

Partial Duality of Hypermaps

Fabien Vignes-Tourneret
Institut Camille Jordan

LIP. November 25, 2014

Outline

- 1 Partial Duality of Maps
- 2 Hypermaps
- 3 Partial Duality of Hypermaps
- 4 Edge-coloured Graphs

Partial Duality of Maps

1 Partial Duality of Maps

- Definitions
- Properties
- Motivations

2 Hypermaps

3 Partial Duality of Hypermaps

4 Edge-coloured Graphs

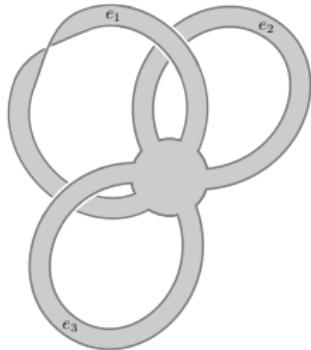
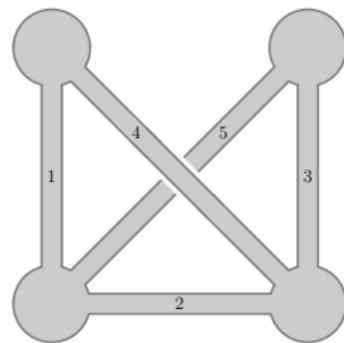
Ribbon Graphs

or cyclic graphs or combinatorial maps...

There are many equivalent definitions:

- (not necessarily orientable) surfaces equipped with a decomposition into vertices and edges,
- cellular embeddings of graphs,
- graphs + cyclic orders around vertices (orientable case),
- triple of permutations $(\sigma_0, \sigma_1, \sigma_2)$ such that $\sigma_0\sigma_1\sigma_2 = \text{id}$,
- etc

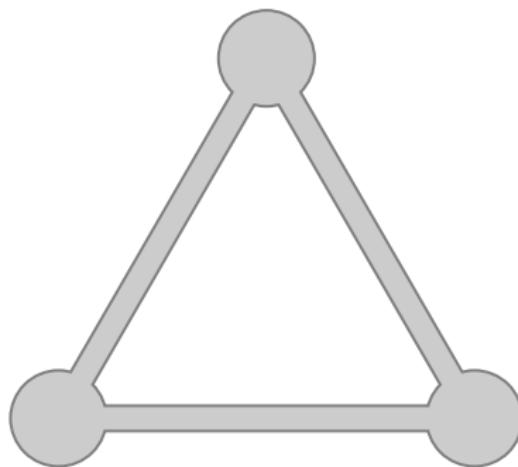
Examples :



Natural Duality

aka Euler-Poincaré duality

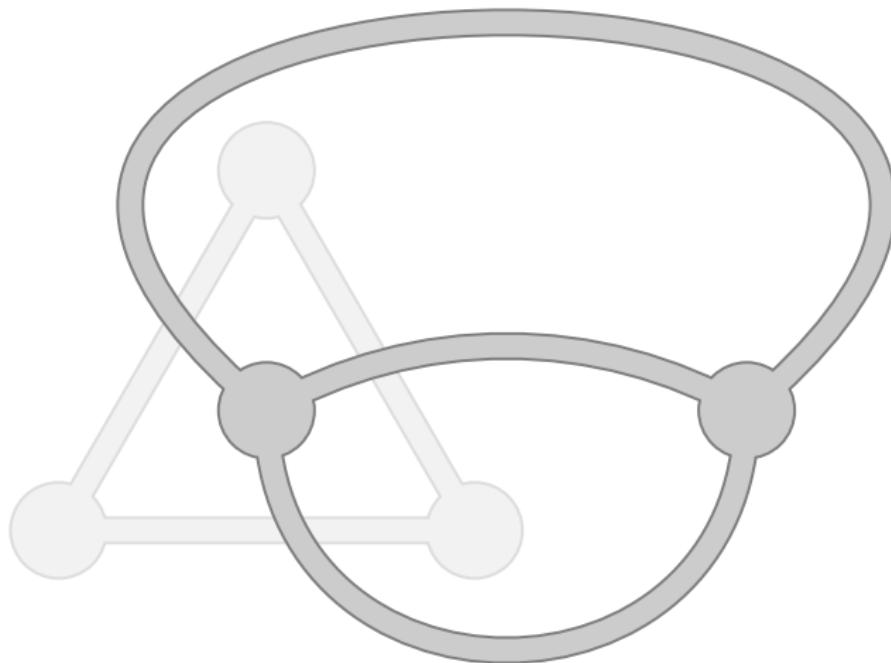
It exchanges faces and vertices while conserving genus.



Natural Duality

aka Euler-Poincaré duality

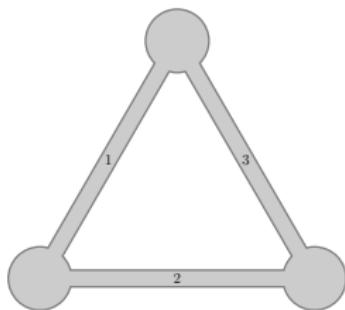
It exchanges faces and vertices while conserving genus.



Partial Duality

A generalisation of natural duality

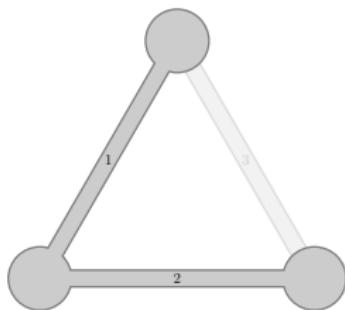
Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct \mathbf{G}^A , the **partial dual of G wrt** the spanning subgraph \mathbf{G}_A :



Partial Duality

A generalisation of natural duality

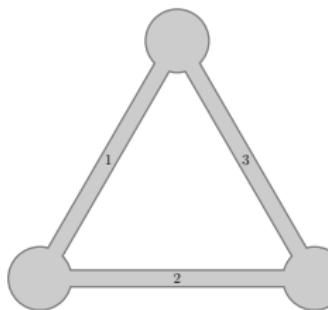
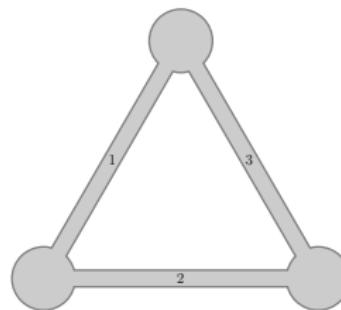
Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct \mathbf{G}^A , the **partial dual of G wrt** the spanning subgraph \mathbf{G}_A : eg $A = \{1, 2\}$



