Quasi-Frobenius pairs in model theory

Adrien Deloro

Sorbonne Université

15 November 2022

In this talk

1 Model theory: dimension(s)

Dimensions on definable sets Finite Morley rank o-minimality

2 Group theory: quasi-Frobenius pairs

Some geometric algebra The definition Examples

Interaction: dimensional quasi-Frobenius pairs Results Questions

• Interactions between the two go back to Maltsev 1940.

- Interactions between the two go back to Maltsev 1940.
- Interactions were completely renewed by the Novosibirsk school (Zilber, Belegradek, Borovik).

- Interactions between the two go back to Maltsev 1940.
- Interactions were completely renewed by the Novosibirsk school (Zilber, Belegradek, Borovik).
- They also show French-Kazakh interactions (Mustafin-Poizat).

- Interactions between the two go back to Maltsev 1940.
- Interactions were completely renewed by the Novosibirsk school (Zilber, Belegradek, Borovik).
- They also show French-Kazakh interactions (Mustafin-Poizat).

Let's go!

In this section

1 Model theory: dimension(s)

Dimensions on definable sets Finite Morley rank o-minimality

Oroup theory: quasi-Frobenius pairs

Some geometric algebra The definition Examples

Interaction: dimensional quasi-Frobenius pairs Results Ouestions

Throughout, $G = (G; \mathcal{L})$ is a relational structure expanding a group $(G; \cdot)$.

Throughout, $G = (G; \mathcal{L})$ is a relational structure expanding a group $(G; \cdot)$.

Definition

• A *definable* set is a subset of G^n given by some elementary formula (parameters allowed).

Throughout, $G = (G; \mathcal{L})$ is a relational structure expanding a group $(G; \cdot)$.

Definition

- A *definable* set is a subset of G^n given by some elementary formula (parameters allowed).
- An *interpretable* set is an 'imaginary' quotient *X*/*R* of a definable set *X* by a definable equivalence relation *R*.

Throughout, $G = (G; \mathcal{L})$ is a relational structure expanding a group $(G; \cdot)$.

Definition

- A *definable* set is a subset of G^n given by some elementary formula (parameters allowed).
- An *interpretable* set is an 'imaginary' quotient *X*/*R* of a definable set *X* by a definable equivalence relation *R*.

Interpretable sets are legitimate:

- Typically, the quotient set G/H whenever $H \leq G$ definable subgroup.
- Do not ask about so-called 'elimination of imaginaries'.

Throughout, $G = (G; \mathcal{L})$ is a relational structure expanding a group $(G; \cdot)$.

Definition

- A *definable* set is a subset of G^n given by some elementary formula (parameters allowed).
- An *interpretable* set is an 'imaginary' quotient X/R of a definable set X by a definable equivalence relation R.

Interpretable sets are legitimate:

- Typically, the quotient set G/H whenever $H \leq G$ definable subgroup.
- Do not ask about so-called 'elimination of imaginaries'.

→ For simplicity I say *definable* also for interpretable sets. So I write Def(G) for the class of all *interpretable* sets with parameters. (I should be writing $Def(G^{eq})$.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

< 1 k

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

- *G* is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:
 - dim $X = -\infty$ iff $X = \emptyset$;

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

G is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:

- dim $X = -\infty$ iff $X = \emptyset$;
- dim X = 0 iff X is finite non-empty;

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

G is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:

- dim $X = -\infty$ iff $X = \emptyset$;
- dim X = 0 iff X is finite non-empty;
- $\dim(X \cup Y) = \max(\dim X, \dim Y);$

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

G is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:

- dim $X = -\infty$ iff $X = \emptyset$;
- dim X = 0 iff X is finite non-empty;
- $\dim(X \cup Y) = \max(\dim X, \dim Y);$
- if $f: X \to Y$ is definable (=its graph is), then for each k the set $\{y \in Y : \dim f^{-1}(y) = k\}$ is definable;

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

- *G* is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:
 - dim $X = -\infty$ iff $X = \emptyset$;
 - dim X = 0 iff X is finite non-empty;
 - $\dim(X \cup Y) = \max(\dim X, \dim Y);$
 - if $f: X \to Y$ is definable (=its graph is), then for each k the set $\{y \in Y : \dim f^{-1}(y) = k\}$ is definable;
 - if f: X → Y is definable and (∀y ∈ Y)(dim f⁻¹(y) = k), then dim X = k + dim Y.

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

G is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:

- dim $X = -\infty$ iff $X = \emptyset$;
- dim X = 0 iff X is finite non-empty;
- $\dim(X \cup Y) = \max(\dim X, \dim Y);$
- if $f: X \to Y$ is definable (=its graph is), then for each k the set $\{y \in Y : \dim f^{-1}(y) = k\}$ is definable;
- if f: X → Y is definable and (∀y ∈ Y)(dim f⁻¹(y) = k), then dim X = k + dim Y.

Surprisingly, first attempts at defining dimensions are recent: van den Dries 1989. Comprehensive treatment in Wagner 2020.

・ロト ・ 同ト ・ ヨト ・ ヨト

(Recall that $Def(G) = \{interpretable sets\}, viz. quotients are allowed.)$

Definition

G is *dimensional* if there is a function dim: $Def(G) \rightarrow \mathbb{N} \cup \{-\infty\}$ with:

- dim $X = -\infty$ iff $X = \emptyset$;
- dim X = 0 iff X is finite non-empty;
- $\dim(X \cup Y) = \max(\dim X, \dim Y);$
- if $f: X \to Y$ is definable (=its graph is), then for each k the set $\{y \in Y : \dim f^{-1}(y) = k\}$ is definable;
- if f: X → Y is definable and (∀y ∈ Y)(dim f⁻¹(y) = k), then dim X = k + dim Y.

Surprisingly, first attempts at defining dimensions are recent: van den Dries 1989. Comprehensive treatment in Wagner 2020.

Dimensions abound in model theory!

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

• it turns out to describe algebraic geometry+;

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

- it turns out to describe algebraic geometry+;
- for G, it is better thought of as follows.

