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Présentation de la Collection 

Mathématiques à l'Université 

Depuis 1997, cette collection (alors appelée "Mathématiques pour le deuxième cycle") se 
propose de mettre à la disposition des étudiants de troisième, quatrième et cinquième 
années d'études supérieures en mathématiques des ouvrages couvrant l 'essentiel des 
programmes actuels des universités françaises. Certains de ces ouvrages pourront être 
utiles aussi aux étudiants qui préparent le CAPES ou 1' Agrégation, ainsi qu'aux élèves 
des Grandes Écoles et aux ingénieurs désirant actualiser leurs connaissances. 

Nous avons voulu rendre ces livres accessibles à tous : les sujets traités sont présentés 
de manière simple et progressive, tout en respectant scrupuleusement la rigueur 
mathématique. Chaque volume comporte un exposé du cours avec des démonstrations 
détaillées de tous les résultats essentiels, des énoncés d'exercices et leurs solutions. 

L'ouvrage de Monsieur Gabriel Peyré, que nous sommes heureux d'accueillir dans cette 
collection, est tout à fait novateur et d'un grand intérêt. Alors que la transformation de 
Fourier est traditionnellement enseignée d'abord en Analyse, pour les fonctions d'une 
variable réelle, l 'auteur a choisi de présenter cette théorie pour les fonctions définies sur 
un groupe fini . Cette présentation lui permet, d'une part d'éviter les difficultés liées à la 
convergence des intégrales (remplacées par des sommes finies), d'autre part et surtout de 
mettre en lumière le rôle des symétries provenant de la structure de groupe, à l 'origine des 
remarquables propriétés de cette transformation. 

L'auteur a su présenter de manière naturelle et facile à assimiler des notions riches et 
profondes. Dans son ouvrage, les chapitres présentant des aspects théoriques alternent 
de manière très heureuse avec ceux traitant d'applications. Les débutants ne seront pas 
déroutés, et les lecteurs plus avancés trouveront dans cet ouvrage des points de vue 
nouveaux qui enrichiront leurs connaissances et approfondiront leur compréhension du 
sujet. 

Charles-Michel Marle Philippe Pilibossian 





Avant-propos 

Loin du temps, de l'espace, un homme est égaré, 

Mince comme un cheveu, ample comme l'aurore, 

Les naseaux écumants, les deux yeux révulsés, 

Et les mains en avant pour tâter le décor. 

RAYMOND QUENEAU, L'explication des métaphores, 

Les Ziaux (1943). 

Il existe de très nombreux livres sur la transformée de Fourier ; cependant, rares sont ceux 
s 'adressant à un public pluridisciplinaire. Ecrire un livre pour des ingénieurs avec des 
concepts algébriques est un vrai défi, autant, si ce n'est plus, qu'écrire un livre d'algèbre 
qui fasse toucher du doigt les applications des théories rencontrées. C'est ce défi que 
ce livre a tenté de relever. Ainsi, chaque lecteur pourra se faire un programme « à la 
carte » et puiser dans des énoncés ou des programmes informatiques des éléments précis 
pour asseoir ses connaissances dans le domaine, ou les appliquer à des problèmes plus 
concrets. 
L'exposé est volontairement très détaillé et ne nécessite que peu de connaissances préa­
lables, mentionnées au début des chapitres concernés. Nul doute qu'un bon élève de li­
cence devrait pouvoir aborder cet exposé sans grande difficulté. Le lecteur pourra avoir 
besoin de façon ponctuelle de quelques notions avancées sur les groupes finis ainsi que 
d'une certaine familiarité avec les actions de groupes. Un élève agrégatif devrait quant à 
lui pouvoir trouver de nombreuses applications et développements autour du programme 
officiel. 

Je n'ai pas hésité à répéter les définitions et notations importantes. Par exemple, la notion 
de convolution, abordée sous de nombreux angles (groupe abélien, traitement du signal, 
groupe non commutatif), est à chaque fois replacée dans son contexte. Ainsi, les différents 
paragraphes, bien que suivant une progression logique, ont une vraie unité et peuvent être 
lus de façon non linéaire. 

Le premier chapitre utilise le langage de la théorie des groupes pour expliquer les notions 
principales et démontrer les énoncés dont il sera fait usage par la suite. Le deuxième cha­
pitre applique les résultats obtenus à des problèmes divers, et constitue un premier contact 
avec les algorithmes rapides (transformée de Walsh par exemple). Le troisième chapitre 
est un exposé sur la transformée de Fourier discrète. Même s ' il réinvestit les résultats du 
premier chapitre, il peut être lu par exemple par un informaticien souhaitant comprendre 
les mécanismes des algorithmes de transformées discrètes . Le quatrième chapitre présente 
des applications diverses de la transformée de Fourier discrète, et constitue un complé­
ment indispensable du chapitre précédent, pour bien comprendre les mécanismes mis en 
jeu ainsi que leur utilisation dans des situations pratiques. Le cinquième chapitre décline 
des idées et des algorithmes plus originaux autour de la transformée de Fourier, donnant 
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lieu à de nombreuses applications. Le sixième chapitre nécessite quelques connaissances 
un peu plus poussées, notamment un peu de familiarité avec la théorie des corps finis . 
Il étudie les transformées à valeurs dans un corps fini, et présente des applications aux 
codes correcteurs . Les deux derniers chapitres (les plus difficiles), sont de nature plus 
algébrique, et se proposent de généraliser les constructions déjà effectuées au cas des 
groupes finis non commutatifs. Le septième chapitre expose la théorie des représentations 
linéaires. Le huitième et dernier chapitre applique cette théorie dans des champs à la fois 
théoriques (étude de la simplicité des groupes) et pratiques (analyse spectrale) .  

Une bonne connaissance des propriétés algébriques de la transformée de Fourier est, à 
mon sens, très utile pour construire des leçons d'agrégation à la fois tournées vers les 
applications et avec des bases théoriques solides . De nombreuses notions au programme 
de l ' agrégation seront passées en revue dans ce livre. Tout d' abord la notion de groupes 
finis est au cœur du problème abordé dans ce livre. Les groupes cycliques tels Z/nZ sont 
plus particulièrement mis en avant : ce sont les groupes les plus simples, mais aussi les 
plus utilisés dans la pratique. Les nombres complexes de module 1 sont présents tout au 
long de l 'exposé. L'utilisation d'espaces hermitiens et de transformations unitaires est une 
constante dans la théorie de Fourier. La transformée de Fourier continue et les séries de 
Fourier ne seront abordées que dans les exercices, toutefois, la transformée de Fourier 
discrète permet d'enrichir leur analyse. La résolution d'équations aux dérivées partielles 
utilise pleinement les propriétés algébriques des transformées de Fourier. De plus, le cal­
cul des coefficients de Fourier par l ' algorithme de transformée de Fourier rapide, ainsi 
que les considérations sur la convolution lors de la résolution par différences finies, font 
de la transformée de Fourier discrète un outil incontournable. Enfin, la théorie des corps 
finis peut, elle aussi, être abordée à travers le monde de Fourier. 

Un certain nombre de programmes informatiques sont présentés ; ils sont rédigés en MAT­

LAB pour la plupart, et en MAPLE pour ceux qui nécessitent des manipulations algé­
briques (calculs dans les corps finis, etc.) . Bien qu'il s ' agisse de logiciels payants, on peut 
en trouver des versions pour les étudiants à un prix raisonnable, et de nombreuses facul­
tés et écoles d'ingénieurs en sont équipées. De plus, des logiciels gratuits à la syntaxe 
très proche existent, principalement SCILAB et MUPAD. Le choix d'un langage particu­
lier pour implémenter les algorithmes est bien évidemment discutable, mais l'utilisation 
de MATLAB et MAPLE semble assez naturelle, ces logiciels permettant de tester rapide­
ment les programmes écrits. On pourra par la suite les traduire dans un langage compilé 
et plus rapide, tel que le C ou le C++. De plus, ces langages sont utilisés pour l 'épreuve 
de modélisation à l'oral de l' agrégation de mathématiques . Les agrégés ou futurs agré­
gés ne seront donc pas dépaysés . Il est à noter que tous les programmes présents dans 
cet ouvrage sont disponibles au téléchargement, ainsi que de nombreux autres, sur le site 
http://www.crnap.polytechnique.fr/rvpeyre/adtf/. 

Je tiens à remercier mes parents, Lucien et Marie-Noëlle, qui m'ont soutenu pendant toute 
l' écriture de ce livre. Je dédie ce livre à Elisa Maugein. Enfin, j ' adresse ma plus profonde 
gratitude à mes relecteurs, qui ont apporté leur expérience pour m'aiguiller dans la bonne 
direction : Abdellah Bechata, Vincent Beck, Christophe Bertault, Charles-Michel Marle, 
Jérôme Malick et Jean Starynkévitch. 

Gabriel Peyré. 
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Chapitre premier 
Transformée de Fourier sur un groupe fini 

En fait, pour construire les ondelettes de base, on utilise ce 

qui «fonctionne bien »dans l'analyse de Fourier, 

c'est-à-dire le formalisme algébrique. 

YVES MEYER [54] (1990) 

Dans ce premier chapitre, nous allons aborder l 'étude de la transformée de Fourier sous un 
angle original, celui de la théorie des groupes. La théorie de Fourier, qu'elle soit envisagée 
d'un point de vue algébrique ou non, consiste avant tout en l ' analyse de fonctions. Il faut 
ici prendre le mot analyse au pied de la lettre, dans son sens étymologique. Il s ' agit de dé­
composer des données complexes sous une forme plus simple. Il va donc être question de 
construire un moyen systématique pour obtenir cette décomposition, et c 'est précisément 
là où les outils de Fourier interviennent. Pour parvenir à réaliser de façon efficace cette 
décomposition, on doit tout de même utiliser un certain nombre d' informations a priori 
sur les fonctions que l 'on étudie. Ce premier chapitre portera sur l' étude des fonctions 
sur un groupe fini ; la décomposition en « briques élémentaires » que réalise l ' analyse de 
Fourier résultera des symétries inhérentes à la structure de groupe. 

Le cadre le plus élémentaire pour mener à bien ce projet est celui des groupes finis com­
mutatifs, puisque l 'on n'a à se soucier ni de la régularité des fonctions rencontrées, ni de 
la convergence des séries manipulées (puisqu'elles sont finies!) . Bien sOr, on sera tenté 
de crier au scandale tant le travail alors accompli semble simpliste par rapport à la théorie 
« analytique » des séries de Fourier. Cependant, cette étude permet d' amener de nouveaux 
points de vue et de poser de nouvelles questions qui seront abordées dans les prochains 
chapitres. 

- En quoi l' étude de la transformée de Fourier sur un groupe fini peut-elle nous aider à 
comprendre la construction de la transformée de Fourier continue ? 

- En quoi la transformée de Fourier sur les groupes finis rejoint-elle la transformée de 
Fourier discrète ? 

- Quelles utilisations peut-on faire de la transformée de Fourier sur un groupe fini ? Com­
ment construire des algorithmes efficaces, et comment les implémenter? 

- Enfin, que devient cette théorie quand on essaie de l' appliquer aux groupes non com­
mutatifs ? Cette question motivera l' introduction de nouveaux outils, décrits en détail 
dans les deux derniers chapitres . 

C'est à cet ensemble de questions que nous allons tenter de répondre. Les méthodes mises 
en œuvre sont multiples, elles empruntent souvent à plusieurs disciplines mathématiques. 



2 Chapitre premier. Transformée de Fourier sur un groupe fini 

Les références au sujet de la dualité sur les groupes finis sont nombreuses. Il y a bien 
sftr le livre de J .P.SERRE [65] ,  mais aussi par exemple celui de WARUSFEL [76], pour 
une présentation plus détaillée. Pour une introduction à la transformée de Fourier sur un 
groupe commutatif, on pourra regarder l' ouvrage de DYM et MAC KEAN [29] . 

1 Dual d'un groupe fini 

Le but de ce livre est d'étudier, d'un point de vue algébrique, les fonctions à valeurs com­
plexes dont l' espace de départ est un groupe fini noté G. Il s ' agit.d'utiliser au maximum 
les propriétés du groupe pour obtenir des décompositions fonctionnelles intéressantes. 
L'idée de base de ce chapitre, celle qui guidera nos réflexions jusqu'à la fin de ce livre, 
consiste à étudier la façon dont on peut représenter une fonction sur un groupe G. La fa­
çon généralement la plus commune d'envisager une fonction f : G-+ C est de considérer 
l 'ensemble de ses valeurs f(g) pour g E G. L'inconvénient majeur de cette représentation 
est qu'elle n'exploite pas du tout la structure de notre groupe G. En quelque sorte, c'est 
une représentation universelle, qui ne dépend pas du tout du groupe que l 'on a choisi. 
Pour étudier une fonction de manière efficace, il semble logique de construire une nou­
velle représentation qui exploite les symétries que l 'on peut trouver dans un groupe G. 
L'exemple le plus simple de ces symétries est le caractère cyclique du groupe Z/nZ, mais 
on peut bien sftr envisager des constructions plus complexes. 

1.1 Définitions 

Pour comprendre comment une fonction peut être plus ou moins simple à représenter, 
on abordera en premier lieu les fonctions les plus simples, celles qui n'opposent aucune 
résistance à la structure du groupe de départ G. Nous allons donc nous intéresser aux 
fonctions qui transportent la structure du groupe. Ces fonctions sont les morphismes du 
groupe G dans un groupe de l 'ensemble d' arrivée, c'est-à-dire un sous-groupe de C* . 
Nous allons donc introduire les définitions adéquates .  
Définition 1.1 (Caractères et dual d'un groupe). Soit G un groupe fini. Par définition, 
un caractère X est un morphisme du groupe G dans le groupe multiplicatif C* . On note G 

l 'ensemble des caractères, qu'on appelle le dual de G. 
G est un groupe pour la multiplication des applications. On rappelle que cette multiplica­
tion est définie de la manière suivante. 

'v' (x1 , x2) E G2, X1X2 : xi-+ X1 (x)x2 (x) . 

Nous verrons, notamment au paragraphe 2.3, que la dualité sur un groupe fini possède de 
nombreux points communs avec la dualité entre les espaces vectoriels. Au prochain cha­
pitre, plus précisément au paragraphe 3 . 1 ,  chap. Il, nous verrons même que dans certains 
cas, ce rapprochement peut devenir une identité entre les deux structures (de groupe et 
d'espace vectoriel) .  La dualité sur un groupe fini permet alors de démontrer des proprié­
tés li�éaires intéressantes. En attendant, commençons par étudier l ' image d'un caractère 
X E G. 
Proposition 1.2. Soit G un groupe fini de cardinal 1 GI = n. Les éléments de G sont en 
fait les morphismes de G dans le groupe des racines nièmes de l 'unité, 
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En particulier, 

Vg E G, lx (g)I = 1, x(g- 1 ) = x(g)- 1 = x(g) ,  

où l 'on a noté lzl le module d 'un nombre complexez. etz son conj ugué. 

3 

Démonstration. Notons! l'élément neutre de G. Il faut remarquer que, pour tout élément 
g E G, on a gn = 1. Ceci entraîne donc, pour tout X E G, que X(g)n = X (gn) = 1, ce qui 
signifie bien que X est à valeurs dans l' ensemble des racines nième de l'unité. D 

Remarque 1.3. Il en découle qu'en particulier, G est un groupe fini (car il n 'y a qu'un 
nombre fini d' applications de G dans lUn, qui sont des ensembles finis), commutatif. De 
plus, tout élément X E G est constant sur les classes de conjugaison de G, puisque 

V(g, h) E G2 , X (h- 1gh) = X (h) - 1x (g)X (h) = x (e)x (g) = X(g) .  (1.1) 
Définition 1.4 (Espace des fonctions sur G). On note C[G] l ' ensemble des fonctions de 
G dans C. La notation C[G] sera expliquée au paragraphe 4.2. C'est un espace vectoriel 
sur C. On y définit un produit scalaire hermitien, par 

V(f, g) E C [G] 2 , (f, g) 
� 

l� I L f(x)g(x) . 
xEG 

On définit aussi une norme I l· 112 sur C[G] par li/li�� (f, f) . 

(1.2) 

Remarque 1.5. Le produit hermitien que nous venons de définir sur C[G] présente de 
fortes similitudes avec celui que l 'on peut définir entre deux fonctions de L2 (JR) de la 
façon suivante : 

V(f, g) E L2 (JR )2 , (f, g) = k_J(x)g(x)dx. 

La principale différence est le changement de la somme en intégrale. Une des propriétés 
communes de ces deux produits scalaires est l ' invariance par translation. En effet, si on 
note Ty (f) la fonction x E G f-t f(xy ) E G (ou son analogue continu Ty (f) = f(· +y)), on 
a 

Cette propriété sera constamment utilisée par la suite, entre autres pour démontrer les 
relations d'orthogonalité entre les caractères . 

Dans le but d' étudier les fonctions de q G] , nous allons introduire une base canonique. La 
décomposition dans cette base correspond à la façon standard de représenter une fonction 
d'un ensemble dans <ef'. 
Proposition 1.6. Une base de q G] est donnée par les fonctions ( ô8) gEG suivantes: 

c5 
(h) 

� { 1 s� h = g . g Ü Sl h -=j:. g 

En particulier, C [G] est un espace vectoriel de dimension n = I GI sur c. 

(1.3) 
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Démonstration. On vérifie de façon immédiate que la famille est orthonormée pour le 
produit hermitien ( 1 .2). Comme ces fonctions ne sont pas nulles, ceci implique qu'elles 
forment une famille libre de C [ GJ . Le fait que cette famille soit aussi génératrice provient 
de la décomposition canonique 

'v'f E C [G] , f = L f(g)ôg, 
gEG 

ce qui termine la démonstration. 

( 1 .4) 

D 

Cette proposition permet de plonger G dans C[GJ de façon canonique par g 1-+ ô8• De 
plus, nous avons vu que toute fonction f E C [G] se décompose dans la base { ôg}gEG• 
c'est ce qu'exprime l 'équation ( 1 .4). Cette décomposition est en apparence très simple. 
Nous verrons cependant au paragraphe 4.3, avec la notion de convolution, qu'elle ne 
facilite nullement les calculs. C'est pourquoi nous allons chercher une base qui présente 
les deux propriétés suivantes. 

- Elle doit être simple à utiliser (la décomposition dans cette base doit être simple à cal­
culer). 

- Elle doit avoir des propriétés intéressantes pour les opérations algébriques que l 'on sou­
haite utiliser (combinaison linéaire, produit, et produit de convolution de fonctions). 

La famille des caractères, formée des éléments de G, pourrait être une bonne candidate ; 
il reste à démontrer qu'elle possède les qualités requises . 

