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Abstract. In [8] Dumont and Randrianarivony have given several combinatorial interpretations
for the coefficients of the Euler-Seidel matrix associated to n!. In this paper we consider a q-
analogue of their results, which leads to the discovery of a new mahonian statistic “maf” on the
symmetric group. We then give new proofs and generalizations of some results of Gessel and
Reutenauer [12] and Wachs [17].
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1. Introduction
Euler (see [8]) considered the difference table (dk

n)0≤k≤n, where the generic coefficients
dk

n are defined by

dn
n = n! and dk

n = dk+1
n −dk

n−1 (1≤ k ≤ n−1). (1.1)

Let ak
n = dk

n+k (n, k ≥ 0). Then the above relations can be written as

ak
0 = k! and ak

n = ak−1
n +ak−1

n+1 (n, k ≥ 0).

The matrix (ak
n)n,k≥0 is also called the Seidel matrix associated to the sequence a0

n in
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the literature (see [7, 9]). The first terms of these matrices are as follows:

n\k 0 1 2 3 4 5
0 1
1 0 1
2 1 1 2
3 2 3 4 6
4 9 11 14 18 24
5 44 53 64 78 96 120

(dk
n)

−→

k\n 0 1 2 3 4 5
0 1 0 1 2 9 44
1 1 1 3 11 53
2 2 4 14 64
3 6 18 78
4 24 96
5 120

(ak
n)

Iterating the difference equation (1.1) we derive

a0
n = d0

n = n!
(

1− 1
1!

+
1
2!
−·· ·+(−1)n 1

n!

)
, (1.2)

which is the classical derangement number dn, that is, the number of derangements on
{1,2, · · · ,n} (cf. [16, p. 67]).

In several recent papers [4, 6, 12, 17], the q-maj counting of the derangements on
{1,2, · · · ,n} has been studied. Consider the q-derangement numbers dn(q) defined by

dn(q) = ∑
σ∈Dn

qmajσ, (1.3)

where Dn is the set of all derangements on {1,2, · · · ,n}. Then the following q-analogue
of equation (1.2) has been obtained:

dn(q) = [n]q!
n

∑
i=0

(−1)i q( i
2)

[i]q!
(n≥ 1). (1.4)

Here, [n]q = 1+q+ · · ·+qn−1 is the q-analogue of the nonnegative integer n and [n]q! =
[1]q[2]q · · · [n]q is the q-analogue of n!.

In this paper, we shall put the q-derangement numbers in the context of a Seidel
matrix as Dumont and Randrianarivony [8] did for the ordinary derangement numbers.
To this end, in section 2 we introduce the notion of q-Seidel matrix. In section 3 we
define a new statistic “maf” on permutations and then prove bijectively that this is a
mahonian statistic. In section 4 we consider the q-Seidel matrix associated to the q-
derangement numbers and give combinatorial interpretations for all of the coefficients
in this matrix in terms of the new statistic ”maf”. As a consequence we get a new proof
of a formula of Gessel and Reutenauer [12] and of Wachs [17]. Finally we close this
paper with some remarks and open questions.

We will need the following notations and results of q-calculus (see [11]). The q-
binomial coefficients are defined by(

n
k

)
q
=

[n]q!
[k]q![n− k]q!

(n≥ k ≥ 0).
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Define also (t;q)n = (1− t)(1− qt) · · ·(1− qn−1t) and (t;q)∞ = limn→∞(t;q)n. Then
the two q-analogues of the exponential series et = ∑n≥0 tn/n! are defined by

eq(t) = ∑
n≥0

tn

[n]q!
=

1
((1−q)t;q)∞

, (1.5)

Eq(t) = ∑
n≥0

q(n
2)tn

[n]q!
= (−(1−q)t;q)∞. (1.6)

Notice that eq(t) ·Eq(−t) = 1.

2. q-Seidel matrices

Let us introduce the following generalization of Seidel matrix.

