

Quantum Gravity, Trees, and Polynomials

Fabien Vignes-Tourneret
Institut Camille Jordan (Lyon, France)

Perimeter Institute. April 3, 2014

Outline

- 1 Coloured GFT
- 2 Cellular Trees
- 3 An Enumeration Strategy

Coloured GFT

1 Coloured GFT

- Group Field Theory
- Coloured Graphs
- Feynman Amplitudes

2 Cellular Trees

3 An Enumeration Strategy

Group Field Theory

$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$\begin{aligned} S_D[\phi] = & \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D) \\ & + \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}). \end{aligned}$$

Group Field Theory

$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$S_D[\phi] = \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D)$$
$$+ \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}).$$

- $\phi \longrightarrow (D-1)$ -simplex $(D=3: \text{a solid triangle})$

Group Field Theory

$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$S_D[\phi] = \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D)$$
$$+ \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}).$$

- $\phi \rightarrow (D-1)$ -simplex $(D=3: \text{a solid triangle})$
- $g_i \rightarrow (D-2)$ -simplex $(D=3: \text{an edge})$

Group Field Theory

$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$S_D[\phi] = \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D)$$
$$+ \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}).$$

- $\phi \rightarrow (D-1)$ -simplex $(D=3: \text{a solid triangle})$
- $g_i \rightarrow (D-2)$ -simplex $(D=3: \text{an edge})$
- C “glues” two $(D-1)$ -simplices $(D=3: \text{2 triangles})$

Group Field Theory

$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$S_D[\phi] = \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D)$$
$$+ \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}).$$

- $\phi \rightarrow (D-1)$ -simplex $(D=3: \text{a solid triangle})$
- $g_i \rightarrow (D-2)$ -simplex $(D=3: \text{an edge})$
- C “glues” two $(D-1)$ -simplices $(D=3: \text{2 triangles})$
- $K \rightarrow \text{gluing of } D+1 \text{ } (D-1)\text{-simplices to form a } D\text{-simplex}$ $(D=3: \text{4 triangles bound a tetrahedron})$

Group Field Theory

$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$S_D[\phi] = \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D)$$
$$+ \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}).$$

- $\phi \rightarrow (D-1)$ -simplex $(D=3: \text{a solid triangle})$
- $g_i \rightarrow (D-2)$ -simplex $(D=3: \text{an edge})$
- C “glues” two $(D-1)$ -simplices $(D=3: \text{2 triangles})$
- $K \rightarrow \text{gluing of } D+1 \text{ } (D-1)\text{-simplices to form a } D\text{-simplex}$ $(D=3: \text{4 triangles bound a tetrahedron})$
- Feynman graph \rightarrow spin foam

Group Field Theory

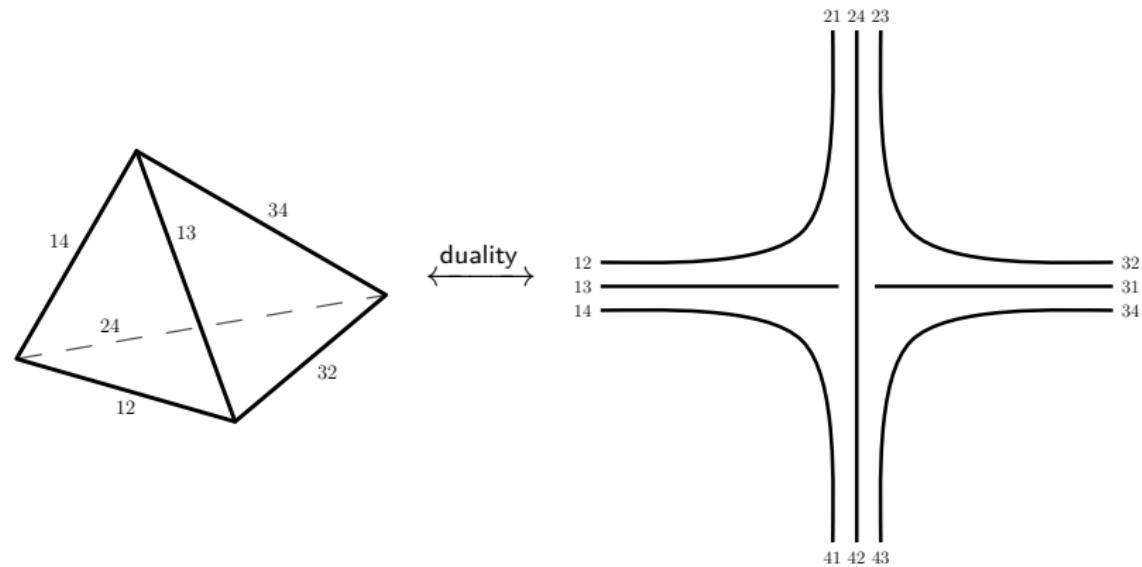
$\phi : G^{\times D} \rightarrow \mathbb{C}$, G (compact) Lie group

$$S_D[\phi] = \frac{1}{2} \int_{G^D} \left(\prod_{i=1}^D dg_i d\tilde{g}_i \right) \phi(g_1, \dots, g_D) C^{-1}(g_i \tilde{g}_i^{-1}) \phi(\tilde{g}_1, \dots, \tilde{g}_D)$$
$$+ \frac{\lambda}{(D+1)!} \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) \phi(g_{1j}) \cdots \phi(g_{(D+1)j}) K(g_{ij} g_{ji}^{-1}).$$