Partial Duality

A generalisation of natural duality

Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct \mathbf{G}^A , the **partial dual of G wrt** the spanning subgraph \mathbf{G}_A : eg $A = \{1, 2\}$

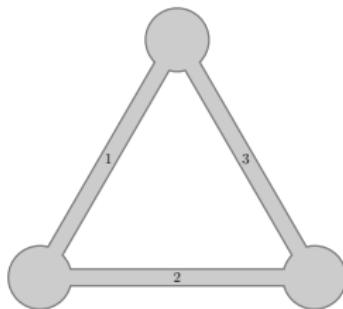


Partial Duality

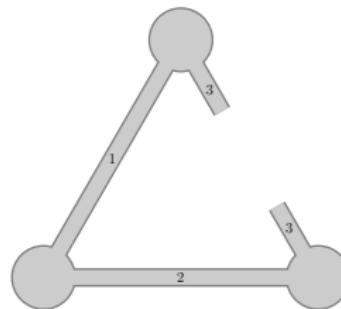
A generalisation of natural duality

Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct G^A , the **partial dual of G wrt** the spanning subgraph G_A : eg $A = \{1, 2\}$

- ① Cut the edges in \bar{A} : $G \mapsto G \vee \bar{A}$.



|

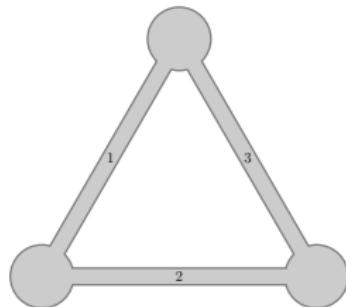
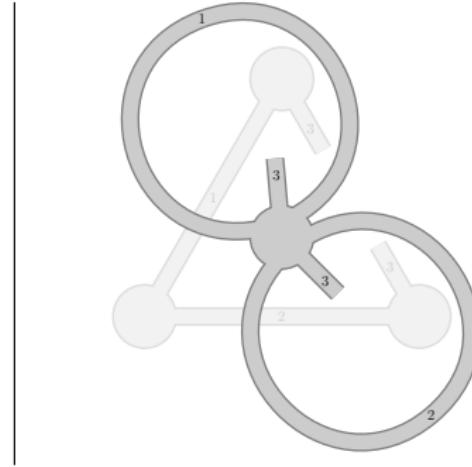


Partial Duality

A generalisation of natural duality

Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct \mathbf{G}^A , the **partial dual of G wrt** the spanning subgraph \mathbf{G}_A : eg $A = \{1, 2\}$

- ① Cut the edges in \bar{A} : $G \mapsto G \vee \bar{A}$.
- ② Build the natural dual of $G \vee \bar{A}$: $G \vee \bar{A} \mapsto (G \vee \bar{A})^*$.

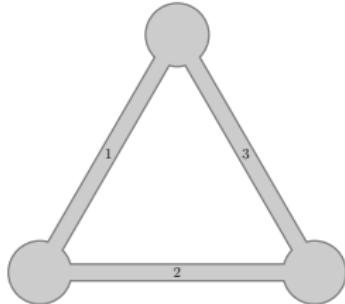
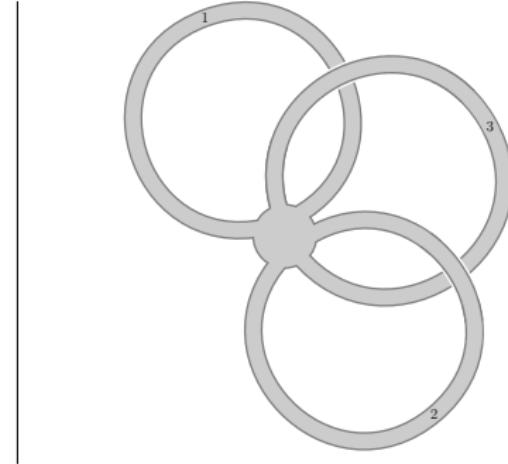


Partial Duality

A generalisation of natural duality

Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct G^A , the **partial dual of G wrt** the spanning subgraph G_A : eg $A = \{1, 2\}$

- ① Cut the edges in \bar{A} : $G \mapsto G \vee \bar{A}$.
- ② Build the natural dual of $G \vee \bar{A}$: $G \vee \bar{A} \mapsto (G \vee \bar{A})^*$.
- ③ Reglue the cut edges: $(G \vee \bar{A})^* \mapsto G^A$.

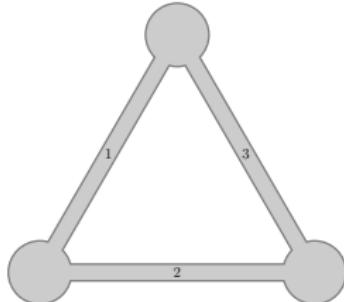
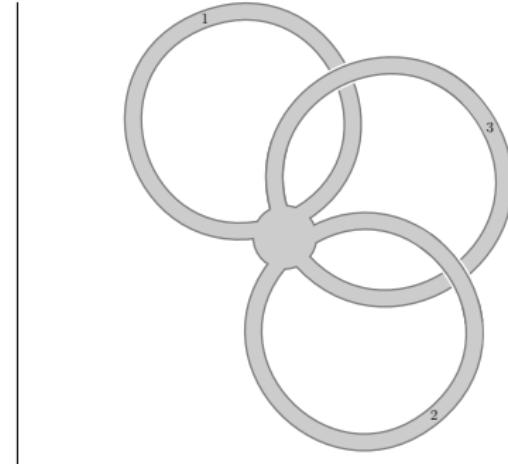


Partial Duality

A generalisation of natural duality

Let G be a ribbon graph and $A \subseteq E(G)$. Here is how to construct G^A , the **partial dual of G wrt** the spanning subgraph G_A : eg $A = \{1, 2\}$

- ① Cut the edges in \bar{A} : $G \mapsto G \vee \bar{A}$.
- ② Build the natural dual of $G \vee \bar{A}$: $G \vee \bar{A} \mapsto (G \vee \bar{A})^*$.
- ③ Reglue the cut edges: $(G \vee \bar{A})^* \mapsto G^A$.



Genus is *not* conserved.

Partial Duality

Properties

Can be proven within the formalism of combinatorial maps.