1.2 Dual d'un groupe cyclique 

Avant de nous lancer dans l 'étude générale de la dualité sur un groupe quelconque, pre­
nons le temps de voir comment tout ceci se comporte dans le cas le plus simple, celui d'un 
groupe cyclique (dont l ' archétype est '71., /n'll.,, pour un entier n donné). En fait, cet exemple 
est de première importance, d'une part parce que dans la pratique, c 'est la structure que 
l 'on rencontre le plus souvent (nous verrons au chapitre III que les calculs unidimension­
nels en traitement du signal utilisent la structure de '71., /n'll.,), et d' autre part parce que nous 
allons utiliser ces résultats pour démontrer le cas général. 

Proposition 1.7 (Le cas cyclique). Soit G = { 1 , go , g5 ,  . . .  , gr 1 } un groupe cyclique de 
cardinal n et de générateur go.Soit co une racine primitive ni me de l 'unité, par exemple 
CO = e2:� . Les éléments de G sont de la forme, pour j E {O, . . .  , n - 1 }, 

Xi: { G 
k g = go 

C* 
( ")k � col = e n 

En particulier; on a G � G. 

Démonstration. Pour déterminer un caractère X E G, il nous faut calculer la valeur de 
X(g� ) . pour k E {O, . . .  , n - 1 } , ce qui donne 

x (g� ) = (coi)k = coik . 

Dans cette égalité, on a noté coi � x(go) , avec 0 � j � n - 1 ,  puisque, comme nous 
l' avons vu dans la proposition 1 .2, cette quantité est une racine nième de l 'unité. Donc 
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notre caractère X E G est bien un des {Xo , . . .  , Xn-I } .  Réciproquement, on constate que, 
pour j E { 0, . . .  , n - 1 } , les applications Xi sont bien des morphismes de G dans C*, donc 
sont bien des éléments de G. 
Enfin, si l 'on identifie les éléments de Z / nZ et leurs représentants dans { 0, . . . , n - 1 } , on 
définit une application 1/f: j i---+ Xi de Z/nZ dans G. Nous avons vu que cette application 
était surjective. D'autre part, cette application est injective (il suffit d'évaluer Xi = 1/f(j) 
en go) et c 'est un morphisme (vérification élémentaire). C'est donc un isomorphisme et 
donc G est isomorphe à Z/nZ, lui-même isomorphe à G. D 

La figure 1 . 1  montre les quatre premiers caractères du groupe Z/ 12Z. En abscisse, on 
a noté { 0, . . .  , 1 1 } les représentants du groupe Z / 12Z, et les valeurs des caractères sont 
notées *· La ligne du haut montre les parties réelles des caractères, et la ligne du bas les 
parties imaginaires. On voit bien que les points sont régulièrement espacés le long des 
courbes d'équations y = cos ( 2/J x) et y = sin ( 2/J x) . 

0.5 0.5 • 

0 0 • * 

-0.5 -0.5 * * 

* 

10 1 .• 

Re(Xo) Re(x1)*· •
· 

-1 -1 '----"'---� 

0.5 

0 5 10 0 5 10 

1 ••.• 
0.5. * 

0.5 * 
0 

-0.5 * * 

_1 
Re(!�) 

0 5 

1 ... 

0.5 :' 

<H li! 

"' 

.
.
. 

1 . 

• 0.5 

10 

-0.5 : : . . 
R11(Xal :_; 

-1 ....__.. ___ _. 

0 5 10 

1 .....-----,,�--r-� 

* • * • * . . . () *********** 
-0.5 -0.5 * * -0.5 : -0.5 lm(xal 

-1 .___ ___ __, 
0 5 10 

lm(x1) · lm(Xj.� *� lm(' :) :. : 
-1 '-----*�··�*__. -1 L.--�· -----''---' -1 .___ ___ ._. 

0 5 10 0 5 10 0 5 10 

FIG. 1 . 1 - Les quatres premiers caractères du groupe Z/ 12Z 

Remarque 1.8. On peut déjà remarquer que cet isomorphisme n'est pas canonique, puis­
qu' il dépend du choix de la racine primitive de l 'unité ro choisie. Ce phénomène est 
récurrent dans l ' étude de la dualité (on le retrouve dans la dualité linéaire entre espaces 
vectoriels), le dual n'étant pas canoniquement isomorphe au groupe de départ. Tout ceci 
sera précisé par la suite, notamment au paragraphe 2.3 .  

Remarque 1.9. Tout groupe cyclique est isomorphe à Z/nZ pour n = IGI. En quelque 
sorte, l ' étude de la dualité sur le groupe Z/nZ résume celle que l 'on peut faire sur n' im­
porte quel autre groupe cyclique. Dans la suite de 1' exposé, on considèrera des groupes 
construits à partir des briques élémentaires que sont les groupes du type Z/nZ. C'est pour 
cela qu' il faut garder à l 'esprit la structure de la dualité sur ces groupes particulièrement 
simples. En appliquant la proposition 1 .7, on obtient l ' isomorphisme qu' il faut retenir : 

-
\ln E N*, Z/nZ � Z/nZ. 

Nous allons voir qu'en fait cette propriété s 'étend aux groupes finis commutatifs quel­
conques. 

Avant de clore ce paragraphe, remarquons que l 'on a IGI = IGI = dimic(C[G]) . On a même 
une propriété plus forte. 
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Proposition 1.10. Soit G un groupe cycl ique. G forme une base orthonormale  de C [G], 
ce qui signifie que 

où on définit l e  symbole de Kroneker 0$ de la manière suivante: 

0q 
= { 0 si p =/= q 

P 1 si p = q 

Démonstration. On peut supposer que G = Z/nZ. 
On note G = {X;}?,:;-J, avec X; (k) = œik, où ro est une racine nième primitive (conformé­
ment à la proposition 1 .  7). On a alors 

V(p, q) E {O, . . .  , n - 1 }2 , ( 1 .5) 

(on obtient la dernière égalité en sommant la série géométrique de raison roP-q). 
La famille G = {X;}?,:;-J est donc orthonormale, donc en particulier libre. Pour conclure 
qu'elle forme bien une base, il suffit de remarquer que son cardinal est égal à la dimension 
de C[G] ,  puisque nous avons vu que IGI = IGI. D 

Remarque 1.11. La démonstration de l'orthogonalité des caractères dans le cas général 
d'un groupe abélien est à peine plus compliquée, et sera exposée à la proposition 2. 1 1 .  
Cependant, la démonstration que nous venons de faire est essentielle puisqu'elle est à la 
base des résultats de la transformée de Fourier unidimensionnelle, qui sera présentée à la 
section 1 ,  chap. III. 

2 Dual d'un groupe abélien 

Notre but est d'étendre le résultat que nous venons de démontrer (G est une base orthonor­
male de q G] ) à un groupe abélien fini quelconque. Pour y parvenir, nous allons utiliser 
une démarche purement algébrique, qui utilise un théorème d'extension des caractères. 
Ensuite, nous établirons un résultat plus fort, à savoir que l 'on a en fait un isomorphisme 
entre G et G, propriété qu'une fois de plus, nous avons démontrée dans le cas des groupes 
cycliques. 

2.1 Approche algébrique 

Le lemme suivant est le résultat principal dans l' étude de la structure de G. 
Lemme 2.1 (Prolongement de caractères). Soit G un groupe fini commutatif et H c G 
un sous-groupe. Tout caractère X de H peut être prolongé en un caractère de G. 

Démonstration. On effectue une récurrence sur [ G : H] = I G/HI l ' indice de H dans G. 
La propriété étant triviale pour [G : H] = 1 ,  puisque G = H; on suppose donc [G: H] > 1 ,  
ce qui nous autorise à prendre x E G tel que x rf. H.  Soit K = (H, x) le groupe engendré 
par x et H. Soit n le plus petit entier tel que X' E H. Tout élément z E K s 'écrit de façon 
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unique sous la forme z = y:x!' avec y E H et k E { 0, ... , n - 1 } .  En effet, si y:x!' = y' :x!, avec 
0 � k � k' � n - 1 ,  alors on a :x!'-11 E H et k - k' < n, donc nécessairement k - k' = 0 par 
définition de n. 
Analyse: Supposons que l 'on dispose d'un prolongement X de X· 
Posons Ç = x(x) . I l  nous faut çn = x(xn) = X(l )  = 1 .  Donc Ç doit être une racine nième 
de l 'unité. On a alors, nécessairement, si z E K s 'écrit z = y:x!' avec y EH et 0 � k � n - 1 ,  

.i(z) = .i(yx") = x (y) Çk . (2. 1 )  
Synthèse : soit Ç une racine nième de l 'unité. Définissons, pour z E K décomposé comme 
précédemment sous la formez = y:x!', le prolongement X par l 'équation (2. 1 ) .  Il s ' agit de 
montrer que (2. 1 )  définit bien un élément de K. L'unicité de la décomposition montre que 
la définition n'est pas ambiguë. Pour montrer que c 'est bien un morphisme, il suffit de 
prendre h = y:x!' eth' = y':x! deux éléments de K, et de distinguer deux cas . 

- Si 0 � k + k' � n - 1 ,  on a alors 
.i(hh') = x(yy'x"+11) = x (yy') çk+ll = x(y)x"x (y')jl = .i(h).i(h') . 

- Si n � k + k' � 2n - 1 ,  on peut se ramener au cas précédent, 
.i(hh') = .i(yy'xnx"+11-n) = X(Y)X (l)x (xn) çk+ll-n = .i(h).i(h') . 

La propriété de multiplicativité des degrés nous dit que 

[G : H] = [G : K] [K : H] ,  avec [K :  H] > 1 .  
On a donc [G : K] < [G : H] .  On peut avec l 'hypothèse de récurrence prolonger X à G. 0 
Comme le montre le choix (arbitraire) de la racine nième de l 'unité Ç, le prolongement 
du caractère n'est bien sOr pas unique. Cependant, c 'est ce résultat qui va permettre de 
démontrer que G et G ont même cardinal. Pour ce faire, commençons par traduire le 
résultat de prolongement des caractères en termes de groupe quotient. 

........ ........ --- ........ 
Lemme 2.2. On note p : G -H le morphisme de restriction et j : G / H c......+ G le mor-
phisme d 'extension, défini par ·.{G/ii�a J. -

X 1------t X 
On a la suite exacte : 

avec .i(x) � X(xH) . 

--- j _,... p .,... { l }-+ G/Hc......+ G-H-+ { 1 } . 

Démonstration. D'après le lemme 2. 1 ,  p est surjectif. 
De plus, si on considère X E ker(p) , alors H c ker(x) , et donc par la propriété universelle 

---
du quotient, il existe un unique i E G/H tel que x(x) = .i(xH) , c 'est-à-dire j(.i) = X·  
Réciproquement, un élément de Im(j) est trivial sur H, ce qui montre que l 'on a bien 

---
ker(p) = Im(j) = G/H. 0 

Corollaire 2.3. Soit G un groupe fini commutatif. Alors G est de même ordre que G. 
Démonstration. On raisonne par récurrence sur n = 1 GI. Pour n = 1 ,  le résultat est trivial 
car G = { l } , où l 'on a noté 1 le caractère trivial sur G (c' est-à-dire la fonction qui a tout 
élément associe 1 ) .  Soit donc n � 2, ce qui permet de considérer un groupe cyclique non 
trivial H c G. Si H = G, on peut utiliser l 'étude menée à la section 1 .2 sur les groupes 
cycliques pour conclure. Dans le cas contraire, on voit par l 'hypothèse de récurrence que 

....... --- - ----
IHI = IHI et I G/HI = IG/HI , et le lemme 2.2 montre que IGI = IH l lG/HI. 
On déduit donc que I GI = IH l l G/H I = IGI. 0 



8 Chapitre premier. Transformée de Fourier sur un groupe fini 

2.2 Théorème d'isomorphisme 

Les groupes G et G ont donc le même cardinal. Bien que ce résultat soit suffisant pour 
la suite de l 'exposé, on peut néanmoins donner un résultat plus précis, en l ' occurrence 
expliciter un isomorphisme entre G et G. Pour ce faire, nous allons utiliser le résultat 
obtenu pour les groupes cycliques à la section 1 .2, et nous allons nous y ramener en 
utilisant le théorème de structure des groupes abéliens. On peut trouver une démonstration 
de ce résultat important dans le livre d' ARTIN [3] . On rappelle l' énoncé du théorème, sans 
donner de démonstration. 
Théorème 2.4 (Théorème de structure des groupes abéliens). Soit G un groupe abé­
l ien fini. Il existe des entiers strictement positifs n 1 , . . .  , nr uniquement déterminés tels que 
nk divise nk+i• et tels que l 'on ait l 'isomorphisme 

Corollaire 2.5 (Théorème d'isomorphisme). Soit G un groupe.fini commutatif. Alors G 

est isomorphe à G. En particul ier, G et G ont même ordre. 

Démonstration. Il suffit de remarquer que si G et H sont deux groupes finis commutatifs, 
-- � � 

on a G x H � G x H. En effet, si on note ia : G ---+ G x H et iH : H ---+ G x H les injections 
canoniques, alors l ' application 

«1>: { Gx8 � âxii 
X t--t (xoia , xoiH) 

est un isomorphisme. Elle est trivialement injective et, pour (X1 , X2) E G x fi, l ' applica-
--

tion x : (g, h) 1-t X1 (g)X2 (h) vérifie bien X E G x H et <l>(X) = (X1 , x2) . 
On conclut ensuite en utilisant le théorème de structure 2.4 ainsi que la remarque 1 .9. D 

Remarque 2.6. L' isomorphisme G � G que nous venons de mettre à jour n 'a  absolu­
ment rien de canonique. En effet, ce dernier dépend totalement de choix arbitraires pour 
décrire la structure du groupe, telle qu'elle est donnée par le théorème 2.4. En effet, si 
on conserve les notations de ce théorème, chaque choix d'un élément d'ordre n1 envoyé 
sur ( 1 , 0, . .. , 0) E Z/n 1Z x · · · x Z/nrZ permet de construire un nouvel isomorphisme. Il 
faut rapprocher ce phénomène de l ' isomorphisme d'espaces vectoriels E � E* qui est réa­
lisé via le choix (arbitraire) d'une base. Enfin, on peut ajouter que même l ' isomorphisme 
-
Z/nZ � Z/nZ n'est pas canonique, puisqu' il dépend du choix d'une racine primitive de 
l'unité, comme expliqué à la proposition 1 .7 .  

2.3 Le bidual 

Nous avons vu au paragraphe 2.2 que l ' isomorphisme G � G n'était pas canonique. Ce­
pendant, toujours par analogie avec la dualité en algèbre linéaire, on peut s ' intéresser à 
l ' étude du bidual. Nous allons voir que, dans ce cas, on a bien un isomorphisme canonique 
avec le groupe de départ. 
Définition 2.7 (Bidual). Nous avons construit le dual G d'un groupe fini commutatif G, 
Cfli à son tour est un groupe fini commutatif. On peut lui associer son dual que l 'on notera 
G, le bidual de G. 



§ 2. Dual d'un groupe abélien 9 

,,._ 

Proposition 2.8 (Isomorphisme canonique). On a un isomorphisme canonique G � G, 
qui est donné par l 'application 

Cl>. G ---t G { ,,._ 

. 
g 1------+ (<I>(g) : Xi-+X(g) ) (2.2) 

Démonstratio'!:_ Tout d'abord, on constate que Cl> est bien un morphisme de groupes. 
Comme G et G ont même cardinal (en effet, un groupe et son dual ont même cardinal, 
et on applique ce résultat d'une part au groupe G, d' autre part au [I'Oupe G), il suffit de 
montrer que Cl> est injective. Dire g E ker(<I>) signifie que Vz E G, z(g) = 1 .  Pour en 
conclure que g = 1 il suffit d'exhiber, pour h E G différent de 1 ,  un caractère X E G tel 
que X ( h) -::/: 1 .  Pour construire ce caractère, on peut considérer le groupe H c G engendré 
par h -::/: 1 .  Comme il est cyclique, de cardinal plus grand que 1 ,  on sait construire un 
caractère Xo tel que Xo (h) -::/: 1 (à la section 1 .2 on a énuméré tous les caractères d'u� 
groupe cyclique). Le lemme 2. 1 montre qu'on peut prolonger Xo en un caractère X E G 
qui vérifie encore X (h)-::/: 1 puisque X(h) = Xo(h)-::/: 1 .  D 

Remarque 2.9. On retrouve un phénomène semblable à celui que l 'on rencontre sur les 
espaces vectoriels de dimension finie avec l ' isomorphisme canonique E � E** qui est 
défini de la même manière qu'en (2.2). Bien sûr, cette remarque ne tient plus si l 'espace 
vectoriel est de ,dimension infinie, ou si le groupe est infini. On est tout d' abord obligé 
d' introduire des contraintes de continuité sur les applications que l 'on envisage, et même 
sous ces conditions, il arrive rarement que le dual soit isomorphe à la structure de départ. 
Un bon exemple est donné au paragraphe 1 . 1 ,  chap. IV. Nous verrons en effet que le dual 
du tore �/21t'Z est isomorphe à Z. L'exercice I.2 propose de traiter le cas d'un groupe 
infini non commutatif, S0(3) . 

2.4 Relations d'orthogonalité 

On peut étendre sans grande difficulté l 'orthogonalité des caractères obtenue dans le cas 
cyclique (proposition 1 . 10) au cas d'un groupe abélien quelconque. Commençons par 
démontrer un lemme qui sera très utile pour la suite. 
Lemme 2.10. Soit G un groupe abélien fini. Pour X E G, on a 

� { 0 si X-::/: 1 
Lot x(g) = 

IGI si X = 1 . 
gEG 

(2.3) 

Démonstration. Si X = 1 ,  alors la propriété à démontrer est bien sûr vérifiée. Supposons 
donc que X-::/: 1 .  Soit t E G tel que z(t)-::/: 1 .  On a alors 

x(t) L x(g) = L x (tg) = L x(h) , 
gEG gEG hEG 

où l 'on a fait le changement de variable h = tg dans la dernière somme (qui est valide car 
g 1-+ tg est une bijection de G). On en déduit donc que 

(x (t) - I) L z(g) = o ===} r z(g) = o . 

gEG gEG 
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Ce qui termine la démonstration. D 

Proposition 2.11 (Orthogonalité des caractères). Soit G un groupe fini commutatif. 
Alors G est une famille orthonormale d 'éléments, c 'est-à-dire : 

'V(XI , X2) E G2, ( ) { 0 si XI=/:- X2 XI1X2 = 1 si XI = X2 
. 

Démonstration. On note X � XIX2 = XIX:ÏI (les X2 (s) sont de module 1, donc il vient 
X2 (s) = X2 (s)- I ) . On a 

1 
(XI . x2) = -1 G1 L, x (g) . 

gEG 

Il ne reste plus qu' à  remarquer que si XI = X2. alors X = 1, et que sinon, X =f. 1 . On termine 
en appliquant le lemme 2.10. D 

� 

Corollaire 2.12. Soit G un groupe fini commutatif. Alors G est une base orthonormale 
de C [G] . 