Definition 2.1. Given a sequence (an(x,q)) (n≥ 0) of elements in a commutative ring,
we call the q-Seidel matrix asssociated to (an(x,q)) the double sequence (ak

n(x,q))
(n≥ 0,k ≥ 0) given by the recurrence{

a0
n(x,q) = an(x,q), (n≥ 0)

ak
n(x,q) = xqnak−1

n (x,q)+ak−1
n+1(x,q). (k ≥ 1,n≥ 0)

(2.1)

Moreover (a0
n(x,q)) is called the initial sequence and (an

0(x,q)) the final sequence of
the q-Seidel matrix.

Lemma 2.1. We have

ak
n(x,q) =

k

∑
i=0

(xqn)k−i
(

k
i

)
q
a0

n+i(x,q). (2.2)

Proof: Recall that (
n
k

)
q
= qn−1

(
n−1
k−1

)
q
+
(

n−1
k

)
q
.

We proceed by induction on k. Clearly (2.2) is valid for k = 1. Suppose (2.2) is true for
k−1. We then have

ak
n(x,q) =

k−1

∑
i=0

(
k−1

i

)
q

(
(xqn)k−ia0

n+i(x,q)+(xqn+1)k−1−ia0
n+1+i(x,q)

)
= (xqn)ka0

n(x,q)+
k−1

∑
i=1

(xqn)k−i
(

k−1
i

)
q
a0

n+i(x,q)

+
k−2

∑
i=0

(xqn+1)k−1−i
(

k−1
i

)
q
a0

n+1+i(x,q)+a0
n+k(x,q)

= (xqn)ka0
n(x,q)+

k−1

∑
i=1

(xqn)k−i
(

k
i

)
q
a0

n+i(x,q)+a0
n+k(x,q).

This completes the proof.
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In particular we pass from the initial sequence to the final sequence and conversely
by the Gauss inversion formula [2, p. 96]:

an
0(x,q) =

n

∑
i=0

xn−i
(

n
i

)
q
a0

i (x,q), (2.3)

a0
n(x,q) =

n

∑
i=0

(−x)n−iq(n−i
2 )
(

n
i

)
q
ai

0(x,q). (2.4)

Define the generating functions as follows:

a(t) = ∑
n≥0

a0
n(x,q)tn, ā(t) = ∑

n≥0
an

0(x,q)tn,

and
A(t) = ∑

n≥0
a0

n(x,q)
tn

[n]q!
, Ā(t) = ∑

n≥0
an

0(x,q)
tn

[n]q!
.

Proposition 2.1. The generating functions of the initial and final sequences are related
by the following equations:

ā(t) = ∑
n≥0

a0
n(x,q)

tn

(xt;q)n+1
; (2.5)

A(t) = eq(xt)A(t). (2.6)

Proof: Note that
1

(t;q)n+1
=

∞

∑
k=0

(
n+ k

k

)
q
tk.

Hence

∑
n≥0

a0
n(x,q)

tn

(xt;q)n+1
= ∑

n,k≥0

(
n+ k

k

)
q
a0

n(x,q)xktn+k

= ∑
m≥0

tm
m

∑
n=0

(
m
n

)
q
xm−na0

n(x,q)

= ∑
m≥0

am
0 (x,q)tm.

By (1.5) we have

eq(xt)A(t) = ∑
i, j≥0

a0
i (x,q)t i

[i]q!
· x jt j

[ j]q!

= ∑
i, j≥0

(
i+ j

i

)
q
a0

i (x,q)x j t i+ j

[i+ j]q!

= ∑
n≥0

( n

∑
i=0

xn−i
(

n
i

)
q
a0

i (x,q)
) tn

[n]q!
,

which completes the proof of (2.6) in view of (2.3).
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Remark: If x = q = 1 we get the classical formulas [7, 9]:

ā(t) =
1

1− t
a
(

t
1− t

)
and Ā(t) = et A(t).

If x = 0 we have Ā(t) = A(t).

