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Ribbon Graphs
or cyclic graphs or combinatorial maps. . .

There are many equivalent definitions:
(not necessarily orientable) surfaces equipped with a decomposition into
vertices and edges,
cellular embeddings of graphs,
graphs + cyclic orders around vertices (orientable case),
triple of permutations (σ0, σ1, σ2) such that σ0σ1σ2 = id,
etc

Examples :
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Natural Duality
aka Euler-Poincaré duality

It exchanges faces and vertices while conserving genus.

Fabien Vignes-Tourneret (ICJ) 5 / 26



Natural Duality
aka Euler-Poincaré duality

It exchanges faces and vertices while conserving genus.

Fabien Vignes-Tourneret (ICJ) 5 / 26



Partial Duality
A generalisation of natural duality

Let G be a ribbon graph and A ⊆ E (G). Here is how to construct GA, the partial
dual of G wrt the spanning subgraph GA:

eg A = {1, 2}
1 Cut the edges in A: G 7→ G ∨ A.
2 Build the natural dual of G ∨ A: G ∨ A 7→ (G ∨ A)?.
3 Reglue the cut edges: (G ∨ A)? 7→ GA.
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Genus is not conserved.
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Partial Duality
Properties

Can be proven within the formalism of combinatorial maps.

1 Partial duality generalises natural duality: GE(G) = G?.
2 It’s an involution:

(
GA)A = G .

3 It can be done edge by edge: if e /∈ A then GA∪{e} =
(
GA){e}.

4 Let A,B ⊆ E (G), then
(
GA)B = GA∆B .
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Thistlethwaite’s type theorems
Classical links

M. Thistlethwaite (1987): L an alternating link, ΓL a planar graph

VL(t) ∝ TΓL (−t,−t−1)

L. Kauffman (1989): generalises to any link.
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Thistlethwaite’s type theorems
Virtual links

Virtual knots are embeddings of the circle into Sg × [0, 1].

S. Chmutov (2007): L a virtual link diagram, s any of its states,

[L](A,B, d) = Ae(Gs )
(
xky vzv+1 RGs (x , y , z)|x=Ad/B,y=Bd/A,z=1/d

)
.

S. Chmutov (2007): A ⊆ E (G), G ′ := GA

xk(G)y v(G)zv(G)+1RG (x , y , z)|xyz2=1 = xk(G′)y v(G′)zv(G′)+1RG′ (x , y , z)|xyz2=1.

And, if s, s ′ are 2 states of L, Gs and Gs′ are partial duals of each other.
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What is a hypermap?

Both a generalisation and a particularisation of maps.
A cellular embedding of a bipartite graph.
A 3-coloured polygonal tessalation of a closed compact 2-manifold.

1
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What is a hypermap?
After Tutte (1973)

Definition (Combinatorial hypermap)
Let X be a finite set of even cardinality. A pre-hypermap on X is a 3-constellation
(σ0, σ1, σ2) on X and a fixed point free involution θ1 which obey the following
axioms:

1 σ0θ1 and θ1σ1 are involutions.
2 ∀x ∈ X, Oσ0 (x) ∩ Oσ0 (θ1x) = ∅.
3 ∀x ∈ X, Oσ1 (x) ∩ Oσ1 (θ1x) = ∅.

A pre-hypermap such that 〈σ0, σ1, θ1〉 acts transitively on X is called a
combinatorial hypermap.

Definition (Orientability)
A hypermap H = (σ0, σ1, σ2; θ1) is orientable if there are two equivalence classes
of 〈σ0, σ1〉.
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Operations on Hypermaps
cut

Notation: σ a permutation on X and Y ⊆ X . σ�Y := σ on Y and id on Y .

Definition (cut)

Let H = (σ0, σ1, σ2; θ1) be a pre-hypermap on X and E ′ (resp. V ′, F ′) be a
subset of conjugate pairs of σ1 (resp. σ0, σ2). Then

cut1,0(H,E ′) :=
(
σ0, σ1�E ′ , (σ0σ1�E ′ )−1; θ1

)
,

cut1,2(H,E ′) :=
(
(σ1�E ′σ2)−1, σ1�E ′ , σ2; θ1σ1�E ′

)
,

cut0,1(H,V ′) :=
(
σ0�V ′ , σ1, (σ0�V ′σ1)−1; θ1

)
,

cut0,2(H,V ′) :=
(
σ0�V ′ , (σ2σ0�V ′ )−1, σ2;σ0�V ′θ1

)
,

cut2,0(H,F ′) :=
(
σ0, (σ2�F ′σ0)−1, σ2�F ′ ; θ1

)
,

cut2,1(H,F ′) :=
(
(σ1σ2�F ′ )−1, σ1, σ2�F ′ ; θ1

)
.
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Operations on Hypermaps
cut1,0

An example: vertices are red, edges are green.

