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Group Field Theory

φ : G×D → C, G (compact) Lie group

SD[φ] = 1
2

∫
GD

( D∏
i=1

dgidg̃i
)
φ(g1, . . . , gD)C−1(gi g̃−1i )φ(g̃1, . . . , g̃D)

+ λ

(D + 1)!

∫
GD(D+1)

( D+1∏
i 6=j=1

gij
)
φ(g1j) · · ·φ(g(D+1)j)K (gijg−1ji ).

φ −→ (D − 1)-simplex (D = 3: a solid triangle)

gi −→ (D − 2)-simplex (D = 3: an edge)

C “glues” two (D − 1)-simplices (D = 3: 2 triangles)

K −→ gluing of D + 1 (D − 1)-simplices to form a D-simplex
(D = 3: 4 triangles bound a tetrahedron)

Feynman graph −→ spin foam
Feynman graph amplitude = spin foam model
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Stranded graphs = gluing of simplices
D = 3

14
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13
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duality←−−−→
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Stranded graphs = gluing of simplices
D = 3

But not a D-complex!
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Coloured Graphs

Definition
A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

Every bipartite regular graph is colourable.
Every (D + 1)-coloured graph is dual to a D-dimensional triangulated space
(trisp or ∆-complex).
Better, every such graph is dual to a normal pseudo-manifold [Gurau’10].
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Pseudo-manifolds
These are manifolds with singularities.

LECTURE 1
Equivariant Homology and Intersection Homology

(Geometry of Pseudomanifolds)

1.1. Introduction

〈1.1〉 In this lecture, we will give a geometric way of defining equivariant homology
and equivariant intersection homology. The standard definitions of these homology
theories, as found in the literature, are good for proving properties, but are perhaps
not so intuitive. In this lecture, we will consider G X : an action of a general Lie
group G on a space X , although in the other lectures we are interested mainly in
the case that G is a torus T .

〈1.2〉 The definitions we present are based on the notion of a pseudomanifold. A
k-dimensional manifold is a space that looks locally like k-dimensional Euclidean
space near every point. A k-dimensional pseudomanifold P is allowed to have
singularities, i.e. points where it doesn’t locally look like Euclidean space. However,
it must satisfy two properties:

(1) The part of P where it is a k-manifold is open and dense in P and it must
be oriented.

(2) The set of singularities has dimension at most k − 2 (i.e. codimension at
least 2).

A pseudomanifold (the pinched torus)

327

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

Every manifold is dual to a coloured graph [Pezzana ’74].
D = 2: every normal pseudo-manifold is a manifold.
D = 3: there exists a simple criteria to decide whether a 4-coloured graph
encodes a manifold. D = 4: it’s difficult! (cf. Poincaré, Perelman, etc)
GEMs: a combinatorial and algorithmic approach to the classification of
3-manifolds [Ferri, Gagliardi, Lins etc ’80].
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Coloured Cellular Complex

Definition (Bubbles)

Let Γ be a (D + 1)-coloured graph and 0 6 k 6 D. A k-bubble of colours
{i1, . . . , ik} is a connected component of the subgraph of Γ induced by the edges
of colours {i1, . . . , ik}. 0-bubbles are vertices.

Definition (Cellular Complex)

For all 0 6 k 6 D, Ck(Γ) := free Abelian group generated by the k-bubbles.
CD+1(Γ) := {0} and C−1(Γ) := Z.
∂k : Ck → Ck−1, ∂kbi0,...,ik−1 :=

∑k−1
j=0 (−1)jb′i0,...,̂ij ,...,ik−1

.
∂k−1∂k = 0.

Definition (Cellular Homology)

For all 0 6 k 6 D, H̃k(Γ) := ker ∂k
im ∂k+1

=: Zk (Γ)
Bk (Γ) .
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The colored Boulatov-Ooguri GFT [BCORS’13]
Mimicking 3-dimensional gravity

ϕc : G×D → C, c ∈ {0, 1, . . . ,D}, G a compact Lie group
+ ϕc (hg1, . . . , hgD) = ϕc (g1, . . . , gD) (closure constraint).