- $\phi \rightarrow (D-1)$ -simplex $(D=3: \text{a solid triangle})$
- $g_i \rightarrow (D-2)$ -simplex $(D=3: \text{an edge})$
- C “glues” two $(D-1)$ -simplices $(D=3: \text{2 triangles})$
- $K \rightarrow \text{gluing of } D+1 \text{ } (D-1)\text{-simplices to form a } D\text{-simplex}$ $(D=3: \text{4 triangles bound a tetrahedron})$
- Feynman graph \rightarrow spin foam
- Feynman graph amplitude = spin foam model

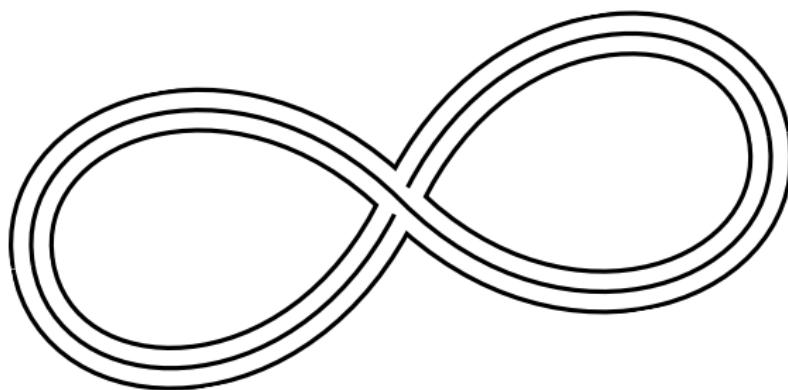
Stranded graphs = gluing of simplices

$D = 3$



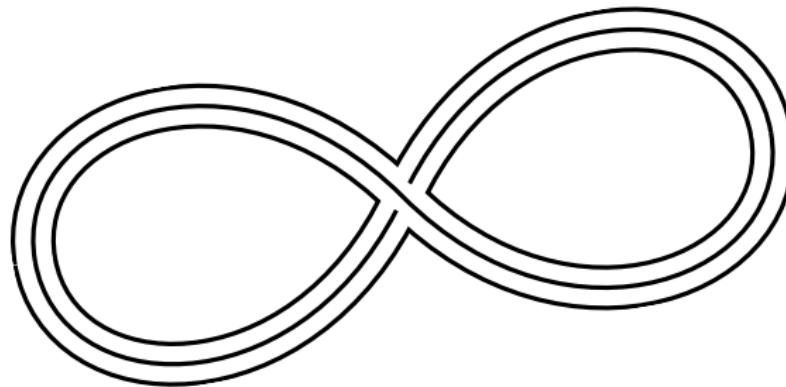
Stranded graphs = gluing of simplices

$D = 3$



Stranded graphs = gluing of simplices

$D = 3$

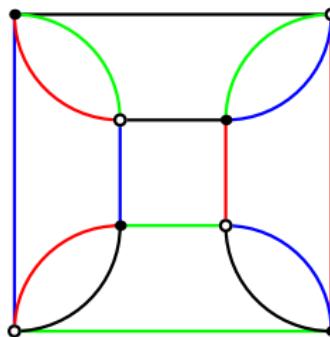


But not a D -complex!

Coloured Graphs

Definition

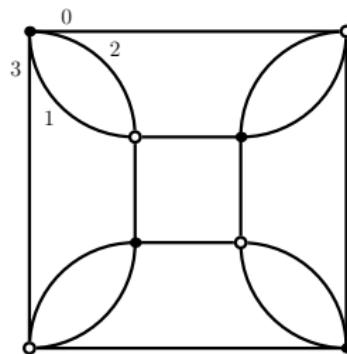
A k -coloured graph is a bipartite graph endowed with a proper edge-colouring with k colours.



Coloured Graphs

Definition

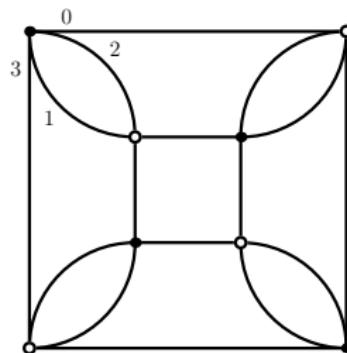
A k -coloured graph is a bipartite graph endowed with a proper edge-colouring with k colours.



Coloured Graphs

Definition

A k -coloured graph is a bipartite graph endowed with a proper edge-colouring with k colours.

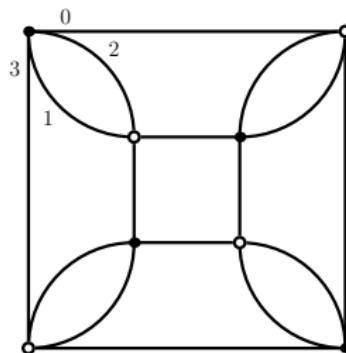


- Every bipartite regular graph is colourable.

Coloured Graphs

Definition

A k -coloured graph is a bipartite graph endowed with a proper edge-colouring with k colours.

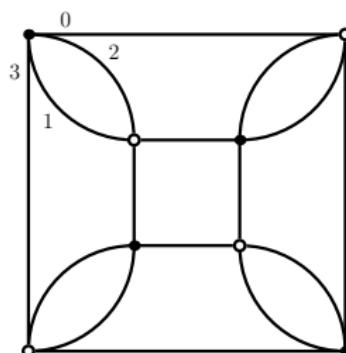


- Every bipartite regular graph is colourable.
- Every $(D + 1)$ -coloured graph is dual to a D -dimensional triangulated space (*trisp* or Δ -complex).