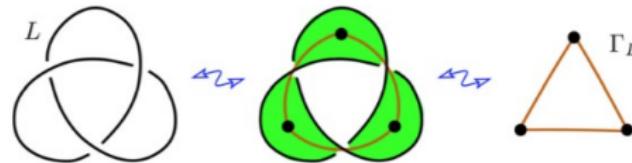
- ① Partial duality generalises natural duality: $G^{E(G)} = G^*$.
- ② It's an involution: $(G^A)^A = G$.
- ③ It can be done edge by edge: if $e \notin A$ then $G^{A \cup \{e\}} = (G^A)^{\{e\}}$.
- ④ Let $A, B \subseteq E(G)$, then $(G^A)^B = G^{A \Delta B}$.

Thistlethwaite's type theorems

Classical links

- M. Thistlethwaite (1987): L an alternating link, Γ_L a planar graph

$$V_L(t) \propto T_{\Gamma_L}(-t, -t^{-1})$$

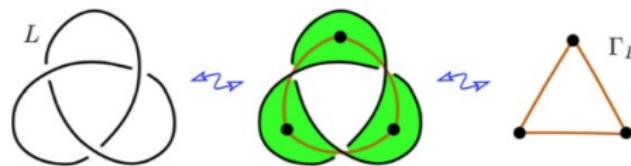


Thistlethwaite's type theorems

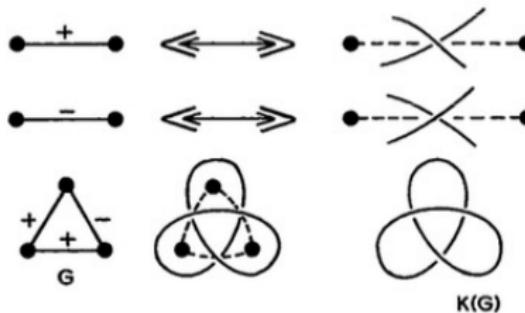
Classical links

- M. Thistlethwaite (1987): L an alternating link, Γ_L a planar graph

$$V_L(t) \propto T_{\Gamma_L}(-t, -t^{-1})$$



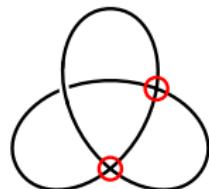
- L. Kauffman (1989): generalises to any link.



Thistlethwaite's type theorems

Virtual links

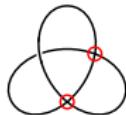
- *Virtual* knots are embeddings of the circle into $S_g \times [0, 1]$.



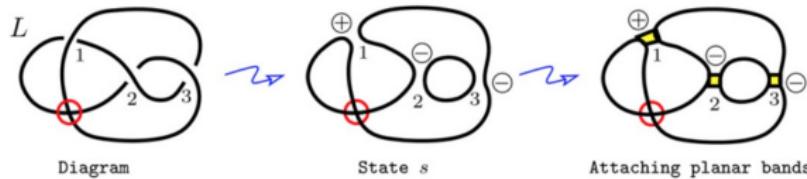
Thistlethwaite's type theorems

Virtual links

- *Virtual* knots are embeddings of the circle into $S_g \times [0, 1]$.



- S. Chmutov (2007): L a virtual link diagram, s any of its states,

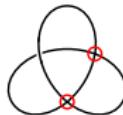


$$[L](A, B, d) = A^{e(G_s)} \left(x^k y^\nu z^{\nu+1} \left. R_{G_s}(x, y, z) \right|_{x=Ad/B, y=Bd/A, z=1/d} \right).$$

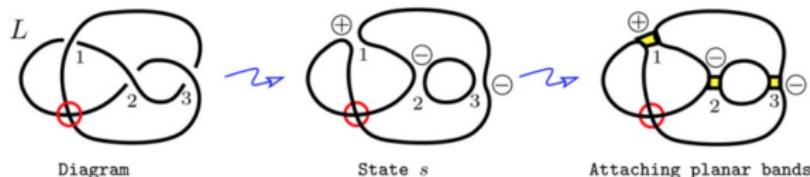
Thistlethwaite's type theorems

Virtual links

- Virtual knots are embeddings of the circle into $S_g \times [0, 1]$.



- S. Chmutov (2007): L a virtual link diagram, s any of its states,



$$[L](A, B, d) = A^{e(G_s)} \left(x^k y^\nu z^{\nu+1} \left. R_{G_s}(x, y, z) \right|_{x=Ad/B, y=Bd/A, z=1/d} \right).$$

- S. Chmutov (2007): $A \subseteq E(G)$, $G' := G^A$

$$x^{k(G)} y^{\nu(G)} z^{\nu(G)+1} R_G(x, y, z) \big|_{xyz^2=1} = x^{k(G')} y^{\nu(G')} z^{\nu(G')+1} R_{G'}(x, y, z) \big|_{xyz^2=1}.$$

And, if s, s' are 2 states of L , G_s and $G_{s'}$ are partial duals of each other.

Hypermaps

1 Partial Duality of Maps

2 Hypermaps

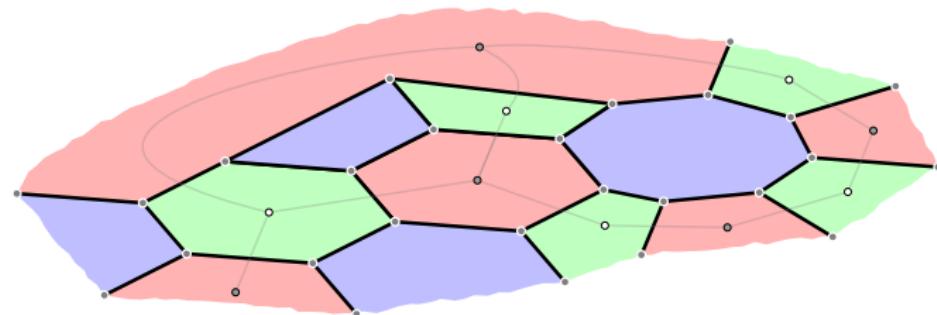
- Geometric model
- Combinatorial model
- Operations on Hypermaps

3 Partial Duality of Hypermaps

4 Edge-coloured Graphs

What is a hypermap?

- Both a generalisation and a particularisation of maps.
- A cellular embedding of a bipartite graph.
- A 3-coloured polygonal tessellation of a closed compact 2-manifold.



What is a hypermap?

