
Simplex Regression, Manual

François Wahl

June 2, 2018

This software is a toolbox for performing simplex regression. It is based on the article entitled
’Simplex Regression: Multivariable Parametric Regression under Shape Constraints’ which can
be found here: ’https://hal.archives-ouvertes.fr/hal-01262601/document’.

The soft is written in Matlab R©2016 and is being delivered to you AS IS, with no warranty
as to its use or performance.

Unfortunately, bugs or difficulties may subsist and the author would be very much interested
in any report: please e-mail to Francois.Wahl@univ-lyon1.fr.

system of functions

Currently, the code works

• in one dimension, for 3 systems of functions {fj(x)}Jj=0, namely

1. monomials fj(x) = xdj , where d0 = 0 and d1, · · · , dJ is a sequence of integers.

2. exponentials fj(x) = exp(djx), where d0 = 0 and d1, · · · , dJ are reals (not necessarily
positive).

3. power functions fj(x) = (x + δ)dj , where d0 = 0 and d1, · · · , dJ is a sequence of
positive real numbers, and δ a small offset added to the fj , to avoid any singularity at
x = 0. If δ is too small, numerical difficulties can still occur around 0 when calculating
the vertices of the osculating simplex.

• in dimension 2 and above for traditional monomials: in each dimension v, fv,jv(xv) = xjvv ,
where 0 ≤ jv ≤ Jv.

examples

A few predefined examples are proposed in one and two dimensions in the Matlab files ’FW main180429.m’
and ’FW mainHDS180529.m’. They should be used as a basis for writing your own codes.

1. In one dimension, we compare our results to Hawkin’s simulations. The points used in the
article are stored in the file named ’hawkins.txt’. The equation studied by Hawkin is

y = 4x(x− 2)2(x+ 0.5)2(x2 + 2) + ε, where ε ∼ N(0, 1).

y must be increasing with x.

2. The second example, still in dimension 1, mimics a sigmoid function impaired by noise:
see ’xyb50.txt’. Again, y is monotonically increasing.

1



3. In dimension 2, a set of n points are randomly chosen in [0, 1]× [0, 1] verifying:

y =
1

2

(
x2 +

1

1.4π
sin(2πx2)

)(
1 + (2x1 − 1)3

)
+ ε, where ε ∼ N(0, 0.1).

We have
∂y

∂x1
≥ 0 and

∂y

∂x2
≥ 0.

4. In dimensions 4, the file ’fw.xls’ referred in ’FW mainHDS180529.m’ contains 80 experi-
mental points, on which we must fit a second multivariable polynomial of degree 2 in four
variables. Precisely, we have

y = α0 +
∑

0<j<3

αjx
j1
1 x

j2
2 x

j3
3 x

j4
4 , where j = j1 + j2 + j3 + j4.

y increases when x1 decreases, x2 increases, x3 increases, x4 decreases.

coding

Here is a sketch of the Matlab code for running a simulation in one dimension:

1 % example 1

2 ModelTensor.nvar=1;

3 % choose one of the possible typekernel: ’poly’, ’exp’, power’.

4 ModelTensor.typekernel={’poly’};

5 ModelTensor.exponents=[0,1,2,3,4,5];

6 % number of the variables for which monotony is required:

7 % +1=increasing, -1=decreasing

8 numvar=1;

9 signevar=+1;

10

11 % Display

12 verbose=’yes’;

13

14 % Names

15 Nom_x={’x_1’};

16 Nom_y={’y’};

17

18 % Load the data set (Xexp,yexp)

19 ...

20

21 % Make a translation of Xexp between [0,1]: Xexp --> X

22 ...

23

24 % Launch the algorithm

25 [Equation0, Equationi,

Contraintes]=FW_CC180529(X,yexp,numvar,signevar,ModelTensor,verbose);

26

27 % Post-treatment

28 ...

Listing 1: one dimension

In more dimensions (for example 2), the lines 1 to 10 are changed in:

1 % example 5

2 ModelTensor.nvar=2;

3 ModelTensor.typekernel={’poly’,’poly’};

2



4 ModelTensor.exponents=[

5 0,0 ; 0,1; 0,2; 0,3; 0,4

6 1,0 ; 1,1; 1,2; 1,3; 1,4

7 2,0 ; 2,1; 2,2; %2,3; 2,4

8 3,0 ; 3,1; 3,2; 3,3; 3,4

9 ];

10 % variables for which monotony is required :

11 % +1=increasing, -1=decreasing

12 numvar=[1,2];

13 signevar=[+1,+1];

14 ...

Listing 2: in more than one dimension

A few comments are necessary.

1. In the structure ModelTensor, the field ’exponents’ contains a vector of exponents when
the dimension of the input is one or a matrix of exponents otherwise.

• The exponent 0 corresponds to the constant term.

• In dimension v, each row of ModelTensor.exponents matches one of the fj :

fj(x) = fj1(x1) · · · fjv(xv).

If the function to regress contains J terms, this matrix should have J + 1 rows. The
first column corresponds to the exponents of the first variable in fj1 , the second to
the exponents of the second variable in fj2 , and so on. For example, the matrix of

exponents

0 0
1 0
2 3

 is the representation of the polynomial α0 + α1x1 + α0x
2
1x

3
2. In

Matlab format, it gives: ModelTensor.exponents=[0,0; 1,0; 2,3]. Currently, the code
has been only tested for polynomials in more than one dimension.

