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Coloured GFT

© Coloured GFT
@ Group Field Theory
o Coloured Graphs
@ Feynman Amplitudes
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Group Field Theory
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Group Field Theory
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Group Field Theory

¢: G*P — C, G (compact) Lie group

D
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@ ¢ — (D — 1)-simplex

e g — (D — 2)-simplex
o C “glues” two (D — 1)-simplices
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Group Field Theory

¢: G*P — C, G (compact) Lie group

D
Solél = 5 /G (1 a2 éter. - 80)C (g )o@, 20)
i=1

D+1

A
- » Y. YK(gigh).
BT oo (1T sete)--- lao-n)Klases )
o p— (D - 1)—simp|ex (D = 3: a solid triangle)
e g — (D — 2)-simplex (D = 3: an edge)
o C “glues” two (D — 1)-simplices (D = 3: 2 triangles)

o K — gluing of D+ 1 (D — 1)-simplices to form a D-simplex
(D = 3: 4 triangles bound a tetrahedron)
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Group Field Theory

¢: G*P — C, G (compact) Lie group
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o p— (D - 1)—simp|ex (D = 3: a solid triangle)
e g — (D — 2)-simplex (D = 3: an edge)
o C “glues” two (D — 1)-simplices (D = 3: 2 triangles)
o K — gluing of D+ 1 (D — 1)-simplices to form a D-simplex

(D = 3: 4 triangles bound a tetrahedron)

Feynman graph — spin foam
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Group Field Theory

¢: G*P — C, G (compact) Lie group
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sy (IT as)ote) -+ oleosn)K (g™
o p— (D - 1)—simp|ex (D = 3: a solid triangle)
e g — (D — 2)-simplex (D = 3: an edge)
o C “glues” two (D — 1)-simplices (D = 3: 2 triangles)
o K — gluing of D+ 1 (D — 1)-simplices to form a D-simplex

(D = 3: 4 triangles bound a tetrahedron)
@ Feynman graph — spin foam

@ Feynman graph amplitude = spin foam model
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Stranded graphs = gluing of simplices
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Stranded graphs = gluing of simplices

D=3
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Stranded graphs = gluing of simplices

D=3

But not a D-complex!
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

@ Every bipartite regular graph is colourable.
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

@ Every bipartite regular graph is colourable.

@ Every (D + 1)-coloured graph is dual to a D-dimensional triangulated space
(trisp or A-complex).
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

@ Every bipartite regular graph is colourable.

@ Every (D + 1)-coloured graph is dual to a D-dimensional triangulated space
(trisp or A-complex).

@ Better, every such graph is dual to a normal pseude-manifold-[Gurau'10}.
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Pseudo-manifolds

These are manifolds with singularities.

Singularity \
vV

£ P

2/

%
57 Orientation

A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.
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Pseudo-manifolds

These are manifolds with singularities.
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A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

e Every manifold is dual to a coloured graph [Pezzana '74].
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Pseudo-manifolds

These are manifolds with singularities.

Singularity \
V =
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A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

e Every manifold is dual to a coloured graph [Pezzana '74].
@ D = 2: every normal pseudo-manifold is a manifold.
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Pseudo-manifolds

These are manifolds with singularities.
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A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

e Every manifold is dual to a coloured graph [Pezzana '74].
@ D = 2: every normal pseudo-manifold is a manifold.

@ D = 3: there exists a simple criteria to decide whether a 4-coloured graph
encodes a manifold. D = 4: it's difficult! (cf. Poincaré, Perelman, etc)
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Pseudo-manifolds

These are manifolds with singularities.

Singularity N

=

"= Orientation

A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

e Every manifold is dual to a coloured graph [Pezzana '74].
@ D = 2: every normal pseudo-manifold is a manifold.

@ D = 3: there exists a simple criteria to decide whether a 4-coloured graph
encodes a manifold. D = 4: it's difficult! (cf. Poincaré, Perelman, etc)

o GEMs: a combinatorial and algorithmic approach to the classification of
3-manifolds [Ferri, Gagliardi, Lins etc '80].
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Coloured Cellular Complex

Definition (Bubbles)

Let T be a (D + 1)-coloured graph and 0 < k < D. A k-bubble of colours
{i,...,ix} is a connected component of the subgraph of I induced by the edges
of colours {i,...,ix}. 0-bubbles are vertices.
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Coloured Cellular Complex

Definition (Bubbles)

Let T be a (D + 1)-coloured graph and 0 < k < D. A k-bubble of colours

{i,...,ix} is a connected component of the subgraph of I induced by the edges
of colours {i,...,ix}. 0-bubbles are vertices.