After Tutte (1973)

Definition (Combinatorial hypermap)

Let X be a finite set of even cardinality. A pre-hypermap on X is a 3-constellation $(\sigma_0, \sigma_1, \sigma_2)$ on X and a fixed point free involution θ_1 which obey the following axioms:

- ① $\sigma_0\theta_1$ and $\theta_1\sigma_1$ are involutions.
- ② $\forall x \in X, \mathcal{O}_{\sigma_0}(x) \cap \mathcal{O}_{\sigma_0}(\theta_1 x) = \emptyset$.
- ③ $\forall x \in X, \mathcal{O}_{\sigma_1}(x) \cap \mathcal{O}_{\sigma_1}(\theta_1 x) = \emptyset$.

A pre-hypermap such that $\langle \sigma_0, \sigma_1, \theta_1 \rangle$ acts transitively on X is called a combinatorial hypermap.

What is a hypermap?

After Tutte (1973)

Definition (Combinatorial hypermap)

Let X be a finite set of even cardinality. A pre-hypermap on X is a 3-constellation $(\sigma_0, \sigma_1, \sigma_2)$ on X and a fixed point free involution θ_1 which obey the following axioms:

- ① $\sigma_0\theta_1$ and $\theta_1\sigma_1$ are involutions.
- ② $\forall x \in X, \mathcal{O}_{\sigma_0}(x) \cap \mathcal{O}_{\sigma_0}(\theta_1 x) = \emptyset$.
- ③ $\forall x \in X, \mathcal{O}_{\sigma_1}(x) \cap \mathcal{O}_{\sigma_1}(\theta_1 x) = \emptyset$.

A pre-hypermap such that $\langle \sigma_0, \sigma_1, \theta_1 \rangle$ acts transitively on X is called a combinatorial hypermap.

Definition (Orientability)

A hypermap $\mathcal{H} = (\sigma_0, \sigma_1, \sigma_2; \theta_1)$ is orientable if there are two equivalence classes of $\langle \sigma_0, \sigma_1 \rangle$.

Operations on Hypermmaps

cut

Notation: σ a permutation on X and $Y \subseteq X$. $\sigma|_Y := \sigma$ on Y and id on \overline{Y} .

Definition (cut)

Let $\mathcal{H} = (\sigma_0, \sigma_1, \sigma_2; \theta_1)$ be a pre-hypermap on X and E' (resp. V' , F') be a subset of conjugate pairs of σ_1 (resp. σ_0 , σ_2). Then

$$\text{cut}_{1,0}(\mathcal{H}, E') := (\sigma_0, \sigma_{1|E'}, (\sigma_0 \sigma_{1|E'})^{-1}; \theta_1),$$

$$\text{cut}_{1,2}(\mathcal{H}, E') := ((\sigma_{1|E'} \sigma_2)^{-1}, \sigma_{1|E'}, \sigma_2; \theta_1 \sigma_{1|\overline{E'}}),$$

$$\text{cut}_{0,1}(\mathcal{H}, V') := (\sigma_{0|V'}, \sigma_1, (\sigma_{0|V'} \sigma_1)^{-1}; \theta_1),$$

$$\text{cut}_{0,2}(\mathcal{H}, V') := (\sigma_{0|V'}, (\sigma_2 \sigma_{0|V'})^{-1}, \sigma_2; \sigma_{0|\overline{V'}} \theta_1),$$

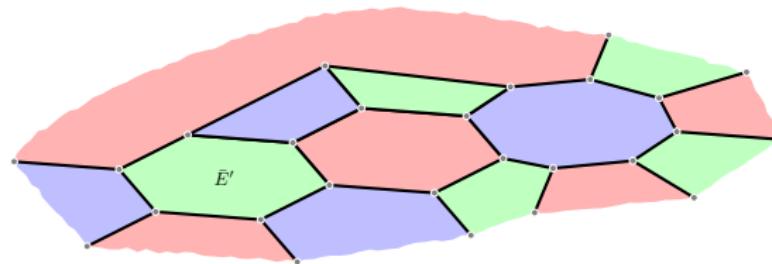
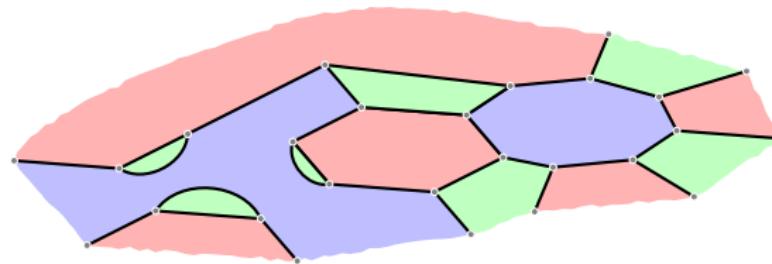
$$\text{cut}_{2,0}(\mathcal{H}, F') := (\sigma_0, (\sigma_{2|F'} \sigma_0)^{-1}, \sigma_{2|F'}; \theta_1),$$

$$\text{cut}_{2,1}(\mathcal{H}, F') := ((\sigma_1 \sigma_{2|F'})^{-1}, \sigma_1, \sigma_{2|F'}; \theta_1).$$

Operations on Hypermaps

$\text{cut}_{1,0}$

An example: vertices are red, edges are green.



Operations on Hypermmaps

Colour change

Definition (Colour change)

Let $\mathcal{H} = (\sigma_0, \sigma_1, \sigma_2; \theta_1)$ be a pre-hypermap on X and S_3 be the permutations on $\{0, 1, 2\}$. Let $\pi \in S_3$ be a transposition. Then

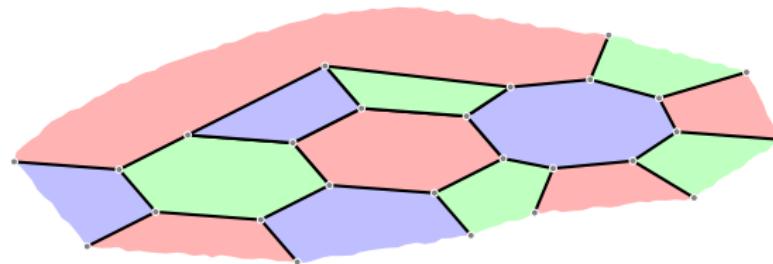
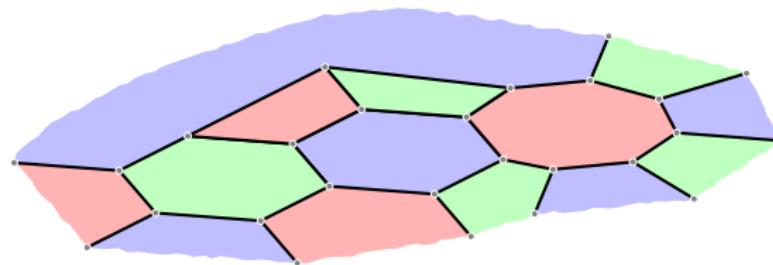
$$\Pi \mathcal{H} := (\sigma_{\pi(0)}^{-1}, \sigma_{\pi(1)}^{-1}, \sigma_{\pi(2)}^{-1}; \theta'_1), \quad \theta'_1 := \begin{cases} \theta_1 & \text{if } \pi = (01) \\ \theta_1 \sigma_1 & \text{if } \pi = (02) \\ \sigma_0 \theta_1 & \text{if } \pi = (12) \end{cases}.$$

Any permutation (of S_3) is a product of transpositions. Its action on (pre-)hypermmaps is defined as the composed actions of these transpositions.

