Cours du 14 avril 2020

Theorem 4.9 (General Omitting Types Theorem). It T is countable, I can omit a meagre set of n-types for all n.

Recall the topology on the set of *n*-types : basic clopen sets are $[\varphi(\bar{x})] = \{p \in S_n(T) : \varphi \in p\}$. Types are the points; they are closed. This topological space is compact (compactness theorem) and totally discontinuous.

Meagre = countable union of closed sets of empty interior

co-meagre = compement of meagre = countable intersection of dense open sets.

For a single type p, the set $\{p\}$ is meagre iff p is not isolated, as $\varphi(\bar{x})$ isolates p iff $\{p\} = [\varphi(\bar{x})].$

So the OTT => non-principal types can be omitted (in a countable language).

But the general OTT allows us to omit several types (even infinitely many) at once.

Recall Baire category theorem : A (countable intersection of) co-meagre sets is dense. True in any locally compact topological space.

Proof: Start with a countable theory T and its Henkinisation T_H using countably many constants C. Consider a closed set p of empty interior in S_n . We want to show that $T_H \setminus [p(\bar{c})]$ is open dense in T_H .

Then $\bigcap_{\bar{c}\in C}(T_H \setminus [p(\bar{c})])$ is still dense, and in particular non-empty. So it contains a completion T' of T_H . If $\mathfrak{N}_C \models T'$, then $C^{\mathfrak{N}_C} \preccurlyeq \mathfrak{N}_C$ omitting p.

To show that $T_H \setminus [p(\bar{c})]$ is open dense in T_H , consider a basic open set $[\varphi'(\bar{c}')]$. We have to show that $(T_H \setminus [p(\bar{c})]) \cap [\varphi'(\bar{c}')]$ is non-empty. In other words,

$$T_H \cup \{\varphi'(\bar{c}')\} \not\models p(\bar{c}).$$

We know that $p(\bar{x})$ is mearge in S_n . We want that $[p(\bar{c})]$ is meagre in T_H . Let $(c_i : i < \ell)$ contain \bar{c}, \bar{c}' . Among $(x_i : i < \ell)$ let \bar{x} correspond to \bar{c} , and \bar{x}' to \bar{c}' , and put $\bar{x}'' = (x_i : i < \ell) \setminus \bar{x}'$. Put

$$\psi(\bar{x}, \bar{x}'') = \varphi(\bar{x}') \land \bigwedge_{i < \ell} ((\exists x \varphi_i(x)) \to \varphi_i(x_i)).$$

Then $[\exists \bar{x}''\psi(\bar{x},\bar{x}'')]$ is a non-empty open, as $[\varphi(\bar{c}')]$ is non-empty open in T_H , and hence $[\psi(\bar{c},\bar{c}'')]$ is non-empty in T_H , so $\psi(\bar{x},\bar{x}'')$ is consistent. Now $p(\bar{x})$ has non-empty interior, and does not contain $[\exists \bar{x}''\psi(\bar{x},\bar{x}'')]$, and there is a model \mathfrak{M} and \bar{m} in M such that $\mathfrak{M} \models [\exists \bar{x}''\psi(\bar{m},\bar{x}'')]$ and $\mathfrak{M} \not\models p(\bar{m})$. Find \bar{m}'' in M such that $\psi(\bar{m},\bar{m}'')$, and interpret c_i by m_i for $i < \ell$. Then I can interpret recursively c_i for $i \ge \ell$ for get a model of T_H where $p(\bar{c})$ is false and $\varphi(\bar{c}')$ is true.

Thus $[p(\bar{c})]$ has empty interior.

Section 2. (Countable) models.

Definition 4.10.

- A prime model need not be unique, nor minimal. If \mathfrak{M} and \mathfrak{M}' are prime over A, either embeds into the other other over A. In particular, if the embedding is proper, neither \mathfrak{M} nor \mathfrak{M}' are minimal.

- If \mathfrak{M} is minimal and \mathfrak{M}' is prime over A, then $\mathfrak{M} = \mathfrak{M}'$ is the unique minimal model : \mathfrak{M}' embeds into \mathfrak{M} as it is prime, and must be equal since \mathfrak{M} is minimal.

- Clearly strongly λ -homogeneous implies λ -homogeneous.

Atomic = poor (only realizes types which must be realized)

Saturated = rich (realizes all types possible)

4.11.1 : Enumerate $B \setminus A = (a_i : i < \omega)$. Then $\operatorname{tp}(a_i : i \leq n/A)$ is isolated $=> \operatorname{tp}(a_n/A, a_i : i < n)$ is isolated. So ANY enumeration will give a construction. This is false in hogher cardinality : If SOME enumeration of B is a construction over A, some other might not.