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

- it turns out to describe algebraic geometry+;
- for G, it is better thought of as follows.

Definition

G has finite Morley rank (fMR) if there is a dimension function with:

 dim X ≥ n + 1 iff ∃ infinitely many disjoint definable Y_i ⊆ X with dim Y_i ≥ n.

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

- it turns out to describe algebraic geometry+;
- for G, it is better thought of as follows.

Definition

G has finite Morley rank (fMR) if there is a dimension function with:

- dim X ≥ n + 1 iff ∃ infinitely many disjoint definable Y_i ⊆ X with dim Y_i ≥ n.
- This is *not* the original definition of 'finite Morley rank' but Poizat proved it is an equivalent characterisation, for groups.

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

- it turns out to describe algebraic geometry+;
- for G, it is better thought of as follows.

Definition

G has finite Morley rank (fMR) if there is a dimension function with:

- dim X ≥ n + 1 iff ∃ infinitely many disjoint definable Y_i ⊆ X with dim Y_i ≥ n.
- This is *not* the original definition of 'finite Morley rank' but Poizat proved it is an equivalent characterisation, for groups.
- Dimension is then unique.

Morley rank is a model-theoretic invariant which arose in the study of \aleph_1 -categorical theories. *However*:

- it turns out to describe algebraic geometry+;
- for G, it is better thought of as follows.

Definition

G has finite Morley rank (fMR) if there is a dimension function with:

- dim X ≥ n + 1 iff ∃ infinitely many disjoint definable Y_i ⊆ X with dim Y_i ≥ n.
- This is *not* the original definition of 'finite Morley rank' but Poizat proved it is an equivalent characterisation, for groups.
- Dimension is then unique.
- fMR \implies dimensional, but much stronger.

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}).

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}). Then G has fMR and dim is the usual 'Zariski dimension' from algebraic

geometry. (E.g. dim $GL_2(\mathbb{K}) = 4$, dim $SL_2(\mathbb{K}) = 4 - 1 = 3$, etc.)

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}).

 $\begin{array}{ll} \mbox{Then G has fMR and dim is the usual 'Zariski dimension' from algebraic} \\ \mbox{geometry.} & (E.g. \mbox{ dim}\, GL_2(\mathbb{K}) = 4, \mbox{ dim}\, SL_2(\mathbb{K}) = 4 - 1 = 3, \mbox{ etc.}) \end{array}$

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of \mathbb{K} -points.

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}).

 $\begin{array}{ll} \mbox{Then G has fMR and dim is the usual 'Zariski dimension' from algebraic} \\ \mbox{geometry.} & (E.g. \mbox{ dim}\, GL_2(\mathbb{K}) = 4, \mbox{ dim}\, SL_2(\mathbb{K}) = 4 - 1 = 3, \mbox{ etc.}) \end{array}$

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of \mathbb{K} -points.

• Known only in special cases.

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}).

 $\begin{array}{ll} \mbox{Then G has fMR and dim is the usual 'Zariski dimension' from algebraic} \\ \mbox{geometry.} & (E.g. \mbox{ dim}\, GL_2(\mathbb{K}) = 4, \mbox{ dim}\, SL_2(\mathbb{K}) = 4 - 1 = 3, \mbox{ etc.}) \end{array}$

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of \mathbb{K} -points.

- Known only in special cases.
- Open and very challenging in general.

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}).

 $\begin{array}{ll} \mbox{Then G has fMR and dim is the usual 'Zariski dimension' from algebraic} \\ \mbox{geometry.} & (E.g. \mbox{ dim}\, GL_2(\mathbb{K}) = 4, \mbox{ dim}\, SL_2(\mathbb{K}) = 4 - 1 = 3, \mbox{ etc.}) \end{array}$

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of \mathbb{K} -points.

- Known only in special cases.
- Open and very challenging in general.
- Arguably, this is more group theory than model theory...

Example

Let \mathbb{K} be an algebraically closed field and G be a group of \mathbb{K} -points (say, a matrix group with entries in \mathbb{K}).

 $\begin{array}{ll} \mbox{Then G has fMR and dim is the usual 'Zariski dimension' from algebraic} \\ \mbox{geometry.} & (E.g. \mbox{ dim}\, GL_2(\mathbb{K}) = 4, \mbox{ dim}\, SL_2(\mathbb{K}) = 4 - 1 = 3, \mbox{ etc.}) \end{array}$

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of \mathbb{K} -points.

- Known only in special cases.
- Open and very challenging in general.
- Arguably, this is more group theory than model theory...

We move to another context.

o-minimal theories

o-minimality was introduced to describe tame real geometry. However it turns out to be deeply model-theoretic.

o-minimal theories

o-minimality was introduced to describe tame real geometry. However it turns out to be deeply model-theoretic.

Definition

A structure (M; <, ...) is *o-minimal* if definable subsets of M^1 are finite unions of points and intervals.

o-minimality was introduced to describe tame real geometry. However it turns out to be deeply model-theoretic.

Definition

A structure (M; <, ...) is *o-minimal* if definable subsets of M^1 are finite unions of points and intervals.

• Yields *enormous* information on definable subsets of \mathbb{M}^k ('cell decomposition').

o-minimality was introduced to describe tame real geometry. However it turns out to be deeply model-theoretic.

Definition

A structure (M; <, ...) is *o-minimal* if definable subsets of M^1 are finite unions of points and intervals.

- Yields *enormous* information on definable subsets of \mathbb{M}^k ('cell decomposition').
- Actually a property of the theory of $\mathbb{M}!$

o-minimality was introduced to describe tame real geometry. However it turns out to be deeply model-theoretic.

Definition

A structure (M; <, ...) is *o-minimal* if definable subsets of M^1 are finite unions of points and intervals.

- Yields *enormous* information on definable subsets of \mathbb{M}^k ('cell decomposition').
- Actually a property of the theory of $\mathbb{M}!$
- Note: no direct information on *interpretable* sets, but in group structures there is 'elimination of imaginaries'.

o-minimality was introduced to describe tame real geometry. However it turns out to be deeply model-theoretic.