Operations on Hypermaps

Colour change

An example: π_{02} (vertices are red, faces are blue).



Operations on Hypermaps

glue

Definition (glue)

Let $\mathcal{H} = (\sigma_0, \sigma_1, \sigma_2; \theta_1)$ be a pre-hypermap on X and Y be a subset of X . Let σ be a permutation on X such that $\sigma = \text{id}$ on Y . Assume that the set of fixed points of σ_1 is \overline{Y} and $\theta_1\sigma_1\sigma$ is a fixed-point free involution. Then

$$\text{glue}_{1,0}(\mathcal{H}, \sigma) := (\sigma_0, \sigma_1\sigma, (\sigma_0\sigma_1\sigma)^{-1}; \theta_1),$$

$$\text{glue}_{1,2}(\mathcal{H}, \sigma) := ((\sigma_1\sigma\sigma_2)^{-1}, \sigma_1\sigma, \sigma_2; \sigma\theta_1).$$

Assume that the set of fixed points of σ_0 is \overline{Y} and $\sigma\sigma_0\theta_1$ is a fixed-point free involution. Then

$$\text{glue}_{0,1}(\mathcal{H}, \sigma) := (\sigma_0\sigma, \sigma_1, (\sigma_0\sigma\sigma_1)^{-1}; \theta_1),$$

$$\text{glue}_{0,2}(\mathcal{H}, \sigma) := (\sigma_0\sigma, (\sigma_2\sigma_0\sigma)^{-1}, \sigma_2; \theta_1\sigma).$$

...

Partial Duality of Hypermaps

1 Partial Duality of Maps

2 Hypermaps

3 Partial Duality of Hypermaps

- Formal definition
- Examples
- Properties

4 Edge-coloured Graphs

Operations on Hypermaps

Partial duality

Definition

The partial duals of \mathcal{H} with respect to E' (resp. V' , F') are defined as

$$\mathcal{H}^{E',V} := \text{glue}_{1,0}(\pi_{02} \text{cut}_{1,0}(\mathcal{H}, E'), \sigma_{1 \upharpoonright \bar{E}'}) = (\sigma_0 \sigma_{1 \upharpoonright E'}, \sigma_{1 \upharpoonright E'}^{-1} \sigma_{1 \upharpoonright \bar{E}'}, \sigma_{1 \upharpoonright E'} \sigma_2; \theta_1 \sigma_{1 \upharpoonright E'}),$$

$$\mathcal{H}^{E',F} := \text{glue}_{1,2}(\pi_{02} \text{cut}_{1,2}(\mathcal{H}, E'), \sigma_{1 \upharpoonright \bar{E}'}) ,$$

$$\mathcal{H}^{V',E} := \text{glue}_{0,1}(\pi_{12} \text{cut}_{0,1}(\mathcal{H}, V'), \sigma_{0 \upharpoonright \bar{V}'}) = (\sigma_{0 \upharpoonright V'}^{-1} \sigma_{0 \upharpoonright \bar{V}'}, \sigma_{0 \upharpoonright V'} \sigma_1, \sigma_2 \sigma_{0 \upharpoonright V'}; \sigma_{0 \upharpoonright V'} \theta_1),$$

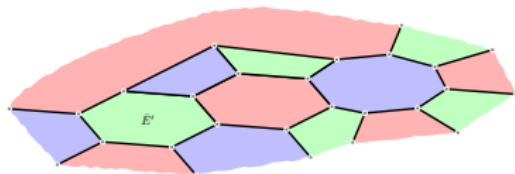
$$\mathcal{H}^{V',F} := \text{glue}_{0,2}(\pi_{12} \text{cut}_{0,2}(\mathcal{H}, V'), \sigma_{0 \upharpoonright \bar{V}'}) ,$$

$$\mathcal{H}^{F',V} := \text{glue}_{2,0}(\pi_{01} \text{cut}_{2,0}(\mathcal{H}, F'), \sigma_{2 \upharpoonright \bar{F}'}) = (\sigma_{2 \upharpoonright F'} \sigma_0, \sigma_1 \sigma_{2 \upharpoonright F'}, \sigma_{2 \upharpoonright F'}^{-1} \sigma_{2 \upharpoonright \bar{F}'}; \theta_1),$$

$$\mathcal{H}^{F',E} := \text{glue}_{2,1}(\pi_{01} \text{cut}_{2,1}(\mathcal{H}, F'), \sigma_{2 \upharpoonright \bar{F}'}) .$$

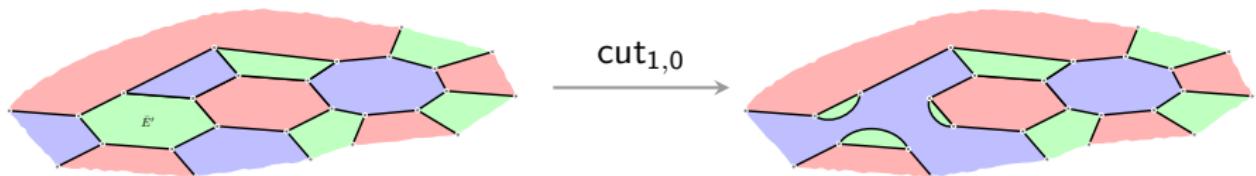
Partial Duality of Hypermaps

Example 1: $\mathcal{H}^{E', V}$ (vertices are red, edges are green)