Coloured Graphs

Definition

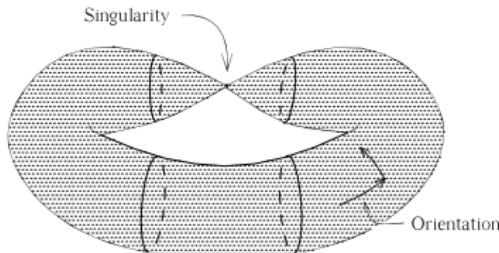
A k -coloured graph is a bipartite graph endowed with a proper edge-colouring with k colours.



- Every bipartite regular graph is colourable.
- Every $(D + 1)$ -coloured graph is dual to a D -dimensional triangulated space (*trisp* or Δ -complex).
- Better, every such graph is dual to a normal pseudo-manifold [Gurau '10]

Pseudo-manifolds

These are manifolds with singularities.

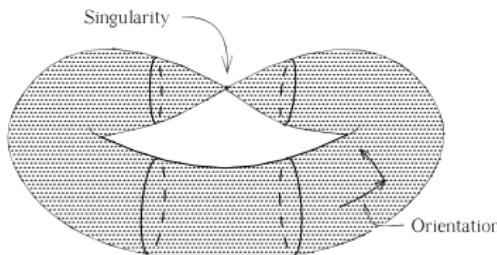


A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of each of its points is a pseudo-manifold.

Pseudo-manifolds

These are manifolds with singularities.



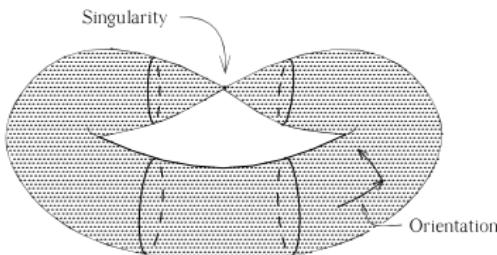
A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of each of its points is a pseudo-manifold.

- Every manifold is dual to a coloured graph [Pezzana '74].

Pseudo-manifolds

These are manifolds with singularities.



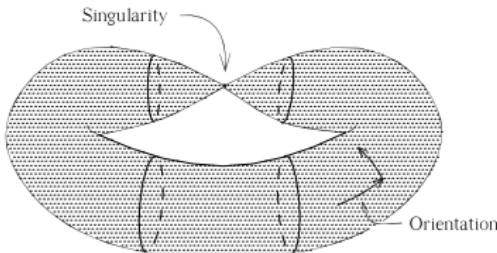
A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of each of its points is a pseudo-manifold.

- Every manifold is dual to a coloured graph [Pezzana '74].
- $D = 2$: every normal pseudo-manifold is a manifold.

Pseudo-manifolds

These are manifolds with singularities.



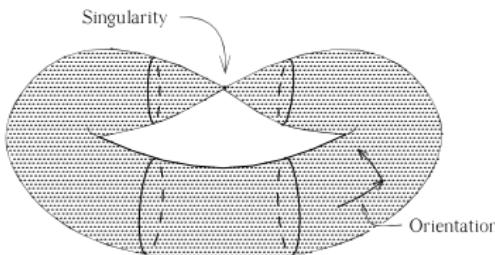
A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of each of its points is a pseudo-manifold.

- Every manifold is dual to a coloured graph [Pezzana '74].
- $D = 2$: every normal pseudo-manifold is a manifold.
- $D = 3$: there exists a simple criteria to decide whether a 4-coloured graph encodes a manifold. $D = 4$: it's difficult! (cf. Poincaré, Perelman, etc)

Pseudo-manifolds

These are manifolds with singularities.



A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of each of its points is a pseudo-manifold.

- Every manifold is dual to a coloured graph [Pezzana '74].
- $D = 2$: every normal pseudo-manifold is a manifold.
- $D = 3$: there exists a simple criteria to decide whether a 4-coloured graph encodes a manifold. $D = 4$: it's difficult! (cf. Poincaré, Perelman, etc)
- GEMs: a combinatorial and algorithmic approach to the classification of 3-manifolds [Ferri, Gagliardi, Lins etc '80].

Coloured Cellular Complex

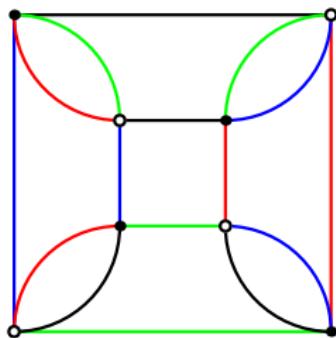
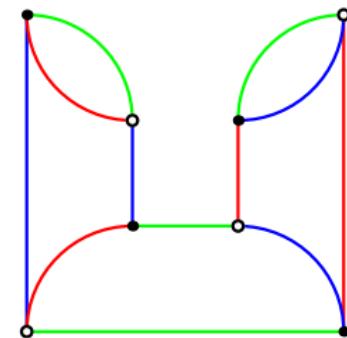
Definition (Bubbles)

Let Γ be a $(D + 1)$ -coloured graph and $0 \leq k \leq D$. A k -bubble of colours $\{i_1, \dots, i_k\}$ is a connected component of the subgraph of Γ induced by the edges of colours $\{i_1, \dots, i_k\}$. 0-bubbles are vertices.

Coloured Cellular Complex

Definition (Bubbles)

Let Γ be a $(D + 1)$ -coloured graph and $0 \leq k \leq D$. A k -bubble of colours $\{i_1, \dots, i_k\}$ is a connected component of the subgraph of Γ induced by the edges of colours $\{i_1, \dots, i_k\}$. 0-bubbles are vertices.

