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Group Field Theory

Models of Tensor Field Theory are largely inspired by Group Field Theory (GFT).
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Models of Tensor Field Theory are largely inspired by Group Field Theory (GFT).
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(D = 3: 4 triangles make a tetrahedron)
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Group Field Theory

Models of Tensor Field Theory are largely inspired by Group Field Theory (GFT).
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o K — gluing of D+ 1 (D — 1)-simplices to form a D-simplex

(D = 3: 4 triangles make a tetrahedron)

Feynman graph — spin foam
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Group Field Theory

Models of Tensor Field Theory are largely inspired by Group Field Theory (GFT).
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o p— (D - 1)—simp|ex (D = 3: a solid triangle)
e g — (D — 2)-simplex (D = 3: an edge)
o C “glues” two (D — 1)-simplices (D = 3: 2 triangles)
o K — gluing of D+ 1 (D — 1)-simplices to form a D-simplex

(D = 3: 4 triangles make a tetrahedron)
@ Feynman graph — spin foam

@ Feynman graph amplitude = spin foam model
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Stranded graphs = gluing of simplices
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Stranded graphs = gluing of simplices
D=3
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Stranded graphs = gluing of simplices

XX

But not a D-complex!
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Roadmap

Geometrogenesis

@ Find a class of graphs encoding D-complexes.

@ Write a QFT whose Feynman graphs belong to the preceding class.

@ Prove that this model is renormalizable.
@ Prove that this model is asymptotically free.
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Roadmap

Geometrogenesis

@ Find a class of graphs encoding D-complexes.
@ Write a QFT whose Feynman graphs belong to the preceding class.
© Prove that this model is renormalizable.

AN NI R N

@ Prove that this model is asymptotically free.

@ Prove that this model undergoes one (or several) phase transition(s).
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@ Prove that this model undergoes one (or several) phase transition(s).

@ Prove that its low-energy phase corresponds to a differentiable manifold,
itself solution to the Einstein equations.
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@ Write a QFT whose Feynman graphs belong to the preceding class.
© Prove that this model is renormalizable.

@ Prove that this model is asymptotically free.

~ NSNS N

@ Prove that this model undergoes one (or several) phase transition(s).

@ Prove that its low-energy phase corresponds to a differentiable manifold,
itself solution to the Einstein equations. 777
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Roadmap

Geometrogenesis

@ Find a class of graphs encoding D-complexes.
@ Write a QFT whose Feynman graphs belong to the preceding class.
Prove that this model is renormalizable.

Prove that this model is asymptotically free.

~ NSNS N

Prove that this model undergoes one (or several) phase transition(s).

© 0 060

Prove that its low-energy phase corresponds to a differentiable manifold,
itself solution to the Einstein equations. 777

Redo everything in a constructive way.
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Prove that its low-energy phase corresponds to a differentiable manifold,
itself solution to the Einstein equations. 777
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Random Tensors

e Random Tensors
@ Coloured Graphs
@ The 1/N-expansion
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.
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Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

@ Every bipartite regular graph is colourable.
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

@ Every bipartite regular graph is colourable.

@ Every (D + 1)-coloured graph is dual to a D-dimensional triangulated space
(trisp or A-complex).
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Coloured Graphs

Definition

A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

@ Every bipartite regular graph is colourable.

@ Every (D + 1)-coloured graph is dual to a D-dimensional triangulated space
(trisp or A-complex).

@ Better, every such graph is dual to a normal pseude-manifold-[Gurau'10].
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Pseudo-manifolds

These are manifolds with singularities.

Singularity \

S Orientation

A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.
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Fabien Vignes-Tourneret (1CJ) Renormalizable TGFTs

9/19



Pseudo-manifolds

These are manifolds with singularities.

Singularity \
V]

Pk
c

A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

@ Every manifold is dual to a coloured graph [Pezzana '74].
@ In dimension 2, every normal pseudo-manifold is a manifold.
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A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

@ Every manifold is dual to a coloured graph [Pezzana '74].
@ In dimension 2, every normal pseudo-manifold is a manifold.

@ In dimension 3, there exists a simple criteria to decide whether a 4-coloured
graph encodes a manifold. In dimension 4, it's difficult! (cf. Poincaré,
Perelman, etc)

Fabien Vignes-Tourneret (1CJ) Renormalizable TGFTs 9/19



Pseudo-manifolds

These are manifolds with singularities.

Singularity \
\
!

g >

A pseudomanifold (the pinched torus)

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

@ Every manifold is dual to a coloured graph [Pezzana '74].

@ In dimension 2, every normal pseudo-manifold is a manifold.

@ In dimension 3, there exists a simple criteria to decide whether a 4-coloured
graph encodes a manifold. In dimension 4, it's difficult! (cf. Poincaré,
Perelman, etc)

@ GEMs: a combinatorial and algorithmic approach to the classification of
3-manifolds [Ferri, Gagliardi, Lins, etc '80].
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Notions of coloured graph theory

An internal face of a coloured graph G. is a bicoloured cycle.