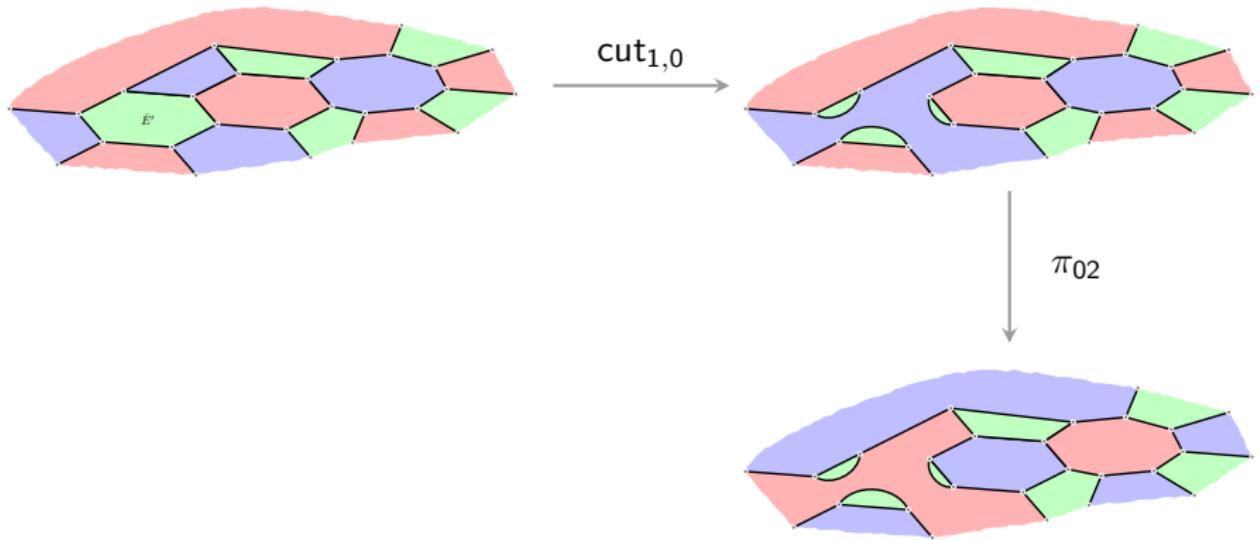
Partial Duality of Hypermaps

Example 1: $\mathcal{H}^{E', V}$ (vertices are red, edges are green)



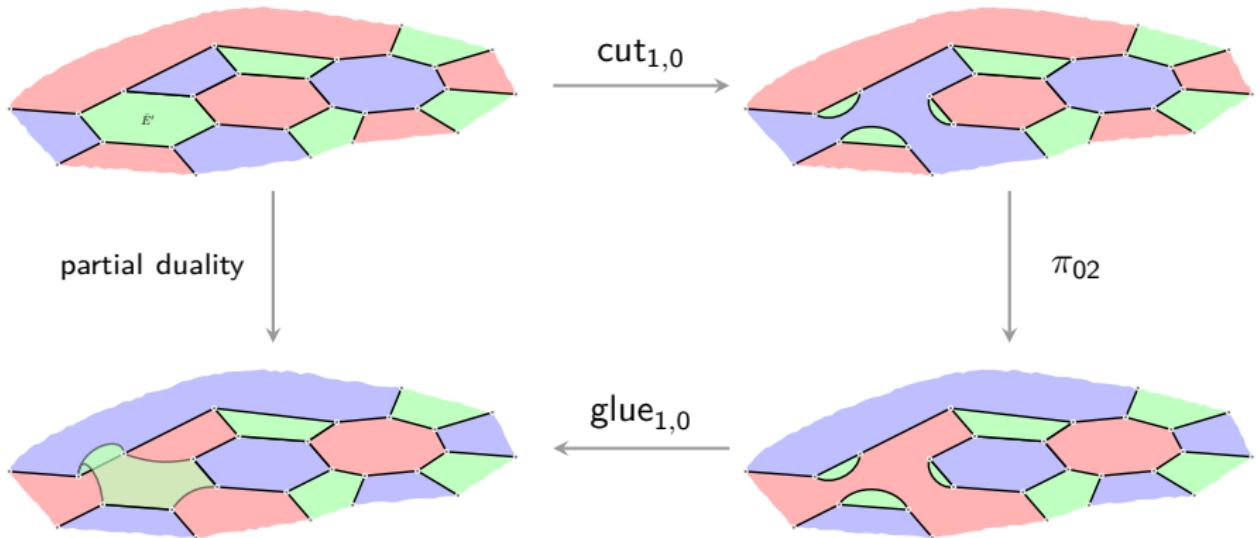
Partial Duality of Hypermaps

Example 1: $\mathcal{H}^{E', V}$ (vertices are red, edges are green)



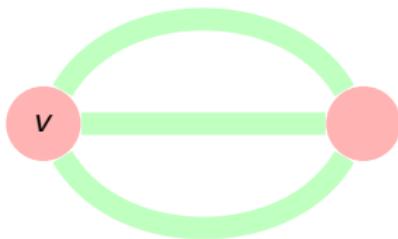
Partial Duality of Hypermaps

Example 1: $\mathcal{H}^{E', V}$ (vertices are red, edges are green)



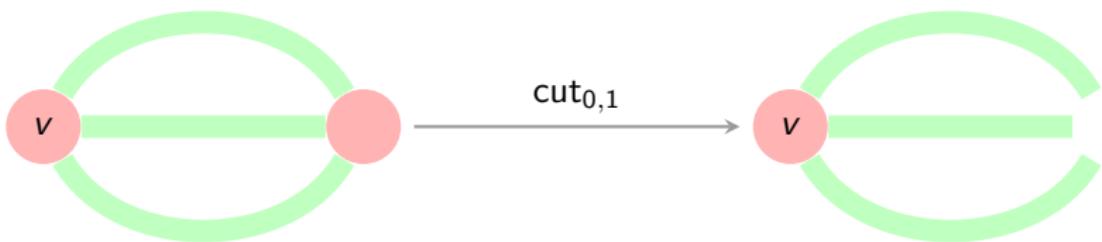
Partial Duality of Hypermaps

Example 2: $\mathcal{H}^{v,E}$ (vertices are red, edges are green)