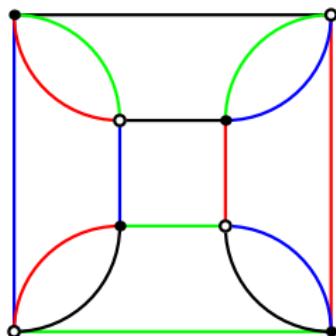
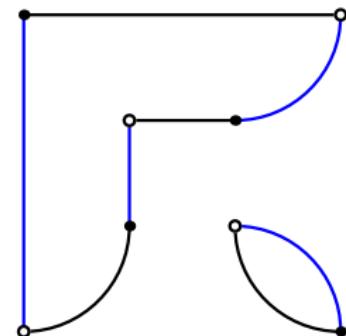


The 3-bubble of colors $\{\text{red, green, blue}\}$

Coloured Cellular Complex

Definition (Bubbles)

Let Γ be a $(D + 1)$ -coloured graph and $0 \leq k \leq D$. A k -bubble of colours $\{i_1, \dots, i_k\}$ is a connected component of the subgraph of Γ induced by the edges of colours $\{i_1, \dots, i_k\}$. 0-bubbles are vertices.



The 2-bubbles (or *faces*) of colors $\{\text{blue, black}\}$

Coloured Cellular Complex

Definition (Bubbles)

Let Γ be a $(D + 1)$ -coloured graph and $0 \leq k \leq D$. A k -bubble of colours $\{i_1, \dots, i_k\}$ is a connected component of the subgraph of Γ induced by the edges of colours $\{i_1, \dots, i_k\}$. 0-bubbles are vertices.

Definition (Cellular Complex)

For all $0 \leq k \leq D$, $C_k(\Gamma) :=$ free Abelian group generated by the k -bubbles.
 $C_{D+1}(\Gamma) := \{0\}$ and $C_{-1}(\Gamma) := \mathbb{Z}$.

$$\partial_k : C_k \rightarrow C_{k-1}, \partial_k b_{i_0, \dots, i_{k-1}} := \sum_{j=0}^{k-1} (-1)^j b'_{i_0, \dots, \hat{i}_j, \dots, i_{k-1}}.$$
$$\partial_{k-1} \partial_k = 0.$$

Coloured Cellular Complex

Definition (Bubbles)

Let Γ be a $(D + 1)$ -coloured graph and $0 \leq k \leq D$. A k -bubble of colours $\{i_1, \dots, i_k\}$ is a connected component of the subgraph of Γ induced by the edges of colours $\{i_1, \dots, i_k\}$. 0-bubbles are vertices.

Definition (Cellular Complex)

For all $0 \leq k \leq D$, $C_k(\Gamma) :=$ free Abelian group generated by the k -bubbles.
 $C_{D+1}(\Gamma) := \{0\}$ and $C_{-1}(\Gamma) := \mathbb{Z}$.

$$\partial_k : C_k \rightarrow C_{k-1}, \partial_k b_{i_0, \dots, i_{k-1}} := \sum_{j=0}^{k-1} (-1)^j b'_{i_0, \dots, \hat{i}_j, \dots, i_{k-1}}.$$
$$\partial_{k-1} \partial_k = 0.$$

Definition (Cellular Homology)

$$\text{For all } 0 \leq k \leq D, \widetilde{H}_k(\Gamma) := \frac{\ker \partial_k}{\text{im } \partial_{k+1}} =: \frac{Z_k(\Gamma)}{B_k(\Gamma)}.$$

The colored Boulatov-Ooguri GFT

[BCORS'13]

Mimicking 3-dimensional gravity

$\varphi_c : G^{\times D} \rightarrow \mathbb{C}$, $c \in \{0, 1, \dots, D\}$, G a compact Lie group

$+ \varphi_c(hg_1, \dots, hg_D) = \varphi_c(g_1, \dots, g_D)$ (closure constraint).

The colored Boulatov-Ooguri GFT

[BCORS'13]

Mimicking 3-dimensional gravity

$\varphi_c : G^{\times D} \rightarrow \mathbb{C}, \quad c \in \{0, 1, \dots, D\}, \quad G \text{ a compact Lie group}$

$+ \varphi_c(hg_1, \dots, hg_D) = \varphi_c(g_1, \dots, g_D) \text{ (closure constraint).}$

$$S[\varphi, \bar{\varphi}] = \sum_c \int_{G^D} \left(\prod_{i=1}^D dg_i \right) \varphi_c(g_1, \dots, g_D) \bar{\varphi}_c(g_1, \dots, g_D)$$
$$+ \lambda \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) K(g_{ij} g_{ji}^{-1}) \prod_c \varphi_c(g_{cj}) + c.c.$$

The colored Boulatov-Ooguri GFT

[BCORS'13]

Mimicking 3-dimensional gravity

$\varphi_c : G^{\times D} \rightarrow \mathbb{C}, \quad c \in \{0, 1, \dots, D\}, \quad G \text{ a compact Lie group}$

$+ \varphi_c(hg_1, \dots, hg_D) = \varphi_c(g_1, \dots, g_D) \text{ (closure constraint).}$

$$S[\varphi, \bar{\varphi}] = \sum_c \int_{G^D} \left(\prod_{i=1}^D dg_i \right) \varphi_c(g_1, \dots, g_D) \bar{\varphi}_c(g_1, \dots, g_D)$$
$$+ \lambda \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) K(g_{ij} g_{ji}^{-1}) \prod_c \varphi_c(g_{cj}) + c.c.$$

Feynman graphs: edges bear D strands, bipartite, $(D+1)$ -regular, proper edge-colouring.

