Théorie des ensembles

Feuille 2.

Exercice 1. Somme ordinale Rappelons la définition par récurrence transfinie de la somme de deux ordinaux α et β :

$$\alpha + \beta = \begin{cases} \alpha & \text{si } \beta = 0\\ S(\alpha + \gamma) & \text{si } \beta = S(\gamma)\\ \sup (\{\alpha + \xi : \xi < \beta\}) & \text{si } \beta \text{ est limite} \end{cases}$$

Nous allons maintenant décrire une opération sur les bons ordres qui est équivalente :

- 1. Soient A et B deux ensembles bien ordonnés. Montrer que l'on peut supposer qu'ils sont disjoints.
- 2. On suppose maintenant $A \cap B = \emptyset$ et on considère $X = A \cup B$. Montrer que l'on peut définir de manière unique un bon ordre sur X prolongeant celui de A et celui de B (i.e. tel que l'ordre de X induise ceux de A et de B) et tel que A soit un segment initial de X.
- 3. Montrer que si A et B sont respectivement isomorphes aux ordinaux α et β alors X est isomorphe à $\alpha + \beta$.
- 4. En déduire les propriétés suivantes de l'addition ordinale :
 - (a) associativité;
 - (b) non commutativité;
 - (c) monotonie stricte à droite, i.e $\beta < \beta' \Rightarrow \alpha + \beta < \alpha + \beta'$;
 - (d) régularité à gauche, i.e $\alpha + \beta = \alpha + \beta' \Rightarrow \beta = \beta'$;
 - (e) non monotonie stricte à gauche et non régularité à droite;
 - (f) $\alpha \leq \alpha' \Rightarrow \alpha + \beta \leq \alpha' + \beta$.

Exercice 2. Multiplication ordinale Rappelons la définition par récurrence transfinie du produit de deux ordinaux α et β :

$$\alpha \cdot \beta = \begin{cases} 0 & \text{si } \beta = 0 \\ (\alpha \cdot \gamma) + \alpha & \text{si } \beta = \gamma + 1 \\ \sup \left(\{ \alpha \cdot \xi \colon \xi < \beta \} \right) & \text{si } \beta \text{ est limite} \end{cases}$$

Soient deux ordinaux α et β , nous allons définir un bon ordre sur l'ensemble $\alpha \times \beta$ qui sera isomorphe à l'ordinal $\alpha \cdot \beta$:

1. On munit $\alpha \times \beta$ de l'ordre (anti-)lexicographique suivant

$$(\gamma_1, \delta_1) < (\gamma_2, \delta_2)$$
 ssi $\delta_1 < \delta_2$ ou $(\delta_1 = \delta_2 \& \gamma_1 < \gamma_2)$.

Montrer que cela définit un bon ordre sur $\alpha \times \beta$.

- 2. Montrer que ce bon ordre est isomorphe à l'ordinal $\alpha \cdot \beta$.
- 3. En déduire les propriétés suivantes de la multiplication ordinale :
 - (a) associativité;
 - (b) non commutativité;
 - (c) si $\alpha > 0$ et $\beta < \gamma$ alors $\alpha \cdot \beta < \alpha \cdot \gamma$;

- (d) si $\alpha \leq \beta$ alors $\alpha \cdot \gamma \leq \beta \cdot \gamma$;
- (e) $\alpha(\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$;

Exercice 3. Soustraction et division euclidienne sur les ordinaux

- 1. Montrer que l'on peut définir une opération \ominus sur les ordinaux telle que pour tous les ordinaux α, β on ait :
 - $\alpha \ominus \beta = 0$ si $\alpha < \beta$;
 - $\beta + (\alpha \ominus \beta) = \alpha \text{ si } \alpha \ge \beta$.

Donner un exemple d'ordinaux $\alpha > \beta$ tels qu'il n'existe pas d'ordinal γ tel que $\gamma + \beta = \alpha$.

2. Soient α et β deux ordinaux avec $\beta \neq 0$. Montrer qu'il existe un unique couple d'ordinaux (γ, δ) tel que $\alpha = \beta \cdot \gamma + \delta$ et $\delta < \beta$.

(Indication : on pourra d'abord montrer qu'il existe γ' tel que $\alpha < \beta \cdot \gamma'$ et que le plus petit tel γ' est successeur).

Exercice 4. Puissance ordinale Rappelons la définition par récurrence transfinie de $\alpha > 0$ à la puissance β :

$$\alpha^{\beta} = \begin{cases} 1 & \text{si } \beta = 0 \\ \alpha^{\gamma} \cdot \alpha & \text{si } \beta = \gamma + 1 \\ \sup \left(\left\{ \alpha^{\xi} \colon \xi < \beta \right\} \right) & \text{si } \beta \text{ est limite} \end{cases}$$

- 1. Vérifiez les propriétés suivantes pour $\alpha > 0$, β et γ trois ordinaux :
 - si $\alpha > 1$ et $\beta > \gamma$ alors $\alpha^{\beta} > \alpha^{\gamma}$;
 - $-\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma};$
 - $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}.$
- 2. Montrer que si α et β sont dénombrables alors α^{β} est aussi dénombrable ¹.
- 3. Prouver qu'il existe un ordinal dénombrable ξ tel que $\xi = \omega^{\xi}$. Existe-t-il un ordinal tel que $\xi = \xi^{\omega}$?

Exercice 5. Développement de Cantor Le développement de Cantor d'un ordinal est son développement en base ω . Il s'agit ici de vérifier qu'un tel développement existe, c'est-à-dire de montrer que tout ordinal α non nul s'écrit de manière unique sous la forme

$$\alpha = \omega^{\alpha_1} \cdot n_1 + \ldots + \omega^{\alpha_m} \cdot n_m,$$

où $\alpha_1 > \alpha_2 > \cdots > \alpha_m$ sont des ordinaux et n_1, n_2, \ldots, n_m des entiers non nuls.

- 1. Montrer que $\omega^{\alpha} \geq \alpha$ pour tout α .
- 2. Montrer que pour tout α il existe un unique couple (α_1, n_1) tel que

$$\omega^{\alpha_1} \cdot n_1 < \alpha < \omega^{\alpha_1} \cdot (n_1 + 1).$$

- 3. En déduire qu'il existe un unique $\beta_1 < \omega^{\alpha_1}$ tel que $\alpha = \omega^{\alpha_1} \cdot n_1 + \beta_1$.
- 4. En itérant le procédé (ou de manière équivalente par induction), montrer l'existence du développement de Cantor.
- 5. Vérifier l'unicité.
- 6. Donner un critère de comparaison de deux ordinaux α et β connaissant leurs développements de Cantor.
- 7. Montrer que les ordinaux de la forme ω^{α} sont les ordinaux β tels que $\gamma + \beta = \beta$ pour tout $\gamma < \beta$.
- 8. En déduire le développement de Cantor de $\alpha + \beta$ connaissant les développements de Cantor de α et β . (On donnera des exemples).
- 9. En utilisant les développements de Cantor, définir une nouvelle fonction somme, notée \oplus , sur les ordinaux qui soit commutative, associative et simplifiable (ou régulière, i.e. si $\alpha \oplus \beta = \alpha \oplus \gamma$ alors $\beta = \gamma$).
- 1. en particulier, α^{β} ne correspond PAS à l'ensemble des fonctions de β dans α : ça, c'est le produit de cardinaux.