3. A new mahonian statistic “maf”

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}. Recall that i∈ [n] is a fixed point
of σ ∈ Sn if σ(i) = i. Let fixσ denote the number of fixed points of σ. The permutation
σ has a descent at i ∈ {1,2, . . . ,n−1} if σ(i) > σ(i+1) and we call i the descent place
of σ. The major index of σ, denoted majσ, is the sum of all the descent places of σ. Let
FIX(σ) = {i | σ(i) = i} be the set of all fixed points of σ and σ̃ the restriction of σ to
{1,2, . . . ,n}\FIX(σ).

Definition 3.1. If σ ∈ Sn with FIX(σ) = {i1, i2, . . . , il}, then the statistic “maf” is de-
fined by

mafσ =
l

∑
j=1

(i j− j)+maj σ̃.

Example 3.1. Let σ = 321659487. Then FIX(σ) = {2, 5, 8} and σ̃ = 316947.
Hence fixσ = 3, majσ = 1 + 2 + 4 + 6 + 8 = 21 and mafσ = (2−1)+ (5−2)+ (8−
3)+(1+4) = 14.

We now show that the bistatistics (fix,maf) and (fix,maj) are equidistributed on the
symmetric group Sn (Corollary 3.1). In particular, this shows that maf is a Mahonian
statistic.

Let σ = x1x2 . . .xn ∈ Sn. For convenience we put x0 = −∞ and xn+1 = +∞. For
0 ≤ i ≤ n, a pair (i, i + 1) of positions is the j-th slot of σ provided that xi 6= i, i.e., i is
not a fixed point of σ and that σ has i− j fixed points f such that f < i. Clearly we can
insert a fixed point into the j-th slot to obtain the permutation

(σ, j) = x′1x′2 . . .x′i (i+1) x′i+1 . . .x′n, (3.1)

where x′ = x if x≤ i and x′ = x+1 if x > i.
More generally, if σ is a derangement in Sn and (i1, i2, . . . , im) a sequence of integers

such that 0≤ i1 ≤ i2 ≤ ·· · ≤ im ≤ n, we can insert m fixed points into the derangement
σ successively, finally obtaining

(σ, i1, . . . , im) = ((σ, i1, . . . , im−1), im).

Note that the fixed points of this last permutation are i1 +1, i2 +2, . . . , im +m.

Example 3.2. Let σ = 2143 and (i1, i2, . . . , im) = (0,1,1,4). Then we have (σ,0) =
13254, (σ,0,1) = 143265, (σ,0,1,1) = 1534276 and (σ,0,1,1,4) = 15342768.



6 R. Clarke, G. Han and J. Zeng

We can of course undertake the reverse operation. That is, if a permutation σ in
Sm+n has m fixed points we can find a unique derangement dp(σ)∈ Sn, called (following
Wachs [17]) the derangement part of σ, and a unique sequence of integers i1 ≤ ·· · ≤ im,
which we call the fixed point sequence of σ, such that

σ = (dp(σ), i1, . . . , im).

It is easy to see that
mafσ = majdp(σ)+ i1 + · · ·+ im. (3.2)

Consider a permutation σ with n slots. The j-th slot (i, i+1) of σ is said to be green
if des(σ, j) = desσ, red if des(σ, j) = desσ+1. We assign values to the green slots of
σ from right to left, from 0 to g, and to the red slots from left to right, from g +1 to n.
Denote the value of the j-th slot by g j. (When we refer to the ”largest” slot, we will
mean largest in terms of j.)

Example 3.3. Let σ = 2143. Then (σ,0) = 13254, (σ,1) = 32154, (σ,2) = 21354,
(σ,3) = 21543, (σ,4) = 21435. Hence slots 0, 2 and 4 are green, while 1 and 3 are
red. Therefore

(g0, . . . ,gn) = (2,3,1,4,0). (3.3)

It is easy to see that every slot is either green or red. In fact, one can see that (i, i+1)
is green if either xi+1 < xi ≤ i, or i < xi+1 < xi, or xi ≤ i < xi+1. So (i, i + 1) is red if
either xi+1 ≤ i < xi, or i < xi < xi+1 or xi < xi+1 ≤ i. (Expressed in terms of cyclic
intervals (cf. [13]), slot (i, i+1) is green if i+1 ∈

]]
xi,xi+1

]]
.)