The colored Boulatov-Ooguri GFT

[BCORS'13]

Mimicking 3-dimensional gravity

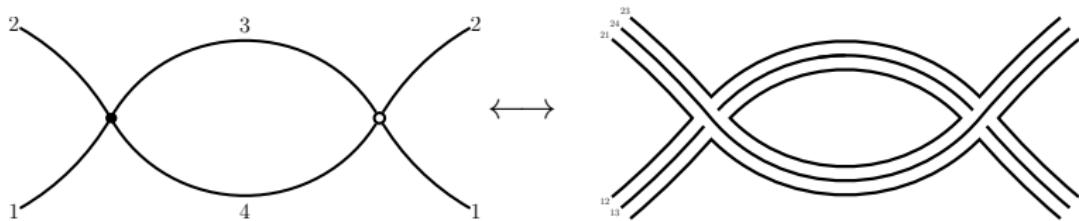
$\varphi_c : G^{\times D} \rightarrow \mathbb{C}, \quad c \in \{0, 1, \dots, D\}, \quad G \text{ a compact Lie group}$

$+ \varphi_c(hg_1, \dots, hg_D) = \varphi_c(g_1, \dots, g_D) \text{ (closure constraint).}$

$$S[\varphi, \bar{\varphi}] = \sum_c \int_{G^D} \left(\prod_{i=1}^D dg_i \right) \varphi_c(g_1, \dots, g_D) \bar{\varphi}_c(g_1, \dots, g_D)$$
$$+ \lambda \int_{G^{D(D+1)}} \left(\prod_{i \neq j=1}^{D+1} g_{ij} \right) K(g_{ij} g_{ji}^{-1}) \prod_c \varphi_c(g_{cj}) + \text{c.c.}$$

Feynman graphs: edges bear D strands, bipartite, $(D+1)$ -regular, proper edge-colouring.

In bijection with $(D+1)$ -coloured graphs.



The colored Boulatov-Ooguri GFT

[BCORS'13]

Feynman Amplitudes

- Closure constraint: $P(g_1, \dots, g_D; g'_1, \dots, g'_D) = \int_G dh \prod_i \delta(h g_i g'^{-1}_i)$.
- Regularization: $\delta(g) = \lim_{\tau \rightarrow 0} K_\tau(g)$ (heat kernel).
- Convolution: $\int dg K_\tau(hg) K_\tau(g^{-1}h') = K_{2\tau}(hh')$.
- $N_\tau := \tau^{-1/2}$.

$$A_\tau(\mathcal{G}) = N_\tau^k \int \prod_{e \in \mathcal{E}} dh_e \prod_{f \in \mathcal{F}} K_{m_f \tau} \left(\overrightarrow{\prod}_{e \in \partial f} h_e^{\epsilon_{fe}} \right)$$

The colored Boulatov-Ooguri GFT

[BCORS'13]

Feynman Amplitudes

- Closure constraint: $P(g_1, \dots, g_D; g'_1, \dots, g'_D) = \int_G dh \prod_i \delta(h g_i g'_i)^{-1}$.
- Regularization: $\delta(g) = \lim_{\tau \rightarrow 0} K_\tau(g)$ (heat kernel).
- Convolution: $\int dg K_\tau(hg) K_\tau(g^{-1}h') = K_{2\tau}(hh')$.
- $N_\tau := \tau^{-1/2}$.

$$A_\tau(\mathcal{G}) = N_\tau^k \int \prod_{e \in \mathcal{E}} dh_e \prod_{f \in \mathcal{F}} K_{m_f \tau} \left(\overrightarrow{\prod}_{e \in \partial f} h_e^{\epsilon_{fe}} \right)$$

- $G^{|\mathcal{V}|}$ -symmetry: $h_e \rightarrow k_{s(e)} h_e k_{t(e)}^{-1}$. Fix it ($h_{e \in \mathcal{T}} = \mathbb{1}$).
- Small τ expansion of K_τ .

$$F_{\tau, \lambda \bar{\lambda}} \underset{\tau \rightarrow 0}{\sim} N_\tau^{(\dim G)(D-1)} F_{\lambda \bar{\lambda}}^{(0)}, \quad F_{\lambda \bar{\lambda}}^{(0)} = \sum_{p \in \mathbb{N}} \frac{(\lambda \bar{\lambda})^p}{p} \sum_{\mathcal{G} \in \mathcal{M}_p} a(\mathcal{G}),$$

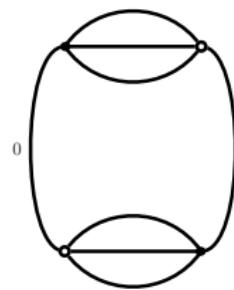
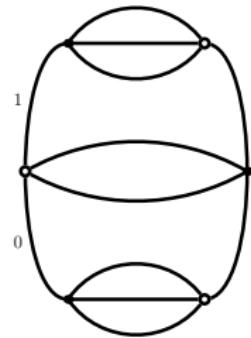
$$a(\mathcal{G}) = (\det(\tilde{L}) \prod_f m_f)^{-\frac{\dim G}{2}}, \quad L_{ee'} = \sum_f \frac{1}{m_f} \epsilon_{ef} \epsilon_{fe'}^T.$$

Melons

- They are coloured graphs dual to very specific triangulations of the sphere.

Melons

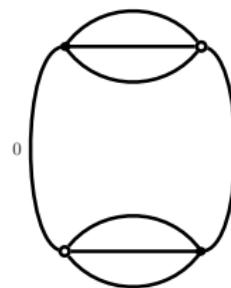
- They are coloured graphs dual to very specific triangulations of the sphere.
- They enjoy a recursive structure: “melons within melons”.