Démonstration. Le fait que G soit une famille orthogonale implique en particulier que 
c 'est une famille libre de C[G] . Comme G et G ont même cardinal, qui est aussi la dimen­
sion de C[G] en tant que C-espace vectoriel, c 'est une base. D 

Nous avons donc mené à bien le programme que nous nous étions fixé, en explicitant 
une base de l 'espace des fonctions C[G] à la fois simple (comme on le verra à la section 
2, chap. III, les propriétés des racines de l 'unité vont permettre des calculs rapides des 
projections sur notre base), et avec des propriétés algébriques intéressantes (qui seront 
exploitées entre autres au paragraphe 4.3). 

Une fois démontrées ces relations d'orthogonalité entre les caractères, on peut démontrer 
d' autres relations, qui sont en quelque sorte « duales » .  
Proposition 2.13. Soit g et h deux éléments de G. On a alors 

si g =/:- h 
si g = h · 

Démons'!_ation. Il s ' agit juste d' appliquer la proposition 2.11 au groupe abélien G. Pour 

g et h E G, on obtient alors 

si g =f. h 
si g = h  (2.4) 

Nous avons v� au paragraphe précédent que l 'on peut en fait identifier canoniquement un 
élément g E G à un élément g E G en posant g(X) = x (8). Si on réécrit l ' équation (2.4) 
en utilisant ces nouvelles notations, on obtient exactement la formule voulue. D 

Remarque 2.14. On peut représenter les caractères d'un groupe G sous la forme d'une 
matrice carrée M = {mij} I �i, j�n de taille n � IGI. Chaque ligne représente les valeurs 
d'un caractère. Plus précisément, si on note G = {gI , . . .  , gn} et G = {XI , . . .  , Xn} . alors 
on pose mij = Xï(gj) . Dans ce cadre, la proposition 2.11 énonce des relations d'orthogo­
nalité entre les lignes de la matrice, tandis que la proposition 2.13 énonce des relations 
d'orthogonalité entre les colonnes de la matrice. 
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Après avoir mené à bien l 'étude de la  dualité sur un groupe abélien fini, on peut vouloir 
étendre ces résultats au cas des groupes finis non commutatifs. Cependant, nous allons 
voir que la belle mécanique que nous venons de développer tombe très vite en défaut, 
même sur des groupes extrêmement courants comme les groupes symétriques. Nous al­
lons ensuite voir que cette situation est générale, puisque nous allons démontrer que pour 
tout groupe non commutatif, on est systématiquement confronté à un manque de carac­
tères. 

3.1 Exemple du groupe symétrique 

Le fait que G soit isomorphe à G, et même que IGI = IGI tombe en défaut lorsque G 
n'est plus commutatif. Nous allons le voir sur un exemple concret, le groupe symétrique 
<5n. Rappelons tout d' abord la définition de la signature ainsi que quelques propriétés 
fondamentales. 
Définition 3.1 (Signature). On considère la décomposition d'une permutation <J E  <5n 
en produit de cycles disjoints . On rappelle en effet qu'une telle décomposition existe et 
est unique à l 'ordre près des facteurs . Pour démontrer ceci, on pourra regarder le livre de 
LANG [43]. Si <J E <5n se décompose en produit de k cycles disjoints, on pose 

Cette définition est non ambiguë, et pour vérifier que c'est bien un morphisme, on revient 
à la définition en termes de transpositions en utilisant le lemme suivant. 
Lemme 3.2. Soit <J E <5n et 'C une transposition. Alors on a e( <J't') = -e( a). 

Démonstration. On note 't' la transposition (a, b) . Pour démontrer le lemme, il faut comp­
ter le nombre de cycles dans chaque décomposition et considérer deux cas . Tout d' abord, 
si a et b interviennent dans un même cycle c de la décomposition de <J. Alors, <J't' va 
avoir la même décomposition, à l ' exception du cycle c qui va être scindé en deux. Dans le 
deuxième cas, on suppose que a et b interviennent dans deux cycles disjoints c1 et c2 dans 
l ' écriture de <J. Dans ce cas, l ' écriture de <J't' va présenter un cycle de moins, puisque les 
cycles ci et c2 seront réunis . Dans les deux cas, les nombres de cycles intervenant dans. 
les écritures de <J et de <J't' diffèrent d'une unité, ce qui prouve le lemme. D 

On peut alors démontrer la propriété fondamentale suivante. 
Proposition 3.3. On suppose que <J E  <5n s 'écrit comme le produit de p transpositions. 
On a alors e(a) = (- l )P. 

Démonstration. On démontre cette propriété par une récurrence sur la longueur de la 
décomposition en transposition, et en utilisant le lemme précédent. D 

Il faut insister sur le fait que cette propriété ne permet pas de définir directement la signa­
ture e, car la décomposition en transposition n'est pas unique. On est obligé d'utiliser la 
décomposition en cycles disjoints . Une fois ce travail de construction effectué, on est en 
mesure de déterminer le dual de <5n. 
Proposition 3.4. Le seul caractère non trivial de <5n est la signature e. 
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Démonstration. Soit X un caractère de Sn. Comme les transpositions engendrent 6n, il 
suffit de déterminer les valeurs que peut prendre X sur les transpositions . Or on constate 
que deux transpositions 't'1 = (a , b) et 't'2 = ( c, d) de 6n sont toujours conjuguées. En effet, 
construisons une permutation g dans Sn telle que g(a) = c, g(b) = d. 
On a -r2 = g't'1g- 1 .  Ceci implique que x. qui est constant sur les classes de conjugaison 
(comme nous l ' avons vu à l ' équation (1 . 1 )  ) , prend une seule et même valeur sur toutes les 
transpositions . Comme X (  't'f) = X( -r1 ) 2 = 1 ,  on a X (  -r1 ) = + 1 ou X (  -r1 ) = - 1 .  Donc né­
cessairement, un caractère non trivial X doit vérifier X ( -r1 ) = - 1 .  De plus, cette condition 
suffit, sous réserve d'existence, à déterminer X .  
Réciproquement, on a établi l ' existence d'un caractère non trivial : la  signature. C'est 
donc le seul . D 

On voit donc que l 'on a ê,; � Z/2Z. Cette étude faite dans le cas du groupe symétrique 
peut être généralisée ; c 'est ce que nous allons voir dans le prochain paragraphe. 

3.2 Utilisation du groupe dérivé 

On peut en fait décrire de façon précise le dual d'un groupe en termes de groupe dérivé, 
puis appliquer cette description pour retrouver le dual du groupe symétrique Sn. Com­
mençons par rappeler la définition ainsi que les principales propriétés du groupe dérivé. 
Définition 3.5 (Groupe dérivé). Soit G un groupe, on note [x, y] � xyx-1 y-1 le commu­
tateur associé au couple (x, y) E G2 . On note D( G) le groupe engendré par les commuta­
teurs de G, que l 'on nomme groupe dérivé de G. c'est-à-dire D(G) � ( [x,y] ; (x, y) E G2) . 

Proposition 3.6 (Propriétés du groupe dérivé). On a D( G) <l G (c 'est-à-dire D( G) 
est distingué dans G ), et G / D( G) est un groupe commutatif. De plus, D( G) = { 1 } si et 
seulement si G est commutatif. 

Démonstration. Si <p E Aut (G) est un automorphisme de G, on a 

\f(x, y) E G2 , <p ( [x,y] ) = [<p (x) , <p (y) ] , 

de sorte que les commutateurs sont conservés par les automorphismes. Il en est donc 
de même du groupe dérivé qui est engendré par ces commutateurs . En particulier, D( G) 
est conservé par les automorphismes intérieurs, ce qui est la définition d'un sous-groupe 
distingué. 
Si on note x et y les classes de x et y éléments de G/D(G) , alors [x, y] � xyx- 1 y-1 est 
un élément de D(G) , donc xy:X- 1 y-1 = 1 dans G/D(G) , ce qui veut dire que :X et )i com­
mutent. 
La dernière propriété est claire avec la définition du groupe dérivé. D 

Proposition 3.7. Soit G un groupe fini. On a G � G/D(G) . 

Démonstration. On peut introduire le morphisme suivant : 

---
G/D(G) 

x 

où X est défini par x(:x) � x (x) , où l 'on a noté :X la classe de x dans G/D(G) . Cet élément ---
X E G/D(G) est bien défini . En effet, comme C est commutatif, pour tout commutateur 
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[x,y] on a X([x, y] ) = [x(x) , X(Y)] = 1 .  Ainsi, la définition de x(x) ne dépend pas du re­
présentant choisi. 
Ce morphisme <I> est trivialement injectif, puisque Vx E G, X(x) = X"(x) . De plus, on --
peut construire explicitement un antécédent pour un élément XI E G / D( G) , il suffit de 
construire le caractère X défini par l ' égalité x(x) = XI (x) . 

� --
Nous avons donc montré que G '.:::'. G / D( G) . Mais comme G / D( G) est commutatif (propo-
sition 3 .6), on peut utiliser le théorème d' isomorphisme 2.5 et conclure à l ' isomorphisme --
G / D ( G) '.:::'. G / D( G) , ce qui termine la preuve de cette proposition. 0 

Remarque 3.8. En fait, la propriété que l 'on a utilisée dans la démonstration est qu'un 
morphisme qui est trivial sur les commutateurs passe au quotient par D ( G) , ce qui conduit 
au diagramme commutatif suivant : 

G � C* 

1� I l · 

D(G) __..L C* 
Montrons maintenant que l 'on retrouve bien la description du dual du groupe <511 obtenue 
à la section précédente 3 . 1 .  Rappelons tout d' abord que l 'on note !!11 le sous-groupe des 
permutations paires, c 'est-à-dire 

!!11 � {a E <511 \ e(a) = 1 } , 
où e désigne la signature. !!11 est un sous-groupe distingué de <511, puisque !!11 = ker( e ) , et 
que e est un morphisme (à valeurs dans { - 1 , 1 }  ) .  Mais avant toute chose, voici un lemme 
qui précise la structure du groupe !!11 . 
Lemme 3.9. Pour n � 3, !!11 est engendré par les cycles de longueur 3. 

Démonstration. La première chose à remarquer est que <511 est engendré par les trans­
positions ( 1 , i) pour i = 2 . . .  n. Ceci est évident en remarquant que pour i =/= j, on a 
( i , j) = ( 1 , i) ( 1 , j) ( 1 , i) . Maintenant, il suffit de réaliser qu'un élément de !!11 ne peut être 
engendré que par un nombre pair de transpositions . On voit donc que !!11 est engendré par 
les éléments de la forme ( 1 , i) ( 1 , j) = ( 1 , i , j) qui sont des 3-cycles . 0 
Proposition 3.10 (Cas du groupe symétrique). Pour n � 3, on a D(<511 ) = !!11• On a 
donc 6,; '.:::'. <511/!!11 '.:::'. Z/2Z. 
Démonstration. Comme e est un caractère, on a D( <511) c !!11 . Comme pour n � 3, !!11 
est engendré par les 3-cycles, il suffit de montrer que tout 3-cycle est un commutateur 
pour montrer l ' inclusion inverse. Pour tout 3-cycle a = (a, b, c) on a a2 = (a, c, b) qui 
est encore un trois cycle. Comme deux cycles de même longueur sont conjugués dans <511 
(résultat classique qui fait l' objet du lemme 1 .36, chap. VII), on peut trouver un élément 
'C E  <511 tel que a2 = 'CO"'C- I . On a donc a = ['C, a] et on a terminé. 
Le fait que <511/!!11 '.:::'. Z/2Z résulte du passage au quotient de e : <511 --+ { - 1 , 1 }  par !!11 
qui est le noyau de ce morphisme. 0 

Remarque 3.11. La solution pour contourner ce problème de « manque » de caractères 
est d' introduire la notion de représentation linéaire, qui généralise la notion de caractère 
(G est constitué des caractères des représentations de dimension 1 ) .  En quelque sorte, un 
groupe non commutatif n 'a pas assez de représentations en dimension 1 ,  et il faut passer 
aux dimensions supérieures. Tout ceci sera l 'objet du chapitre VII. 
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4 Transformée de Fourier 

L'idée directrice des paragraphes suivants est de formaliser de manière algébrique la trans­
formée de Fourier en utilisant la structure de groupe de l 'ensemble de départ. On retrou­
vera de nombreuses similitudes avec la transformée de Fourier sur lR (les intégrales étant 
remplacées par des sommes finies), et les propriétés utiles de la transformée de Fourier 
(par exemple celles qui sont liées au produit de convolution) seront expliquées en termes 
de morphismes de groupes (en l 'occurrence finis). 

4.1 Coefficients de Fourier et transformée de Fourier 

Ce paragraphe présente la construction des coefficients de Fourier puis de la transformée 
de Fourier, dans le cadre d'un groupe abélien fini. Il s ' agit simplement d'exploiter la 
propriété d'orthogonalité des caractères que nous venons de démontrer. 

Définition 4.1 (Coefficients de Fourier). Pour f E C[G] on définit, pour X E G, le coef­
ficient de Fourier c1 (X) par 

vx E 8, c1 (x) � (f, x) . 

Ceci permet donc de définir l' application c :  

· { C [G] � C[G] C . 
f 1---+ Cf 

Dans la pratique, on utilise souvent une autre notation que celle des coefficients de Fourier, 
en introduisant la transformée de Fourier. 
Définition 4.2 (Transformée de Fourier). L'application transformée de Fourier, notée $, est définie par 

où Î est définie par 

$ : { C[G] � C[G] 
f 1---+ Î 

Vx E G, Î(x) � I G lc1{X) = L f(x)x (x) . 
xEG 

(4. 1 )  

Cette définition est en fait très naturelle, comme le montrera l a  proposition 4. 15 .  La figure 
1 .2 montre les valeurs de la transformée de Fourier d'une fonction « en cloche » f définie 
sur Z/ 17'/l,. En abscisse, on a noté les indices i E { -8 , . . . , 0, . . .  , 8} des caractères Xi (les 
indices sont pris dans [-8 ,8] plutôt que [0 , 1 6] pour que les dessins soient plus jolis). En 
ordonnée, on trouve les valeurs de la transformée de Fourier Î(z;) . On pourra vérifier que 
la valeur centrale (pour i = 0) est bien la somme des valeurs de la fonction f. 

Remarque 4.3. Les morphismes c et 
$ 

sont bien sûr linéaires, ce sont donc des mor­
phismes d'espaces vectoriels de C[G] dans C[G] . Ce sont en fait des isomorphismes d'es­
paces vectoriels, et pour le démontrer, nous allons utiliser la formule d' inversion de Fou­
rier suivante. 
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Foncli
.
on originale Transformée de Fourier 

.. * 
0.9 6 
0.8 "' * 5 
0.7 

0.6 

0.5 
* ilt 

4 * * 

3 
0.4 

0.3 li< il; 2 

0.2 "' * 
0.1 ·* *· 

·· · -
0 5 1 0  1 5  -5 0 5 

FIG. 1 .2 - Exemple de transformée de Fourier 

Proposition 4.4 (Formule d'inversion). Pour f E C[G], on a la formule d 'inversion 

""' 1 ""' � 1 f = Loi
� 
c1 (X)X = îGÏ L.i

�
f(X)X- · 

XEG XEG 
(4.2) 

Démonstration. L'équation (4.2) résulte immédiatement du fait que G est une base or­
thonormale de C [ G], en décomposant f dans cette base. D 

Proposition 4.5 (Isomorphisme de Fourier). c et $ sont des isomorphismes d 'espaces 
vectoriels de C[G] dans C[G]. 

Démonstration. Montrons que c est injectif. Si Cf = 0, alors la formule d'inversion (4.2) 
montre que f = O. Comme G et G ont même cardinal (proposition 2.3) les espaces C[G] et 
q G] ont même dimension 1 GI = 1 GI . On en conclut donc que c est bien un isomorphisme. 
Le raisonnement est identique pour $. D 

Remarque 4.6. En réalité, $ est plus qu'un isomorphisme d'espaces vectoriels, puis­
qu' il conserve aussi une structure d' algèbre bien particulière, celle définie par le produit 
de convolution. Tout ceci est l ' objet du paragraphe 4.3. 

Pour l ' instant, continuons à énoncer les formules que l 'on obtient en utilisant la décom­
position dans la base des caractères . 
Proposition 4.7 (Formule de Plancherel). Pour (f, g) E C[G]2 on a les formules sui­
vantes : 

L f(s)g(s) = I GI L c1 (x)cg (X) 
sEG XEÔ 

1 -.. :;:;:::---= 
IGI 

L
�
f(x)g(x) . 

XEG 

(4.3) 

(4.4) 

Démonstration. En décomposant f et g sous la forme f(s) = L
xEâcJ (X)x (s) ainsi que 

g(s) = L.xEâcg (X)x (s) , il vient 

L f(s)g(s) = I GI (f, g) = I GI L c1 (X1 )cg (X2) (x1 , x2) . 
sEG (x1 . x2 ) EÔ2 
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D'où l'équation (4.3) en utilisant les relations d'orthogonalité entre les caractères. On 
démontre de même l'équation (4.4). D 

Remarque 4.8. (Lien avec la théorie L2) .  Cette formule est en tout point semblable à 
la formule que l 'on obtient pour la transformée de Fourier de deux fonctions de L 2 (JR) . 
Elle traduit la conservation du produit scalaire (à une constante près) par la transformée 
de Fourier, puisqu'on peut la réécrire sous la forme : 

V(f, g) E C [GJ2 , (f, g) = l�I (i,i) , 

le deuxième produit scalaire étant bien sûr celui de C[G] .  Ceci sera expliqué en détail à la 
section 1 ,  chap. IV, où l 'on aborde le lien entre la transformée de Fourier sur les vecteurs 
de CN (appelée transformée discrète) et la transformée de Fourier continue. 

4.2 Algèbre d'un groupe abélien 

G désigne toujours un groupe abélien fini. Depuis le début de cet exposé, on a noté q G] 
l 'espace (vectoriel) des fonctions de G dans C. On peut lui conférer une structure d' al­
gèbre grâce au produit de fonctions défini de la façon suivante : 

V(/1 , /2) E C [G]2 , Vg E G, (/1 · !z) (g) � f1 (g)fz(g) . (4.5) 

Cependant, ce n'est pas cette structure qui va nous être utile pour la suite, mais plutôt 
celle définie par le produit de convolution. En effet, comme nous allons le voir, le produit 
de convolution dépend intimement de la structure du groupe G considéré, contrairement 
au produit terme à terme défini par l ' équation (4.3). Nous verrons ainsi au paragraphe 
4.3 que la transformée de Fourier se comporte de façon très agréable pour le produit de 
convolution. 