Fabien Vignes-Tourneret (1CJ)

o

The 3-bubble of colors {red, green, blue}
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Coloured Cellular Complex

Definition (Bubbles)

Let T be a (D + 1)-coloured graph and 0 < k < D. A k-bubble of colours
{i,...,ix} is a connected component of the subgraph of I induced by the edges
of colours {i,...,ix}. 0-bubbles are vertices.

L N

The 2-bubbles (or faces) of colors {blue, black}
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Coloured Cellular Complex

Definition (Bubbles)
Let T be a (D + 1)-coloured graph and 0 < k < D. A k-bubble of colours

{i,...,ix} is a connected component of the subgraph of I induced by the edges

of colours {i,...,ix}. 0-bubbles are vertices.

Definition (Cellular Complex)

For all 0 < k < D, Ci(T') = free Abelian group generated by the k-bubbles.
CD+1(F) = {0} and C_1(F) =/

0t Co = Cot, Oubii = TAF 1B,
Ok—10k = 0.
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Coloured Cellular Complex

Definition (Bubbles)

Let T be a (D + 1)-coloured graph and 0 < k < D. A k-bubble of colours

{i,...,ix} is a connected component of the subgraph of I induced by the edges

of colours {i,...,ix}. 0-bubbles are vertices.

Definition (Cellular Complex)

For all 0 < k < D, Ci(T') = free Abelian group generated by the k-bubbles.
CD+1(F) = {0} and C_1(F) =/

0t Co = Cot, Oubiir = SA-IPB
Ok—10x = 0.

Definition (Cellular Homology)

For all 0 < k < D, Hi(I') = gl = 240
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The colored Boulatov-Ooguri GFT [BCORS'13]
Mimicking 3-dimensional gravity
Qe - G*P 5, ce {0,1,...,D}, G a compact Lie group

+ Soc(hglz

B th) = (pC(glz

,&p) (closure constraint).
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The colored Boulatov-Ooguri GFT [BCORS'13]

Mimicking 3-dimensional gravity

Qe - G*D C, ce{0,1,...,D}, G a compact Lie group
+ pc(hgi, ..., hgp) = pc(g1,--.,8p) (closure constraint).

Steel =3 [, (I de)oclen...z0)pelen. - 0)

D+1
+A /G o 11 &) K(gigi ) [ #<(aei) + c-c.
i2j=1 ¢
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The colored Boulatov-Ooguri GFT [BCORS'13]

Mimicking 3-dimensional gravity

Qe - G*D C, ce{0,1,...,D}, G a compact Lie group
+ pc(hgi, ..., hgp) = pc(g1,--.,8p) (closure constraint).

Steel =3 [, (I de)oclen...z0)pelen. - 0)

D+1
+A /G o 11 &) K(gigi ) [ #<(aei) + c-c.

i#j=1 c

Feynman graphs: edges bear D strands, bipartite, (D -+ 1)-regular, proper edge-colouring.
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The colored Boulatov-Ooguri GFT [BCORS'13]

Mimicking 3-dimensional gravity

Qe - G*P - C, ce{0,1,...,D}, G a compact Lie group
+ pc(hgi, ..., hgp) = pc(g1,--.,8p) (closure constraint).

D
5[907@] = Z/GD (Hdgl)(pc(gla .. ,gD)ac(glw' : agD)
c i=1

D+1

_/GD D+1) H gj UgJTI) H SOC(gcj) + c.c.
c

i#j=1

Feynman graphs: edges bear D strands, bipartite, (D + 1)-regular, proper edge-colouring.
In bijection with (D + 1)-coloured graphs.

XX

1 4
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The colored Boulatov-Ooguri GFT [BCORS'13]

Feynman Amplitudes

o Closure constraint: P(g1,...,8p:8&f.---,8p) = [cdh []; 5(hgig' ).
@ Regularization: §(g) = lim;_0 K(g) (heat kernel).

e Convolution: [ dg K, (hg)K.(g ') = Ko, (hH').

o N, =711/2

%
A(@) = Nt [ T] ehe TT Kool I 1)
ec& feF e€of
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The colored Boulatov-Ooguri GFT [BCORS'13]

Feynman Amplitudes

@ Closure constraint: P(gi,...,&p:8&1,---,8p) = fG dh 11, J(hg,-g’fl).
e Regularization: §(g) = lim;_ K;(g) (heat kernel).

e Convolution: [ dg K, (hg)K.(g ') = Ko, (hH').

o N, =711/2

N"/Hdh H Ky ( H hee)

ec& feF ecof

GVl-symmetry: he — ks(e)hekt_(el). Fix it (heer = 1).

