameters:

⇡̃0 =
⇡0

✏⇡2
0 � 1

, (59a)

E2
j = ✏�1 2

✏⇡2
0 � 1

+
Bj

Aj
, (59b)

where the coe�cients Aj and Bj and wj are defined in
the same way as in [10].
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creation and annihilation operators for LQG open spin-
network vertices.

Starting from the above ladder operators, together
with the vacuum state |0i annihilated by all ĉ~xs (which
represents a “no-space state”), one can construct a Fock
space, whose n-particle states satisfy

ĉ~x |n~xi =
p
n~x |n~x � 1i ,

ĉ~x |n~xi =
p
n~x + 1 |n~x + 1i .

The Fock space introduced in this way is analogous to the
kinematical Hilbert space of LQG [38], though more “al-
gebraic” in spirit. This connection is useful because, as
we will see below, it o↵ers further guidance (in addition
to the one coming from simplicial geometry) to the geo-
metric interpretation and to the definition of geometric
operators like those defined in the LQG setting.

Second-quantized observables. Starting from the field
operators, we can construct quantum observables of geo-
metric interest. The simplest one is the number operator,

N̂ ⌘

Z
dgI '̂

†(gI)'(gI) , (13)

which counts the number of quanta present in a given
state and whose eigenvalues distinguish between the n-
body sectors of the GFT Fock space. More generally,
one can consistently construct GFT “(m + n)-body op-
erators” Ôn+m, as

Ôn+m ⌘

Z
(dgI)

m(dhI)
n Om+n(g

1
I , . . . , g

m
I , h1

I , . . . , h
n
I )

⇥

mY

i=1

'̂†(giI)
nY

j=1

'̂(hj
I) , (14)

from the matrix elements Om+n defined either in a sim-
plicial geometric context between states associated to
quantized tetrahedra, or in the LQG context between
spin-network vertex states. The same kind of construc-
tion can be performed of course in any representation of
the relevant Hilbert space. For example, a generic two-
body operator can be written as

Ô2 =
X

~x~x0

O2(~x, ~x
0)c†~xc~x0 , (15)

where again O(~x, ~x0) are the matrix elements between,
e.g., spin-network states. All operators, like the volume
operator, we are interested in here, are two-body opera-
tors of this kind.
Coupling to a scalar field. With the later goal of

defining a notion of relational dynamics, it is useful to
add to the pure quantum geometric data additional ones
later to become a relational matter clock. The simplest
choice [10] is a minimally coupled free massless scalar
field (see [39] for a more detailed analysis and justifica-
tion of such matter coupling). The inclusion of this addi-
tional degree of freedom is been performed by modifying
the definition of the field operator:

'̂(gI) �! '̂(gI ,�) , (16)

so that the one-particle Hilbert space is now
L2(SU(2)4/SU(2) ⇥ R). So, each GFT atom carries a
value of the scalar field, which is then “discretized” on
the simplicial structures associated to GFT states and
(perturbative) amplitudes. The commutation relations
in (8a) has to be modified consistently, obtaining

⇥
'̂(gI ,�), '̂

†(hI ,�
0)
⇤
= I(gI , hI)�(�� �0) . (17)

Starting from this structure of the Fock space, operators
in the second quantization picture now involve integrals
over the possible values of the massless scalar field. For
instance, the number operator (13) takes the form

N̂ =

Z
d�

Z
dgI '̂

†(gI ,�)'̂(gI ,�) . (18a)

Another is the volume operator:

V̂ =

Z
d�

Z
dgI dg

0
I '̂

†(gI ,�)V (gI , g
0
I)'̂(g

0
I ,�) . (18b)

defined in terms of matrix elements of the first quantized
volume operator in the group representation (the first
quantized volume operator is instead diagonal in the spin
representation), and which adds up the volume contribu-
tions (individual 3-volumes) of all the tetrahedra in a
given GFT state (themselves not dependent on the value
of the discretized scalar field).

Having introduced new “pre-matter” degrees of free-
dom, one can find a new whole set of observables related
to them, which are the second-quantized GFT counter-
part of the standard observables of a scalar field, namely
polynomials in the scalar field and its derivatives. The
two fundamental ones are the scalar field operator and
the momentum operator [10]:

X̂ ⌘

Z
dgI

Z
d��'̂†(gI ,�)'̂(gI ,�) . (18c)

⇧̂ =
1

i

Z
dgI

Z
d�


'̂†(gI ,�)

✓
@

@�
'̂(gI ,�)

◆�
. (18d)

From the scalar field momentum operator and the vol-
ume operator one can in principle define an operator
corresponding to the energy density of the scalar field, of
obvious relevance for cosmological dynamics. For tech-
nical reasons, however, it is more convenient to define a
quantity with this interpretation in terms of expectation
values, as we will do in the following. Notice that all the
above operators are self-adjoint, as it should be.
Starting from them, in [10] new “relational operators”

Ô(�) have been defined, and in terms of these relational
operator one can indeed derive and e↵ective cosmologi-
cal dynamics, as we review in the next subsection, with
interesting results. The general idea is to simply define
them as the integrand in the general expression for ob-
servables Ô ⌘

R
d�Ô(�). For instance, the relational

number operator at “a time �” was defined as

N̂(�) =

Z
dgI '̂

†(gI ,�)'̂(gI ,�) ; (19)

with consequent extension of field operators, quantum states and operators on Fock space

Y. Li, DO, M. Zhang, '17

• TGFT interaction is local in scalar field variables


• TGFT kinetic term contains (infinite) 2nd derivatives of TGFT field wrt scalar field variable

TGFT models for QG coupled to scalar fields
Y. Li, DO, M. Zhang, '17

• kinetic term can be expanded in (2nd) derivatives wrt scalar field variable• GFT action including geometry-matter coupling can be deduced from discrete path integral, 
to produced as GFT Feynman amplitude

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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Ṽl

✓
�l�

Ll

◆2

+

X

v2�⇤
VvV(�v)

!

S�
G ⌘

1

2

X

f2�
Tr(BfHf ) ,

Z�
�G

�⇤ Z�
G

exp(
i

~S
�
�
) P�

V� Z�
�G PG

VG P�G V�G Z�
�G

P� = e
i
~ Ṽ
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action
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Ṽ L V

x

P� V� ?

P� V� �⇤ ?

exp(
i

~S
�
�
)

exp(
i

~S
�
�
) ? P� V�

PG VG Z�
�G ?

Z�
�G =

Z Y

f2�
DBf

Y

f2�⇤
dg`

Y

v2�⇤
d�v �(S�(Bf )) e

i
~(S

�
� +S

�
G)

S�
�

⌘

 
X

l2�⇤
Ṽl
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action



Adding scalar matter to GFTTGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• continuum scalar field is 0-form - naturally discretized on vertices of dual of simplicial complex: 
discrete scalar field = real variable at each dual vertex (center of each 4-simplex) 


• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices


• domain of GFT field extended to include values of scalar fields
Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
'̂(gI ,�

a), '̂†
�
hI , (�

0)a
�i

= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
dn�

Z
dgI '̂

†(gI ,�
a)'̂(gI ,�

a) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =

Z
dn�

Z
dgI dg

0

I '̂
†(gI ,�

a)V (gI , g
0

I)'̂(g
0

I ,�
a) , (2.14b)

whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ⌘
Z

dn�

Z
dgI �

b'̂†(gI ,�
a)'̂(gI ,�

a) , (2.14c)

⇧̂b =
1

i

Z
dn�

Z
dgI


'̂†(gI ,�

a)

✓
@

@�b
'̂(gI ,�

a)

◆�
, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.

– 10 –

• to apply relational strategy for the reconstruction of "quantum spacetime", need matter degrees of freedom

work with TGFT models for simplicial geometry coupled to single (free, massless) scalar field

• condensate coherent state:

9

similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,

thus indirectly of an internal time variable, that applies
at the level of the fundamental presentation of the the-
ory. It is not preceded by any sort of coarse-graining
procedure or continuum approximation.

This definition allows to derive a number of interest-
ing results, producing a promising e↵ective cosmological
dynamics from the fundamental quantum gravity formal-
ism. We will review some of these results in the next
subsection. At the same time, it is problematic, as we
are also going to discuss in the following. The main dif-
ficulty is that these operators have a distributional na-
ture, leading to divergences in the computation of several
physically relevant quantities. These divergences, we ar-
gue, indicate a fundamental problem with such definition,
rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop
in this work. A number of other, somewhat minor issues
with the above definition arise, motivating further the
search for an alternative route toward the extraction of
a relational dynamics from the theory. For example, the
operator corresponding to the scalar field momentum “at
given time �” it is not self-adjoint, and it has to be made
so by adding to it its hermitian conjugate operator.

B. Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics
from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
interpreted as continuum cosmological spaces. Two cri-
teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
tinuum geometries, they should be composed by
a very large (possibly infinite) number of GFT
quanta.

2. Second, they should encode some notion of homo-
geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
lectively described by a single function over the space of
geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry re-
quirement that has to be imposed on the collective func-
tion) to the minisuperpsace of homogeneous geometries
[40]. In turn, one way to achieve this simplified collec-
tive description is if one endows each fundamental spin-
network vertex/tetrahedron with the same information.
This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
literature. However, many di↵erent states can be con-
structed with this same prescription, basically because
GFT quanta, even if they are in the same configuration,
can still be “glued” one to another in di↵erent ways.

Coherent states. In [10], the simplest choice satisfy-
ing the two criteria above has been studied: states which
completely neglect all the connectivity information (ob-
viously, this could be at best an approximation to more
realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:

|�i = e�k�k2/2 exp

"Z
d�

X

~x

�~x(�)ĉ
†
~x(�)

#
|0i , (23)

and

ĉ~x(�) |�i = �~x(�) |�i . (24)

Isotropy. Besides homogeneity, cosmological geome-
tries are assumed to be (approximately) isotropic. In [10],
isotropy has been imposed as an additional restriction on
the condensate wave function, drastically simplifying the
e↵ective continuum dynamics. Notice that imposing a
particular symmetry on the condensate wave function is
in general very di↵erent from the symmetry reduction of
the microscopic deegrees of freedom, basically because
the condensate wave function is a macroscopic variable
(in the simple case of coherent condensate states this
point is somewhat obscured by the fact that the colllec-
tive wavefunction is also, at the same time, the individual
wavefunction of each tetrahedron in the system). In [10],
isotropy of the wave function has been imposed by re-
quiring the associated tetrahedra to be equilateral. The
condensate wave function can then be written as
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where d(j) = 2j + 1, j are spin labels, Dj
mn are Wigner

representation matrices, ◆+ is the largest eigenvalue of
the volume operator compatible with j.
For the condensate wavefunction, we then have
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jjjj,◆+
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. (26)
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similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,

thus indirectly of an internal time variable, that applies
at the level of the fundamental presentation of the the-
ory. It is not preceded by any sort of coarse-graining
procedure or continuum approximation.

This definition allows to derive a number of interest-
ing results, producing a promising e↵ective cosmological
dynamics from the fundamental quantum gravity formal-
ism. We will review some of these results in the next
subsection. At the same time, it is problematic, as we
are also going to discuss in the following. The main dif-
ficulty is that these operators have a distributional na-
ture, leading to divergences in the computation of several
physically relevant quantities. These divergences, we ar-
gue, indicate a fundamental problem with such definition,
rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop
in this work. A number of other, somewhat minor issues
with the above definition arise, motivating further the
search for an alternative route toward the extraction of
a relational dynamics from the theory. For example, the
operator corresponding to the scalar field momentum “at
given time �” it is not self-adjoint, and it has to be made
so by adding to it its hermitian conjugate operator.

B. Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics
from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
interpreted as continuum cosmological spaces. Two cri-
teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
tinuum geometries, they should be composed by
a very large (possibly infinite) number of GFT
quanta.

2. Second, they should encode some notion of homo-
geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
lectively described by a single function over the space of
geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry re-
quirement that has to be imposed on the collective func-
tion) to the minisuperpsace of homogeneous geometries
[40]. In turn, one way to achieve this simplified collec-
tive description is if one endows each fundamental spin-
network vertex/tetrahedron with the same information.
This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
literature. However, many di↵erent states can be con-
structed with this same prescription, basically because
GFT quanta, even if they are in the same configuration,
can still be “glued” one to another in di↵erent ways.

Coherent states. In [10], the simplest choice satisfy-
ing the two criteria above has been studied: states which
completely neglect all the connectivity information (ob-
viously, this could be at best an approximation to more
realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:
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where � is a complex number. Now, it is easy to realize
that the CPSs introduced above (and, more generally any
coherent state of the GFT field of the form (20)) do not
satisfy the above equation for the operators X̂ and ⇧̂,
given explicitly in equations (18c), (18d):

h
X̂ + i�⇧̂

i
|�i 6=

h
hX̂i� + i� h⇧̂i�

i
|�i .

In particular, the state obtained at the left-hand-side of
this equation does not contain the vacuum state, while
the second one does. Typically, it is precisely the prop-
erty of being minimum uncertainty states for some oper-
ators satisfying a certain algebra, which defines coherent
states as being states behaving “as classical as possible”
with respect to those quantities. In this case, we are us-
ing states which are indeed coherent, but just according
to the GFT operators, for which they indeed are MUCs.
Still, they are not MUCs for X̂ and ⇧̂. It would be there-
fore surprising if these states turned out to fit perfectly a
classical description of a massless scalar field coupled to
geometry. And indeed, as we will see in Subsection VE,
this will not be the case.

In general, we have not exploited the possibilities, of-
fered by the second quantized formalism, to define coher-
ent states which would minimize the uncertainty relations
between X̂ and ⇧̂ in particular minimizing as much as
possible also the variance of the collective observable ⇧̂.
We have not done so because we are not aiming, in the
present context, to identify relational clocks that would
also be ideal (i.e., “as classical as possible”), but only
to define a good relational dynamics.Should we be in-
terested in imposing additional and more stringent semi-
classicality condition on our clock, we could for example
adapt to the GFT condensate context the techniques de-
veloped in [48] to construct coherent states for collective
variables in the LQG context.

Third, on the same line, we want to emphasize that,
given the specific form of a CPS with peaking function as
in (52), taking the limit ✏ ! 1 will not lead to a localiza-
tion of the wavefunction around ⇡0, as one would naively
guess. In fact, the very same assumption of the factor-
ization of the CPS wavefunction into a peaking function
and a �-dependent reduced wavefunction, implies that
the wavefunction in momentum space is given by the fol-
lowing convolution product

�f,✏(gI ,⇡;�0,⇡0) ⌘

Z
d⇡0⌘✏(⇡ � ⇡0;�0,⇡0)�̃(gI ,⇡

0) .

This shows immediately that, even if the Fourier trans-
form ⌘✏(⇡;�0,⇡0) of the peaking function is peaked on ⇡0,
the convolution integral is not going to be peaked on ⇡0.
More precisely, in the limit ✏ ! 1 (where ⌘✏(⇡;�0,⇡0)
is indeed peaked) the above equation becomes

�f,✏(gI ,⇡;�0,⇡0) ' N✏e
��2

0/(2✏)�̃(gI ,⇡ � ⇡0) ,

For instance, this implies that the expectation value of
the occupation number on the the factorized state in the

limit ✏ ! 1 is given by (see Section VD for examples of
this kind of computations)

hN̂i�f,✏;⇡0,�0
=

Z
d⇡

Z
dgI |�f,✏(gI ,⇡;�0,⇡0)|

2

' N
2
✏ e

��2
0/✏

Z
dgI

Z
d⇡|�̃(gI ,⇡)|

2 ,

which does not depend at all on the variable ⇡0. How-
ever, as we have already mentioned, the role of ⇡0 is cru-
cial in order to make the above states meet some semi-
classicality requirements (at least in some regimes), by
ensuring some control over the variance of the momen-
tum and the Hamiltonian operator.
Lastly, we remark that, as a consequence of the above

construction, the divergences that plague general n-point
“relational” operators in the prescription of [10], can
not be present in this framework. In fact, since we
use no redefinition of second-quantized operators to de-
fine relational quantities, but rather we stick to an ef-
fective “Schrödinger picture”, the commutation relations
between '̂ and '̂†, which ultimately produced the ill-
defined behavior of “relational” operators as defined in
[10], are in this case always compensated by an integra-
tion. In our framework, therefore, there is no need to
introduce smeared creation and annihilation operators
(see equations (47)) as proposed in [17] in order to tame
the aforementioned divergences12.

B. CPSs dynamics

Following the same procedure of [10], we can now ob-
tain the dynamical equations for the reduced wavefunc-
tion �̃ starting from the Schwinger-Dyson equation. We
need then to fully specify the GFT action S[', '̄], includ-
ing a massless scalar field. If such a field is minimally
coupled to gravity, one can use the symmetries of the
classical action (which are assumed to be present also at
the quantum level, and in the GFT amplitudes, which
generate simplicial gravity path integrals including a dis-
cretized scalar field [10]) to place strict constraints on the
GFT action. This, in general, can be written as

S = K + U + Ū , (54)

where K represents the kinetic term and U encodes inter-
actions. In the following, we will restrict our analysis only
to the kinetic term, thus neglecting interactions. How-
ever, contributions to the model coming from simplicial
interactions will be briefly discussed in Subsection VC.

12 Of course suitable smearing may well be needed to define rigor-
ously the full GFT Weyl algebra of observables; simply, it is not
our concern here.
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Given the aforementioned symmetry assumptions, the
kinetic term can be written as [10]

K =

Z
dgI dhI

Z
d� d�0

⇥ '̄(gI ,�)K(gI , hI ; (�� �0)2)'(hI ,�
0) . (55)

1. Reduced wavefunction e↵ective dynamics

We content ourselves with extracting an e↵ective mean
field dynamics from the full set of Schwinger-Dyson equa-
tions, assuming that the relevant states for cosmologi-
cal dynamics are CPSs, and then an averaged relational
dynamics for interesting geometric observables from it.
Thus we only impose the equation

⌧
�S['̂, '̂†]

�'̂†(gI ,�0)

�

�✏;�0,⇡0

⌘

⌧
�✏;�0,⇡0

����
�S['̂, '̂†]

�'̂†(gI ,�0)

�����✏;�0,⇡0

�
= 0 , (56)

is satisfied, where |�✏;�0,⇡0i is the CPS with wavefunc-
tion (51) and with peaking function (52). After a change
of variable � � �0 ! �, and neglecting the contribution
from GFT interactions, the equation (56) becomes

Z
dhI d�K(gI , hI ;�

2)⌘✏(�;⇡0)�̃(gI ,�+ �0) = 0 .

As already done in [10], we now assume that the kinetic
kernel can be written in terms of a series expansion as

K(gI , hI ;�
2) =

1X

n=0

K(2n)(gI , hI)

(2n)!
�2n . (57)

Since, because of the function ⌘✏, the integral is peaked
around � = �0, we Taylor expand the reduced wavefunc-
tion �̃ around that point, so that the kinetic term con-
tribution can be written as

1X

n=0

1X

m=0

Z
dhI

K(2n)(gI , hI)

(2n)!

�̃(m)(hI ,�0)

m!
I2n+m(⇡0, ✏) ,

where the apex on the reduced wavefunction indicates
the m-th derivative of the function with respect to the
massless scalar field variable, and where

I2n+m(⇡0, ✏) ⌘ N✏

Z
d��2n+me��2/(2✏)+i⇡0✏

= N✏

p

2⇡✏ (�i)2n+m @2n+m

@⇡2n+m
0

e�⇡2
0✏/2

= N✏

p

2⇡✏

✓
i

r
✏

2

◆2n+m

e�⇡2
0✏/2

⇥H2n+m

✓r
✏

2
⇡0

◆
,

where H2n+m are Hermite polynomials of order 2n+m.

We now retain only the lowest order contributions,
truncating the above sum at order ✏, i.e., with the com-
bination 2n+m  2. We thus obtain

N✏

p

2⇡✏e�⇡2
0✏/2

Z
dhI K

(0)(gI , hI)


�̃(hI ,�0)

✓
1�

✏

4
H2

✓r
✏

2
⇡0

◆
K(2)(gI , hI)

K(0)(gI , hI)

◆

+ i

r
✏

2
H1

✓r
✏

2
⇡0

◆
�̃0(hI ,�0)�

✏

4
H2

✓r
✏

2
⇡0

◆
�00(hI ,�0)

�
.

Notice that the truncation at order 2n + m = 2 might
not be entirely understood as a truncation in powers of
✏. In fact, the features of the weight function I2n+m

depend on ✏ and on ⇡0 as well, so it might well be that, in
some regimes, this truncation is not allowed. However, as
discussed in detail in Appendix A, in the case of ⇡0✏ < 1,
such a truncation is possible.

The same computation can of course be performed in
the spin representation. After imposition of isotropy, one
finds the following equation of motion for the reduced

wavefunction �̃j :

�̃00
j (�0)� 2i⇡̃0�̃

0
j(�0)� E2

j �̃(�0) = 0 , (58)

where we have defined the following set of parameters:

⇡̃0 =
⇡0

✏⇡2
0 � 1

, (59a)

E2
j = ✏�1 2

✏⇡2
0 � 1

+
Bj

Aj
, (59b)

where the coe�cients Aj and Bj and wj are defined in
the same way as in [10].
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creation and annihilation operators for LQG open spin-
network vertices.

Starting from the above ladder operators, together
with the vacuum state |0i annihilated by all ĉ~xs (which
represents a “no-space state”), one can construct a Fock
space, whose n-particle states satisfy

ĉ~x |n~xi =
p
n~x |n~x � 1i ,

ĉ~x |n~xi =
p
n~x + 1 |n~x + 1i .

The Fock space introduced in this way is analogous to the
kinematical Hilbert space of LQG [38], though more “al-
gebraic” in spirit. This connection is useful because, as
we will see below, it o↵ers further guidance (in addition
to the one coming from simplicial geometry) to the geo-
metric interpretation and to the definition of geometric
operators like those defined in the LQG setting.

Second-quantized observables. Starting from the field
operators, we can construct quantum observables of geo-
metric interest. The simplest one is the number operator,

N̂ ⌘

Z
dgI '̂

†(gI)'(gI) , (13)

which counts the number of quanta present in a given
state and whose eigenvalues distinguish between the n-
body sectors of the GFT Fock space. More generally,
one can consistently construct GFT “(m + n)-body op-
erators” Ôn+m, as

Ôn+m ⌘

Z
(dgI)

m(dhI)
n Om+n(g

1
I , . . . , g

m
I , h1

I , . . . , h
n
I )

⇥

mY

i=1

'̂†(giI)
nY

j=1

'̂(hj
I) , (14)

from the matrix elements Om+n defined either in a sim-
plicial geometric context between states associated to
quantized tetrahedra, or in the LQG context between
spin-network vertex states. The same kind of construc-
tion can be performed of course in any representation of
the relevant Hilbert space. For example, a generic two-
body operator can be written as

Ô2 =
X

~x~x0

O2(~x, ~x
0)c†~xc~x0 , (15)

where again O(~x, ~x0) are the matrix elements between,
e.g., spin-network states. All operators, like the volume
operator, we are interested in here, are two-body opera-
tors of this kind.
Coupling to a scalar field. With the later goal of

defining a notion of relational dynamics, it is useful to
add to the pure quantum geometric data additional ones
later to become a relational matter clock. The simplest
choice [10] is a minimally coupled free massless scalar
field (see [39] for a more detailed analysis and justifica-
tion of such matter coupling). The inclusion of this addi-
tional degree of freedom is been performed by modifying
the definition of the field operator:

'̂(gI) �! '̂(gI ,�) , (16)

so that the one-particle Hilbert space is now
L2(SU(2)4/SU(2) ⇥ R). So, each GFT atom carries a
value of the scalar field, which is then “discretized” on
the simplicial structures associated to GFT states and
(perturbative) amplitudes. The commutation relations
in (8a) has to be modified consistently, obtaining

⇥
'̂(gI ,�), '̂

†(hI ,�
0)
⇤
= I(gI , hI)�(�� �0) . (17)

Starting from this structure of the Fock space, operators
in the second quantization picture now involve integrals
over the possible values of the massless scalar field. For
instance, the number operator (13) takes the form

N̂ =

Z
d�

Z
dgI '̂

†(gI ,�)'̂(gI ,�) . (18a)

Another is the volume operator:

V̂ =

Z
d�

Z
dgI dg

0
I '̂

†(gI ,�)V (gI , g
0
I)'̂(g

0
I ,�) . (18b)

defined in terms of matrix elements of the first quantized
volume operator in the group representation (the first
quantized volume operator is instead diagonal in the spin
representation), and which adds up the volume contribu-
tions (individual 3-volumes) of all the tetrahedra in a
given GFT state (themselves not dependent on the value
of the discretized scalar field).

Having introduced new “pre-matter” degrees of free-
dom, one can find a new whole set of observables related
to them, which are the second-quantized GFT counter-
part of the standard observables of a scalar field, namely
polynomials in the scalar field and its derivatives. The
two fundamental ones are the scalar field operator and
the momentum operator [10]:

X̂ ⌘

Z
dgI

Z
d��'̂†(gI ,�)'̂(gI ,�) . (18c)

⇧̂ =
1

i

Z
dgI

Z
d�


'̂†(gI ,�)

✓
@

@�
'̂(gI ,�)

◆�
. (18d)

From the scalar field momentum operator and the vol-
ume operator one can in principle define an operator
corresponding to the energy density of the scalar field, of
obvious relevance for cosmological dynamics. For tech-
nical reasons, however, it is more convenient to define a
quantity with this interpretation in terms of expectation
values, as we will do in the following. Notice that all the
above operators are self-adjoint, as it should be.
Starting from them, in [10] new “relational operators”

Ô(�) have been defined, and in terms of these relational
operator one can indeed derive and e↵ective cosmologi-
cal dynamics, as we review in the next subsection, with
interesting results. The general idea is to simply define
them as the integrand in the general expression for ob-
servables Ô ⌘

R
d�Ô(�). For instance, the relational

number operator at “a time �” was defined as

N̂(�) =

Z
dgI '̂

†(gI ,�)'̂(gI ,�) ; (19)

with consequent extension of field operators, quantum states and operators on Fock space

Y. Li, DO, M. Zhang, '17

• TGFT interaction is local in scalar field variables


• TGFT kinetic term contains (infinite) 2nd derivatives of TGFT field wrt scalar field variable

TGFT models for QG coupled to scalar fields
Y. Li, DO, M. Zhang, '17

• kinetic term can be expanded in (2nd) derivatives wrt scalar field variable• GFT action including geometry-matter coupling can be deduced from discrete path integral, 
to produced as GFT Feynman amplitude

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• GFT propagator basically exponential of square of difference of scalar field values at neighbouring 4-simplices 
(coupled to discrete geometry), in discrete metric variables


• GFT vertex basically exponential of scalar field potential at each 4-simplex (coupled to discrete geometry)

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action



Adding scalar matter to GFTTGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• continuum scalar field is 0-form - naturally discretized on vertices of dual of simplicial complex: 
discrete scalar field = real variable at each dual vertex (center of each 4-simplex) 


• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices


• domain of GFT field extended to include values of scalar fields
Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
'̂(gI ,�

a), '̂†
�
hI , (�

0)a
�i

= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
dn�

Z
dgI '̂

†(gI ,�
a)'̂(gI ,�

a) . (2.14a)

A crucial quantity for describing cosmological geometries is the volume operator

V̂ =

Z
dn�

Z
dgI dg

0

I '̂
†(gI ,�

a)V (gI , g
0

I)'̂(g
0

I ,�
a) , (2.14b)

whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:

X̂b ⌘
Z

dn�

Z
dgI �

b'̂†(gI ,�
a)'̂(gI ,�

a) , (2.14c)

⇧̂b =
1

i

Z
dn�

Z
dgI


'̂†(gI ,�

a)

✓
@

@�b
'̂(gI ,�

a)

◆�
, (2.14d)

whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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• to apply relational strategy for the reconstruction of "quantum spacetime", need matter degrees of freedom

work with TGFT models for simplicial geometry coupled to single (free, massless) scalar field

• condensate coherent state:

9

similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,

thus indirectly of an internal time variable, that applies
at the level of the fundamental presentation of the the-
ory. It is not preceded by any sort of coarse-graining
procedure or continuum approximation.

This definition allows to derive a number of interest-
ing results, producing a promising e↵ective cosmological
dynamics from the fundamental quantum gravity formal-
ism. We will review some of these results in the next
subsection. At the same time, it is problematic, as we
are also going to discuss in the following. The main dif-
ficulty is that these operators have a distributional na-
ture, leading to divergences in the computation of several
physically relevant quantities. These divergences, we ar-
gue, indicate a fundamental problem with such definition,
rather than simply the need for some regularization, and
therefore call for the more refined procedure we develop
in this work. A number of other, somewhat minor issues
with the above definition arise, motivating further the
search for an alternative route toward the extraction of
a relational dynamics from the theory. For example, the
operator corresponding to the scalar field momentum “at
given time �” it is not self-adjoint, and it has to be made
so by adding to it its hermitian conjugate operator.

B. Homogeneous and isotropic geometries

In order to obtain a quantum cosmological dynamics
from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
interpreted as continuum cosmological spaces. Two cri-
teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
tinuum geometries, they should be composed by
a very large (possibly infinite) number of GFT
quanta.

2. Second, they should encode some notion of homo-
geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
lectively described by a single function over the space of
geometries associated to a single tetrahedron, since the
latter is isomorphic (modulo an additional symmetry re-
quirement that has to be imposed on the collective func-
tion) to the minisuperpsace of homogeneous geometries
[40]. In turn, one way to achieve this simplified collec-
tive description is if one endows each fundamental spin-
network vertex/tetrahedron with the same information.
This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
literature. However, many di↵erent states can be con-
structed with this same prescription, basically because
GFT quanta, even if they are in the same configuration,
can still be “glued” one to another in di↵erent ways.

Coherent states. In [10], the simplest choice satisfy-
ing the two criteria above has been studied: states which
completely neglect all the connectivity information (ob-
viously, this could be at best an approximation to more
realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:

|�i = e�k�k2/2 exp

"Z
d�

X

~x

�~x(�)ĉ
†
~x(�)

#
|0i , (23)

and

ĉ~x(�) |�i = �~x(�) |�i . (24)

Isotropy. Besides homogeneity, cosmological geome-
tries are assumed to be (approximately) isotropic. In [10],
isotropy has been imposed as an additional restriction on
the condensate wave function, drastically simplifying the
e↵ective continuum dynamics. Notice that imposing a
particular symmetry on the condensate wave function is
in general very di↵erent from the symmetry reduction of
the microscopic deegrees of freedom, basically because
the condensate wave function is a macroscopic variable
(in the simple case of coherent condensate states this
point is somewhat obscured by the fact that the colllec-
tive wavefunction is also, at the same time, the individual
wavefunction of each tetrahedron in the system). In [10],
isotropy of the wave function has been imposed by re-
quiring the associated tetrahedra to be equilateral. The
condensate wave function can then be written as

�(gI ,�) =
1X

j=0

�j(�)I
jjjj,◆+
m1m2m3m4

I
jjjj,◆+
n1n2n3n4

⇥

p
d4(j)

4Y

i=1

Dj
mini

(gi) , (25)

where d(j) = 2j + 1, j are spin labels, Dj
mn are Wigner

representation matrices, ◆+ is the largest eigenvalue of
the volume operator compatible with j.
For the condensate wavefunction, we then have

�~x(�) ⌘ �{j,~m}(�) = �j(�)I
jjjj,◆+
m1m2m3m4

. (26)
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at the level of the fundamental presentation of the the-
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from a GFT, the first necessary step is to identify a class
of states in the quantum theory which can be consistently
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teria are fundamental for the construction of such states:

1. First, since they are supposed to represent con-
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geneity (required in the coarse-grained cosmologi-
cal setting), in some probabilistic sense.

The second condition is the chosen quantum state is col-
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This matches the intuitive idea of a condensate state,
and it is often labeled ‘wavefunction homogeneity’ in the
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can still be “glued” one to another in di↵erent ways.
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realistic quantum states corresponding to continuum ho-
mogeneous quantum geometries). These are coherent
states of the GFT field operator,

|�i = N� exp

Z
d�

Z
dgI �(gI ,�)'̂

†(gI ,�)

�
|0i , (20)

and where

N� ⌘ e�k�k2/2, (21a)

k�k2 =

Z
dgI d�|�(gI ,�)|

2
⌘ h� | N̂ | �i . (21b)

By definition, such coherent states satisfy the important
property

'̂(gI ,�) |�i = �(gI ,�) |�i , (22)

i.e., they are eigenstates of the annihilation operator.
Equations (20) and (22) can also be rewritten in the spin
representation:

|�i = e�k�k2/2 exp

"Z
d�

X

~x

�~x(�)ĉ
†
~x(�)

#
|0i , (23)

and

ĉ~x(�) |�i = �~x(�) |�i . (24)

Isotropy. Besides homogeneity, cosmological geome-
tries are assumed to be (approximately) isotropic. In [10],
isotropy has been imposed as an additional restriction on
the condensate wave function, drastically simplifying the
e↵ective continuum dynamics. Notice that imposing a
particular symmetry on the condensate wave function is
in general very di↵erent from the symmetry reduction of
the microscopic deegrees of freedom, basically because
the condensate wave function is a macroscopic variable
(in the simple case of coherent condensate states this
point is somewhat obscured by the fact that the colllec-
tive wavefunction is also, at the same time, the individual
wavefunction of each tetrahedron in the system). In [10],
isotropy of the wave function has been imposed by re-
quiring the associated tetrahedra to be equilateral. The
condensate wave function can then be written as

�(gI ,�) =
1X

j=0

�j(�)I
jjjj,◆+
m1m2m3m4

I
jjjj,◆+
n1n2n3n4

⇥

p
d4(j)

4Y

i=1

Dj
mini

(gi) , (25)

where d(j) = 2j + 1, j are spin labels, Dj
mn are Wigner

representation matrices, ◆+ is the largest eigenvalue of
the volume operator compatible with j.
For the condensate wavefunction, we then have

�~x(�) ⌘ �{j,~m}(�) = �j(�)I
jjjj,◆+
m1m2m3m4

. (26)
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similarly for volume or scalar field momentum operators.
This is therefore a definition of relational quantities,
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where � is a complex number. Now, it is easy to realize
that the CPSs introduced above (and, more generally any
coherent state of the GFT field of the form (20)) do not
satisfy the above equation for the operators X̂ and ⇧̂,
given explicitly in equations (18c), (18d):

h
X̂ + i�⇧̂

i
|�i 6=

h
hX̂i� + i� h⇧̂i�

i
|�i .

