Exercice 1 (Représenter l'exponentiation des ordinaux).

Cet exercice a pour objectif de donner une représentation "concrète" de l'exponentiation des ordinaux. Soient donc α et β deux ordinaux. On s'intéresse aux fonctions de β vers α "de support fini". Pour une telle fonction f, on définit $\mathrm{supp}(f) = \{ \xi < \beta \mid f(\xi) \neq 0 \}$. On définit ensuite le sous-ensemble suivante des fonctions de β vers α :

$$S(\beta, \alpha) = \{ f \mid f : \beta \longrightarrow \alpha \text{ et supp}(f) \text{ est fini.} \}.$$

Voici un exemple pour fixer les idées : la fonction $f: \omega + 1 \longrightarrow \omega + 1$ qui associe 1 à ω , et dont la restriction à ω est 0.

Maintenant on définit une relation d'ordre sur $S(\beta, \alpha)$: pour toutes $f, g \in S(\beta, \alpha)$, $f \prec g$ si et seulement si il existe $\xi_0 < \beta$ tel que $f(\xi_0) < g(\xi_0)$, et que pour tout $\xi > \xi_0$, $f(\xi) = g(\xi)$.

- 1. Vérifier que pour tous ordinaux α et β , \prec définit une relation de bon ordre total sur $S(\beta, \alpha)$. Quel est son minimum?
- 2. Expliciter un isomorphisme entre $(S(i,\alpha), \prec)$ et $(\alpha^i, <)$ pour $i \in \{0,1,2,3\}$. (Vous pouvez utiliser la représentation du produit de deux ordinaux comme le produit cartésien muni de l'ordre anti-lexicographique.)
- 3. Déterminer un isomorphisme entre $(S(\beta, \alpha), \prec)$ et $(\alpha^{\beta}, <)$ quand β est successeur.
- 4. Déterminer un isomorphisme entre $(S(\beta, \alpha), \prec)$ et $(\alpha^{\beta}, <)$ quand β est limite. (Entre ξ_0 comme défini ci-dessus et β , il existe un segment final infini de β .)

Exercice 2 (Equivalents de l'Axiome du Choix).

On dira qu'une famille d'ensembles \mathcal{F} est de caractère fini si pour tout ensemble E on a que $E \in \mathcal{F}$ si et seulement si toute partie finie de E appartient à \mathcal{F} .

Démontrer que chacun des deux énoncés suivants est équivalent à l'Axiome du Choix.

1. Si \mathcal{F} est une famille qui satisfait la condition suivante :

Si \mathcal{F}_0 est une sous-famille totalement ordonnée par l'inclusion (en d'autres termes par \subseteq), alors $\bigcup \mathcal{F}_0$ appartient à \mathcal{F} aussi.

Alors \mathcal{F} contient un ensemble maximal par rapport à l'inclusion.

2. Toute famille F d'ensembles de caractère fini possède un élément maximal.

Exercice 3 (Ordres denses linéaires).

Soit \prec l'ordre lexicographique sur \mathbb{Z}^{ω} , les suites d'entiers relatifs.

1. Montrer que \prec définit une relation d'ordre total sur \mathbb{Z}^{ω} .

Dans ce qui suit, on restreint \prec à l'ensemble \mathcal{S} des suites d'entiers relatifs éventuellement constantes (donc les suites f tel qu'il existe $N < \omega$ avec f(n) = f(N) pour tout $n \geq N$).

- 2. Montrer que S est dénombrable.
- 3. Montrer que \prec est une relation d'ordre dense sur \mathcal{S} .
- 4. Montrer que ≺ n'a pas de plus grand ni de plus petit élément.

Exercice 4 (Cofinalité).

Soit α un ordinal. On rappelle qu'un sous-ensemble $X \subseteq \alpha$ est cofinal dans α si $\bigcup X = \alpha$.

- 1. Montrer que si $X \subseteq \alpha$ est cofinal dans α , alors il y a un sous-ensemble cofinal $Y \subseteq \alpha$ ordre-isomorphe à $\operatorname{cf}(\alpha)$ avec $Y \subseteq X$.
- 2. Montrer que si α et β sont deux ordinaux avec des sous-ensembles cofinaux ordre-isomorphes, alors $\operatorname{cf}(\alpha) = \operatorname{cf}(\beta)$.
- 3. Montrer que si α est un ordinal limite, alors $\operatorname{cf}(\aleph_{\alpha}) = \operatorname{cf}(\alpha)$.