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here: TGFT models for QG with quantum geometric data: GFT
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tensor field on group manifold, endowed with "quantum geometric" conditions (in field or action) N
p:G*T 5 C

TGFT quanta = geometric tetrahedra (group-theoretic data encode discrete geometry)

quantum:

Hilb g
ilbert space J'% >

Hy = L? (G%dpigaar) | + constraints 2¥(91, 92, 93, 94)(0) = ’ﬂ‘

Fock space of quantum states
F(H,) = P, sym { (HS}) SHPY ® & %ﬁv)) } Moy = Hictra

can define field (creation/annihilation) operators to move along Fock space

» 2nd quantized geometric observables (simplicial areas, volumes, etc) see following
_ 1 A _ _
Sl %) = 5 [ ldgile(9:)(gi)e(9:) + o7 [ ldgiale(gin)-..0(9ip)V(9ia, 9ip)  +  cc.
g _ 2V
Z — /D@D@ e’ A (0, 9) — Z Ar
T Sym(F) non-local combinatorial pattern
perturbative expansion gives sum over simplicial complexes
perturbative amplitudes = simplicial gravity path integrals with dynamical discrete geometry (edge lengths,...)
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continuous SL(2,C) data; covariant "spin networks" states; no Immirzi parameter
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- very rich quantum geometry (interplay of group& representation theory with simplicial b
geometry), full quantum many-body system (entanglement, ...), relation to tensor networks, ..... ’
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« Feynman amplitudes are full simplicial gravity path integral

why problematic: complicated - difficult to control quantum amplitudes, symmetries, etc

 slow progress on renormalization, etc

why useful:
many geometric/physical guidelines and tools, and potentially meaningful even in simple approximations

see following
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basic guideline for model-building (choosing GFT action):

GFT Feynman amplitudes = simplicial path integrals for gravity coupled to scalar fields

 continuum scalar field is O-form - naturally discretized on vertices of dual of simplicial complex:
discrete scalar field = real variable at each dual vertex (center of each 4-simplex)

- propagator (thus kinetic term) depends on difference between values at neighbouring 4-simplices

- domain of GFT field extended to include values of scalar fields ©(g7,x%) = ¢(gr, %%, ..., x")

- GFT action including geometry-matter coupling can be deduced from discrete path integral,
to produced as GFT Feynman amplitude

28 = [ T2, T an T aoo o801 s2= (35 (%) "4 5 vy
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geometric coupling potential

- GFT propagator basically exponential of square of difference of scalar field values at neighbouring 4-simplices
(coupled to discrete geometry), in discrete metric variables

- GFT vertex basically exponential of scalar field potential at each 4-simplex (coupled to discrete geometry)

 not unique: discretization + quantization ambiguities (only important to capture classical& continuum limit)
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example: extension

« corresponding to classical action (5 scalar fields):

Y. Li, DO, M. Zhang, '17

to (real, massless, free, minimally coupled) scalar fields

(+1)
A4py ::nuu
Sl 8] = 5 [ dtev=gmgPantany — % [ dtey=ge 0.0 MY = s,

« gives GFT models:
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(x—X")2 = sen(A) M%) (x—x')*(x—x')"

note: inclusion of scalar field potential leads to dependence of interaction kernel on scalar field value
(breaking of translation symmetry in (scalar) field space)

main features:

« non-local in quantum geometry data, local in scalar field data
- resulting TGFT models contain both local and non-local directions
- similar to TFTs on flat spacetime used for SYK-like systems

- local flat directions can acquire in fact interpretation as physical reference frame (see following)

note: bringing together different branches of the TGFT family! (Y. wang, V. Nador, DO, X. Pang, A. Tanasa, in progress)
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focus on quantum GFT effective action

use the quantum geometric data of GFT (mean) field to gain physical intuition

identify relevant geometric observables

translate GFT (mean) field dynamics into dynamics for geometric observables
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general: GFT hydro = non-linear quantum cosmology

mean field hydrodynamic egns = non-linear egns for condensate wavefunction S. Gielen, DO, L. Sindoni, '13
~ 77 ~ T ~ T 5U P, ¢
/dhzdxd¢K (gz,hz;x“,x”;cb, <b) o(hr, X", ¢) + (£,9) o=0
5@(917 ) Qb)