Nous avons déjà vu (à la proposition 1 .6) qu'une base de l'espace vectoriel C[G] est 
donnée par les fonctions {ôg}gea. où la fonction Ôg, pour g E G, vérifie ôg (g) = 1 et 
ôg (h) = 0 pour h E G tel que g f:. h. De même, nous avons vu qu'une fonction f E C[G] 
se décomposait dans la base { Ôg }  gEG en 

1 = I J(g)ôg .  
gEG 

On injecte alors le groupe G dans l ' espace vectoriel C[G] via l' application 

j :  g E G t-t Ôg E C[GJ . 

Ceci permet de définir (par transport de structure) une multiplication notée * entre les 
éléments { Ôg}  gEG : 

Il ne reste alors plus qu'à  étendre par bilinéarité cette multiplication à q GJ tout entier 
pour munir C[GJ d'un structure d' algèbre. Ce produit est nommé produit de convolution, 
et on calcule facilement la formule donnant l' expression d'un produit de deux fonctions. 
Définition 4.9 (Produit de convolution). Pour /1 et fz deux fonctions de q G] , le produit 
de convolution /1 * fz est donné par 

Vg E G, (/1 * fz) (g) � I 11 (h)lz(k) = I 11 (h)fz(h- 1 g) . 
(h , k) E G2 hEG 

hk = g  

(4.6) 
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Remarque 4.10. Pour f E C [GJ on a 

Ainsi la convolution par un élément de G (c'est-à-dire la convolution par une fonction 
88, en utilisant l' identification) correspond à une translation de la fonction. Ces propriétés 
seront expliquées à nouveau dans le cadre simple de G = Z/nZ à la section 3, chap. III. 
Contentons-nous d'énoncer les premières propriétés du produit de convolution. 

Proposition 4.11. Le produit de convolution est commutatif, associatif, et l 'application 
(!1 , J2) � !1 * fz  est bilinéaire. On munit ainsi l 'espace vectoriel C [GJ d'une structure 
d 'algèbre. 

Démonstration. La commutativité se vérifie aisément en faisant le changement de va­
riable h' = h-

1 g dans la somme de l'équation (4.6). L'associativité peut être démontrée à 
la main, ou en utilisant le théorème 4. 15 .  Le reste est sans difficulté. D 

Avant de continuer, voyons « graphiquement » ce que donne un produit de convolution. 
La figure 1 .3  montre le produit de convolution avec elle même d'une fonction « porte », 
sur Z/ 16Z. En abscisse, on a noté {O, . . .  , 1 5 }  des représentants de Z/ 16Z. C'est la pre-

f"f 
6 

. .  

0.8 5 * * 

4 * il< 
0.6 

3 * * 

0.4 
2 * il< 

0.2 * * 

5 1 0  1 5  -0 5 1 0  1 5  

FIG. 1 .3 - Exemple de calcul de convolution 

mière fois que l 'on aborde ce genre de figures. Celles-ci peuvent être un peu déroutantes 
et les résultats ne sont pas nécessairement évidents. Il y a plusieurs possibilités. 

- On peut faire le calcul à la main, et vérifier que l 'on obtient bien une fonction « tri­
angle ». 

- On peut attendre la section 3, chap. III, qui étudie en détail la convolution cyclique 
discrète. Nous serons alors en mesure de faire les calculs avec MATLAB, en utilisant 
l ' algorithme FFI'. 

- On peut lire la section 5, chap. IV, qui explique le lien entre le calcul de convolution et 
la multiplication de polynômes modulo xn 

- 1 . 

Le fait que le produit de convolution soit défini par extension du produit des éléments de 
G nous permet d'énoncer la proposition suivante. 

Proposition 4.12 (Morphisme d'algèbre). Soit p :  G -+  C* un morphisme de groupe. Il 
existe une unique façon de l 'étendre en un morphisme d 'algèbre p :  C [GJ -+ C. 
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Démonstration. En effet, la construction de C[G] nous dit que p est uniquement déter­
miné par la donnée des valeurs de p ( ô8) , pour g E G. Or dans l ' identification de G comme 
base canonique de C[G] ,  on a p( ô8) = p (g) , ce qui montre l'unicité de la construction. Il 
suffit alors de montrer que le morphisme construit est bien un morphisme d' algèbre. Par 
définition du produit de convolution, on peut se contenter de montrer la conservation du 
produit sur les éléments { ô8} gEG• ce qui est équivalent au fait que p soit un morphisme 
de groupe. D 
Cette proposition nous dit qu' il y a une correspondance parfaite entre les morphismes de 
groupes de G dans C* et les morphismes d'algèbres de C[G] dans C. 
Remarque 4.13. (Interprétation probabiliste). Le produit de convolution, qui a été 
introduit comme l'extension par linéarité d'une opération de groupe, possède une inter­
prétation probabiliste très importante. Soient X et Y deux variables aléatoires indépen­
dantes à valeurs dans un groupe fini commutatif G. On note Px et Py les distributions de 
probabilité correspondantes, c'est-à-dire Vg E G, Px.(g) = IP( {X = g} ) .  Le résultat fonda­
mental est que la distribution de probabilité de la variable aléatoire X + Y est le produit 
de convolution des distributions de X et Y. Ceci s 'écrit donc Px+Y = Px * Py. Ce théo­
rème s 'étend aux variables continues (à valeurs dans JR) et discrètes (à valeurs dans Z), à 
condition d'utiliser le produit de convolution adéquat. Ce résultat est très simple à mon­
trer (le lecteur peut en faire la vérification immédiate), et on pourra consulter [55] sur les 
applications du produit de convolution en probabilité (dans le cadre continu et discret) . 
Les exercices 1.9 et 1. 10  étudient l'utilisation de la transformée de Fourier sur un groupe 
fini pour résoudre des problèmes de probabilité. 

4.3 Convolution et transformée de Fourier 

Soit G un groupe fini commutatif d'ordre n. La proposition suivante montre que la défini­
tion de la transformée de Fourier est en fait très naturelle. 
Proposition 4.14 (Morphisme d'algèbre). Soit X E G. L'application { C[G] ----t C $X : f f--+ Î(z) 
correspond à l 'uniquefaçon d'étendre le morphisme de groupe X en un morphisme d'al­
gèbre. 
Démonstration. L'unicité résulte directement de la proposition 4. 12. Il ne reste plus qu'à  
montrer sur les éléments ô8 que $X correspond à z, ce  qui est trivial : 

Vg E G, $x (ô8) = I, ô8 (x)x (x) = z (g) . D 
xEG 

Cette propriété, qui justifie à posteriori l ' introduction de la transformée de Fourier, est 
d'une importance capitale, et l 'on peut la résumer sous la forme du théorème de convolu­
tion suivant. 
Théorème 4.15 (Convolution et transformée de Fourier). Pour f et g deux fonctions 
de C[GJ on a 

(4.7) 

où l 'on a noté · le produit terme à terme de deux fonctions. La transformée de Fourier $ 
est donc un isomorphisme d 'algèbre de (C [G] , *) dans (C[ÔJ , · ) . 
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Cette propriété de convolution est sans doute la propriété de la transformée de Fourier la 
plus utilisée, puisqu'elle permet de changer un problème assez complexe (le calcul d'une 
convolution de deux fonctions) en un problème plus simple (le calcul du produit terme 
à terme). Les occurrences de ce principe de simplification seront nombreuses à travers 
le livre, qu' il s ' agisse d'études théoriques (calcul de déterminant circulant, formule de 
Poisson, etc.) où bien plus appliquées (filtrage, produit de grands entiers, décodage de 
codes correcteurs, etc.). 

5 Exercices 

Exercice 1.1 (Déterminant circulant). Soit G un groupe cyclique. On fixe f E q G] . On 
souhaite calculer le déterminant de l ' endomorphisme 

cpt{ C[GJ � C[GJ 
u 1------t f * u 

On rencontrera souvent ce type d' applications, notamment au paragraphe 2. 1 ,  chap. IV, 
où il sera question de filtrage. 

1. Expliquer pourquoi les éléments X E G sont les vecteurs propres de cpf. Quelles 
sont les valeurs propres associées ? 

2. Quelle est la matrice A de l' endomorphisme cpf dans la base {<5g}gEG de C [GJ ? 
Déduire de la question précédente une expression de det(A) .  

3 .  En choisissant judicieusement le groupe G et l ' application /, montrer que l 'on a ( ao ai a2 . . . an- l) an- 1 ao ai . . . an-2 nII- 1 (nI- 1 . ·) 
det = a · œ'' 

• • • • J , : : : : i=O j=O a i a2 a3 ao 
où (ao , . . .  , an- 1 ) E en, et ro � e 2�n (Un tel déterminant est appelé déterminant cir­
culant) . 

4. Après avoir lu le chapitre III consacré à la transformée de Fourier discrète et à 
l ' algorithme FFI', proposer une implémentation rapide du calcul de déterminant 
circulant. 

Exercice 1.2 (Dual de S0(3)). On note S0(3) le groupe des matrices 3 x 3 réelles, or­
thogonales, et de déterminant 1. Il correspond aux rotations de �3 . On souhaite montrer 
que S0(3) n 'a pas de caractère non trivial. 

1. Montrer que deux rotations de même angle sont conjuguées. 

2. Soit X un élément du dual de S0(3) .  Pour g E S0(3) , montrer que X(g) ne dépend 
que de l ' angle de g. 

3. On note ra la rotation d' angle a autour de (1, 0, 0), et sa la rotation d' angle a 

autour de (0, 1, 0). On considère t13 � ras;x 1 • Montrer que t13 est une rotation d'un 
certain angle /3 ,  et que lorsque a parcours [O, lr] , alors f3 fait de même. 

4. En déduire que X = 1. 
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Exercice 1.3 (Dénombrement de solutions). Soit G un groupe abélien fini, et une fonc­
tion <p : G" --+ G. Pour h E G, on note N(h) le nombre de n-uplets (g 1 , . . .  , gn ) tels que 
<p(g1 , . . .  , gn) = h. Montrer que l '  on a 

Exercice 1.4 (Fonctions indicatrices). Soit G un groupe abélien fini et A c G. On note 
fA la fonction indicatrice de A. 

1 .  Montrer que 

!iAï l l!A 1 12 = V îGî et ÎA(Xo) = JA J , 
où l 'on a noté Xo le caractère trivial. 

2. On suppose que JA J � ! JG J .  On définit 

<l>(A) � max { IÎA(X) I \ X E G, X =!= Xo} . (5. 1 )  

Montrer que l 'on a 

fiAî 
V 2 � <l>(A) � JA J . (5.2) 

3. On se place dans le cas où JAi > ! JGJ . Montrer que l 'on a <l>(A) = <l>(G\A) , où l 'on 
a noté G\A le complémentaire de A dans G. En déduire une minoration de <l>(A) 
similaire à (5.2). 

4. Montrer que si a est un automorphisme de G, alors <l>(a(A) )  = <l>(A) . 

Intuitivement, plus <l> (A ) est proche de la borne inférieure, plus les éléments de A sont 
distribués uniformément dans G. L'exercice 1.9 étudie et quantifie ce phénomène. On peut 
voir une analogie avec l'étude de la transformée de Fourier d'une fonction continue : plus 
les coefficients de Fourier hautes fréquences sont faibles, plus la fonction est « lisse » .  
Ces fonctions indicatrices seront utilisées au paragraphe 4.2, chap. VI dans le cadre où A 
est employé comme code correcteur. Une fois encore, ce sont les propriétés spectrales de 
fA qui seront utilisées pour étudier la « géométrie » de l'ensemble A. 

Exercice l.S (Equations sur un groupe abélien fini). Cet exercice utilise les notations 
et résultats de l 'exercice 1.4. Il est tiré de l ' article de synthèse de Babai [4] . 

1 .  On considère A 1 , . . . ,Ak c G, et on étudie l 'équation 

xi + · · · +xk = a avec x; E A; , i = 1 , . . .  , k. (5.3) 

Expliquer comment on peut se ramener au cas a = O. On note N le nombre de 
solutions de (5.3), dans le cas a = O. En utilisant le résultat de l' exercice 1.3, montrer 
que 

avec 
déf. 1 � nk ......... R = -JGJ k.J . fA;(X) . 

x#xo 1= l 
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2. On suppose que k = 3. Montrer que 

où <I> est défini à l' équation (5 . 1 )  (on pourra utiliser l ' inégalité de Cauchy-Schwartz) . 
Montrer, en utilisant le résultat de l 'exercice 1.4, question 4. ,  que ceci est encore va­
lable quand a f:. O. 

3 .  En déduire que si 

<1>(A3 ) JIA 1 l lA2 I 
� <  I G I ' 

alors l' équation x1 +x2 +x3 = a, avec x; E A;, i = 1 , 2, 3 , a au moins une solution. 

Ce résultat surprenant nous dit donc que si au moins l 'un des trois ensembles A; est bien 
réparti, et que si les trois ensembles sont suffisamment grands, alors l 'équation considérée 
a au moins une solution. L'exercice 11.2 applique ce résultat sur G = 1Fq pour étudier le 
théorème de Fermat sur les corps finis . 

Exercice 1.6 (Groupe de Heisenberg). Soit G un groupe abélien fini. On note %' le 
groupe des nombres complexes de module 1 .  On note Yt'(G) � %' X  G X a muni de 
l 'opération 

(Â ,x, x) · (µ , y, -r) = (Âµ-r(x) ,xy, x-r) 
le groupe de Heisenberg associé à G. 

1 .  Montrer que l 'on définit bien ainsi une structure de groupe. En particulier, quel est 
l 'élément neutre et quel est l ' inverse d'un élément générique (Â , x, x) E YI'( G) ? 

2. Montrer que l 'on peut définir une action de YI' ( G) sur <C [ G] en posant 

V/ E C[G] ,  V(Â ,x, x) E Yt'(G) , (Â ,x, x) · f :  z 1--t ÂX(z)f(xz) . 

3 .  Pour (Â ,x, x) E Yt'(G) et f E C[G] , on définit respectivement les opérateurs de 
dilatation, translation, et modulation par 

D). (f) (z) = Âf(z) , Tx(f) (z) = f(xz) , Mx (f) (z) = X (z)f(z) . 

Exprimer l ' action de YI'( G) sur C[G] en fonction de ces trois opérateurs . Comment 
se comportent ces trois opérateurs vis-a-vis de la transformée de Fourier définie à 
l'équation (4. 1 ) ?  Quel liens y a-t-il avec la transformée de Fourier continue sur R ?  

4 .  En identifiant canoniquement G à G comme décrit au paragraphe 2.3, comment 
le produit sur YI'( G) = %' X a X G est-il défini ? Comment définir une action de 
Yt'(G) sur C[G] ? 

5 .  On définit la fonction 

Yt'(G) 
(Â ,x, x) 

Yt'(G) 
(Âx- 1 (x) , x ,x- 1 ) 

Montrer que a est un isomorphisme de groupes, et que l 'on a 

Vf E C[G] ,  V(Â ,x, x) E Yt'(G) , .%' ( (Â ,x, x) · !) = a(Â ,x, x) · .%'(!) , 

où .%' désigne la transformée de Fourier définie à l 'équation (4. 1 ) .  
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6. On suppose que <I> :  C [G] -t C[G] commute avec l ' action de �(G) ,  c'est-à-dire 
que 

\:If E C[G] ,  \:/(Â ,x, x) E �(G) , <I>((Â ,x, x) · f) = (Â ,x, x) · <I>(f) . 
Montrer qu'il existe r E <C* tel que \:If E C[G] ,  <l>(f) = rf. On pourra raisonner sur 
la matrice de <I> exprimée dans la base { Ôg } gEG de <C [ G] , ou alors utiliser le lemme 
de Schur 2.5, chap. VII. Que se passe-t-il si <I> :  C [G] -t qâ] fait commuter les 
actions de �( G) et �( G) ?  

Exercice I. 7 (Transformée de Fourier et orthogonalisation). On considère une fonction 
f E L2 (JR) . On note 't'r la translation de r sur L2 (JR) , c'est-à-dire 't', (f) = f( · - r) . 

1 .  Montrer que la famille { 't'n (!) } nEZ est orthormée si et seulement si 

p.p.t. œ E JR, L IÎ(œ + 2kn) l 2 = 1 ,  
kEZ 

où l 'on a noté Î E L2 (JR) la transformée de Fourier de f, définie, pour les fonctions 
f E L1 (JR) par 

llD f�( ) déf. { f ( ) -iroxdx p.p.t. œ E .ll.'lo. , œ = JR x e , 

et étendue par densité à L2 (JR) tout entier. 
2. On suppose qu' il existe A >  0 tel que 

� � 2 p.p.t. œ E JR, A � '°""' lf(œ + 2kn) I . 
kEZ 

Montrer que si on note <p la fonction de L2 (JR) telle que 

�( ) dér. Î(œ) 
p.p.t. œ E JR, <p œ = � I/2 ' 

(rkEZ lf(œ + 2kn) l 2) 
alors la famille { 't'n ( <p) } nEZ est orthonormée (les égalités sont à considérer pour 
presque tout œ ). 

L'exercice suivant 1.8 propose d'étudier le même problème d'orthogonalisation, mais dans 
le cadre d'un groupe abélien fini. 

Exercice 1.8 (Orthogonalisation sur un groupe abélien). Cet exercice est inspiré de 
l' article de BERNARDIN! et KOVACEVIC [7]. Soit V un <C-espace vectoriel de dimension 
n, muni d'un produit hermitien ( · , · ) . Soit G un groupe abélien fini de transformations 
unitaires de V, et soit b E V. On dit que b est orthonormé pour l ' action de G sur V si 
l' ensemble Gb � {Ab \  A E G} est orthonormé. Ceci signifie que 

1 .  On note 

\:/(x, y) E G� , (x, y) = ôI . 

<C 
(Ab, b) 

Montrer que b est orthonormé pour l' action de G si et seulement si ljib = 1 ,  c'est-à­
dire si et seulement si Vx E G, I G I (tl&xb, b) = 1 ,  où l 'on a noté 

� déf. 1 � ( )  Vx E G, tl&x = -IGI """' X A A 
AEG 

E Z(V,V) . 
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2. Montrer que les opérateurs o//x sont des projecteurs orthogonaux, et qu' ils sont deux 
à deux orthogonaux, c 'est-à-dire 

et %"; = o//x (A* désigne l ' adjoint de A). 

3 .  On suppose que % ne s ' annule pas . On note 

'b � :L _:. o//xb, 
XEG V1Jfb (X) 

XI # x2 
XI = x2 

où Jljib (X) désigne l 'une des deux racines possibles . Montrer que b est orthonormé 
pour l ' action de G. 

4. Quel rapprochement peut-on faire avec l 'exercice 1.7 ? 

Pour une étude plus poussée de cette méthode dans le cas des groupes cycliques Z/nZ, 
on pourra regarder l 'exercice Ill. 1 1 . 

