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Cours du 7 avril 2020
Model-complete theories.
T is model-complete if for all M ⊆ N models of T one has M 4 N.
Proposition 3.30 : If T has QE then T is model-complete.
Theorem 3.32 : T is model-complete i� every formula is equivalent modulo T to an
existential formula.
Then ϕ and ¬ϕ are both equivalent to existential formulas, so also to universal formulas.
Proof. "<=" If every formula is equivalent to an existential formula, clearly T is model-
complete. TYPO : "d'où N |= ϕ(m̄)." on line -4.
"=>". Suppose T is model-complete. Note that if ∃ȳ ϕ(x̄, ȳ) and ∃z̄ ψ(x̄, z̄) are both
existential (ϕ and ψ are quanti�er-free), then the conjunction is equivalent to

∃ȳ∃z̄ (ϕ(x̄, ȳ) ∧ ψ(x̄, z̄))

(renaming the bound variables if necessary so that they are di�erent, and di�erent from
all free variables) ; similarly for the disjunction.
First we show that every formula is equivalent to a boolean combination of existential
formulas.
For more generality, assume M,N |= T and all existential ϕ(x̄) satis�ed by a tuple m̄
in M are satis�ed by a (�xed) tuple n̄ in N. We show �rst tpM(m̄) = tpN(n̄).
Consider the set of formulas Φ as given. A model N′ of Φ is
� an elementary extension of N as it satis�es Th(N, N)
� contains a copy {cN′

m : m ∈M} of M as a submodel
� satis�es c̄m̄ = n̄ since M |= m̄ = m̄, so the image of m̄ under the embedding M→ N′

is just n̄.
Hence tpM(m̄) = tpM′(c̄m̄) = tpN′(c̄m̄) = tpN′(n̄) = tpN(n̄).
By 3.23 every formula is equivalent to a b.c. of existential ones.
Secondly, we show that a universal formula is equivalent to an existential one. Then
we are done.
Consider a universal formula ϕ(x̄), Φ the set of existential formulas which imply ϕ
modulo T , and ψ their negations.
Suppose T ∪Ψ(c̄) ∪ ϕ(c̄) has a model M. If Φ0 are the existential formulas satis�ed
by c̄M, then T ∪Φ0(d̄) ∪ ϕ(d̄) has no model, as c̄ and d̄ must have the same type by
the �rst part.
So there is a �nite bit Φ′ such that T ∪ Φ′(x̄) |= ϕ(x̄). That is ψ(x̄) =

∧
Φ′(x̄) is in

Φ, a contradiction, as then ¬ψ ∈ Ψ and c̄ |= ¬ψ(x̄) by assumption on the model M.
Hence the modelM does not exist. Hence a �nite bit Ψ0 of Ψ such that T∪Ψ0(c̄)∪ϕ(c̄)
is inconsistent. Then

∧
Ψ0(x̄) |=T ¬ϕ(x̄). Thus

ϕ |=T

∨
{ψ : ¬ψ ∈ Ψ0}

But these ψ are in Φ and imply ϕ. Hence ϕ and
∨
{ψ : ¬ψ ∈ Ψ0} (which is existential)

are equivalent. QED
Chapter 4 : What type are necessarily realized in any model of T ?
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� algebraic ones : If a type p contains a formula ϕ(x̄) which has only �nitely many
realizations, then all realizations are in the base model (the theory T will tell us
there are only so many of them). Any completion of ϕ(x̄), in particular p, must be
realized by one of them.

� principal (or isolated) types : If there is a formula ϕ(x̄) in p which implies modulo
T all other formulas in p. For instance, in an algebraic type p, any formula ϕ(x̄) in p
with a minimal number of realizations will isolate p. This is not the only possibility.
In DLO without endpoints, there is a unique 1-type over ∅. It is isolated by x = x.

Omitting type theorem : If T is countable, then any non-principal type can be omitted
in some countable model of T . The proof uses the Baire category theorem ; the
question of omitting types is A LOT harder in the uncountable case.
Lemma 4.5 : tp(āb̄/A) is isolated i� tp(ā/Ab̄) and tp(b̄/A) are.
If ϕ(x̄, ȳ) isolates tp(āb̄/A), then it is easy to see that ϕ(x̄, b̄) isolates tp(ā/Ab̄) and
∃x̄ϕ(x̄, ȳ) isolates tp(b̄/A).
Conversely, if ϕ(x, b̄) isolates tp(ā/Ab̄) and ψ(ȳ) isolates tp(b̄/A), then ϕ(x̄, ȳ)∧ψ(ȳ)
isolates tp(āb̄/A). QED
ā = �rst tuple, b̄ = second tuple, āb̄ = concatenation of the two. Ab̄ = A ∪ {b̄}
Examples 4.6 for (Z, <). Unique 1-type, 2-types are given by the distance between
x1 and x2.
Those of �nite distance are isolated, for instance ∃!y(x1 < y < x2) means distance
2 and isolates a 2-type. (∃! = there is a unique). The unique non-isolated 2-type
(in�nite distance) is not realized in Z, but in every proper elementary extension.
I want to construct small models. For that I use the "Henkinisation" (Proposition
4.7).
Theorem 4.9 (General Omitting Types Theorem). It T is countable, I can omit a
meagre set of n-types for all n.
Recall the topology on the set of n-types : basic clopen sets are [ϕ(x̄)] = {p ∈
Sn(T ) : ϕ ∈ p}. Types are the points ; they are closed. This topological space is
compact (compactness theorem) and totally discontinuous.
Meagre = countable union of closed sets of empty interior
co-meagre = compement of meagre = countable intersection of dense open sets.
For a single type p, the set {p} is meagre i� p is not isolated, as ϕ(x̄) isolates p i�
{p} = [ϕ(x̄)].
So the OTT => non-principal types can be omitted (in a countable language).
But the general OTT allows us to omit several types (even in�nitely many) at once.
Recall Baire category theorem : A (countable intersection of) co-meagre sets is dense.
True in any locally compact topological space.
Proof : Start with a countable theory T and its Henkinisation TH using countably
many constants C. Consider a closed set p of empty interior in Sn. We want to show
that TH \ [p(c̄)] is open dense in TH .
Then

⋂
c̄∈C(TH \ [p(c̄)]) is still dense, and in particular non-empty. So it contains a

completion T ′ of TH . If NC |= T ′, then CNC 4 NC omitting p.
To show that TH \ [p(c̄)] is open dense in TH , consider a basic open set [ϕ′(c̄′)]. We
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have to show that (TH \ [p(c̄)]) ∩ [ϕ′(c̄′)] is non-empty. In other words,

TH ∪ {ϕ′(c̄′)} 6|= p(c̄).