non-linear extension of quantum cosmology egn for collective wave function

in fact, it applies to eqns derived from quantum effective action
note: corresponds to infinite resummation of ("tree level") perturbative Feynman amplitudes
thus, non-perturbative, collective physics of "QG atoms"

due to non-locality of TGFT interactions, in general these are also non-local differential-integral eqns
on minisuperspace

mean field approx. corresponds to working with

simplest condensate states (field coherent states): /

S. Gielen, DO, L. Sindoni, 13 [0) = N exp [ / d™x / dgro(gr, x*)@' (g1, x )] 0)  infinite superposition of
quantum tetrahedra

mean field = condensate wavefunction



Digression:
observables in QG and the relational strategy
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S(p,9) = K +U

h= /ng dh; / Ay d*x' d¢ d¢’ @(g1, \)K (g1, hr; (x = X')3. (9 — ¢'))o(hr, (X)), &)
5

5
U= [ahds [ <H dg?) Ulgh,. ... g0 [[elgh X" 6) +oc.
a=1

{= v
Y (x=x)2 = sen( N ME (=) (x—xX')

hydrodynamics in mean field approx. for special "good clock+rods" states S. Gielen, DO, L. Sindoni, 13
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hydrodynamics in mean field approx. for special "good clock+rods" states S. Gielen, DO, L. Sindoni, 13
§SarT[@, PF §SarT[@, @1
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restriction to "good clock+rods" simple condensate states
Oe,,m0, Tz (gfa X'ua ¢) — Ue(XO — xO; 7-‘-0)775(‘)( — Xl; 7-‘-513)5-(9[7 X'ua ¢) L. Marchetti, DO, 20, "21
x—x2=YL (-2 C36 =208 +i6 6 >0 66| <1 wm=eng/2  2=0m,)2

this turns non-linear quantum cosmology eqgn into a relational evolution egn for condensate wavefunction

in terms of relational "time" and "space"” directions, defined by physical frame
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condensate wavefunction depends on single |

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

resulting mean field hydrodynamics eqgn: Fourier mode of

/ matter field variable
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dependence on both GFT model and states linear part of non-linear hydro egns
using: 0 = p; explib;] rewrite in standard hydrodynamic form (fluid density, phase)
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pj=Pj+0p;  0;=0;+00; p=0p"m) 0= 0(0m)



decomposition into homogeneous background + perturbations

homogeneous background + inhomogeneous perturbations (defined in relational terms) L. Marchetti, DO, '21
pj =pj+0op;  0;=0;+ 40 p=p@a 1) 6= 0207
background eqgns: (2", mg) — {(é}(wo, 7T¢))2 + W2 (my) — A0,(2°, 7T¢)] pi(z°,7y) =0

(p7)'(2°, my)
ﬁ? (29, 7T¢)

07 (2%, mg) + (05 (2", mg) —7/2) — W2 =0




decomposition into homogeneous background + perturbations

homogeneous background + inhomogeneous perturbations (defined in relational terms) L. Marchetti, DO, '21
pj =pj+0op;  0;=0;+ 40 p=p@a 1) 6= 0207
background eqgns: (2", mg) — {(é}(wo, 7T¢))2 + W2 (my) — A0,(2°, 7T¢)] pi(z°,7y) =0
i ] (72) (2, 7)
07 (20, mg) + (62, mg) —/2) - Wgi =0
ST Padm)

2 w26, 6
_7T:1227“|27«‘ <1l — (A)gfngImazrj;2 negligible
€ 7'('0

assume |Ima?| =




decomposition into homogeneous background + perturbations

homogeneous background + inhomogeneous perturbations (defined in relational terms) L. Marchetti, DO, '21
pj =pj+0op;  0;=0;+ 40 p=pamg) 6= 020w
background eqgns: (2", mg) — {(é}(wo,%)) + M2 (my) — yég(:po,%)] pi(z°,7y) =0
i ] (72) (2, 7)
07 (2, 74) + (85(2°, mg) —/2) ~ B} =0
ST Padmy)
2 m26,|6;
assume |Ima?| = —Wx;lzz‘ <1 —— W2 =3xIma’r;» negligible
€ 7'('0
Q3 (mp)
> 9/(5607'(') l_l_ QJ(T‘-Cb) _Z/ZEO,TF — E () — J 4+ 2-7T ~2 ZEO,T(
) =9 20 ) (p5) (@7, ) = &(my) (0, 70) 1 ()P (x7, 7o)