Exercice 1.9 (Répartition de probabilité). Soit G un groupe abélien fini, et P : G � JR+ 
la fonction de répartition d'une loi de probabilité sur G, ce qui signifie que 'I.gEGP(g) = 1 .  
On note U la répartition uniforme, c'est-à-dire U (g) = ïbf pour tout g E G. On note Xo le 
caractère trivial de G. 

1 .  Calculer P(Xo) ainsi que Û(x) . pour X E G. En déduire une expression de l lP - U l l�· 
2. Montrer que l 'on a 

'ïlg E G, 1 1 
� 2 1 1 2 P(g) - I G I � IGI 

:L IP(x) I . 
x;i6xo 

En quelque sorte, la quantité l lP - U l l� mesure l 'uniformité de la distribution P, et comme 
nous l ' avons déjà vu pour les fonctions caractéristiques (exercice 1.4), ceci est caractérisé 
par les coefficients de Fourier P(x) . pour X # XO· 

Exercice 1.10 (Marche aléatoire). On considère une marche aléatoire sur Z/nZ construi­
te comme suit. La variable aléatoire Xk E Z/nZ désigne une position sur le cercle Z/nZ à 
l ' instant k E N. Le déplacement entre l ' instant k et k+  1 est donné par une probabilité de 

• • dEf. llD(X . , X ") transition Pi,j = ir k+ I = J k = l • 

1 .  On note p(k) : G � [O, 1] la répartition de probabilité de Xb c 'est-à-dire que pour 
0 � i < n, p(k) ( i) = l?(Xk = i) . On peut aussi noter p(k) sous la forme d'un vec­
teur de taille n. Montrer que p(k+ I } = Pp(k) , où on a noté P la matrice de transition 
{p;,j }O�i,j�n- I · En déduire que p(k) = pkp(O) , où p(O) = { 1 , 0, . . .  , O} est la distri­
bution initiale. 

2. Soit 0 < p < 1 .  On considère la marche aléatoire la plus simple, donnée par { Pi,i- I = p, 
Pi,j = 0 si 

Pi,i+ I = 1 - p, 
i sl { i - 1 , i+ l } . 

Montrer que l 'on a alors Px = v * x, où * désigne le produit de convolution et v = 
{O , p , O , . . .  , 0, 1 - p } . Comment peut on retrouver ce résultat en considérant des 
sommes de variables aléatoires, et en utilisant la remarque 4. 1 3 ? 
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3 .  Exprimer la transformée de Fourier 'J;W à partir de ;;<èî). En déduire que si n est 
impair, alors 

p(k) ---+ u k-++co 
Que se passe-t-il si n est pair ? 

où u � { l/n, . . . , 1 /n} .  

4 .  Généraliser ce  résultat à une marche aléatoire invariante par translation, c 'est-à-dire 
telle que 

Pi,j = Vj-i avec v E ( [0, l ]t . 

La figure 1 .4 montre la progression de la répartition de probabilité p(k) dans le cas de 
deux marches aléatoires. On voit que la deuxième marche converge plus rapidement vers 
la répartition uniforme (on pourra faire le lien avec la taille des coefficients de Fourier). 

l : . : . : : : : : � : ! l : : : : :  .. : : � . !  
+ : : : :  . . : . :�'.:! { . : : : : : : : : � .! 
{ : . : : . : : : : � . !  { . . -. : : : : : � :! 
{ . : . : : : : : : �: 1  1: : : : : : : : :�:i 

FIG. 1 .4 - Marches aléatoires pour les probabilités de transition {O, 1 /2, 0, . . .  , 0, 1 /2} 
(gauche) et {0.3 , 0 .3 , 0 .2, 0, . .  . , 0 , 0. 1 , 0. 1 }  (droite) 

Exercice 1.11  (Principe d'incertitude discret). Soit G un groupe fini, et f E C[Gj une 
fonction non nulle. On souhaite montrer que l 'on a 

J supp(f) j x J Supp (J) J � I GI , (5.4) 

où 1 Supp(f) 1 désigne la taille du support de f. 

1 .  On considère, tout d' abord, le groupe G = Z/nZ. Montrer que si f a  p éléments 
non nuls, alors, Î ne peut pas avoir p zéros consécutifs . En déduire l 'équation (5 .4). 
Ce résultat a été démontré en premier par DONOHO et STARK [28] . 

2. On revient au cas général d'un groupe abélien fini G. 
On note M � sup {f(x) \ x E G} et l i/ l i � �  (!, /) . Montrer que 

M2 
l i/ l i� � 

IG I 
1 Supp(f) 1 et 
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En utilisant l ' inégalité de Cauchy-Schwartz, en déduire que 

M2 � 1 Supp(Î) 1 1 1/�1 1 2 """' IGI 2 , 

En conclure que 

puis, M2 � l l!l l � I Supp(Î) I . 

l lJ l l � � 1 1
1

21

1

� 
1 Supp(f) 1 X 1 Supp(f) I · 

25 

3 .  Soit H c G, un sous-groupe et fH E C[G] , sa fonction caractéristique. Montrer que 
l 'on a 

ÎH = IH l!Hn , 

où l 'on a noté Htt c G l ' orthogonal de H, comme défini en 3 . 1 ,  chap. Il. En dé­
duire que la fonction f atteint la borne de l 'équation (5 .4) . En fait, on peut montrer 
que toute fonction qui atteint cette borne est relièe à une telle fonction f H par une 
translation et une dilatation. Ceci est démontré dans l ' article de MATUSIAK [53] .  

Cette conclusion sur l a  localisation des supports temporels et fréquentiels peut paraître 
négative au premier abord : elle nous interdit de construire des signaux bien localisés 
à la fois en temps et en fréquence. Cependant, on peut l 'utiliser à profit, par exemple 
pour construire des codes correcteurs efficaces, comme le montrera la proposition 3 .22, 
chap. VI. 





Chapitre I l  
Applications de la dualité sur un groupe fini 

Actually Gauss is often called the greatest mathematician 

of ail time. So it's nice to be able to understand at least 

one of bis discoveries. 

R. GRAHAM, 0. PATASHNIK, D.E.  KNUTH [37) ( 1 994) 

Pour mieux comprendre la théorie des caractères sur un groupe commutatif, il faut la 
mettre en application dans des situations où elle est vraiment utile. Le but de ce chapitre 
est donc de comprendre, grâce à des exemples, pourquoi cette théorie est si puissante. 
Nous allons ainsi démontrer sans trop d'efforts des formules qui peuvent paraître com­
plexes, du moins pour quelqu'un qui les aborde pour la première fois. Le meilleur exemple 
est la formule de réciprocité quadratique, dont la démonstration repose sur l 'utilisation de 
deux types de caractères . 

1 Sommes de Gauss 

[Parlant du théorème 1 .20] 

Théorèmes remarquables par leur élégance. [ . . .  ] Ces 

théorèmes conservent toute leur élégance, ou plutôt en 

acquièrent encore davantage, lorsque n est un nombre 

composé quelconque; mais nous sommes forcés de 

supprimer ces recherches qui demanderaient trop de 

développements, et de les réserver pour une autre 

occasion. 

C .F. GAUSS Disquisitiones Arithmeticae ( 1 807) 

L'idée qui sous-tend l 'exposé de ce paragraphe est très simple. Il s ' agit de mieux com­
prendre les corps finis, et plus précisément, de percevoir de façon plus claire comment 
les deux structures qui composent un tel corps (groupe multiplicatif et groupe additif) 
peuvent co-exister, et s ' inftuencer mutuellement. L'outil principal sera bien sûr la dualité 
sur un groupe abélien, et l ' idée à développer sera la combinaison de deux types de ca­
ractères. C'est justement pour combiner ces caractères que l 'on va introduire la notion de 
somme de Gauss, qui est présentée au paragraphe 1 .3 .  

La principale référence pour cet exposé est le livre de LIDL et NIEDERREITER [48], qui 
constitue une véritable encyclopédie des corps finis . On pourra aussi lire avec beaucoup 
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d' intérêt le très bel exposé de LANGEVIN [44] , qui relie de nombreux sujets connexes, 
tels les sommes de Gauss, les codes correcteurs, et la théorie des nombres. 

1.1 Résidus quadratiques 

Avant de se lancer dans l 'étude de la dualité sur un corps fini, donnons un exemple simple 
qui va justifier l ' introduction de la théorie des caractères . Considérons l 'équation suivante, 
qui est à inconnues entières : 

avec (x, y, k) E Z3 . ( l . l ) 

Pour la résoudre de façon quasi triviale, il suffit de la remplacer par son homologue mo­
dulo le nombre premier 7, et d'utiliser la structure de corps de Z/7Z qui nous autorise à 
effectuer des divisions : 

(x/y)2 = 2 mod 7 , 
pour x # O. Il ne reste plus qu'à dresser la liste des carrés de { 0, 1 , . . .  , 6} , pris modulo 7 . 
On obtient facilement { 0, 1 , 4 , 2, 2, 4, 1 } .  On conclut donc que les solutions non nulles de 
l 'équation sont données par 

X X 
- = 3 + 7 /( et - = 4 + 7 k' , pour k' E Z. y y 

De façon évidente, maintenant que l 'on connaît les racines carrées de 2 dans Z/7Z, on 
peut considérer la factorisation suivante de l 'équation (1 . 1 ) : 

(x - 3y) (x - 4y) = 0 mod 7 , 

ce qui conduit bien sûr au même résultat. 
Cette démarche naïve est évidemment à proscrire dans le cas d'étude de grands nombres. 
On est amené à considérer, pour un nombre premier p le symbole de Legendre, défini de 
la manière suivante : 

si n est divisible par p 
\ln E Z, si n est un carré modulo p 

si n n'est pas un carré modulo p 

Il est évident que l 'on peut restreindre l ' étude de ce symbole aux seuls éléments de Z/ pZ, 
que l 'on note usuellement IF p· La remarque capitale pour la suite est que l ' application 

. { IF; � {- 1 , 1 }  
T/ . n � (�) ( 1 .2) 

est un caractère du groupe multiplicatif IF;, puisque l 'on a (n;2) = (�) (�) . 
Cette propriété résulte directement du lemme suivant. 
Lemme 1.1 (Formule d'Euler). Soit p un nombre premier impair. Un élément x E IF; est 

2:::1. un carré si et seulement si x--z = 1 .  Un élément x E IF; n 'est pas un carré si et seulement 
2:::1. si x--z = - 1 . En conséquence, on a la formule d 'Euler (�) - 9 - X  . 

p 
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Démonstration. On considère le groupe multiplicatif w; .comme p est impair, le mor­
phisme x 1--+ x2 a pour noyau le sous-groupe { 1 , - 1 } , de sorte que les éléments qui sont 
des carrés modulo p forment un sous-groupe de w; de cardinal 9. 
Si x =  y2 , alors x'9- = yP- l  = 1 .  Donc les 9 résidus quadratiques modulo p sont tous 
racines du polynôme X 9 - 1 ,  qui ne saurait avoir plus de 9 racines. Les résidus sont 
donc exactement ces racines, c'est-à-dire les éléments x tels que x'9- = 1 .  

( 

11=! 
) 
2 11=! Pour conclure la démonstration, il suffit de consta�er que x--r = 1 implique que x--r 

est un élément de { - 1 , 1 } . Les non résidus quadratiques sont caractérisés par x9 = - 1 ,  
ce qui achève de démontrer la formule d'Euler. D 

Le but de ce chapitre est de démontrer la propriété importante de ces caractères de Le­
gendre, que l 'on appelle formule de réciprocité quadratique. Elle relie le fait d'être un 
carré modulo p à celui d'être un carré modulo q. En son temps, Euler avait déjà remar­
qué, en calculant à la main de nombreux cas, que pour deux premiers impairs distincts p 
et q, on a (�) = (�) ,  sauf dans le cas où p et q sont tous deux de la forme 4k - 1 .  Ce ré­
sultat est cependant loin d'être évident, et il fallut attendre Gauss pour obtenir une preuve 
complète de ce résultat. 
Grâce à cette formule, nous allons pouvoir calculer facilement le caractère de Legendre, 
en appliquant successivement des inversions du symbole (�) (avec la formule de réci­
procité) et des réductions de q modulo p (car le symbole ne dépend que de la classe de n 
modulo p). 

1.2 Caractères additifs et multiplicatifs 

Dans le chapitre précédent, nous nous sommes intéressés aux groupes finis commutatifs. 
Nous allons maintenant imposer une structure plus rigide à notre groupe, puisque nous 
allons nous intéresser à un corps fini F q. avec q = pr où p est un nombre premier. C'est 
un corps de caractéristique p, et il peut être vu comme un espace vectoriel de dimension 
finie r sur son corps premier F p · Une description plus détaillée des corps finis sera faite à 
la section 1 ,  chap. VI, lors de la construction d'une transformée de Fourier à valeurs dans 
un corps fini . 
Sur notre corps, on peut dégager deux structures de groupe. Tout d' abord on peut consi­
dérer Fq comme un groupe additif (en fait un espace vectoriel sur F p) . Ensuite, on peut 
aussi considérer le groupe multiplicatifF; � Fq - {O}, qui est un groupe cyclique d'ordre 
q - 1 .  Ceci conduit à considérer deux types de caractères. 
Définition 1.2 (Caractères additifs et multiplicatifs). Les éléments de iF; sont appelés 
caractères additifs. Ce sont donc les morphismes 

-
Les éléments de F� sont appelés caractères multiplicatifs. Ce sont donc les morphismes 

X :  (F; , * ) � {C* , *) · 

Les caractères les plus simples à déterminer sont les caractères multiplicatifs c'est-à-dire 
les éléments de �- En effet, le groupe w; est cyclique. Soit donc Ç un générateur de ce 
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groupe, de sorte que l 'on ait JF; = { 1 , Ç, Ç2 , . . .  , çq-2} .  On peut alors énumérer les q - 1 
caractères multiplicatifs 

JF* 
2. 
q { JF* ----+ 

Vj = O, . . . , q - 1 , Xi : 
ç
k 

� -11L1"k e q- 1 

..-.... 

On obtient ainsi une description complète du groupe dual lFq, et on constate bien sûr que 
l 'on a ïF; � JF; . Cette description n'est pas canonique, dans le sens où elle nécessite le 
choix (arbitraire) d'une racine primitive Ç .  
En ce qui concerne le groupe additif lF q. l a  situation est un peu plus complexe, puisque ce 
groupe n'est pas cyclique. Cependant, en tant que groupe additif, lF q est en fait isomorphe 
au groupe produit (Z/pZy. Comme Z/pZ est un groupe (additif) cyclique, il va être 
relativement aisé de dresser la liste des caractères additifs de lF q · Cependant, dans le but 
de produire le moins d'efforts possible, et de simplifier la description du dual, nous allons 
introduire la notion suivante. 
Définition 1.3 (Application trace). Soit K un corps fini, contenant un sous-corps k de 
cardinal s. On note t � [K :  k] la dimension de K en tant que k-espace vectoriel, de sorte 
que IK I = s' . Soit a E K. On définit l ' application trace de K sur k de la façon suivante : 

( ) déf s s1- 1 TrK/k a = a +  a + · · · + a . 

Dans la suite, nous allons nous intéresser aux corps k = lF P et K = lF q (on fixe donc s = p 
et t = r). Lorsqu' il n 'y aura pas de risque de confusion, on notera simplement Tr à la place 
de Tr!F /IF . q p 
On rappelle quelques propriétés importantes des corps finis, que l ' on trouvera démontrées 
dans le livre de PERRIN [58] .  
Proposition 1.4 (Propriétés des corps finis). Soit K un corps fini de caractéristique p. 

(i) Soit k un sous-corps de K de cardinal s Un élément x E K appartient à k si et 
seulement si r = x. 

(ii) L'application <I> :  x i---+ xP est un morphisme, appelé morphisme de Frobenius. Les 
itérés <t>k : x i---+ xP' sont aussi des morphismes. 

Voyons les principales propriétés de cette application. 
Proposition 1.5 (Propriétés de la trace). La trace de K sur k esi une forme k-linéaire 
non nulle à valeurs dans k. 
Démonstration. La première chose à montrer est que pour a E K, on a TrK/k (a) E k. Il 
suffit de montrer que l 'on a r = x. En utilisant la linéarité du morphisme x i---+ r (qui est 
un itéré du Frobenius), il vient 

TrK/k (aY = as + as2 + · · · + as' . 

Comme K* est un groupe de cardinal s1 - 1 ,  on a Va E K* , as' - l = 1 ,  d'où le résultat 
souhaité, puisque Va E K, as' = a. 
En utilisant le morphisme de Frobenius et le fait que Â s = Â pour un scalaire Â E k, il est 
clair que l ' application trace est bien k-linéaire. Il reste à montrer qu'elle n'est pas triviale, 
c 'est-à-dire qu' il existe un élément a E K tel que TrK/k ( a) f: O. Or, si TrK/k ( a) = 0, ceci 
signifie que a est racine du polynôme 

P(X) � X  + xs + · · · + xs'- 1 , 
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qui est de degré st- I . Ce polynôme a donc au plus s'- 1 racines, et comme K a s' éléments, 
il existe bien un certain a E K tel que P( a) 'f:. O. D 

On peut maintenant fournir une description complète des caractères additifs de IF q · Pour 
ce faire, on introduit un caractère dit canonique, dans le sens où il est indépendant de la 
façon dont on construit le corps IF q · 
Définition 1.6 (Caractère canonique). On définit le caractère additif canonique lf11 , -
élément de IF q par 

1111 ·. { 1Fq 
--+ 2·C* ..,, -11!: Tr(x) X 1---+ e P  

Le théorème suivant nous explicite la construction des autres caractères à partir de ce 
caractère canonique. 
Proposition 1. 7. Soit, pour a E IF q• l 'application 

{ IF --+ C* 'l'a : x
q 

1---+ lf'I ( ax) 

C'est un caractère additif, lfla E ft?;, et réciproquement, tout caractère additif s ' écrit de 
cette façon. 

Démonstration. Il est évident que l 'on a bien construit ainsi des caractères. Montrons 
qu' ils sont tous différents . 
Comme la trace est non identiquement nulle, le caractère canonique est non trivial. Si on 
considère deux éléments a 'f:. b de IF q• alors on peut trouver un autre élément c E IF q tel 
que 

lfla(c) 
-

( ) = lf11 ( (a - b)c) 'f:. 1 . 
'l'b c 

On a donc 'l'a 'f:. lflb· Ceci signifie que le nombre de caractères du type lfla est égal à q. Or 
nous savons, avec le corollaire 2.3, chap. 1, que liF;I = l1Fq l  = q. Nous avons donc bien 
construit ainsi tous les caractères. D 

Remarque 1.� (Caractère trivial) .  Nous avons ainsi construit un isomorphisme entre 
IF q et son dual IF q par l ' application a i-+ 'l'a· On note lflo = 1 le caractère additif trivial. Il ne 
faut pas le confondre avec le caractère multiplicatif trivial xo. puisque ce dernier n'est pas 
défini en O. Nous verrons plus tard que l 'on prolonge souvent les caractères multiplicatifs 
X E � en posant x (O) = 0, ce qui lève toute ambiguïté entre les deux caractères triviaux. 