Definition

A structure (M; <, ...) is *o-minimal* if definable subsets of M^1 are finite unions of points and intervals.

- Yields *enormous* information on definable subsets of \mathbb{M}^k ('cell decomposition').
- Actually a property of the theory of $\mathbb{M}!$
- Note: no direct information on *interpretable* sets, but in group structures there is 'elimination of imaginaries'.
- As a result:

G def. in an *o*-minimal theory \implies G dimensional, but much stronger.

(I) < (II) <

Recall:

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of \mathbb{K} -points.

Recall:

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of $\mathbb{K}\text{-points}.$

Theorem (Peterzil-Pillay-Starchenko)

A simple, infinite group definable in an o-minimal structure is a Lie group over some real closed field.

Recall:

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of $\mathbb{K}\text{-points}.$

Theorem (Peterzil-Pillay-Starchenko)

A simple, infinite group definable in an o-minimal structure is a Lie group over some real closed field.

Proof sketch.

o-minimality allows for introduction of infinitesimals.

Recall:

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of $\mathbb{K}\text{-points}.$

Theorem (Peterzil-Pillay-Starchenko)

A simple, infinite group definable in an o-minimal structure is a Lie group over some real closed field.

Proof sketch.

o-minimality allows for introduction of infinitesimals. Then introduce tangent space and find a Lie algebra over a real closed field.

Recall:

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of $\mathbb{K}\text{-points}.$

Theorem (Peterzil-Pillay-Starchenko)

A simple, infinite group definable in an o-minimal structure is a Lie group over some real closed field.

Proof sketch.

o-minimality allows for introduction of infinitesimals. Then introduce tangent space and find a Lie algebra over a real closed field. Finish using Lie theory.

Recall:

Conjecture (Cherlin-Zilber)

A simple, infinite, fMR group is a group of $\mathbb{K}\text{-points}.$

Theorem (Peterzil-Pillay-Starchenko)

A simple, infinite group definable in an o-minimal structure is a Lie group over some real closed field.

Proof sketch.

o-minimality allows for introduction of infinitesimals. Then introduce tangent space and find a Lie algebra over a real closed field. Finish using Lie theory.

Nothing similar for groups of finite Morley rank!

• There is a general notion of a *dimensional group*.

- There is a general notion of a *dimensional group*.
- Two common examples are groups of finite Morley rank and groups definable in o-minimal structures.

- There is a general notion of a *dimensional group*.
- Two common examples are groups of finite Morley rank and groups definable in o-minimal structures.
- Natural dimensional groups seem to come from matrix groups.

- There is a general notion of a *dimensional group*.
- Two common examples are groups of finite Morley rank and groups definable in o-minimal structures.
- Natural dimensional groups seem to come from matrix groups.

Time for groups!

In this section

Model theory: dimension(s)

Dimensions on definable sets Finite Morley rank p-minimality

2 Group theory: quasi-Frobenius pairs

Some geometric algebra The definition Examples

Interaction: dimensional quasi-Frobenius pairs Results Questions

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

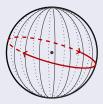
Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

Proof.

• Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions).

Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].

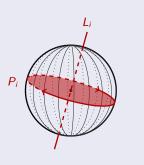


 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.

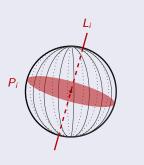


 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: *ij* = *ji* iff



 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)

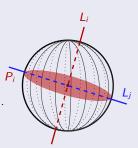


 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i \varepsilon j$: $([i,j] = 1) \land (i \neq j)$.

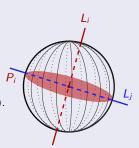


 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i \varepsilon j$: $([i, j] = 1) \land (i \neq j)$. Thus $i \varepsilon j$ iff $L_i \le P_j$.



 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i\varepsilon j$: $([i,j] = 1) \land (i \neq j)$. Thus $i\varepsilon j$ iff $L_i \le P_j$.

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot)$. (I use \models for 'defines/interprets'.)

Proof.

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i \varepsilon j$: $([i, j] = 1) \land (i \neq j)$. Thus $i \varepsilon j$ iff $L_i \le P_j$.

• ... and $(\mathsf{SO}_3(\mathbb{R}); \cdot)$

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i \varepsilon j$: $([i, j] = 1) \land (i \neq j)$. Thus $i \varepsilon j$ iff $L_i \le P_j$.

• ... and
$$(SO_3(\mathbb{R}); \cdot) \models (I, \varepsilon)$$

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

Proof.

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i \varepsilon j$: $([i, j] = 1) \land (i \neq j)$. Thus $i \varepsilon j$ iff $L_i \le P_j$.

• ... and $(\mathsf{SO}_3(\mathbb{R}); \cdot) \models (I, \varepsilon) \simeq (\mathbb{P}^2(\mathbb{R}), \epsilon)$

 $SO_3(\mathbb{R})$ (actually, $SO(\mathbb{R}^3)$) is the group of direct isometries/rotations of Euclidean \mathbb{R}^3 .

Theorem (folklore)

 $(SO_3(\mathbb{R}); \cdot) \models (\mathbb{R}; +, \cdot).$ (I use \models for 'defines/interprets'.)

Proof.

- Let $I = \{g \in SO_3(\mathbb{R}) : g^2 = 1 \neq g\}$ (Involutions). Here involution = half-turn of \mathbb{R}^3 [order 2 \Leftrightarrow angle π].
- Each *i* is given by its axis L_i /dually, plane $P_i = L_i^{\perp}$.
- Notice: ij = ji iff $(L_i = L_j \text{ or } L_i \perp L_j)$. (obvious in matrix form!)
- Consider (definable) relation $i\varepsilon j$: $([i,j] = 1) \land (i \neq j)$. Thus $i\varepsilon j$ iff $L_i \le P_j$.

• ... and $(SO_3(\mathbb{R}); \cdot) \models (I, \varepsilon) \simeq (\mathbb{P}^2(\mathbb{R}), \epsilon) \models (\mathbb{R}; +, \cdot)$ (Hilbert-Desargues).