In particular, the state obtained at the left-hand-side of
this equation does not contain the vacuum state, while
the second one does. Typically, it is precisely the prop-
erty of being minimum uncertainty states for some oper-
ators satisfying a certain algebra, which defines coherent
states as being states behaving “as classical as possible”
with respect to those quantities. In this case, we are us-
ing states which are indeed coherent, but just according
to the GFT operators, for which they indeed are MUCs.
Still, they are not MUCs for X̂ and ⇧̂. It would be there-
fore surprising if these states turned out to fit perfectly a
classical description of a massless scalar field coupled to
geometry. And indeed, as we will see in Subsection VE,
this will not be the case.

In general, we have not exploited the possibilities, of-
fered by the second quantized formalism, to define coher-
ent states which would minimize the uncertainty relations
between X̂ and ⇧̂ in particular minimizing as much as
possible also the variance of the collective observable ⇧̂.
We have not done so because we are not aiming, in the
present context, to identify relational clocks that would
also be ideal (i.e., “as classical as possible”), but only
to define a good relational dynamics.Should we be in-
terested in imposing additional and more stringent semi-
classicality condition on our clock, we could for example
adapt to the GFT condensate context the techniques de-
veloped in [48] to construct coherent states for collective
variables in the LQG context.

Third, on the same line, we want to emphasize that,
given the specific form of a CPS with peaking function as
in (52), taking the limit ✏ ! 1 will not lead to a localiza-
tion of the wavefunction around ⇡0, as one would naively
guess. In fact, the very same assumption of the factor-
ization of the CPS wavefunction into a peaking function
and a �-dependent reduced wavefunction, implies that
the wavefunction in momentum space is given by the fol-
lowing convolution product

�f,✏(gI ,⇡;�0,⇡0) ⌘

Z
d⇡0⌘✏(⇡ � ⇡0;�0,⇡0)�̃(gI ,⇡

0) .

This shows immediately that, even if the Fourier trans-
form ⌘✏(⇡;�0,⇡0) of the peaking function is peaked on ⇡0,
the convolution integral is not going to be peaked on ⇡0.
More precisely, in the limit ✏ ! 1 (where ⌘✏(⇡;�0,⇡0)
is indeed peaked) the above equation becomes

�f,✏(gI ,⇡;�0,⇡0) ' N✏e
��2

0/(2✏)�̃(gI ,⇡ � ⇡0) ,

For instance, this implies that the expectation value of
the occupation number on the the factorized state in the

limit ✏ ! 1 is given by (see Section VD for examples of
this kind of computations)

hN̂i�f,✏;⇡0,�0
=

Z
d⇡

Z
dgI |�f,✏(gI ,⇡;�0,⇡0)|

2

' N
2
✏ e

��2
0/✏

Z
dgI

Z
d⇡|�̃(gI ,⇡)|

2 ,

which does not depend at all on the variable ⇡0. How-
ever, as we have already mentioned, the role of ⇡0 is cru-
cial in order to make the above states meet some semi-
classicality requirements (at least in some regimes), by
ensuring some control over the variance of the momen-
tum and the Hamiltonian operator.
Lastly, we remark that, as a consequence of the above

construction, the divergences that plague general n-point
“relational” operators in the prescription of [10], can
not be present in this framework. In fact, since we
use no redefinition of second-quantized operators to de-
fine relational quantities, but rather we stick to an ef-
fective “Schrödinger picture”, the commutation relations
between '̂ and '̂†, which ultimately produced the ill-
defined behavior of “relational” operators as defined in
[10], are in this case always compensated by an integra-
tion. In our framework, therefore, there is no need to
introduce smeared creation and annihilation operators
(see equations (47)) as proposed in [17] in order to tame
the aforementioned divergences12.

B. CPSs dynamics

Following the same procedure of [10], we can now ob-
tain the dynamical equations for the reduced wavefunc-
tion �̃ starting from the Schwinger-Dyson equation. We
need then to fully specify the GFT action S[', '̄], includ-
ing a massless scalar field. If such a field is minimally
coupled to gravity, one can use the symmetries of the
classical action (which are assumed to be present also at
the quantum level, and in the GFT amplitudes, which
generate simplicial gravity path integrals including a dis-
cretized scalar field [10]) to place strict constraints on the
GFT action. This, in general, can be written as

S = K + U + Ū , (54)

where K represents the kinetic term and U encodes inter-
actions. In the following, we will restrict our analysis only
to the kinetic term, thus neglecting interactions. How-
ever, contributions to the model coming from simplicial
interactions will be briefly discussed in Subsection VC.

12 Of course suitable smearing may well be needed to define rigor-
ously the full GFT Weyl algebra of observables; simply, it is not
our concern here.
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Given the aforementioned symmetry assumptions, the
kinetic term can be written as [10]

K =

Z
dgI dhI

Z
d� d�0

⇥ '̄(gI ,�)K(gI , hI ; (�� �0)2)'(hI ,�
0) . (55)

1. Reduced wavefunction e↵ective dynamics

We content ourselves with extracting an e↵ective mean
field dynamics from the full set of Schwinger-Dyson equa-
tions, assuming that the relevant states for cosmologi-
cal dynamics are CPSs, and then an averaged relational
dynamics for interesting geometric observables from it.
Thus we only impose the equation

⌧
�S['̂, '̂†]

�'̂†(gI ,�0)

�

�✏;�0,⇡0

⌘

⌧
�✏;�0,⇡0

����
�S['̂, '̂†]

�'̂†(gI ,�0)

�����✏;�0,⇡0

�
= 0 , (56)

is satisfied, where |�✏;�0,⇡0i is the CPS with wavefunc-
tion (51) and with peaking function (52). After a change
of variable � � �0 ! �, and neglecting the contribution
from GFT interactions, the equation (56) becomes

Z
dhI d�K(gI , hI ;�

2)⌘✏(�;⇡0)�̃(gI ,�+ �0) = 0 .

As already done in [10], we now assume that the kinetic
kernel can be written in terms of a series expansion as

K(gI , hI ;�
2) =

1X

n=0

K(2n)(gI , hI)

(2n)!
�2n . (57)

Since, because of the function ⌘✏, the integral is peaked
around � = �0, we Taylor expand the reduced wavefunc-
tion �̃ around that point, so that the kinetic term con-
tribution can be written as

1X

n=0

1X

m=0

Z
dhI

K(2n)(gI , hI)

(2n)!

�̃(m)(hI ,�0)

m!
I2n+m(⇡0, ✏) ,

where the apex on the reduced wavefunction indicates
the m-th derivative of the function with respect to the
massless scalar field variable, and where

I2n+m(⇡0, ✏) ⌘ N✏

Z
d��2n+me��2/(2✏)+i⇡0✏

= N✏

p

2⇡✏ (�i)2n+m @2n+m

@⇡2n+m
0

e�⇡2
0✏/2

= N✏

p

2⇡✏

✓
i

r
✏

2

◆2n+m

e�⇡2
0✏/2

⇥H2n+m

✓r
✏

2
⇡0

◆
,

where H2n+m are Hermite polynomials of order 2n+m.

We now retain only the lowest order contributions,
truncating the above sum at order ✏, i.e., with the com-
bination 2n+m  2. We thus obtain

N✏

p

2⇡✏e�⇡2
0✏/2

Z
dhI K

(0)(gI , hI)


�̃(hI ,�0)

✓
1�

✏

4
H2

✓r
✏

2
⇡0

◆
K(2)(gI , hI)

K(0)(gI , hI)

◆

+ i

r
✏

2
H1

✓r
✏

2
⇡0

◆
�̃0(hI ,�0)�

✏

4
H2

✓r
✏

2
⇡0

◆
�00(hI ,�0)

�
.

Notice that the truncation at order 2n + m = 2 might
not be entirely understood as a truncation in powers of
✏. In fact, the features of the weight function I2n+m

depend on ✏ and on ⇡0 as well, so it might well be that, in
some regimes, this truncation is not allowed. However, as
discussed in detail in Appendix A, in the case of ⇡0✏ < 1,
such a truncation is possible.

The same computation can of course be performed in
the spin representation. After imposition of isotropy, one
finds the following equation of motion for the reduced

wavefunction �̃j :

�̃00
j (�0)� 2i⇡̃0�̃

0
j(�0)� E2

j �̃(�0) = 0 , (58)

where we have defined the following set of parameters:

⇡̃0 =
⇡0

✏⇡2
0 � 1

, (59a)

E2
j = ✏�1 2

✏⇡2
0 � 1

+
Bj

Aj
, (59b)

where the coe�cients Aj and Bj and wj are defined in
the same way as in [10].
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creation and annihilation operators for LQG open spin-
network vertices.

Starting from the above ladder operators, together
with the vacuum state |0i annihilated by all ĉ~xs (which
represents a “no-space state”), one can construct a Fock
space, whose n-particle states satisfy

ĉ~x |n~xi =
p
n~x |n~x � 1i ,

ĉ~x |n~xi =
p
n~x + 1 |n~x + 1i .

The Fock space introduced in this way is analogous to the
kinematical Hilbert space of LQG [38], though more “al-
gebraic” in spirit. This connection is useful because, as
we will see below, it o↵ers further guidance (in addition
to the one coming from simplicial geometry) to the geo-
metric interpretation and to the definition of geometric
operators like those defined in the LQG setting.

Second-quantized observables. Starting from the field
operators, we can construct quantum observables of geo-
metric interest. The simplest one is the number operator,

N̂ ⌘

Z
dgI '̂

†(gI)'(gI) , (13)

which counts the number of quanta present in a given
state and whose eigenvalues distinguish between the n-
body sectors of the GFT Fock space. More generally,
one can consistently construct GFT “(m + n)-body op-
erators” Ôn+m, as

Ôn+m ⌘

Z
(dgI)

m(dhI)
n Om+n(g

1
I , . . . , g

m
I , h1

I , . . . , h
n
I )

⇥

mY

i=1

'̂†(giI)
nY

j=1

'̂(hj
I) , (14)

from the matrix elements Om+n defined either in a sim-
plicial geometric context between states associated to
quantized tetrahedra, or in the LQG context between
spin-network vertex states. The same kind of construc-
tion can be performed of course in any representation of
the relevant Hilbert space. For example, a generic two-
body operator can be written as

Ô2 =
X

~x~x0

O2(~x, ~x
0)c†~xc~x0 , (15)

where again O(~x, ~x0) are the matrix elements between,
e.g., spin-network states. All operators, like the volume
operator, we are interested in here, are two-body opera-
tors of this kind.
Coupling to a scalar field. With the later goal of

defining a notion of relational dynamics, it is useful to
add to the pure quantum geometric data additional ones
later to become a relational matter clock. The simplest
choice [10] is a minimally coupled free massless scalar
field (see [39] for a more detailed analysis and justifica-
tion of such matter coupling). The inclusion of this addi-
tional degree of freedom is been performed by modifying
the definition of the field operator:

'̂(gI) �! '̂(gI ,�) , (16)

so that the one-particle Hilbert space is now
L2(SU(2)4/SU(2) ⇥ R). So, each GFT atom carries a
value of the scalar field, which is then “discretized” on
the simplicial structures associated to GFT states and
(perturbative) amplitudes. The commutation relations
in (8a) has to be modified consistently, obtaining

⇥
'̂(gI ,�), '̂

†(hI ,�
0)
⇤
= I(gI , hI)�(�� �0) . (17)

Starting from this structure of the Fock space, operators
in the second quantization picture now involve integrals
over the possible values of the massless scalar field. For
instance, the number operator (13) takes the form

N̂ =

Z
d�

Z
dgI '̂

†(gI ,�)'̂(gI ,�) . (18a)

Another is the volume operator:

V̂ =

Z
d�

Z
dgI dg

0
I '̂

†(gI ,�)V (gI , g
0
I)'̂(g

0
I ,�) . (18b)

defined in terms of matrix elements of the first quantized
volume operator in the group representation (the first
quantized volume operator is instead diagonal in the spin
representation), and which adds up the volume contribu-
tions (individual 3-volumes) of all the tetrahedra in a
given GFT state (themselves not dependent on the value
of the discretized scalar field).

Having introduced new “pre-matter” degrees of free-
dom, one can find a new whole set of observables related
to them, which are the second-quantized GFT counter-
part of the standard observables of a scalar field, namely
polynomials in the scalar field and its derivatives. The
two fundamental ones are the scalar field operator and
the momentum operator [10]:
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From the scalar field momentum operator and the vol-
ume operator one can in principle define an operator
corresponding to the energy density of the scalar field, of
obvious relevance for cosmological dynamics. For tech-
nical reasons, however, it is more convenient to define a
quantity with this interpretation in terms of expectation
values, as we will do in the following. Notice that all the
above operators are self-adjoint, as it should be.
Starting from them, in [10] new “relational operators”

Ô(�) have been defined, and in terms of these relational
operator one can indeed derive and e↵ective cosmologi-
cal dynamics, as we review in the next subsection, with
interesting results. The general idea is to simply define
them as the integrand in the general expression for ob-
servables Ô ⌘

R
d�Ô(�). For instance, the relational

number operator at “a time �” was defined as

N̂(�) =

Z
dgI '̂

†(gI ,�)'̂(gI ,�) ; (19)

with consequent extension of field operators, quantum states and operators on Fock space

Y. Li, DO, M. Zhang, '17

• TGFT interaction is local in scalar field variables


• TGFT kinetic term contains (infinite) 2nd derivatives of TGFT field wrt scalar field variable

TGFT models for QG coupled to scalar fields
Y. Li, DO, M. Zhang, '17

• kinetic term can be expanded in (2nd) derivatives wrt scalar field variable• GFT action including geometry-matter coupling can be deduced from discrete path integral, 
to produced as GFT Feynman amplitude

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• GFT propagator basically exponential of square of difference of scalar field values at neighbouring 4-simplices 
(coupled to discrete geometry), in discrete metric variables


• GFT vertex basically exponential of scalar field potential at each 4-simplex (coupled to discrete geometry)

• not unique: discretization + quantization ambiguities (only important to capture classical& continuum limit)

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
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• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action



example: extension to (real, massless, free, minimally coupled) scalar fields

Adding scalar matter to GFT
TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action



example: extension to (real, massless, free, minimally coupled) scalar fields

• corresponding to classical action (5 scalar fields):

X̂µ in equation (2.14c) on the above states is approximately given by

h�̂µi� ⌘ hX̂µi�
hN̂i�

' xµ , (2.26)

thus characterizing the change with respect to xµ as physical. These will be the fundamental

states that we will consider from now on. Before concluding this discussion, let us also

emphasize that the implementation of relational evolution through the CPSs (and thus,

also their physical interpretation) that we have reviewed here for an EPRL-like model,

can be identically realized also for the extended BC model, with the simple substitution

gI ! (GI ;X) in all the above equations [68].

3 GFT e↵ective relational cosmology: dynamics

As mentioned in the above paragraph, the main aim of this section is to obtain the dynam-

ical equations which, once solved, determine the specific form of the reduced condensate

wavefunction �̃. The microscopic GFT action SGFT determining these equation is in turn

obtained by comparison with an appropriate simplicial gravity model (see e.g. the discus-

sion in Section 2.1). Therefore, in Section 3.1, we will specify which kind of classical system

we are interested in. Then, in Section 3.2 we will obtain the dynamical equations determin-

ing the evolution of the reduced condensate wavefunction from the imposition of averaged

GFT quantum equations of motion. Finally, in Section 3.3, we will define background and

perturbed quantities, and we will consistently study the dynamical equations at zeroth and

first order in the small perturbations.

3.1 Classical system

The system we want to describe is classically composed by d + 1 massless scalar fields

minimally coupled to gravity. We also assume that d of these fields, which we call �µ,

µ = 0, . . . , d�1, give a negligible contribution to the total energy-momentum tensor of the

system, while the contribution coming from the remaining scalar field, which we call �, is

dominant. The d scalar fields �µ, therefore, can be thought as “test fields” which we would

naturally use to define a material reference system, for instance using harmonic coordinates

xµ (see Appendix A for more details). The field � is assumed to be almost homogeneous

with respect to the material coordinate system (or, equivalently to the harmonic frame),

meaning that � = �̄+ ��, with �̄ = �̄(t), t ⌘ x0, being the homogenous component of the

field.

Matter action and symmetries. At the classical level, therefore, we assume a matter

action of the form

Sm[�µ,�] = �1

2

Z
d4x

p
�ggab@a�

0@b�
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where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ
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�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action



example: extension to (real, massless, free, minimally coupled) scalar fields

• corresponding to classical action (5 scalar fields):

X̂µ in equation (2.14c) on the above states is approximately given by

h�̂µi� ⌘ hX̂µi�
hN̂i�

' xµ , (2.26)

thus characterizing the change with respect to xµ as physical. These will be the fundamental

states that we will consider from now on. Before concluding this discussion, let us also

emphasize that the implementation of relational evolution through the CPSs (and thus,

also their physical interpretation) that we have reviewed here for an EPRL-like model,

can be identically realized also for the extended BC model, with the simple substitution

gI ! (GI ;X) in all the above equations [68].

3 GFT e↵ective relational cosmology: dynamics

As mentioned in the above paragraph, the main aim of this section is to obtain the dynam-

ical equations which, once solved, determine the specific form of the reduced condensate

wavefunction �̃. The microscopic GFT action SGFT determining these equation is in turn

obtained by comparison with an appropriate simplicial gravity model (see e.g. the discus-

sion in Section 2.1). Therefore, in Section 3.1, we will specify which kind of classical system

we are interested in. Then, in Section 3.2 we will obtain the dynamical equations determin-

ing the evolution of the reduced condensate wavefunction from the imposition of averaged

GFT quantum equations of motion. Finally, in Section 3.3, we will define background and

perturbed quantities, and we will consistently study the dynamical equations at zeroth and

first order in the small perturbations.

3.1 Classical system

The system we want to describe is classically composed by d + 1 massless scalar fields

minimally coupled to gravity. We also assume that d of these fields, which we call �µ,

µ = 0, . . . , d�1, give a negligible contribution to the total energy-momentum tensor of the

system, while the contribution coming from the remaining scalar field, which we call �, is

dominant. The d scalar fields �µ, therefore, can be thought as “test fields” which we would

naturally use to define a material reference system, for instance using harmonic coordinates

xµ (see Appendix A for more details). The field � is assumed to be almost homogeneous

with respect to the material coordinate system (or, equivalently to the harmonic frame),

meaning that � = �̄+ ��, with �̄ = �̄(t), t ⌘ x0, being the homogenous component of the

field.

Matter action and symmetries. At the classical level, therefore, we assume a matter

action of the form

Sm[�µ,�] = �1
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where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ

⌘
⌧
�✏µ ;x

µ,⇡µ

����
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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Adding scalar matter to GFT
TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• gives GFT models:

2.2 (so that the expectation value of the volume operator reduces to (2.21)), but we will

also consider a condensate state whose peaking properties are isotropic as well:

�✏,�,⇡0,⇡x;xµ(gI ,�
µ,�) = ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)�̃(gI ,�µ,�) , (3.3)

where |�� x|2 =
Pd

i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
dgI dhI

Z
dd� dd�0 d� d�0 '̄(gI ,�)K(gI , hI ; (�� �0)2�, (�� �0)2)'(hI , (�

0)µ,�0) ,

U =

Z
dd� d�

Z  5Y

a=1

dgaI

!
U(g1I , . . . , g5I )

5Y

`=1

'(g`I ,�
µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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the aforementioned kinetic and interaction kernels encoding information about the
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in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,
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details on the action of the extended BC model.
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+ c.c.



example: extension to (real, massless, free, minimally coupled) scalar fields

note: inclusion of scalar field potential leads to dependence of interaction kernel on scalar field value 
(breaking of translation symmetry in (scalar) field space)

• corresponding to classical action (5 scalar fields):

X̂µ in equation (2.14c) on the above states is approximately given by

h�̂µi� ⌘ hX̂µi�
hN̂i�

' xµ , (2.26)

thus characterizing the change with respect to xµ as physical. These will be the fundamental

states that we will consider from now on. Before concluding this discussion, let us also

emphasize that the implementation of relational evolution through the CPSs (and thus,

also their physical interpretation) that we have reviewed here for an EPRL-like model,

can be identically realized also for the extended BC model, with the simple substitution

gI ! (GI ;X) in all the above equations [68].

3 GFT e↵ective relational cosmology: dynamics

As mentioned in the above paragraph, the main aim of this section is to obtain the dynam-

ical equations which, once solved, determine the specific form of the reduced condensate

wavefunction �̃. The microscopic GFT action SGFT determining these equation is in turn

obtained by comparison with an appropriate simplicial gravity model (see e.g. the discus-

sion in Section 2.1). Therefore, in Section 3.1, we will specify which kind of classical system

we are interested in. Then, in Section 3.2 we will obtain the dynamical equations determin-

ing the evolution of the reduced condensate wavefunction from the imposition of averaged

GFT quantum equations of motion. Finally, in Section 3.3, we will define background and

perturbed quantities, and we will consistently study the dynamical equations at zeroth and

first order in the small perturbations.

3.1 Classical system

The system we want to describe is classically composed by d + 1 massless scalar fields

minimally coupled to gravity. We also assume that d of these fields, which we call �µ,

µ = 0, . . . , d�1, give a negligible contribution to the total energy-momentum tensor of the

system, while the contribution coming from the remaining scalar field, which we call �, is

dominant. The d scalar fields �µ, therefore, can be thought as “test fields” which we would

naturally use to define a material reference system, for instance using harmonic coordinates

xµ (see Appendix A for more details). The field � is assumed to be almost homogeneous

with respect to the material coordinate system (or, equivalently to the harmonic frame),

meaning that � = �̄+ ��, with �̄ = �̄(t), t ⌘ x0, being the homogenous component of the

field.

Matter action and symmetries. At the classical level, therefore, we assume a matter

action of the form

Sm[�µ,�] = �1
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where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ

⌘
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�✏µ ;x
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�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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Adding scalar matter to GFT
TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• gives GFT models:

2.2 (so that the expectation value of the volume operator reduces to (2.21)), but we will

also consider a condensate state whose peaking properties are isotropic as well:

�✏,�,⇡0,⇡x;xµ(gI ,�
µ,�) = ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)�̃(gI ,�µ,�) , (3.3)

where |�� x|2 =
Pd

i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
dgI dhI

Z
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µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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example: extension to (real, massless, free, minimally coupled) scalar fields

note: inclusion of scalar field potential leads to dependence of interaction kernel on scalar field value 
(breaking of translation symmetry in (scalar) field space)

• corresponding to classical action (5 scalar fields):

X̂µ in equation (2.14c) on the above states is approximately given by

h�̂µi� ⌘ hX̂µi�
hN̂i�

' xµ , (2.26)

thus characterizing the change with respect to xµ as physical. These will be the fundamental

states that we will consider from now on. Before concluding this discussion, let us also

emphasize that the implementation of relational evolution through the CPSs (and thus,

also their physical interpretation) that we have reviewed here for an EPRL-like model,

can be identically realized also for the extended BC model, with the simple substitution

gI ! (GI ;X) in all the above equations [68].

3 GFT e↵ective relational cosmology: dynamics

As mentioned in the above paragraph, the main aim of this section is to obtain the dynam-

ical equations which, once solved, determine the specific form of the reduced condensate

wavefunction �̃. The microscopic GFT action SGFT determining these equation is in turn

obtained by comparison with an appropriate simplicial gravity model (see e.g. the discus-

sion in Section 2.1). Therefore, in Section 3.1, we will specify which kind of classical system

we are interested in. Then, in Section 3.2 we will obtain the dynamical equations determin-

ing the evolution of the reduced condensate wavefunction from the imposition of averaged

GFT quantum equations of motion. Finally, in Section 3.3, we will define background and

perturbed quantities, and we will consistently study the dynamical equations at zeroth and

first order in the small perturbations.

3.1 Classical system

The system we want to describe is classically composed by d + 1 massless scalar fields

minimally coupled to gravity. We also assume that d of these fields, which we call �µ,

µ = 0, . . . , d�1, give a negligible contribution to the total energy-momentum tensor of the

system, while the contribution coming from the remaining scalar field, which we call �, is

dominant. The d scalar fields �µ, therefore, can be thought as “test fields” which we would

naturally use to define a material reference system, for instance using harmonic coordinates

xµ (see Appendix A for more details). The field � is assumed to be almost homogeneous

with respect to the material coordinate system (or, equivalently to the harmonic frame),

meaning that � = �̄+ ��, with �̄ = �̄(t), t ⌘ x0, being the homogenous component of the

field.

Matter action and symmetries. At the classical level, therefore, we assume a matter

action of the form

Sm[�µ,�] = �1
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where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ
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�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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main features:
• non-local in quantum geometry data, local in scalar field data


• resulting TGFT models contain both local and non-local directions


• similar to TFTs on flat spacetime used for SYK-like systems


• local flat directions can acquire in fact interpretation as physical reference frame (see following)

Adding scalar matter to GFT
TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• gives GFT models:

2.2 (so that the expectation value of the volume operator reduces to (2.21)), but we will

also consider a condensate state whose peaking properties are isotropic as well:

�✏,�,⇡0,⇡x;xµ(gI ,�
µ,�) = ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)�̃(gI ,�µ,�) , (3.3)

where |�� x|2 =
Pd

i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
dgI dhI

Z
dd� dd�0 d� d�0 '̄(gI ,�)K(gI , hI ; (�� �0)2�, (�� �0)2)'(hI , (�
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µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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+ c.c.



example: extension to (real, massless, free, minimally coupled) scalar fields

note: inclusion of scalar field potential leads to dependence of interaction kernel on scalar field value 
(breaking of translation symmetry in (scalar) field space)

• corresponding to classical action (5 scalar fields):

X̂µ in equation (2.14c) on the above states is approximately given by

h�̂µi� ⌘ hX̂µi�
hN̂i�

' xµ , (2.26)

thus characterizing the change with respect to xµ as physical. These will be the fundamental

states that we will consider from now on. Before concluding this discussion, let us also

emphasize that the implementation of relational evolution through the CPSs (and thus,

also their physical interpretation) that we have reviewed here for an EPRL-like model,

can be identically realized also for the extended BC model, with the simple substitution

gI ! (GI ;X) in all the above equations [68].

3 GFT e↵ective relational cosmology: dynamics

As mentioned in the above paragraph, the main aim of this section is to obtain the dynam-

ical equations which, once solved, determine the specific form of the reduced condensate

wavefunction �̃. The microscopic GFT action SGFT determining these equation is in turn

obtained by comparison with an appropriate simplicial gravity model (see e.g. the discus-

sion in Section 2.1). Therefore, in Section 3.1, we will specify which kind of classical system

we are interested in. Then, in Section 3.2 we will obtain the dynamical equations determin-

ing the evolution of the reduced condensate wavefunction from the imposition of averaged

GFT quantum equations of motion. Finally, in Section 3.3, we will define background and

perturbed quantities, and we will consistently study the dynamical equations at zeroth and

first order in the small perturbations.

3.1 Classical system

The system we want to describe is classically composed by d + 1 massless scalar fields

minimally coupled to gravity. We also assume that d of these fields, which we call �µ,

µ = 0, . . . , d�1, give a negligible contribution to the total energy-momentum tensor of the

system, while the contribution coming from the remaining scalar field, which we call �, is

dominant. The d scalar fields �µ, therefore, can be thought as “test fields” which we would

naturally use to define a material reference system, for instance using harmonic coordinates

xµ (see Appendix A for more details). The field � is assumed to be almost homogeneous

with respect to the material coordinate system (or, equivalently to the harmonic frame),

meaning that � = �̄+ ��, with �̄ = �̄(t), t ⌘ x0, being the homogenous component of the

field.

Matter action and symmetries. At the classical level, therefore, we assume a matter

action of the form
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where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ
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�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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main features:
• non-local in quantum geometry data, local in scalar field data


• resulting TGFT models contain both local and non-local directions


• similar to TFTs on flat spacetime used for SYK-like systems


• local flat directions can acquire in fact interpretation as physical reference frame (see following)

Adding scalar matter to GFT

note: bringing together different branches of the TGFT family! (Y. Wang, V. Nador, DO, X. Pang, A. Tanasa, in progress)

TGFT models for QG coupled to scalar fields

basic guideline for model-building (choosing GFT action): 

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

Y. Li, DO, M. Zhang, '17
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⇣
�l�
L

⌘2

V� = e
i
~V V(�v),

P� Ṽ L
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geometric coupling potential

various discretization & quantum ambiguities; important to capture continuum & classical limit

• continuum scalar field is 0-form - naturally discretized on vertices of triangulation or dual 
complex

• potential of scalar field is also localized at vertices of dual complex

• choose dual complex: discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

• propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices - 
located on dual links

• coupling with discrete gravity requires: 

• dependence of scalar field action on discrete geometric data


• inclusion of dynamical amplitudes for geometric data, weighted by discrete Plebanski action

• gives GFT models:

2.2 (so that the expectation value of the volume operator reduces to (2.21)), but we will

also consider a condensate state whose peaking properties are isotropic as well:

�✏,�,⇡0,⇡x;xµ(gI ,�
µ,�) = ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)�̃(gI ,�µ,�) , (3.3)

where |�� x|2 =
Pd

i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
dgI dhI

Z
dd� dd�0 d� d�0 '̄(gI ,�)K(gI , hI ; (�� �0)2�, (�� �0)2)'(hI , (�
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U(g1I , . . . , g5I )

5Y

`=1
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µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
dgI dhI

Z
dd� dd�0 d� d�0 '̄(gI ,�)K(gI , hI ; (�� �0)2�, (�� �0)2)'(hI , (�

0)µ,�0) ,

U =

Z
dd� d�

Z  5Y

a=1

dgaI

!
U(g1I , . . . , g5I )

5Y

`=1

'(g`I ,�
µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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continuum, fully coarse-grained  GFT dynamics = quantum GFT effective 
action = continuum limit of spin foam models/simplicial gravity path integrals
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✴   ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action 
should be used to compute continuum geometric observables and their quantum dynamics

i.e. evaluate (analytically? numerically?) full quantum dynamics!                 
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Given GFT model, extract effective continuum gravitational physics

focus on cosmology:

cosmology = fully coarse-grained QG quantum dynamics, restricted to few global observables

Two points of view on cosmology 

two views: 

1.dynamics of (spatially) homogeneous geometries 
(special configurations of gravitational field - homogeneous sector of General Relativity)

2. result of coarse graining gravitational dofs (inhomogeneities, local info) up to global quantities only

in other words: effective dynamics of 
special (global) observables of full theory

this is necessarily the case if fundamental QG theory is based on 
non-spatiotemporal structures, and spacetime and geometry 
themselves are emergent

symmetry reduction (at classical or quantum level) can be 
thought of as very drastic/rough form of coarse graining)

continuum, fully coarse-grained  GFT dynamics = quantum GFT effective 
action = continuum limit of spin foam models/simplicial gravity path integrals
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should be used to compute continuum geometric observables and their quantum dynamics
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TGFT condensate hydrodynamics mean field ~ condensate wavefunction

TGFT renormalization

cosmology as QG hydrodynamics

strategy:
• focus on quantum GFT effective action


• use the quantum geometric data of GFT (mean) field to gain physical intuition


• identify relevant geometric observables


• translate GFT (mean) field dynamics into dynamics for geometric observables



Given GFT model, extract effective continuum gravitational physics

focus on cosmology:

cosmology = fully coarse-grained QG quantum dynamics, restricted to few global observables

Two points of view on cosmology 

two views: 

1.dynamics of (spatially) homogeneous geometries 
(special configurations of gravitational field - homogeneous sector of General Relativity)

2. result of coarse graining gravitational dofs (inhomogeneities, local info) up to global quantities only

in other words: effective dynamics of 
special (global) observables of full theory

this is necessarily the case if fundamental QG theory is based on 
non-spatiotemporal structures, and spacetime and geometry 
themselves are emergent

symmetry reduction (at classical or quantum level) can be 
thought of as very drastic/rough form of coarse graining)

continuum, fully coarse-grained  GFT dynamics = quantum GFT effective 
action = continuum limit of spin foam models/simplicial gravity path integrals

Extracting continuum spacetime & gravitational physics
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✴   ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action 
should be used to compute continuum geometric observables and their quantum dynamics

i.e. evaluate (analytically? numerically?) full quantum dynamics!                 
(full sum over triangulations weighted by simplicial gravity path integral)

F�(J) = lnZ�[J ] �[�] = supJ (J · �� F (J)) h'i = �
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"mean field"

need approximations that:

• capture collective effects

• correspond to some coarse-graining of fundamental discrete data

• maintain (as possible) quantum nature of fundamental entities

✴  simplest approximation: 
mean field hydrodynamics

saddle point evaluation of path integral - 
quantum effective action ~ classical action �[�] ⇡ S�(�)
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need approximations that:
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• correspond to some coarse-graining of fundamental discrete data
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TGFT condensate hydrodynamics mean field ~ condensate wavefunction

cosmology as QG hydrodynamics

TGFT renormalization



Given GFT model, extract effective continuum gravitational physics

focus on cosmology:

cosmology = fully coarse-grained QG quantum dynamics, restricted to few global observables

Two points of view on cosmology 

two views: 

1.dynamics of (spatially) homogeneous geometries 
(special configurations of gravitational field - homogeneous sector of General Relativity)

2. result of coarse graining gravitational dofs (inhomogeneities, local info) up to global quantities only

in other words: effective dynamics of 
special (global) observables of full theory

this is necessarily the case if fundamental QG theory is based on 
non-spatiotemporal structures, and spacetime and geometry 
themselves are emergent

symmetry reduction (at classical or quantum level) can be 
thought of as very drastic/rough form of coarse graining)

continuum, fully coarse-grained  GFT dynamics = quantum GFT effective 
action = continuum limit of spin foam models/simplicial gravity path integrals

Extracting continuum spacetime & gravitational physics

Z =
X

�

w(�)A� =
X

�

w(�)

Z
Dg� ei S�(g�) ⌘

Z
Dg ei S(g)Z =

Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

✴   ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action 
should be used to compute continuum geometric observables and their quantum dynamics

i.e. evaluate (analytically? numerically?) full quantum dynamics!                 
(full sum over triangulations weighted by simplicial gravity path integral)

F�(J) = lnZ�[J ] �[�] = supJ (J · �� F (J)) h'i = �
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"mean field"

need approximations that:

• capture collective effects

• correspond to some coarse-graining of fundamental discrete data

• maintain (as possible) quantum nature of fundamental entities
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"mean field"
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• capture collective effects
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✴   ideally, TGFT free energy itself (and its derivatives) or full TGFT quantum effective action 
should be used to compute continuum geometric observables and their quantum dynamics

i.e. evaluate (analytically? numerically?) full quantum dynamics!                 
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TGFT renormalization



Given GFT model, extract effective continuum gravitational physics

focus on cosmology:

cosmology = fully coarse-grained QG quantum dynamics, restricted to few global observables

Two points of view on cosmology 

two views: 

1.dynamics of (spatially) homogeneous geometries 
(special configurations of gravitational field - homogeneous sector of General Relativity)

2. result of coarse graining gravitational dofs (inhomogeneities, local info) up to global quantities only

in other words: effective dynamics of 
special (global) observables of full theory

this is necessarily the case if fundamental QG theory is based on 
non-spatiotemporal structures, and spacetime and geometry 
themselves are emergent

symmetry reduction (at classical or quantum level) can be 
thought of as very drastic/rough form of coarse graining)

continuum, fully coarse-grained  GFT dynamics = quantum GFT effective 
action = continuum limit of spin foam models/simplicial gravity path integrals
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TGFT condensate hydrodynamics mean field ~ condensate wavefunctioncorresponds to working with simplest condensate states 
(field coherent states):

commonly, condensate) states, where each fundamental quantum is associated to the same

condensate wavefunction:
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N� ⌘ e�k�k2/2, (2.16a)
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By definition, such coherent states are eigenstates of the field operator:
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States of the form (2.15a) have been used in the past literature to show the intriguing

results about the extraction of homogeneous and isotropic cosmological physics from GFTs

mentioned in Section 1. Moreover, they allow for a simple implementation of an e↵ective

description of relational quantities, as we explain below.