Denote by d j the number of descents of (σ, j) that lie to the right of x′i in (3.1).

Lemma 3.1. Let σ be a permutation in Sn. If the j-th slot (i, i + 1) is green then
maj(σ, j)−majσ = d j, if (i, i+1) is red then maj(σ, j)−majσ = d j + i.

Proof: Let (i, i + 1) be a green slot. Since no new descents are formed by inserting a
fixed point into the j-th slot of σ, maj(σ, j)−majσ equals the number of descents of σ

that are displaced to the right when this fixed point is inserted. This number equals d j.
The case in which (i, i+1) is red is dealt with similarly.

Remark: If σ is a derangement in Sn, the j-th slot of σ is just ( j, j +1) for 0≤ j ≤ n.

Lemma 3.2. If σ is a derangement in Sn, then

maj(σ, j) = majσ+g j for 0≤ j ≤ n.

Proof: Let i and j be slots. It follows from Lemma 3.1 that if i and j are both green and
i < j then maj(σ, i)≥maj(σ, j), while if i and j are both red and i < j then maj(σ, i)≤
maj(σ, j). Therefore 0 is the green slot of σ of highest value, and if i is red and j
is green we have maj(σ, i) ≥ maj(σ, j). This is because for any red slot i we have
maj(σ, i) ≥ maj(σ,0) by Lemma 3.1. Hence, if m is the largest red slot of σ, i.e.,
gm = n, for any two slots i and j with gi < g j we have

majσ≤maj(σ, i)≤maj(σ, j)≤maj(σ,m).
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It therefore suffices to show that

maj(σ,m) = majσ+n.

Now, consider a green slot (i, i+1). If i+1 is a non-excedance place, i.e., xi+1 ≤ i+1,
then, as σ is a derangment, xi+1 ≤ i. Hence xi+1 < xi ≤ i. Thus i is a non-excedance
place. Since n is a non-excedance place and m + 1, m + 2, . . . , n are green slots, we
have

m+1 > xm+1 > · · ·> xn.

As the slot m is red, either m is a non-excedance place and m is a non-descent or m is an
excedance place and m is a descent. In each case, inserting a fixed point into the m-th
slot introduces a new descent for i = m + 1 and moves n− (m + 1) descents one place
further to the right. Hence

maj(σ,m) = majσ+(m+1)+(n−m−1) = majσ+n,

as required.

Remark: Suppose that σ is a derangement in Sn and 0≤ i≤ n. It follows from Lemmas
3 and 4 that di = gi if i is green and di = gi− i if i is red. If i is green then

maj(σ, i, i) = maj(σ, i)+gi.

Hence, if j ≤ i, it follows from Lemma 3.2 that

maj(σ, j, i) = maj(σ, i)+g j.

On the other hand, if i is red, then

maj(σ, i, i) = maj(σ, i)+gi− i.

Now one can easily see that, if k is the largest green slot to the left of slot i, gk = gi− i.
Hence, if j < i, it follows again from Lemma 3.2 that

maj(σ, j, i) = maj(σ, i)+g j +1.

We are now ready to state the key result of this section. Let S(σ,m) denote the set
of permutations in Sn+m with derangement part σ ∈Dn. Note that

S(σ,m) = {(σ, i) | i = (i1, . . . , im) and 0≤ i1 ≤ i2 ≤ ·· · ≤ im ≤ n}.

Theorem 3.1. There is a bijection Ψ on S(σ,m) such that if Ψ(σ, i) = (σ, j) then

maj(σ, i) = maf(σ, j). (3.4)

Proof: We divide the proof into two parts.

The definition of Ψ. We will define such a bijection Ψ by induction on m≥ 0.
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First, Ψ is the identity mapping on S(σ,0). Next, we define Ψ on S(σ,1) by

Ψ(σ, i) = (σ,gi).