Remarque 1.9. (Extension des caractères) . Soit K un sur-corps fini de IFq, ce que l 'on 
peut écrire sous la forme K = 1Fq' •  où t � [K :  1Fq] · On vérifie aisément que pour f3 E K, 
on a 

TrK/JFp (/3 ) = TrIFq/IF" (TrK/IFq (/3 )) . 
Si on note µ1 le caractère canonique de K, ceci implique que 

( 1 .3) 
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Avant de détailler les propriétés des caractères additifs et multiplicatifs, donnons un exem­
ple fondamental. 
Exemple 1.10 (C�actère quadratique). Soit q un entier impair. On définit un caractère 
multiplicatif 77 E lFq de la façon suivante : 

\../ JF* ( ) dét. { 1 si x est un carré dans lF q vx E q • 11 x = - 1  sinon 
On voit facilement que l 'on a 77 = X� · De plus, dans le cas ou q = p est un nombre 
premier, on a 77 (x) = (�) , ce qui signifie que 77 est le symbole de Legendre. 

Nous allons maintenant rappeler les propriétés d'orthogonalité des caractères démontrées 
au paragraphe 2.4, chap. I, en les énonçant pour les caractères additifs et multiplicatifs. 
Proposition 1.11 (Propriétés des caractères additifs). Soient a et b des éléments de lF q· 
On a alors 

L l/fa(X)lf/b (x) = { 0 s� 
IF q Sl XE q 

L l/fa(x) = 0 si a =I= 0 
xEIFq 

L lf/x(a)lflx(b) = { O s� 
IF q Sl XE q 

a =/= b  
a = b 

a =/= b  
a = b  

( 1 .4) 

( 1 .5) 

( 1 .6) 

Proposition 1.12 (Propriétés des cara�ères multiplicatifs). Soient a et b des éléments 
de lF; et soient X et T deux éléments de 1Fq. On a alors 

{ 0 si X =I= T L x(x)-r(x) = q - 1  si X = T xEIFq 

L, x(x) = o si x =1= xo 

� x(a)x (b) = { � - l 
XEIFq 

si a =I= b 
si a = b 

( 1 .7) 

( 1 .8) 

( 1 .9) 

Remarque 1.13. Comme nous l ' avons déjà expliqué au paragraphe 2.4, chap. 1, on peut 
représenter les caractères d'un groupe fini abélien sous la forme d'une matrice (chaque 
ligne représente un caractère) . Dans ce cadre, les équations (1 .4) et (1 .7) représentent 
des relations d'orthogonalité entre les lignes de la matrice, et les équations (1 .6) et (1 .9) 
représentent des relations d'orthogonalité entre les colonnes de la matrice. 

1.3 Sommes de Gauss 

On peut maintenant définir l ' objet important de ce chapitre, qui fait la liaison entre les 
caractères additifs et multiplicatifs d'un corps fini. 
Définition 1.14 (Sommes de Gauss). Soient X E � et 1f1 E ïF; des caractères respective­
ment multiplicatif et additif. On définit la somme de Gauss G(X , lfl) associée à ces deux 
caractères, par 

G(x , lfl) � L, lfl(x)x (x) . ( 1 . 10) 
xEIFq 
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Cette somme de Gauss, qui met en jeu les deux structures du corps fini, est en fait très 
proche de la transformée de Fourier, comme on a pu la définir à l 'équation (4. 1 ), chap. I. 
En effet, rappelons la définition de la transformée de Fourier sur le groupe multiplicatif 
lF* . q . { F � c 

\;/f E qlF;J . $mu1 (/) : x
q 

f-+ L f(x)x (x) 
xEIFq 

On peut donc écrire la somme de Gauss de l 'équation (l . 10) comme la transformée de 
Fourier multiplicative d'un caractère additif. Plus précisément, on a 

\11/f E 
ïF;, Vx E �. G(x ,  1/1) = $mu1 (l/f) (x) . 

Cependant, dans la suite de l 'exposé, nous allons être amenés à considérer le point de 
vue inverse, c'est-à-dire que nous allons plutôt nous intéresser à la transformée de F�rier 
sur le groupe additif. C'est pour cela que l 'on étend un caractère multiplicatif X E lF� en 
une fonction i E C[lFq] en posant i(O) = O. Dans ces conditions, on peut aussi voir une 
somme de Gauss comme la transformée de Fourier additive d'un caractère multiplicatif. 
Rappelons la définition de la transformée additive : { ïF; � c 

\If E C[lFq] ,  g-add (f) : l/f f-+ I, f(x)l/f(x) 
xEIFq 

( l . 1 1 )  

On obtient alors la formule remarquable 

\11/f E 
ïF;, Vx E �' G(x '  1/1) = g-add (i) ( 1/1) . ( l . 1 2) 

On prendra donc garde au fait que la fonction i correspond au caractère X prolongé en O. 

Comme application de ces constatations, on peut décomposer un caractère multiplicatif 
en série de Fourier additive. 

-

Proposition 1.15. Soit X E lF�. On a 

x = ! L G(x ,  l/l)l/f. q 
'lfEIFq 

Démonstration. En appliquant à la fonction i la formule de décomposition en série de 
Fourier, proposition 4.4, chap. I, on obtient 

x = r Œ, 1/1) l/f· 
1/fEIFq 

Il ne reste plus qu' à  remarquer que (i, 1/1) � �g-add (i) (l/I) = �G(x , l/f) pour conclure. 
D 

Dans la pratique, on est bien souvent incapable de calculer simplement les valeurs de ces 
sommes de Gauss . La seule majoration (triviale) dont on dispose est I G(x , l/l) I  � q - 1 . 
Cependant, la proposition 1 . 17 va nous donner la valeur de son module. Commençons par 
énoncer une série de propriétés plus où moins évidentes des sommes de Gauss. 
Proposition 1.16 (Propriétés des sommes de Gauss). On rappelle que p est la carac­
téristique du corps lFq. c 'est-à-dire que q = pr. Alors, si on note X E � et l/f E 

ïF;: 
(i) pour a et b E lFq. on a G(X , l/fab) = X(a)G(x , l/lb) · 
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(ii) G(X , 1Jf) = x (- l )G(X , 1Jf) . 
(iii) G(X, 11') = x (- l )G(x , lJf) . 

Démonstration. Démontrons (i) : 

G(x , l/fab) = L x(x)lJfb (ax) = x (a-
1 ) L X(Y)lJfb(y) , 

xEFq yEfq 

en effectuant le changement de variable ax = y. 
La propriété (ii) s ' obtient à partir de (i) en prenant b = - 1 .  
La propriété (iii) découle de (ii) en passant à la conjugaison et en utilisant le fait que 
X(- l ) E R  D 

Proposition 1.17 (Calcul des sommes de Gauss). On conserve les notations de la défi­
nition 1. 14. On a alors { q - 1 si X = Xo et lJf = l/fo 

G(X , lJf) = - 1  si x = xo et lJf -={:  l/fo 
0 si X -={: Xo et lJf = l/fo 

Dans les autres cas, on a I G(X , lJf) I  = q1 12. De plus, on a 

(cas 1) 
(cas 2) 
(cas 3) 

G(X , 1Jf)G(X, 1Jf) = qx (- 1 ) ,  pour X -=f: Xo et lJf -=f: lJfo ( 1 . 1 3) 

Démonstration. Le cas 1 est trivial. 
Le cas 2 résulte immédiatement de l 'équation (1 .5) (il manque le terme 1Jf(O) = 1 dans la 
somme). 
Le cas 3 résulte, lui, de l 'équation (1 .8). 
Enfin, pour le cas général, nous allons exploiter le fait que la fonction 1Jf f---t G(X , lJf) est 
la transformée de Fourier (additive) de la fonction i prolongée en 0, comme nous l ' avons 
déjà remarqué à l 'équation (1 . 1 2). En utilisant la formule de Plancherel (4.3), chap. 1, on 
obtient 

(G(x ,  · ) , G(x ,  · ) ) = q (i, .i) = q. ( 1 . 14) 
-

Choisissons donc un caractère additif 1Jf = 1Jfa E lFq. On peut réécrire l 'équation (l . 14) de 
la façon suivante : 

1 - Li G(x , l/fab)G(x , l/fab) = q. q bEFq 

Il ne reste plus qu' à  utiliser le résultat de la proposition 1 . 16, (i), pour conclure 

! Li lx (b) l 2 IG(x ,  %) 1 2 = IG(x , %) 12 (x ,x) = IG(x ,  %) 12 = q. q bEFq 

On peut maintenant démontrer l 'égalité (l . 1 3) . En utilisant la proposition 1 . 16 ,  (iii) , on 
obtient 

G(x ,  lJf)G(X, l/f) = x (- l ) I G(x ,  11') 12 . 
On obtient le résultat souhaité en utilisant le fait que IG(x ,  lJf) I = q1 12 . D 

Ces propriétés montrent bien l ' importance de la connaissance de X ( - 1 ) . A priori, on sait 
seulement que x(- 1 ) E {- 1 , 1 } . La proposition suivante va nous en dire plus. 
Proposition 1.18. Soit X un caractère multiplicatif, et soit m son ordre dans �' c 'est-à­
dire le plus petit entier positif k tel que Xk = Xo· Alors X ( - 1 ) = - 1  si et seulement si m 
est pair et q� 1 est impair. 
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Démonstration. La première chose à remarquer est que comme xq- I = lflo , on a m jq - 1 .  
De plus, comme X est à valeurs dans l 'ensemble des racines mièmes de l 'unité, la valeur 
- 1 ne peut apparaître que si m est pair. Donc l 'énoncé de cette proposition a bien un sens, 
ce qui est rassurant. 
On note go un générateur de IF;, ce qui implique que X (go) est une racine mième primitive 
de l 'unité (car z(go) est un élément d'ordre m dans le groupe des nombres complexes de 
module 1 ) .  Alors, si m est pair (donc q est nécessairement impair), on a 

x {- l ) = x (g�q- 1 )/2) = 
ç (q- 1 )/2 . 

Donc on a x (- 1 ) = - 1  si et seulement si Ç(q- I )/2 = 
çm/2 , c'est-à-dire (q - 1 )/2 = m/2 

modulo m. Ceci est équivalent à ( q - 1 )  / m = 1 modulo 2, ce qui signifie que ( q - 1 )  / m 
est impair. D 

1.4 La réciprocité quadratique 

Le but de ce paragraphe est d'étudier de plus près le caractère quadratique, pour au final 
démontrer la fameuse formule de réciprocité quadratique. Afin d'y parvenir, nous allons 
utiliser la transformée de Fourier additive .9?add· définie par l 'équation (l . 1 1 ) .  

A .9?add• nous préférerons utiliser un endomorphisme de qIF;J , pour plus de commodité. 
Celui-ci sera noté T : qIF;J ---+ qIF;J . Il est défini de la façon suivante : { IF* ---+ IF* 

'v'f E qIF;J . T f : aq 1----+ L f(x)lfla(x) · xEIF;j 
La différence par rapport à la transformée de Fourier additive tient à peu de choses, 
puisque l 'on a 

où l 'on a prolongé f en 0 par f{o) = O . L'utilité de cet opérateur par rapport à la trans­
formée de Fourier additive est qu' il rend les formules dans lesquelles interviennent les 
sommes de Gauss plus simples . L'opérateur T n'est en fait rien d' autre que R.9?addP, où P 
est le plongement de qIF;J dans C[IFq] déjà décrit et R la surjection de l 'espace vectoriel 
C[IFq] dans qIF;J . Ainsi, en reprenant l 'équation (1 . 12), on obtient 

'v'X E �' 'v'lfl E f;, Tz (x) = G(X , lf!x) = z(x)G(z , lf/1 ) . ( 1 . 1 5) 

La dernière égalité a été obtenue grâce à la proposition 1 . 16 ,  propriété (i) . 
Dans la suite de l'exposé, on se restreindra au cas où q = p, de sorte que l 'on travaillera 
dans le corps IF p ·  Dans ce cas, l 'opérateur T s 'exprime de la manière suivante : 

'v'/ E C[IF;J ,  Tf : : 1----+ L J{x) çax , 
{ IF* ---+ IF* 

xEIFj. 
où l 'on a noté Ç � e 2�" . Nous allons maintenant démontrer un lemme qui fait le lien entre 
l 'opérateur T et le caractère quadratique TJ . --
Lemme 1.19. Soit 1J E IF; le caractère quadratique sur le corps IF p· On a alors 

id (p- l ) (p-3) � det{T) = (- 1 ) z- i  4 p z- G( TJ , lf/1 ) . 
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Démonstration. Il s ' agit d'écrire la matrice de T dans la base des caractères multiplicatifs 
{Xo , . . . • Xp-Û · Les deux seuls caractères qui sont à valeurs réelles sont xo et 71 .  On peut 
regrouper les autres caractères par paires (X ,x) ,  et en utilisant l ' équation ( 1 . 1 5), on obtient 
une matrice du type 

G(xo , 1/11 ) 
G( 1J , 1/11 ) 

0 G(X1 i  'l'i ) 
G(X1 1 '1'1 ) 0 

o a(x� . '1'1) 
a(x� . '1'1) o 

On sait, avec la proposition 1 . 17 (cas 2), que G(Xo , 1/11 ) = - 1 .  La valeur de G(71 , 1/11 ) est 
pour l ' instant inconnue. Il ne reste qu'à calculer les sous-déterminants de taille 2 

det ( G(X
� 

1/ll ) 
o(x

0 lfl1 )) = -G(x , 1/11 )G(X, 1/11 ) = -x (- 1 )p. 

Pour ce calcul, on a utilisé l 'égalité (l . 1 3). On obtient donc la valeur du déterminant 

� 
det(T) = -G(71 , 1/11 ) (-p)� IT xi(- 1 ) 

j= l 
� 

= (- 1 )2i1p�G(71 , 1/11 ) fl xj(- 1 ) . 
j= l 

Or, Xi ( - 1 ) = X1 ( - 1  )i = ( - 1  )i, ce qui fournit une évaluation du produit de droite 

� 
fi Xi (- 1 ) = (- 1 ) 1+2+· .. +� = (- 1 ) 

(e- iyp-3) = i (e-
1*p-3l

. 
j= l 

Ceci correspond bien au résultat annoncé. D 

On peut maintenant énoncer un résultat important. Il s ' agit de calculer les sommes de 
Gauss mettant en jeu le caractère quadratique. Il a été démontré par Gauss, et lui a per­
mis de fournir, en 1 807, la 6ème de ses 8 démonstrations de la formule de réciprocité 
quadratique. 
Proposition 1.20 (Signes des sommes de Gauss). Soit p un nombre premier impair. On 
note 1J le caractère quadratique de IF p· Alors { p112 si p =  1 mod 4 G(îJ , 1/fl ) = ip 1 12 si p =: 3 mod 4 · 

Démonstration. Comme 1J = îf, en appliquant l 'égalité (1 . 1 3), il vient 

G(71 , 1/11 )2 = 71 (- l )p. 

On peut alors utiliser la proposition 1 . 1 8 , et voir que 

71 (- l ) = { 
� 1 

si p = 1 mod 4 
si p = 3 mod 4 
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On obtient donc presque le résultat voulu, c'est-à-dire 

si p = 1 mod 4 
si p = 3 mod 4 
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avec ep E { +1 ,  - 1 } .  

Toute la difficulté réside dans la détermination des signes, c'est-à-dire de ep (quantité qui 
dépend a priori de p ) . 
Commençons par réécrire la dernière égalité de façon plus compacte : 

Cette égalité vient simplement du fait que 

i
(p41 )2 = { : si p =  1 mod 4 

si p = 3 mod 4 

Nous allons pouvoir utiliser le calcul de det(T ) que nous venons d'effectuer au lemme 
1 . 19 .  En insérant la valeur de G(TJ , 11'1 ) dans ce déterminant, il vient 

le! (p- 1 Mp-3) (p41 )2 l'=1 1 det(T) = ep (- 1 ) --r i  i p--zp'l 
le! . (p- l ) (p-2) e-=1. = ëp (- l ) z- 1 2 pz- . 

( 1 . 1 6) 

( 1 . 17) 

Pour déterminer le signe qui apparaît dans cette expression, nous allons calculer le dé­
terminant dans une autre base, celle des fonctions Dirac { Ô1 , . . .  , Ôp- l } .  Comme on a Tôk (x) = çxk, on obtient 

La dernière égalité s 'obtient en calculant un déterminant de Vandermonde. En passant à 
l ' angle moitié, c'est-à-dire en posant µ � e Ïff , il vient 

det(T) =II (µ2n _ µ2m) = II µm+n (µn-m _ µm-n ) 
m<n 

-II n+m II · II 2 . (n(n - m) ) - µ 1 sm , p 
où le signe TI signifie I1m<w Il faut évaluer les trois produits qui apparaissent dans cette 
expression. En ce qui concerne le produit de droite, il est positif, et ceci est suffisant pour 
ce que l 'on veut en faire : 

Pour le produit du milieu, il suffit de remarquer que 

H { (m , n) \ 1 � m < n � p - 1 }  = (p - l�p - 2) 

(on peut faire un dessin et compter le nombre de points à coordonnées entières à l ' intérieur 
d'un triangle). On obtient donc 

II . . (p- l�(p-2) 1 = 1  . 
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Quant au produit de gauche, on utilise le calcul suivant : 

d'où 

p- 1 n- 1 3 p-2 
L n + m = :L :L n + m = 2 :L n(n - l ) 

l �m<n�p- 1 n=2m=l n= l 
= � ( (p - 2) (p - 3) (2p - 3) )  (p - l ) (p - 2) ) 

2 6 
+ 2 

p(p - l ) (p - 2) 
2 

On obtient enfin l 'expression du déterminant de T :  
1'::! (p- l�p-2) 

det(T) = (- 1 ) ---z- i A avec A >  O. 

En comparant cette expression à l 'équation (1 . 1 7), on voit que ep = + 1 .  D 

Remarque 1.21. Ce résultat se généralise au cas d'un corps IFq quelconque, c'est-à-dire 
pour q = p8 • On peut en effet énoncer : 

si q = 1 mod 4 
si q =  3 mod 4 

La démonstration de ce résultat passe par la démonstration d'un lemme que l 'on trouvera 
dans le livre de LIDL et NIEDERREITER [48] . 

Après ces démonstrations quelque peu calculatoires, on est enfin en mesure de prouver 
la fameuse formule de réciprocité quadratique. Elle fut énoncée par Legendre en 1788, 
et démontrée pour la première fois par Gauss en 1 801 . A ce jour, on dénombre plusieurs 
centaines de démonstrations différentes . FRANZ LEMMERMEYER en a réuni une grande 
quantité, et présente la première partie de l 'historique de cette formule dans [46] . 