Symmetries of the condensate wavefunction. Before discussing how an e↵ective

relational framework can be implement, let us mention some important symmetry assump-

tions that are often made on the condensate wavefunction. Let us also emphasize that the

imposition of symmetry properties of the condensate wavefunction is conceptually di↵er-

ent from a symmetry reduction procedure. Indeed, the first is a condition on a collective

macroscopic quantity, while the latter acts on the fundamental microscopic degrees of free-

dom (though technically in the case of a coherent state like the one in (2.15a) the collective

wavefunction is also the wavefunction of each microscopic tetrahedron).

A first important symmetry that is imposed on the condensate wavefunction is a di-

agonal left-invariance:
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This condition can be seen as an average over the relative embedding of the tetrahedron in

su(2) [53]. As a consequence of this imposition, the domain of the condensate wavefunction

is isomorphic to the space of all the spatial metrics at a point, or, equivalently, to minisu-

perspace [58]. This very same result holds also in the case of the extended BC model, with

a similar averaging procedure (now over all configurations involving a preferred hypersur-

face normal and thus only for the integrated condensate wavefunction with respect to the

normal X) [68].

An additional assumption that is often imposed on the condensate wavefunction is its

isotropy [53]. This drastically simplifies the continuum dynamics, since the condensate
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TGFT condensate hydrodynamics mean field ~ condensate wavefunctioncorresponds to working with simplest condensate states 
(field coherent states):

commonly, condensate) states, where each fundamental quantum is associated to the same

condensate wavefunction:
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where

N� ⌘ e�k�k2/2, (2.16a)

k�k2 =
Z

dn�

Z
dgI |�(gI ,�a)|2 ⌘ hN̂i� . (2.16b)

By definition, such coherent states are eigenstates of the field operator:

'̂(gI ,�
a) |�i = �(gI ,�

a) |�i , '̂~⇠(�
a) |�i = �~⇠(�

a) |�i . (2.17)

States of the form (2.15a) have been used in the past literature to show the intriguing

results about the extraction of homogeneous and isotropic cosmological physics from GFTs

mentioned in Section 1. Moreover, they allow for a simple implementation of an e↵ective

description of relational quantities, as we explain below.

Symmetries of the condensate wavefunction. Before discussing how an e↵ective

relational framework can be implement, let us mention some important symmetry assump-

tions that are often made on the condensate wavefunction. Let us also emphasize that the

imposition of symmetry properties of the condensate wavefunction is conceptually di↵er-

ent from a symmetry reduction procedure. Indeed, the first is a condition on a collective

macroscopic quantity, while the latter acts on the fundamental microscopic degrees of free-

dom (though technically in the case of a coherent state like the one in (2.15a) the collective

wavefunction is also the wavefunction of each microscopic tetrahedron).

A first important symmetry that is imposed on the condensate wavefunction is a di-

agonal left-invariance:

�(gI ,�
a) = �(hgI ,�

a) , 8h 2 SU(2) . (2.18)

This condition can be seen as an average over the relative embedding of the tetrahedron in

su(2) [53]. As a consequence of this imposition, the domain of the condensate wavefunction

is isomorphic to the space of all the spatial metrics at a point, or, equivalently, to minisu-

perspace [58]. This very same result holds also in the case of the extended BC model, with

a similar averaging procedure (now over all configurations involving a preferred hypersur-

face normal and thus only for the integrated condensate wavefunction with respect to the

normal X) [68].

An additional assumption that is often imposed on the condensate wavefunction is its

isotropy [53]. This drastically simplifies the continuum dynamics, since the condensate
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general: GFT domain isomorphism with minisuperspace

in GFT models: 


domain of GFT (mean) field is space of geometries for tetrahedron + discretized matter

issue: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

•  simplest
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Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
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⇥
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⇥
I) + ⇥

�V5
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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⇥
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
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⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅
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⇥
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g
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�V̂5

�⇧̂(gI)
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Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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) = 0 . (23)

•  simplest
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described by single collective wave function 
(depending on homogeneous anisotropic geometric data)
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' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, ‘14
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

one more very general argument for physical interpretation:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace
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' minisuperspace of homogeneous geometries
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+ homogeneous matter

EPRL model:
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Given GFT model, extract effective continuum gravitational physics



general: GFT domain isomorphism with minisuperspace

in GFT models: 


domain of GFT (mean) field is space of geometries for tetrahedron + discretized matter

issue: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
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⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state - 
mean field approx. of full GFT partition function

Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
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⇥
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest

Thursday, March 7, 2013

Gielen, DO, Sindoni, ’13; Calcagni, De Cesare, 
Gielen, DO, Pithis, Sakellariadou, Sindoni, 
Wilson-Ewing,  …

described by single collective wave function 
(depending on homogeneous anisotropic geometric data)

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

Gielen, ‘14

GFT (condensate) cosmology

superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

one more very general argument for physical interpretation:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

S. Gielen, '14


A. Jercher, DO, A. Pithis, '21

+ homogeneous matter

EPRL model:

BC model: SL(2,C)4

SL(2,C)3

Hom(2)3

Hom(2)3/AdSL(2,C)

hom(2)�3
/AdSL(2,C)

GL(3)/O(3) ‘

closure Eq. (2.5)

simplicity Eq. (2.4)

adjoint invariance Eq. (3.11)

nc FT

map to gij Eq. (3.16)

Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.
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The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)
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geometricity conditions

(simplicity + closure)

Given GFT model, extract effective continuum gravitational physics



general: GFT domain isomorphism with minisuperspace

in GFT models: 


domain of GFT (mean) field is space of geometries for tetrahedron + discretized matter

issue: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state - 
mean field approx. of full GFT partition function

Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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•  simplest
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Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.
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The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)
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general: GFT domain isomorphism with minisuperspace

in GFT models: 


domain of GFT (mean) field is space of geometries for tetrahedron + discretized matter

issue: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state - 
mean field approx. of full GFT partition function

Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
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⇥
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⇥
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�V5
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

Simple GFT condensates as homogeneous continuum geometries (not encoding any topological information)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
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1
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where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
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I ). ⇤ is a function on the gauge-
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⇥
⇤̂
⇤
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⇥
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⇥
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⇥
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⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.
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The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)

– 18 –

The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)

– 18 –

geometricity conditions

(simplicity + closure)

SL(2,C)4

SL(2,C)3

Hom(2)3

Hom(2)3/AdSL(2,C)

hom(2)�3
/AdSL(2,C)

GL(3)/O(3) ‘

closure Eq. (2.5)

simplicity Eq. (2.4)

adjoint invariance Eq. (3.11)

nc FT

map to gij Eq. (3.16)

Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three
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general: GFT domain isomorphism with minisuperspace

in GFT models: 


domain of GFT (mean) field is space of geometries for tetrahedron + discretized matter

issue: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g
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⇥
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�V5
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

•  simplest
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
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d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.
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The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)
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From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly
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right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)
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Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.
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The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)
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general: GFT domain isomorphism with minisuperspace

in GFT models: 


domain of GFT (mean) field is space of geometries for tetrahedron + discretized matter

issue: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g
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I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
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⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)
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can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
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I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for
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|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=
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d4g ⌅(gI)⇧̂
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if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1
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where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1
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d4g d4g⇥ ⇧(gI)K̂(gI , g
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.

– 17 –

SL(2,C)4

SL(2,C)3

Hom(2)3

Hom(2)3/AdSL(2,C)

hom(2)�3
/AdSL(2,C)

GL(3)/O(3) ‘

closure Eq. (2.5)

simplicity Eq. (2.4)

adjoint invariance Eq. (3.11)

nc FT

map to gij Eq. (3.16)

Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.

– 17 –

SL(2,C)4

SL(2,C)3

Hom(2)3

Hom(2)3/AdSL(2,C)

hom(2)�3
/AdSL(2,C)

GL(3)/O(3) ‘

closure Eq. (2.5)

simplicity Eq. (2.4)

adjoint invariance Eq. (3.11)

nc FT

map to gij Eq. (3.16)

Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.

– 17 –

The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)
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form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)

– 18 –

The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.
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SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative
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DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)
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Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.

– 17 –

The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced

condensate wavefunction, we introduced the third condition of adjoint-covariance. As this

additional covariance will lead to a divergence of the action, we are going to perform a

second regularization, the details of which are given in Appendix B.

For computational ease, instead of adjoint-covariance we impose a left-invariance. The

equivalence between these conditions is seen by the following consideration. Let �(gi;X)

transform covariantly under right and adjoint action, i.e.

�(gv;X;�) = �(gvh
�1;h ·X;�) = �(kgvk

�1; k ·X;�), 8h, k 2 SL(2,C). (3.20)

Using both covariances combined, we find

�(gv;X;�) = �(kgvh
�1

k
�1; kh·X;�)

h̃:=kh
= �(kgvh̃

�1; h̃·X;�)
right cov.

= �(kgv;X;�), (3.21)

which means that a right- and adjoint-covariant function is e↵ectively given by a right-

covariant and left-invariant function.

Imposing left-invariance requires recoupling theory of SL(2,C) since integrals of the

form Z

SL(2,C)

dh
4Y

i=1

D
(⇢i,0)
jimilini

(h) (3.22)

– 18 –

extra symmetry of 
condensate wavefunction

SL(2,C)4

SL(2,C)3

Hom(2)3

Hom(2)3/AdSL(2,C)

hom(2)�3
/AdSL(2,C)

GL(3)/O(3) ‘

closure Eq. (2.5)

simplicity Eq. (2.4)

adjoint invariance Eq. (3.11)

nc FT

map to gij Eq. (3.16)

Figure 2. Di↵eomorphism between the domain of the condensate wavefunction and minisuperspace
of homogeneous spatial geometries.

Let us elaborate on why the connection of domain and minisuperspace is conceptually

important and serves as a self-consistency check of our cosmological interpretation (or,

conversely, as a motivation for it).

First, the di↵eomorphism should exist by the construction explained in Section 3.

Following [46], a classical tetrahedron that is embedded at a point x 2 ⌃ in a spatial

hypersurface ⌃ defines three independent vectors ei in the tangent space at x, which

correspond to the three edges incident at the vertex of the tetrahedron. These three

vectors are unique up to a simultaneous O(3)-rotation and define the six independent

metric coe�cients by

gij(x) = g(x)(ei, ej). (3.17)

From this perspective, the intrinsic geometry of an embedded tetrahedron carries exactly

the metric information at this point. Therefore, the domain D must be di↵eomorphic

to GL(3)/O(3) [91], only including the intrinsic geometric information. Note, that the

dimension of minisuperspace being six, corresponds to the six degrees of freedom of a

classical tetrahedron, parametrized for example by its six edge lengths or four areas and

two dihedral angles [95].

Second, the di↵eomorphism of domain and minisuperspace is an important link be-

tween the kinematics of the GFT condensate cosmology ansatz, the configuration space

of classical spatially homogeneous cosmologies [96], Wheeler-de Witt quantum cosmol-

ogy [97, 98] and Loop Quantum Cosmology (LQC) [1, 99, 100]. Such a connection has

been already established for GFT condensates based on EPRL-like models [8, 46, 91].

After these clarifications, we would like to point out similarities to the condensate ap-

proach based on EPRL-like models [8, 48, 49, 91, 92] where the domain of the group field

is SU(2) \ SU(2)4/SU(2), so four copies of SU(2) with diagonal left- and right-invariance.

– 17 –

The right-invariance accounts for the closure condition, meaning that the four triangles of

a GFT quantum close to form a tetrahedron. In [8] it is stated that the left-invariance ac-

counts for the independence of a specific embedding of tetrahedra in a spatial hypersurface.

In the case of SU(2) \ SU(2)4/SU(2) there is an obvious isomorphism

SU(2) \ SU(2)4/SU(2) ⇠=
⇣
SU(2)4/SU(2)

⌘
/AdSU(2). (3.18)

Again, the interpretation applies that the adjoint action induces rotations of bivectors.

Therefore, the domain only encodes the physical degrees of freedom, which is also shown

in the di↵eomorphism to minisuperspace. Changing variables via the non-commutative

Fourier transform on SU(2) [74, 75], the domain is given by

DEPRL-GFT
⇠= su(2)3/AdSU(2), (3.19)

which is di↵eomorphic to minisuperspace by the same mechanism as shown above for the

BC model [91].

With the domain of the reduced condensate wavefunction now specified, the next goal

is to derive dynamical equations arising from the equations of motion of �.

As it turns out, performing actual calculations and imposing isotropy on solutions is

most convenient in spin representation. Therefore, the spin representation of the reduced

condensate wavefunction and of the semi-classical action are given in Sections 3.4 and 3.5,

based on which the cosmological dynamics are then derived in Section 4.

3.4 Spin representation of reduced condensate wavefunction

In the spin representation, the isotropic restriction on solutions is implemented rather

straightforwardly and the equations of motion simplify drastically. Partly, the expansion

has been already achieved in Section 2.2 for the GFT field. However, specific to the reduced
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For computational ease, instead of adjoint-covariance we impose a left-invariance. The
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SL(2,C) on bivectors. As a consequence of commuting imposition of constraints in the

extended formalism, we would arrive at the domain

D ⇠= hom(2)2, (3.14)

by first imposing right and adjoint-covariance14 and then simplicity. Clearly, the domain

in this form is six-dimensional. We conclude that although the space hom(2)3/AdSL(2,C)
appears to be three-dimensional, the orbits of the adjoint SL(2,C) action are really only

three-dimensional and therefore, the domain is six-dimensional in total, corresponding to

the six dimensions of minisuperspace.

Based on the studies in [46, 91], we make the di↵eomorphism of D and the configu-

rations space of homogeneous 3-geometries explicit for the extended Lorentzian BC GFT

model. First, note that D describes three independent bivectors Bi 2 sl (2,C), i 2 {1, 2, 3}
upon which simplicity is imposed, modulo any simultaneous Lorentz transformation. For

every bivector, the linear simplicity constraint (2.7) with respect to the timelike normal

XA = (1, 0, 0, 0) implies the vanishing of its electric part B
0a. Now, we relate the three

bivectors BAB
i to three vectors in Minkowski space e

A
i 2 R1,3 via [94]

B
AB
i = "

jk
i e

A
j e

B
k , (3.15)

where e
A
i is the tetrad with Lorentz index A 2 {0, 1, 2, 3} and spatial index i. Since

B
0a = 0, the three Minkowski vectors need to satisfy e

0

i = 0, which corresponds exactly

to the time-gauge fixing that is crucial in the construction of LQG [21]. Notice, that the

map defined by Eq. (3.15) exhibits a Z2-symmetry, since {eAi } and {�e
A
i } define the same

triple of bivectors.

Now, the map from D to the domain of minisuperspace, given by GL(3)/O(3), is

defined explicitly by [46]

D �! GL(3)/O(3)

(B1, B2, B3) 7�! gij = eiAe
A
j =

1

8 tr(B1B2B3)
"
kl
i "jmn

�
B

AB
k B

m
AB

� �
B

CD
l B

n
CD

�
.

(3.16)

Clearly, the map is well-defined with respect to the adjoint action of SL(2,C) since all

the Lorentz indices are contracted. It is also evident, that the map is only well-defined

for triples of bivectors that satisfy tr(B1B2B3) 6= 0, which is an extra condition on the

elements of D. However, this is exactly the three-dimensional non-degeneracy condition

that needs to be imposed by hand, which we require at this point.

On the other hand, the coe�cients gij determine three vectors eai up to a sign, which

is however irrelevant if the vectors are further mapped to the bivectors Bi, because of the

Z2-symmetry of Eq. (3.15). Hence, the map defined by Eq. (3.16) is a di↵eomorphism of

D and GL(3)/O(3). A diagrammatic summary of this di↵eomorphism is given in Figure 2,

where at every step, integration over the timelike normal is implicitly understood.

14
As shown explicitly in Section 3.4, right- and adjoint-covariance are equal to right-covariance and

left-invariance. Under integration of the timelike normal, each of the conditions divide out one factor of

SL(2,C)4, resulting in the domain SL(2,C)2.
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mean field approx. corresponds to working with 
simplest condensate states (field coherent states):

commonly, condensate) states, where each fundamental quantum is associated to the same

condensate wavefunction:

|�i = N� exp

Z
dn�

Z
dgI �(gI ,�

a)'̂†(gI ,�
a)

�
|0i (2.15a)

= N� exp

2

4
Z

dn�
X

~⇠

�~⇠(�
a)'̂†

~⇠
(�a)

3

5 |0i ,

where

N� ⌘ e�k�k2/2, (2.16a)

k�k2 =
Z

dn�

Z
dgI |�(gI ,�a)|2 ⌘ hN̂i� . (2.16b)

By definition, such coherent states are eigenstates of the field operator:

'̂(gI ,�
a) |�i = �(gI ,�

a) |�i , '̂~⇠(�
a) |�i = �~⇠(�

a) |�i . (2.17)

States of the form (2.15a) have been used in the past literature to show the intriguing

results about the extraction of homogeneous and isotropic cosmological physics from GFTs

mentioned in Section 1. Moreover, they allow for a simple implementation of an e↵ective

description of relational quantities, as we explain below.

Symmetries of the condensate wavefunction. Before discussing how an e↵ective

relational framework can be implement, let us mention some important symmetry assump-

tions that are often made on the condensate wavefunction. Let us also emphasize that the

imposition of symmetry properties of the condensate wavefunction is conceptually di↵er-

ent from a symmetry reduction procedure. Indeed, the first is a condition on a collective

macroscopic quantity, while the latter acts on the fundamental microscopic degrees of free-

dom (though technically in the case of a coherent state like the one in (2.15a) the collective

wavefunction is also the wavefunction of each microscopic tetrahedron).

A first important symmetry that is imposed on the condensate wavefunction is a di-

agonal left-invariance:

�(gI ,�
a) = �(hgI ,�

a) , 8h 2 SU(2) . (2.18)

This condition can be seen as an average over the relative embedding of the tetrahedron in

su(2) [53]. As a consequence of this imposition, the domain of the condensate wavefunction

is isomorphic to the space of all the spatial metrics at a point, or, equivalently, to minisu-

perspace [58]. This very same result holds also in the case of the extended BC model, with

a similar averaging procedure (now over all configurations involving a preferred hypersur-

face normal and thus only for the integrated condensate wavefunction with respect to the

normal X) [68].

An additional assumption that is often imposed on the condensate wavefunction is its

isotropy [53]. This drastically simplifies the continuum dynamics, since the condensate
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GFT condensate cosmology (for EPRL and BC models)

general form of GFT action for QG coupled to (five) massless free scalar fields

2.2 (so that the expectation value of the volume operator reduces to (2.21)), but we will

also consider a condensate state whose peaking properties are isotropic as well:

�✏,�,⇡0,⇡x;xµ(gI ,�
µ,�) = ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)�̃(gI ,�µ,�) , (3.3)

where |�� x|2 =
Pd

i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
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dd� d�

Z  5Y

a=1

dgaI

!
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`=1

'(g`I ,�
µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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�U (',')

�'(gI ,�µ,�)
|'⌘� = 0

where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ

⌘
⌧
�✏µ ;x

µ,⇡µ

����
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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restriction to "good clock+rods" simple condensate states
2.2 (so that the expectation value of the volume operator reduces to (2.21)), but we will

also consider a condensate state whose peaking properties are isotropic as well:

�✏,�,⇡0,⇡x;xµ(gI ,�
µ,�) = ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)�̃(gI ,�µ,�) , (3.3)

where |�� x|2 =
Pd

i=1
(�i � xi)2. For the moment we will also assume that the parameter

� is a complex quantity, C 3 � = �r + i�i, but with a positive real part, necessary for

the peaking properties of the states, �r > 0. As we will see below, allowing a complex

width for the rods peaking function allows the perturbation equations to be dependent on

a derivative kernel with emergent Lorentz signature.

GFT action. Having made these premises, we now specify the form of SGFT. As ex-

plained in Section 2.1, SGFT depends on the precise spinfoam (or simplicial gravity) model

coupled with d + 1 massless scalar fields one wants to reproduce. While the EPRL-like

and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =

Z
dgI dhI

Z
dd� dd�0 d� d�0 '̄(gI ,�)K(gI , hI ; (�� �0)2�, (�� �0)2)'(hI , (�

0)µ,�0) ,

U =

Z
dd� d�

Z  5Y

a=1

dgaI

!
U(g1I , . . . , g5I )

5Y

`=1

'(g`I ,�
µ,�) ,

where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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✏, |�| ⌧ 1

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
dd�K(gI , hI ;�

2,⇡�)⌘✏(�
0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities

z0 ⌘ ✏⇡2

0/2 , z ⌘ �⇡2

x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):

@2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)E2

j (⇡�)�̃j(x,⇡�) + ↵2r2�̃j(x,⇡�) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2

0

and r2 ⌘
P

i @
2

i represent derivatives with respect to rod and clocks values respectively.

Finally, we have defined
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2✏z0
✏z2
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, (�)E2
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✏z2
0
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�
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�z2
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0

, r(�)s ⌘
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�
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�

.

Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary

parts are given by

Re↵2 =
⇡2
x

6

�2r � �2i
✏z2

0

, Im↵2 =
⇡2
x

3

�r�i
✏z2
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.

Rewriting explicitly equation (3.6) in terms of these quantities, we thus find

0 = @2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)⌘2j �̃j(x,⇡�)� i(�)�2

j �̃j(x,⇡�)

+ Re↵2r2�̃j(x,⇡�) + i Im↵2r2�̃j(x,⇡�) = 0 , (3.7)

with
(�)⌘2j ⌘ 1

✏z2
0
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�
1 + 3�Re↵2
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(�)�2

j = 3� Im↵2rj;2 (3.8)
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GFT condensate cosmology (for EPRL and BC models)

this turns non-linear quantum cosmology eqn into a relational evolution eqn for condensate wavefunction

in terms of relational "time" and "space" directions, defined by physical frame

general form of GFT action for QG coupled to (five) massless free scalar fields
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the peaking properties of the states, �r > 0. As we will see below, allowing a complex
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• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]
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where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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S(',') = K + U

hydrodynamics in mean field approx. for special "good clock+rods" states

<latexit sha1_base64="SPbzhUiF0mwdvMIU0I7WXisZDkw="></latexit>Z
dhId�̃d�̃K

⇣
gI , hI ;�

µ, �̃µ;�, �̃
⌘
�(hI , �̃

µ, �̃) +
�U (',')

�'(gI ,�µ,�)
|'⌘� = 0

where ↵� � 1, and � = ±1, so that M (+1)

µ⌫ = ⌘µ⌫ , while M (�1)

µ⌫ = ��µ⌫ . In particular,

when � = +1, the second term has an opposite sign with respect to the first and the third

one. This guarantees that the energy density of all fields, evaluated in the harmonic frame

and with our choice of signature (�,+,+,+) is positive for a perturbed FRW spacetime8.

However, strictly speaking, this is not necessary as long as the contribution coming from

� is dominating (as we are assuming here, since ↵� � 1) and has the correct sign for the

energy density (which is the case since � is almost homogeneous, so its energy density is

dominated by the background part �̄). As a consequence, we will also consider the case

� = �1, where all the fields enter in the action identically.

It is important to highlight the symmetries of this action, because they will play an

important role in determining the form of the GFT action as well [18, 53, 69]. These are

(cfr. [82]):

Translations: �µ ! �µ + kµ and � ! �+ k, for each µ = 0, . . . , d� 1.

Reflections: �µ ! ��µ and � ! ��, for each µ = 0, . . . , d� 1.

Lorentz transformations/Euclidean rotations When � = +1 (resp. � = �1), trans-

formations R 2 SO(1, 3) (resp. SO(4)) acting as �µ ! Rµ
⌫�⌫ are a symmetry of the

Lagrangian for each µ = 0, . . . , d� 1.

3.2 GFT averaged dynamics

Analogously to what has been done in [53, 65], here we will only extract an e↵ective mean

field dynamics from the full quantum equations of motion. In other words, we will only

consider the imposition of the quantum equations of motion averaged on the states that

we consider to be relevant for an e↵ective relational description of the cosmological system,

which, in our case, would be coherent states |�✏µ ;xµ,⇡µi as in equation (2.15a) whose

condensate wavefunction is assumed to take the form (2.25):

⌧
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�

�✏µ ;xµ,⇡µ

⌘
⌧
�✏µ ;x

µ,⇡µ

����
�SGFT['̂, '̂†]

�'̂†(gI ,�0)

�����✏µ ;x
µ,⇡µ

�
= 0 , (3.2)

Here, SGFT is the GFT action, whose specific form will be discussed below. While perfectly

consistent with the e↵ective and approximate nature of the relational framework discussed

in the previous section, the imposition of only an averaged form of equations of motion is

clearly a strong truncation of the microscopic quantum dynamics, which is expected to be

justified in general only in the emergent regime of very large number of particles (see the

disucssion in Section 2.2 and in footnote 6).

Moreover, for the purposes of this work, we will be interested in observables capturing

only isotropic perturbations (e.g. the volume operator (2.14b)). For this reason, not only

we will assume that the reduced wavefunction is isotropic, in the sense explained in Section

8Since the energy density of the frame field �µ is ⇢[�µ] = ✓µg
ab@a�

µ@b�
µ/2, with ✓0 = 1 and ✓i = �1

for i = 1, . . . , d, we see that in harmonic coordinates ⇢[�0] = �g00(0)2 > 0 and ⇢[�i] = gii(i)2 > 0 (no

sum over i). Without the positive sign for the second term in equation (3.1a), the energy density of “rods”

scalar fields would not be positive.
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restriction to "good clock+rods" simple condensate states
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and extended BC models di↵er on their domain (respectively SU(2) and SL(2,C) ⇥ H3)

and on the precise way the simplicity constraint is imposed, thus resulting in (in princi-

ple) di↵erent kinetic and interaction kernels, they are both defined by an action including

a quadratic kinetic term and a non-local interaction term U + U⇤ (the star representing

complex conjugation) of simplicial9 type characterized by 5 powers of the field operator,

SGFT = K + U + U⇤.

The resulting form of the action is however quite complicated to handle for most practi-

cal applications. For this reasons, one often makes some additional simplifying assumptions

on SGFT [18, 53]:

• First of all, one imposes that the field symmetries of the classical action are preserved

at the quantum level, meaning that they are also symmetries of the GFT action SGFT.

In the case considered here, the symmetries to be respected are those highlighted in

the section above: invariance under Lorentz transformations/Euclidean rotations,

shifts, and reflections. This greatly simplifies the form of the interaction and kinetic

terms, which read, in the EPRL-like case10 [18, 53]

K =
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dgI dhI
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where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra

in order to form a 4-simplex, the basic building block of a 4-dimensional discretized manifold.
10Similar expressions hold for the extended BC model, provided that one extends the domain of the GFT

fields and kinetic interaction kernels as gI ! (GI ;X). Moreover, since the normal X is non-dynamical,

the interaction kernel does not depend on it. As a consequence, only the integrated field (2.4) becomes

important at the level of interactions. The kinetic kernel instead depends on the normal in a localized way,

imposing X = X 0, with X and X 0 being the arguments of '̄ and ' respectively. We refer to [68] for more

details on the action of the extended BC model.
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where (���0)2� ⌘ sgn(�)M (�)
µ⌫ (���0)µ(���0)⌫ and whereK and U are the respectively

the aforementioned kinetic and interaction kernels encoding information about the

9These kind of interactions are said simplicial because they represent the gluing of 5 di↵erent tetrahedra
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EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
dd�K(gI , hI ;�

2,⇡�)⌘✏(�
0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities

z0 ⌘ ✏⇡2

0/2 , z ⌘ �⇡2

x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):

@2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)E2

j (⇡�)�̃j(x,⇡�) + ↵2r2�̃j(x,⇡�) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2

0

and r2 ⌘
P

i @
2

i represent derivatives with respect to rod and clocks values respectively.

Finally, we have defined

� ⌘
p
2✏z0
✏z2

0

, (�)E2

j ⌘ 1

✏z2
0

� rj;2(⇡�)
�
1 + 3�↵2

�
, ↵2 ⌘ 1

3

�z2

✏z2
0

, r(�)s ⌘
K̃(s)

�

K̃(0)

�

.

Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary

parts are given by

Re↵2 =
⇡2
x

6

�2r � �2i
✏z2

0

, Im↵2 =
⇡2
x

3

�r�i
✏z2

0

.

Rewriting explicitly equation (3.6) in terms of these quantities, we thus find

0 = @2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)⌘2j �̃j(x,⇡�)� i(�)�2

j �̃j(x,⇡�)

+ Re↵2r2�̃j(x,⇡�) + i Im↵2r2�̃j(x,⇡�) = 0 , (3.7)

with
(�)⌘2j ⌘ 1

✏z2
0

� rj;2(⇡�)
�
1 + 3�Re↵2

�
(�)�2

j = 3� Im↵2rj;2 (3.8)
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we analyse it first under two simplifying assumptions:

• isotropy:

wavefunction e↵ectively turns out to depend on only one spin label j:

�(gI ,�
a) =

1X

j=0

�j(�
a)I⇤jjjj,◆+

m1m2m3m4
Ijjjj,◆+
n1n2n3n4

p
d(j)4

4Y

i=1

Dj
mini

(gI) , (2.19)

where d(j) = 2j + 1 and ◆+ is the largest eigenvalue of the volume operator compatible

with j. Therefore, the condensate wavefunction in spin representation reads

�~⇠(�
a) ⌘ �{j,~m,◆+}(�

a) = �j(�
a)Ijjjj,◆+

m1m2m3m4
. (2.20)

Importantly, a similar result holds also for the extended BC model, with the dynamical

part of the condensate wavefunction �⇢(�a), e↵ectively depending on the continuous rep-

resentation label ⇢ [68]. As a consequence of this result, it is useful to define a label �

which can be identified with ⇢ or j depending on the specific model chosen (extended BC

or EPRL-like, respectively).

For instance, in terms of this new label, we can write the expectation value of the

number and the volume operators on an isotropic coherent state as

hN̂i� =
XZ

�

|��(�a)|2 , hV̂ i� =
XZ

�

V�|��(�a)|2 , (2.21)

with the
PR

symbol indicating that, depending on whether � = ⇢ or � = j, the right-hand-

sides of the above equations will involve an integral or a sum, respectively.

E↵ective relationality in GFT: CPSs. Let us now discuss a way to implement an

e↵ective relational description of physical quantities in the GFT formalism. As we have

mentioned above, in [18] an e↵ective framework for the relational evolution of geometric

observables with respect to a scalar field clock was constructed by making use of Coherent

Peaked States (CPSs). As the name suggests, these are coherent states of the form (2.15a)

whose wavefunction has however strong peaking properties on the scalar field variables.

For instance, for a single scalar field clock, we would have

�✏(gI ,�
0) ⌘ ⌘✏(gI ;�

0 � x0,⇡0)�̃(gI ,�
0) , (2.22)

where the peaking properties around x0 are encoded in the peaking function ⌘✏ with a

typical width given by ✏. Of course, in order for the peaking properties to be e↵ective,

one wants ✏ to be very small, ✏ ⌧ 1. However, one cannot just take ✏ ! 0, because as a

consequence of the Heisenberg uncertainty principle, the fluctuations of the operator ⇧̂0

defined in equation (2.14d) would become arbitrarily large, which is certainly not ideal if

one wants to interpret the scalar field as a classical clock, at least in some appropriate

limit. In order to guarantee the existence of such classical clock regime, in [18, 65] the

condensate wavefunction (2.22) was also assumed to be dependent on the parameter ⇡0,

satisfying ✏⇡2

0
� 1. As a concrete example of the above peaking function, one can consider

a Gaussian [18, 65]:

⌘✏(�
0 � x0,⇡0) ⌘ N✏ exp


�(�0 � x0)2

2✏

�
exp[i⇡0(�

0 � x0)] , (2.23)
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largest eigenvalue of volume 
compatible with j

condensate wavefunction depends on single j

• subdominant GFT interactions: U << K; consistent with spin foam and discrete gravity interpretation

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model
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dependence on both GFT model and states

Fourier mode of 
matter field variable

resulting mean field hydrodynamics eqn:

linear part of non-linear hydro eqns



we analyse it first under two simplifying assumptions:

• isotropy:

wavefunction e↵ectively turns out to depend on only one spin label j:

�(gI ,�
a) =

1X

j=0

�j(�
a)I⇤jjjj,◆+

m1m2m3m4
Ijjjj,◆+
n1n2n3n4

p
d(j)4

4Y

i=1

Dj
mini

(gI) , (2.19)

where d(j) = 2j + 1 and ◆+ is the largest eigenvalue of the volume operator compatible

with j. Therefore, the condensate wavefunction in spin representation reads

�~⇠(�
a) ⌘ �{j,~m,◆+}(�

a) = �j(�
a)Ijjjj,◆+

m1m2m3m4
. (2.20)

Importantly, a similar result holds also for the extended BC model, with the dynamical

part of the condensate wavefunction �⇢(�a), e↵ectively depending on the continuous rep-

resentation label ⇢ [68]. As a consequence of this result, it is useful to define a label �

which can be identified with ⇢ or j depending on the specific model chosen (extended BC

or EPRL-like, respectively).

For instance, in terms of this new label, we can write the expectation value of the

number and the volume operators on an isotropic coherent state as

hN̂i� =
XZ

�

|��(�a)|2 , hV̂ i� =
XZ

�

V�|��(�a)|2 , (2.21)

with the
PR

symbol indicating that, depending on whether � = ⇢ or � = j, the right-hand-

sides of the above equations will involve an integral or a sum, respectively.

E↵ective relationality in GFT: CPSs. Let us now discuss a way to implement an

e↵ective relational description of physical quantities in the GFT formalism. As we have

mentioned above, in [18] an e↵ective framework for the relational evolution of geometric

observables with respect to a scalar field clock was constructed by making use of Coherent

Peaked States (CPSs). As the name suggests, these are coherent states of the form (2.15a)

whose wavefunction has however strong peaking properties on the scalar field variables.