• Let
$$i = \begin{pmatrix} -1 & \\ & -1 & \\ & & 1 \end{pmatrix}$$
 (half-turn of horizontal plane).

• Let
$$i = \begin{pmatrix} -1 \\ & -1 \\ & 1 \end{pmatrix}$$
 (half-turn of horizontal plane).
• Let $C := C_G^{\circ}(i) = \left\{ \begin{pmatrix} a & -b \\ b & a \\ & 1 \end{pmatrix} \right\} \simeq SO_2(\mathbb{R})$ (rotations with same axis)
(Yes, there is a notion of a connected component.)

• Let
$$i = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$
 (half-turn of horizontal plane).
• Let $C := C_G^{\circ}(i) = \left\{ \begin{pmatrix} a & -b \\ b & a \\ 1 \end{pmatrix} \right\} \simeq SO_2(\mathbb{R})$ (rotations with same axis)
(Yes, there is a notion of a connected component.)
• Moreover let $w = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, an involution commuting with *i*.

• Let
$$i = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$
 (half-turn of horizontal plane).
• Let $C := C_G^{\circ}(i) = \left\{ \begin{pmatrix} a & -b \\ b & a \\ 1 \end{pmatrix} \right\} \simeq SO_2(\mathbb{R})$ (rotations with same axis)
(Yes, there is a notion of a connected component.)
• Moreover let $w = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, an involution commuting with *i*.
• Then $N_G(C) = C_G(i) = C \times \langle w \rangle$ and *w* inverts the abelian group *C*.

Axiomatising the configuration

Definition

A subgroup C < G is TI ('trivial intersections') if:

$$(\forall g \in G) \quad (C^g \cap C = 1) \lor (C^g = C).$$

Axiomatising the configuration

Definition

A subgroup C < G is TI ('trivial intersections') if:

$$(\forall g \in G) \quad (C^g \cap C = 1) \lor (C^g = C).$$

In $G = SO_3(\mathbb{R})$,

• $C \coloneqq C_G^{\circ}(i)$ is TI;

(every rotation has at most one axis)

Axiomatising the configuration

Definition

```
A subgroup C < G is TI ('trivial intersections') if:
```

$$(\forall g \in G) \quad (C^g \cap C = 1) \lor (C^g = C).$$

In $G = SO_3(\mathbb{R})$,

• $C \coloneqq C_G^{\circ}(i)$ is TI;

(every rotation has at most one axis)

 C is quasi-self-normalising, actually [N_G(C) : C] = 2; (because of w)

Axiomatising the configuration

Definition

```
A subgroup C < G is TI ('trivial intersections') if:
```

$$(\forall g \in G) \quad (C^g \cap C = 1) \lor (C^g = C).$$

In $G = SO_3(\mathbb{R})$,

• $C \coloneqq C_G^{\circ}(i)$ is TI;

(every rotation has at most one axis)

- C is quasi-self-normalising, actually [N_G(C) : C] = 2; (because of w)
- C tiles G exactly, viz. $G = \bigsqcup_{g \in G/N_G(C)} C^g$. (every rotation has a unique axis)

Axiomatising the configuration

Definition

```
A subgroup C < G is TI ('trivial intersections') if:
```

$$(\forall g \in G) \quad (C^g \cap C = 1) \lor (C^g = C).$$

In $G = SO_3(\mathbb{R})$,

• $C \coloneqq C_G^{\circ}(i)$ is TI;

(every rotation has at most one axis)

- C is quasi-self-normalising, actually [N_G(C) : C] = 2; (because of w)
- C tiles G exactly, viz. $G = \bigsqcup_{g \in G/N_G(C)} C^g$. (every rotation has a unique axis)

This is a remarkable configuration.

Definition

A quasi-Frobenius pair is a pair of groups C < G such that:

Definition

A quasi-Frobenius pair is a pair of groups C < G such that:

1 *C* is *quasi*-self-normalising in *G*, viz. $[N_G(C): C] < \infty$;

Definition

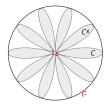
A quasi-Frobenius pair is a pair of groups C < G such that:

- **1** C is quasi-self-normalising in G, viz. $[N_G(C):C] < \infty$;
- 2 C has trivial intersections with conjugates ('TI'), viz. (∀g ∈ G) (C^g = C) ∨ (C^g ∩ C = {1}).

Definition

A quasi-Frobenius pair is a pair of groups C < G such that:

- **1** C is quasi-self-normalising in G, viz. $[N_G(C):C] < \infty$;
- ② C has trivial intersections with conjugates ('TI'), viz. $(\forall g \in G)$ $(C^g = C) \lor (C^g \cap C = \{1\}).$
 - Right: how to picture a TI subgroup (petals of a flower).



Definition

A quasi-Frobenius pair is a pair of groups C < G such that:

1 *C* is *quasi*-self-normalising in *G*, viz. $[N_G(C): C] < \infty$;

② C has trivial intersections with conjugates ('TI'), viz. ($\forall g \in G$) (C^g = C) ∨ (C^g ∩ C = {1}).

- Right: how to picture a TI subgroup (petals of a flower).
- Introduced by D.-Wiscons, but named by Zamour, a student of Wagner's.



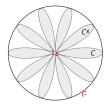
Definition

A quasi-Frobenius pair is a pair of groups C < G such that:

1 C is quasi-self-normalising in G, viz. $[N_G(C):C] < \infty$;

② C has trivial intersections with conjugates ('TI'), viz. $(\forall g \in G)$ $(C^g = C) \lor (C^g \cap C = \{1\}).$

- Right: how to picture a TI subgroup (petals of a flower).
- Introduced by D.-Wiscons, but named by Zamour, a student of Wagner's.
- Note: one often writes $C \cap C^g = 1$ instead of $C \cap C^g = \{1\}$.



∃ ► < ∃ ►</p>

Example

 $(\mathbb{K}^{\times} < \mathsf{GA}_1(\mathbb{K}))$ is a quasi-Frobenius pair.

Example

 $(\mathbb{K}^{\times} < \mathsf{GA}_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

Example

 $(\mathbb{K}^{\times} < \mathsf{GA}_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

• Let
$$G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ & t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$$

= affine transformations of affine line $L = \mathbb{K}^1$, acting by $x \mapsto tx + a$.