Definition (Faces) J
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Notions of coloured graph theory

Definition (Faces)

An internal face of a coloured graph G. is a bicoloured cycle.

Definition (Jacket)

Let G. be a k-coloured graph. Let o = (ip, i1, - -.,ik—1) be a permutation on its k
colours. The jacket J, is the ribbon graph whose vertices are those of G., whose
edges are those of G. and whose faces are those given by o.
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Notions of coloured graph theory
Definition (Degree)

The degree of a coloured graph is the sum of the genera of all its jackets:

w(G) = Y g(d).

JCGe

The degree controls the 1/N-expansion of tensor models.
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Notions of coloured graph theory

Definition (Degree)

The degree of a coloured graph is the sum of the genera of all its jackets:

w(G) = Y g(J).

JCGe

The degree controls the 1/N-expansion of tensor models.

Definition (Boundary Graph)

The boundary graph 9G. of a k-coloured graph G, is the (k — 1)-coloured graph
whose vertices are the external edges of G., and whose edges are the external

faces of G..

XX~

Renormalizable TGFTs

Fablen Vlgnes Tourneret (1CJ) 11 /19



Notions of coloured graph theory

Definition (Degree)

The degree of a coloured graph is the sum of the genera of all its jackets:

w(G) = Y g(d).

JCGe

The degree controls the 1/N-expansion of tensor models.

Definition (Boundary Graph)

The boundary graph 9G. of a k-coloured graph G, is the (k — 1)-coloured graph
whose vertices are the external edges of G., and whose edges are the external

faces of G..

The boundary graph 0G. triangulates the boundary of G..
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The Universal iid Model

Forall i€ {0,...,D}, ¢ : [N]P:={1,...,N}° = C.

4 A\ D+1
Slo, 9] = Z Z ¢,,, ,,, ND(D——l)/ Z H n,j,nJ,H()b’ + cc.
i=0 n;e[N]P RE[N]DOD+) i#j=
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@ The ¢! 's are iid (with respect to the Gaussian measure).
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The Universal iid Model

Forall i€ {0,...,D}, ¢ : [N]P:={1,...,N}° = C.

D D+1

_ —i A
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i=0 n;e[N]P RE[N]P(D+1) i j=

@ The ¢! 's are iid (with respect to the Gaussian measure).

e Feynman graphs: edges bear D strands, bipartite, (D + 1)-regular, proper
edge-colouring
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The Universal iid Model

Forall i€ {0,...,D}, ¢ : [N]P:={1,...,N}° = C.
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@ The gi)f,i's are iid (with respect to the Gaussian measure).

@ Feynman graphs: edges bear D strands, bipartite, (D + 1)-regular, proper
edge-colouring =» in bijection with (D + 1)-coloured graphs.
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The Universal iid Model

1/N-expansion

) n(G)/2 NFO)

° Ag = (I\If’(é—gl)ﬂ
Theorem ([Gurau, Rivasseau'l1])

1 = 2, \n
ND log Z = Z N~ @-1 Z (AN)"9)/2/5;.
w=0 Gw(G)=w
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The Universal iid Model

1/N-expansion

) n(G)/2 NFO)

° Ag = (ND(?’\—EW
Theorem ([Gurau, Rivasseau'l1])

1 = 2, \n
ND log Z = Z N~ @-1 Z (AN)"9)/2/5;.
w=0 Gw(G)=w

e D=2 w(G)=g(9).
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1/N-expansion
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Theorem ([Gurau, Rivasseau'l1])

1 SN 2, T\n
o 08 Z = YonTeme N (X)92)sg,
w=0 Gw(G)=w

° D=2 w(9)=2g(9)
o If w(G) = 0 then G triangulates a sphere (in any dimension).

Fabien Vignes-Tourneret (1CJ) Renormalizable TGFTs 13 /19



The Universal iid Model

1/N-expansion

) n(G)/2 NFO)

° Ag = (ND(g\—a)/?
Theorem ([Gurau, Rivasseau'l1])

1 SN 2, T\n
o 08 Z = YonTeme N (X)92)sg,
w=0 Gw(G)=w

° D=2 w(9)=2g(9)
o If w(G) = 0 then G triangulates a sphere (in any dimension).

@ The degree w is not a topological invariant!
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The Universal iid Model

1/N-expansion

) n(G)/2 NFO)

° Ag = (ND(i’\—El)ﬂ
Theorem ([Gurau, Rivasseau'l1])

1 SN 2, T\n
o 08 Z = YonTeme N (X)92)sg,
w=0 Gw(G)=w

D=2, w(9) = g(9).
If w(G) = 0 then G triangulates a sphere (in any dimension).
The degree w is not a topological invariant!

One can enumerate the coloured graphs of any fixed degree
[Gurau, Schaeffer'13].
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Renormalizable Models

© Renormalizable Models
@ Uncoloring
@ A Renormalizable ¢¢
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Faded Effective Theories

Idea 1: integrate over D fields among D + 1 to get an effective “colourless”
theory.