For instance, for a single scalar field clock, we would have

�✏(gI ,�
0) ⌘ ⌘✏(gI ;�

0 � x0,⇡0)�̃(gI ,�
0) , (2.22)

where the peaking properties around x0 are encoded in the peaking function ⌘✏ with a

typical width given by ✏. Of course, in order for the peaking properties to be e↵ective,

one wants ✏ to be very small, ✏ ⌧ 1. However, one cannot just take ✏ ! 0, because as a

consequence of the Heisenberg uncertainty principle, the fluctuations of the operator ⇧̂0

defined in equation (2.14d) would become arbitrarily large, which is certainly not ideal if

one wants to interpret the scalar field as a classical clock, at least in some appropriate

limit. In order to guarantee the existence of such classical clock regime, in [18, 65] the

condensate wavefunction (2.22) was also assumed to be dependent on the parameter ⇡0,

satisfying ✏⇡2

0
� 1. As a concrete example of the above peaking function, one can consider

a Gaussian [18, 65]:

⌘✏(�
0 � x0,⇡0) ⌘ N✏ exp


�(�0 � x0)2

2✏

�
exp[i⇡0(�

0 � x0)] , (2.23)
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largest eigenvalue of volume 
compatible with j

condensate wavefunction depends on single j

• subdominant GFT interactions: U << K; consistent with spin foam and discrete gravity interpretation

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using

�̃00

j =
⇥
⇢00j � (✓0j)
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we see that, for the real and imaginary parts we have, respectively,
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� 2r⇢j ·r✓j , (3.9a)
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i
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).
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using: rewrite in standard hydrodynamic form (fluid density, phase)

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).
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tions of motion reduce to
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dependence on both GFT model and states

Fourier mode of 
matter field variable

resulting mean field hydrodynamics eqn:

linear part of non-linear hydro eqns



we analyse it first under two simplifying assumptions:

• isotropy:

wavefunction e↵ectively turns out to depend on only one spin label j:

�(gI ,�
a) =

1X

j=0

�j(�
a)I⇤jjjj,◆+

m1m2m3m4
Ijjjj,◆+
n1n2n3n4

p
d(j)4

4Y

i=1

Dj
mini

(gI) , (2.19)

where d(j) = 2j + 1 and ◆+ is the largest eigenvalue of the volume operator compatible

with j. Therefore, the condensate wavefunction in spin representation reads

�~⇠(�
a) ⌘ �{j,~m,◆+}(�

a) = �j(�
a)Ijjjj,◆+

m1m2m3m4
. (2.20)

Importantly, a similar result holds also for the extended BC model, with the dynamical

part of the condensate wavefunction �⇢(�a), e↵ectively depending on the continuous rep-

resentation label ⇢ [68]. As a consequence of this result, it is useful to define a label �

which can be identified with ⇢ or j depending on the specific model chosen (extended BC

or EPRL-like, respectively).

For instance, in terms of this new label, we can write the expectation value of the

number and the volume operators on an isotropic coherent state as

hN̂i� =
XZ

�

|��(�a)|2 , hV̂ i� =
XZ

�

V�|��(�a)|2 , (2.21)

with the
PR

symbol indicating that, depending on whether � = ⇢ or � = j, the right-hand-

sides of the above equations will involve an integral or a sum, respectively.

E↵ective relationality in GFT: CPSs. Let us now discuss a way to implement an

e↵ective relational description of physical quantities in the GFT formalism. As we have

mentioned above, in [18] an e↵ective framework for the relational evolution of geometric

observables with respect to a scalar field clock was constructed by making use of Coherent

Peaked States (CPSs). As the name suggests, these are coherent states of the form (2.15a)

whose wavefunction has however strong peaking properties on the scalar field variables.

For instance, for a single scalar field clock, we would have

�✏(gI ,�
0) ⌘ ⌘✏(gI ;�

0 � x0,⇡0)�̃(gI ,�
0) , (2.22)

where the peaking properties around x0 are encoded in the peaking function ⌘✏ with a

typical width given by ✏. Of course, in order for the peaking properties to be e↵ective,

one wants ✏ to be very small, ✏ ⌧ 1. However, one cannot just take ✏ ! 0, because as a

consequence of the Heisenberg uncertainty principle, the fluctuations of the operator ⇧̂0

defined in equation (2.14d) would become arbitrarily large, which is certainly not ideal if

one wants to interpret the scalar field as a classical clock, at least in some appropriate

limit. In order to guarantee the existence of such classical clock regime, in [18, 65] the

condensate wavefunction (2.22) was also assumed to be dependent on the parameter ⇡0,

satisfying ✏⇡2

0
� 1. As a concrete example of the above peaking function, one can consider

a Gaussian [18, 65]:

⌘✏(�
0 � x0,⇡0) ⌘ N✏ exp


�(�0 � x0)2

2✏

�
exp[i⇡0(�

0 � x0)] , (2.23)
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0
� 1. As a concrete example of the above peaking function, one can consider

a Gaussian [18, 65]:

⌘✏(�
0 � x0,⇡0) ⌘ N✏ exp


�(�0 � x0)2

2✏

�
exp[i⇡0(�

0 � x0)] , (2.23)
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largest eigenvalue of volume 
compatible with j

condensate wavefunction depends on single j

• subdominant GFT interactions: U << K; consistent with spin foam and discrete gravity interpretation

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using

�̃00

j =
⇥
⇢00j � (✓0j)

2⇢j + i✓00j ⇢j + 2i⇢0j✓
0

j

⇤
ei✓j ,

r2�̃j =
⇥
r2⇢j � (r✓j)

2⇢j + ir2✓j⇢j + 2ir⇢j ·r✓j
⇤
ei✓j ,

we see that, for the real and imaginary parts we have, respectively,

0 = ⇢00j +Re↵2r2⇢j �
h�
✓0j
�
2
+ (�)⌘2j � �✓0j � Re↵2 (r✓j)

2 � Im↵2r2✓j
i
⇢j

� 2r⇢j ·r✓j , (3.9a)

0 = ✓00j ⇢j + 2✓0j⇢
0

j � �⇢0j +Re↵2
⇥
2r⇢j ·r✓j +r2✓j⇢j

⇤
� (�)�2

j ⇢j

+ Im↵2

h
r2⇢j � (r✓j)

2 ⇢j
i
, (3.9b)

where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become

⇢̄00j (x
0,⇡�)�

h�
✓̄0j(x

0,⇡�)
�2

+ (�)⌘2j (⇡�)� �✓̄0j(x
0,⇡�)

i
⇢̄j(x

0,⇡�) = 0 , (3.11)

✓̄00j (x
0,⇡�)⇢̄j + 2✓̄0j(x

0,⇡�)⇢̄
0

j(x
0,⇡�)� �⇢̄0j(x

0,⇡�)� (�)�2

j ⇢̄j(x
0,⇡�) = 0 , (3.12)

where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain

✓̄00j (x
0,⇡�)⇢̄

2(x0,⇡�)j + (✓̄0j(x
0,⇡�)� �/2)(⇢̄2j )

0(x0,⇡�)� (�)�2

j ⇢̄(x
0,⇡�)j = 0 ,

or, equivalently,

✓̄00j (x
0,⇡�) + (✓̄0j(x

0,⇡�)� �/2)
(⇢̄2j )

0(x0,⇡�)

⇢̄2j (x
0,⇡�)

� (�)�2

j = 0 .

Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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using: rewrite in standard hydrodynamic form (fluid density, phase)

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
dd�K(gI , hI ;�

2,⇡�)⌘✏(�
0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities

z0 ⌘ ✏⇡2

0/2 , z ⌘ �⇡2

x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):

@2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)E2

j (⇡�)�̃j(x,⇡�) + ↵2r2�̃j(x,⇡�) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2

0

and r2 ⌘
P

i @
2

i represent derivatives with respect to rod and clocks values respectively.

Finally, we have defined

� ⌘
p
2✏z0
✏z2

0

, (�)E2

j ⌘ 1

✏z2
0

� rj;2(⇡�)
�
1 + 3�↵2

�
, ↵2 ⌘ 1

3

�z2

✏z2
0

, r(�)s ⌘
K̃(s)

�

K̃(0)

�

.

Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary

parts are given by

Re↵2 =
⇡2
x

6

�2r � �2i
✏z2

0

, Im↵2 =
⇡2
x

3

�r�i
✏z2

0

.

Rewriting explicitly equation (3.6) in terms of these quantities, we thus find

0 = @2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)⌘2j �̃j(x,⇡�)� i(�)�2

j �̃j(x,⇡�)

+ Re↵2r2�̃j(x,⇡�) + i Im↵2r2�̃j(x,⇡�) = 0 , (3.7)

with
(�)⌘2j ⌘ 1

✏z2
0

� rj;2(⇡�)
�
1 + 3�Re↵2

�
(�)�2

j = 3� Im↵2rj;2 (3.8)
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EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).
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lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):
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dependence on both GFT model and states

Fourier mode of 
matter field variable

resulting mean field hydrodynamics eqn:

linear part of non-linear hydro eqns

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using

�̃00

j =
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0
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⇤
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⇥
r2⇢j � (r✓j)
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we see that, for the real and imaginary parts we have, respectively,
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become
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h�
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✓̄00j (x
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EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
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decomposition into homogeneous background + perturbations

This is our fundamental equation determining the form of the reduced condensate wave-
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decomposition into homogeneous background + perturbations
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with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-
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Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2
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j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call
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+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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assume

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
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0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities
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x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):
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where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2
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Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary
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Rewriting explicitly equation (3.6) in terms of these quantities, we thus find
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background eqns:

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).
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where we have suppressed the explicit dependence of functions for simplicity.
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homogeneous background + inhomogeneous perturbations (defined in relational terms)
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and modulus can equivalently be written in terms of the integration constants Qj and Ej
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-
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it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a
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assume

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
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Z
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0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities

z0 ⌘ ✏⇡2

0/2 , z ⌘ �⇡2

x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):

@2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)E2

j (⇡�)�̃j(x,⇡�) + ↵2r2�̃j(x,⇡�) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2
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i @
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Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary
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Rewriting explicitly equation (3.6) in terms of these quantities, we thus find
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background eqns:

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using
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we see that, for the real and imaginary parts we have, respectively,
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become
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where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain
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or, equivalently,
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Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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and modulus can equivalently be written in terms of the integration constants Qj and Ej
as
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where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition
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and can only be achieved of course if �2i � �2r . The above equality ⇡2
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seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a
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and modulus can equivalently be written in terms of the integration constants Qj and Ej
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plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a
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�
� Im↵2r2�✓j(x,⇡�)
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0,⇡�) , (3.14a)
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0
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0
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j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
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�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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assume

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
dd�K(gI , hI ;�

2,⇡�)⌘✏(�
0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities

z0 ⌘ ✏⇡2

0/2 , z ⌘ �⇡2

x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):

@2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)E2

j (⇡�)�̃j(x,⇡�) + ↵2r2�̃j(x,⇡�) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2

0

and r2 ⌘
P

i @
2

i represent derivatives with respect to rod and clocks values respectively.

Finally, we have defined

� ⌘
p
2✏z0
✏z2

0

, (�)E2

j ⌘ 1

✏z2
0

� rj;2(⇡�)
�
1 + 3�↵2

�
, ↵2 ⌘ 1

3

�z2

✏z2
0

, r(�)s ⌘
K̃(s)

�

K̃(0)

�

.

Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary

parts are given by

Re↵2 =
⇡2
x

6

�2r � �2i
✏z2

0

, Im↵2 =
⇡2
x

3

�r�i
✏z2

0

.

Rewriting explicitly equation (3.6) in terms of these quantities, we thus find

0 = @2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)⌘2j �̃j(x,⇡�)� i(�)�2

j �̃j(x,⇡�)

+ Re↵2r2�̃j(x,⇡�) + i Im↵2r2�̃j(x,⇡�) = 0 , (3.7)

with
(�)⌘2j ⌘ 1

✏z2
0

� rj;2(⇡�)
�
1 + 3�Re↵2

�
(�)�2

j = 3� Im↵2rj;2 (3.8)
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background eqns:

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using

�̃00

j =
⇥
⇢00j � (✓0j)

2⇢j + i✓00j ⇢j + 2i⇢0j✓
0

j

⇤
ei✓j ,

r2�̃j =
⇥
r2⇢j � (r✓j)

2⇢j + ir2✓j⇢j + 2ir⇢j ·r✓j
⇤
ei✓j ,

we see that, for the real and imaginary parts we have, respectively,

0 = ⇢00j +Re↵2r2⇢j �
h�
✓0j
�
2
+ (�)⌘2j � �✓0j � Re↵2 (r✓j)

2 � Im↵2r2✓j
i
⇢j

� 2r⇢j ·r✓j , (3.9a)

0 = ✓00j ⇢j + 2✓0j⇢
0

j � �⇢0j +Re↵2
⇥
2r⇢j ·r✓j +r2✓j⇢j

⇤
� (�)�2

j ⇢j

+ Im↵2

h
r2⇢j � (r✓j)

2 ⇢j
i
, (3.9b)

where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become

⇢̄00j (x
0,⇡�)�

h�
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0,⇡�)
�2
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0,⇡�)

i
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0,⇡�) = 0 , (3.11)

✓̄00j (x
0,⇡�)⇢̄j + 2✓̄0j(x

0,⇡�)⇢̄
0

j(x
0,⇡�)� �⇢̄0j(x

0,⇡�)� (�)�2

j ⇢̄j(x
0,⇡�) = 0 , (3.12)

where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain

✓̄00j (x
0,⇡�)⇢̄

2(x0,⇡�)j + (✓̄0j(x
0,⇡�)� �/2)(⇢̄2j )

0(x0,⇡�)� (�)�2

j ⇢̄(x
0,⇡�)j = 0 ,

or, equivalently,

✓̄00j (x
0,⇡�) + (✓̄0j(x

0,⇡�)� �/2)
(⇢̄2j )

0(x0,⇡�)

⇢̄2j (x
0,⇡�)

� (�)�2

j = 0 .

Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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perturbations eqns:

where, similarly to what we did in the background case, and in light of the above discussion,

we neglected the term (�)�2

j . It is then easy to see that the decoupling regime corresponds

to the limit in which equation (3.15b) is satisfied, and when the background density ⇢̄ is

very large. Indeed, using the background equation (3.13a), equation (3.14a) can be written

as

L[�⇢j ] ' 2�✓0jQj/⇢̄j ,

with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,

the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄
�2

j (⇢̄0j/⇢̄j) ⇠ �2Qjµj ⇢̄
�2

j ,

we deduce that the first term at the second line of equation (3.16) is of order �⇢j/⇢̄2j , while

the first term at the first line of equation (3.16) is of order ⇢̄j�✓j , so for large enough ⇢̄j ,

only the latter is important. As a result, equations (3.14) become

0 ' �⇢00j (x,⇡�)�r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�) (3.17a)

, 0 ' �✓00j (x,⇡�) + 2�✓0j(x,⇡�)
⇢̄0j(x

0,⇡�)

⇢̄j(x0,⇡�)
�r2�✓j(x,⇡�) , (3.17b)

which are clearly decoupled. Let us emphasize again that this this fairly simple decoupling

regime is characterized by two assumptions:

1. We have assumed that the parameters �i and �r satisfy |�i| � �r and that are such

that equations (3.15) are satisfied. This resulted in the form for the second order

derivative operators appearing in both the equations above to be ⇤ operators, i.e.,

to show some form of local Lorentz symmetry.

2. We have considered a large ⇢̄j regime, which, together with the assumption that

| Im↵2| is negligible, led to the decoupling of the equations for the modulus and

phase perturbations.

Item 1 above is particularly interesting, because it implies that the resulting Lorentzian

properties of the second order di↵erential operator in the perturbed equations are in fact

only a result of the features of the peaking functions, i.e. of the (approximate) vacuum state

we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.

Indeed, the parameter �, determining whether the matter variables enter the fundamental

GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in
(�)⌘j , and therefore does not a↵ect at all the di↵erential structure of the equations. Since,

as we will see below, the structure of the perturbation equations will naturally reflect

on the structure of equations determining the relational evolution of perturbed physical

quantities, this result is particularly intriguing, because it would suggest that only a certain

class of states is able to produce relational equations with local Lorentz signature. We will

comment further on this in Section 5.

4 E↵ective relational dynamics of physical quantities

In this section, we will use the evolution equations for the condensate wavefunction in order

to obtain relational evolution equations for the expectation values of physical quantities,
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highly coupled; decouple for large condensate density (large universe volume) and

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�
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j (⇡�)
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+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
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�
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0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0
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0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x
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0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#
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
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+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call
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+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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where, similarly to what we did in the background case, and in light of the above discussion,
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are integration constants (conserved quantities)
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decomposition into homogeneous background + perturbations

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become
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where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain
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Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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where we have suppressed the explicit dependence of functions for simplicity.
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homogeneous background + inhomogeneous perturbations (defined in relational terms)

negligible

and modulus can equivalently be written in terms of the integration constants Qj and Ej
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where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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assume

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
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where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities
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x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):
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where j is the isotropic spin label introduced in equation (2.20), where we have dropped
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Rewriting explicitly equation (3.6) in terms of these quantities, we thus find
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background eqns:

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-
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framework (with respect to spatial gradients) in which we will study the equations above.
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results, in these cases are the same as in [18], so that the equations for background phase
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where we have suppressed the explicit dependence of functions for simplicity.
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perturbations eqns:

where, similarly to what we did in the background case, and in light of the above discussion,

we neglected the term (�)�2

j . It is then easy to see that the decoupling regime corresponds

to the limit in which equation (3.15b) is satisfied, and when the background density ⇢̄ is

very large. Indeed, using the background equation (3.13a), equation (3.14a) can be written

as

L[�⇢j ] ' 2�✓0jQj/⇢̄j ,

with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,

the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄
�2

j (⇢̄0j/⇢̄j) ⇠ �2Qjµj ⇢̄
�2

j ,

we deduce that the first term at the second line of equation (3.16) is of order �⇢j/⇢̄2j , while

the first term at the first line of equation (3.16) is of order ⇢̄j�✓j , so for large enough ⇢̄j ,

only the latter is important. As a result, equations (3.14) become

0 ' �⇢00j (x,⇡�)�r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�) (3.17a)

, 0 ' �✓00j (x,⇡�) + 2�✓0j(x,⇡�)
⇢̄0j(x

0,⇡�)

⇢̄j(x0,⇡�)
�r2�✓j(x,⇡�) , (3.17b)

which are clearly decoupled. Let us emphasize again that this this fairly simple decoupling

regime is characterized by two assumptions:

1. We have assumed that the parameters �i and �r satisfy |�i| � �r and that are such

that equations (3.15) are satisfied. This resulted in the form for the second order

derivative operators appearing in both the equations above to be ⇤ operators, i.e.,

to show some form of local Lorentz symmetry.

2. We have considered a large ⇢̄j regime, which, together with the assumption that

| Im↵2| is negligible, led to the decoupling of the equations for the modulus and

phase perturbations.

Item 1 above is particularly interesting, because it implies that the resulting Lorentzian

properties of the second order di↵erential operator in the perturbed equations are in fact

only a result of the features of the peaking functions, i.e. of the (approximate) vacuum state

we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.

Indeed, the parameter �, determining whether the matter variables enter the fundamental

GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in
(�)⌘j , and therefore does not a↵ect at all the di↵erential structure of the equations. Since,

as we will see below, the structure of the perturbation equations will naturally reflect

on the structure of equations determining the relational evolution of perturbed physical

quantities, this result is particularly intriguing, because it would suggest that only a certain

class of states is able to produce relational equations with local Lorentz signature. We will

comment further on this in Section 5.

4 E↵ective relational dynamics of physical quantities

In this section, we will use the evolution equations for the condensate wavefunction in order

to obtain relational evolution equations for the expectation values of physical quantities,
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highly coupled; decouple for large condensate density (large universe volume) and

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as
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where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are
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�
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0
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j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)
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#
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
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�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2
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+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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where, similarly to what we did in the background case, and in light of the above discussion,

we neglected the term (�)�2

j . It is then easy to see that the decoupling regime corresponds

to the limit in which equation (3.15b) is satisfied, and when the background density ⇢̄ is

very large. Indeed, using the background equation (3.13a), equation (3.14a) can be written

as

L[�⇢j ] ' 2�✓0jQj/⇢̄j ,

with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,
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we deduce that the first term at the second line of equation (3.16) is of order �⇢j/⇢̄2j , while

the first term at the first line of equation (3.16) is of order ⇢̄j�✓j , so for large enough ⇢̄j ,

only the latter is important. As a result, equations (3.14) become
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which are clearly decoupled. Let us emphasize again that this this fairly simple decoupling

regime is characterized by two assumptions:

1. We have assumed that the parameters �i and �r satisfy |�i| � �r and that are such

that equations (3.15) are satisfied. This resulted in the form for the second order

derivative operators appearing in both the equations above to be ⇤ operators, i.e.,

to show some form of local Lorentz symmetry.

2. We have considered a large ⇢̄j regime, which, together with the assumption that

| Im↵2| is negligible, led to the decoupling of the equations for the modulus and

phase perturbations.

Item 1 above is particularly interesting, because it implies that the resulting Lorentzian

properties of the second order di↵erential operator in the perturbed equations are in fact

only a result of the features of the peaking functions, i.e. of the (approximate) vacuum state

we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.

Indeed, the parameter �, determining whether the matter variables enter the fundamental

GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in
(�)⌘j , and therefore does not a↵ect at all the di↵erential structure of the equations. Since,

as we will see below, the structure of the perturbation equations will naturally reflect

on the structure of equations determining the relational evolution of perturbed physical

quantities, this result is particularly intriguing, because it would suggest that only a certain

class of states is able to produce relational equations with local Lorentz signature. We will

comment further on this in Section 5.

4 E↵ective relational dynamics of physical quantities

In this section, we will use the evolution equations for the condensate wavefunction in order

to obtain relational evolution equations for the expectation values of physical quantities,
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decomposition into homogeneous background + perturbations
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-
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Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2
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The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition
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fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)
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which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as
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12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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assume

EPRL-like model. In particular, as already mentioned in Section 2.1, it is U that

carries information about the specific Lorentzian embedding of the theory.

• The second simplifying assumption that is often made in cosmological applications

is that one is interested in a “mescocopic regime” where interactions are in fact

essentially negligible. Clearly, this can only be a transient regime, and one expects

that, eventually, interactions do become important (see e.g. [62, 67, 83], for some

works which study the phenomenological implications of the inclusion of interactions).

Dynamical equations. Under both these assumptions, and performing a Fourier trans-

form with respect to the variables � and �0, one can see that the averaged quantum equa-

tions of motion reduce to
Z

dhI

Z
dd�K(gI , hI ;�

2,⇡�)⌘✏(�
0;⇡0)⌘�(|�|;⇡x)�̃(hI ,�0 + x0,�+ x,⇡�) = 0 , (3.4)

where ⇡� is the variable canonically conjugate to � with respect to the Fourier transform.

Expanding K and �̃ in power series around �0 = 0, � = 0 [18], and assuming that (i) |�|
and ✏ are small, but (ii) the quantities

z0 ⌘ ✏⇡2

0/2 , z ⌘ �⇡2

x/2 (3.5)

are large in absolute value and (iii) reducing to isotropic configurations, one finds, at the

lowest order in the small parameters |�| and ✏ (see Appendix B for a detailed derivation):

@2

0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)E2

j (⇡�)�̃j(x,⇡�) + ↵2r2�̃j(x,⇡�) = 0 , (3.6)

where j is the isotropic spin label introduced in equation (2.20), where we have dropped

the superscript µ for the argument of the reduced wavefunction �̃, x ⌘ xµ and where @2

0

and r2 ⌘
P

i @
2

i represent derivatives with respect to rod and clocks values respectively.
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�
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�

.

Notice that by definition ↵2 is in general a complex parameter, whose real and imaginary

parts are given by

Re↵2 =
⇡2
x

6
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0

, Im↵2 =
⇡2
x
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�r�i
✏z2

0

.

Rewriting explicitly equation (3.6) in terms of these quantities, we thus find
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0 �̃j(x,⇡�)� i�@0�̃j(x,⇡�)� (�)⌘2j �̃j(x,⇡�)� i(�)�2

j �̃j(x,⇡�)
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j = 3� Im↵2rj;2 (3.8)
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dependence on both GFT model and condensate states
now, need to obtain equations for physical observables

L. Marchetti, DO, '21

background eqns:

This is our fundamental equation determining the form of the reduced condensate wave-

function �̃. As in [18, 53], however, it is useful to decompose equation (3.7) in its real and

imaginary parts, by defining �̃j ⌘ ⇢j exp[i✓j ], so that, using

�̃00

j =
⇥
⇢00j � (✓0j)
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ei✓j ,

we see that, for the real and imaginary parts we have, respectively,

0 = ⇢00j +Re↵2r2⇢j �
h�
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�
2
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i
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� 2r⇢j ·r✓j , (3.9a)
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i
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where we have suppressed the explicit dependence of functions for simplicity.

At this point, it is important to recall that we are interested in slightly inhomoge-

neous relational quantities. Therefore, in the next section we will consider a perturbative

framework (with respect to spatial gradients) in which we will study the equations above.

3.3 Background and perturbed equations of motion

The perturbative context will be defined by assuming that the functions ⇢j and ✓j can be

written as

⇢j = ⇢̄j + �⇢j , ✓j ⌘ ✓̄j + �✓j , (3.10)

with ⇢̄ = ⇢̄(x0,⇡�) and ✓̄ = ✓̄(x0,⇡�) being “background” (zeroth-order) quantities and

with �⇢j and �✓j being small corrections to them. Let us study the zeroth- and the first-

order (in �⇢, �✓) form of equations (3.9).

Background. At the zeroth-order equations (3.9) become
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where we have specified the dependence of the condensate modulus and phase on x0 and

⇡� explicitly. Let us rewrite the second equation by multiplying by ⇢̄j 6= 0: we obtain

✓̄00j (x
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or, equivalently,
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� (�)�2

j = 0 .

Now, assume that, in the regime of interest, (�)�2

j in the above equation is negligible11. The

results, in these cases are the same as in [18], so that the equations for background phase

11Recall that (�)�2

j / Im↵. We will see below that in order to guarantee the emergence of a local

Lorentz symmetry in the perturbation equations, | Im↵| must be much smaller than one, thus providing an

additional justification to the requirement of small (�)�2

j .
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perturbations eqns:

where, similarly to what we did in the background case, and in light of the above discussion,

we neglected the term (�)�2

j . It is then easy to see that the decoupling regime corresponds

to the limit in which equation (3.15b) is satisfied, and when the background density ⇢̄ is

very large. Indeed, using the background equation (3.13a), equation (3.14a) can be written

as

L[�⇢j ] ' 2�✓0jQj/⇢̄j ,

with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,

the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄
�2

j (⇢̄0j/⇢̄j) ⇠ �2Qjµj ⇢̄
�2

j ,

we deduce that the first term at the second line of equation (3.16) is of order �⇢j/⇢̄2j , while

the first term at the first line of equation (3.16) is of order ⇢̄j�✓j , so for large enough ⇢̄j ,

only the latter is important. As a result, equations (3.14) become

0 ' �⇢00j (x,⇡�)�r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�) (3.17a)

, 0 ' �✓00j (x,⇡�) + 2�✓0j(x,⇡�)
⇢̄0j(x

0,⇡�)

⇢̄j(x0,⇡�)
�r2�✓j(x,⇡�) , (3.17b)

which are clearly decoupled. Let us emphasize again that this this fairly simple decoupling

regime is characterized by two assumptions:

1. We have assumed that the parameters �i and �r satisfy |�i| � �r and that are such

that equations (3.15) are satisfied. This resulted in the form for the second order

derivative operators appearing in both the equations above to be ⇤ operators, i.e.,

to show some form of local Lorentz symmetry.

2. We have considered a large ⇢̄j regime, which, together with the assumption that

| Im↵2| is negligible, led to the decoupling of the equations for the modulus and

phase perturbations.

Item 1 above is particularly interesting, because it implies that the resulting Lorentzian

properties of the second order di↵erential operator in the perturbed equations are in fact

only a result of the features of the peaking functions, i.e. of the (approximate) vacuum state

we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.

Indeed, the parameter �, determining whether the matter variables enter the fundamental

GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in
(�)⌘j , and therefore does not a↵ect at all the di↵erential structure of the equations. Since,

as we will see below, the structure of the perturbation equations will naturally reflect

on the structure of equations determining the relational evolution of perturbed physical

quantities, this result is particularly intriguing, because it would suggest that only a certain

class of states is able to produce relational equations with local Lorentz signature. We will

comment further on this in Section 5.

4 E↵ective relational dynamics of physical quantities

In this section, we will use the evolution equations for the condensate wavefunction in order

to obtain relational evolution equations for the expectation values of physical quantities,
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highly coupled; decouple for large condensate density (large universe volume) and
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where, similarly to what we did in the background case, and in light of the above discussion,

we neglected the term (�)�2

j . It is then easy to see that the decoupling regime corresponds

to the limit in which equation (3.15b) is satisfied, and when the background density ⇢̄ is

very large. Indeed, using the background equation (3.13a), equation (3.14a) can be written

as
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with L an appropriate linear di↵erential operator. So, �⇢ ⇠ �✓/⇢̄, and for large enough ⇢̄j ,

the right-hand-side is negligible. Similarly, using that ✓̄00j = �2Qj ⇢̄
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we deduce that the first term at the second line of equation (3.16) is of order �⇢j/⇢̄2j , while

the first term at the first line of equation (3.16) is of order ⇢̄j�✓j , so for large enough ⇢̄j ,

only the latter is important. As a result, equations (3.14) become

0 ' �⇢00j (x,⇡�)�r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�) (3.17a)

, 0 ' �✓00j (x,⇡�) + 2�✓0j(x,⇡�)
⇢̄0j(x

0,⇡�)

⇢̄j(x0,⇡�)
�r2�✓j(x,⇡�) , (3.17b)

which are clearly decoupled. Let us emphasize again that this this fairly simple decoupling

regime is characterized by two assumptions:

1. We have assumed that the parameters �i and �r satisfy |�i| � �r and that are such

that equations (3.15) are satisfied. This resulted in the form for the second order

derivative operators appearing in both the equations above to be ⇤ operators, i.e.,

to show some form of local Lorentz symmetry.

2. We have considered a large ⇢̄j regime, which, together with the assumption that

| Im↵2| is negligible, led to the decoupling of the equations for the modulus and

phase perturbations.

Item 1 above is particularly interesting, because it implies that the resulting Lorentzian

properties of the second order di↵erential operator in the perturbed equations are in fact

only a result of the features of the peaking functions, i.e. of the (approximate) vacuum state

we work with, and not of the fundamental symmetries imposed on the GFT action SGFT.

Indeed, the parameter �, determining whether the matter variables enter the fundamental

GFT action in a Lorentz (� = 1) or Euclidean (� = �1) invariant fashion, only enters in
(�)⌘j , and therefore does not a↵ect at all the di↵erential structure of the equations. Since,

as we will see below, the structure of the perturbation equations will naturally reflect

on the structure of equations determining the relational evolution of perturbed physical

quantities, this result is particularly intriguing, because it would suggest that only a certain

class of states is able to produce relational equations with local Lorentz signature. We will

comment further on this in Section 5.

4 E↵ective relational dynamics of physical quantities

In this section, we will use the evolution equations for the condensate wavefunction in order

to obtain relational evolution equations for the expectation values of physical quantities,
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are integration constants (conserved quantities)
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GFT condensate cosmology:

emergent dynamics of physical observables



Relevant observables for cosmological dynamics (operators in full GFT Fock space)
DO, L. Sindoni, E. Wilson-Ewing, '16

used to define collective relational observables for effective continuum dynamics
as expectation values in "good clock+rods" condensate states
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Relevant observables for cosmological dynamics (operators in full GFT Fock space)

• number operator
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scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
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a), '̂†
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0)a
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= IG(gI , hI)�(n)
�
�a � (�0)a

�
. (2.13)

Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads

N̂ =

Z
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A crucial quantity for describing cosmological geometries is the volume operator
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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Relevant observables for cosmological dynamics (operators in full GFT Fock space)

• universe volume
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Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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Relevant observables for cosmological dynamics (operators in full GFT Fock space)

• universe volume

Clearly, if one wants to introduce more (say n) than one minimally coupled massless
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.
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naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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note: dependence on matter scalar field data left implicit

DO, L. Sindoni, E. Wilson-Ewing, '16

used to define collective relational observables for effective continuum dynamics
as expectation values in "good clock+rods" condensate states
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Relevant observables for cosmological dynamics (operators in full GFT Fock space)

• value of matter scalar field

• momentum of matter scalar field

both at the background, i.e. homogeneous, and at the perturbed level, i.e. for inhomoge-

neous cosmological perturbations. In order to keep the notation lighter, for any quantum

operator of interest Ô, we will denote Ō ⌘ hÔi�̄, where the expectation value is computed

with respect to the state characterized by the background part of the condensate wavefunc-

tion (3.3); similarly, we will denote by �O the first order term in �⇢, �✓ of the expectation

value hÔi� computed on states characterized by the condensate wavefunction (3.3).

The perturbed relational system includes in general geometric and matter operators.

Among the matter operators, those of obvious interest are the �-scalar field operator and

its momentum, written in the ⇡� representation (see equations (2.14c) and (2.14d)) as

�̂ =
1

i

Z
dgI

Z
d4�

Z
d⇡� '̂

†(gI ,�
µ,⇡�)@⇡�'̂(gI ,�
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Z
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Z
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†(gI ,�
µ,⇡�)'̂(gI ,�

µ,⇡�) . (4.1b)

On the geometric side, there are in principle many di↵erent operators characterizing the

properties of slightly inhomogeneous geometries. Here, we are interested only in scalar

perturbations, and in particular only isotropic operators will be considered. Even in this

case, however, at the classical level, scalar perturbations are in general captured by sev-

eral non-trivial functions of the metric components, see e.g. equation (A.3). Reproducing

metric perturbations at the quantum level, however, means determining (i) the structure

of microscopic observables and (ii) collective states such that the expectation values of the

former on the latter can be associated to emergent metric functions. Most of the work

in the literature so far, however, has been devoted to the study of the volume operator

(2.14b) and to models for which coherent states (2.15a) with wavefunction (2.25) provide

an interpretation in terms of metric functions at specific values of the physical frame. The

definition of more general operators and states is certainly a pressing issue to be tack-

led in order to define a comprehensive and complete perturbation theory from the GFT

framework. However, we will content ourselves with considering the evolution of the uni-

verse volume defined (as quantum operator) in equation (2.14b), which is consistent and

microscopically well defined, with respect to the states (2.15a) with wavefunction (2.25).