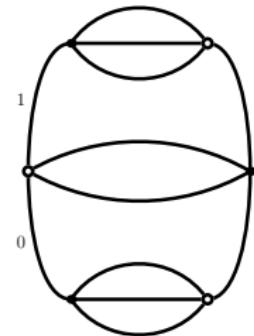
Melons

- They are coloured graphs dual to very specific triangulations of the sphere.
- They enjoy a recursive structure: “melons within melons”.

A basic 0-melon

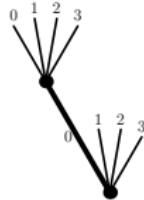
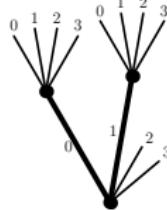


A melonic graph in M_2



Another one in M_3

- In bijection with colored $(D + 1)$ -ary trees.



Cellular Trees

1 Coloured GFT

2 Cellular Trees

- Homology of Trees
- Definition
- Matrix-Tree Theorem

3 An Enumeration Strategy

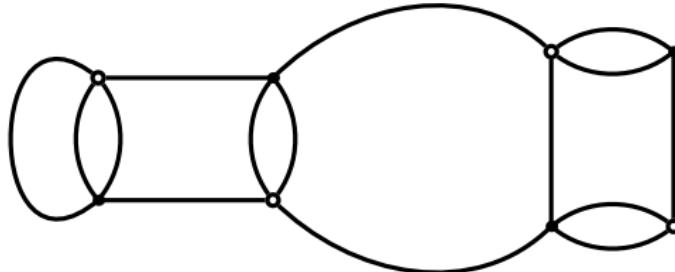
From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:

- ① $V(g) = V(G)$ (spanning),
- ② g is acyclic,
- ③ g is connected,
- ④ $|E(g)| = |V(g)| - 1$.



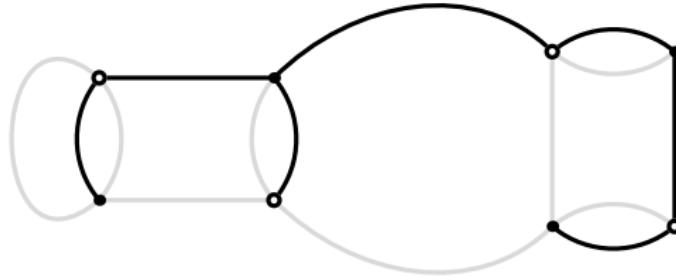
From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:

- ① $V(g) = V(G)$ (spanning),
- ② g is acyclic,
- ③ g is connected,
- ④ $|E(g)| = |V(g)| - 1$.



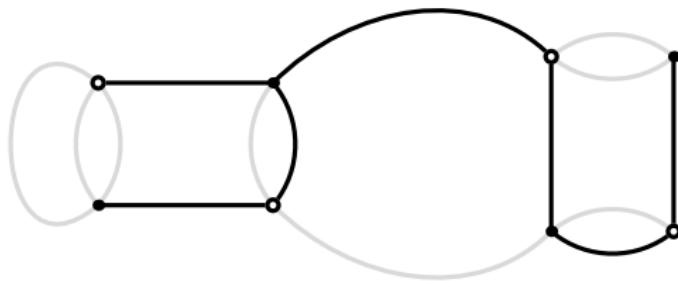
From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:

- ① $V(g) = V(G)$ (spanning),
- ② g is acyclic,
- ③ g is connected,
- ④ $|E(g)| = |V(g)| - 1$.



From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:

- ① $V(g) = V(G)$ (spanning),
- ② g is acyclic,
- ③ g is connected,
- ④ $|E(g)| = |V(g)| - 1$.

Any two of the conditions 2, 3 and 4 imply the third one.

From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A *spanning* (1-)tree of G is a subgraph g of G such that:

- ① $V(g) = V(G)$ (*spanning*),
- ② g is acyclic,
- ③ g is connected,
- ④ $|E(g)| = |V(g)| - 1$.

Any two of the conditions 2, 3 and 4 imply the third one.

- Consider G as a 1-dim. cell complex Δ : 0-cells = vertices, 1-cells = edges.
- A *spanning* subgraph is a subcomplex δ such that $\delta_{(0)} = \Delta_{(0)}$.
- Choose an orientation of δ to get a chain complex:

$$0 \xrightarrow{0} C_1(\delta) \xrightarrow{\partial_1} C_0(\delta) \xrightarrow{\partial_0} \mathbb{Z} \xrightarrow{0} \{0\}.$$

From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A *spanning* (1-)tree of G is a subgraph g of G such that:

- ① $V(g) = V(G)$ (*spanning*), $\delta_{(0)} = \Delta_{(0)}$
- ② g is acyclic, $\tilde{H}_1(\delta) = \{0\}$
- ③ g is connected, $\tilde{\beta}_0(\delta) = 0$
- ④ $|E(g)| = |V(g)| - 1$. $f_1(\delta) = f_1(\Delta) - \tilde{\beta}_1(\Delta) + \tilde{\beta}_0(\Delta)$

Any two of the conditions 2, 3 and 4 imply the third one.

- Consider G as a 1-dim. cell complex Δ : 0-cells = vertices, 1-cells = edges.
- A *spanning* subgraph is a subcomplex δ such that $\delta_{(0)} = \Delta_{(0)}$.
- Choose an orientation of δ to get a chain complex:

$$0 \xrightarrow{0} C_1(\delta) \xrightarrow{\partial_1} C_0(\delta) \xrightarrow{\partial_0} \mathbb{Z} \xrightarrow{0} \{0\}.$$

Cellular Trees

Definition

Definition (Duval, Klivans, Martin '09)

Let Δ be an n -dimensional cell complex. A spanning k -tree of Δ ($k \leq n$) is a subcomplex δ of $\Delta_{(k)}$ such that:

- ① $\delta_{(k-1)} = \Delta_{(k-1)}$, spanning
- ② $\tilde{H}_k(\delta) = \{0\}$, acyclic
- ③ $\tilde{\beta}_{k-1}(\delta) = 0$, connected
- ④ $f_k(\delta) = f_k(\Delta) - \tilde{\beta}_k(\Delta_{(k)}) + \tilde{\beta}_{k-1}(\Delta_{(k)})$.