Qj, 4 are integration constants (conserved quantities)



decomposition into homogeneous background + perturbations

homogeneous background + inhomogeneous perturbations (defined in relational terms) L. Marchetti, DO, '21
pj=pjt+op;  0;=0;+00; p=p"m) 0 =0 my)
background eqgns: (2", mg) — {(@;(xo,%)) + M2 (my) — yég(:po,%)] pi (20, 7y) =
i ] (72) (2, 7)
07 (x°,mg) + (05(2, mp) —7/2)— ~ Wi =0
ST Padm)
2 w26, |0
assume |Imo?| = —Wx;';‘ <1 —— W2 =3xIma’r;» negligible
€ 7'('0
Q3 (mp)
> 9/(5607'(') 1—|‘ Q](T‘-Cﬁ) _2-/260,7'(' — Em) — J 4 2-7T —~2 5130,7'('
) =9 20 ) (pj) (2", mp) = () (0 m0) wi (mg)pj (7, )

Qj, 4 are integration constants (conserved quantities)

perturbations egns:

<1

2| . 27—‘-32:57“'52‘

9 2.2
367T0

highly coupled; decouple for large condensate density (large universe volume) and | Im «

0~ 0pf(x,my) — V2p;(z,7g) — (/\)77] (m)0ps(z, mp)
pli(a?, my)
pj( 77T¢)

0~ 59”([13 7Tq5) + 260" (CIS 7Tq5) — V25(9j(513, 7T¢)




decomposition into homogeneous background + perturbations

homogeneous background + inhomogeneous perturbations (defined in relational terms) L. Marchetti, DO, '21
pj=pjt+op;  0;=0;+00; p=p"m) 0 =0 my)
background egns: (2", mg) — {(ég(xo,%)) + M2 (my) — yég(:po,%)] pi(z°,7y) =0
_ . (p5) (2", 7g)
07 (x°,mg) + (05(2, mp) —7/2)— ~ Wi =0
ST Padm)
2 w26, |0
assume |Imo?| = —Wx;';‘ <1 —— W2 =3xIma’r;» negligible
€ 7'('0
Q3 (mp)
> 9/(5607'(') 1—|— Q](T‘-Cﬁ) _2-/260,7'(' — Em) — J 4 2-7T —~2 ZEO,T(
) =9 20 ) (pj) (2", mp) = () (0 m0) wi (mg)pj (7, )

Qj, 4 are integration constants (conserved quantities)

perturbations egns:

2| _ 27-‘-32:57’|52‘

2.2

<1
3 €4

highly coupled; decouple for large condensate density (large universe volume) and | Im «

0~ 0pf(x,my) — V2p;(z,7g) — (/\)772'(7%)5103' (z,7p)

Pl (20, my)

ON59”937T —|—250/az7r
(z,mg) ( ¢)pj(330 )

— V260,(z,7y)

dependence on both GFT model and condensate states




decomposition into homogeneous background + perturbations

homogeneous background + inhomogeneous perturbations (defined in relational terms) L. Marchetti, DO, '21
pj=pjt+op;  0;=0;+00; p=p"m) 0 =0 my)
background egns: (2", mg) — {(ég(xo,%)) + M2 (my) — yég(:po,%)] pi(z°,7y) =0
_ . (p5) (2", 7g)
07 (x°,mg) + (05(2, mp) —7/2)— ~ Wi =0
ST Padm)
2 w26, |0
assume |Imo?| = —Wx;';‘ <1 —— W2 =3xIma’r;» negligible
€ 7'('0
Q3 (mp)
> 9/(5607'(') 1—|— Q](T‘-Cﬁ) _2-/260,7'(' — Em) — J 4 2-7T —~2 ZEO,T(
) =9 20 ) (pj) (2", mp) = () (0 m0) wi (mg)pj (7, )

Qj, 4 are integration constants (conserved quantities)

perturbations egns:

2| _ 27-‘-32:57’|52‘

2.2

<1
3 €4

highly coupled; decouple for large condensate density (large universe volume) and | Im «

0~ 0pf(x,my) — V2p;(z,7g) — (/\)772'(7%)5103' (z,7p)

Pl (20, my)

ON59”937T —|—250/az7r
(z,mg) ( ¢)pj(330 )

— V260,(z,7y)

dependence on both GFT model and condensate states
now, need to obtain equations for physical observables




GF'T condensate cosmology:
emergent dynamics of physical observables



Relevant observables for cosmological dynamics (operators in full GFT Fock space)
DO, L. Sindoni, E. Wilson-Ewing, '16

used to define collective relational observables for effective continuum dynamics

as expectation values in "good clock+rods" condensate states

N(ZEO7:U,L) — <O-€,5,7T0,7Tm,$'u‘N‘O-G,é,’fro,ﬂ'w,a’}”> V(‘/’UO?‘/’UZ) = <O-€7577T077Tm7$'u|V|O‘€7577T0’7T317$'UJ>

X,U(:Uosz) = <O-€,5,7T0,7Ta;,$'u"V’O-€75777077Tm7xu> = x’u H(wosz) = <O-€75777077T:137$'u|HV‘O-€7577T077T33733M>

QS([L‘O’ZEZ) = <O-€a577T077T£U7$“|¢‘O-€7577T0)7T5E7xu> Hgb(xosz) = <0-€,5,7T077Ta;,$'u’|]/'_‘\[¢‘O-€,5,7TO,7TQ;,$H’>




Relevant observables for cosmological dynamics (operators in full GFT Fock space)
DO, L. Sindoni, E. Wilson-Ewing, '16

* number operator N = /an/d9195 (glaXa)Sb(glaXa)

used to define collective relational observables for effective continuum dynamics

as expectation values in "good clock+rods" condensate states

N(ZEO7:U,L) — <O-€’5,7'('0,7'('m7x,u"N‘0€,577T077Tw’(1;,u’> V(‘/’UO?‘/’UZ) = <O-€7577T077Tm7$'u|V|O‘€7577T0’7T317$'UJ>

X,U(:Uosz) = <O-€,5,7T0,7Ta;,$'u"V’O-€75777077T337x“> = x’u H(wosz) = <O-€75777077T:137$'u|HV‘O-€7577T077T33733M>

QS([L‘O’ZEZ) = <O-€)577T077T£U7$M|¢‘O-€7577T0)7T5E7xu> Hgb(xosz) = <0-€,5,7T077Ta;,$'u’|]/'_‘\[¢‘O-€,5,7TO,7TQ;,$H’>




Relevant observables for cosmological dynamics (operators in full GFT Fock space)
DO, L. Sindoni, E. Wilson-Ewing, '16

* number operator N = /an/dnga (QLXGJ)@(QI»XG)

* universe volume V = /d”X/dg[ dg}gb (g],xa)v(glaglf)@(g/bxa)

used to define collective relational observables for effective continuum dynamics

as expectation values in "good clock+rods" condensate states

N(ZBO7:CZ) — <O-€’5,7T0,7Tm7x,u"N‘06,577T077Tw7ajlu’> V(‘/’UO?CU,L) = <O-€7577T077Ta?7$'u|V‘0€7577T077TCU7$'UJ>

X,U(:Uosz) = <O-€,5,7T0,7Ta;,$'u"V’O-€7577T077T$7$M> = CE’LL H(:’U()?xz) = <O-€75777077T:137$'u|HV‘O-€7577T077T33733M>

QS(ZEO’:EZ) = <O-€)577T077T£U)x'u’|¢‘O-€7577T0)7T5E7xu> Hgb(xosz) = <0-€,5,7T077Ta;,$'u’|]/'_‘\[¢‘O-€,5,7TO,7TQ;,$'U’>




Relevant observables for cosmological dynamics (operators in full GFT Fock space)
O, L. Sindoni, E. Wilson-Ewing, '16

* number operator N = /an dgr @T 91 X )sﬁ(gz,xa)

© universe volume V= / d"x / dgr dg; @' (91, x")V (91, 91 (g7, x*)
- value of clock/rods scalar fields Xt = /dnx/dg[ P& (g1, x4 (g1, x%)