Moreover, in this section we will consider only the large densities (late times) regime

of evolution of the relevant quantities, in which case, as shown in the above section, the

equations of motion for �⇢ and �✓ greatly simplify. As explained in Section 2.2, one would

expect this regime (characterized by a very large number of GFT quanta) to be also the

classical one (i.e. characterized by small quantum fluctuations of macroscopic operators)

[65, 84]. Therefore, it is of fundamental importance to check whether in this regime the

solutions of the equations of motion coming from the quantum theory actually match those

of GR (or possibly of some alternative theory of gravity). This will be the main purpose

of the following sections, where geometric (Section 4.1) and matter observables13 (Section

4.2) will be discussed separately. More precisely, we will look for a matching with GR in

13Here with matter observables we mean the observables associated to the scalar field �, the only relevant

contribution to the energy budget of the universe under our assumptions.
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• universe volume

Clearly, if one wants to introduce more (say n) than one minimally coupled massless

scalar field, the group field operator becomes '̂(gI ,�a) ⌘ '̂(gI ,�1, . . . ,�n), with a =

1, . . . , n. Of course, the commutation relation in (2.6a) has to be changed consistently, so

that h
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�i
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�
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Importantly, this change on the kinematic structure of the Fock space is reflected also in

the second quantized operators, which now involve integrals over all the possible values of

�a 2 Rn. For instance, the number operator reads
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A crucial quantity for describing cosmological geometries is the volume operator
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whose matrix elements V (gI , g0I) are defined from those of the first quantized volume op-

erator in the group representation5.

The presence of “pre-matter” data allows for the construction of a set of observables

naturally related to them, through polynomials and derivatives with respect to �a for each

a = 1, . . . , n. In particular, the two fundamental, self-adjoint ones that can be obtained in

this way are the “scalar field operator” and the “momentum operator” [53]:
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whose expectation values on appropriate semi-classical and continuum states should be

associated to the scalar field itself and possibly its momentum, which are at the core of a

relational definition of dynamics and evolution [18], as we will briefly review below.

2.2 Continuum geometries, e↵ective relationality and GFT condensates

In order to describe the relational evolution of cosmological small inhomogeneities, one

necessary step is to identify a class of quantum states which admit some “proto-geometric”

interpretation in terms of approximate continuum geometries. This allows to define an

e↵ective notion of relational evolution, whose general definition in a “pre-geometric” sector

of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more

5Such an operator is diagonal in the spin representation, with eigenvalues ⇠ j3/2 for the EPRL-like

model we are considering here and ⇠ ⇢3/2 for the extended BC model.
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of an emergent quantum gravity theory (such as a GFT) is instead technically and concep-

tually very complicated [18], as we have discussed in Section 1. Such “proto-geometric”

states are expected to be the result of some form of coarse-graining over the fundamental,

microscopic degrees of freedom, and thus to show some form of collective behavior. In a

sense, they are associated to a hydrodynamic description of the underlying quantum grav-

ity model. The simplest form of such collective behavior is shown by coherent (or, more
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note: dependence on matter scalar field data left implicit

DO, L. Sindoni, E. Wilson-Ewing, '16

used to define collective relational observables for effective continuum dynamics
as expectation values in "good clock+rods" condensate states
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• semiclassical dynamics at late times (large densities, small Hubble rate, large volume)
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e.g. (large density) if one spin mode dominates, and for such modeIn this case, if µ�o(⇡�) ' c�o⇡�, we have
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So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :
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If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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• semiclassical dynamics at late times (large densities, small Hubble rate, large volume)



Effective volume and scalar matter dynamics: homogeneous background

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21background volume dynamics:
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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i.e. the relational Friedmann eqns 
with scalar matter of momentum 
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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• semiclassical dynamics at late times (large densities, small Hubble rate, large volume)

Background. At the background level from equations (4.10), we have

⇧̄� ' ⇡̃�N̄(x0, ⇡̃�) , �̄ ' N̄(x0, ⇡̃�)[@⇡� ✓̄�o ](x
0, ⇡̃�) .

The dynamics of the background phase ✓̄�o is determined by equation (3.13b):

✓̄0�o =
�

2
+

Q�o

⇢̄2�o
, where (⇢̄2�o)

0 ' µ2

�o ⇢̄
2

�o , (4.11)

with a prime denoting as usual a derivative with respect to the scalar time19. Integrating

the equation on the left using the equation on the right we obtain

✓̄�o =
�

2
x0 � Q�o

µ�o ⇢̄2�o
+ C�o , (4.12)

where C�o is an integration constant and where we have chosen a specific root for the

second equation in (4.11) (see footnote 16). Now, it is important to notice that � does not

depend on ⇡�, while µ and Q (and C) in principle do, even if they do not depend on time.

As a result, we have,
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These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given

the presence of N̄ in the above expectation values for ⇧̂ and �̂ (which grows exponentially

in relational time), it is clear that we can only define

⇡̄(c)
� ⌘ ⇧̄/N̄ = ⇡̃� , (4.14)

with ⇡̃� that would be then associated to the classical momentum of the scalar field, ⇡̃� =

⇡�, which is the same identification we have found in the previous section by comparing the

quantum volume evolution equations with the classical one. Notice that as a consequence

of equation (4.15) we would also expect �̄0 ⌘ ⇡� = ⇡̃�.

The same reasoning is not adequate, instead for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes domi-

nant, meaning that by defining � = h�̂i� /N̄ , we cannot match the classical result. On the

other hand, if we take C�o to be independent on ⇡�, h�̂i� becomes an intensive quantity

that can be readily compared to �̄. In this case, consistency with the momentum corre-

spondence requires that [Q�o@⇡�(logµ�o)]⇡�=⇡̃� = ⇡̃�. By assuming, as we did to arrive to

equation (4.4), that µ�o ' c�o⇡�, the above condition fixes Q�o ' ⇡2

�, and, as a result,

�̄ ⌘ h�̂i� ' �c�1

�o + ⇡̃�x
0 . (4.15)

19In the equation for ⇢̄2�o we have neglected lower order terms in powers of ¯̄⇢2�o , since in the above equation

for ✓̄�o we are already considering contributions suppressed as ⇢̄�2

�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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Effective volume and scalar matter dynamics: homogeneous background

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21background volume dynamics:
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.

– 23 –

In this case, if µ�o(⇡�) ' c�o⇡�, we have

✓
V̄ 0

V̄

◆2

' 4c2�o

⇥R
d⇡�⇡�⇢̄2�o(x

0⇡�)
⇤
2

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :


⇧̄�

N̄

�0
= 2

"R
d⇡�⇡�µ�o(⇡�)⇢̄

2
�o(x

0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�

⇥R
d⇡�⇡�⇢̄2�o(x

0,⇡�)
⇤ ⇥R

d⇡�µ�o(⇡�)⇢̄
2
�o(x

0,⇡�)
⇤

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
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� . We will discuss this point in more detail in the next section.
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations
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• semiclassical dynamics at late times (large densities, small Hubble rate, large volume)

i.e. the correct classical eqns (with 
constant scalar field momentum), 
under identification:

Background. At the background level from equations (4.10), we have

⇧̄� ' ⇡̃�N̄(x0, ⇡̃�) , �̄ ' N̄(x0, ⇡̃�)[@⇡� ✓̄�o ](x
0, ⇡̃�) .

The dynamics of the background phase ✓̄�o is determined by equation (3.13b):
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with a prime denoting as usual a derivative with respect to the scalar time19. Integrating

the equation on the left using the equation on the right we obtain

✓̄�o =
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2
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µ�o ⇢̄2�o
+ C�o , (4.12)

where C�o is an integration constant and where we have chosen a specific root for the

second equation in (4.11) (see footnote 16). Now, it is important to notice that � does not

depend on ⇡�, while µ and Q (and C) in principle do, even if they do not depend on time.

As a result, we have,
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These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given

the presence of N̄ in the above expectation values for ⇧̂ and �̂ (which grows exponentially

in relational time), it is clear that we can only define

⇡̄(c)
� ⌘ ⇧̄/N̄ = ⇡̃� , (4.14)

with ⇡̃� that would be then associated to the classical momentum of the scalar field, ⇡̃� =

⇡�, which is the same identification we have found in the previous section by comparing the

quantum volume evolution equations with the classical one. Notice that as a consequence

of equation (4.15) we would also expect �̄0 ⌘ ⇡� = ⇡̃�.

The same reasoning is not adequate, instead for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes domi-

nant, meaning that by defining � = h�̂i� /N̄ , we cannot match the classical result. On the

other hand, if we take C�o to be independent on ⇡�, h�̂i� becomes an intensive quantity

that can be readily compared to �̄. In this case, consistency with the momentum corre-

spondence requires that [Q�o@⇡�(logµ�o)]⇡�=⇡̃� = ⇡̃�. By assuming, as we did to arrive to

equation (4.4), that µ�o ' c�o⇡�, the above condition fixes Q�o ' ⇡2

�, and, as a result,
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0 . (4.15)

19In the equation for ⇢̄2�o we have neglected lower order terms in powers of ¯̄⇢2�o , since in the above equation

for ✓̄�o we are already considering contributions suppressed as ⇢̄�2

�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).
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Background. At the background level from equations (4.10), we have
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These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given
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in relational time), it is clear that we can only define
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�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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Effective volume and scalar matter dynamics: homogeneous background

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21background volume dynamics:
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e.g. (large density) if one spin mode dominates, and for such modeIn this case, if µ�o(⇡�) ' c�o⇡�, we have
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⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :
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N̄

�0
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2
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0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�
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⇤

⇥R
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0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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and we consider states peaked on a given value of the matter scalar field momentum, we get

In this case, if µ�o(⇡�) ' c�o⇡�, we have
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This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations
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also that we are in the case of single representation label dominance. Then, the average
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15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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• semiclassical dynamics at late times (large densities, small Hubble rate, large volume)

i.e. the correct classical eqns (with 
constant scalar field momentum), 
under identification:

Background. At the background level from equations (4.10), we have

⇧̄� ' ⇡̃�N̄(x0, ⇡̃�) , �̄ ' N̄(x0, ⇡̃�)[@⇡� ✓̄�o ](x
0, ⇡̃�) .

The dynamics of the background phase ✓̄�o is determined by equation (3.13b):
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with a prime denoting as usual a derivative with respect to the scalar time19. Integrating

the equation on the left using the equation on the right we obtain
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+ C�o , (4.12)

where C�o is an integration constant and where we have chosen a specific root for the

second equation in (4.11) (see footnote 16). Now, it is important to notice that � does not

depend on ⇡�, while µ and Q (and C) in principle do, even if they do not depend on time.

As a result, we have,
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These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given

the presence of N̄ in the above expectation values for ⇧̂ and �̂ (which grows exponentially

in relational time), it is clear that we can only define

⇡̄(c)
� ⌘ ⇧̄/N̄ = ⇡̃� , (4.14)

with ⇡̃� that would be then associated to the classical momentum of the scalar field, ⇡̃� =

⇡�, which is the same identification we have found in the previous section by comparing the

quantum volume evolution equations with the classical one. Notice that as a consequence

of equation (4.15) we would also expect �̄0 ⌘ ⇡� = ⇡̃�.

The same reasoning is not adequate, instead for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes domi-

nant, meaning that by defining � = h�̂i� /N̄ , we cannot match the classical result. On the

other hand, if we take C�o to be independent on ⇡�, h�̂i� becomes an intensive quantity

that can be readily compared to �̄. In this case, consistency with the momentum corre-

spondence requires that [Q�o@⇡�(logµ�o)]⇡�=⇡̃� = ⇡̃�. By assuming, as we did to arrive to

equation (4.4), that µ�o ' c�o⇡�, the above condition fixes Q�o ' ⇡2

�, and, as a result,

�̄ ⌘ h�̂i� ' �c�1
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0 . (4.15)

19In the equation for ⇢̄2�o we have neglected lower order terms in powers of ¯̄⇢2�o , since in the above equation

for ✓̄�o we are already considering contributions suppressed as ⇢̄�2

�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).

– 25 –

Background. At the background level from equations (4.10), we have

⇧̄� ' ⇡̃�N̄(x0, ⇡̃�) , �̄ ' N̄(x0, ⇡̃�)[@⇡� ✓̄�o ](x
0, ⇡̃�) .

The dynamics of the background phase ✓̄�o is determined by equation (3.13b):

✓̄0�o =
�

2
+

Q�o

⇢̄2�o
, where (⇢̄2�o)

0 ' µ2

�o ⇢̄
2

�o , (4.11)

with a prime denoting as usual a derivative with respect to the scalar time19. Integrating

the equation on the left using the equation on the right we obtain

✓̄�o =
�

2
x0 � Q�o

µ�o ⇢̄2�o
+ C�o , (4.12)

where C�o is an integration constant and where we have chosen a specific root for the

second equation in (4.11) (see footnote 16). Now, it is important to notice that � does not

depend on ⇡�, while µ and Q (and C) in principle do, even if they do not depend on time.

As a result, we have,

�̄ '

�@⇡�


Q�o

µ�o

�
+Q�o

@⇡�µ�o

µ�o
x0 + N̄@⇡�C�o

�

⇡�=⇡̃�

. (4.13)

These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given

the presence of N̄ in the above expectation values for ⇧̂ and �̂ (which grows exponentially

in relational time), it is clear that we can only define

⇡̄(c)
� ⌘ ⇧̄/N̄ = ⇡̃� , (4.14)

with ⇡̃� that would be then associated to the classical momentum of the scalar field, ⇡̃� =

⇡�, which is the same identification we have found in the previous section by comparing the

quantum volume evolution equations with the classical one. Notice that as a consequence

of equation (4.15) we would also expect �̄0 ⌘ ⇡� = ⇡̃�.

The same reasoning is not adequate, instead for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes domi-

nant, meaning that by defining � = h�̂i� /N̄ , we cannot match the classical result. On the

other hand, if we take C�o to be independent on ⇡�, h�̂i� becomes an intensive quantity

that can be readily compared to �̄. In this case, consistency with the momentum corre-

spondence requires that [Q�o@⇡�(logµ�o)]⇡�=⇡̃� = ⇡̃�. By assuming, as we did to arrive to

equation (4.4), that µ�o ' c�o⇡�, the above condition fixes Q�o ' ⇡2

�, and, as a result,

�̄ ⌘ h�̂i� ' �c�1

�o + ⇡̃�x
0 . (4.15)

19In the equation for ⇢̄2�o we have neglected lower order terms in powers of ¯̄⇢2�o , since in the above equation

for ✓̄�o we are already considering contributions suppressed as ⇢̄�2

�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).

– 25 –

Background. At the background level from equations (4.10), we have

⇧̄� ' ⇡̃�N̄(x0, ⇡̃�) , �̄ ' N̄(x0, ⇡̃�)[@⇡� ✓̄�o ](x
0, ⇡̃�) .

The dynamics of the background phase ✓̄�o is determined by equation (3.13b):

✓̄0�o =
�

2
+

Q�o

⇢̄2�o
, where (⇢̄2�o)

0 ' µ2

�o ⇢̄
2

�o , (4.11)

with a prime denoting as usual a derivative with respect to the scalar time19. Integrating

the equation on the left using the equation on the right we obtain

✓̄�o =
�

2
x0 � Q�o

µ�o ⇢̄2�o
+ C�o , (4.12)

where C�o is an integration constant and where we have chosen a specific root for the

second equation in (4.11) (see footnote 16). Now, it is important to notice that � does not

depend on ⇡�, while µ and Q (and C) in principle do, even if they do not depend on time.

As a result, we have,

�̄ '

�@⇡�


Q�o

µ�o

�
+Q�o

@⇡�µ�o

µ�o
x0 + N̄@⇡�C�o

�

⇡�=⇡̃�

. (4.13)

These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given

the presence of N̄ in the above expectation values for ⇧̂ and �̂ (which grows exponentially

in relational time), it is clear that we can only define

⇡̄(c)
� ⌘ ⇧̄/N̄ = ⇡̃� , (4.14)

with ⇡̃� that would be then associated to the classical momentum of the scalar field, ⇡̃� =

⇡�, which is the same identification we have found in the previous section by comparing the

quantum volume evolution equations with the classical one. Notice that as a consequence

of equation (4.15) we would also expect �̄0 ⌘ ⇡� = ⇡̃�.

The same reasoning is not adequate, instead for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes domi-

nant, meaning that by defining � = h�̂i� /N̄ , we cannot match the classical result. On the

other hand, if we take C�o to be independent on ⇡�, h�̂i� becomes an intensive quantity

that can be readily compared to �̄. In this case, consistency with the momentum corre-

spondence requires that [Q�o@⇡�(logµ�o)]⇡�=⇡̃� = ⇡̃�. By assuming, as we did to arrive to

equation (4.4), that µ�o ' c�o⇡�, the above condition fixes Q�o ' ⇡2

�, and, as a result,

�̄ ⌘ h�̂i� ' �c�1

�o + ⇡̃�x
0 . (4.15)

19In the equation for ⇢̄2�o we have neglected lower order terms in powers of ¯̄⇢2�o , since in the above equation

for ✓̄�o we are already considering contributions suppressed as ⇢̄�2

�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).

– 25 –

Background. At the background level from equations (4.10), we have

⇧̄� ' ⇡̃�N̄(x0, ⇡̃�) , �̄ ' N̄(x0, ⇡̃�)[@⇡� ✓̄�o ](x
0, ⇡̃�) .

The dynamics of the background phase ✓̄�o is determined by equation (3.13b):

✓̄0�o =
�

2
+

Q�o

⇢̄2�o
, where (⇢̄2�o)

0 ' µ2

�o ⇢̄
2

�o , (4.11)

with a prime denoting as usual a derivative with respect to the scalar time19. Integrating

the equation on the left using the equation on the right we obtain
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where C�o is an integration constant and where we have chosen a specific root for the

second equation in (4.11) (see footnote 16). Now, it is important to notice that � does not

depend on ⇡�, while µ and Q (and C) in principle do, even if they do not depend on time.

As a result, we have,
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These results should be compared with the classical dynamics, given by �̄00 = 0, i.e., �̄ =

c1 + c2x0, and of course also implying that the momentum of �̄, ⇡̄(c)
� , is a constant. Given

the presence of N̄ in the above expectation values for ⇧̂ and �̂ (which grows exponentially

in relational time), it is clear that we can only define

⇡̄(c)
� ⌘ ⇧̄/N̄ = ⇡̃� , (4.14)

with ⇡̃� that would be then associated to the classical momentum of the scalar field, ⇡̃� =

⇡�, which is the same identification we have found in the previous section by comparing the

quantum volume evolution equations with the classical one. Notice that as a consequence

of equation (4.15) we would also expect �̄0 ⌘ ⇡� = ⇡̃�.

The same reasoning is not adequate, instead for the massless scalar field operator.

Indeed, for large N̄ , a constant term (independent on the scalar field clock) becomes domi-

nant, meaning that by defining � = h�̂i� /N̄ , we cannot match the classical result. On the

other hand, if we take C�o to be independent on ⇡�, h�̂i� becomes an intensive quantity

that can be readily compared to �̄. In this case, consistency with the momentum corre-

spondence requires that [Q�o@⇡�(logµ�o)]⇡�=⇡̃� = ⇡̃�. By assuming, as we did to arrive to

equation (4.4), that µ�o ' c�o⇡�, the above condition fixes Q�o ' ⇡2

�, and, as a result,

�̄ ⌘ h�̂i� ' �c�1

�o + ⇡̃�x
0 . (4.15)

19In the equation for ⇢̄2�o we have neglected lower order terms in powers of ¯̄⇢2�o , since in the above equation

for ✓̄�o we are already considering contributions suppressed as ⇢̄�2

�o . Any correction to the second equation

in (4.11) would thus result in even more negligible contributions to the first equation of (4.11).
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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• can also compute relative fluctuations in volume (etc): generically small - semiclassical limit is robust
L. Marchetti, DO, '20
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• quantum bounce at early times

TGFT condensate cosmology - bouncing cosmology from EPRL-like model

• effective dynamics for volume - generalised Friedmann equations:

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20
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the expectation value of the volume operator on a CPS:

V (�0) ⌘ hV̂ i�;�0,⇡0
=
X

j,~m

Vj |�{j,~m}(�;�0,⇡0)|
2

=
X

j

Vj |�j(�;�0,⇡0)|
2

'

X

j

Vj⇢
2
j (�0) . (80)

Once again, we have used a lowest order saddle point ap-
proximation, whose validity is discussed in Appendix A
and in more detail in [46]. We clearly see the similar-
ity of this equation with equation (35), leading again to
the interpretation of the total volume being given by the
sum over j of the average number of “isotropic atoms”
with assigned spin j “at a time �0” weighted by their
individual volume contribution Vj .

E↵ective relational cosmological dynamics. By deriv-
ing equation (80) and using equation (67), we see that
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These are the e↵ective cosmological equations for the
GFT condensate in terms of the relational time �0. Re-
markably enough, they have the same functional form
as the equations (36) obtained in [10], though this time
some of the coe�cients in the equations depend on the
CPS parameters, which are in fact part of the definition
of our quantum relational clock. For instance, µ2

j carries
now a dependance on both ✏ and ⇡0.

Classical limit. We can immediately check that they
reproduce the expected classical limit for small energy
densities. Along the same lines as in Subsection III C,
in the limit ⇢2j � |Ej |/m2

j and ⇢4j � Q2
j/m

2
j , the above

equations become
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A su�cient (but not necessary) condition for the above
approximate equations to coincide with the Friedmann
equations (in relational time) is either that all the µ2

js

are equal to 3⇡G̃, where G̃ ⌘ GM2 is the dimensionless
Newton’s gravitational constant, or even just that one
of the js is dominating, say µjo , and its characterized
by µ2

jo = 3⇡G̃ [10, 45]. Notice that this would amount
to a definition of the Newton’s constant, from the funda-
mental parameters and dynamics of the quantum gravity

theory. Interestingly, among the parameters conspiring
to the definition of the Newton’s constant, we find both
⇡0 and ✏, which are directly related to the “bona fide
slice properties” of our CPSs, and to the quantum prop-
erties of our relational clock. In this sense, we find an
interesting hint of a connection between the relational
dynamics, and the choice of quantum clock defining it,
and the emergent classical gravitational physics. This
connection, and the dependence of the e↵ective gravita-
tional coupling from the properties of the chosen quan-
tum clock, are certainly worth exploring further.

Bounce. Analogously to the framework of [10], also in
our improved relational cosmological dynamics we have
that, if at least one of the Qjs is not zero, or at least
one of the Ej is strictly negative, then the expectation
value of the volume operator never vanishes. This would
lead to a bouncing scenario replacing the cosmological
big bang singularity, in the very early universe.
However, there is a key di↵erence with respect to [10].
In that case the sum of the Qjs was equal to the ex-

pectation value of the “relational massless scalar field
momentum”. The latter could not vanish, for physical
reasons, since it would make the whole relational setting
unjustified (with no matter energy density, one would
expect a flat or constantly curved spacetime).
In this case there seem to be no physical obstruction to

requiring that sum to be zero. In fact, it is reasonable to
actually require the condition (79), since in this frame-
work it has to be imposed in order to have fully coherent
relational dynamics13. As a consequence, there might be
an interplay between the requirement of having a bounce
at early times and the condition that the momentum of
the scalar field used as a clock behaves as a good rela-
tional Hamiltonian. The dependence of the resolution of
the initial singularity on the properties of the clock used
to define evolution has been also highlighted in [52].
As a conclusion, while in [10] the bounce appeared as

a fully general result of the volume dynamics, in this
improved relational framework the presence of an bounce
depends on the integration constants Ej and Qj , meaning
that in this context there is no necessary reason to select
a bouncing solution, although it remains rather generic.
In addition, we remark that such a bounce, were it to

be present in the chosen solution, would be in any case
only an average result. That is, it would be a feature of
the dynamics of the mean value of the volume operator
in the chosen state. In order to give a more solid ground
for its physical interpretation, one has to check for the
behaviour of quantum fluctuations in the same regime of
the e↵ective dynamics. Leaving a detailed analysis for
[46], one can already expect that the dynamics of mean
values is reliable only in the regime in which N(�0) � 1

13 In particular, notice that, in the specific case of a single-spin
scenario, the constraint (79) implies that the single remaining
Qjo has to vanish.
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approximate equations to coincide with the Friedmann
equations (in relational time) is either that all the µ2
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are equal to 3⇡G̃, where G̃ ⌘ GM2 is the dimensionless
Newton’s gravitational constant, or even just that one
of the js is dominating, say µjo , and its characterized
by µ2

jo = 3⇡G̃ [10, 45]. Notice that this would amount
to a definition of the Newton’s constant, from the funda-
mental parameters and dynamics of the quantum gravity

theory. Interestingly, among the parameters conspiring
to the definition of the Newton’s constant, we find both
⇡0 and ✏, which are directly related to the “bona fide
slice properties” of our CPSs, and to the quantum prop-
erties of our relational clock. In this sense, we find an
interesting hint of a connection between the relational
dynamics, and the choice of quantum clock defining it,
and the emergent classical gravitational physics. This
connection, and the dependence of the e↵ective gravita-
tional coupling from the properties of the chosen quan-
tum clock, are certainly worth exploring further.

Bounce. Analogously to the framework of [10], also in
our improved relational cosmological dynamics we have
that, if at least one of the Qjs is not zero, or at least
one of the Ej is strictly negative, then the expectation
value of the volume operator never vanishes. This would
lead to a bouncing scenario replacing the cosmological
big bang singularity, in the very early universe.
However, there is a key di↵erence with respect to [10].
In that case the sum of the Qjs was equal to the ex-

pectation value of the “relational massless scalar field
momentum”. The latter could not vanish, for physical
reasons, since it would make the whole relational setting
unjustified (with no matter energy density, one would
expect a flat or constantly curved spacetime).
In this case there seem to be no physical obstruction to

requiring that sum to be zero. In fact, it is reasonable to
actually require the condition (79), since in this frame-
work it has to be imposed in order to have fully coherent
relational dynamics13. As a consequence, there might be
an interplay between the requirement of having a bounce
at early times and the condition that the momentum of
the scalar field used as a clock behaves as a good rela-
tional Hamiltonian. The dependence of the resolution of
the initial singularity on the properties of the clock used
to define evolution has been also highlighted in [52].
As a conclusion, while in [10] the bounce appeared as

a fully general result of the volume dynamics, in this
improved relational framework the presence of an bounce
depends on the integration constants Ej and Qj , meaning
that in this context there is no necessary reason to select
a bouncing solution, although it remains rather generic.
In addition, we remark that such a bounce, were it to

be present in the chosen solution, would be in any case
only an average result. That is, it would be a feature of
the dynamics of the mean value of the volume operator
in the chosen state. In order to give a more solid ground
for its physical interpretation, one has to check for the
behaviour of quantum fluctuations in the same regime of
the e↵ective dynamics. Leaving a detailed analysis for
[46], one can already expect that the dynamics of mean
values is reliable only in the regime in which N(�0) � 1

13 In particular, notice that, in the specific case of a single-spin
scenario, the constraint (79) implies that the single remaining
Qjo has to vanish.

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �j(�o) at
an initial time �o.

An important point here is that, for the energy density of the massless scalar field,
which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
=

~2(
P

j Qj)2

2(
P

j Vj⇢2j)
2
, (78)

to be non-zero, at least one of the Qj must be non-zero6. The condition that at least one
of the Qj be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Qj be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Qj = 0 (but still having large ⇢j) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Qj must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢j will always remain greater than zero. In turn, since V =

P
j Vj⇢2j , it follows that

V will always remain non-zero. Therefore, we find that for all cosmological solutions, the
volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .
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remains positive at all times
(with single turning point)

quantum bounce (solving 
classical singularity)!

• if at least one coefficient Q or at least one "energy" coefficient is non-zero:
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• behaviour at small (relational) times, assuming conditions of "good relational clock" are satisfied: 

• there are solutions with singular behaviour (cosmological singularity not always resolved)

<latexit sha1_base64="+1c3ou/HB+N3UbM345xOKAFILbo=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVJKCAImlgoWxSPQhtSFyXLc1dWLLdhBVlJ2FX2FhACFWfoCNv8FtM0DLkSyde869ur4nEIwq7TjfVm5hcWl5Jb9aWFvf2Nyyt3caiscSkzrmjMtWgBRhNCJ1TTUjLSEJCgNGmsHwcuw374lUlEc3eiSIF6J+RHsUI20k3y42/MRJYQcJIfkDhKasMVOf3/nObXJ0WEmhb5ecsjMBnCduRkogQ823vzpdjuOQRBozpFTbdYT2EiQ1xYykhU6siEB4iPqkbWiEQqK8ZHJLCveN0oU9Ls2LNJyovycSFCo1CgPTGSI9ULPeWPzPa8e6d+YlNBKxJhGeLurFDGoOx8HALpUEazYyBGFJzV8hHiCJsDbxFUwI7uzJ86RRKbsnZef6uFS9yOLIgz1QBAfABaegCq5ADdQBBo/gGbyCN+vJerHerY9pa87KZnbBH1ifP2VtmVo=</latexit>

V0 ⇡ VPl j
3/2
0

of isotropic GFT quanta) it is necessary to identify m2
j = 3⇡G for all j. For these val-

ues of mj, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �o, to choose a di↵erent set of values for mj that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �o.)

The condition that m2
j = 3⇡G is a requirement on the form of the terms Aj and Bj that

are determined by the GFT action: if Bj/Aj 6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j = 3⇡G, then the generalised Friedmann equations of the GFT condensate

become, in the classical limit,
✓
V 0

V

◆2

=
V 00

V
= 12⇡G, (81)

which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = Voe
±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and Vo depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢j is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�j(�) = 0, for all j 6= jo. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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• simple condensate:
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(see equations (7)) i.e., until the number of GFT “atoms
of space” is large. It is not obvious that this would be
the case in the very early universe14. Finally, all the
results obtained so far heavily rely on a lowest order sad-
dle point approximation (i.e., almost “perfect peaking”
of the condensate wavefunction). When these two condi-
tions (small fluctuations of relevant operators and almost
perfect peaking) are not satisfied, we might lose the abil-
ity to interpret �0 as a relational parameter (possibly
because fluctuations on the massless scalar field operator
are large or because the expectation value of the massless
scalar field is not �0 or both) and the expectation value
of V̂ might not be able to capture the relevant features
of the volume anymore.

A careful analysis of these issues will be performed
in [46], with a particular focus to the bounce and the
classical regime discussed above.

Single-spin scenario. The special case in which all the
⇢js are identically zero except for a non-zero ⇢jo is inter-
esting for three main reasons: first, it was shown to repro-
duce the e↵ective dynamics of Loop Quantum Cosmology
(up to a term that could be fixed to zero as a choice on
the relevant class of solution); second, the dominance of
single-spin configurations has been shown to arise dy-
namically in several analyses of the GFT condensate dy-
namics [50, 51, 53]; third, it is obviously a technical sim-
plification allowing to push much further the analysis of
the emergent cosmological dynamics, in particular when
including the e↵ect of GFT interactions.

This case can immediately be obtained from equations
(81). Similarly to equations (38) we obtain


V 0

3V

�2
=

4⇡G̃

3
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4V 2
joQ

2
jo

9V 2
+

4VjoEjo

9V
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V 00

V
= 12⇡G̃+
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V
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The first of these two equations can be recast as
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where we have defined

⇢ ⌘
h⇧̂i
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2V 2
jo

. (85)

Equation (84) resembles the e↵ective Friedmann dynam-
ics of LQC [54], with two additional contributions: a
constant one, and one scaling as V �1.

14 Notice that it may be possible that in this very same regime
also quantum fluctuations of ⇧̂ and Ĥ are important. If that is
the case, one should check the equality of all of their moment
on a given CPS in order to establish the validity of a consistent
relational dynamics framework.

They lead to a further modification of the Friedmann
dynamics and may possibly have an interpretation in
terms of e↵ective matter or geometry contributions.
Notice, however, that if we impose the conditionP
j Qj = 0, which in this case translates into Qjo = 0,

and which we have seen is required for a fully coherent re-
lational interpretation of the cosmological dynamics, the
first equation becomes


V 0

3V

�2
=

4⇡G̃

3
+

4VjoEjo

9V
,

which is di↵erent from equation (38a), as well as from
the e↵ective LQC dynamics. The reason, indeed, lies
in the di↵erent role of the constants Qj with respect to
[10], due to the fact that equation (31) for the scalar field
momentum is, in this framework, substituted by equation
(75). When the condition is imposed, thus, the bounce
implied by the LQC dynamics disappears. However, it
might still be possible to have a bouncing solution, when
Ejo < 0, though it would be implemented via a very
di↵erent physical mechanism.
Also on this point, a deeper analysis of the e↵ective

cosmological dynamics, and of the physical meaning of
the various conserved charges associated to it, is needed.

On the Hamiltonian and the momentum. Even
though the averaged relational dynamics yields the cor-
rect classical limit for the relational evolution of the vol-
ume operator, it is interesting to check if a self-consistent
classical description of the e↵ective dynamical system
represented by our cosmological observables can be con-
structed, in the late universe regime. How to construct
such a description from the full quantum theory is, how-
ever, not entirely clear (see Appendix C for a review
of the dynamics and the Hamiltonian analysis of a flat
FRW spacetime in the harmonic gauge where the mass-
less scalar field is used as a clock). In fact, notice
that hĤi�✏,�0,⇡0

retains a �0-dependence from the fac-
tor N(�0). This creates a tension if one wants to apply
equation (5a) to the expectation value of Ĥ itself. In fact,
the right-hand-side would give precisely zero, while the
left-hand-side is non-zero because N(�0) depends on �0.
This might be a problem of the formulation, or it might
just mean that applying equation (5a) to Ĥ is not correct
in principle (as suggested by the formulation of relational
dynamics in Subsection II B), and that one should con-
struct the Hamiltonian only after having obtained the
classical relational equations of motion.
A similar issue of course arises also for the momentum

operator that, classically, is expected to be a conserved
quantity. However, the massless scalar field momentum
depends classically on V0, i.e., the coordinate volume of
the homogeneous patch one is considering (see Appendix
C). While in previous works, V0 was considered to be as
an infrared regulator [55], with the limit V0 ! 1 possibly
to be taken to remove it, some criticisms [56] have been
raised against this perspective, suggesting, on the other

if
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(see equations (7)) i.e., until the number of GFT “atoms
of space” is large. It is not obvious that this would be
the case in the very early universe14. Finally, all the
results obtained so far heavily rely on a lowest order sad-
dle point approximation (i.e., almost “perfect peaking”
of the condensate wavefunction). When these two condi-
tions (small fluctuations of relevant operators and almost
perfect peaking) are not satisfied, we might lose the abil-
ity to interpret �0 as a relational parameter (possibly
because fluctuations on the massless scalar field operator
are large or because the expectation value of the massless
scalar field is not �0 or both) and the expectation value
of V̂ might not be able to capture the relevant features
of the volume anymore.

A careful analysis of these issues will be performed
in [46], with a particular focus to the bounce and the
classical regime discussed above.