Then using equation (3.2) and Lemma 3.2 we see that Ψ satisfies equation (3.4).
Let m > 1 and suppose that Ψ has been defined on S(σ,k) for 0≤ k ≤ m−1. Con-

sider τ = (σ, i1, . . . , im). Suppose that the im-th slot of (σ, i1, . . . , im−1) is green. Then,
if

Ψ(σ, i1, . . . , im−1) = (σ, j2, . . . , jm),

we define
Ψ(τ) = (σ,gim , j2, . . . , jm).

Suppose that the im-th slot of (σ, i1, . . . , im−1) is red. Then the slots i1, . . . , im cannot be
all the same. Let k be the smallest positive integer such that im−k < im. Thus im−k <
im−k+1 = · · ·= im. Then, if

Ψ(σ, i1, . . . , im−k) = (σ, j1, . . . , jm−k),

we define

Ψ(τ) = (σ,gim − im, . . . ,gim − im︸ ︷︷ ︸
k−1 terms

, j1 +1, . . . , jm−k +1,gim).

The following lemma is easily proved by induction.

Lemma 3.3. Let τ = (σ, i1, . . . , im) and Ψ(τ) = (σ, j1, . . . , jm).
Suppose that at least one of the slots i1, . . . , im is either green or is repeated. Let

il be the largest such slot. If il is green then j1 = gil . If il is red and is repeated then
j1 = gil − il .

If on the other hand all of the slots i1, . . . , im are red and are distinct, then j1 = gi1 .
Suppose that at least one of the slots i1, . . . , im is red. If il is the largest red slot then

jm = gil .
If on the other hand all of these slots are green then jm = gi1 .

It follows from this lemma that j1, . . . , jm as defined above are in ascending order.
We now show by induction on m that Ψ satisfies equation (3.4).
If im is green, then using Lemma 3.2 we have

maj(σ, i1, . . . , im) = maj(σ, i1, . . . , im−1)+gim

= maf(σ, j2, . . . , jm)+gim

= maf(σ,gim , j2, . . . , jm).

If im is red, let k be the smallest positive integer such that im−k < im, then

maj(σ, i1, . . . , im)
= maj(σ, i1, . . . , im−k)+(m− k)+(k−1)(gim − im)+gim

= maf(σ, j1, . . . , jm−k)+(m− k)+(k−1)(gim − im)+gim

= maf(σ,gim − im, . . . ,gim − im︸ ︷︷ ︸
k−1 terms

, j1 +1, . . . , jm−k +1,gim).
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This is because inserting the first fixed point im into (σ, i1, . . . , im−k) adds a descent and
increases maj by gim +(m− k). Inserting each of the remaining fixed points im has the
same affect as inserting a fixed point into a green slot of value gim − im.

Ψ is a bijection. It remains to show that Ψ is a bijection on S(σ,m). It suffices to
show that Ψ is an injection.

We use induction on m. The result is clearly true for m = 0 and m = 1.
Let τ = (σ, i1, . . . , im) and Ψ(τ) = (σ, j1, . . . , jm). Suppose that Ψ(τ) = Ψ(τ′), where

τ′ = (σ, i′1, . . . , i
′
m).

If both im and i′m are green or red then it is easy to show using the induction hypoth-
esis that τ = τ′. So suppose that im is green and i′m is red. Thus j1 = gim , jm = gi′m .

Suppose that i1, . . . , im are all green. Then jm = gi1 . Hence i1 = i′m, contradiction.
Let iu be the largest red slot amongst i1, . . . , im. Then jm = giu . Hence i′m = iu < im.
Case 1: Suppose that one of the slots i′1, . . . , i

′
m is either green or is repeated. Let i′v

be the largest such slot. If i′v is green, then

Ψ(τ′) = (σ,gi′v +(m− v), . . . ,gi′m).

Hence j1 = gim = gi′v +(m− r). Since im and i′v are both green, this means that im ≤
i′v < i′m, contradiction.

If i′v is red, then

Ψ(τ′) = (σ,gi′v − i′v +(m− v), . . . ,gi′m).