S[ϕ,ϕ] =
∑

c

∫
GD

( D∏
i=1

dgi
)
ϕc(g1, . . . , gD)ϕc(g1, . . . , gD)

+λ
∫

GD(D+1)

( D+1∏
i 6=j=1

gij
)
K (gijg−1ji )

∏
c
ϕc(gcj) + c.c.

Feynman graphs: edges bear D strands, bipartite, (D + 1)-regular, proper edge-colouring.

In bijection with (D + 1)-coloured graphs.

3

41

2 2

1

←→

14

13

12

21

24

23
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In bijection with (D + 1)-coloured graphs.

3

41

2 2

1

←→

14

13

12

21

24

23
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The colored Boulatov-Ooguri GFT [BCORS’13]
Mimicking 3-dimensional gravity
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The colored Boulatov-Ooguri GFT [BCORS’13]
Feynman Amplitudes

Closure constraint: P(g1, . . . , gD ; g ′1, . . . , g ′D) =
∫

G dh
∏

i δ(hgig ′−1i ).
Regularization: δ(g) = limτ→0 Kτ (g) (heat kernel).
Convolution:

∫
dg Kτ (hg)Kτ (g−1h′) = K2τ (hh′).

Nτ := τ−1/2.

Aτ (G) = Nk
τ

∫ ∏
e∈E

dhe
∏
f∈F

Kmf τ (
−→∏

e∈∂f
hεfe

e )

G |V|-symmetry: he → ks(e)hek−1t(e). Fix it (he∈T = 1).
Small τ expansion of Kτ .

Fτ,λλ ∼τ→0
N(dimG)(D−1)
τ F (0)

λλ
, F (0)

λλ
=
∑
p∈N

(λλ)p

p
∑
G∈Mp

a(G),

a(G) =
(
det(L̃)

∏
f

mf
)− dim G

2 , Lee′ =
∑

f

1
mf

εef ε
T
fe′ .
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Melons

• They are coloured graphs dual to very specific triangulations of the sphere.

• They enjoy a recursive structure: “melons within melons”.

0

A basic 0-melon

0

A melonic graph in M2

1

0

Another one in M3

• In bijection with colored (D + 1)-ary trees.

0 1 2 3

0 1 2 3

1 2 3
0

0 1 2 3
0 1 2 3

2
30

1
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Cellular Trees

1 Coloured GFT

2 Cellular Trees
Homology of Trees
Definition
Matrix-Tree Theorem

3 An Enumeration Strategy
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From Graph Theory to Algebraic Topology
Homological Definition of (1-)trees

Definition
Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:

1 V (g) = V (G) (spanning),

δ(0) = ∆(0)

2 g is acyclic,

H̃1(δ) = {0}

3 g is connected,

β̃0(δ) = 0

4 |E (g)| = |V (g)| − 1.

f1(δ) = f1(∆)− β̃1(∆) + β̃0(∆)

Any two of the conditions 2, 3 and 4 imply the third one.

• Consider G as a 1-dim. cell complex ∆: 0-cells = vertices, 1-cells = edges.
• A spanning subgraph is a subcomplex δ such that δ(0) = ∆(0).
• Choose an orientation of δ to get a chain complex:

0 0−→ C1(δ) ∂1−→ C0(δ) ∂0−→ Z 0−→ {0}.
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Cellular Trees
Definition

Definition (Duval, Klivans, Martin ’09)

Let ∆ be an n-dimensional cell complex. A spanning k-tree of ∆ (k 6 n) is a
subcomplex δ of ∆(k) such that:

1 δ(k−1) = ∆(k−1), spanning
2 H̃k(δ) = {0}, acyclic
3 β̃k−1(δ) = 0, connected
4 fk(δ) = fk(∆)− β̃k(∆(k)) + β̃k−1(∆(k)).

• Any two of the conditions 2, 3 and 4 imply the third one.
• A cell complex contains a k-tree iff β̃k−1(∆) = 0.