Single-spin scenario. The special case in which all the
⇢js are identically zero except for a non-zero ⇢jo is inter-
esting for three main reasons: first, it was shown to repro-
duce the e↵ective dynamics of Loop Quantum Cosmology
(up to a term that could be fixed to zero as a choice on
the relevant class of solution); second, the dominance of
single-spin configurations has been shown to arise dy-
namically in several analyses of the GFT condensate dy-
namics [50, 51, 53]; third, it is obviously a technical sim-
plification allowing to push much further the analysis of
the emergent cosmological dynamics, in particular when
including the e↵ect of GFT interactions.

This case can immediately be obtained from equations
(81). Similarly to equations (38) we obtain
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where we have defined
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Equation (84) resembles the e↵ective Friedmann dynam-
ics of LQC [54], with two additional contributions: a
constant one, and one scaling as V �1.

14 Notice that it may be possible that in this very same regime
also quantum fluctuations of ⇧̂ and Ĥ are important. If that is
the case, one should check the equality of all of their moment
on a given CPS in order to establish the validity of a consistent
relational dynamics framework.

They lead to a further modification of the Friedmann
dynamics and may possibly have an interpretation in
terms of e↵ective matter or geometry contributions.
Notice, however, that if we impose the conditionP
j Qj = 0, which in this case translates into Qjo = 0,

and which we have seen is required for a fully coherent re-
lational interpretation of the cosmological dynamics, the
first equation becomes
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which is di↵erent from equation (38a), as well as from
the e↵ective LQC dynamics. The reason, indeed, lies
in the di↵erent role of the constants Qj with respect to
[10], due to the fact that equation (31) for the scalar field
momentum is, in this framework, substituted by equation
(75). When the condition is imposed, thus, the bounce
implied by the LQC dynamics disappears. However, it
might still be possible to have a bouncing solution, when
Ejo < 0, though it would be implemented via a very
di↵erent physical mechanism.
Also on this point, a deeper analysis of the e↵ective

cosmological dynamics, and of the physical meaning of
the various conserved charges associated to it, is needed.

On the Hamiltonian and the momentum. Even
though the averaged relational dynamics yields the cor-
rect classical limit for the relational evolution of the vol-
ume operator, it is interesting to check if a self-consistent
classical description of the e↵ective dynamical system
represented by our cosmological observables can be con-
structed, in the late universe regime. How to construct
such a description from the full quantum theory is, how-
ever, not entirely clear (see Appendix C for a review
of the dynamics and the Hamiltonian analysis of a flat
FRW spacetime in the harmonic gauge where the mass-
less scalar field is used as a clock). In fact, notice
that hĤi�✏,�0,⇡0

retains a �0-dependence from the fac-
tor N(�0). This creates a tension if one wants to apply
equation (5a) to the expectation value of Ĥ itself. In fact,
the right-hand-side would give precisely zero, while the
left-hand-side is non-zero because N(�0) depends on �0.
This might be a problem of the formulation, or it might
just mean that applying equation (5a) to Ĥ is not correct
in principle (as suggested by the formulation of relational
dynamics in Subsection II B), and that one should con-
struct the Hamiltonian only after having obtained the
classical relational equations of motion.
A similar issue of course arises also for the momentum

operator that, classically, is expected to be a conserved
quantity. However, the massless scalar field momentum
depends classically on V0, i.e., the coordinate volume of
the homogeneous patch one is considering (see Appendix
C). While in previous works, V0 was considered to be as
an infrared regulator [55], with the limit V0 ! 1 possibly
to be taken to remove it, some criticisms [56] have been
raised against this perspective, suggesting, on the other
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N(�)
number density cannot be too small     
(to be expected in hydrodynamic approx)

S. Gielen, '17

• quantum fluctuations remain "small" also at bounce for specific range of parameters 
(specific class of solutions) L. Marchetti, DO, '20

note: single-spin dominance 
found in several contexts



Effective volume and scalar matter dynamics: homogeneous background

L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21background volume dynamics:
<latexit sha1_base64="hz14mM21OXZsZNeslfv1E/w+y4Y=">AAACxHicfVFdb9MwFHUyYKN8lfHIi0WF1gkoSTcBjwME4nGTaDapbiPHdRJvdpLaN4jKCj+SN8SfwUkLGhviSpaPzjlX9yuppDAQBD88f+vGzVvbO7d7d+7eu/+g/3A3MmWtGZ+wUpb6LKGGS1HwCQiQ/KzSnKpE8tPk4n2rn37h2oiy+Ayris8UzQqRCkbBUXH/J5E8hSEmqabMRnuNPYgaokWWw/58jMlzTIxQfNmhy1anmVrF55iIAvCCVCImVS5w1FLOC/wrWJMVzZDovNzbx+3XamapwRJFIWdU2g+N417gk/jcVXvZmeZjRz3DRNUduc6bjxvX2v9q/rbhP93H/UEwCrrA10G4AQO0ieO4/50sSlYrXgCT1JhpGFQws1SDYJI3PVIbXlF2QTM+dbCgipuZ7Y7Q4KeOWeC01O657jr2coalypiVSpyzHd5c1VryX9q0hvTNzIqiqoEXbF0orSWGErcXxQuhOQO5coAyLVyvmOXU3Qjc3XtuCeHVka+DaDwKX40OTw4HR+8269hBj9ETNEQheo2O0Cd0jCaIeW+9zKu8pf/Rl77x67XV9zY5j9Bf4X/7BXU92G8=</latexit>

✓
V 0

3V

◆2

'

0

@
2
P

j

R
d⇡�Vj sgn(⇢0)⇢j

q
Ej �Q2

j/⇢
2
j + µ2

j⇢
2
j

3
P

j

R
d⇡�Vj⇢2j

1

A

2

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model
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• quantum fluctuations remain small also at bounce, for specific range of parameters 
(i.e. specific class of quantum states L. Marchetti, DO, '20

• quantum bounce at early times

TGFT condensate cosmology - bouncing cosmology from EPRL-like model

• effective dynamics for volume - generalised Friedmann equations:

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20
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the expectation value of the volume operator on a CPS:
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Once again, we have used a lowest order saddle point ap-
proximation, whose validity is discussed in Appendix A
and in more detail in [46]. We clearly see the similar-
ity of this equation with equation (35), leading again to
the interpretation of the total volume being given by the
sum over j of the average number of “isotropic atoms”
with assigned spin j “at a time �0” weighted by their
individual volume contribution Vj .

E↵ective relational cosmological dynamics. By deriv-
ing equation (80) and using equation (67), we see that
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These are the e↵ective cosmological equations for the
GFT condensate in terms of the relational time �0. Re-
markably enough, they have the same functional form
as the equations (36) obtained in [10], though this time
some of the coe�cients in the equations depend on the
CPS parameters, which are in fact part of the definition
of our quantum relational clock. For instance, µ2

j carries
now a dependance on both ✏ and ⇡0.

Classical limit. We can immediately check that they
reproduce the expected classical limit for small energy
densities. Along the same lines as in Subsection III C,
in the limit ⇢2j � |Ej |/m2

j and ⇢4j � Q2
j/m

2
j , the above

equations become
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A su�cient (but not necessary) condition for the above
approximate equations to coincide with the Friedmann
equations (in relational time) is either that all the µ2

js

are equal to 3⇡G̃, where G̃ ⌘ GM2 is the dimensionless
Newton’s gravitational constant, or even just that one
of the js is dominating, say µjo , and its characterized
by µ2

jo = 3⇡G̃ [10, 45]. Notice that this would amount
to a definition of the Newton’s constant, from the funda-
mental parameters and dynamics of the quantum gravity

theory. Interestingly, among the parameters conspiring
to the definition of the Newton’s constant, we find both
⇡0 and ✏, which are directly related to the “bona fide
slice properties” of our CPSs, and to the quantum prop-
erties of our relational clock. In this sense, we find an
interesting hint of a connection between the relational
dynamics, and the choice of quantum clock defining it,
and the emergent classical gravitational physics. This
connection, and the dependence of the e↵ective gravita-
tional coupling from the properties of the chosen quan-
tum clock, are certainly worth exploring further.

Bounce. Analogously to the framework of [10], also in
our improved relational cosmological dynamics we have
that, if at least one of the Qjs is not zero, or at least
one of the Ej is strictly negative, then the expectation
value of the volume operator never vanishes. This would
lead to a bouncing scenario replacing the cosmological
big bang singularity, in the very early universe.
However, there is a key di↵erence with respect to [10].
In that case the sum of the Qjs was equal to the ex-

pectation value of the “relational massless scalar field
momentum”. The latter could not vanish, for physical
reasons, since it would make the whole relational setting
unjustified (with no matter energy density, one would
expect a flat or constantly curved spacetime).
In this case there seem to be no physical obstruction to

requiring that sum to be zero. In fact, it is reasonable to
actually require the condition (79), since in this frame-
work it has to be imposed in order to have fully coherent
relational dynamics13. As a consequence, there might be
an interplay between the requirement of having a bounce
at early times and the condition that the momentum of
the scalar field used as a clock behaves as a good rela-
tional Hamiltonian. The dependence of the resolution of
the initial singularity on the properties of the clock used
to define evolution has been also highlighted in [52].
As a conclusion, while in [10] the bounce appeared as

a fully general result of the volume dynamics, in this
improved relational framework the presence of an bounce
depends on the integration constants Ej and Qj , meaning
that in this context there is no necessary reason to select
a bouncing solution, although it remains rather generic.
In addition, we remark that such a bounce, were it to

be present in the chosen solution, would be in any case
only an average result. That is, it would be a feature of
the dynamics of the mean value of the volume operator
in the chosen state. In order to give a more solid ground
for its physical interpretation, one has to check for the
behaviour of quantum fluctuations in the same regime of
the e↵ective dynamics. Leaving a detailed analysis for
[46], one can already expect that the dynamics of mean
values is reliable only in the regime in which N(�0) � 1

13 In particular, notice that, in the specific case of a single-spin
scenario, the constraint (79) implies that the single remaining
Qjo has to vanish.
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These are the e↵ective cosmological equations for the
GFT condensate in terms of the relational time �0. Re-
markably enough, they have the same functional form
as the equations (36) obtained in [10], though this time
some of the coe�cients in the equations depend on the
CPS parameters, which are in fact part of the definition
of our quantum relational clock. For instance, µ2

j carries
now a dependance on both ✏ and ⇡0.

Classical limit. We can immediately check that they
reproduce the expected classical limit for small energy
densities. Along the same lines as in Subsection III C,
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A su�cient (but not necessary) condition for the above
approximate equations to coincide with the Friedmann
equations (in relational time) is either that all the µ2

js

are equal to 3⇡G̃, where G̃ ⌘ GM2 is the dimensionless
Newton’s gravitational constant, or even just that one
of the js is dominating, say µjo , and its characterized
by µ2

jo = 3⇡G̃ [10, 45]. Notice that this would amount
to a definition of the Newton’s constant, from the funda-
mental parameters and dynamics of the quantum gravity

theory. Interestingly, among the parameters conspiring
to the definition of the Newton’s constant, we find both
⇡0 and ✏, which are directly related to the “bona fide
slice properties” of our CPSs, and to the quantum prop-
erties of our relational clock. In this sense, we find an
interesting hint of a connection between the relational
dynamics, and the choice of quantum clock defining it,
and the emergent classical gravitational physics. This
connection, and the dependence of the e↵ective gravita-
tional coupling from the properties of the chosen quan-
tum clock, are certainly worth exploring further.

Bounce. Analogously to the framework of [10], also in
our improved relational cosmological dynamics we have
that, if at least one of the Qjs is not zero, or at least
one of the Ej is strictly negative, then the expectation
value of the volume operator never vanishes. This would
lead to a bouncing scenario replacing the cosmological
big bang singularity, in the very early universe.
However, there is a key di↵erence with respect to [10].
In that case the sum of the Qjs was equal to the ex-

pectation value of the “relational massless scalar field
momentum”. The latter could not vanish, for physical
reasons, since it would make the whole relational setting
unjustified (with no matter energy density, one would
expect a flat or constantly curved spacetime).
In this case there seem to be no physical obstruction to

requiring that sum to be zero. In fact, it is reasonable to
actually require the condition (79), since in this frame-
work it has to be imposed in order to have fully coherent
relational dynamics13. As a consequence, there might be
an interplay between the requirement of having a bounce
at early times and the condition that the momentum of
the scalar field used as a clock behaves as a good rela-
tional Hamiltonian. The dependence of the resolution of
the initial singularity on the properties of the clock used
to define evolution has been also highlighted in [52].
As a conclusion, while in [10] the bounce appeared as

a fully general result of the volume dynamics, in this
improved relational framework the presence of an bounce
depends on the integration constants Ej and Qj , meaning
that in this context there is no necessary reason to select
a bouncing solution, although it remains rather generic.
In addition, we remark that such a bounce, were it to

be present in the chosen solution, would be in any case
only an average result. That is, it would be a feature of
the dynamics of the mean value of the volume operator
in the chosen state. In order to give a more solid ground
for its physical interpretation, one has to check for the
behaviour of quantum fluctuations in the same regime of
the e↵ective dynamics. Leaving a detailed analysis for
[46], one can already expect that the dynamics of mean
values is reliable only in the regime in which N(�0) � 1

13 In particular, notice that, in the specific case of a single-spin
scenario, the constraint (79) implies that the single remaining
Qjo has to vanish.

These e↵ective Friedmann equations for the GFT condensate include the correct classical
limit (i.e., they reproduce the standard Friedmann equations of general relativity, justi-
fying their name), as shall be shown in Sec. VC, as well as some quantum corrections
coming from the microscopic GFT theory. Interestingly, some of these corrections have
a clear geometric meaning, which shall be discussed shortly. From these equations, it is
possible to solve for the dynamics of the total volume, given some initial state �j(�o) at
an initial time �o.

An important point here is that, for the energy density of the massless scalar field,
which is defined in terms of the expectation values of scalar field momentum and volume
operators as

⇢ =
⇡2
�

2V 2
=

~2(
P

j Qj)2

2(
P

j Vj⇢2j)
2
, (78)

to be non-zero, at least one of the Qj must be non-zero6. The condition that at least one
of the Qj be non-zero is necessary for the relational dynamics to be well-defined, and also
to ensure that the homogeneous and isotropic space-time is an FLRW space-time, not the
vacuum Minkowski space-time.

This restriction has important consequences. Obviously, the condition that at least one
of the Qj be non-zero is a necessary (although not su�cient) condition for the existence
of solutions with a good cosmological interpretation, and also for the consistency of the
relational description in the first place. On the other hand, this is not in itself a necessary
condition for the mathematical consistency of the condensate dynamics. This means that
there may be solutions which do not satisfy this condition, but are still mathematically
well-defined and within the regime of validity of the condensate hydrodynamics we are
studying. Therefore, this is an additional requirement beyond the assumptions for a
condensate which is necessary for the condensate state to be interpreted as a cosmological
space-time.

An open question is whether setting all Qj = 0 (but still having large ⇢j) gives
Minkowski space, in which case the condensate state would correspond to a large space-
time although there would be no relational dynamics. We comment further on the vacuum
limit in Sec. VI.

Requiring that the energy density of the massless scalar field be non-vanishing has a
very important consequence: since at least one Qj must be non-zero to have a solution
that can be interpreted as a cosmological space-time, it follows from (72) that at least
one ⇢j will always remain greater than zero. In turn, since V =

P
j Vj⇢2j , it follows that

V will always remain non-zero. Therefore, we find that for all cosmological solutions, the
volume will never become zero.

6 The energy density of the massless scalar field ⇢ —without an index j— is not to be confused with the

amplitude of �j(�) denoted by ⇢j , nor with the amplitude |�| of the total condensate wave function

� =
P

j �j .

38

remains positive at all times
(with single turning point)

quantum bounce (solving 
classical singularity)!

• if at least one coefficient Q or at least one "energy" coefficient is non-zero:
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• behaviour at small (relational) times, assuming conditions of "good relational clock" are satisfied: 

• there are solutions with singular behaviour (cosmological singularity not always resolved)
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of isotropic GFT quanta) it is necessary to identify m2
j = 3⇡G for all j. For these val-

ues of mj, the GFT condensate dynamics reproduce the classical Friedmann equations of
general relativity. (As an aside, note that while it may be possible, at a specific relational
instant �o, to choose a di↵erent set of values for mj that also gives the correct limit,
this identification will not be preserved by the dynamics and hence the correct classical
Friedmann equations would in this case only be recovered in a small neighbourhood of
relational time around �o.)

The condition that m2
j = 3⇡G is a requirement on the form of the terms Aj and Bj that

are determined by the GFT action: if Bj/Aj 6= 3⇡G for some j, then it follows that the
correct Friedmann equations are not recovered in the classical limit. Note also that this
should be understood as a definition of G which arises as a hydrodynamic parameter and it
is thus a function of the microscopic GFT parameters, and not as an interpretation of the
microscopic parameters. This is an important conceptual point since this identification
has no reason to be valid in a generic regime of the dynamics (e.g., for non-condensate
GFT states) and may be di↵erent in other settings.

So, if all m2
j = 3⇡G, then the generalised Friedmann equations of the GFT condensate

become, in the classical limit,
✓
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V 00

V
= 12⇡G, (81)

which are exactly the Friedmann equations of general relativity for a spatially flat FLRW
space-time with a massless scalar field �, used as a relational time (see Appendix A 1 for
details).

The solution to these equations of motion is the standard one of classical general
relativity,

V = Voe
±
p
12⇡G�, (82)

as expected, with the sign in the exponent depending on whether the universe is expanding
or contracting, and Vo depending on the initial conditions.

D. Single Spin Condensates

The other case where the equations of motion for V (�) can be solved exactly, and
for generic initial conditions, is when only one ⇢j is non-zero, which corresponds to a
condensate wave function that is very sharply (infinitely) peaked in j,

�j(�) = 0, for all j 6= jo. (83)

Then the sum over j in all of the expressions trivializes and an exact solution can be
found which includes quantum corrections.
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• simple condensate:
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(see equations (7)) i.e., until the number of GFT “atoms
of space” is large. It is not obvious that this would be
the case in the very early universe14. Finally, all the
results obtained so far heavily rely on a lowest order sad-
dle point approximation (i.e., almost “perfect peaking”
of the condensate wavefunction). When these two condi-
tions (small fluctuations of relevant operators and almost
perfect peaking) are not satisfied, we might lose the abil-
ity to interpret �0 as a relational parameter (possibly
because fluctuations on the massless scalar field operator
are large or because the expectation value of the massless
scalar field is not �0 or both) and the expectation value
of V̂ might not be able to capture the relevant features
of the volume anymore.

A careful analysis of these issues will be performed
in [46], with a particular focus to the bounce and the
classical regime discussed above.

Single-spin scenario. The special case in which all the
⇢js are identically zero except for a non-zero ⇢jo is inter-
esting for three main reasons: first, it was shown to repro-
duce the e↵ective dynamics of Loop Quantum Cosmology
(up to a term that could be fixed to zero as a choice on
the relevant class of solution); second, the dominance of
single-spin configurations has been shown to arise dy-
namically in several analyses of the GFT condensate dy-
namics [50, 51, 53]; third, it is obviously a technical sim-
plification allowing to push much further the analysis of
the emergent cosmological dynamics, in particular when
including the e↵ect of GFT interactions.

This case can immediately be obtained from equations
(81). Similarly to equations (38) we obtain
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The first of these two equations can be recast as
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where we have defined
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Equation (84) resembles the e↵ective Friedmann dynam-
ics of LQC [54], with two additional contributions: a
constant one, and one scaling as V �1.

14 Notice that it may be possible that in this very same regime
also quantum fluctuations of ⇧̂ and Ĥ are important. If that is
the case, one should check the equality of all of their moment
on a given CPS in order to establish the validity of a consistent
relational dynamics framework.

They lead to a further modification of the Friedmann
dynamics and may possibly have an interpretation in
terms of e↵ective matter or geometry contributions.
Notice, however, that if we impose the conditionP
j Qj = 0, which in this case translates into Qjo = 0,

and which we have seen is required for a fully coherent re-
lational interpretation of the cosmological dynamics, the
first equation becomes
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,

which is di↵erent from equation (38a), as well as from
the e↵ective LQC dynamics. The reason, indeed, lies
in the di↵erent role of the constants Qj with respect to
[10], due to the fact that equation (31) for the scalar field
momentum is, in this framework, substituted by equation
(75). When the condition is imposed, thus, the bounce
implied by the LQC dynamics disappears. However, it
might still be possible to have a bouncing solution, when
Ejo < 0, though it would be implemented via a very
di↵erent physical mechanism.
Also on this point, a deeper analysis of the e↵ective

cosmological dynamics, and of the physical meaning of
the various conserved charges associated to it, is needed.

On the Hamiltonian and the momentum. Even
though the averaged relational dynamics yields the cor-
rect classical limit for the relational evolution of the vol-
ume operator, it is interesting to check if a self-consistent
classical description of the e↵ective dynamical system
represented by our cosmological observables can be con-
structed, in the late universe regime. How to construct
such a description from the full quantum theory is, how-
ever, not entirely clear (see Appendix C for a review
of the dynamics and the Hamiltonian analysis of a flat
FRW spacetime in the harmonic gauge where the mass-
less scalar field is used as a clock). In fact, notice
that hĤi�✏,�0,⇡0

retains a �0-dependence from the fac-
tor N(�0). This creates a tension if one wants to apply
equation (5a) to the expectation value of Ĥ itself. In fact,
the right-hand-side would give precisely zero, while the
left-hand-side is non-zero because N(�0) depends on �0.
This might be a problem of the formulation, or it might
just mean that applying equation (5a) to Ĥ is not correct
in principle (as suggested by the formulation of relational
dynamics in Subsection II B), and that one should con-
struct the Hamiltonian only after having obtained the
classical relational equations of motion.
A similar issue of course arises also for the momentum

operator that, classically, is expected to be a conserved
quantity. However, the massless scalar field momentum
depends classically on V0, i.e., the coordinate volume of
the homogeneous patch one is considering (see Appendix
C). While in previous works, V0 was considered to be as
an infrared regulator [55], with the limit V0 ! 1 possibly
to be taken to remove it, some criticisms [56] have been
raised against this perspective, suggesting, on the other

if
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(see equations (7)) i.e., until the number of GFT “atoms
of space” is large. It is not obvious that this would be
the case in the very early universe14. Finally, all the
results obtained so far heavily rely on a lowest order sad-
dle point approximation (i.e., almost “perfect peaking”
of the condensate wavefunction). When these two condi-
tions (small fluctuations of relevant operators and almost
perfect peaking) are not satisfied, we might lose the abil-
ity to interpret �0 as a relational parameter (possibly
because fluctuations on the massless scalar field operator
are large or because the expectation value of the massless
scalar field is not �0 or both) and the expectation value
of V̂ might not be able to capture the relevant features
of the volume anymore.

A careful analysis of these issues will be performed
in [46], with a particular focus to the bounce and the
classical regime discussed above.

Single-spin scenario. The special case in which all the
⇢js are identically zero except for a non-zero ⇢jo is inter-
esting for three main reasons: first, it was shown to repro-
duce the e↵ective dynamics of Loop Quantum Cosmology
(up to a term that could be fixed to zero as a choice on
the relevant class of solution); second, the dominance of
single-spin configurations has been shown to arise dy-
namically in several analyses of the GFT condensate dy-
namics [50, 51, 53]; third, it is obviously a technical sim-
plification allowing to push much further the analysis of
the emergent cosmological dynamics, in particular when
including the e↵ect of GFT interactions.

This case can immediately be obtained from equations
(81). Similarly to equations (38) we obtain
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The first of these two equations can be recast as
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where we have defined
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Equation (84) resembles the e↵ective Friedmann dynam-
ics of LQC [54], with two additional contributions: a
constant one, and one scaling as V �1.

14 Notice that it may be possible that in this very same regime
also quantum fluctuations of ⇧̂ and Ĥ are important. If that is
the case, one should check the equality of all of their moment
on a given CPS in order to establish the validity of a consistent
relational dynamics framework.

They lead to a further modification of the Friedmann
dynamics and may possibly have an interpretation in
terms of e↵ective matter or geometry contributions.
Notice, however, that if we impose the conditionP
j Qj = 0, which in this case translates into Qjo = 0,

and which we have seen is required for a fully coherent re-
lational interpretation of the cosmological dynamics, the
first equation becomes


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3
+
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9V
,

which is di↵erent from equation (38a), as well as from
the e↵ective LQC dynamics. The reason, indeed, lies
in the di↵erent role of the constants Qj with respect to
[10], due to the fact that equation (31) for the scalar field
momentum is, in this framework, substituted by equation
(75). When the condition is imposed, thus, the bounce
implied by the LQC dynamics disappears. However, it
might still be possible to have a bouncing solution, when
Ejo < 0, though it would be implemented via a very
di↵erent physical mechanism.
Also on this point, a deeper analysis of the e↵ective

cosmological dynamics, and of the physical meaning of
the various conserved charges associated to it, is needed.

On the Hamiltonian and the momentum. Even
though the averaged relational dynamics yields the cor-
rect classical limit for the relational evolution of the vol-
ume operator, it is interesting to check if a self-consistent
classical description of the e↵ective dynamical system
represented by our cosmological observables can be con-
structed, in the late universe regime. How to construct
such a description from the full quantum theory is, how-
ever, not entirely clear (see Appendix C for a review
of the dynamics and the Hamiltonian analysis of a flat
FRW spacetime in the harmonic gauge where the mass-
less scalar field is used as a clock). In fact, notice
that hĤi�✏,�0,⇡0

retains a �0-dependence from the fac-
tor N(�0). This creates a tension if one wants to apply
equation (5a) to the expectation value of Ĥ itself. In fact,
the right-hand-side would give precisely zero, while the
left-hand-side is non-zero because N(�0) depends on �0.
This might be a problem of the formulation, or it might
just mean that applying equation (5a) to Ĥ is not correct
in principle (as suggested by the formulation of relational
dynamics in Subsection II B), and that one should con-
struct the Hamiltonian only after having obtained the
classical relational equations of motion.
A similar issue of course arises also for the momentum

operator that, classically, is expected to be a conserved
quantity. However, the massless scalar field momentum
depends classically on V0, i.e., the coordinate volume of
the homogeneous patch one is considering (see Appendix
C). While in previous works, V0 was considered to be as
an infrared regulator [55], with the limit V0 ! 1 possibly
to be taken to remove it, some criticisms [56] have been
raised against this perspective, suggesting, on the other

quantum bounce at
<latexit sha1_base64="BjgsdgGTDVrjLJ43HEega+J39C0="></latexit>

Vmin = V0Nmin =
V0|E0|
6⇡G̃

quantum fluctuations
<latexit sha1_base64="97xm3XSs8yjrY8hDkJbiUcG+Vy8=">AAACG3icbVDNSsNAGNzUv1r/oh69LBahXkpSRD0W9eBJKti00ISy2W7apZtN2N2IJeQ9vPgqXjwo4knw4Nu4bXLQ1oGFYWY+vv3GjxmVyrK+jdLS8srqWnm9srG5tb1j7u45MkoEJm0csUh0fSQJo5y0FVWMdGNBUOgz0vHHl1O/c0+EpBG/U5OYeCEachpQjJSW+mbDDQTCqXtFmELQyVInq7l4RI+hi+JYRA8wD9hZepMbWd+sWnVrBrhI7IJUQYFW3/x0BxFOQsIVZkjKnm3FykuRUBQzklXcRJIY4TEakp6mHIVEeunstgweaWUAg0joxxWcqb8nUhRKOQl9nQyRGsl5byr+5/USFZx7KeVxogjH+aIgYVBFcFoUHFBBsGITTRAWVP8V4hHSXShdZ0WXYM+fvEicRt0+rVu3J9XmRVFHGRyAQ1ADNjgDTXANWqANMHgEz+AVvBlPxovxbnzk0ZJRzOyDPzC+fgBeEaD9</latexit>

�V

V
(�) ⇡ 1

N(�)
number density cannot be too small     
(to be expected in hydrodynamic approx)

S. Gielen, '17

• quantum fluctuations remain "small" also at bounce for specific range of parameters 
(specific class of solutions) L. Marchetti, DO, '20

note: single-spin dominance 
found in several contexts
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Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which
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In the free case � = µ = 0, w is simply
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�3Q2 + 4E⇢
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.

At the bounce, the denominator vanishes, �Q
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4 = 0, which gives the value of

⇢ at the bounce
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation
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with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved
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C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational
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To the next order of ⇢, we can approximate w as
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M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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4 = 0, which gives the value of

⇢ at the bounce
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"



Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V
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(V 0)2
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.
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M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume



Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

assuming:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the
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number of e-folds [5]. The situation is still the same even if we consider the contributions
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• general: 
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• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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written as
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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Effects of TGFT interactions on cosmological dynamics
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

• universe dynamics initially described by free theory:



Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

• universe dynamics initially described by free theory:

• bouncing scenario at very small volumes


• short lived acceleration after bounce


• at larger volumes, classical Friedmann dynamics
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and

the corresponding effective field ψ behaves just like a phantom energy, whose energy density

increases as the volume of universe grows.

This is our main result, showing how a phantom-like dark energy dynamics at late times

can be produced, under rather general conditions (albeit in a simplified model, and of course

in a specific regime of the full theory) purely from quantum gravity effects, i.e. as an effective

description of the underlying quantum dynamics of spacetime constituents.

One may then worry about whether this effective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the effective energy density ρψ, defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since φ1∞ < φ2∞, and for large volume we have φ → φ1∞, we see that ρ2 is nearly a

constant given by ρ2(φ1∞). Using the solution (43), we get

ρ2(φ1∞) =

(

1

2

√

−λ2
3

)− 1
2

1

(φ2∞ − φ1∞)
1
2

.
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Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational
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the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be
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M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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from all modes, as we can see in section III.
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

• universe dynamics initially described by free theory:

• then GFT interactions become relevant, until dominate; lower order 
relevant first, but higher order dominates at even larger volumes

• bouncing scenario at very small volumes


• short lived acceleration after bounce


• at larger volumes, classical Friedmann dynamics
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.
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• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be
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and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

assuming:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

• universe dynamics initially described by free theory:

• then GFT interactions become relevant, until dominate; lower order 
relevant first, but higher order dominates at even larger volumes

• assume that only two condensate modes are relevant: j1, j2

• bouncing scenario at very small volumes


• short lived acceleration after bounce


• at larger volumes, classical Friedmann dynamics
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and

the corresponding effective field ψ behaves just like a phantom energy, whose energy density

increases as the volume of universe grows.

This is our main result, showing how a phantom-like dark energy dynamics at late times

can be produced, under rather general conditions (albeit in a simplified model, and of course

in a specific regime of the full theory) purely from quantum gravity effects, i.e. as an effective

description of the underlying quantum dynamics of spacetime constituents.

One may then worry about whether this effective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the effective energy density ρψ, defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since φ1∞ < φ2∞, and for large volume we have φ → φ1∞, we see that ρ2 is nearly a

constant given by ρ2(φ1∞). Using the solution (43), we get

ρ2(φ1∞) =

(

1

2

√

−λ2
3

)− 1
2

1

(φ2∞ − φ1∞)
1
2

.
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Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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universe) - no Friedmann phase - semiclassical physics?
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario
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universe) - no Friedmann phase - semiclassical physics?
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

assuming:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

• universe dynamics initially described by free theory:

• then GFT interactions become relevant, until dominate; lower order 
relevant first, but higher order dominates at even larger volumes

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

• bouncing scenario at very small volumes


• short lived acceleration after bounce


• at larger volumes, classical Friedmann dynamics
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and

the corresponding effective field ψ behaves just like a phantom energy, whose energy density

increases as the volume of universe grows.

This is our main result, showing how a phantom-like dark energy dynamics at late times

can be produced, under rather general conditions (albeit in a simplified model, and of course

in a specific regime of the full theory) purely from quantum gravity effects, i.e. as an effective

description of the underlying quantum dynamics of spacetime constituents.

One may then worry about whether this effective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the effective energy density ρψ, defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since φ1∞ < φ2∞, and for large volume we have φ → φ1∞, we see that ρ2 is nearly a

constant given by ρ2(φ1∞). Using the solution (43), we get

ρ2(φ1∞) =

(

1

2

√

−λ2
3

)− 1
2

1

(φ2∞ − φ1∞)
1
2

.
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Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)
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of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with
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3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

• universe dynamics initially described by free theory:

• then GFT interactions become relevant, until dominate; lower order 
relevant first, but higher order dominates at even larger volumes

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

Effects of TGFT interactions on cosmological dynamics

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
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4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
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◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• effective cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is large enough

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• second interaction maintains qualitative behaviour, but sign of the coupling determines asymptotic evolution

• for single interaction, each mode has a late time evolution:

This equation can be easily solved and give
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where �j1 is an integral constant, determined by suitable initial value. This value can be

found by matching with solutions in the free case (21). We choose the matching point ⇢j0 to

be where the mass term equals to the interaction term, m2
j⇢

2
j0 = �2�j⇢

nj

j0/nj. Assuming the

free solution valids till ⇢j0 for each individual j, then �j0 can be determined using solution

(21) inversely. Putting (�j0, ⇢j0) into equation (31), we can get the approximate value of the

constant �j1
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j)]
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Furthermore, the accuracy of our approximate result of �j1 can be improved with the help

of exact solutions in special cases. As showed in appendix C, for nj = 4 the equation of

motion (17) can be solved using elliptic functions. Then using the fact that |�j| is small, an

expansion of �j1 can also be obtained. By comparing with the result in (32), we see that

an additional term ln 2�1
m

2
n�2 should be added, and the corrected form of �j1 becomes

�j1 = �
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We can compare this result of �j1 for a given mode j with it’s numerical value, obtained

by solving the equation of motion (17) numerically and substituting a large ⇢j into the

solution. The result is shown in figure 1. We see that our formular also works for non-

integer nj and despite various approximations, the result is quite accurate at the order of

�. For, comparison, we also plot the original �1, given by (32) without correction, which

shows that the additional term indeed improves the accuracy of our result.

It’s clear from equation (33) that for each mode j, the corresponding �j1 is di↵erent.

Note that ⇢j(�) diverges when � = �j1, hence the total volume V =
P

j Vj⇢
2
j will diverge

when � reaches �1 = min�j1, the smallest one of �j1’s. And when V is large enough, the

mode with �j1 = �1 will dominate. To the leading order of �j, we have

@�j1

@mj
=

ln[��j/(2m2
j)]

(nj � 2)m2
j

.
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; when V is large, corresponding mode dominates
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• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have

w = 3�
(2 + n)(V1 + r

2
V2)(V1�1 + r

n
V2�2)

2
�
V

2
1 �1 + r2+nV 2

2 �2 � 2r1+
n
2 V1V2

p
�1�2

� ,

= 2�
n

2
�

⇣
n

2
+ 1

⌘
V1V2r

2
�p

��2r
n/2�1

�
p
��1

�2
�p

��1V1 +
p
��2V2r

n/2+1
�2 . (34)

Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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B. Phantom crossing in the two modes case
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• bouncing scenario at very small volumes


• short lived acceleration after bounce


• at larger volumes, classical Friedmann dynamics
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and

the corresponding effective field ψ behaves just like a phantom energy, whose energy density

increases as the volume of universe grows.

