Examen du 21 avril 2021, durée 3h.

This exam consists of three problems, divided into 4+1+5=10 questions. All questions have equal weight.

Problem 1. Let T be a theory, $\mathcal{M} \models T$ a model. Let $\varphi(x, \bar{y})$ be a formula, and $\bar{a} \in M$ of the same length as \bar{y} , so $\varphi(x, \bar{a})$ is a formula with parameters in M. Let

$$\varphi(M,\bar{a}) := \{ b \in M : \mathcal{M} \vDash \varphi(b,\bar{a}) \}.$$

denote the set of solutions of $\varphi(x, \bar{a})$ in M.

We say that $\varphi(x, \bar{a})$ is algebraic if the set $\varphi(M, \bar{a})$ is finite.

- 1. Show that if $\mathcal{N} \succeq \mathcal{M}$, then exactly one of the following holds:
 - either $\varphi(M, \bar{a}) = \varphi(N, \bar{a})$ is finite,
 - or both $\varphi(M, \bar{a})$ and $\varphi(N, \bar{a})$ are infinite.

In particular, while the definition of an algebraic formula seems to depend on the structure \mathcal{M} , it remains unchanged when replacing \mathcal{M} with an elementary extension.

- 2. Show that if $\varphi(x, \bar{a})$ is algebraic, then there exists a formula $\psi(\bar{y})$ such that:
 - $\mathcal{M} \models \psi(\bar{a})$
 - for every model $\mathcal{N} \vDash T$ and all $\overline{b} \in M$, if $\mathcal{M} \vDash \psi(\overline{b})$, then $\varphi(x, \overline{b})$ is algebraic as well.

(The formula ψ may depend on \bar{a} .)

- 3. Show that for a theory T and formula $\varphi(x, \bar{y})$, the following are equivalent:
 - There exists a formula $\psi(\bar{y})$ such that for every $\mathcal{M} \models T$ and every $\bar{b} \in M$ we have $\mathcal{M} \models \psi(\bar{b})$ if and only if $\varphi(x, \bar{b})$ is algebraic.
 - There exists $m \in \mathbf{N}$ such that for every $\mathcal{M} \models T$ and every $\bar{b} \in M$, if $\varphi(x, \bar{b})$ is algebraic, then $|\varphi(M, \bar{b})| \leq m$.

(When this is true, the formula $\neg \psi(\bar{y})$ is often denoted $\exists^{\infty} x \varphi(x, \bar{y})$.)

4. Let T = ACF, the theory of algebraically closed fields. Show that the equivalent conditions of the previous item hold for every formula φ(x, ȳ).
Hint: Start by showing this for formulas of the form P(x, ȳ) = 0 and P(x, ȳ) ≠ 0, where P ∈ Z[x, ȳ] is a polynomial.

Definition. Recall that if \mathcal{M} and \mathcal{N} are *L*-structures, an *embedding* $f: \mathcal{M} \hookrightarrow \mathcal{N}$ is a map $f: \mathcal{M} \to N$ such that for every atomic (equivalently, quantifier-free) formula $\varphi(\bar{x})$ and every $\bar{m} \in \mathcal{M}$ (of the right length) we have

$$\mathcal{M}\vDash\varphi(\bar{m})\qquad\Longleftrightarrow\qquad\mathcal{N}\vDash\varphi(f(\bar{m})).$$

We say that two L-theories are *companions* if every model of one embeds in a model of the other.

Problem 2. Let $L = \{0, 1, -, +, \cdot\}$ be the language of rings. Let T_1 be the theory of fields, and let T_2 be the theory of algebraically closed fields. Show that they are companions.

Problem 3. Let T_1 and T_2 be two theories in a language L.

- 1. A sentence φ is called *universal* if it is of the form $\forall \bar{x}\psi(\bar{x})$, where $\psi(\bar{x})$ is quantifier-free. Show that if $\mathcal{M} \subseteq \mathcal{N}$ are structures, φ is a universal sentence, and $\mathcal{N} \vDash \varphi$, then $\mathcal{M} \vDash \varphi$.
- 2. Deduce that if T_1 and T_2 are companions, then they have the same universal consequences. That is to say that if φ is a universal sentence that holds in every model of one, then it also holds in every model of the other.
- 3. Let \mathcal{M} be any *L*-structure. Let $L(\mathcal{M})$ consist of *L* together with a constant symbol for every $m \in \mathcal{M}$. Define the quantifier-free diagram of \mathcal{M} as:

 $D^{qf}(\mathcal{M}) = \big\{\varphi(\bar{m}) : \mathcal{M} \vDash \varphi(\bar{m}), \text{ where } \varphi(\bar{x}) \text{ is a q-f } L\text{-formula and } \bar{m} \in M\big\}.$

Show that if \mathcal{N} is an L(M)-structure, and $\mathcal{N} \models D^{qf}(\mathcal{M})$, then there exists a natural embedding $\mathcal{M} \hookrightarrow \mathcal{N}$.

- 4. Assume that T_1 and T_2 have the same universal consequences, and let $\mathcal{M} \models T_1$. Show that $T_2 \cup D^{qf}(\mathcal{M})$ is consistent.
- 5. State and prove the converse of question 2 of this problem.