• Examples: a triangulation of S2 - one 2-cell is a 2-tree. RP2 is a 2-tree.
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Matrix-Tree Theorem

Theorem (D = 1)
Let G be a graph and ∂1 : C1(G)→ C0(G) be its boundary operator. Then, for all
v ∈ V (G),

det(∂1∂T
1 )v = # {spanning trees in G} .

Theorem (Duval, Klivans, Martin ’09)
Let ∆ be a cell complex of dimension n and k 6 n. If β̃k−1(∆) = β̃k−2(∆) = 0,
then

det(∂k∂
T
k )U = |H̃k−2(U)|2

|H̃k−2(∆)|2
∑

δ∈Tk (∆)

|H̃k−1(δ)|2

where U is any spanning (k − 1)-tree of ∆.

Lee′ =
∑

f
1

mf
εef ε

T
fe′ , det L̃ =

∑
δ∈T2(G) |H̃1(δ)|2

∏
f∈δ2 m−1f .
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An Enumeration Strategy

1 Coloured GFT

2 Cellular Trees

3 An Enumeration Strategy
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The Tutte Polynomial

Remark: D = 3, 2-trees in ∆ in bijection with 1-trees in ∆∗.
Aim: Counting spanning 1-trees in the dual complex of 3 dim. melons.

Definition ((Multivariate) Tutte Polynomial)

Let G be a graph, c(G) its number of connected components.

ZG (q; v) :=
∑

spann. subgr. g
qc(g)

∏
e∈E(g)

ve .

XG (v) := lim
λ→0

λc(G)−v(G) lim
q→0

q−c(G)ZG (q;λv)

Proposition
If G is connected, XG (1) = # {spann. trees of G}.

Fabien Vignes-Tourneret (ICJ) QG, Trees, and Polynomials 17 / 23



How to Count Trees in Melons?

Let G be a 3-dim. melon, ∆ its associated cell complex.
We need to compute X∆?

(1)
(1).

Use the recursive structure of melons!

Proposition

XG obeys the following reduction relations

XG =


veXG/e if e is a bridge,
XG−e if e is a loop,
veXG/e + XG−e if e is ordinary,
XG′(ve + ve′) if e ‖ e′.
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Contracting Melons

• 0 = 3-ball made of the gluing of 2 tetrahedra along 3 facets.

•

(
0

)?
(1)

=
0

1

2 3

• Contracting a melon in G amounts to, in ∆?:

0

1

2 3

−→

1

2 3
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A Recursion

which converges sometimes

Proposition

X∆?
(1)

(v01, v02, v03, v12, v13, v23, . . . ) = v01X(∆/M0)?
(1)

(v12 + v02, v13 + v03, v23, . . . )

+v02X(∆/M0)?
(1)

(v12, v13, v23 + v03, . . . ) + v03X(∆/M0)?
(1)

(v12, v13, v23, . . . )

This is not a recursion for the number of spanning trees!
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(1)

(v12, v13, v23, . . . )

This is not a recursion for the number of spanning trees!

The number of 2-trees in
1

2

k0

0

0

is: 3k0(k0 + 4)2.
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which converges sometimes

Proposition

X∆?
(1)
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(v12, v13, v23 + v03, . . . ) + v03X(∆/M0)?
(1)

(v12, v13, v23, . . . )

This is not a recursion for the number of spanning trees!

The number of 2-trees in k1k3

k0

k2

0

1

2

3

is:

3σ1−3(6σ1σ2 − 4σ3 + 27σ21 + 24σ2 + 216σ1 + 432),
with σ1 =

∑3
i=0 ki , σ2 =

∑
i<j ki kj , σ3 =

∑
i<j<l ki kj kl .
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Summary and perspectives

k-trees are k-dim. generalizations of trees.
Such trees appear in the Feynman amplitudes of GFT.
Their enumeration would help to characterize the critical UV behaviour of
the model.

A lot remains to be done:
Complete enumeration,
Counting k-trees in dimension D (via the Tutte-Krushkal polynomial?),
What about torsionful trees? Enumeration, characterization.
After the melons, the cherry trees?
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The Bicoloured Branch

The number of 2-trees in

1

2

k

0

1

is: k+3
2
√
3

(
(2 +

√
3)k+1 − (2−

√
3)k+1).
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