@ Small 7 expansion of K.
_ . p(dimG)(D-1) £(0) (0) ()‘/\)
Fiax T—>0NT Fﬁ’ Z Z a(9),
peN GgeM,
o _dimG 1
a(g) :(det(l') 1:[ mf) : y Leer = 2 Eeef6£1~
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Melons

e They are coloured graphs dual to very specific triangulations of the sphere.
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Melons

e They are coloured graphs dual to very specific triangulations of the sphere.

e They enjoy a recursive structure: “melons within melons".
1
0
0
=

A basic 0-melon A melonic graph in M, Another one in M3
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Melons

e They are coloured graphs dual to very specific triangulations of the sphere.

e They enjoy a recursive structure: “melons within melons".

1
0
L@_

A basic 0-melon A melonic graph in M, Another one in M3

o In bijection with colored (D + 1)-ary trees.

0t 7?3

0l 73
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Cellular Trees

© Cellular Trees
@ Homology of Trees
@ Definition
@ Matrix-Tree Theorem

Fabien Vignes-Tourneret (1CJ) QG, Trees, and Polynomials



From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition
Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:
Q V(g) = V(G) (spanning),
Q g is acyclic,
© g is connected,
Q [E(g)l=IV(g)l - 1.
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Definition
Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:
Q V(g) = V(G) (spanning),
Q g is acyclic,
© g is connected,
Q [E(g)l=IV(g)l - 1.
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From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:
Q V(g) = V(G) (spanning),
Q g is acyclic,
© g is connected,

0 |E(g)l = [V(g)l - 1.

Any two of the conditions 2,3 and 4 imply the third one.
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From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:
Q V(g) = V(G) (spanning),
Q g is acyclic,
© g is connected,

0 |E(g)l = [V(g)l - 1.

Any two of the conditions 2,3 and 4 imply the third one.

o Consider G as a 1-dim. cell complex A: 0-cells = vertices, 1-cells = edges.
* A spanning subgraph is a subcomplex 4 such that 6y = A(g).
o Choose an orientation of ¢ to get a chain complex:

0% a2 o) 2z (o).
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From Graph Theory to Algebraic Topology

Homological Definition of (1-)trees

Definition

Let G be a graph. A spanning (1-)tree of G is a subgraph g of G such that:
@ V(g) = V(G) (spanning), ) = Do)
© g is acyclic, Fll((s) = {0}
© g is connected, Bo(6) =0
@ [E(g)l=|V(g)l - 1. f(8) = A(A) — Bu(A) + Bo(A)A

Any two of the conditions 2,3 and 4 imply the third one.

o Consider G as a 1-dim. cell complex A: 0-cells = vertices, 1-cells = edges.
* A spanning subgraph is a subcomplex 4 such that 6y = A(g).
o Choose an orientation of ¢ to get a chain complex:

0% a2 o) 2z (o).
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Cellular Trees

Definition

Definition (Duval, Klivans, Martin '09)

Let A be an n-dimensional cell complex. A spanning k-tree of A (k < n)is a
subcomplex & of Ay such that:

Q J(k-1) = D(k-1), spanning
Q@ Hy(8) = {0}, acyclic
Q Gi-1(9) =0, connected

Q () = fi(A) — Bi(Biy) + Be-1(Biy)-
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Cellular Trees

Definition

Definition (Duval, Klivans, Martin '09)

Let A be an n-dimensional cell complex. A spanning k-tree of A (k < n)is a
subcomplex & of Ay such that:

Q J(k-1) = D(k-1), spanning
Q@ Hy(8) = {0}, acyclic
Q Gi-1(9) =0, connected

Q () = fi(A) — Bi(Biy) + Be-1(Biy)-

o Any two of the conditions 2,3 and 4 imply the third one.
e A cell complex contains a k-tree iff Sx_1(A) = 0.
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Cellular Trees

Definition

Definition (Duval, Klivans, Martin '09)

Let A be an n-dimensional cell complex. A spanning k-tree of A (k < n)is a
subcomplex & of Ay such that:

Q J(k-1) = D(k-1), spanning
Q@ Hy(8) = {0}, acyclic
Q Gi-1(9) =0, connected

Q () = fi(A) — Bi(Biy) + Be-1(Biy)-

o Any two of the conditions 2,3 and 4 imply the third one.
e A cell complex contains a k-tree iff Sx_1(A) = 0.

o Examples: a triangulation of S? - one 2-cell is a 2-tree. RP? is a 2-tree.
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Matrix-Tree Theorem

Theorem (D = 1)

Let G be a graph and 01 : C1(G) — Co(G) be its boundary operator. Then, for all
v e V(G),

det(0,0) ), = # {spanning trees in G} .
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Matrix-Tree Theorem

Theorem (D = 1)

Let G be a graph and 01 : C1(G) — Co(G) be its boundary operator. Then, for all
v e V(G),
det(0,0) ), = # {spanning trees in G} .