Ē′
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Operations on Hypermaps
Colour change

Definition (Colour change)
Let H = (σ0, σ1, σ2; θ1) be a pre-hypermap on X and S3 be the permutations on
{0, 1, 2}. Let π ∈ S3 be a transposition. Then

ΠH := (σ−1
π(0), σ

−1
π(1), σ

−1
π(2); θ

′
1), θ′1 :=


θ1 if π = (01)
θ1σ1 if π = (02)
σ0θ1 if π = (12)

.

Any permutation (of S3) is a product of transpositions. Its action on
(pre-)hypermaps is defined as the composed actions of these transpositions.
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Operations on Hypermaps
Colour change

An example: π02 (vertices are red, faces are blue).
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Operations on Hypermaps
glue

Definition (glue)
Let H = (σ0, σ1, σ2; θ1) be a pre-hypermap on X and Y be a subset of X. Let σ
be a permutation on X such that σ = id on Y . Assume that the set of fixed
points of σ1 is Y and θ1σ1σ is a fixed-point free involution. Then

glue1,0(H, σ) :=
(
σ0, σ1σ, (σ0σ1σ)−1; θ1

)
,

glue1,2(H, σ) :=
(
(σ1σσ2)−1, σ1σ, σ2;σθ1

)
.

Assume that the set of fixed points of σ0 is Y and σσ0θ1 is a fixed-point free
involution. Then

glue0,1(H, σ) :=
(
σ0σ, σ1, (σ0σσ1)−1; θ1

)
,

glue0,2(H, σ) :=
(
σ0σ, (σ2σ0σ)−1, σ2; θ1σ

)
.

. . .
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Operations on Hypermaps
Partial duality

Definition
The partial duals of H with respect to E ′ (resp. V ′, F ′) are defined as

HE ′,V :=glue1,0
(
π02cut1,0(H,E ′), σ1�E ′

)
= (σ0σ1�E ′ , σ−1

1�E ′σ1�E ′ , σ1�E ′σ2; θ1σ1�E ′ ),

HE ′,F :=glue1,2
(
π02cut1,2(H,E ′), σ1�E ′

)
,

HV ′,E :=glue0,1
(
π12cut0,1(H,V ′), σ0�V ′

)
= (σ−1

0�V ′σ0�V ′ , σ0�V ′σ1, σ2σ0�V ′ ;σ0�V ′θ1),

HV ′,F :=glue0,2
(
π12cut0,2(H,V ′), σ0�V ′

)
,

HF ′,V :=glue2,0
(
π01cut2,0(H,F ′), σ2�F ′

)
= (σ2�F ′σ0, σ1σ2�F ′ , σ−1

2�F ′σ2�F ′ ; θ1),

HF ′,E :=glue2,1
(
π01cut2,1(H,F ′), σ2�F ′

)
.
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Partial Duality of Hypermaps
Example 1: HE ′,V (vertices are red, edges are green)

Ē′
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Partial Duality of Hypermaps
Example 2: Hv,E (vertices are red, edges are green)

v
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Partial Duality of Hypermaps
Properties

Lemma
Let H be a pre-hypermap on X and E ′,E ′′ ⊆ X (resp. V ′,V ′′, resp. F ′,F ′′) be
subsets of conjugate pairs of σ1 (resp. σ0, resp. σ2). Then

(HE ′
)E ′′

= HE ′∆E ′′
, (HV ′

)V ′′
= HV ′∆V ′′

, (HF ′
)F ′′

= HF ′∆F ′′

where ∆ denotes the symmetric difference of sets. Also

H∅ = H, HE ′=X = π02H, HV ′=X = π12H, HF ′=X = π01H.

Moreover, partial duality preserves connexity and orientability.
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Edge-coloured Graphs
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Equivalence

Theorem (Hypermaps = regular 3-edge coloured graphs)

Let H = (σ0, σ1, σ2) be a 3-constellation on a finite set X. Then H is a hypermap
on X if and only if there exists three fixed-point free involutions τ0, τ1, τ2 on X
such that σ0 = τ0τ1, σ1 = τ1τ2, σ2 = τ2τ0, and 〈τ0, τ1, τ2〉 acts transitively on X.
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Partial Duality of Edge-coloured Graphs

Definition
Let Γ = (τ0, τ1, τ2) be a [2]-coloured graph and E ′ (resp. V ′,F ′) be a subset of
12- (resp. 01-, 02-)cycles. Then

ΓE ′ :=(τ0, τ2E ′τ1E ′ , τ1E ′τ2E ′ ),

ΓV ′ :=(τ1V ′τ0V ′ , τ0V ′τ1V ′ , τ2),

ΓF ′ :=(τ2F τ0F ′ , τ1, τ0F ′τ2F ′ ).
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Perspectives
General study of partial duality

Partial duality can be generalized (and extended) to hypermaps.
Very few is known about it (even for maps).

My interests:
Partial duality and edge-colouring of regular graphs
Topology of coloured ∆-complexes:

I manifold,
I degree,
I coverings

Bijection à la Schaeffer between ∆-complexes and some decorated trees
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