Théorème 1.22 (Réciprocité quadratique). Pour tous nombres premiers impairs dis­
tincts p et r, on a 

( 1 . 1 8) 

Démonstration. Soit 17 le caractère multiplicatif quadratique de IF P• et 1/fl le caractère 
additif canonique. Avec le théorème précédent, on sait que 

2 1'::! déf G( 17 , 1/11 ) = ( - 1  ) -r p =' p. 

On note maintenant G � G(11 , x1 ) . On a 

Dans la suite, nous allons effectuer nos calculs dans l ' anneau R des entiers algébriques, 
c'est-à-dire des nombres complexes qui sont racines de polynômes unitaires à coefficients 
entiers. Comme les caractères sont des sommes de racines de l 'unité, les valeurs des 
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sommes de Gauss sont des entiers algébriques, donc G E R. On note (r) l ' idéal engen­
dré par r dans R. Comme l' anneau quotient R/ (r) est de caractéristique r, on obtient 

Gr = ( L 17 (x) l/f1 (x)) r = L (17 (xYl/f1 (xY) mod (r) . 
xEIFj, xEIFj, 

Comme 17 (xY = 17 (x) (car 1J (x) E {- 1 ,  1 }  et r est impair) et que l/f1 (xY = l/fr(x) , on 
obtient 

Gr = L 1J (X)l/fr (x) = G(17 , l/fr) = l/f(r)G mod (r) . 
xEIFj, 

Pour la dernière égalité, on a utilisé le résultat (i) de la proposition 1 . 16 .  On a donc 
r- 1 

Gr = 17 (r)G = jizG mod (r) . 

En multipliant cette égalité par G, et en utilisant le fait que G2 = ji, on obtient l ' égalité 
suivante : 

p2 1
ji= 17 (r)ji mod (r) . 

Cette égalité est en fait une égalité sur Z/r'll. Comme p et r sont premiers entre eux, on 
peut simplifier par ji, pour obtenir 

r- 1 (p- l�r- 1 )  r- 1 
jiT = ( - 1 )  pz = 17 (r) mod r. 

Comme nous l ' avons déjà fait remarquer, on a 17 (r) = (�) . De plus, avec la formule d'Eu­
ler (lemme 1 . 1  ), on a p 9 = ( �) . On a donc en fait l 'égalité suivante : 

( - 1 )  
(p- l�(r- 1 ) ( �) = G) mod r. 

Comme les deux membres de cette égalité sont en fait à valeurs dans { - 1 ,  1 } ,  et que 
r � 3, cette égalité est en fait valide sur Z, ce qui est la conclusion à laquelle on voulait 
arriver. D 

2 Transformée de Walsh 

Avant de présenter, au chapitre suivant, une série d' algorithmes rapides pour calculer des 
transformées de Fourier sur un groupe cyclique, nous allons décrire une transformée qui 
dispose elle aussi d'un algorithme rapide. Il s ' agit de la transformée de Walsh. Derrière 
ce nom se cache en fait une réécriture de la transformée de Fourier sur un groupe abélien, 
dans un cas très particulier, celui du groupe G = (Z/2Z)k. Ce groupe est souvent appelé 
cube booléen, et on peut voir un dessin du cube de dimension 4 à la figure 2. 1 .  

2.1 Présentation 

En suivant de près la démonstration du corollaire 2.5, chap. I, on peut construire facile­
ment le dual d'un groupe qui s 'écrit comme un produit de groupes cycliques élémentaires. 
En effet, chaque caractère va s 'exprimer comme un produit des différents caractères des 
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FIG .  2. 1 - Cube booléen (IF2)4 

groupes élémentaires. Dans le cas du groupe (Z/2Z)k, c'est extrêmement simple, puisque 
le seul caractère non trivial du groupe Z/2Z = {0, 1 }  est défini par 

Xe (O) = 1 Xe ( l ) = - 1 .  

A chaque élément a = {ao ,  . . .  , ak-d E (Z/2Z)k on peut donc assigner un caractère . { (Z/2Z)k � {- 1 , 1 }  
X a · x = {xo , . . .  , Xk-d 1------t (- l )aoxo (- l )a1 x1 . . .  (- l )ak- tXk- t = (- l ) (a,x) · (2. 1 )  

où l 'on a noté (a ,x) l a  forme bilinéaire canonique sur (Z/2Z)k définie par 
k- l 

( ) déf. "'"' a, x = � a;x; .  
i=O 

Dans la pratique, on représente les éléments du groupe (Z/2Z)k comme des entiers com­
pris entre 0 et 2k - 1 ,  en assimilant l 'élément X E  G = (Z/2Z)k avec l 'entier r�,:J x;i. 
Ceci permet de voir les caractères Xa (où a peut être vu comme un élément de G ou 
comme un entier de { 0, . . .  , 2k - 1 }) comme des vecteurs de taille 2k remplis de - 1  et de 
1 .  
Exemple 2.1. Considérons le groupe (Z/2Z)3 , de cardinal 8 .  On peut représenter sa table 
des caractères comme une matrice carrée d'ordre 8, noté Ws, dont la ligne i représente les 
valeurs du caractère X; , c 'est-à-dire que (Ws) ij = X; (j) . Voici la table : 

1 1 1 1 1 1 1 1 
1 - 1  1 - 1  1 - 1  1 - 1  
1 1 - 1  - 1  1 1 - 1  - 1  

w; déf. 1 - 1  - 1  1 1 - 1  - 1  1 (2.2) s = 1 1 1 1 - 1  - 1  - 1  - 1  
1 - 1  1 - 1  - 1  1 - 1  1 
1 1 - 1  - 1  - 1  - 1  1 1 
1 - 1  - 1  1 - 1  1 1 - 1  

La figure 2.2 montre les matrices de Walsh W32 et W64, où 1 '  on a mis en blanc les entrées 
égales à 1 ,  et en noir celles égales à - 1 .  
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FIG. 2.2 - Matrices de Walsh W32 et W64 

On peut alors définir la transformée de Walsh. 
Définition 2.2 (Transformée de Walsh). On définit la transformée de Walsh "ffk(J) d'un 
vecteur complexe f = {f[OJ , . . .  , f[2k - l J } de taille 2k par 

2k- 1 
Vi E {0, . . .  , 2k - 1 } , "#k(J) [i] � ,L fU]XïU) = 2k (J, Xï) · (2.3) 

}=0 

Remarque 2.3. (Lien avec la transformée de Fourier). On convient de noter encore 
f : (Z/2Z)k ---+ C la fonction correspondant au vecteur f, c'est-à-dire le vecteur corres­
pondant à la décomposition de f dans la base des fonctions de Dirac { Ox}xEG· Alors le 
calcul de "/If(!) est celui d'une transformée de Fourier, puisque 

où l 'on a noté Î :  8 - C la transformée de Fourier de f. En particulier, nous allons donc 
pouvoir énoncer sans effort la formule d' inversion pour la transformée de Walsh. 

Si l 'on représente les fréquences i E { 0, . . . , 2n - 1 }  sur le cube booléen de la figure 2. 1 ,  
alors les fréquences situées en bas du schéma sont souvent appelées basses fréquences. 
On retrouve de nombreuses analogies avec les spectres de Fourier déjà rencontrés (trans­
formées de Fourier sur un groupe fini, transformée continue, etc.) . Ainsi, l 'exercice Vl.5 
propose d'utiliser les propriétés spectrales de la transformée de Walsh pour réaliser des 
prédictions booléennes (ceci est en rapport avec la théorie de l 'apprentissage). 
L'opérateur 1fk : C2k - C2k est une application linéaire dont la matrice dans la base ca­
nonique est W2k , la table des caractères du groupe (Z/2Z)k, On a ainsi "ffk(J) = W2kf. La 
formule d' inversion obtenue à la proposition 4.4, chap. 1, nous apporte les informations 
suivantes. 
Proposition 2.4. La transformée de Walsh est inversible, et son inverse est �"ffk. D'un 
point de vue matriciel, ceci signifie que la matrice W2k = { Wij }, définie parWij = (- l ) (i, J} , 
vérifie W2k W2k = 2k Id. 

La matrice de Walsh permet d'étudier des problèmes concrets, par exemple en statistiques, 
comme le montre l'exercice 11.3 .  



42 Chapitre II. Applications de la dualité sur un groupe fini 

2.2 Algorithme de calcul rapide 

L'un des intérêts de la transformée de Walsh est que l 'on dispose d'un algorithme rapide 
pour la calculer. En effet, bien que l 'équation qui la définit puisse sembler un peu compli­
quée, elle peut se décomposer de façon simple. Ceci va permettre de mettre en œuvre un 
algorithme récursif de calcul, bien plus efficace que l 'évaluation naïve de la somme qui 
définit la transformée. Nous étudierons au chapitre suivant la construction de l 'algorithme 
FFT, et on retrouvera exactement les mêmes idées, qui sont à la base de la « philosophie » 
algorithmique appelée diviser pour régner. 
Plutôt que de passer du temps sur l ' analyse d'un tel algorithme (son coût, son implé­
mentation, etc.), nous allons simplement décrire l 'équation de récurrence que nous allons 
mettre en œuvre. Les discussions sur l 'efficacité d'une telle implémentation sont repous­
sées au chapitre suivant, à propos de l 'algorithme FFT. Voici donc la fameuse idée qui est 
à la base de notre algorithme. Il s ' agit de réécrire l 'équation (2.3), de la façon suivante : 

2k- l _ 1 2k- l _ 1 
Yfk(f) [i] = L J[j] (- l )l:!:� jpip + (- l ) Ïk- 1  L f[j + 2k- l ] (- l )L!:� jpip . 

j=O j=O 

Pour écrire cette expression d'une façon plus simple, introduisons les vecteurs /1 et h de 
longueur 2k- l définis de la manière suivante : 

\lj E {0, . .  . , 2k- l _ l } , Ji [j] = f[j] et f2 [j] = f[j + 2k- l ] . 

De même, on écrira Yfk(f) i (respectivement Yfk(/)2) pour désigner les 2k- l premiers 
(respectivement derniers) indices du vecteur transformé 1fk (!) . On a alors l 'équation de 
récurrence 

Yfk(/) 1 = Yfk-1 (/1 ) + Yfk-1 (h) 
Yfk(fh = Yfk-1 (/1 ) - Yfk-1 (/2) .  

D'un point de vue matriciel cette décomposition s 'écrit sous la forme 

La décomposition de W2k trouvée correspond à une structure de produit tensoriel, comme 
le précise l 'exercice 11.7.Cette décomposition donne tout naturellement naissance à un 
algorithme de calcul très rapide, nommé FWT pour Fast Walsh Transform. De façon 
plus précise, si l 'on compte le nombre d' additions nécessaires pour calculer la transfor­
mée de Walsh d'un vecteur de taille n = 2k, on voit que l 'on obtient k = Iog2 (n) appels 
récursifs, avec à chaque fois n additions ou soustractions. D'où un coût de n log2 (n) opé­
rations. C'est un gain substantiel par rapport à l ' implémentation naïve de l' équation (2.3), 
qui nécessite n2 opérations. Le programme MATLAB de cet algorithme est présenté au 
paragraphe 1 ,  annexe A. 

2.3 Utilisation de la transformée de Walsh 

L'intérêt principal de la transformée de Walsh est qu'elle permet de décomposer n' importe 
quelle fonction de {O, . . .  , 2k - 1 } dans C sur la base orthogonale des caractères de (IF2)k. 
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De façon plus précise, on a 

1 2k- l  
Vi E {o, . . .  , 2k - 1 } ,  /[iJ = 2k L, �(f) [iJxj (i) . 

j=O 
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Cette transformée est très rapide à utiliser, car elle n'emploie que des additions et des 
soustractions (pas de multiplication) . De plus, nous avons vu que l 'on dispose d'un algo­
rithme redoutablement efficace pour calculer de façon récursive la transformée de Walsh. 
Cependant, la transformée de Walsh à un point faible de taille : elle n 'a aucune propriété 
agréable vis-a-vis de la convolution des fonctions de {O, . . .  , 2k - 1 }  dans C, contraire­
ment à la transformée de Fourier, comme nous l ' avons vu au paragraphe 4.3, chap. 1. En 
effet, la transformée de Walsh est une transformée de Fourier sur le cube binaire (Z/2Z)k, 
pas du tout sur le groupe cyclique Z/2kz. C'est essentiellement à cause de ceci que nous 
allons être amenés au chapitre suivant à étudier de plus près la transformée de Fourier sur 
un groupe cyclique. Ceci va nous permettre de construire un algorithme pour calculer des 
convolutions sur Z/2kz de façon extrêmement rapide. 
L'exercice II.5 montre comment on peut utiliser la transformée de Walsh pour réaliser de 
la compression de signaux. Il propose aussi d'étendre la transformée de Walsh au cadre 
bidimensionnel. 
Enfin, la transformée de Walsh permet d'étudier les fonctions booléennes, et en particulier 
leur non-linéarité. Comme cette étude suppose de considérer des fonctions à valeurs dans 
le corps fini lF2, elle n'est abordée qu' à  la fin du chapitre VI, à l 'exercice VI.4. Dans le 
même ordre d' idées, l 'exercice Vl.5 introduit des notions probabilistes pour étudier les 
fonctions booléennes et leur apprentissage. 

3 Formule de Poisson 

Nous avons vu, notamment au paragraphe 2.3 , chap. I consacré au bidual, la grande si­
milarité entre la dualité sur un groupe fini abélien, et la dualité sur un espace vectoriel. 
Dans ce paragraphe, nous allons donner une autre incarnation de ce fait, en l 'occurrence 
en étudiant la notion d'orthogonalité entre un groupe et son dual. Le point central de 
cette approche est laformule de Poisson. Nous allons ainsi voir que si l 'on applique cette 
formule dans le cas d'un groupe qui est aussi un espace vectoriel (sur un corps fini), on 
obtient des relations très puissantes, nommées identités de Mac Williams. 

3.1 La formule sur un groupe fini abélien 

Avant d'énoncer la formule de Poisson sur un groupe fini, il est nécessaire de clarifier 
la notion d'orthogonalité. Commençons par rappeler brièvement la théorie de l 'orthogo­
nalité sur un espace vectoriel. Pour une plus ample description, on pourra se référer à 
l'ouvrage de RAMIS, DECHAMPS et ÛDOUX [59] . 

Si E est un k-espace vectoriel de dimension finie, on note E* � Hom(E, k) son dual, 
qui est constitué des formes linéaires. On définit classiquement une forme bilinéaire sur 
E* x E, que l 'on nomme crochet de la dualité, de la façon suivante : 

V(f,x) E E* x E, (x, f) � f(x) . 
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On définit alors, pour une partie A c E, son orthogonal 

A1- � {f E E* \ \lx E A, (x, f} = O} . (3 . 1 ) 

On vérifie que c 'est un sous-espace vectoriel de E, et l 'on a E1- = {0} . De même, on 
définit l 'orthogonal de B c E* par 

B0 = {X E E \ \{ f E B' (x, f} = 0} . 

C'est un sous-espace vectoriel de E*, et on a (E* )0 = {0}. Notons que ces propriétés sont 
encore vraies en dimension infinie, mais on doit utiliser l ' axiome du choix. En dimension 
finie, les applications F 1--t p1- et G 1--t G0 sont des bijections réciproques entre sous­
espaces de E et E* . Elles renversent l ' inclusion. 
Une fois en mémoire ces notions linéaires d'orthogonalité, il est naturel d' introduire la 
définition suivante : 
Définition 3.1 (Orthogonal d'un sous-groupe). Soient G un groupe fini abélien, et 
H c G un sous-groupe. On note HÜ l 'orthogonal de H qui est le sous-groupe de G défini 
de la manière suivante : 

H" � {X E G \ \fh E H, X (h) = 1 } . 

Nous avons déjà vu lors de la démonstration du lemme 2.2, chap. 1, que tout caractère de 
..... --
G trivial sur H s ' identifie de manière unique à un élément de G/H, et réciproquement. 
De façon plus précise, on a un isomorphisme HÜ C::'. GjH. On constate donc que HÜ est un 
sous-groupe de G de cardinal IG l / IH I .  Par exemple, on a GÜ = { 1 } .  De plus, l ' applica­
tion H 1--t HÜ renverse les inclusions. Ici encore, la ressemblance avec la dualité entre les 
espaces vectoriels est frappante. 
On peut maintenant énoncer la formule de Poisson dans le cadre des groupes abéliens 
finis. 
Théorème 3.2 (Formule de Poisson). Soit G un groupe abélien fini, et H c G un sous­
groupe. Alors, pour f : G --+  C, c 'est-à-dire f E C [G] , on a 

\fg E G, L f(gh) = 1
1
�

1
1 L ÎCX)x(g) . 

hEH XEHU 

On a noté Î: G --+ C la transformée de Fourier de f. 

(3 .2) 

Démonstration. Pour simplifier les notations, on considère S un système de représen­
tants de G/H dans G. On note g l ' image de g E S dans G/H (c'est-à-dire l ' image par la 
projection canonique). Commençons par définir une fonction f sur G/H par 

\fg E s, f(g) � L f(gh) .  
hEH 

Ceci revient à remplacer f par une fonction invariante sous la translation par des éléments 
de H (on la « périodise » ). On constate que cette fonction est définie sans ambiguïté, 
puisque, si l 'on considère un autre ree!ésent�!..l de la classe gH, on a g' = gh' avec h' 
un élément de H, et en conséquence, f(g) = f(g') . On peut donc décomposer la fonction 
JE C [ G / H] en série de Fourier : 

\f g E S, f(g) = � (J,x) X (g) . 
XEG/H 

(3 .3) 
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On peut alors expliciter la valeur des coefficients de Fourier : 

( - ) 1 ""' - - -=- IH I ""' ""' -=­f,x = I G/HI � f(g)x (g) = -IGI � � f(gh)x (g) . 
gES gEShEH 

En remarquant que l ' application { S x H  � G 
(g, h) � gh 

--- -
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(3 .4) 

est une bijection et en utilisant le fait que pour X E G/H, X (gh) = x(g) , on peut réécrire 
la somme (3 .4) sous la forme 

( - ) IH I ""' - dér. IH I  --- -f, x = îGï 
8fa

f(g)x (g) = TGïf(x) . 