- momentum of clock/rods scalar fields /dn /dgz [ (91, X )(aisb(gf,xa))]

note: dependence on matter scalar field data left implicit

used to define collective relational observables for effective continuum dynamics

as expectation values in "good clock+rods" condensate states

N(:UO’ZCZ) = <O-€75,77077T:1:7x’u‘N‘O-ea5777077rw7xu> V($O7$z) = <O-€75)7T0’7Ta:7$’u|V‘067577T077T:c7$'u>

XM(:UO):CZ) = <O-€,5,7T0,7Ta;,$'u"V’O-€7577T077Ta37x'u> = CL"U' H(:’U()?xz) = <O-€7577T077T:137w'u|HV‘O-€7577T077T33733'M>

QS(ZEO’(EZ) = <O-€,5,7T0,7Tx,$'u"¢‘O-€,5,7T0,7Tw,$“’> Hgb(xojajz) = <0-€,5,7T0,7Ta;,$'u’|]/'_‘\[¢‘O-€,5,7T0,7Ta;,$u’>




Relevant observables for cosmological dynamics (operators in full GFT Fock space)
DO, L. Sindoni, E. Wilson-Ewing, '16

- number operator N = /an/dgl QIaXa)Sb(glaXa)

© universe volume V= / d"x / dgr dg; @' (91, x")V (91, 91 (g7, x*)
- value of clock/rods scalar fields Xb = /d” /dQIX (91, x*)@(g9r, x*)

- momentum of clock/rods scalar fields /dn /dgz [ (91, X )(g&(gnx“))]

note: dependence on matter scalar field data left implicit

- 1
- value of matter scalar field ¢ = ;/dg]/d‘l)(/dmb @T(gl,X“,qu)(‘?%gb(g],x“,w(b)

« momentum of matter scalar field ﬂ¢ = /dgffd4X/d7T¢ ng@T(gI,X“aﬂcb)@(gI,X”,%)

used to define collective relational observables for effective continuum dynamics

as expectation values in "good clock+rods" condensate states

N(:UO’ZCZ) = <O-€75,77077T:1:7x’u‘N‘O-ea5777077rw7xu> V($O7$z) = <O-€75)7T0’7Ta:7$’u|V‘067577T077T:c7x'u>

XM(:UO):CZ) = <O-€,5,7T0,7Ta;,$'u"V’O-€7577T077Ta37x'u> = CL"U' H(:’U()?xz) = <O-€7577T077T:137w'u|HV‘O-€7577T077T33733'M>

QS((EO,:EZ) = <O-€,5,7T0,7T:U,$'u"®‘O-€,5,7T0,7Tw,$“’> Hgb(xosz) = <0-€,5,7T0,7Ta;,$'u’|]/'_‘\[¢‘O-€,5,7T0,7Ta;,$u’>




Effective volume and scalar matter dynamics: homogeneous background



Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics:

L. Marchetti, DO, '21

A. Jercher, DO, A. Pithis, 21

(

V/
3V

)2_

Y

2

257, [ dmo Vi sgn(p s\ [€; — Q2/p2 + i1

p;

3 Zj J dﬂaﬁVjP?

v 230 [dmgVy (€ +2p

7

2
J

p;]

Zj de¢V7'P?

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics: L. Marchetti, DO, '21  A. Jercher, DO, A. Pithis, 21
2
2/ 2 2 2
(K)Q (22 ] dmeVisgn(p)p; \/5j ~ Q5 uiei \ | v 2% [dngVy (€ + 23]
3V 35, [dnsV;p? 14 225 J dmgVips

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« semiclassical dynamics at late times  (large densities, small Hubble rate, large volume)




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics: L. Marchetti, DO, '21  A. Jercher, DO, A. Pithis, 21
2
(v/ )2 2> ) dmsVisgn(p pg\/c‘? — Q3/pF + 1ip; v 2y, fd7¢v (& +2p207]
3v) 32 fd77<bvj:0j Vo 2 J dmyVip;

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« semiclassical dynamics at late times  (large densities, small Hubble rate, large volume)

e.g. (large density) if one spin mode dominates, and for such mode  ftv, (Tg) ~ €y, Ty

and we consider states peaked on a given value of the matter scalar field momentum, we get