Cellular Trees

Definition

Definition (Duval, Klivans, Martin '09)

Let Δ be an n -dimensional cell complex. A spanning k -tree of Δ ($k \leq n$) is a subcomplex δ of $\Delta_{(k)}$ such that:

- ① $\delta_{(k-1)} = \Delta_{(k-1)}$, spanning
- ② $\tilde{H}_k(\delta) = \{0\}$, acyclic
- ③ $\tilde{\beta}_{k-1}(\delta) = 0$, connected
- ④ $f_k(\delta) = f_k(\Delta) - \tilde{\beta}_k(\Delta_{(k)}) + \tilde{\beta}_{k-1}(\Delta_{(k)})$.

- Any two of the conditions 2, 3 and 4 imply the third one.
- A cell complex contains a k -tree iff $\tilde{\beta}_{k-1}(\Delta) = 0$.

Cellular Trees

Definition

Definition (Duval, Klivans, Martin '09)

Let Δ be an n -dimensional cell complex. A spanning k -tree of Δ ($k \leq n$) is a subcomplex δ of $\Delta_{(k)}$ such that:

- ① $\delta_{(k-1)} = \Delta_{(k-1)}$, spanning
- ② $\tilde{H}_k(\delta) = \{0\}$, acyclic
- ③ $\tilde{\beta}_{k-1}(\delta) = 0$, connected
- ④ $f_k(\delta) = f_k(\Delta) - \tilde{\beta}_k(\Delta_{(k)}) + \tilde{\beta}_{k-1}(\Delta_{(k)})$.

- Any two of the conditions 2, 3 and 4 imply the third one.
- A cell complex contains a k -tree iff $\tilde{\beta}_{k-1}(\Delta) = 0$.
- Examples: a triangulation of \mathbb{S}^2 - one 2-cell is a 2-tree. \mathbb{RP}^2 is a 2-tree.

Matrix-Tree Theorem

Theorem ($D = 1$)

Let G be a graph and $\partial_1 : C_1(G) \rightarrow C_0(G)$ be its boundary operator. Then, for all $v \in V(G)$,

$$\det(\partial_1 \partial_1^T)_v = \# \{ \text{spanning trees in } G \}.$$

Matrix-Tree Theorem

Theorem ($D = 1$)

Let G be a graph and $\partial_1 : C_1(G) \rightarrow C_0(G)$ be its boundary operator. Then, for all $v \in V(G)$,

$$\det(\partial_1 \partial_1^T)_v = \# \{ \text{spanning trees in } G \}.$$

Theorem (Duval, Klivans, Martin '09)

Let Δ be a cell complex of dimension n and $k \leq n$. If $\tilde{\beta}_{k-1}(\Delta) = \tilde{\beta}_{k-2}(\Delta) = 0$, then

$$\det(\partial_k \partial_k^T)_U = \frac{|\tilde{H}_{k-2}(U)|^2}{|\tilde{H}_{k-2}(\Delta)|^2} \sum_{\delta \in \mathcal{T}_k(\Delta)} |\tilde{H}_{k-1}(\delta)|^2$$

where U is any spanning $(k-1)$ -tree of Δ .

Matrix-Tree Theorem

Theorem ($D = 1$)

Let G be a graph and $\partial_1 : C_1(G) \rightarrow C_0(G)$ be its boundary operator. Then, for all $v \in V(G)$,

$$\det(\partial_1 \partial_1^T)_v = \# \{ \text{spanning trees in } G \}.$$

Theorem (Duval, Klivans, Martin '09)

Let Δ be a cell complex of dimension n and $k \leq n$. If $\tilde{\beta}_{k-1}(\Delta) = \tilde{\beta}_{k-2}(\Delta) = 0$, then

$$\det(\partial_k \partial_k^T)_U = \frac{|\tilde{H}_{k-2}(U)|^2}{|\tilde{H}_{k-2}(\Delta)|^2} \sum_{\delta \in \mathcal{T}_k(\Delta)} |\tilde{H}_{k-1}(\delta)|^2$$

where U is any spanning $(k-1)$ -tree of Δ .

$$L_{ee'} = \sum_f \frac{1}{m_f} \epsilon_{ef} \epsilon_{fe'}^T, \quad \det \tilde{L} = \sum_{\delta \in \mathcal{T}_2(\mathcal{G})} |\tilde{H}_1(\delta)|^2 \prod_{f \in \delta_2} m_f^{-1}.$$

An Enumeration Strategy

- 1 Coloured GFT
- 2 Cellular Trees
- 3 An Enumeration Strategy

The Tutte Polynomial

- Remark: $D = 3$, 2-trees in Δ in bijection with 1-trees in Δ^* .
- **Aim:** Counting spanning 1-trees in the dual complex of 3 dim. melons.

Definition ((Multivariate) Tutte Polynomial)

Let G be a graph, $c(G)$ its number of connected components.

$$Z_G(q; \mathbf{v}) := \sum_{\text{spann. subgr. } g} q^{c(g)} \prod_{e \in E(g)} v_e.$$

$$X_G(\mathbf{v}) := \lim_{\lambda \rightarrow 0} \lambda^{c(G) - v(G)} \lim_{q \rightarrow 0} q^{-c(G)} Z_G(q; \lambda \mathbf{v})$$

Proposition

If G is connected, $X_G(\mathbf{1}) = \# \{ \text{spann. trees of } G \}$.