Example

 $(\mathbb{K}^{\times} < GA_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

• Let $G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$ = affine transformations of affine line $L = \mathbb{K}^1$, acting by $x \mapsto tx + a$. • Let $C = \left\{ \begin{pmatrix} 1 & 0 \\ t \end{pmatrix} : t \in \mathbb{K}^{\times} \right\} \simeq \mathbb{K}^{\times}$. Then C is the subgroup of maps $x \mapsto tx$, viz. those fixing $0 \in L$.

Example

 $(\mathbb{K}^{\times} < GA_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

- Let $G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ & t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$
- = affine transformations of affine line $L = \mathbb{K}^{1}$, acting by $x \mapsto tx + a$. • Let $C = \left\{ \begin{pmatrix} 1 & 0 \\ t \end{pmatrix} : t \in \mathbb{K}^{\times} \right\} \simeq \mathbb{K}^{\times}$. Then C is the subgroup of maps $x \mapsto tx$, viz. those fixing $0 \in L$.
- Likewise C^g fixes $g \cdot 0$.

Example

 $(\mathbb{K}^{\times} < GA_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

- Let $G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ & t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$
- = affine transformations of affine line $L = \mathbb{K}^{1}$, acting by $x \mapsto tx + a$. • Let $C = \left\{ \begin{pmatrix} 1 & 0 \\ t \end{pmatrix} : t \in \mathbb{K}^{\times} \right\} \simeq \mathbb{K}^{\times}$. Then C is the subgroup of maps $x \mapsto tx$, viz. those fixing $0 \in L$.
- Likewise C^g fixes $g \cdot 0$. No affine map fixes *two* distinct points...

Example

 $(\mathbb{K}^{\times} < \mathsf{GA}_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

• Let $G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ & t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$

= affine transformations of affine line $L = \mathbb{K}^{1}$, acting by $x \mapsto tx + a$. • Let $C = \left\{ \begin{pmatrix} 1 & 0 \\ & t \end{pmatrix} : t \in \mathbb{K}^{\times} \right\} \simeq \mathbb{K}^{\times}$.

Then C is the subgroup of maps $x \mapsto tx$, viz. those fixing $0 \in L$.

- Likewise C^g fixes $g \cdot 0$. No affine map fixes *two* distinct points...
- so C is TI in G. Normaliser easily seen = C.

Example

 $(\mathbb{K}^{\times} < GA_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

• Let $G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ & t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$

= affine transformations of affine line $L = \mathbb{K}^{1}$, acting by $x \mapsto tx + a$.

• Let
$$C = \left\{ \begin{pmatrix} 1 & 0 \\ t \end{pmatrix} : t \in \mathbb{K}^{\times} \right\} \simeq \mathbb{K}^{\times}$$
.
Then *C* is the subgroup of maps $x \mapsto tx$, viz. those fixing $0 \in L$.

- Likewise C^g fixes $g \cdot 0$. No affine map fixes *two* distinct points...
- so C is TI in G. Normaliser easily seen = C.

Two remarks:

1 here (C < G) is a actually *Frobenius* pair, viz. $N_G(C) = C$;

Example

 $(\mathbb{K}^{\times} < GA_1(\mathbb{K}))$ is a quasi-Frobenius pair.

More details (here \mathbb{K} is any field):

• Let $G = GA_1(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & a \\ & t \end{pmatrix} : (a, t) \in \mathbb{K} \times \mathbb{K}^{\times} \right\} \simeq \mathbb{K}_+ \rtimes \mathbb{K}^{\times}$

= affine transformations of affine line $L = \mathbb{K}^{1}$, acting by $x \mapsto tx + a$.

• Let
$$C = \left\{ \begin{pmatrix} 1 & 0 \\ t \end{pmatrix} : t \in \mathbb{K}^{\times} \right\} \simeq \mathbb{K}^{\times}$$
.
Then *C* is the subgroup of maps $x \mapsto tx$, viz. those fixing $0 \in L$.

- Likewise C^g fixes $g \cdot 0$. No affine map fixes *two* distinct points...
- so C is TI in G. Normaliser easily seen = C.

Two remarks:

- 1 here (C < G) is a actually *Frobenius* pair, viz. $N_G(C) = C$;
- **2** *G* is soluble. (\leftarrow so I'm not especially interested.)

Examples

Main example 2: rotations of \mathbb{R}^3

Example

 $(SO_2(\mathbb{R}) < SO_3(\mathbb{R}))$ is a quasi-Frobenius pair.

э

Examples

Main example 2: rotations of \mathbb{R}^3

Example

 $(SO_2(\mathbb{R}) < SO_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

э

Example

 $(SO_2(\mathbb{R}) < SO_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

• $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .

Example

 $(\mathsf{SO}_2(\mathbb{R}) < \mathsf{SO}_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

- $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .
- C = {those rotations with axis $\langle e_1 \rangle$ } = {those with plane $\langle e_2, e_3 \rangle$ }.

Example

 $(\mathsf{SO}_2(\mathbb{R}) < \mathsf{SO}_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

- $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .
- C = {those rotations with axis $\langle e_1 \rangle$ } = {those with plane $\langle e_2, e_3 \rangle$ }.
- If $g \in G$ does *not* normalise *C*, then $g \cdot e_1 \neq e_1$, and $C^g = \{$ those rotations with axis $\langle g \cdot e_1 \rangle \}$, so $C \cap C^g = 1$.