2
V! 4 N 4G I.e. the relational Friedmann eqgns
H? = (—) — _N%O () = TW;’ H' =0  with scalar matter of momentum ¢ = I12 o/ N?

and effective Newton constant 4%0 = 127G




Effective volume and scalar matter dynamics: homogeneous background

baCkground Volume dynamics: L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21

2

(V/>2 22 J dmgV;sgn(p PJ\/g —Q2/pj +'“pr |74 22 [ dryV; (€ +2'“pr]
V) = 3, [drsV;p? Vo > ] dmgVipj

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« semiclassical dynamics at late times  (large densities, small Hubble rate, large volume)

e.g. (large density) if one spin mode dominates, and for such mode  ftv, (Tg) ~ €y, Ty

and we consider states peaked on a given value of the matter scalar field momentum, we get

2
V! 4 N 4G I.e. the relational Friedmann eqgns
H? = (—) — _N%O () = —7Tq2b, H' =0  with scalar matter of momentum ¢ = I12 o/ N?

and effective Newton constant 4%0 = 127G




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics: L. Marchetti, DO, '21  A. Jercher, DO, A. Pithis, 21
2
(v/ )2 2>_; J dmyVjsgn(p pg\/c‘? — QF/p; + 1507 v 2y, fd7¢v (& +2p207]
3v) 32 fd77<bvjpj Vo 2 J dmyVip;

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« semiclassical dynamics at late times  (large densities, small Hubble rate, large volume)

e.g. (large density) if one spin mode dominates, and for such mode  ftv, (Tg) ~ €y, Ty

and we consider states peaked on a given value of the matter scalar field momentum, we get

2
V&l 4 - 4G l.e. the relational Friedmann eqgns
H? = (W) — §,u12)0( ¢) - Tﬂ'?b, H' =0  with scalar matter of momentum 7T¢ I1° /N2

and effective Newton constant 4%0 = 127G

I1 ~ 52 T, Tg) = TN (2,7 i.e. the correct classical eqns (with

< ¢>‘7 800, (T 7o) oN (2, 7) constant scalar field momentum),

— - = 5 under identification:

= (D)~ N2, 74)[0r, 0, 12, 7p) ~ —c: ' + Fpa” 5 A — =
QS < >O‘ ( ) ¢)[ T 'Uo]( ) Cﬁ) v @ Q5 — <(I)>O- H/N = g4




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics: L. Marchetti, DO, '21  A. Jercher, DO, A. Pithis, 21
2
(v/ )2 2>_; J dmyVjsgn(p pg\/c‘? — QF/p; + 1507 v 2y, fd7¢v (& +2p207]
3v) 32 fd77¢‘/jpj Vo 2 J dmyVip;

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« semiclassical dynamics at late times  (large densities, small Hubble rate, large volume)

e.g. (large density) if one spin mode dominates, and for such mode  ftv, (Tg) ~ €y, Ty

and we consider states peaked on a given value of the matter scalar field momentum, we get

2
V&l 4 - 4G l.e. the relational Friedmann eqgns
H? = (W) — §,u12)0( ¢) - Tﬂ'?b, H' =0  with scalar matter of momentum 7T¢ I1° /N2

and effective Newton constant 4%0 = 127G

I1 ~ 52 T, Tg) = TN (2,7 i.e. the correct classical eqns (with

< ¢>‘7 800, (T 7o) oN (2, 7) constant scalar field momentum),

— - = 5 under identification:

= (D)~ N2, 74)[0r, 0, 12, 7p) ~ —c: ' + Fpa” 5 A — =
QS < >O‘ ( ) ¢)[ T 'Uo]( ) Cﬁ) Vo @ ¢ — <(I)>O- H/N = g4

- can also compute relative fluctuations in volume (etc): generically small - semiclassical limit is robust
L. Marchetti, DO, '20




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics:

L. Marchetti, DO, '21

(

V/
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)2:
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note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics:

L. Marchetti, DO, '21

A. Jercher, DO, A. Pithis, 21

(

V/
3V

)2:

2>, ) drgVisgn(p')p; \/5;' — QF/p; + 15

p;

3 Zj f dﬁqbvjﬂ?

2

v 23 [drgV (€5 + 2u

%

2
J

p; ]

Zj fdﬁqijP?