This is our main result, showing how a phantom-like dark energy dynamics at late times

can be produced, under rather general conditions (albeit in a simplified model, and of course

in a specific regime of the full theory) purely from quantum gravity effects, i.e. as an effective

description of the underlying quantum dynamics of spacetime constituents.

One may then worry about whether this effective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the effective energy density ρψ, defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since φ1∞ < φ2∞, and for large volume we have φ → φ1∞, we see that ρ2 is nearly a

constant given by ρ2(φ1∞). Using the solution (43), we get

ρ2(φ1∞) =

(

1

2

√

−λ2
3

)− 1
2

1

(φ2∞ − φ1∞)
1
2

.
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Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
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.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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� (V )2

V 2
=

d
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hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion
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with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved
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C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

Effects of TGFT interactions on cosmological dynamics

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V
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(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation
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• effective cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is large enough

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• second interaction maintains qualitative behaviour, but sign of the coupling determines asymptotic evolution

• for single interaction, each mode has a late time evolution:

This equation can be easily solved and give
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where �j1 is an integral constant, determined by suitable initial value. This value can be

found by matching with solutions in the free case (21). We choose the matching point ⇢j0 to

be where the mass term equals to the interaction term, m2
j⇢

2
j0 = �2�j⇢

nj

j0/nj. Assuming the

free solution valids till ⇢j0 for each individual j, then �j0 can be determined using solution

(21) inversely. Putting (�j0, ⇢j0) into equation (31), we can get the approximate value of the

constant �j1
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Furthermore, the accuracy of our approximate result of �j1 can be improved with the help

of exact solutions in special cases. As showed in appendix C, for nj = 4 the equation of

motion (17) can be solved using elliptic functions. Then using the fact that |�j| is small, an

expansion of �j1 can also be obtained. By comparing with the result in (32), we see that

an additional term ln 2�1
m

2
n�2 should be added, and the corrected form of �j1 becomes

�j1 = �
ln[��j/(2m2

j)]

(nj � 2)mj
+

1

2mj
ln

2

4 n

2
nj�2

j (2m2
j)q

E
2
j +m

2
jQ

2
j

3

5 . (33)

We can compare this result of �j1 for a given mode j with it’s numerical value, obtained

by solving the equation of motion (17) numerically and substituting a large ⇢j into the

solution. The result is shown in figure 1. We see that our formular also works for non-

integer nj and despite various approximations, the result is quite accurate at the order of

�. For, comparison, we also plot the original �1, given by (32) without correction, which

shows that the additional term indeed improves the accuracy of our result.

It’s clear from equation (33) that for each mode j, the corresponding �j1 is di↵erent.

Note that ⇢j(�) diverges when � = �j1, hence the total volume V =
P

j Vj⇢
2
j will diverge

when � reaches �1 = min�j1, the smallest one of �j1’s. And when V is large enough, the

mode with �j1 = �1 will dominate. To the leading order of �j, we have
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Furthermore, the accuracy of our approximate result of �j1 can be improved with the help
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We can compare this result of �j1 for a given mode j with it’s numerical value, obtained
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• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have

w = 3�
(2 + n)(V1 + r

2
V2)(V1�1 + r

n
V2�2)

2
�
V

2
1 �1 + r2+nV 2

2 �2 � 2r1+
n
2 V1V2

p
�1�2

� ,

= 2�
n

2
�

⇣
n

2
+ 1

⌘
V1V2r

2
�p

��2r
n/2�1

�
p
��1

�2
�p

��1V1 +
p
��2V2r

n/2+1
�2 . (34)

Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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• late time evolution:

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�
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��̄
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!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]
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nj
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n
0
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n0
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◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation
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C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

assuming:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters
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universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which
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In the free case � = µ = 0, w is simply

w =
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.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢
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4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation
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hence V
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)
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with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved
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C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

assuming:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

Effects of TGFT interactions on cosmological dynamics

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢
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�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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hence V
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/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
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m2⇢2
. (18)
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• effective cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is large enough

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• second interaction maintains qualitative behaviour, but sign of the coupling determines asymptotic evolution

• for single interaction, each mode has a late time evolution:

This equation can be easily solved and give
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, (31)

where �j1 is an integral constant, determined by suitable initial value. This value can be

found by matching with solutions in the free case (21). We choose the matching point ⇢j0 to

be where the mass term equals to the interaction term, m2
j⇢

2
j0 = �2�j⇢

nj

j0/nj. Assuming the

free solution valids till ⇢j0 for each individual j, then �j0 can be determined using solution

(21) inversely. Putting (�j0, ⇢j0) into equation (31), we can get the approximate value of the

constant �j1

�j1 = �
ln[��j/(2m2

j)]
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+
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2mj
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. (32)

Furthermore, the accuracy of our approximate result of �j1 can be improved with the help

of exact solutions in special cases. As showed in appendix C, for nj = 4 the equation of

motion (17) can be solved using elliptic functions. Then using the fact that |�j| is small, an

expansion of �j1 can also be obtained. By comparing with the result in (32), we see that

an additional term ln 2�1
m

2
n�2 should be added, and the corrected form of �j1 becomes
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We can compare this result of �j1 for a given mode j with it’s numerical value, obtained

by solving the equation of motion (17) numerically and substituting a large ⇢j into the

solution. The result is shown in figure 1. We see that our formular also works for non-

integer nj and despite various approximations, the result is quite accurate at the order of

�. For, comparison, we also plot the original �1, given by (32) without correction, which

shows that the additional term indeed improves the accuracy of our result.

It’s clear from equation (33) that for each mode j, the corresponding �j1 is di↵erent.

Note that ⇢j(�) diverges when � = �j1, hence the total volume V =
P

j Vj⇢
2
j will diverge

when � reaches �1 = min�j1, the smallest one of �j1’s. And when V is large enough, the

mode with �j1 = �1 will dominate. To the leading order of �j, we have

@�j1

@mj
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j)]

(nj � 2)m2
j

.
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; when V is large, corresponding mode dominates
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• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have
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Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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• late time evolution:

Effects of TGFT interactions on cosmological dynamics

• one sees that:
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maximum is reached from below for 
large volumes (one mode dominates)

• in particular

dominate and r ! 0. Expanding w in equation (34) with respective to r gives simply

w = �1�
4V2

V1
r
2 = �1�

4V2

V1

⇢2(�)2

⇢1(�)2
.

Therefore, when n = 6 the phantom divide w = �1 can be crossed at large volume and the

corresponding field  would become some kind of phantom energy, whose energy density

increases as the volume of universe grows. However, there is no Big Rip singularity in our

model, since the energy density ⇢ is bounded, towards to a finite value for large volume. To

see this, we need a bit more approximation for the equation of state w. Since �11 < �21,

and for large volume we have �! �11, we see that ⇢2 is nearly a constant given by ⇢2(�11).

Using solution (31), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in the

total volume we can ignore ⇢2 and let V = V1⇢
2
1. Putting these considerations back to w we

get

w = �1�
b

V
, (35)

where b = 4V2⇢2(�11) is a constant. Note that b > 0, we have w < �1, therefore the

phantom divide w = �1 is being crossed.

C. The Big Rip singularity

We already pointed out that in the presence of interactions ⇢j and hence the volume will

diverge at finite relation time �1 = min�j1. But this doesn’t necessarily means that the

Big Rip singularity will be reached. On the other hand, after phantom crossing w < �1,

also suggests the existence of Big Rip, but this claim only valids for constant equation of

state, and we will see why the singularity will not occur in our case.

Consider the fictitious field  we introduced with equation of state equals to w, its energy

density ⇢ satisfies the conservation equation ⇢̇ +3H(1 +w)⇢ = 0, which can be rewitten

as

d⇢ 
dV

+
1 + w

V
⇢ = 0.
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phantom divide w = -1 can be crossed, then 
approached from below at large volume

effective phantom field - QG-dark energy

• however, no Big Rip singularity occurs, because the energy density of the effective phantom field 
remains finite at large volumes, approaching a constant value

asymptotic De Sitter universe

• QG-produced version of semi-classical model in B. McInnes, '01

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• effective cosmological dynamics

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is very large 

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• only one interaction for each mode (                     ):
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seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in
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have
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Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =
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, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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C. The Big Rip singularity

We pointed out that in the presence of interactions ⇢j and hence the volume will diverge

at finite relation time �1 = min{�j1}. Now we show why this does not necessarily mean

that a Big Rip singularity is reached. Also, the phantom crossing w < �1 would raise the

same worry, but, as we already mentioned, only for constant equation of state. We now see

why such singularity does not occur in our setting.

Consider the fictitious field  we introduced with equation of state equals to w. Its energy

density ⇢ , defined by the equation of state itself, satisfies the conservation equation (28).

We can then substitute for w the approximate expression (47), to get

d⇢ 
dV

�
b⇢ 
V 2

= 0.

We can then solve for ⇢ at large volume as

⇢ = ⇢ 0e
� b

V ⇡ ⇢ 0 �
⇢ 0b

V
, (48)

where ⇢ 0 is a constant of integration, representing the asymptotic value of ⇢ when V ! 1.

Thus we see that we obtain a constant asymptotic value for the energy density, which

has the same e↵ect as a cosmological constant. Therefore our model leads to a de Sitter

spacetime asymptotically, with no Big Rip singularity. In fact, our model e↵ectively belongs

to the class of models considered in [40], where the Big Rip singularity is avoided even in

presence of phantom matter by assuming that ⇢ can be obtained as a constant part plus

some matter with negative energy density. Exactly this type of scenario is reproduced from

the fundamental quantum gravity dynamics.

Let us stress that, in order to obtain a de Sitter spacetime asymptotically, the requirement

that w approaches to the phantom divide w = �1 at large volume is a necessary but not

su�cient condition. We need also that w approaches to w = �1 fast enough, as it happens

naturally in our case. To see this, suppose that, when volume V is larger than some given

V0, the equation of state can be approximated by

w = �1�
b

ln(V/V0)
.

Substituting this into the conservation equation (28), the evolution of the phantom energy

density ⇢ now reads

⇢ = ⇢ 0 [ln(V/V0)]
b ,
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auxiliary structures. For example, we could define an energy density for the e↵ective field  

from the equation of state w and the universe volume V and study its properties, but there

is no independent fundamental observable corresponding to it, in the GFT algebra of (2nd

quantized) observables.

Having clarified this important point, the energy density ⇢ satisfies the conservation

equation ⇢̇ +3H(1+w)⇢ = 0. Using the standard definition of Hubble parameter in time

gauge H = ȧ/a = V̇ /(3V ), this equation can be rewritten as

d⇢ 
dV

+
1 + w

V
⇢ = 0 , (28)

which can indeed be taken as a definition of the energy density in terms of quantities

corresponding to GFT observables. For constant w, equation (28) can be easily solved

and the solution is given by

⇢ =
⇢ 0
V 1+w

,

with the ⇢ 0 is the constant of integration. For w > �1, the energy density ⇢ decreases as

the volume grows, and tends to vanish when volume is large, i.e., we expect, at late times;

for w = �1, the energy density is a constant, corresponding to a cosmological constant,

and would tend to dominate over any other fluids with w > �1 at late times; for w < �1,

on the other hand, ⇢ increases as the volume becomes larger, and would tend to diverge

for V ! 1. Using the Einstein’s equations (but the conclusion would hold with most

generalizations of GR), we would then find that the scalar curvature would diverge as well,

i.e. R = �(1 + 3w )⇢ ! 1. This is referred to as a Big Rip singularity.

The above discussion gives a first intuition for the possible late time evolution of our

universe, and of various issues constituting the dark energy problem. It should be clear,

however, that things are so simple only under the assumption of constant equation of state

w. Any dark energy model which is based on a dynamical equation of state would require a

more detailed analysis.

A particularly interesting class of dark energy models is in fact based on fields with

equation of state less than �1, producing a phantom (dark) energy, which is well compatible

with present observational constraints.

a. Phantom energy. The mentioned feature of phantom energy compared to other

field-theoretic models with w > �1, i.e. that its energy density increases as the universe

20

effective energy density defined by:

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter
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for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
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⇢
4 +

�
1� 4

n
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
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V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�
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�S('̂, '̂†)

�'̂†

���� �
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=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin
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Z
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X
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!
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Here we choose the interaction kernel V(�, �̄) as [5]
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n
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◆
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with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation
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C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
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�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢
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4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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hence V
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/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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written as
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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written as
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however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?
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Effects of TGFT interactions on cosmological dynamics
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

Effects of TGFT interactions on cosmological dynamics

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
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• effective cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is large enough

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• second interaction maintains qualitative behaviour, but sign of the coupling determines asymptotic evolution

• for single interaction, each mode has a late time evolution:

This equation can be easily solved and give
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Furthermore, the accuracy of our approximate result of �j1 can be improved with the help
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We can compare this result of �j1 for a given mode j with it’s numerical value, obtained
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• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have
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Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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• late time evolution:

Effects of TGFT interactions on cosmological dynamics

• one sees that:
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maximum is reached from below for 
large volumes (one mode dominates)

• in particular

dominate and r ! 0. Expanding w in equation (34) with respective to r gives simply

w = �1�
4V2

V1
r
2 = �1�

4V2

V1

⇢2(�)2

⇢1(�)2
.

Therefore, when n = 6 the phantom divide w = �1 can be crossed at large volume and the

corresponding field  would become some kind of phantom energy, whose energy density

increases as the volume of universe grows. However, there is no Big Rip singularity in our

model, since the energy density ⇢ is bounded, towards to a finite value for large volume. To

see this, we need a bit more approximation for the equation of state w. Since �11 < �21,

and for large volume we have �! �11, we see that ⇢2 is nearly a constant given by ⇢2(�11).

Using solution (31), we get

⇢2(�11) =
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.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in the

total volume we can ignore ⇢2 and let V = V1⇢
2
1. Putting these considerations back to w we

get

w = �1�
b

V
, (35)

where b = 4V2⇢2(�11) is a constant. Note that b > 0, we have w < �1, therefore the

phantom divide w = �1 is being crossed.

C. The Big Rip singularity

We already pointed out that in the presence of interactions ⇢j and hence the volume will

diverge at finite relation time �1 = min�j1. But this doesn’t necessarily means that the

Big Rip singularity will be reached. On the other hand, after phantom crossing w < �1,

also suggests the existence of Big Rip, but this claim only valids for constant equation of

state, and we will see why the singularity will not occur in our case.

Consider the fictitious field  we introduced with equation of state equals to w, its energy

density ⇢ satisfies the conservation equation ⇢̇ +3H(1 +w)⇢ = 0, which can be rewitten

as

d⇢ 
dV

+
1 + w

V
⇢ = 0.
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phantom divide w = -1 can be crossed, then 
approached from below at large volume

effective phantom field - QG-dark energy

• however, no Big Rip singularity occurs, because the energy density of the effective phantom field 
remains finite at large volumes, approaching a constant value

asymptotic De Sitter universe

• QG-produced version of semi-classical model in B. McInnes, '01

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• effective cosmological dynamics

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is very large 

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have

w = 3�
(2 + n)(V1 + r

2
V2)(V1�1 + r

n
V2�2)

2
�
V

2
1 �1 + r2+nV 2

2 �2 � 2r1+
n
2 V1V2

p
�1�2

� ,

= 2�
n

2
�

⇣
n

2
+ 1

⌘
V1V2r

2
�p

��2r
n/2�1

�
p
��1

�2
�p

��1V1 +
p
��2V2r

n/2+1
�2 . (34)

Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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C. The Big Rip singularity

We pointed out that in the presence of interactions ⇢j and hence the volume will diverge

at finite relation time �1 = min{�j1}. Now we show why this does not necessarily mean

that a Big Rip singularity is reached. Also, the phantom crossing w < �1 would raise the

same worry, but, as we already mentioned, only for constant equation of state. We now see

why such singularity does not occur in our setting.

Consider the fictitious field  we introduced with equation of state equals to w. Its energy

density ⇢ , defined by the equation of state itself, satisfies the conservation equation (28).

We can then substitute for w the approximate expression (47), to get

d⇢ 
dV

�
b⇢ 
V 2

= 0.

We can then solve for ⇢ at large volume as

⇢ = ⇢ 0e
� b

V ⇡ ⇢ 0 �
⇢ 0b

V
, (48)

where ⇢ 0 is a constant of integration, representing the asymptotic value of ⇢ when V ! 1.

Thus we see that we obtain a constant asymptotic value for the energy density, which

has the same e↵ect as a cosmological constant. Therefore our model leads to a de Sitter

spacetime asymptotically, with no Big Rip singularity. In fact, our model e↵ectively belongs

to the class of models considered in [40], where the Big Rip singularity is avoided even in

presence of phantom matter by assuming that ⇢ can be obtained as a constant part plus

some matter with negative energy density. Exactly this type of scenario is reproduced from

the fundamental quantum gravity dynamics.

Let us stress that, in order to obtain a de Sitter spacetime asymptotically, the requirement

that w approaches to the phantom divide w = �1 at large volume is a necessary but not

su�cient condition. We need also that w approaches to w = �1 fast enough, as it happens

naturally in our case. To see this, suppose that, when volume V is larger than some given

V0, the equation of state can be approximated by

w = �1�
b

ln(V/V0)
.

Substituting this into the conservation equation (28), the evolution of the phantom energy

density ⇢ now reads

⇢ = ⇢ 0 [ln(V/V0)]
b ,
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auxiliary structures. For example, we could define an energy density for the e↵ective field  

from the equation of state w and the universe volume V and study its properties, but there

is no independent fundamental observable corresponding to it, in the GFT algebra of (2nd

quantized) observables.

Having clarified this important point, the energy density ⇢ satisfies the conservation

equation ⇢̇ +3H(1+w)⇢ = 0. Using the standard definition of Hubble parameter in time

gauge H = ȧ/a = V̇ /(3V ), this equation can be rewritten as

d⇢ 
dV

+
1 + w

V
⇢ = 0 , (28)

which can indeed be taken as a definition of the energy density in terms of quantities

corresponding to GFT observables. For constant w, equation (28) can be easily solved

and the solution is given by

⇢ =
⇢ 0
V 1+w

,

with the ⇢ 0 is the constant of integration. For w > �1, the energy density ⇢ decreases as

the volume grows, and tends to vanish when volume is large, i.e., we expect, at late times;

for w = �1, the energy density is a constant, corresponding to a cosmological constant,

and would tend to dominate over any other fluids with w > �1 at late times; for w < �1,

on the other hand, ⇢ increases as the volume becomes larger, and would tend to diverge

for V ! 1. Using the Einstein’s equations (but the conclusion would hold with most

generalizations of GR), we would then find that the scalar curvature would diverge as well,

i.e. R = �(1 + 3w )⇢ ! 1. This is referred to as a Big Rip singularity.

The above discussion gives a first intuition for the possible late time evolution of our

universe, and of various issues constituting the dark energy problem. It should be clear,

however, that things are so simple only under the assumption of constant equation of state

w. Any dark energy model which is based on a dynamical equation of state would require a

more detailed analysis.

A particularly interesting class of dark energy models is in fact based on fields with

equation of state less than �1, producing a phantom (dark) energy, which is well compatible

with present observational constraints.

a. Phantom energy. The mentioned feature of phantom energy compared to other

field-theoretic models with w > �1, i.e. that its energy density increases as the universe

20

effective energy density defined by:

• for n = 6, phantom divide w = -1 is crossed and 
then approached from below at larger volumes

phantom-like QG dark energy

• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
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V
�
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V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�
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�S('̂, '̂†)
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Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation
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C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with
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• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

Effects of TGFT interactions on cosmological dynamics

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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V V
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� (V )2

V 2
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d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• effective cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is large enough

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• second interaction maintains qualitative behaviour, but sign of the coupling determines asymptotic evolution

• for single interaction, each mode has a late time evolution:
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where �j1 is an integral constant, determined by suitable initial value. This value can be

found by matching with solutions in the free case (21). We choose the matching point ⇢j0 to

be where the mass term equals to the interaction term, m2
j⇢

2
j0 = �2�j⇢

nj

j0/nj. Assuming the

free solution valids till ⇢j0 for each individual j, then �j0 can be determined using solution

(21) inversely. Putting (�j0, ⇢j0) into equation (31), we can get the approximate value of the

constant �j1
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Furthermore, the accuracy of our approximate result of �j1 can be improved with the help

of exact solutions in special cases. As showed in appendix C, for nj = 4 the equation of

motion (17) can be solved using elliptic functions. Then using the fact that |�j| is small, an

expansion of �j1 can also be obtained. By comparing with the result in (32), we see that

an additional term ln 2�1
m

2
n�2 should be added, and the corrected form of �j1 becomes
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We can compare this result of �j1 for a given mode j with it’s numerical value, obtained

by solving the equation of motion (17) numerically and substituting a large ⇢j into the

solution. The result is shown in figure 1. We see that our formular also works for non-

integer nj and despite various approximations, the result is quite accurate at the order of

�. For, comparison, we also plot the original �1, given by (32) without correction, which

shows that the additional term indeed improves the accuracy of our result.

It’s clear from equation (33) that for each mode j, the corresponding �j1 is di↵erent.

Note that ⇢j(�) diverges when � = �j1, hence the total volume V =
P

j Vj⇢
2
j will diverge

when � reaches �1 = min�j1, the smallest one of �j1’s. And when V is large enough, the

mode with �j1 = �1 will dominate. To the leading order of �j, we have

@�j1
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=
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.
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• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have

w = 3�
(2 + n)(V1 + r

2
V2)(V1�1 + r

n
V2�2)

2
�
V

2
1 �1 + r2+nV 2

2 �2 � 2r1+
n
2 V1V2

p
�1�2

� ,

= 2�
n

2
�

⇣
n

2
+ 1

⌘
V1V2r

2
�p

��2r
n/2�1

�
p
��1

�2
�p

��1V1 +
p
��2V2r

n/2+1
�2 . (34)

Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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• late time evolution:

Effects of TGFT interactions on cosmological dynamics

• one sees that:
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maximum is reached from below for 
large volumes (one mode dominates)

• in particular

dominate and r ! 0. Expanding w in equation (34) with respective to r gives simply

w = �1�
4V2

V1
r
2 = �1�

4V2

V1

⇢2(�)2

⇢1(�)2
.

Therefore, when n = 6 the phantom divide w = �1 can be crossed at large volume and the

corresponding field  would become some kind of phantom energy, whose energy density

increases as the volume of universe grows. However, there is no Big Rip singularity in our

model, since the energy density ⇢ is bounded, towards to a finite value for large volume. To

see this, we need a bit more approximation for the equation of state w. Since �11 < �21,

and for large volume we have �! �11, we see that ⇢2 is nearly a constant given by ⇢2(�11).

Using solution (31), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in the

total volume we can ignore ⇢2 and let V = V1⇢
2
1. Putting these considerations back to w we

get

w = �1�
b

V
, (35)

where b = 4V2⇢2(�11) is a constant. Note that b > 0, we have w < �1, therefore the

phantom divide w = �1 is being crossed.

C. The Big Rip singularity

We already pointed out that in the presence of interactions ⇢j and hence the volume will

diverge at finite relation time �1 = min�j1. But this doesn’t necessarily means that the

Big Rip singularity will be reached. On the other hand, after phantom crossing w < �1,

also suggests the existence of Big Rip, but this claim only valids for constant equation of

state, and we will see why the singularity will not occur in our case.

Consider the fictitious field  we introduced with equation of state equals to w, its energy

density ⇢ satisfies the conservation equation ⇢̇ +3H(1 +w)⇢ = 0, which can be rewitten

as

d⇢ 
dV

+
1 + w

V
⇢ = 0.
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phantom divide w = -1 can be crossed, then 
approached from below at large volume

effective phantom field - QG-dark energy

• however, no Big Rip singularity occurs, because the energy density of the effective phantom field 
remains finite at large volumes, approaching a constant value

asymptotic De Sitter universe

• QG-produced version of semi-classical model in B. McInnes, '01

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
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In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
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V
�
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V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)

9

• effective cosmological dynamics

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is very large 

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• only one interaction for each mode (                     ):
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case, we will see the inclusion of a second mode does change the behaviour of the e↵ective
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Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction
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Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to
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n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.
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, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢
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2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will

19

0 2 4 6 8 10 12 14 16 18
-1.5

-1

-0.5

0

0.5

1

1.5

2
1 < 2

1 = 2

FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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C. The Big Rip singularity

We pointed out that in the presence of interactions ⇢j and hence the volume will diverge

at finite relation time �1 = min{�j1}. Now we show why this does not necessarily mean

that a Big Rip singularity is reached. Also, the phantom crossing w < �1 would raise the

same worry, but, as we already mentioned, only for constant equation of state. We now see

why such singularity does not occur in our setting.

Consider the fictitious field  we introduced with equation of state equals to w. Its energy

density ⇢ , defined by the equation of state itself, satisfies the conservation equation (28).

We can then substitute for w the approximate expression (47), to get

d⇢ 
dV

�
b⇢ 
V 2

= 0.

We can then solve for ⇢ at large volume as

⇢ = ⇢ 0e
� b

V ⇡ ⇢ 0 �
⇢ 0b

V
, (48)

where ⇢ 0 is a constant of integration, representing the asymptotic value of ⇢ when V ! 1.

Thus we see that we obtain a constant asymptotic value for the energy density, which

has the same e↵ect as a cosmological constant. Therefore our model leads to a de Sitter

spacetime asymptotically, with no Big Rip singularity. In fact, our model e↵ectively belongs

to the class of models considered in [40], where the Big Rip singularity is avoided even in

presence of phantom matter by assuming that ⇢ can be obtained as a constant part plus

some matter with negative energy density. Exactly this type of scenario is reproduced from

the fundamental quantum gravity dynamics.

Let us stress that, in order to obtain a de Sitter spacetime asymptotically, the requirement

that w approaches to the phantom divide w = �1 at large volume is a necessary but not

su�cient condition. We need also that w approaches to w = �1 fast enough, as it happens

naturally in our case. To see this, suppose that, when volume V is larger than some given

V0, the equation of state can be approximated by

w = �1�
b

ln(V/V0)
.

Substituting this into the conservation equation (28), the evolution of the phantom energy

density ⇢ now reads

⇢ = ⇢ 0 [ln(V/V0)]
b ,
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auxiliary structures. For example, we could define an energy density for the e↵ective field  

from the equation of state w and the universe volume V and study its properties, but there

is no independent fundamental observable corresponding to it, in the GFT algebra of (2nd

quantized) observables.

Having clarified this important point, the energy density ⇢ satisfies the conservation

equation ⇢̇ +3H(1+w)⇢ = 0. Using the standard definition of Hubble parameter in time

gauge H = ȧ/a = V̇ /(3V ), this equation can be rewritten as

d⇢ 
dV

+
1 + w

V
⇢ = 0 , (28)
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,

with the ⇢ 0 is the constant of integration. For w > �1, the energy density ⇢ decreases as
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effective energy density defined by:

• for n = 6, phantom divide w = -1 is crossed and 
then approached from below at larger volumes
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and
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.
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for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which
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In the free case � = µ = 0, w is simply

w =
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2 +m
2
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4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• "phenomenological" approach - simple potential:
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in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.
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2 in our discussion. We
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V
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(V 0)2
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where V is the total volume where the 0 indicates the derivative respect to relational time
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In the free case � = µ = 0, w is simply

w =
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.

At the bounce, the denominator vanishes, �Q
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4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that
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hence V
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To the next order of ⇢, we can approximate w as
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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Effects of TGFT interactions on cosmological dynamics
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• if more than one mode contributes: richer and observationally viable phenomenology

interacting theory:

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
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Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small
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from all modes, as we can see in section III.
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

• "phenomenological" approach - simple potential:
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operators is that quantum fluctuations might be divergent, and we need to introduce coherent
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work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• when interaction-driven dynamics starts, depends on coupling constants and which modes contributes

X. Pang, DO, '21

as in single-model case, if interactions become relevant immediately after the bounce, QG-inflation

possibly long-lasting: N(e-folds) > 60

but no graceful exit - eternal acceleration or immediate recollapse

no Friedman phase - not viable cosmological evolution

in terms of equation of state 
for effective "matter content"

• assume that only two condensate modes are relevant: j1, j2

• restrict attention to single interaction (appropriate at very late times/large volumes)

Effects of TGFT interactions on cosmological dynamics

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V
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(V 0)2
, (16)
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bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small
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from all modes, as we can see in section III.
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• effective cosmological dynamics
X. Pang, DO, '21

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is large enough

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• second interaction maintains qualitative behaviour, but sign of the coupling determines asymptotic evolution

• for single interaction, each mode has a late time evolution:

This equation can be easily solved and give
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where �j1 is an integral constant, determined by suitable initial value. This value can be

found by matching with solutions in the free case (21). We choose the matching point ⇢j0 to

be where the mass term equals to the interaction term, m2
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2
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j0/nj. Assuming the

free solution valids till ⇢j0 for each individual j, then �j0 can be determined using solution

(21) inversely. Putting (�j0, ⇢j0) into equation (31), we can get the approximate value of the

constant �j1
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Furthermore, the accuracy of our approximate result of �j1 can be improved with the help

of exact solutions in special cases. As showed in appendix C, for nj = 4 the equation of

motion (17) can be solved using elliptic functions. Then using the fact that |�j| is small, an

expansion of �j1 can also be obtained. By comparing with the result in (32), we see that

an additional term ln 2�1
m

2
n�2 should be added, and the corrected form of �j1 becomes
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We can compare this result of �j1 for a given mode j with it’s numerical value, obtained

by solving the equation of motion (17) numerically and substituting a large ⇢j into the

solution. The result is shown in figure 1. We see that our formular also works for non-
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• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have

w = 3�
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Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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• late time evolution:

Effects of TGFT interactions on cosmological dynamics

• one sees that:
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maximum is reached from below for 
large volumes (one mode dominates)

• in particular

dominate and r ! 0. Expanding w in equation (34) with respective to r gives simply

w = �1�
4V2

V1
r
2 = �1�

4V2

V1

⇢2(�)2

⇢1(�)2
.

Therefore, when n = 6 the phantom divide w = �1 can be crossed at large volume and the

corresponding field  would become some kind of phantom energy, whose energy density

increases as the volume of universe grows. However, there is no Big Rip singularity in our

model, since the energy density ⇢ is bounded, towards to a finite value for large volume. To

see this, we need a bit more approximation for the equation of state w. Since �11 < �21,

and for large volume we have �! �11, we see that ⇢2 is nearly a constant given by ⇢2(�11).

Using solution (31), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in the

total volume we can ignore ⇢2 and let V = V1⇢
2
1. Putting these considerations back to w we

get

w = �1�
b

V
, (35)

where b = 4V2⇢2(�11) is a constant. Note that b > 0, we have w < �1, therefore the

phantom divide w = �1 is being crossed.

C. The Big Rip singularity

We already pointed out that in the presence of interactions ⇢j and hence the volume will

diverge at finite relation time �1 = min�j1. But this doesn’t necessarily means that the

Big Rip singularity will be reached. On the other hand, after phantom crossing w < �1,

also suggests the existence of Big Rip, but this claim only valids for constant equation of

state, and we will see why the singularity will not occur in our case.

Consider the fictitious field  we introduced with equation of state equals to w, its energy

density ⇢ satisfies the conservation equation ⇢̇ +3H(1 +w)⇢ = 0, which can be rewitten

as

d⇢ 
dV

+
1 + w

V
⇢ = 0.
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phantom divide w = -1 can be crossed, then 
approached from below at large volume

effective phantom field - QG-dark energy

• however, no Big Rip singularity occurs, because the energy density of the effective phantom field 
remains finite at large volumes, approaching a constant value

asymptotic De Sitter universe

• QG-produced version of semi-classical model in B. McInnes, '01

for "emergent matter" component (of QG origin):

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• effective cosmological dynamics

• if more than one mode contributes: richer and observationally viable  phenomenology

• assume both couplings are very small: interactions only relevant once universe is very large 

very short acceleration after bounce, followed by nice Friedmann expansion

• then interactions become relevant - for two modes j1 and j2

• only one interaction for each mode (                     ):

B. Phantom crossing in the two modes case

In this section we consider the contributions from two modes. For simplicity, we use ⇢1,2

to stands ⇢j1,j2 and the same for other parameters. Although in previous sections we have

seen that at large volume there will be only one mode dominates in free as well as interacting

case, we will see the inclusion of a second mode does change the behaviour of the e↵ective

equation of state w.

Next we consider the case where two modes both have a single interaction term with

µ1 = µ2 = 0. Since interaction coupling �1 and �2 are small, w will be dominated by the

free part of condensate at small volume, and approaches to w = 1 from below as volume

grows. For the volume becomes larger and larger, interaction term contributes more and

more to the condensate and finally at large volume, w will be dominated by interaction

terms instead. If we further assume that n1 = n2 = n, considering only interaction terms in

w would suggest that w only depends on the ratio r = ⇢2/⇢1 as the free case above, and we

have

w = 3�
(2 + n)(V1 + r

2
V2)(V1�1 + r

n
V2�2)

2
�
V

2
1 �1 + r2+nV 2

2 �2 � 2r1+
n
2 V1V2

p
�1�2

� ,

= 2�
n

2
�

⇣
n

2
+ 1

⌘
V1V2r

2
�p

��2r
n/2�1

�
p
��1

�2
�p

��1V1 +
p
��2V2r

n/2+1
�2 . (34)

Since the parameters are all real and both couplings �1 and �2 are less than 0, we see that

w  2 �
n

2
. Note that when volume is large one of the mode will dominate over another,

then we have r ! 0 or r ! 1. For either case the equation of state w will approach to

2�
n

2
, but from below, in contrast with the single mode case as we discussed in the end of

section II.

There is a special case where r =

✓
�1

�2

◆n
4�

1
2

, then to the order of our approximation we

have w = 2 � n/2 is also a constant. From our solution (31) for each mode when volume

is large, we see that this indeed happen when �11 = �21. In fact, when ⇢2 = r⇢1 is

proportional to ⇢1, we have V = V1⇢
2
1+V2⇢

2
2 = (V1+ r

2
V2)⇢21, which is the same as the single

mode case with a modified Ṽ1 = V1 + r
2
V2. And therefore the equation of state is the same

as in the single mode case, which will approach the asymptotic value from above.

Now we let n = 6 and assume that �11 < �21. Then at large volume the first mode will
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where �11 < �21, while for red dashed line we have �11 =

�21. Black dotted lines show w = 1 and the phantom divide w = �1. Parameters are same as in

figure 1 with additional ones are �1 = �10�8
, µ1 = 0, µ2 = 0, n1 = n2 = 6 and �2 = �9.5⇥ 10�8

for �11 < �21, �2 = �9.5725⇥ 10�8 for �11 = �21.

