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Group Field Theory

Models of Tensor Field Theory are largely inspired by Group Field Theory (GFT).

SD[φ] = 1
2

∫
GD

( D∏
i=1

dgidg̃i
)
φ(g1, . . . , gD)C−1(gi g̃−1i )φ(g̃1, . . . , g̃D)

+ λ

(D + 1)!

∫
GD(D+1)

( D+1∏
i 6=j=1

gij
)
φ(g1j) · · ·φ(g(D+1)j)K (gijg−1ji ).

φ −→ (D − 1)-simplex (D = 3: a solid triangle)

gi −→ (D − 2)-simplex (D = 3: an edge)

C “glues” two (D − 1)-simplices (D = 3: 2 triangles)

K −→ gluing of D + 1 (D − 1)-simplices to form a D-simplex
(D = 3: 4 triangles make a tetrahedron)

Feynman graph −→ spin foam
Feynman graph amplitude = spin foam model
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Stranded graphs = gluing of simplices
D = 3

14

12

32

13

24

34

duality←−−−→
14

13

12

21 24 23

32

31

34

434241

Fabien Vignes-Tourneret (ICJ) Renormalizable TGFTs 5 / 19



Stranded graphs = gluing of simplices
D = 3

14

13

12

21

24

23

But not a D-complex!

Fabien Vignes-Tourneret (ICJ) Renormalizable TGFTs 5 / 19



Stranded graphs = gluing of simplices
D = 3

14

13

12

21

24

23

But not a D-complex!

Fabien Vignes-Tourneret (ICJ) Renormalizable TGFTs 5 / 19



Roadmap
Geometrogenesis

1 Find a class of graphs encoding D-complexes.

4

2 Write a QFT whose Feynman graphs belong to the preceding class.

4

3 Prove that this model is renormalizable.

4

4 Prove that this model is asymptotically free.

4

5 Prove that this model undergoes one (or several) phase transition(s).

?

6 Prove that its low-energy phase corresponds to a differentiable manifold,
itself solution to the Einstein equations.

???

7 Redo everything in a constructive way.

-

Fabien Vignes-Tourneret (ICJ) Renormalizable TGFTs 6 / 19
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Random Tensors

1 Motivations

2 Random Tensors
Coloured Graphs
The 1/N-expansion

3 Renormalizable Models
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Coloured Graphs

Definition
A k-coloured graph is a bipartite graph endowed with a proper edge-colouring
with k colours.

Every bipartite regular graph is colourable.
Every (D + 1)-coloured graph is dual to a D-dimensional triangulated space
(trisp or ∆-complex).
Better, every such graph is dual to a normal pseudo-manifold [Gurau’10].
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Pseudo-manifolds
These are manifolds with singularities.

LECTURE 1
Equivariant Homology and Intersection Homology

(Geometry of Pseudomanifolds)

1.1. Introduction

〈1.1〉 In this lecture, we will give a geometric way of defining equivariant homology
and equivariant intersection homology. The standard definitions of these homology
theories, as found in the literature, are good for proving properties, but are perhaps
not so intuitive. In this lecture, we will consider G X : an action of a general Lie
group G on a space X , although in the other lectures we are interested mainly in
the case that G is a torus T .

〈1.2〉 The definitions we present are based on the notion of a pseudomanifold. A
k-dimensional manifold is a space that looks locally like k-dimensional Euclidean
space near every point. A k-dimensional pseudomanifold P is allowed to have
singularities, i.e. points where it doesn’t locally look like Euclidean space. However,
it must satisfy two properties:

(1) The part of P where it is a k-manifold is open and dense in P and it must
be oriented.

(2) The set of singularities has dimension at most k − 2 (i.e. codimension at
least 2).

A pseudomanifold (the pinched torus)

327

A normal pseudo-manifold is such that the boundary of the neighbourhood of
each of its points is a pseudo-manifold.

Every manifold is dual to a coloured graph [Pezzana ’74].
In dimension 2, every normal pseudo-manifold is a manifold.
In dimension 3, there exists a simple criteria to decide whether a 4-coloured
graph encodes a manifold. In dimension 4, it’s difficult! (cf. Poincaré,
Perelman, etc)
GEMs: a combinatorial and algorithmic approach to the classification of
3-manifolds [Ferri, Gagliardi, Lins, etc ’80].
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Notions of coloured graph theory

Definition (Faces)
An internal face of a coloured graph Gc is a bicoloured cycle.

Definition (Jacket)
Let Gc be a k-coloured graph. Let σ = (i0, i1, . . . , ik−1) be a permutation on its k
colours. The jacket Jσ is the ribbon graph whose vertices are those of Gc , whose
edges are those of Gc and whose faces are those given by σ.
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Notions of coloured graph theory
Definition (Degree)
The degree of a coloured graph is the sum of the genera of all its jackets:

ω(Gc) :=
∑

J⊂Gc

g(J).

