Cours du 7 avril 2020

Model-complete theories.

T is model-complete if for all 2t C DT models of T one has M < N.

Proposition 3.30 : If T" has QE then 7' is model-complete.

Theorem 3.32 : T is model-complete iff every formula is equivalent modulo T to an
existential formula.

Then ¢ and —p are both equivalent to existential formulas, so also to universal formulas.
Proof. "<=" If every formula is equivalent to an existential formula, clearly T is model-
complete. TYPO : "d’ou M |= ¢(m)." on line -4.

"=="_ Suppose T is model-complete. Note that if 3y ¢(z,y) and Iz (z, z) are both
existential (¢ and ¢ are quantifier-free), then the conjunction is equivalent to

3z (p(2,9) N(z, 2))

(renaming the bound variables if necessary so that they are different, and different from
all free variables) ; similarly for the disjunction.
First we show that every formula is equivalent to a boolean combination of existential
formulas.
For more generality, assume 91,9 = T and all existential p(z) satisfied by a tuple m
in 9 are satisfied by a (fixed) tuple 7 in M. We show first tpgy(m) = tpy(n).
Consider the set of formulas ® as given. A model U of ® is
— an elementary extension of 91 as it satisfies Th(91, V)
~ contains a copy {c¥ :m € M} of 9 as a submodel
— satisfies ¢z = 7 since MM = m = m, so the image of m under the embedding 9t —
is just 7.
Hence tpgn (1) = tpow (G ) = thoy (Cm) = tPgy (1) = tpy(n).
By 3.23 every formula is equivalent to a b.c. of existential ones.
Secondly, we show that a universal formula is equivalent to an existential one. Then
we are done.
Consider a universal formula ¢(Z), ® the set of existential formulas which imply ¢
modulo 7', and v their negations.
Suppose T'U ¥(¢) U ¢(¢) has a model M. If §, are the existential formulas satisfied
by ¢™, then T' U ®y(d) U ¢(d) has no model, as ¢ and d must have the same type by
the first part.
So there is a finite bit ®' such that T"U ®'(z) = ¢(Z). That is ¥(z) = A ¢'(Z) is in
®, a contradiction, as then =) € ¥ and ¢ = = (Z) by assumption on the model 9t.
Hence the model 9t does not exist. Hence a finite bit ¥ of U such that TUW(¢)Up(c)
is inconsistent. Then A Vo (Z) Er —¢(Z). Thus

o l=r V{v - v € Vo)

But these ¢ are in ® and imply . Hence ¢ and \/{¢ : =) € ¥} (which is existential)
are equivalent. QED
Chapter 4 : What type are necessarily realized in any model of T'7



— algebraic ones : If a type p contains a formula ¢(Z) which has only finitely many
realizations, then all realizations are in the base model (the theory 7" will tell us
there are only so many of them). Any completion of ¢(z), in particular p, must be
realized by one of them.

— principal (or isolated) types : If there is a formula ¢(Z) in p which implies modulo
T all other formulas in p. For instance, in an algebraic type p, any formula ¢(Z) in p
with a minimal number of realizations will isolate p. This is not the only possibility.
In DLO without endpoints, there is a unique 1-type over ). It is isolated by z = =.

Omitting type theorem : If T"is countable, then any non-principal type can be omitted

in some countable model of T. The proof uses the Baire category theorem; the

question of omitting types is A LOT harder in the uncountable case.

Lemma 4.5 : tp(ab/A) is isolated iff tp(a/Ab) and tp(b/A) are.

If (2, 7) isolates tp(ab/A), then it is easy to see that (7, b) isolates tp(a/Ab) and

3zp(z, 1) isolates tp(b/A).

Conversely, if (z, b) isolates tp(a/Ab) and () isolates tp(b/A), then ¢(Z,7) A (¥)

isolates tp(ab/A). QED

a = first tuple, b = second tuple, ab = concatenation of the two. Ab = AU {b}

Examples 4.6 for (Z, <). Unique 1-type, 2-types are given by the distance between

z1 and zs.

Those of finite distance are isolated, for instance Jly(z1 < y < x3) means distance

2 and isolates a 2-type. (3! = there is a unique). The unique non-isolated 2-type

(infinite distance) is not realized in Z, but in every proper elementary extension.

I want to construct small models. For that I use the "Henkinisation" (Proposition

4.7).

Theorem 4.9 (General Omitting Types Theorem). It 7" is countable, I can omit a

meagre set of n-types for all n.

Recall the topology on the set of n-types : basic clopen sets are [p(Z)] = {p €

Sp(T) = ¢ € p}. Types are the points; they are closed. This topological space is

compact (compactness theorem) and totally discontinuous.

Meagre = countable union of closed sets of empty interior

co-meagre = compement of meagre = countable intersection of dense open sets.

For a single type p, the set {p} is meagre iff p is not isolated, as ¢(z) isolates p iff

v} = [o(3)].

So the OTT => non-principal types can be omitted (in a countable language).

But the general OTT allows us to omit several types (even infinitely many) at once.

Recall Baire category theorem : A (countable intersection of) co-meagre sets is dense.

True in any locally compact topological space.

Proof : Start with a countable theory T and its Henkinisation Ty using countably

many constants C'. Consider a closed set p of empty interior in S,,. We want to show

that Ty \ [p(¢)] is open dense in Ty.

Then Ve (Th \ [p(€)]) is still dense, and in particular non-empty. So it contains a

completion T" of Ty. If Ne =T, then C”¢ < N omitting p.

To show that Ty \ [p(¢)] is open dense in Ty, consider a basic open set [¢'(¢')]. We



have to show that (T \ [p(¢)]) N [¢'(¢)] is non-empty. In other words,

Ty U {0 (@)} ¥ p(0).