• For function of one variable, numvar=1 is mandotory. For more than one variable, the field
’numvar’ indicates the montony requirements. For example, for 3 variables, numvar=[2,3]
means that the resulting function should be monotonically increasing or decreasing with the
second and third variable.

• The field ’signevar’ is a vector the same length as ’numvar’ giving the sign of the require-
ment. +1 means increasing, −1 decreasing. For example, with the previous numvar=[2,3],
signevar=[+1,-1] says that the function is expected to be monotonically increasing with the
second and decreasing with the third variable. Nothing is required for the first variable.

2. ’FW CC180529’ requires that the X values belong to [0, 1].

3. verbose=’yes’ has the effect of producing messages following the progress of the optimization
process. Here is an example:
iter=3,nb of active cnt =2, total nb of constraints =16

iter=3, RMSEold=0.0305462->RMSEnew=0.0271041, RMSEold-RMSEnew=0.0034421.
This means that during the third iteration, 2 constraints were active over a total of 16, and that
the root mean square error has decreased from 0.0305462 to 0.0271041. The optimization ends
when the difference between two successive RMSE is less than 10−6 or if the maximum number of
iterations is reached.

text output

The code produce text results. We explain how it works with an example depicted in the following
code: 30 points are randomly selected in Hawkins’ data set. The function to fit is expressed as
a sum of exponentials within exponents given line 4 of the code.

3



1 % example 2

2 ModelTensor.nvar=1;

3 ModelTensor.typekernel={’exp’};

4 ModelTensor.exponents=[0,0.5,1.2,2,2.1,2.5];

5 % variables for which monotony is required :

6 % +1=increasing, -1=decreasing

7 numvar=1;

8 signevar=+1;

9

10 % Choose the data set.

11 nomvrai=’hawkins’;

12

13 % Number of points to be selected:

14 n=30;

15

16 % Display

17 verbose=’yes’;

18 % Figures

19 graph=’yes’;

20

21 % Noms

22 Nom_x={’x_1’,’x_2’};

23 Nom_y={’y’};

Listing 3: parameters for launching an exponential fit

The output looks like:

---------------

CONSTRAINTS VERIFIED AT THE CORNERS

---------------

variable : x_1

Number of Derivatives <0= 0 (Min= ) Number of Derivatives >0= 2 (Max=

186.88)

---------------

CONSTRAINTS VERIFIED AT THE EXPERIMENTAL POINTS

---------------

Nbr variables = 1, size of the experimental data base= 30, nb of con-

straints=26

variable : x_1

Number of first derivatives <0= 0 (Min= ) Number of first derivatives >0=

30 (Max= 165.998)

RMSE 1.201940

RMSE without constraints 0.953212

In dimension 1, x varies from its minimum to its maximum value. This gives 2 corners in
the domain.

26 constraints were needed. Since we require the resulting function to be monotone increasing
on its definition domain, all the first derivatives should be non negative. This is observed at the
experimental points.

The calculated RMSE for the constrained regression is here RMSE=1.201940. For the uncon-
strained regression RMSE=0.953212 is obtained.

Note that it may happen that the minimum value for the first derivative be slightly negative (something
like 1.24e-14). This numerically can be considered as 0.

4



graphical display

The graphical displays are clearly part of post-treatment procedure. They are shown here as an illustra-
tion. They should be modified to fit different needs.

• Two optional figures are produced in dimension 1: the first one is a diagram of residuals, that is
the residuals versus the experimental y. The second one is a graphical comparison of the fit.

The example shown below (figure 1) comes from the same piece of code as the previous section.

Figure 1: exponential fit to Hawkins’data Residue diagram on the left panel. On the right
the plot compares the UNconstrained in dashed black and constrained regressions in red. The
blue crosses indicate the limits in x of the simplexes generated during the optimization process.

• in dimension 2 and above, no more direct visualization is possible to check whether the obtained
fit is correct or not. Instead we propose a kind of plot that we named ’octopus plot’. For a given
x0, we let vary successively only one coordinate. In the ’HDS’ example, with four input variables,
this gives rise to four curves. The figures of the article are reproduced below (figure 2).

Figure 2: polynomial fit to the data of HDS experiments Residue diagram for the HDS
data on the left panel. On the right the plot compares the UNconstrained and constrained
regressions.

• additionally, in dimension 2, we propose the following diagrams to illustrate where the constraints
have been calculated.

Recall that on figure 1, on the right panel, the blue crosses shows the limits of the simplexes: each
segment between 2 successive crosses corresponds to a simplex. The same feature can be seen in

5



dimension 2, except that now the simplexes are built along squares. In the following example, 2
monotony requirements are set with the code in Listing 2.

This gives the following textual result and diagrams.

---------------

CONSTRAINTS VERIFIED AT THE CORNERS

---------------

variable : x_1

Number of Derivatives <0= 0 (Min= ) Number of Derivatives >0= 4 (Max=

1.00695)

variable : x_2

Number of Derivatives <0= 0 (Min= ) Number of Derivatives >0= 3 (Max=

1.53403)

---------------

CONSTRAINTS VERIFIED AT THE EXPERIMENTAL POINTS

---------------

Nbr variables = 2, size of the experimental data base= 30, nb of con-

straints=2633

variable : x_1

Number of first derivatives <0= 0 (Min= ) Number of first derivatives >0=

30 (Max= 0.827015)

variable : x_2

Number of first derivatives <0= 0 (Min= ) Number of first derivatives >0=

30 (Max= 0.966707)

RMSE 0.094611

RMSE without constraints 0.067163

Figure 3: constraints with 2 monotony requirements

6