How to Count Trees in Melons?

Let \mathcal{G} be a 3-dim. melon, Δ its associated cell complex.

We need to compute $X_{\Delta_{(1)}^*}(\mathbf{1})$.

Use the recursive structure of melons!

How to Count Trees in Melons?

Let \mathcal{G} be a 3-dim. melon, Δ its associated cell complex.

We need to compute $X_{\Delta_{(1)}^*}(\mathbf{1})$.

Use the recursive structure of melons!

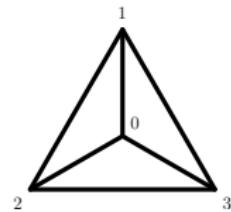
Proposition

X_G obeys the following reduction relations

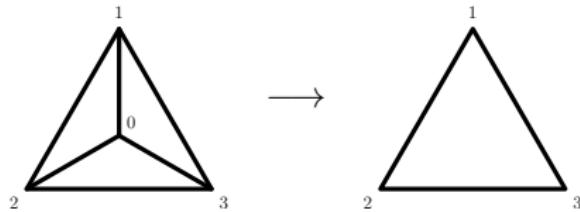
$$X_G = \begin{cases} v_e X_{G/e} & \text{if } e \text{ is a bridge,} \\ X_{G-e} & \text{if } e \text{ is a loop,} \\ v_e X_{G/e} + X_{G-e} & \text{if } e \text{ is ordinary,} \\ X_{G'}(v_e + v_{e'}) & \text{if } e \parallel e'. \end{cases}$$

Contracting Melons

- = 3-ball made of the gluing of 2 tetrahedra along 3 facets.

- $\left(\text{Diagram of a 3-ball with boundary labeled 0} \right)_{(1)}^*$ = 

- Contracting a melon in \mathcal{G} amounts to, in Δ^* :



A Recursion

Proposition

$$X_{\Delta_{(1)}^*}(v_{01}, v_{02}, v_{03}, v_{12}, v_{13}, v_{23}, \dots) = v_{01} X_{(\Delta/M_0)_{(1)}^*}(v_{12} + v_{02}, v_{13} + v_{03}, v_{23}, \dots) \\ + v_{02} X_{(\Delta/M_0)_{(1)}^*}(v_{12}, v_{13}, v_{23} + v_{03}, \dots) + v_{03} X_{(\Delta/M_0)_{(1)}^*}(v_{12}, v_{13}, v_{23}, \dots)$$

This is *not* a recursion for the number of spanning trees!

A Recursion

which converges sometimes

Proposition

$$X_{\Delta_{(1)}^*}(v_{01}, v_{02}, v_{03}, v_{12}, v_{13}, v_{23}, \dots) = v_{01} X_{(\Delta/M_0)_{(1)}^*}(v_{12} + v_{02}, v_{13} + v_{03}, v_{23}, \dots) \\ + v_{02} X_{(\Delta/M_0)_{(1)}^*}(v_{12}, v_{13}, v_{23} + v_{03}, \dots) + v_{03} X_{(\Delta/M_0)_{(1)}^*}(v_{12}, v_{13}, v_{23}, \dots)$$

This is *not* a recursion for the number of spanning trees!

The number of 2-trees in

is: $3^{k_0}(k_0 + 4)^2$.

A Recursion

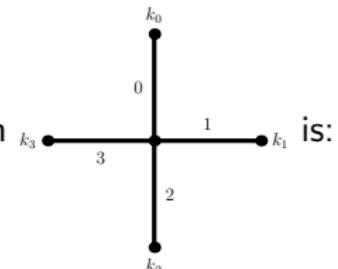
which converges sometimes

Proposition

$$X_{\Delta_{(1)}^*}(v_{01}, v_{02}, v_{03}, v_{12}, v_{13}, v_{23}, \dots) = v_{01} X_{(\Delta/M_0)_{(1)}^*}(v_{12} + v_{02}, v_{13} + v_{03}, v_{23}, \dots) \\ + v_{02} X_{(\Delta/M_0)_{(1)}^*}(v_{12}, v_{13}, v_{23} + v_{03}, \dots) + v_{03} X_{(\Delta/M_0)_{(1)}^*}(v_{12}, v_{13}, v_{23}, \dots)$$

This is *not* a recursion for the number of spanning trees!

The number of 2-trees in



is:

$$3^{\sigma_1 - 3} (6\sigma_1\sigma_2 - 4\sigma_3 + 27\sigma_1^2 + 24\sigma_2 + 216\sigma_1 + 432),$$

$$\text{with } \sigma_1 = \sum_{i=0}^3 k_i, \sigma_2 = \sum_{i < j} k_i k_j, \sigma_3 = \sum_{i < j < l} k_i k_j k_l.$$

Summary and perspectives

- k -trees are k -dim. generalizations of trees.
- Such trees appear in the Feynman amplitudes of GFT.
- Their enumeration would help to characterize the critical UV behaviour of the model.

A lot remains to be done:

- Complete enumeration,
- Counting k -trees in dimension D (via the Tutte-Krushkal polynomial?),
- What about torsionful trees? Enumeration, characterization.
- After the melons, the cherry trees?

The Bicoloured Branch

The number of 2-trees in

is: $\frac{k+3}{2\sqrt{3}}((2 + \sqrt{3})^{k+1} - (2 - \sqrt{3})^{k+1})$.