Hence j1 = gim = gi′v − i′v +(m− r). But gi′v − i′v is the value of the largest green slot iw
less than i′v. As im is green this means that im ≤ iw < i′v ≤ i′m, contradiction.

Case 2: Suppose that all of the slots i′1, . . . , i
′
m are red and distinct. Then

Ψ(τ′) = (σ,gi′1
+(m−1), . . . , i′m).

Hence j1 = gim = g′i1 +(m−1) > g′i−1. This is a contradiction, since im is green and i′1
is red.

Example 3.4. Let σ = 2143 and consider (σ,0,1,1,4) ∈ S(σ,4). Then the values of
the slots of σ have been calculated in (3.3). The bijection Ψ goes as follows:
since slot 0 is green in σ we have

Ψ(σ,0) = (σ,g0) = (σ,2);

since slot 1 is red we have

Ψ(σ,0,1) = (σ,2+1,g1) = (σ,3,3);

again, since slot 1 is red we have

Ψ(σ,0,1,1) = (σ,g1−1,2+1,g1) = (σ,2,3,3);

Finally, since slot 4 is green we obtain

Ψ(σ,0,1,1,4) = (σ,g4,2,3,3) = (σ,0,2,3,3) ∈ S(σ,4).

Let τ = (σ,0,1,1,4) and τ′ = (σ,0,2,3,3). Then τ = 15342768 and τ′ = 13248675.
It is easy to see that majτ = 12 and mafτ′ = 12. Hence we have checked equation (3.4).
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Using theorem 3.1, we obtain the following result.

Corollary 3.1. (a) There is a bijection φ : Sn → Sn such that for any σ ∈ Sn we have

(fix, maf)σ = (fix, maj)φ(σ).

(b) The bi-statistic (fix,maf) is equidistributed with the bi-statistic (fix,maj) on the
symmetric group Sn.

The following result was first proved by Wachs [17, corollary 3].

Corollary 3.2. Let σ be a derangement in Sn and m≥ 0. We have

∑
π∈S(σ,m)

qmajπ = qmajσ

(
m+n

n

)
q
.

Proof: By theorem 5 we have

∑
π∈S(σ,m)

qmajπ = ∑
π∈S(σ,m)

qmafπ

= qmajσ
∑

0≤i1≤···≤im≤n
qi1+i2+···im

= qmajσ

(
m+n

n

)
q
.

The last line follows from a well-known result [1, p. 33].

4. q-derangement matrices

We first prove the following result.

Proposition 4.1. Let (ak
n(x,q)) be a q-Seidel matrix. Then the following three condi-

tions are equivalent:

a0
n(x,q) = [n]q!

n

∑
i=0

(−1)i q( i
2)

[i]q!
, (4.1)

an
0(x,q) = [n]q!

(
1+

n

∑
i=1

(x−1)(x−q) · · ·(x−qi−1)
[i]q!

)
, (4.2)

an
0(1,q) = [n]q! and a0

n(x,q) is independent of x. (4.3)

Proof: By the q-binomial formula [11, p.7]

∞

∑
n=0

(a;q)n

(q;q)n
tn =

(at;q)∞

(t;q)∞

,

we have in view of (1.5) and (1.6),

1+
∞

∑
n=1

(x−1)(x−q) · · ·(x−qn−1)
[n]q!

tn = eq(xt)Eq(−t).
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Therefore the generating functions of (4.1), (4.2) and (4.3) are respectively the follow-
ing:

A(t) = ∑
n≥0

a0
n(x,q)

tn

[n]q!
=

Eq(−t)
1− t

, (4.4)

A(t) = ∑
n≥0

an
0(x,q)

tn

[n]q!
=

eq(xt)Eq(−t)
1− t

, (4.5)

A(t)|x=1 = ∑
n≥0

an
0(1,q)

tn

[n]q!
=

1
1− t

. (4.6)

So, it suffices to prove that the equivalence of (4.4), (4.5) and (4.6). Indeed,
(4.4) ⇐⇒ (4.5): this follows from proposition 2;
(4.5) =⇒ (4.6): this is obvious;
(4.6) =⇒ (4.4): since A(t) is independent of x, equation (4.4) follows then from

(2.6) by setting x = 1.