Example

 $(\mathsf{SO}_2(\mathbb{R}) < \mathsf{SO}_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

- $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .
- C = {those rotations with axis $\langle e_1 \rangle$ } = {those with plane $\langle e_2, e_3 \rangle$ }.
- If $g \in G$ does *not* normalise *C*, then $g \cdot e_1 \neq e_1$, and $C^g = \{$ those rotations with axis $\langle g \cdot e_1 \rangle \}$, so $C \cap C^g = 1$.
- Now if $g \in G$ does normalise C, then g stabilises $\langle e_1 \rangle$ and also $e_1^{\perp} = \langle e_2, e_3 \rangle \dots$

Example

 $(SO_2(\mathbb{R}) < SO_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

- $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .
- C = {those rotations with axis $\langle e_1 \rangle$ } = {those with *plane* $\langle e_2, e_3 \rangle$ }.
- If $g \in G$ does *not* normalise *C*, then $g \cdot e_1 \neq e_1$, and $C^g = \{$ those rotations with axis $\langle g \cdot e_1 \rangle \}$, so $C \cap C^g = 1$.
- Now if $g \in G$ does normalise C, then g stabilises $\langle e_1 \rangle$ and also $e_1^{\perp} = \langle e_2, e_3 \rangle \dots$ so either $g \in C$, or g acts a reflection inside e_1^{\perp} .

E 6 4 E 6

Example

 $(SO_2(\mathbb{R}) < SO_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

- $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .
- C = {those rotations with axis $\langle e_1 \rangle$ } = {those with plane $\langle e_2, e_3 \rangle$ }.
- If $g \in G$ does *not* normalise *C*, then $g \cdot e_1 \neq e_1$, and $C^g = \{$ those rotations with axis $\langle g \cdot e_1 \rangle \}$, so $C \cap C^g = 1$.
- Now if $g \in G$ does normalise C, then g stabilises $\langle e_1 \rangle$ and also $e_1^{\perp} = \langle e_2, e_3 \rangle \dots$ so either $g \in C$, or g acts a reflection inside e_1^{\perp} .
- Bonus: N_G(C) \ C is a single coset of C, consisting of involutions inverting C.

< □ > < □ > < □ > < □ > < □ > < □ >

Example

 $(\mathsf{SO}_2(\mathbb{R}) < \mathsf{SO}_3(\mathbb{R}))$ is a quasi-Frobenius pair.

Essential details from above:

- $G = SO_3(\mathbb{R})$, the group of all rotations of \mathbb{R}^3 .
- C = {those rotations with axis $\langle e_1 \rangle$ } = {those with plane $\langle e_2, e_3 \rangle$ }.
- If $g \in G$ does *not* normalise *C*, then $g \cdot e_1 \neq e_1$, and $C^g = \{$ those rotations with axis $\langle g \cdot e_1 \rangle \}$, so $C \cap C^g = 1$.
- Now if $g \in G$ does normalise C, then g stabilises $\langle e_1 \rangle$ and also $e_1^{\perp} = \langle e_2, e_3 \rangle \dots$ so either $g \in C$, or g acts a reflection inside e_1^{\perp} .
- Bonus: N_G(C) \ C is a single coset of C, consisting of involutions inverting C.

Quasi-Frobenius, but *not* Frobenius: here $[N_G(C) : C] = 2$.

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

Examples

Main example 3: unimodular transf. of projective line

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

More details:

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

More details:

• Group
$$GL_2(\mathbb{C}) = \{2 \times 2 \text{ inv. mat.}\}$$
 has centre $Z = \left\{ \begin{pmatrix} \lambda \\ & \lambda \end{pmatrix} : \lambda \in \mathbb{C}^{\times} \right\}$.
I'll use $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to denote $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod Z$.

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

More details:

Group GL₂(ℂ) = {2 × 2 inv. mat.} has centre Z = { (λ λ) : λ ∈ ℂ[×] }.
I'll use ^{a b}_{c d} to denote ^{a b}_{c d} mod Z.
Let G = PGL₂(ℂ) = GL₂(ℂ)/Z.
= group of autom. of projective line ℙ¹(ℂ) = ℂ ∪ {∞}.

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

More details:

• Group
$$\operatorname{GL}_2(\mathbb{C}) = \{2 \times 2 \text{ inv. mat.}\}$$
 has centre $Z = \left\{ \begin{pmatrix} \lambda \\ \lambda \end{pmatrix} : \lambda \in \mathbb{C}^{\times} \right\}$.
I'll use $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to denote $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod Z$.
• Let $G = \operatorname{PGL}_2(\mathbb{C}) = \operatorname{GL}_2(\mathbb{C})/Z$.
= group of autom. of projective line $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$.
• $C = \left\{ \begin{bmatrix} \lambda \\ \mu \end{bmatrix} : (\lambda, \mu) \in \mathbb{C}^{\times} \right\} = \left\{ \begin{bmatrix} \lambda \\ \lambda^{-1} \end{bmatrix} : \lambda \in \mathbb{C}^{\times} \right\} \simeq \mathbb{C}^{\times}$.

`

. .

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

More details:

• Group
$$\operatorname{GL}_2(\mathbb{C}) = \{2 \times 2 \text{ inv. mat.}\}$$
 has centre $Z = \left\{ \begin{pmatrix} \lambda \\ & \lambda \end{pmatrix} : \lambda \in \mathbb{C}^{\times} \right\}$.
I'll use $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to denote $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod Z$.
• Let $G = \operatorname{PGL}_2(\mathbb{C}) = \operatorname{GL}_2(\mathbb{C})/Z$.
= group of autom. of projective line $\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$.
• $C = \left\{ \begin{bmatrix} \lambda \\ & \mu \end{bmatrix} : (\lambda, \mu) \in \mathbb{C}^{\times} \right\} = \left\{ \begin{bmatrix} \lambda \\ & \lambda^{-1} \end{bmatrix} : \lambda \in \mathbb{C}^{\times} \right\} \simeq \mathbb{C}^{\times}$.
• Now C is TI in G and $[N_G(C) : C] = 2$ (\leftarrow honestly, computations.)

. .

< □ > < □ > < □ > < □ > < □ > < □ >

Example

 $(\mathbb{C}^{\times} < \mathsf{PGL}_2(\mathbb{C}))$ is a quasi-Frobenius pair.