The degree controls the 1/N-expansion of tensor models.

Definition (Boundary Graph)
The boundary graph ∂Gc of a k-coloured graph Gc is the (k − 1)-coloured graph
whose vertices are the external edges of Gc , and whose edges are the external
faces of Gc .

The boundary graph ∂Gc triangulates the boundary of Gc .
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The Universal iid Model

For all i ∈ {0, . . . ,D}, φi : [N]D := {1, . . . ,N}D → C.

S[φ, φ] =
D∑

i=0

∑
ni∈[N]D

φ
i
ni
φi

ni
+ λ

ND(D−1)/4

∑
~n∈[N]D(D+1)

D+1∏
i 6=j=0

δnij ,nji

D∏
i=0

φi
ni

+ c.c.

The φi
ni
’s are iid (with respect to the Gaussian measure).

Feynman graphs: edges bear D strands, bipartite, (D + 1)-regular, proper
edge-colouring

Ù in bijection with (D + 1)-coloured graphs.

AG =
(

λλ
ND(D−1)/2

)n(G)/2
NF (G).
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The Universal iid Model
1/N-expansion

AG =
(

λλ
ND(D−1)/2

)n(G)/2
NF (G)

Theorem ([Gurau, Rivasseau’11])
1
ND logZ =

∞∑
ω=0

N−
2

(D−1)!ω
∑

G:ω(G)=ω

(λλ)n(G)/2/SG .

D = 2, ω(G) = g(G).
If ω(G) = 0 then G triangulates a sphere (in any dimension).
The degree ω is not a topological invariant!
One can enumerate the coloured graphs of any fixed degree
[Gurau, Schaeffer’13].
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Renormalizable Models

1 Motivations

2 Random Tensors

3 Renormalizable Models
Uncoloring
A Renormalizable φ46
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Faded Effective Theories

Idea 1: integrate over D fields among D + 1 to get an effective “colourless”
theory.

Seff[φ0, φ0] =
∞∑

p=1

∑
B∈Γ(D)

2p

(λλ)pN−
2

(D−2)!ω(B) TrB(φ0, φ0),

where B is a D-bubble i.e. a D-coloured graph and TrB(φ0, φ0) is an invariant
(under the action of U(N)⊗D) canonically associated to B.

Connected Tensorial Invariants
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Idea 2: keep only the dominant traces and use a non trivial propagator.
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A Renormalizable φ4
6

ϕ : U(1)6 → C, ϕ(g1, . . . , g6) = ϕ(hg1, . . . , hg6), ∀h ∈ U(1).

S4[ϕ,ϕ] =
∑
Z6

ϕ654321 δ(
∑

i
pi )(p2 + m2)ϕ123456 + λV ,

V =
∑
Z12

ϕ654321 ϕ12′3′4′5′6′ ϕ6′5′4′3′2′1′ ϕ1′23456 + permutations.

Unique connected melonic invariant of order 4
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BPHZ Theorem

Theorem (D. Ousmane Samary, F. V.-T.)
The model defined by the action S4 is renormalizable to all orders of perturbation.

One proves (using multi-scale analysis)
1 that the divergent graphs have a (uniformly) bounded number of external

legs,
2 that the dangerous graphs are “tracial”.
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BPHZ Theorem
Sketch of the proof

We have to identify the divergent graphs and characterize their topology.

1 The divergence degree is ωd = −2L + F − R with R the rank of the
face/edge incidence matrix (+ optimized version). [BGKMR’10, BGR’11, COR’12]

2 (F − R)(G) = (F − R)(G/T ). [COR’13]

3 ωd = 4− N + ρ, ρ 6 0 and ρ = 0 iff G (G/T ) is “fully melonic”
(recursive condition, not explicit). [COR’13]

Ù G divergent iff (N = 2, ρ = 0,−1,−2) or (N = 4, ρ = 0).

4 Characterize the graphs such that ρ = 0,−1,−2: [OSVT’12]
ρ = 0 iff ω̃(G) = ω(∂G) = (C∂G − 1) = 0.
ρ = −1 (resp. −2) iff ω̃(G) = ω(∂G) = 0 and C∂G = 2 (resp. 3).

5 The divergent graphs are tracial (their divergent part is coded by their
boundary graph). [BGR’11, OSVT’12]
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Summary and perspectives

Many renormalizable models (but who’s next?).
Most of them are asymptotically free [Ben Geloun, Ousmane Samary].
Find phase transitions. Coupling to matter.
Progress towards exact solutions [Grosse-Wulkenhaar, Ousmane Samary].

Very rich combinatorics: tensor integrals, branched covers of S2, meanders,
cellular trees. . .
Random manifolds in higher dimensions (à la Le Gall, Miermont et al.).
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