Definition 4.1. A q-derangement matrix is the q-Seidel matrix satisfying any of the
three conditions of proposition 8.

If x = 1, then an
0(x,q) = [n]q! and the q-derangement matrix is as follows :

k\n 0 1 2 3 4

0 1 0 q q+q2
( q+2q2+2q3

+2q4+q5+q6

)
1 1 q q+q2 +q3

( q+2q2+2q3

+3q4+2q5+q6

)
2 1+q q+2q2 +q3

( q+2q2+3q3

+4q4+3q5+q6

)
3 [3]q!

( q+3q2+5q3

+5q4+3q5+q6

)
4 [4]q!

(ak
n(1,q))

Denote by Sk
n the set of permutations on [n + k] of which all the fixed points are

included in {n + 1,n + 2, . . . ,n + k}. In particular S0
n is the set of permutations with-

out fixed points on [n] and Sk
0 the set of all permutations on [k]. The following result

generalizes a result of Dumont and Randrianarivony [8].

Theorem 4.1. The coefficients ak
n(x,q) (n, k ≥ 0) in a q-derangement matrix have the

following combinatorial interpretation:

ak
n(x,q) = ∑

σ∈Sk
n

xfixσqmafσ. (4.7)
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Proof: Notice that Sk−1
n+1 ⊂ Sk

n. Set

∆
k
n = Sk

n \Sk−1
n+1 = {σ ∈ Sk

n | σ(n+1) = n+1}.

We construct a bijection ϕ : ∆k
n → Sk−1

n such that for all σ ∈ ∆k
n,

mafσ = n+maf(ϕ(σ)),
fixσ = 1+fix(ϕ(σ)).

Indeed, if σ ∈ ∆k
n we define ϕ(σ) as the word obtained from σ by deleting n + 1 and

reduce all the values strictly bigger than n+1. It is readily verified that ϕ is the desired
bijection. Therefore

∑
σ∈Sk

n

xfixσqmafσ = xqn
∑

σ∈Sk−1
n

xfixσqmafσ + ∑
σ∈Sk−1

n+1

xfixσqmafσ, (4.8)

which is the recurrence (2.1). So it remains to check the initial condition. Now Sn
0 = Sn

and it is well-known [14] that ∑σ∈Sn qmajσ = [n]q!, so it follows from corollary 3.1 that

an
0(1,q) = ∑

σ∈Sn

qmafσ = ∑
σ∈Sn

qmajσ = [n]q!.

The theorem follows then from proposition 4.1, since a0
n(x,q) is clearly independent of

x.

Remark: Since (fix, maf) and (fix, maj) are not equidistributed on S2
1 we cannot replace

maf by maj in the above theorem.

From Corollary 3.1, proposition 4.1 and theorem 4.1 we derive the following result.

Corollary 4.1. The final sequence of the q-derangement matrix has the following in-
terpretation:

an
0(x,q) = ∑

σ∈Sn

xfixσqmafσ (4.9)

= ∑
σ∈Sn

xfixσqmajσ (4.10)

= [n]q!

(
1+

n

∑
i=1

(x−1)(x−q) · · ·(x−qi−1)
[i]q!

)
. (4.11)

Note that the last equation has been obtained by Gessel and Reutenauer [12] and by
Wachs [17] in the special x = 0 case using different methods.