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics: L. Marchetti, DO, '21  A. Jercher, DO, A. Pithis, 21

2

3V 323' fd%‘/jp? 4

J

(V’>2 (2%, ) dnsV; SgH(P’)Pj\/gj — QiGN | v 2% [dmgV; (€ + 2u2p7]

Zj fdﬁqijP?

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« quantum bounce at early times

- behaviour at small (relational) times, assuming conditions of "good relational clock" are satisfied:

* there are solutions with singular behaviour (cosmological singularity not always resolved)

- if at least one coefficient Q or at least one "energy" coefficient is non-zero:

w— 1) [ 0;(X) F OV X w—p- V= 2_; Vj/ﬁ

~

remains positive at all times

__(with single turning point) )

guantum bounce (solving
classical singularity)!




Effective volume and scalar matter dynamics: homogeneous background

background volume dynamics: L. Marchetti, DO, '21

A. Jercher, DO, A. Pithis, 21

2

3V 323' fdﬁqbvj/)?

%

J

(V’)Z (2% ) dm; Sgn(p’)Pj\/gj — QiGN | v 2% [dmgV; (€ + 2u2p7]

Zj fdﬁqijP?

note: adopt notation for EPRL SU(2)-based model, but analysis and results apply equally to BC model

« quantum bounce at early times

- behaviour at small (relational) times, assuming conditions of "good relational clock" are satisfied:

* there are solutions with singular behaviour (cosmological singularity not always resolved)

- if at least one coefficient Q or at least one "energy" coefficient is non-zero:

w—g 7] [ 0;(X) F 07X —

- :
V = Zj VJ/O?

~

remains positive at all times

__(with single turning point) )

guantum bounce (solving
classical singularity)!

- quantum fluctuations remain small also at bounce, for specific range of parameters

(i.e. specific class of quantum states

L. Marchetti, DO, '20




Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime

M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21



Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime

M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21
« phenomenological approach: consider general interactions

2,

, 2,& /
— 2 2 .
V(o,0) = _zj: <mj|(7j| + n_j|‘7j|n‘7 + n,57|(7j|n”> 2 <mn; <nf o ul <N < m?

J
note: restrict to homogeneous configurations and neglect contribution from scalar matter




Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime

M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21
« phenomenological approach: consider general interactions
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J
note: restrict to homogeneous configurations and neglect contribution from scalar matter
2V V"

in terms of equation of state
(V’ )2 for effective "matter content”

- effective cosmological dynamics |w = 3




Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
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_ in terms of equation of state
(V’ )2 for effective "matter content”

- effective cosmological dynamics |w = 3

- couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume



Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime

M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21
« phenomenological approach: consider general interactions

2,

, 2,& /
— 2 2 .
V(o,0) = _zj: (mj|(7j| + n_j|‘7j|n‘7 + n,57|(7j|n”> 2 <mn; <nf o ul <N < m?

J
note: restrict to homogeneous configurations and neglect contribution from scalar matter

20 V" . .
_ in terms of equation of state
(V’ )2 for effective "matter content”

- effective cosmological dynamics |w = 3

 couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

* universe dynamics initially described by free theory:



Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21

« phenomenological approach: consider general interactions

—\ __ 2 2 J n; J n'.
V(o,0) = — g (mj|0j| +—n- o™ + - o] 2 <mny < |u| <N < m?
. 7 j
J
note: restrict to homogeneous configurations and neglect contribution from scalar matter
2V V"

in terms of equation of state
for effective "matter content”

- effective cosmological dynamics |w = 3

- couplings are (assumed) very small, interactions relevant only at large densities, i.e. large universe volume

2

* universe dynamics initially described by free theory:
15}

* bouncing scenario at very small volumes R

« short lived acceleration after bounce 0.5t
0 L

- at larger volumes, classical Friedmann dynamics
0.5 ¢
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Inclusion of GFT interactions: phantom dark energy + asymptotic deSitter regime
M. De Cesare, A. Pithis, M. Sakellariadou, '16; DO, X. Pang, '21
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Thank you for your attention!