One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get

⇢2(�11) =

 
1

2

r
��2

3

!� 1
2

1

(�21 � �11)
1
2

.

Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get

w = �1�
b

V
, (47)

where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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One may then worry about whether this e↵ective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the e↵ective energy density ⇢ , defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since �11 < �21, and for large volume we have � ! �11, we see that ⇢2 is nearly a

constant given by ⇢2(�11). Using the solution (43), we get
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Furthermore, when � ! �11 the first mode ⇢1 would be much larger than ⇢2, hence in

computing the total volume we can ignore ⇢2 and let V = V1⇢21. Inserting this approximate

expression back in the expression for w, we get
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where b = 4V2⇢2(�11) is a constant. Notice again that b > 0, thus we have w < �1, and

the phantom divide w = �1 is being crossed.
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C. The Big Rip singularity

We pointed out that in the presence of interactions ⇢j and hence the volume will diverge

at finite relation time �1 = min{�j1}. Now we show why this does not necessarily mean

that a Big Rip singularity is reached. Also, the phantom crossing w < �1 would raise the

same worry, but, as we already mentioned, only for constant equation of state. We now see

why such singularity does not occur in our setting.

Consider the fictitious field  we introduced with equation of state equals to w. Its energy

density ⇢ , defined by the equation of state itself, satisfies the conservation equation (28).

We can then substitute for w the approximate expression (47), to get

d⇢ 
dV

�
b⇢ 
V 2

= 0.

We can then solve for ⇢ at large volume as

⇢ = ⇢ 0e
� b

V ⇡ ⇢ 0 �
⇢ 0b

V
, (48)

where ⇢ 0 is a constant of integration, representing the asymptotic value of ⇢ when V ! 1.

Thus we see that we obtain a constant asymptotic value for the energy density, which

has the same e↵ect as a cosmological constant. Therefore our model leads to a de Sitter

spacetime asymptotically, with no Big Rip singularity. In fact, our model e↵ectively belongs

to the class of models considered in [40], where the Big Rip singularity is avoided even in

presence of phantom matter by assuming that ⇢ can be obtained as a constant part plus

some matter with negative energy density. Exactly this type of scenario is reproduced from

the fundamental quantum gravity dynamics.

Let us stress that, in order to obtain a de Sitter spacetime asymptotically, the requirement

that w approaches to the phantom divide w = �1 at large volume is a necessary but not

su�cient condition. We need also that w approaches to w = �1 fast enough, as it happens

naturally in our case. To see this, suppose that, when volume V is larger than some given

V0, the equation of state can be approximated by

w = �1�
b

ln(V/V0)
.

Substituting this into the conservation equation (28), the evolution of the phantom energy

density ⇢ now reads

⇢ = ⇢ 0 [ln(V/V0)]
b ,
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auxiliary structures. For example, we could define an energy density for the e↵ective field  

from the equation of state w and the universe volume V and study its properties, but there

is no independent fundamental observable corresponding to it, in the GFT algebra of (2nd

quantized) observables.

Having clarified this important point, the energy density ⇢ satisfies the conservation

equation ⇢̇ +3H(1+w)⇢ = 0. Using the standard definition of Hubble parameter in time

gauge H = ȧ/a = V̇ /(3V ), this equation can be rewritten as

d⇢ 
dV

+
1 + w

V
⇢ = 0 , (28)

which can indeed be taken as a definition of the energy density in terms of quantities

corresponding to GFT observables. For constant w, equation (28) can be easily solved

and the solution is given by

⇢ =
⇢ 0
V 1+w

,

with the ⇢ 0 is the constant of integration. For w > �1, the energy density ⇢ decreases as

the volume grows, and tends to vanish when volume is large, i.e., we expect, at late times;

for w = �1, the energy density is a constant, corresponding to a cosmological constant,

and would tend to dominate over any other fluids with w > �1 at late times; for w < �1,

on the other hand, ⇢ increases as the volume becomes larger, and would tend to diverge

for V ! 1. Using the Einstein’s equations (but the conclusion would hold with most

generalizations of GR), we would then find that the scalar curvature would diverge as well,

i.e. R = �(1 + 3w )⇢ ! 1. This is referred to as a Big Rip singularity.

The above discussion gives a first intuition for the possible late time evolution of our

universe, and of various issues constituting the dark energy problem. It should be clear,

however, that things are so simple only under the assumption of constant equation of state

w. Any dark energy model which is based on a dynamical equation of state would require a

more detailed analysis.

A particularly interesting class of dark energy models is in fact based on fields with

equation of state less than �1, producing a phantom (dark) energy, which is well compatible

with present observational constraints.

a. Phantom energy. The mentioned feature of phantom energy compared to other

field-theoretic models with w > �1, i.e. that its energy density increases as the universe

20

effective energy density defined by:

• for n = 6, phantom divide w = -1 is crossed and 
then approached from below at larger volumes

phantom-like QG dark energy

• the energy density of the effective phantom field approaches 
a (cosmological) constant

asymptotically de Sitter universe
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FIG. 3. The behaviour of w in the two modes case, where both modes have only one interaction

term. Blue solid line shows the case where φ1∞ < φ2∞, while for red dashed line we have φ1∞ =

φ2∞. Two black dotted lines show w = 1 and the phantom divide w = −1, respectively. Parameters

are same as in figure 1 with additional ones are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and

λ2 = −9.5× 10−8 for φ1∞ < φ2∞, λ2 = −9.5725 × 10−8 for φ1∞ = φ2∞.

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and

the corresponding effective field ψ behaves just like a phantom energy, whose energy density

increases as the volume of universe grows.

This is our main result, showing how a phantom-like dark energy dynamics at late times

can be produced, under rather general conditions (albeit in a simplified model, and of course

in a specific regime of the full theory) purely from quantum gravity effects, i.e. as an effective

description of the underlying quantum dynamics of spacetime constituents.

One may then worry about whether this effective phantom energy, like in many field

theoretic models, leads to a Big Rip singularity at later times also in our model. We will

discuss this issue in the next section, showing that the effective energy density ρψ, defined

from the equation of state w, remains bounded in our model, tending towards to a finite

value at asymptotically large volumes. To see this, we need some further approximation for

the equation of state w, which we anticipate here.

Since φ1∞ < φ2∞, and for large volume we have φ → φ1∞, we see that ρ2 is nearly a

constant given by ρ2(φ1∞). Using the solution (43), we get

ρ2(φ1∞) =

(

1

2

√

−λ2
3

)− 1
2

1

(φ2∞ − φ1∞)
1
2

.
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• phenomenological approach: consider general interactions

note: restrict to homogeneous configurations and neglect contribution from scalar matter

Effects of TGFT interactions on cosmological dynamics
X. Pang, DO, '21

for "emergent matter" component (of QG origin)

equation of state w = p /⇢ . In appendix A we show that using relational time w can be

written as

w = 3�
2V V

00

(V 0)2
, (16)

where V is the total volume where the 0 indicates the derivative respect to relational time

�. As an illustration, we consider the single mode case, in which

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4 +

�
1� 4

n

�
�⇢

n+2 +
�
1� 4

n0

�
µ⇢

n0+2

�Q2 + 2E⇢2 +m2⇢4 �
2
n�⇢

n+2 �
2
n0µ⇢

n0+2
. (17)

In the free case � = µ = 0, w is simply

w =
�3Q2 + 4E⇢

2 +m
2
⇢
4

�Q2 + 2E⇢2 +m2⇢4
.

At the bounce, the denominator vanishes, �Q
2 + 2E⇢

2 +m⇢
4 = 0, which gives the value of

⇢ at the bounce

⇢b =
1

m

qp
E2 +m2Q2 � E.

Put this back into w we see that the numerator is negative, therefore w ! �1 near the

bounce. This means that after the bounce the universe expanded with large acceleration, as

we expected. Yet we can show that this accelerating phase ends quickly, leaving only a small

number of e-folds [5]. The situation is still the same even if we consider the contributions

from all modes, as we can see in section III.

For large volume, ⇢ is large, and to the leading order w = 1 is a constant, corresponds

to the equation of state of a free massless scalar field, which we introduced as the relational

time. In fact, substituting w = 1 back into its definition (16), simple algebraic manipulation

shows that

V
00

V
�

✓
V

0

V

◆2

=
V V

00
� (V )2

V 2
=

d

d�

✓
V

0

V

◆
= 0,

hence V
0
/V = const which characterizes the FLRW equation using relational language in

the presence of a free massless field [22].

To the next order of ⇢, we can approximate w as

w = 1 +
2E

m2⇢2
. (18)
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• free theory: short-lived acceleration after bounce, then Friedman dynamics

M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

• "phenomenological" approach - simple potential:

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X
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✓
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2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,

the quantum gravity e↵ects of our model is the same as introducing a matter field  with

9
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• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation

with ⇢j = |�j| is the module of � and Vj / l
3
pj

3/2 is the volume corresponds to the tetrahedra

in the spin j representation. One problem in the above definition of condensate and the

operators is that quantum fluctuations might be divergent, and we need to introduce coherent

peaked state to provide suitable regularization and get rid of these infinities [23, 24]. In this

work, however, we only consider the dynamics at the mean field level, ignoring the e↵ects

from fluctuations, so for simplicity we use the condensate state defined above and leave the

investigation of CPS e↵ects for future work.

At the mean field level, the dynamics of the condensate can be extracted from the equation

of motion

⌧
�

����
�S('̂, '̂†)

�'̂†

���� �
�

=
�S(�, �̄)

��̄
= 0, where the e↵ective action S(�, �̄) in the spin

representation is

S(�, �̄) =

Z
d�

 
X

j

�̄j@
2
��j + V(�, �̄)

!
. (15)

Here we choose the interaction kernel V(�, �̄) as [5]

V(�, �̄) = �

X

j

✓
m

2
j |�j|

2 +
2�j
nj

|�j|
nj +

2µj

n
0
j

|�j|
n0
j

◆
, (16)

with the coe�cients can be obtained from the the spin representation of kinetic and inter-

action kernel in action (8) and the decomposition (12) of the condensate function �(gv,�)

[5, 22], We will assume that 2 < nj < n
0
j and |µj| ⌧ |�j| ⌧ m

2 in our discussion. We

see that K and V are both ��translation and global U(1) invariant and di↵erent modes

decouple, consequently there are two conserved quantities Ej and Qj for each mode corre-

spond to translation and U(1) invariance respectively [22]. With the help of these conserved

quantities, we can extract the dynamics of the condensate from the equation

⇢
0
j(�) =

1

⇢j

s
2Ej⇢

2
j �Q

2
j +m

2
j⇢

4
j �

2

nj
�j⇢

nj+2
j �

2

n
0
j

µj⇢
n0
j+2

. (17)

C. E↵ective equation of state

In general, we characterize the fluids filled the universe by the corresponding equation

of state w = p/⇢, where p is pressure and ⇢ is energy density. To get more insight of our

quantum gravity model, we can introduce an imagined matter content with the e↵ective

equation of state defined using Hubble parameter w = �1 � 2Ḣ/(3H2). In this sense,
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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for "emergent matter" component (of QG origin)
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• "phenomenological" approach - simple potential:
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• effective cosmological dynamics

• general: 


• for small volumes, interactions are subdominant and dynamics reproduces bouncing scenario


• as the universe expands after bounce, interactions become more relevant, until they drive evolution


• beginning of interaction-driven dynamics depends on coupling constants and which modes contributes

• if only single mode contributes:
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accelerated phase can last long, depending on parameters

however, either expansion never ends, in which case it is not phenomenologically viable 
and leads to big rip singularity, or it is followed by recollapse after end of inflation (cyclic 
universe) - no Friedmann phase - semiclassical physics?

QG-inflation
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cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N
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�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes
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whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
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the GR one.
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,
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Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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average perturbed volume:

In this case, if µ�o(⇡�) ' c�o⇡�, we have

✓
V̄ 0

V̄

◆2

' 4c2�o

⇥R
d⇡�⇡�⇢̄2�o(x

0⇡�)
⇤
2

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :


⇧̄�

N̄

�0
= 2

"R
d⇡�⇡�µ�o(⇡�)⇢̄

2
�o(x

0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�

⇥R
d⇡�⇡�⇢̄2�o(x

0,⇡�)
⇤ ⇥R

d⇡�µ�o(⇡�)⇢̄
2
�o(x

0,⇡�)
⇤

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .

– 27 –

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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compare with classical GR eqns for volume perturbations, written in relational form with respect to 
free massless scalar fields (with negligible EM tensor) or, equivalently, in harmonic gauge

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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From these results one can obtain the evolution equations for all the other relevant
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In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,
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average perturbed volume:

In this case, if µ�o(⇡�) ' c�o⇡�, we have

✓
V̄ 0

V̄

◆2

' 4c2�o

⇥R
d⇡�⇡�⇢̄2�o(x

0⇡�)
⇤
2

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :


⇧̄�

N̄

�0
= 2

"R
d⇡�⇡�µ�o(⇡�)⇢̄

2
�o(x

0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�

⇥R
d⇡�⇡�⇢̄2�o(x

0,⇡�)
⇤ ⇥R

d⇡�µ�o(⇡�)⇢̄
2
�o(x

0,⇡�)
⇤

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with classical ones. For instance, for the second quantized field operator, we have seen that
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
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whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

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V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0
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⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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n.b. localization is relational - non-trivial spatial dependence = dependence on relational rods

only consider perturbations under conditions giving good semi-classical dynamics for background

no matching with GR, in general (i.e. for arbitrary wavelengths)

L. Marchetti, DO, '21

compare with classical GR eqns for volume perturbations, written in relational form with respect to 
free massless scalar fields (with negligible EM tensor) or, equivalently, in harmonic gauge

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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average perturbed volume:

In this case, if µ�o(⇡�) ' c�o⇡�, we have

✓
V̄ 0

V̄

◆2

' 4c2�o

⇥R
d⇡�⇡�⇢̄2�o(x

0⇡�)
⇤
2

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :


⇧̄�

N̄

�0
= 2

"R
d⇡�⇡�µ�o(⇡�)⇢̄

2
�o(x

0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�

⇥R
d⇡�⇡�⇢̄2�o(x

0,⇡�)
⇤ ⇥R

d⇡�µ�o(⇡�)⇢̄
2
�o(x

0,⇡�)
⇤

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with classical ones. For instance, for the second quantized field operator, we have seen that
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:
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⇢�o
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0
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .

– 27 –

n.b. localization is relational - non-trivial spatial dependence = dependence on relational rods

only consider perturbations under conditions giving good semi-classical dynamics for background

no matching with GR, in general (i.e. for arbitrary wavelengths)

however, for large wavelengths k < 0 and at large volumes (where GR background dynamics is reproduced)

dominant solution

where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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compare with classical GR eqns for volume perturbations, written in relational form with respect to 
free massless scalar fields (with negligible EM tensor) or, equivalently, in harmonic gauge

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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average perturbed volume:

In this case, if µ�o(⇡�) ' c�o⇡�, we have

✓
V̄ 0

V̄

◆2

' 4c2�o

⇥R
d⇡�⇡�⇢̄2�o(x

0⇡�)
⇤
2

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :


⇧̄�

N̄

�0
= 2

"R
d⇡�⇡�µ�o(⇡�)⇢̄

2
�o(x

0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�

⇥R
d⇡�⇡�⇢̄2�o(x

0,⇡�)
⇤ ⇥R

d⇡�µ�o(⇡�)⇢̄
2
�o(x

0,⇡�)
⇤

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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n.b. localization is relational - non-trivial spatial dependence = dependence on relational rods

only consider perturbations under conditions giving good semi-classical dynamics for background

no matching with GR, in general (i.e. for arbitrary wavelengths)

however, for large wavelengths k < 0 and at large volumes (where GR background dynamics is reproduced)

dominant solution

where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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matches the GR solution

GR predictions reproduced in super-horizon regime

L. Marchetti, DO, '21

compare with classical GR eqns for volume perturbations, written in relational form with respect to 
free massless scalar fields (with negligible EM tensor) or, equivalently, in harmonic gauge

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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average perturbed volume:

In this case, if µ�o(⇡�) ' c�o⇡�, we have

✓
V̄ 0

V̄

◆2

' 4c2�o

⇥R
d⇡�⇡�⇢̄2�o(x

0⇡�)
⇤
2

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

= 4c2�o
⇧̄2

�

N̄2
(4.4)

So, when 4c2�o = 12⇡G, equation (4.3) is reproduced by identifying ⇡̄(c)
� ⌘ ⇧̄2

�/N̄
2. Notice

that for the condition µ�o(⇡�) ' c�o⇡� to be true, the contribution to µ�o due to the geo-

metric coe�cients r(�)�o should be dominant, since only they can depend on ⇡�. In particular,

this implies that µ�o ' (�)⌘�o , since they only di↵er by a ⇡�-independent coe�cient.

However, while the above conditions are clearly su�cient to reproduce the first Fried-

mann equation, they are not in general enough to guarantee the validity of the second

Friedmann equation, stating that (V̄ 0/V̄ )0 = 0. The reason for this is that the ratio ⇧̄�/N̄

is in general not constant :


⇧̄�

N̄

�0
= 2

"R
d⇡�⇡�µ�o(⇡�)⇢̄

2
�o(x

0,⇡�)R
d⇡�⇢̄2�o(x

0,⇡�)
�

⇥R
d⇡�⇡�⇢̄2�o(x

0,⇡�)
⇤ ⇥R

d⇡�µ�o(⇡�)⇢̄
2
�o(x

0,⇡�)
⇤

⇥R
d⇡�⇢̄2�o(x

0,⇡�)
⇤
2

#
.

If we assume, as before, that µ� ' c�⇡�, we see that the right-hand-side of the above

equation has the form ⇧̄�,2/N̄� ⇧̄2

�/N̄
2, where ⇧̄�,2 is the background expectation value of

the second quantized operator ⇧̂�,2 whose matrix elements in momentum space are given by

⇡2

�. In general, this quantity is not zero. However, if we further assume, as done in [82] that

the condensate wavefunction has a peaking part peaked on one value of the momentum,

say ⇡̃� of �, so that the condensate wavefunction can be written as15

�✏,�,⇡0,⇡x;xµ;⇡̃�
= ⌘✏(�

0 � x0;⇡0)⌘�(|�� x|;⇡x)f✏�(⇡� � ⇡̃�)�̃(gI ,�
0,�,⇡�) , (4.5)

we find that ⇧̄�,2/N̄ � ⇧̄2

�/N̄
2 ' ⇡̃2

� � ⇡̃2

� = 0, and both Friedmann equations are thus

satisfied, giving

H2 ⌘
✓
V̄ 0

3V̄

◆2

=
4

9
µ2

�o(⇡̃�) =
4⇡G

3
⇡̃2

� , H0 = 0 . (4.6)

This also leads to the interpretation of ⇡̃� as the background classical momentum of the

scalar field �, ⇡̄(c)
� . We will discuss this point in more detail in the next section.

Perturbed volume evolution. From these equations it is easy to find the equations

satisfied by the averaged perturbed volume in the large ⇢̄� limit. Moreover, let us assume

also that we are in the case of single representation label dominance. Then, the average

perturbed volume reads

�V (x, ⇡̃�) ' 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢̄�o(x, ⇡̃�) , (4.7)

15Notice that changing the form of the condensate wavefunction from equation (3.3) to (4.5) and by

assuming that f is independent on the clock variables (as we are doing here) does not a↵ect the equations

of motion of ⇢✏� and ✓ at all because of their linearity.
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where we have used the peaking properties in ⇡� of the condensate wavefunction (4.5).

Now, let us take a time derivative of the above quantity. We have

�V 0(x, ⇡̃�) = 2V�o ⇢̄
0

�o(x
0, ⇡̃�)�⇢�o(x, ⇡̃�) + 2V�o ⇢̄�o(x

0, ⇡̃�)�⇢
0

�o(x, ⇡̃�)

' µ�o(⇡̃�)�V (x, ⇡̃�) + 2V�o ⇢̄�o(x
0, ⇡̃�)�⇢

0

�o(x, ⇡̃�) ,

where in the second line we have used the large ⇢̄�o behavior16 ⇢̄0�o ' µ�o ⇢̄�o . Taking one

further derivative and using the above equation together with (3.17a), we find

�V 00 � 2µ�o�V
0 �r2�V + �V ((�)⌘2j � µ2

j ) = 0 . (4.8)

Recall also that, by consistency with the background equations, we have that µ2

j ' (�)⌘2j ,

thus leading to the simplified form

�V 00 � 2µ�o�V
0 �r2�V = �V 00 � 3H�V 0 �r2�V = 0 . (4.9)

By comparing equations (4.9) and (A.21), we conclude that the e↵ective evolution of the

perturbed volume obtained from our quantum gravity model does not match the classical

GR one, in general. An important di↵erence lies in the pre-factor of the Laplacian term

of the equation17, being respectively unity and / V̄ 4/3 in equations (4.9) and (A.21). We

will comment on the possible implications of this mismatch in Section 5.

However, in the super-horizon limit k ! 0 (where k represents the modulus of the

modes associated to a spatial Fourier transform of the perturbed volume), thus for long-

wavelength perturbations, equation (4.9) admits two solutions: a constant one, and one

of the form �V / V̄ . The latter becomes dominant as the universe expands, i.e. at large

universe volumes. From the results in Appendix A (see equation (A.15) and the discussion

below equation (A.21)), we see that this dominant solution actually coincide with the GR

one in the limit k ! 0. Thus, we conclude that the theory matches the predicted dynamics

of GR in the super-horizon regime, at late cosmological times and large universe volume

(which is also when the background dynamics reproduces the Friedmann one).

4.2 Matter evolution

Let us now move to matter variables, i.e. to the background and perturbed expectation

values of the operators �̂ and ⇧̂� defined in (4.1). Their expectation values read, respec-

tively18

h�̂i� ' ⇢2�o(x, ⇡̃�)[@⇡�✓�o ](x, ⇡̃�) = [@⇡�✓�o ](x, ⇡̃�)N(x, ⇡̃�) , (4.10a)

h⇧̂�i� ' ⇡̃�⇢
2

�o(x, ⇡̃�) = ⇡̃�N(x, ⇡̃�) . (4.10b)

As we did for the volume operator, let us write explicitly the contributions to these quan-

tities at the background and perturbed level.

16For concreteness, we are considering large positive times x0, so that only the positive root of equation

(3.13b) is important.
17Notice, however, that the general spatial di↵erential structure of the equations is the same, thus implying

that in the limit of k ! 1 (with all the remaining quantities kept constant), the two equations are

equivalent.
18Here, for notational simplicity, we have reabsorbed any phase of the peaking function f✏� ⌘ |f✏� |e

i✓f

into the phase of the reduced condensate wavefunction, redefining the global phase factor ✓�o .
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eqn for volume perturbations:

where correct Lorentzian signature is obtained if:

and modulus can equivalently be written in terms of the integration constants Qj and Ej
as

✓̄0j(x
0,⇡�) =

�

2
+

Qj(⇡�)

⇢̄2j (x
0,⇡�)

(3.13a)

(⇢̄2j )
0(x0,⇡�) = Ej(⇡�)�

Q2

j (⇡�)

⇢̄2j (x
0,⇡�)

+ µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) ' µ2

j (⇡�)⇢̄
2

j (x
0,⇡�) , (3.13b)

where µ2

j (⇡�) ⌘ (�)⌘2j (⇡�) � �2/4 (we have dropped the superscript (�) for notation sim-

plicity) and with the last approximate equality being valid for large densities ⇢̄j � 1.

First order. The first order equations, instead, are

0 = �⇢00j (x,⇡�) + Re↵2r2�⇢j(x,⇡�)� (�)⌘2j (⇡�)�⇢j(x,⇡�)

�
⇥
�✓0j(x,⇡�)

�
2✓̄0j(x

0,⇡�)� �
�
� Im↵2r2�✓j(x,⇡�)

⇤
⇢̄j(x

0,⇡�) , (3.14a)

0 = �✓00j (x,⇡�)⇢̄j(x
0,⇡�) + ✓̄00j (x

0,⇡�)�⇢j(x,⇡�) + 2�✓0j(x,⇡�)⇢̄
0

j(x
0,⇡�)

+ 2✓̄0j(x
0,⇡�)�⇢

0

j(x,⇡�)� ��⇢0j(x,⇡�) + Re↵2[r2�✓j(x,⇡�)]⇢̄j(x
0,⇡�)

� (�)�2

j �⇢j(x,⇡�) + Im↵2r2�⇢j(x,⇡�) . (3.14b)

The two equations are form a complicated set of coupled second order di↵erential equations

for the variables �⇢j and �✓j .

Before discussing their decoupling limit let us remark that, from the very same struc-

ture of equation (3.14a), one can see that the di↵erential operator acting on ⇢, let us call

it ⇤↵ ⌘ (@2

0
+ Re↵2r2), has a signature dictated by the sign of Re↵2. Furthermore, we

notice that for Re↵2 = �1, ⇤↵ = ⇤, with ⇤ being the d’Alambert operator. The condition

Re↵2 = �1, means

Re↵2 =
⇡2
x

6✏z2
0

�
�2r � �2i

�
' � ⇡2

x�
2

i

3✏2⇡2

0

= �1 , (3.15a)

and can only be achieved of course if �2i � �2r . The above equality ⇡2
x�

2

i = 3✏2⇡2

0
seem in

fact a very natural choice for the parameters of the peaking functions12. If equation (3.15a)

is satisfied, then one also has

| Im↵2| = 2

3

⇡2
x�r|�i|
✏2⇡2

0

' 2
�r
|�i|

⌧ 1 , (3.15b)

which in turn is consistent with the requirement of having negligible (�)�.

Let us now look for the decoupling regime of equations (3.14). This can be more easily

identified by first rewriting equation (3.14b) as

0 = ⇢̄j(x
0,⇡�)

"
�✓00j (x,⇡�) + 2�✓0j(x,⇡�)

⇢̄0j(x
0,⇡�)

⇢̄j(x0,⇡�)
+ Re↵2r2�✓j(x,⇡�)

#

+ �⇢j(x,⇡�)


✓̄00j (x

0,⇡�) + [2✓̄0j(x
0,⇡�)� �]

�⇢0j(x,⇡�)

�⇢j(x,⇡�)

�
+ Im↵2r2�⇢j(x,⇡�) , (3.16)

12However, as we will discuss in more detail below, there could be compelling physical arguments for a

di↵erent choice.
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we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 

with classical ones. For instance, for the second quantized field operator, we have seen that

� = h�̂i�, so

�� = � h�̂i� =


�N

N̄
�̄+ N̄@⇡��✓�o

�

⇡�=⇡̃�

. (4.16)

The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with classical ones. For instance, for the second quantized field operator, we have seen that
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:
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0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes
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with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Already from this equation, in particular from the behavior of the spatial derivative
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the evolution equation for the scalar field perturbations does not match, in general, with
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wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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again to be compared with that obtained in classical GR (relational or in harmonic gauge)

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.

– 35 –

L. Marchetti, DO, '21cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 
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the fact that µ�o ' (�)⌘�o .
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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again to be compared with that obtained in classical GR (relational or in harmonic gauge)

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
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the fact that µ�o ' (�)⌘�o .
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes
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whose general solution is
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�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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again to be compared with that obtained in classical GR (relational or in harmonic gauge)

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be
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which can be more conveniently written as
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Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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no matching with GR, in general (i.e. for arbitrary wavelengths)

however, for large wavelengths k < 0 and at large volumes (where GR background dynamics is reproduced)
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the fact that µ�o ' (�)⌘�o .
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term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that
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the GR one.
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wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)
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with the equations for �V being already described in the previous subsection. In order
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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again to be compared with that obtained in classical GR (relational or in harmonic gauge)

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
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wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
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whose general solution is
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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with the equations for �V being already described in the previous subsection. In order
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which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
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wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
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with the equations for �V being already described in the previous subsection. In order
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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again to be compared with that obtained in classical GR (relational or in harmonic gauge)

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)
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The equation for B can instead be determined from (A.11a), whose second derivative
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which can be more conveniently written as
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Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find
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20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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only consider perturbations under conditions giving good semi-classical dynamics for background

average matter perturbations

with classical ones. For instance, for the second quantized field operator, we have seen that
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =

2�⇢�o/⇢̄�o ⌘ 2�⇢�o , and that �⇢�o and �✓�o satisfy the same di↵erential equation:

�00⇢�o + 2µ�o�
0

⇢�o
�r2�⇢�o = 0 = �✓00�o + 2µ�o�✓

0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

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, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
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= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by
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�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
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, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes
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0
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0
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�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
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0

�o �r2�✓�o . (4.17)

Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
�✓0�o = �✓00�o + µ�o�✓

0

�o , (k ! 0) , (4.18)

whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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0
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, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
�N

N̄
= ⇡̃�

�V

V̄
, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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S. Gielen, DO, '17; F. Gerhardt, DO, E. Wilson-Ewing, '18

what happens at small wavelengths (sub-horizon regime)? modified gravity QG effects? models are wrong?



again to be compared with that obtained in classical GR (relational or in harmonic gauge)

From these results one can obtain the evolution equations for all the other relevant

quantities. Using the combined gauge condition (A.12) one can find that A satisfies the

following equation:

A00 + a4k2A = 4a4k2 , (A.16)

so in the super-horizon limit k ! 0 A is forced to be a constant (same as  ) while in the

sub-horizon limit k ! 1 A is forced to be equal to 4 and so it must be zero.

According to these results, we also see from the fact that HA+  0 � �̄0��/2 = 0 that

in the limit k ! 0 �� is a constant, while in the limit k ! 1 �� ! 0. This can also be

checked explicitly from equation (A.33) of [88], which in our case reads

��00 + a4k2�� = 0 . (A.17)

The equation for B can instead be determined from (A.11a), whose second derivative

gives, using equations (A.13), (A.11c) and (A.17):

k2H(a2B)00 = �a4k2H(a2B) + a8k4 + k2(a4 )00 ,

which can be more conveniently written as

(a2B)00 + a4k2(a2B) = 8a2(a2 )0 . (A.18)

Perturbed volume equations. It is useful to recast the above equations for the metric

perturbations in terms of quantities that we have access to from the fundamental quan-

tum gravity theory. The most important one in this context is the local volume element

associated to a infinitesimally small patch of spacetime. At the classical level, this can be

compared to the local volume element

Vc ⌘
p
det 3g =

q
det a2[(1� 2 )�ij + 2E,ij ] = a3

q
det[�ij + 2(E,ij �  �ij)] . (A.19)

The perturbed part, at first order in  and E, is therefore given, in Fourer transform, by

�Vc = V̄c(k
2E � 3 ) , V̄c ⌘ a3 (A.20)

Since both E and  satisfy the same equation, we deduce that

(�Vc/V̄c)
00 + k2a4(�Vc/V̄c) = 0 .

Using that, by definition, H = V̄ 0/(3V̄ ), we find

�V 00

c � 6H�V 0

c + 9H2�Vc � a4r2�Vc = 0 . (A.21)

In particular, we notice that as a result of (A.15) (which holds also for the variable E,

since E and  satisfy the same equation), we find that in the super-horizon limit k ! 0,

we �Vc = �Vc,0V̄c, while in the sub-horizon limit k ! 1, �Vc = 0.
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no matching with GR, in general (i.e. for arbitrary wavelengths)

however, for large wavelengths k < 0 and at large volumes (where GR background dynamics is reproduced)

one obtains, for the general solution of the matter perturbation eqns:
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The dynamical equation satisfied by �� can be easily determined by noticing that �N/N̄ =
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0
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Here, consistently to what was done in the previous sections, we have used ⇢̄0�o = µ�o ⇢̄ and

the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-

lutions to our equations and to the GR ones do match in the super-horizon regime (long

wavelength limit). To see this explicitly, notice that in this case the equation satisfied by

�✓�o becomes

0 = �✓00�o +
(⇢̄2�o)

0

⇢̄2�o
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0
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whose general solution is

�✓�o = c1,�o(⇡�) + c2,�o(⇡�)N̄
�1 , (k ! 0) , (4.19)

with an appropriate redefinition of constants. Thus, in the large N̄ limit, we can write

�✓�o ' c1,�o(⇡�), and since �N/N̄ is constant, �� ' N̄c1,�o(⇡�), which forces us to consider

c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have
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which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other

hand, if we maintain the correspondence suggested above, i.e. ⇡� = h⇧̂�i� /N̄ , then

�⇡� = ⇡̃�
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, (4.21)

with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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GR predictions reproduced in super-horizon regime

L. Marchetti, DO, '21cosmological perturbations

we can compute the dynamical eqns for volume and matter perturbations, using perturbed hydrodynamic eqns, 
in the same large volume regime, and under the identifications 
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lutions to our equations and to the GR ones do match in the super-horizon regime (long
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c1,�o to be independent on ⇡� in order to match with GR. Indeed, in this case, we have

�� = � h�̂i =

�V

V̄
�̄+ @⇡�c2,�o � c2,�o@⇡�µ�ox

0

�

⇡�=⇡̃�

, (k ! 0) , (4.20)

which is compatible with the classical solution, since in virtue of �V/V̄ being constant20,

it satisfies ��00 = 0.

Let us now consider perturbations in the scalar field momentum. If the classical

momentum ⇡(c)
� is identified with h⇧̂�i� /N ' ⇡̃�, we have that �⇡� = 0. On the other
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with the equations for �V being already described in the previous subsection. In order

to have a consistent definition of the momentum, however, we should require ��0 = �⇡�,

which, in the long wavelength limit forces us to impose c2,�o = 0, so that we find

�� = (�V/V̄ )�̄ , (k ! 0) . (4.22)

20Recall that the dominant solution of equation (4.9) in the k ! 0 limit is �V / V̄ .
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the fact that µ�o ' (�)⌘�o .

Already from this equation, in particular from the behavior of the spatial derivative

term (scaling as V̄ 4/3, compare with equation , see equation (A.17)) we can conclude that

the evolution equation for the scalar field perturbations does not match, in general, with

the GR one.

Still, similarly to what happens for the volume perturbations, we can verify that so-
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S. Gielen, DO, '17; F. Gerhardt, DO, E. Wilson-Ewing, '18

what happens at small wavelengths (sub-horizon regime)? modified gravity QG effects? models are wrong?

n.b. localization is relational - non-trivial spatial dependence = dependence on relational rods
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• space&time (and local physics) emergent in correspondence to special quantum states (good clock/rods)

• interesting (gravitational) physics can be already obtained

• all approximations need to be improved

• more control over effective gravitational description (background & perturbations) - modified gravity?

• extract (local) effective field theory description and identify its precise limits of validity

• need to control and use more ingredients from fundamental TGFT models

• develop related phenomenological formulations (simplified toy models, embeddable into full theory)

• stronger connection with GFT renormalization (running of couplings/parameters, phase transitions)

• ..........



Thank you for your attention!