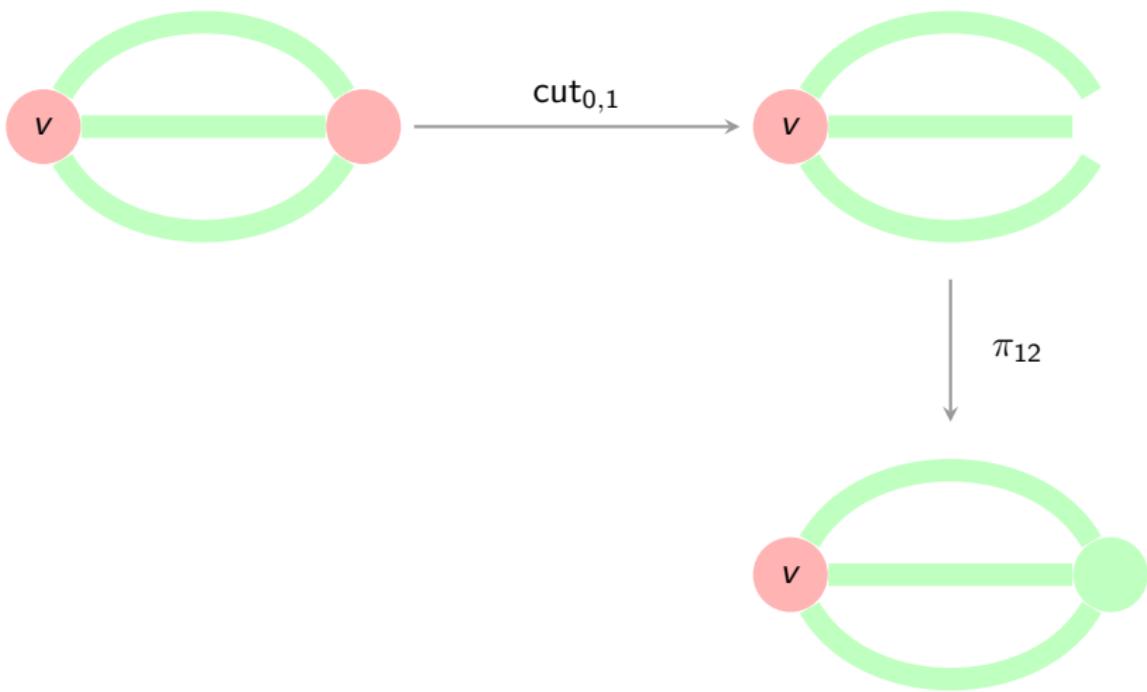
Partial Duality of Hypermaps

Example 2: $\mathcal{H}^{v,E}$ (vertices are red, edges are green)



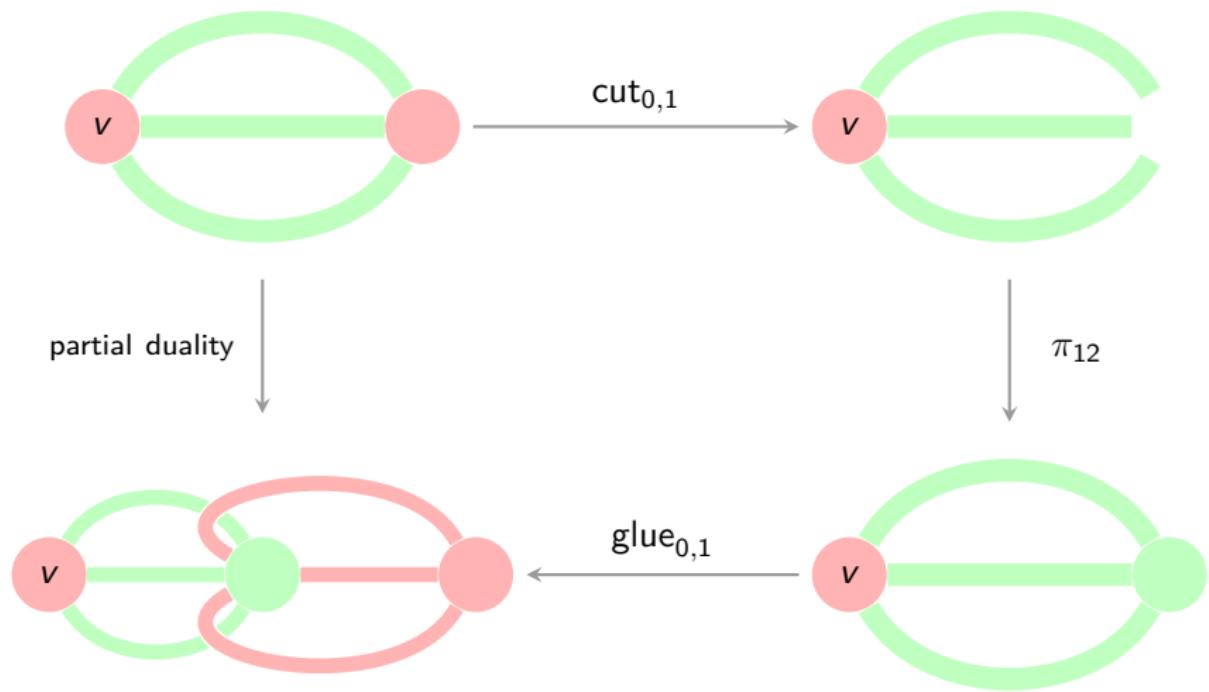
Partial Duality of Hypermaps

Example 2: $\mathcal{H}^{v,E}$ (vertices are red, edges are green)