Serl0®. 1= S (PN T T Trg(¢°,3),

=1 (D)
P Ber,,

where B is a D-bubble i.e. a D-coloured graph and Tr3(¢°,50) is an invariant
(under the action of U(N)®P) canonically associated to 3.
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P Ber,,

where B is a D-bubble i.e. a D-coloured graph and Tr3(¢°,50) is an invariant
(under the action of U(N)®P) canonically associated to B.

Connected Tensorial Invariants
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Faded Effective Theories

Idea 1: integrate over D fields among D + 1 to get an effective “colourless”
theory.

S0, 81 =3 3 ONPN T Trg(g°,5),

=1 (D)
P=Ber;,

where B is a D-bubble i.e. a D-coloured graph and Tr3(¢°,50) is an invariant
(under the action of U(N)®P) canonically associated to B.

Connected Tensorial Invariants

Idea 2: keep only the dominant traces and use a non trivial propagator.
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A Renormalizable ¢

¢:U(1)® = C, o(g1;---,8) = ¢(hg, .-, hgs), Yh € U(1),

S, o] = 2@554321 5(2 pi)(P* + m?) @123as6 + AV,
75 i
V= Z¢654321 L12/3/4/56/ ()_06/5/4/3/2/1/ ©1/23456 + permutations.
712

Unique connected melonic invariant of order 4

NS

/ AN
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BPHZ Theorem

The model defined by the action S, is renormalizable to all orders of perturbation.

Theorem (D. Ousmane Samary, F. V.-T.) J

One proves (using multi-scale analysis)

@ that the divergent graphs have a (uniformly) bounded number of external
legs,

@ that the dangerous graphs are “tracial”.
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BPHZ Theorem

Sketch of the proof

We have to identify the divergent graphs and characterize their topology.

@ The divergence degree is wy = —2L + F — R with R the rank of the
face/edge incidence matrix (4 optimized version). [BGKMR'10, BGR'11, COR'12]
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Sketch of the proof

We have to identify the divergent graphs and characterize their topology.

@ The divergence degree is wy = —2L + F — R with R the rank of the
face/edge incidence matrix (4 optimized version). [BGKMR'10, BGR'11, COR'12]

0 (F-R)G) =(F-R)G/T). [COR'13]
Q@ wyg=4—N+p, p<0and p=0iff G (G/T) is “fully melonic”
(recursive condition, not explicit). [COR'13]

=> G divergent iff (N =2, p=0,—-1,-2) or (N=4, p=0).
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BPHZ Theorem

Sketch of the proof

We have to identify the divergent graphs and characterize their topology.

@ The divergence degree is wg = —2L + F — R with R the rank of the
face/edge incidence matrix (+ optimized version). [BGKMR'10, BGR'11, COR'12]

Q (F-R)(G) = (F = R)Y/T). [COR'13]
Q@ wyg=4—N+p, p<0and p=0iff G (G/T) is “fully melonic”
(recursive condition, not explicit). [COR'13]
=> G divergent iff (N =2, p=0,—-1,-2) or (N =4, p=0).
@ Characterize the graphs such that p =0, -1, —2: [OSVT'12]

p=0iff 9(G) = w(9G) = (Cog — 1) = 0.
p=—1 (resp. —2) iff &(G) = w(9G) =0 and Cyg = 2 (resp. 3).
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BPHZ Theorem

Sketch of the proof

We have to identify the divergent graphs and characterize their topology.

@ The divergence degree is wg = —2L + F — R with R the rank of the
face/edge incidence matrix (+ optimized version). [BGKMR'10, BGR'11, COR'12]

Q (F-R)(G) = (F = R)Y/T). [COR'13]
Q@ wyg=4—N+p, p<0and p=0iff G (G/T) is “fully melonic”
(recursive condition, not explicit). [COR'13]
=> G divergent iff (N =2, p=0,—-1,-2) or (N =4, p=0).
@ Characterize the graphs such that p =0, -1, —2: [OSVT'12]

p=0iff &(G) = w(0G) = (Coyg — 1) = 0.
p=—1 (resp. —2) iff &(G) = w(9G) =0 and Cyg = 2 (resp. 3).

@ The divergent graphs are tracial (their divergent part is coded by their
boundary graph). [BGR'11, OSVT'12]
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Summary and perspectives

Many renormalizable models (but who's next?).

Most of them are asymptotically free [Ben Geloun, Ousmane Samary].
Find phase transitions. Coupling to matter.

Progress towards exact solutions [Grosse-Wulkenhaar, Ousmane Samary].
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Summary and perspectives

Many renormalizable models (but who's next?).

°
@ Most of them are asymptotically free [Ben Geloun, Ousmane Samary].
o Find phase transitions. Coupling to matter.

o

Progress towards exact solutions [Grosse-Wulkenhaar, Ousmane Samary].

@ Very rich combinatorics: tensor integrals, branched covers of S2?, meanders,
cellular trees. ..

Random manifolds in higher dimensions (a la Le Gall, Miermont et al.).
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