More details:

Summing up

• A pair of groups (C < G) is *quasi-Frobenius* if:

Summing up

- A pair of groups (C < G) is quasi-Frobenius if:
 - $[N_G(C):C] < \infty;$

Summing up

- A pair of groups (*C* < *G*) is *quasi-Frobenius* if:
 - $[N_G(C):C] < \infty;$
 - $(\forall g)(C = C^g \lor C \cap C^g = 1).$

- A pair of groups (*C* < *G*) is *quasi-Frobenius* if:
 - $[N_G(C):C] < \infty;$
 - $(\forall g)(C = C^g \lor C \cap C^g = 1).$
- Natural examples:

- A pair of groups (*C* < *G*) is *quasi-Frobenius* if:
 - $[N_G(C):C] < \infty;$
 - $(\forall g)(C = C^g \lor C \cap C^g = 1).$
- Natural examples:
 - $GA_1(\mathbb{K})$ (solvable),

- A pair of groups (*C* < *G*) is *quasi-Frobenius* if:
 - $[N_G(C):C] < \infty;$
 - $(\forall g)(C = C^g \lor C \cap C^g = 1).$
- Natural examples:
 - GA₁(𝔣) (solvable),
 - $SO_3(\mathbb{R})$,

- A pair of groups (*C* < *G*) is *quasi-Frobenius* if:
 - $[N_G(C):C] < \infty;$
 - $(\forall g)(C = C^g \lor C \cap C^g = 1).$
- Natural examples:
 - GA₁(𝔣) (solvable),
 - $SO_3(\mathbb{R})$,
 - PGL₂(ℂ).

э

- A pair of groups (*C* < *G*) is *quasi-Frobenius* if:
 - $[N_G(C):C] < \infty;$
 - $(\forall g)(C = C^g \lor C \cap C^g = 1).$
- Natural examples:
 - GA₁(𝔣) (solvable),
 - $SO_3(\mathbb{R})$,
 - PGL₂(ℂ).

Time to add some model theory.

In this section

Model theory: dimension(s)

Dimensions on definable sets Finite Morley rank p-minimality

Oroup theory: quasi-Frobenius pairs

Some geometric algebra The definition Examples

Interaction: dimensional quasi-Frobenius pairs Results Questions

Results

Definable quasi-Frobenius pairs

Definition

• A group structure $(G; \mathcal{L})$ is *connected* if it has no definable, proper subgroup of finite index, viz.:

Definition

• A group structure (*G*; *L*) is *connected* if it has no definable, proper subgroup of finite index, viz.:

 $(G_1 \leq G \text{ and } G_1 \in Def(G) \text{ and } [G:G_1] < \infty) \Rightarrow G = G_1.$

Definition

• A group structure (G; L) is *connected* if it has no definable, proper subgroup of finite index, viz.:

 $(G_1 \leq G \text{ and } G_1 \in Def(G) \text{ and } [G:G_1] < \infty) \Rightarrow G = G_1.$

• A quasi-Frobenius pair (C < G) is *dimensional* if *both* are definable and connected in a dimensional theory.

Definition

• A group structure (G; L) is *connected* if it has no definable, proper subgroup of finite index, viz.:

 $(G_1 \leq G \text{ and } G_1 \in Def(G) \text{ and } [G:G_1] < \infty) \Rightarrow G = G_1.$

• A quasi-Frobenius pair (*C* < *G*) is *dimensional* if *both* are definable and connected in a dimensional theory.

By requesting connectedness I avoid finite group theory.

Definition

• A group structure (G; L) is *connected* if it has no definable, proper subgroup of finite index, viz.:

 $(G_1 \leq G \text{ and } G_1 \in Def(G) \text{ and } [G:G_1] < \infty) \Rightarrow G = G_1.$

• A quasi-Frobenius pair (C < G) is *dimensional* if *both* are definable and connected in a dimensional theory.

By requesting connectedness I avoid finite group theory.

Conjecture (A_1 -conjecture)

Let (C < G) be a dimensional quasi-Frobenius pair. Then G is soluble, or a 'form of A_1 ' (PSL₂ or SO₃, or a cover).

イロト イヨト イヨト イヨト

Definition

• A group structure (*G*; *L*) is *connected* if it has no definable, proper subgroup of finite index, viz.:

 $(G_1 \leq G \text{ and } G_1 \in Def(G) \text{ and } [G:G_1] < \infty) \Rightarrow G = G_1.$

• A quasi-Frobenius pair (C < G) is *dimensional* if *both* are definable and connected in a dimensional theory.

By requesting connectedness I avoid finite group theory.

Conjecture (A_1 -conjecture)

Let (C < G) be a dimensional quasi-Frobenius pair. Then G is soluble, or a 'form of A_1 ' (PSL₂ or SO₃, or a cover).

I *do not* believe in the conjecture at this level of generality. Let us see what it becomes in special cases.

Theorem (D.-Onshuus, in preparation)

Theorem (D.-Onshuus, in preparation)

Let (C < G) be a quasi-Frobenius pair in an o-minimal theory. Then one of the following occurs:

• G splits, viz. $G = K \rtimes C$, and C is abelian;

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < PSL_2(\mathcal{R}))$ for real closed \mathcal{R} ,

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < PSL_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < SO_3(\mathcal{R}))$ for real closed \mathcal{R} ,

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - (SO₂(R) < PSL₂(R)) for real closed R,
 - $(SO_2(\mathcal{R}) < SO_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < Spin_3(\mathcal{R}))$ for real closed \mathcal{R} ,

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < PSL_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < SO_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < Spin_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(\mathbb{K}^{\times} < \mathsf{PSL}_2(\mathbb{K}))$ for alg. closed \mathbb{K} .

Theorem (D.-Onshuus, in preparation)

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < PSL_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < SO_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < Spin_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(\mathbb{K}^{\times} < \mathsf{PSL}_2(\mathbb{K}))$ for alg. closed \mathbb{K} .

Theorem (D.-Onshuus, in preparation)

Let (C < G) be a quasi-Frobenius pair in an o-minimal theory. Then one of the following occurs:

- G splits, viz. $G = K \rtimes C$, and C is abelian;
- (C < G) is in the expected list :
 - $(\mathcal{R}_{>0} < \mathsf{PSL}_2(\mathcal{R}))$ for real closed \mathcal{R} ,
 - (SO₂(R) < PSL₂(R)) for real closed R,
 - $(SO_2(\mathcal{R}) < SO_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(SO_2(\mathcal{R}) < Spin_3(\mathcal{R}))$ for real closed \mathcal{R} ,
 - $(\mathbb{K}^{\times} < \mathsf{PSL}_2(\mathbb{K}))$ for alg. closed \mathbb{K} .