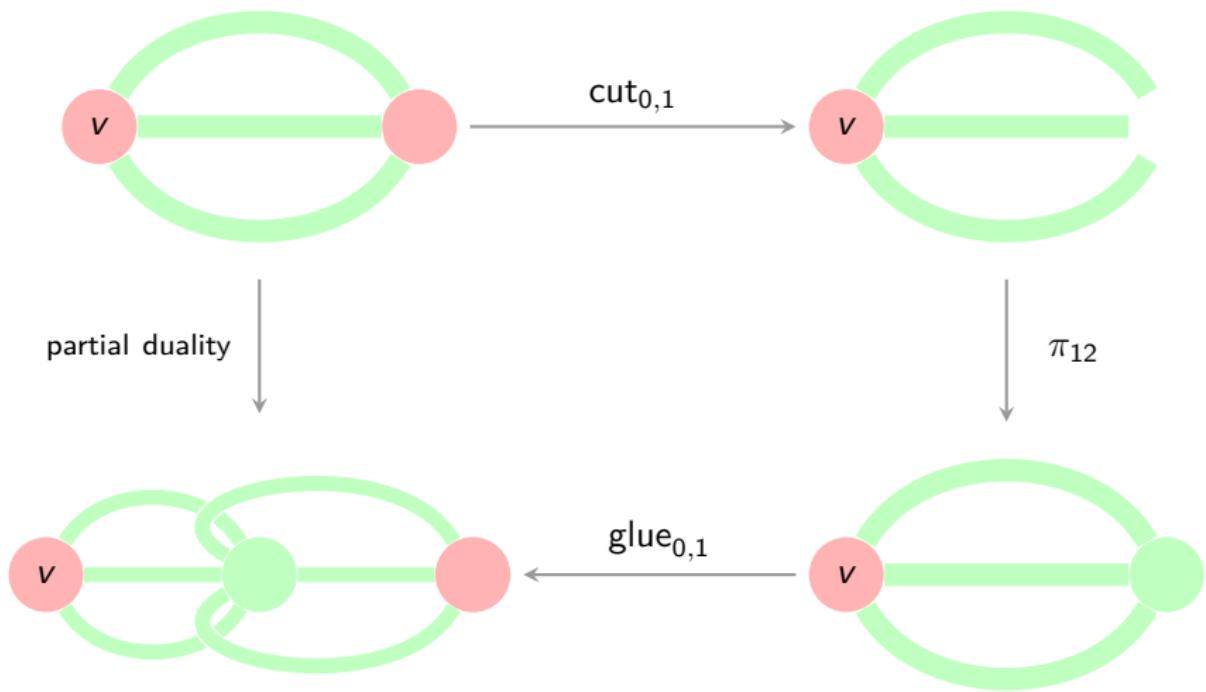
Partial Duality of Hypermaps

Example 2: $\mathcal{H}^{v,E}$ (vertices are red, edges are green)



Partial Duality of Hypermaps

Example 2: $\mathcal{H}^{v,E}$ (vertices are red, edges are green)



Partial Duality of Hypermaps

Properties

Lemma

Let \mathcal{H} be a pre-hypermap on X and $E', E'' \subseteq X$ (resp. V', V'' , resp. F', F'') be subsets of conjugate pairs of σ_1 (resp. σ_0 , resp. σ_2). Then

$$(\mathcal{H}^{E'})^{E''} = \mathcal{H}^{E' \Delta E''}, \quad (\mathcal{H}^{V'})^{V''} = \mathcal{H}^{V' \Delta V''}, \quad (\mathcal{H}^{F'})^{F''} = \mathcal{H}^{F' \Delta F''}$$

where Δ denotes the symmetric difference of sets. Also

$$\mathcal{H}^\emptyset = \mathcal{H}, \quad \mathcal{H}^{E'=X} = \pi_{02}\mathcal{H}, \quad \mathcal{H}^{V'=X} = \pi_{12}\mathcal{H}, \quad \mathcal{H}^{F'=X} = \pi_{01}\mathcal{H}.$$

Moreover, partial duality preserves connexity and orientability.

Edge-coloured Graphs

- 1 Partial Duality of Maps
- 2 Hypermaps
- 3 Partial Duality of Hypermaps
- 4 Edge-coloured Graphs

Equivalence

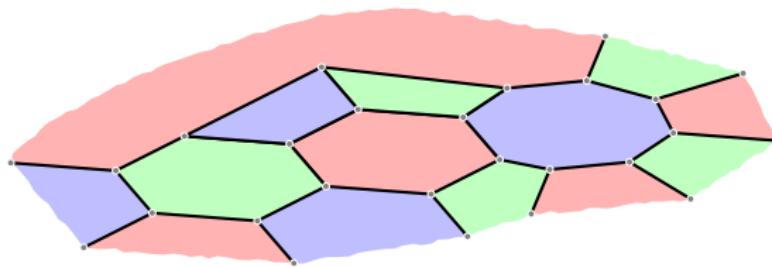
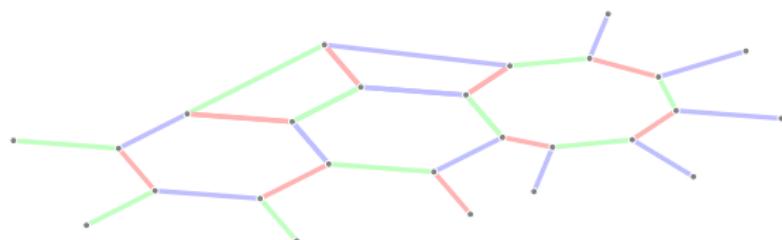
Theorem (Hypermaps = regular 3-edge coloured graphs)

Let $\mathcal{H} = (\sigma_0, \sigma_1, \sigma_2)$ be a 3-constellation on a finite set X . Then \mathcal{H} is a hypermap on X if and only if there exists three fixed-point free involutions τ_0, τ_1, τ_2 on X such that $\sigma_0 = \tau_0\tau_1$, $\sigma_1 = \tau_1\tau_2$, $\sigma_2 = \tau_2\tau_0$, and $\langle \tau_0, \tau_1, \tau_2 \rangle$ acts transitively on X .

Equivalence

Theorem (Hypermaps = regular 3-edge coloured graphs)

Let $\mathcal{H} = (\sigma_0, \sigma_1, \sigma_2)$ be a 3-constellation on a finite set X . Then \mathcal{H} is a hypermap on X if and only if there exists three fixed-point free involutions τ_0, τ_1, τ_2 on X such that $\sigma_0 = \tau_0\tau_1$, $\sigma_1 = \tau_1\tau_2$, $\sigma_2 = \tau_2\tau_0$, and $\langle \tau_0, \tau_1, \tau_2 \rangle$ acts transitively on X .



Partial Duality of Edge-coloured Graphs

Definition

Let $\Gamma = (\tau_0, \tau_1, \tau_2)$ be a [2]-coloured graph and E' (resp. V', F') be a subset of 12- (resp. 01-, 02-)cycles. Then

$$\Gamma^{E'} := (\tau_0, \tau_{2E'} \tau_{1\bar{E}'}, \tau_{1E'} \tau_{2\bar{E}'}),$$

$$\Gamma^{V'} := (\tau_{1V'} \tau_{0\bar{V}'}, \tau_{0V'} \tau_{1\bar{V}'}, \tau_2),$$

$$\Gamma^{F'} := (\tau_{2F} \tau_{0\bar{F}'}, \tau_1, \tau_{0F'} \tau_{2\bar{F}'}).$$

Perspectives

General study of partial duality

Partial duality can be generalized (and extended) to hypermaps.
Very few is known about it (even for maps).

My interests:

- Partial duality and edge-colouring of regular graphs
- Topology of coloured Δ -complexes:
 - ▶ manifold,
 - ▶ degree,
 - ▶ coverings
- Bijection \rightarrow la Schaeffer between Δ -complexes and some decorated trees