Theorem (Duval, Klivans, Martin '09)

Let A be a cell complex of dimension n and k < n. If B_1(A) = Br_a(A) =0,
then

Hie_o(U)? ~
det(@uof Ju = 125~ o
|Hk—2(A)| 5eTi(D)

where U is any spanning (k — 1)-tree of A.
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Matrix-Tree Theorem

Theorem (D = 1)

Let G be a graph and 01 : C1(G) — Co(G) be its boundary operator. Then, for all
v e V(G),
det(0,0) ), = # {spanning trees in G} .

Theorem (Duval, Klivans, Martin '09)

Let A be a cell complex of dimension n and k < n. If B_1(A) = Br_a(A) =0,
then

Hie_o(U)? ~
det(@uof Ju = 125~ o
|Hk—2(A)| 5eTi(D)

where U is any spanning (k — 1)-tree of A.

Leew = Yor mcerefr, detL=>"5r o) [F1(O) [Tres, mi -
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An Enumeration Strategy

© An Enumeration Strategy
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The Tutte Polynomial

@ Remark: D = 3, 2-trees in A in bijection with 1-trees in A*.

@ Aim: Counting spanning 1-trees in the dual complex of 3 dim. melons.

Definition ((Multivariate) Tutte Polynomial)

Let G be a graph, c(G) its number of connected components.

Ze(giv)= > q® [ ve

spann. subgr. g ecE(g)
Xo(v) i= lim A7) fim g9 Z(g; v)
Proposition
If G is connected, X¢(1) = # {spann. trees of G}. J
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How to Count Trees in Melons?

Let G be a 3-dim. melon, A its associated cell complex.
We need to compute XA(*I)(I).

Use the recursive structure of melons!
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How to Count Trees in Melons?

Let G be a 3-dim. melon, A its associated cell complex.
We need to compute XAG)(I)'

Use the recursive structure of melons!

Proposition

X¢ obeys the following reduction relations

VeXG/e if e is a bridge,
XG—e if e is a loop,

&
[

VeXg/e + Xg—e if e is ordinary,
Xe(ve+ver) ifel €.
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Contracting Melons

o _U@_ = 3-ball made of the gluing of 2 tetrahedra along 3 facets.

*

(=), -

o Contracting a melon in G amounts to, in A*:

2 3

1 1
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A Recursion

Proposition

XA(*I)(V01, Vo2, V035 V12, V13, V23, - - - ) = V01X(A/Mo)(*1)(V12 + vo2, V13 + Vo3, V23, - - -

+V02X(A/MO)(*1)(V12, Vi3, Vo3 + Vo3, - .- ) + V03X(A/M0)(*1)(V12, V13, V23, - - -

This is not a recursion for the number of spanning trees!

Fabien Vignes-Tourneret (1CJ) QG, Trees, and Polynomials
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A Recursion

which converges sometimes

Proposition

XA(*I)(VOI, Vo2, V035 V12, V13, V23, - - - ) = V01X(A/Mo)(*1)(v12 + vo2, V13 + Vo3, V23, - - -

+V02X(A/MO)(*1)(V12, Vi3, Vo3 + Vo3, - .- ) + V03X(A/M0)(*1)(V12, V13, V23, - - -

This is not a recursion for the number of spanning trees!

ko

The number of 2-trees in ,| is: 3% (ko + 4)2.

0
1
0
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A Recursion

which converges sometimes

Proposition

XA(*I)(VOI; Vo2, V035 V12, V13, V23, - - - ) = V01X(A/Mo)(*1)(v12 + Vo2, Vi3 + Vo3, Va3, . . )

+V02X(A/M0)(*1)(V127 Vi3, Vo3 + Vo3, - .- ) + V03X(A/M0)(*1)(V127 Vi3, V23, - - - )

This is not a recursion for the number of spanning trees!

ko

The number of 2-trees in ,,

k2
371-3(6010 — 403 4 2702 + 2405 + 21607 + 432),
with o1 = E?:O ki, o0 = Ei<j k,‘kj, o3 = Zi<j<lkikjkl'
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Summary and perspectives

@ k-trees are k-dim. generalizations of trees.
@ Such trees appear in the Feynman amplitudes of GFT.

@ Their enumeration would help to characterize the critical UV behaviour of
the model.

A lot remains to be done:
@ Complete enumeration,
o Counting k-trees in dimension D (via the Tutte-Krushkal polynomial?),
@ What about torsionful trees? Enumeration, characterization.

o After the melons, the cherry trees?
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The Bicoloured Branch

The number of 2-trees in | is: %((2 + V3K — (2= V3)kH1).

1
2

0
1
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