Proof.

The proof uses Lie theory. I call it cheating!

E 5 4

In finite Morley rank, we must make assumptions on torsion. G 'has odd type' if:

- G has elements of order 2;
- G does not contain an isomorphic copy of $\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$.

In finite Morley rank, we must make assumptions on torsion. G 'has odd type' if:

- G has elements of order 2;
- G does not contain an isomorphic copy of $\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$.

Theorem (D.-Wiscons + Altinel-D.)

Let (C < G) be a quasi-Frobenius pair of finite Morley rank with G of odd type.

In finite Morley rank, we must make assumptions on torsion. G 'has odd type' if:

- G has elements of order 2;
- G does not contain an isomorphic copy of $\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$.

Theorem (D.-Wiscons + Altınel-D.)

Let (C < G) be a quasi-Frobenius pair of finite Morley rank with G of odd type. Then $[N_G(C): C] = 1$ or 2.

In finite Morley rank, we must make assumptions on torsion. G 'has odd type' if:

- G has elements of order 2;
- G does not contain an isomorphic copy of $\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$.

Theorem (D.-Wiscons + Altınel-D.)

Let (C < G) be a quasi-Frobenius pair of finite Morley rank with G of odd type. Then $[N_G(C): C] = 1$ or 2.

Proof.

Otherwise, construct two disjoint generic sets.

▲ □ ▶ ▲ 三 ▶ ▲ 三

In finite Morley rank, we must make assumptions on torsion. G 'has odd type' if:

- G has elements of order 2;
- G does not contain an isomorphic copy of $\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$.

Theorem (D.-Wiscons + Altinel-D.)

Let (C < G) be a quasi-Frobenius pair of finite Morley rank with G of odd type. Then $[N_G(C): C] = 1$ or 2.

Proof.

Otherwise, construct two disjoint generic sets.

Remark

As a consequence it makes sense to define 'quasi-Frobenius' even in finite group theory: C is TI in $G + [N_G(C) : C] = 2$. To my knowledge, the notion has not been studied.

24 / 26

Theorem (Zamour, generalised by Corredor-D.)

Let (C < G) be a quasi-Frobenius pair fMR with G of odd type.

Theorem (Zamour, generalised by Corredor-D.)

Let (C < G) be a quasi-Frobenius pair fMR with G of odd type. Suppose that C is soluble but G isn't. Then:

Theorem (Zamour, generalised by Corredor-D.)

Let (C < G) be a quasi-Frobenius pair fMR with G of odd type. Suppose that C is soluble but G isn't. Then:

• either $(C < G) \simeq (\mathbb{K}^{\times} < \mathsf{PGL}_2(\mathbb{K})),$

Theorem (Zamour, generalised by Corredor-D.)

Let (C < G) be a quasi-Frobenius pair fMR with G of odd type. Suppose that C is soluble but G isn't. Then:

- either $(C < G) \simeq (\mathbb{K}^{\times} < \mathsf{PGL}_2(\mathbb{K}))$,
- or C is maximal as a (definable, connected) subgroup.

Theorem (Zamour, generalised by Corredor-D.)

Let (C < G) be a quasi-Frobenius pair fMR with G of odd type. Suppose that C is soluble but G isn't. Then:

- either $(C < G) \simeq (\mathbb{K}^{\times} < \mathsf{PGL}_2(\mathbb{K}))$,
- or C is maximal as a (definable, connected) subgroup.

Proof.

Nesin-Cherlin-Jaligot computations (the ideas go back to Bender).

Question

Let (C < G) be a Frobenius pair of fMR. What can one say?

э

3 x x 3

Question

Let (C < G) be a Frobenius pair of fMR. What can one say?

This has been open for years, despite huge work by Nesin.

Question

Let (C < G) be a Frobenius pair of fMR. What can one say?

This has been open for years, despite huge work by Nesin.

Question (core of A_1 -conjecture)

Let (C < G) be a quasi-Frobenius pair of fMR. Suppose G has odd type and $[N_G(C) : C] = 2$. Is $(C < G) \simeq (\mathbb{K}^{\times} < PGL_2(\mathbb{K}))$?

Question

Let (C < G) be a Frobenius pair of fMR. What can one say?

This has been open for years, despite huge work by Nesin.

Question (core of A_1 -conjecture)

Let (C < G) be a quasi-Frobenius pair of fMR. Suppose G has odd type and $[N_G(C) : C] = 2$. Is $(C < G) \simeq (\mathbb{K}^{\times} < PGL_2(\mathbb{K}))$?

Under current exploration by D.-Wiscons.

Question

Let (C < G) be a Frobenius pair of fMR. What can one say?

This has been open for years, despite huge work by Nesin.

Question (core of A_1 -conjecture)

Let (C < G) be a quasi-Frobenius pair of fMR. Suppose G has odd type and $[N_G(C) : C] = 2$. Is $(C < G) \simeq (\mathbb{K}^{\times} < PGL_2(\mathbb{K}))$?

Under current exploration by D.-Wiscons.

Question

Can one develop a satisfactory theory of dimensional groups, possibly using A_1 -conjecture as a test question?

< □ > < □ > < □ > < □ > < □ > < □ >

Question

Let (C < G) be a Frobenius pair of fMR. What can one say?

This has been open for years, despite huge work by Nesin.

Question (core of A_1 -conjecture)

Let (C < G) be a quasi-Frobenius pair of fMR. Suppose G has odd type and $[N_G(C) : C] = 2$. Is $(C < G) \simeq (\mathbb{K}^{\times} < PGL_2(\mathbb{K}))$?

Under current exploration by D.-Wiscons.

Question

Can one develop a satisfactory theory of dimensional groups, possibly using A_1 -conjecture as a test question?

Thank you!

26 / 26