4.11.2. $\operatorname{tp}(a_k/A, a_i : i < k) = \operatorname{tp}(a_k/A \cup \{a_i : i < k\})$ and $\operatorname{tp}(a_i : i < k/A) = \operatorname{tp}((a_i : i < k)/A).$

We have $\operatorname{tp}(a_k/A, a_i : i < k)$ isolated by $\varphi(x, \bar{a}'')$ for some \bar{a}'' among $(a_i : i < k)$ (which may have more parameters from A). By hypothesis, for any \bar{a}' among $(a_i : i < k)$ the type $\operatorname{tp}(\bar{a}'\bar{a}''/A)$ is isolated. Now $\varphi(x, \bar{a}'')$ also isolates $\operatorname{tp}(a_k/A, \bar{a}', \bar{a}'')$. By transitivity, $\operatorname{tp}(a_k, \bar{a}', \bar{a}''/A)$ is isolated. Hence $\operatorname{tp}(a_k\bar{a}'/A)$ is isolated.

4.11.2. As isolated types are realized, find in any model of $\operatorname{Th}(\mathfrak{M}, A)$ a sequence $(b_i : i < \alpha)$ such that if $\operatorname{tp}(a_i/A, a_j : j < i) = p(x, \bar{a})$, then $b_i \models \operatorname{tp}(x, \bar{b})$; if $\varphi(x, \bar{a})$ isolates $p(x, \bar{a})$, then $\varphi(x, \bar{b})$ isolates $p(x, \bar{b})$.

When do we have saturated and atomic models.

Proposition 4.14 and 4.15: We have constructed models iff the isolated types are dense. 4.14: If $[\varphi(x)]$ is non-empty, $\varphi(\bar{x})$ is realized in our atomic model by some \bar{m} , and $\operatorname{tp}(\bar{m})$ is isolated in $[\varphi(\bar{x})]$.

Conversely, in a Henkinisation, if $\exists x \varphi_i(x)$ is true, then by transitivity (φ_i contains finitely many constants $(c_j : j < i)$) [$\varphi_i(x)$] contains an isolated type over $(c_j : j < i)$. We let c_i realize that type. Then $\operatorname{tp}(c_j : j \leq i)$ is isolated.

4.16. Any two countable atomic models are isomorphic. Any two saturated models of the same cardinal are isomorphic.

Just a back-and-forth argument. Take enumerations $(m_i : i < \lambda)$ of \mathfrak{M} and $(n_i : i < \lambda)$ of \mathfrak{N} . Given a partial isomorphism σ_k with domain \overline{m} of cadinality $< \lambda$ containing $(m_i : i < k)$, consider $\operatorname{tp}(m_k/\overline{m}) = p(x, \overline{m})$. Then $p(x, \sigma(\overline{m}))$ is realized (either because it is isolated, or by saturation) by some n_j . So we can prolong σ . By symmetry, we also have the "back" direction.

We start with σ_0 the empty partial isomorphism, and we take unions at limit stages. For the "back" direction, if the image $\bar{n} = \sigma_k(\bar{m})$ of σ_k) contains $(n_i : i < k)$, consider $\operatorname{tp}(n/n) = p(x, \bar{n}) = p(x, \sigma(\bar{m}))$ and its preimage $p(x/\bar{m})$. It is realized in M because it is atomic, or by saturation.

I get a partial elementary map whose domain is M and whose image s N, i.e. an isomorphism.

Example 4.18.2 : $\langle \mathbb{Z}, 0, 1, + \rangle$ is atomic.

Proposition 4.22. Union of chains.

Theorem 4.25 (Ryll-Nardzewski)

If S_n is finite, say $S_n = \{p_1, \ldots, p_k\}$. For every pair of types (p_i, p_j) with $j \neq i$ choose a formule $\varphi_{ij} \in p_i \setminus p_j$. Then $\bigwedge_{j \neq i} \varphi_{ij}$ isolates p_i . Thus all *n*-types are isolated, and any formula $\psi(\bar{x}) = \bigvee_{n \in [\psi]} p$. There are only 2^k many possibilities.

Conversely, if there are only k inequivalent formulas in n variables, then $|S_n| \leq 2^k$. Thus (2) \Leftrightarrow (3).

(2) implies that all types in S(T) are isolated, so all models are atomic. But two countable atomic models are isomorphic. Hence (1).

Conversely, if there is a non-isolated type, then there is a countable model realizing it, and another one omitting it, so T is not \aleph_0 -categorical. Thus if T is \aleph_0 -categorical, every type $p \in S_n$ is isolated by a formula φ_p . But if $S_n(T)$ is infinite, $\{\neg \varphi_p : p \in S_n(T)\}$ is finitely consistent, a contradiction. Hence $S_n(T)$ is finite.

Section 3 : Small theories.

Definition 4.27: T is small if S(T) is countable.

Lemma 4.28 : Smallness is preserved under adding finitely many parameters.

Proposition 2.29: T has a countable saturated model iff T is small.

Remark : Countable saturated model \neq countably saturated model

Countable atomic models : If T is small, isolated types are dense over finite sets (lemma 4.30), and there is a countable atomic model.

 $I(T, \aleph_0)$ = the number of non-isomorphic countable models of T.

= 1 iff T is \aleph_0 -categorical.

 $\leq 2^{\aleph_0}.$

if $< 2^{\aleph_0}$, then T is small (Lemma 4.34).

can take values $3, 4, 5, \ldots, \aleph_0, 2^{\aleph_0}$.

 $\neq 2$ (Vaught, Theorem 4.37).

Vaught's conjecture : Only interesting without CH. The interest is not the number of models, but to solve it, one has to analyse in detail the structure of countable models