5. An open problem about q-succession numbers

Let σ be a permutation in Sn. For convenience put σ(0) = 0. We say that an element
p (with 1 ≤ p ≤ n) is a succession of σ if σ(p) = σ(p− 1) + 1. The p is called the
succession position, while σ(p) is called the succession value. Let SUC(σ) be the set
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of succesion values of σ and let sucσ be the number of successions of σ. For example,
if

σ =
(

1 2 3 4 5 6 7 8 9
1 4 3 8 9 5 6 7 2

)
,

then SUC(σ) = {1,9,6,7} and sucσ = 4.
We use a variant of Foata’s first fundamental transformation [10] to show that the

statistics fix and suc are equidistributed on Sn.
Given a permutation σ = σ(1)σ(2) · · ·σ(n) ∈ Sn we set σd = σ(2) · · ·σ(n)σ(1). We

call the standard form of the factorization into cycles of σ the unique writing σ̄ such
that in each cycle (a,σ(a), . . . ,σl(a)) the maximum σl(a) is in the last position and the
cycles of σ are decreasingly ordered according to their maxima. (Note that this is not
the usual definition of standard form.) We define ϕ(σ) as the permutation obtained by
erasing the parentheses in the standard form of σ̄d .

The following lemma is easy to verify.

Lemma 5.1. The mapping ϕ is a bijection on Sn such that for all σ ∈ Sn, FIX(σ) =
SUC(ϕ(σ)) and fixσ = sucϕ(σ). Hence the statistics fix and suc are equidistributed
on Sn.

For example, if σ = 142836759 ∈ S9, then

σ
d = 428367591 and σ̄

d = (14389)(567)(2).

Erasing the parentheses we obtain the permutation ϕ(σ) = 143895672. We have

FIX(σ) = SUC(ϕ(σ)) = {1,6,7,9}.

Define the statistic

suc′σ =

{
sucσ, if σ(1) 6= 1,
sucσ−1, if σ(1) = 1;

and let
Fn(x) = ∑

σ∈Sn

xfixσ, Sn(x) = ∑
σ∈Sn

xsuc′σ. (5.1)

Then, using lemma 5.1, we obtain a bijective proof of the following known results
(See [3, 15]).

Proposition 5.1. We have

Sn+1(x) = Fn+1(x)+(1− x)Fn(x), (5.2)

and in particular
Sn+1(0) = dn+1 +dn. (5.3)

Setting q = 1 in (4.20) we see that

∑
n≥0

Fn(x)
tn

n!
=

e(x−1)t

1− t
. (5.4)
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Hence, from equation (5.2), we have

∑
n≥0

Sn(x)
tn

n!
=

e(x−1)t

1− t
+(1− x) ∑

n≥1
Fn−1(x)

tn

n!
, (5.5)

in which by convention S0(x) = F0(x) = 1. Thus

∑
n≥0

Sn(x)
tn

n!
=

e(x−1)t

1− t
+(1− x)

Z t

0

e(x−1)z

1− z
dz. (5.6)

Let L be the formal Laplace transformation on the ring of formal power series, that is,
L(∑anxn/n!) = ∑anxn. Then

∑
n≥0

Fn(x)tn = L

(
e(x−1)t

1− t

)
= ∑

n≥0

n!tn

[1− (x−1)t]n+1 . (5.7)

Therefore

∑
n≥0

Sn(x)tn = ∑
n≥0

Fn(x)tn +(1− x) ∑
n≥0

Fn(x)tn+1

= [1− (x−1)t] ∑
n≥0

Fn(x)tn

= ∑
n≥0

n!tn

[1− (x−1)t]n
. (5.8)

In the case of q = 1, using lemma 11, we can restate theorem 9 in terms of succes-
sions. Unfortunately, since the mapping ϕ does not keep track of the maj statistic, we
do not have a full interpretation in the last model.

The distribution of our statistics on S3 is as follows:

σ\stat maf maj suc fix
1 2 3 0 0 3 3
1 3 2 1 2 1 1
2 1 3 3 1 0 1
2 3 1 2 2 1 0
3 1 2 1 1 1 0
3 2 1 2 3 0 1

Statistic distributions on S3

Finally we record two open problems related to our work.
1) Find a mahonian statistic “mag” such that (suc,mag) is equidistributed with

(fix,maj) on the symmetric group Sn.
2) Generalize the statistic “maf” on permutations to words as in [5, 13] for other

mahonian statistics.
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