Il ne reste plus qu'à reporter la valeur de ces coefficients dans l 'équation (3 .3) et de re­
marquer que l 'expression de f(g) nous donne le membre de gauche de la formule de 
Poisson. D 

En appliquant l 'équation (3 .2) avec g = 1 ,  on obtient la forme sous laquelle la formule est 
souvent écrite : 

IH I  _._ 

I f(h) = -1G1  I f(x) . 
hEH XEHU 

(3 .5) 

Dans le but de mieux comprendre la formule de Poisson, nous allons donner une autre 
preuve, qui utilise uniquement des arguments d' algèbre linéaire sur l 'espace vectoriel 
C[G] . Avant de donner cette preuve, étudions plus précisément l 'espace C[G/H] . 
Si on note 1C : G ---t G / H la projection canonique, on peut définir une application 

* . { C[G/H] � C[G] 
1C • f f . � o n  

n* est en fait une application linéaire injective (car n est surjective). L'espace C[G/H] 
s' identifie donc à un sous-espace vectoriel de C[G] , qui est en fait formé des fonctions 
constantes sur chacune des classes à gauche modulo H. Pour démontrer ce fait, il suffit de 
constater que n* peut s ' inverser sur son image de la façon suivante : 

( * )_ 1 { Im(n* ) � C[GjH] 
1C 

f � f ' 

où on note f(x) (pour x E G) la valeur de f sur la classe à gauche de x modulo H. Cette 
identification étant faite, on peut donner une nouvelle démonstration de la formule de 
Poisson. 
Démonstration. Comme précédemment, on se fixe une fonction f E C [ G] . Rappelons que 
l 'espace C[G] est muni d'une structure d' algèbre grâce au produit de convolution * • dont 
l'expression est donnée à l 'équation (4.6), chap. I. On peut alors considérer un opérateur 
de filtrage 

<t>f : { C[G] � C[G] 
. <p � f * <p 

Nous verrons à la section 2, chap. IV, pourquoi on nomme de tels opérateurs des opéra­
teurs de filtrage. En utilisant l ' identification entre les fonctions de q G / H] et les fonctions 
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de C[ G] constantes sur les classes à gauche gH , on peut montrer que C[  G / H] est un sous­
espace de C [ G] stable par cpf. En effet, si on se donne <p constante sur les classes à gauche, 
et g' = gh' , pour g E G et h' E G, on obtient 

cpf (cp) (g') = L f(gh'x- 1 )cp(x) = L f(g(xh'- 1 ) - 1 )cp (xh'- 1 ) = cpf (cp) (g) . 
xEG xEG 

Ceci étant montré, on peut donc considérer <Pt, la restriction de cpf à C[G/H] . L'astuce, 
pour trouver la formule de Poisson, est de calculer la trace de <Pt. On dispose d'une base 
évidente de C [ G / H] , à savoir !1.fi � { Ôg} gES (on note toujours S un système de représentant 
de G/H). On rappelle que Ôg est la fonction qui vaut 1 en g, et 0 partout ailleurs. Dans 
cette base, l ' expression de la trace de l 'opérateur est simple à calculer, puisque le calcul 
des images des vecteurs de base donne 

Vs E S, �(ôs) : g �  L L, J(gx- lh- 1 ) ôs (x) , 
xEShEH 

car il faut se rappeler que Ôs est vu comme une fonction constante sur les classes à gauche. 
En conséquence, on obtient 

Vs E S, �(ôs) : g �  L, J(gs- lh- 1 ) . 
hEH 

La trace se calcule donc sans effort : 

A une constante près, on obtient le membre de gauche de la formule de Poisson. Pour 
obtenir le membre de droite, il va suffire de calculer la trace de if>! dans une autre base. 
Et bien sûr, nous allons réinvestir le travail effectué au chapitre précédent en choisissant 
la base orthonormale des caractères de G/H, c 'est-à-dire les éléments de HÜ . L'intérêt 
est que les caractères se comportent de façon particulièrement agréable vis-a-vis de la 
convolution. En effet, le théorème de convolution 4. 15 ,  chap. 1, permet de montrer que les 
éléments de HÜ sont les vecteurs propres de l 'opérateur if>!, puisque 

L'exercice 1. 1 ,  question 1 ,  détaille la démontration de ceci . Il ne reste plus qu'à exploiter 
le fait que la trace de l 'opérateur if>! est égale à la somme de ses valeurs propres, pour 
conclure que 

tr (�) = :L f(x) . 
XEHP 

On retrouve donc bien la formule de Poisson simplifiée (3 .5). Pour obtenir l 'équation 
complète (3 .2), il suffit d' appliquer l 'équation obtenue à la fonction fg : x ---+ f(gx) , pour 
g E G, puisque l 'on a 

vx E 8, k(x) = x(g- 1 )Î(x) . 

Ce raisonnement montre d' ailleurs que les équations (3 .5) et (3 .2) sont complètement 
équivalentes. D 
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Dans ce paragraphe, nous allons utiliser la formule de Poisson dans le cadre du groupe G 
égal à (Z/2Z)k = (IF2)k . Nous allons donc nous placer dans le cadre où nous avons mené 
l 'étude de la transformée de Walsh (section 2), et nous allons employer les mêmes nota­
tions. L' intérêt d'un tel groupe est qu' il est en plus un espace vectoriel, en l'occurrence sur 
le corps fini IF2. En réalité, la situation est très simple, puisque la notion de sous-groupe 
coïncide avec celle de sous-espace vectoriel (l ' opération de groupe correspond à l ' addi­
tion des vecteurs, et comme le corps n 'a que deux éléments, la multiplication d'un vecteur 
par un scalaire est une opération qui respecte trivialement la structure de sous-groupe). On 
ne perd donc pas d'information en traduisant les énoncés issus de la dualité sur un groupe 
(la formule de Poisson) dans le langage de l ' algèbre linéaire. Nous allons voir que dans ce 
cadre, les notions de dualité et d'orthogonalité sont les mêmes pour les deux structures. 
Toute l 'étude faite dans ce paragraphe se généralise sans modification au cas de l 'espace 
vectoriel Kk, où K est un corps fini quelconque. L'exercice II.8 reprend étape par étape 
cette construction. Cependant, pour rester dans le cadre développé pour la transformée de 
Walsh, nous allons nous restreindre au cas de l 'espace (IF2)k . 

---

On rappelle que l 'on a une description complète du dual Ff, puisqu'à chaque élément 
a =  {ao , . . .  , ak- 1 } E (Z/2Z)k on fait correspondre un caractère 

. { (Z/2Z)k � {- 1 , 1 }  Xa · x = {xo , . .  . , Xk- 1 } t-----t (- l ) (a,x) · 

Ceci nous permet de calculer, pour un groupe H c G, l 'orthogonal HH . En effet, dire que 
Xa E HÜ est équivalent à 

Vh E H, Xa (h) = (- l ) (a, h} = l . 
Ceci signifie donc que 

Vh E H, (a , h) = 0 <=> a  E HJ_ , (3 .6) 
où l 'on a noté H J_ l 'orthogonal de H lorsque l 'on considère H comme un sous-espace 
vectoriel de (IF2)k . Cet orthogonal peut être vu bien sûr comme l 'orthogonal pour la 
forme bilinéaire symétrique canonique sur (1F2)k . On peut aussi le voir comme l 'ortho­
gonal au sens de la dualité (définition (3 . 1 )), si l 'on a identifié l 'espace vectoriel (IF2)k et 
son dual en identifiant la base canonique à sa base duale. Il faut faire attention cependant 
au fait que l 'espace orthogonal HJ_ n'a aucune raison d'être un supplémentaire de H, par 
exemple, dans (IF2)4, le vecteur ( 1 ,  1 ,  1 ,  1 ) est orthogonal à lui même. L'exercice VIII.9 
étudie justement les cas où l 'espace H coïncide avec son dual (il utilise le langage des 
codes correcteurs d'erreurs et des actions de groupes). 
Au final, si l 'on identifie les éléments a E G et Xa E G, on obtient la propriété remarquable 
que HÜ = HJ_ . On peut maintenant énoncer la formule de Poisson en terme d'espaces 
vectoriels. 
Proposition 3.3 (Formule de Poisson vectorielle). Soit H un sous-espace vectoriel de 
(IF2)k. Soit f une fonction f : (IF2)k --+ C. On a alors les deux relations 

IHI � 

L f(a) = 2JC L f(Xu) · 
a EH uEHU 

1 � � 

L f(a) = IH I  L.i f(Xu) · 
aEHU uEH 

(3 .7) 

(3.8) 
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On rappelle que 
Î(Xu) � L (- l ) (u, x)f(x) . 

xE (IF2)k 

Démonstration. La première équation est l 'exacte traduction de la formule de Poisson, 
avec l ' identification H 1- = H" que l 'on a mise à jour. Pour la deuxième équation, il suffit de 
remplacer dans la première H par son orthogonal H1- . Comme IH1- I = l (fJr' ,  on obtient 
bien le résultat voulu. D 

Nous allons maintenant pouvoir appliquer la formule de Poisson à des fins combinatoires . 
Le but de cette étude est de mieux comprendre la structure de l 'espace (IF2)k lorsqu'on 
le munit d'une distance un peu particulière, que l 'on nomme distance de Hamming. Pour 
l ' instant, il s ' agit surtout d'un exercice calculatoire, qui va permettre de révéler des rela­
tions assez spectaculaires. Cependant, nous verrons à la section 3 ,  chap. VI, que tout ceci 
a des applications dans l 'étude des codes correcteurs binaires. Mais contentons nous, dans 
un premier temps, de définir cette fameuse distance. 
Définition 3.4 (Distance de Hamming). Soit x et y E (IF2)k . On définit la distance de 
Hamming d(x, y) entre ces deux vecteurs de la façon suivante : 

d(x, y) � w(x - y) avec w(z) = U { i = 0, . . . , k - 1 \ Zi t'= O} . 

On appelle w(z) le poids du vecteur z. 

La figure 2. 1 représente le groupe (IF2)4 où l 'on a relié les éléments à une distance de 1 .  
Dans le but d'étudier la structure d'un sous-espace H vis-a-vis de la distance d, on s ' inté­
resse à la répartition des poids des mots qui forment H. On introduit alors les définitions 
suivantes. 
Définition 3.5 (Polynôme énumérateur). Soit H un sous-espace vectoriel de (1F2)k. On 
note AH E Z[X , Y] le polynôme énumérateur de poids de H, qui est défini par 

k 
AH (X , Y) � L xk-w(c)yw(c) = LAixk-iyi , 

cEH i=O 

où on a noté Ai le nombre de vecteurs de H de poids i. 

La relation suivante, découverte par MACWILLIAMS,  met en relation les poids des mots 
de l 'espace H avec les poids des mots de son orthogonal. 
Théorème 3.6 (Identité de MacWilliams). Soit H un sous-espace vectoriel de (1F2)k. 
On a alors 

Démonstration. Soient x et y deux nombres complexes fixés. On définit alors la fonction 
f E C[(IF2)k] par 

Va E (1F2)k , f(a) � �-w(a)yw(a) . 

Dans le but d' appliquer la formule de Poisson, il nous faut calculer Î: 

Va E (IF2)k , Î(Xa) � L �-w(t)yw(t) (- l ) (t , a} . 
tE (IF2)k 
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En utilisant le fait que w(t) = rf,:-J t; dans N, où t; E {O, 1 } ,  on obtient 

k- 1 k- 1 1 
\ia E (IF2)k , Î(Xa) = L flxl-t;y; (- l )a;t; = fl L .x"-t;y; (- l )a;t; . 

tE (JF2)k i=O i=O t;=O 
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Si a; = 0, la somme intérieure vaut x + y, alors que si a; = 1 ,  on trouve x -y. On a donc 

On peut maintenant appliquer la formule de Poisson (3 .8). L'égalité du théorème est ainsi 
vraie si on considère les valeurs des polynômes quel que soit le point (x, y) E C2. Elle est 
donc aussi vraie en tant qu'égalité polynomiale sur Z[X , Y] . D 

Cette identité, outre son intérêt esthétique certain, constitue l'outil principal pour l'étude 
combinatoire des codes correcteurs . La section 4, chap. VI, reformule l' identité de Mac­
Williams dans le cadre de la théorie des codes, et explique les multiples applications qui 
en découlent. 

3.3 La formule de Poisson continue 

La formule de Poisson que nous venons d'utiliser sur un groupe fini abélien a en fait 
un énoncé semblable dans le cadre des fonctions continues définies sur R Pour que cet 
énoncé soit agréable, nous allons définir la transformée de Fourier continue de la manière 
suivante : 

(3 .9) 

On peut alors énoncer la formule de Poisson sur R On notera avec beaucoup d'intérêt que 
sa démonstration est en grande partie semblable à celle faite dans le cadre des groupes 
finis. La seule difficulté du cas continu réside dans les problèmes de convergence des 
séries manipulées, ce qui nous oblige à imposer des hypothèses plus contraignantes sur 
les fonctions que l 'on analyse. 
Théorème 3.7 (Formule de Poisson continue). Soit f E L1 (�) une fonction continue 
telle que 

3M > 0, 3a > 1 , lf(x) I � M( l  + lxl ) -a ,  
+oo 
L IÎ(n) I  < +00• n=-oo 

Sous ces hypothèses, on a +oo +oo 
L f(n) = L Î(n) . 

n=-oo ll=-oo 

(3 . 10) 

(3 . 1 1 ) 

(3 . 1 2) 

Démonstration. On commence par périodiser la fonction f en introduisant la fonction 
+oo 

\ix E �, f1 (x) � L f(x+ n) 
n=-oo 

Si on se restreint au compact {x E �. lxl � A} ,  pour A >  0, l 'hypothèse (3 . 1 0) permet 
d'affirmer, pour ! n i  � 2A, 

IJ(x + n) I � M( l  + lx + n l ) -a � M( l  + ln l -A)-a � M( l + ln l /2) -a , 
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ce qui définit le terme général d'une série convergente. On en conclut donc que sur tout 
compact, la série qui définit /1 est normalement convergente, donc que /1 est continue. 
De plus, on voit facilement que /1 est 1 -périodique, puisque 

+oo +oo 
!1 (x +  1 ) = L f(x+ n +  1 ) = L f(x+ n') = !1 (x) , 

n=-oo n'=-oo 
où l 'on a fait le changement de variable n' = n + 1 (autorisé par l ' absolue convergence de 
la série). On peut donc calculer ses coefficients de Fourier : 

\;/m E Z, Cm (/1 ) = f l 
f1 (t)e-2imntdt = L f l 

f(t + n)e-2imntdt , Jo nEZ}o 
où l ' interversion entre la somme et l ' intégrale est justifiée par la convergence normale 
de la série de terme général f(t + n)e-2imnr pour t E [0 , 1 ] .  On peut ainsi poursuivre les 
calculs pour obtenir, par changement de variable u = t + n, 

\;/m E Z, Cm (/1 ) = L 1
n+ l 

f(u)e-2imnudu = !
+
""' f(u)e-2imnudu = Î(m) 

nEZ n -OO 

(la dernière égalité est justifiée par le théorème de convergence dominé de Lebesgue, 
car x 1--+ f(x)e-2imnx E L1 (JR)) . On constate donc, avec l'hypothèse (3 . 1 1 ) que la série 
de Fourier associée à /1 converge absolument. En utilisant en plus le fait que /1 est une 
fonction continue, on conclut donc qu'elle est somme de sa série de Fourier. On peut donc 
écrire 

\;/x E IR, /1 (x) = L Cm (/1 )e2imnx = L Î(m)e2imnx . 

Au final, on obtient donc l'égalité 
mEZ mEZ 

\;/x E IR, L f(x+ n) = L Î(m)e2imnx, 
nEZ mEZ 

ce qui donne bien la formule de Poisson voulue en faisant x = O. D 

Remarque 3.8. (Lien avec la formule de Poisson sur un groupe fini) . La formule de 
Poisson continue que nous venons de démontrer est en tout point semblable à la formule 
(3 .2), valable sur un groupe fini abélien. En effet, dans le cas continu, il faut considérer 
le groupe G = lR 1 , qui est la droite réelle munie de l' addition, ainsi que le sous-groupe 
discret Z C R Le groupe quotient n'est rien d' autre que le cercle JR/Z � S1 . De plus, 
nous verrons au paragraphe 1 . 1 ,  chap. IV, que l 'on dispose d'une description complète 
des caractères du cercle, puisqu' ils correspondent aux exponentielles en : t 1--+ e2innt . On 
dispose donc d'un isomorphisme explicite St �  Z. Dès lors, on peut écrire la formule de 
Poisson dans le cas continu sous la forme 

L f(n) = L (f, en ) · nEZ enEIR/Z 

Donc au facteur � près, cette formule est en tout point semblable à (3 .2). 

Une des nombreuses applications de la formule de Poisson concerne la fonction Thêta de 
Jacobi, qui est définie de la manière suivante. 
Définition 3.9 (Fonction Thêta de Jacobi). On définit la fonction Thêta par 

+oo 
\;/t > 0, O (t) � L e-nn2t 

n=-oo 
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Avant d'énoncer l'équation fonctionnelle que vérifie 0,  il nous faut démontrer un lemme 
classique sur la transformée de Fourier d'une Gaussienne. 
Lemme 3.10. Soit g1, pour t > 0, la Gaussienne définie par 

Alors on a 
\lx E �. it (x) = V2iëie-2n21x2 

où l 'on a conservé la définition de la transformée de Fourier (3 .9). 

Démonstration. La transformée de la fonction g1 s 'écrit 

r 112 2· it (x) = lJR e-21 e- muxdu. 

En utilisant le théorème de dérivation sous le signe somme, on voit que la fonction obtenue 
est c1 ' et que l 'on a 

dit r ,,2 2· 2 dx (x) = -2in lJR ue-21 e- muxdu = -4n xtj, (x) , 

où la dernière égalité s 'obtient par intégration par parties. En résolvant l ' équation diffé­
rentielle dont g1 est solution, on obtient 

j, (x) = j, (O)e-2n2rx2 . 

Il ne reste plus qu' à  calculer la valeur de j, (O) = ./il, avec I = fJR e-x212dx. Pour ce faire, 
il convient de passer en coordonnées polaires lors du calcul de I2 : 

I2 = kk e-
x2!y2 dxdy = 2n fo+00 re--?dr = 2n. 

En mettant bout à bout tous ces résultats, on obtient bien la transformée de Fourier an­
noncée. D 

Voici enfin l ' identité de Jacobi sur la fonction O .  
Théorème 3.11 (Identité de Jacobi). 

\/t > 0, O (t) = -
1 

0 (�) ..fi t 
(3 . 1 3) 

Démonstration. Il suffit d' appliquer la formule de Poisson à la fonction g1 • Il est évident 
que g1 vérifie bien les hypothèses du théorème 3.7 .  On obtient ainsi l 'égalité suivante : 

L g, (n) = L e-fr = L it (n) = V2iëi L e-2n2tn2 . 
nEZ nEZ nEZ nEZ 

Ce n'est rien d' autre que l' identité que l 'on cherchait à démontrer, évaluée en 2m. D 

L'un des intérêts de cette identité est de permettre de calculer la fonction 0 pour des petites 
valeurs du paramètre t, et ceci avec une précision très grande. Par exemple, pour t = 
0.00 1 ,  le membre de droite de (3 . 1 3) fournit instantanément le résultat avec une précision 
supérieure à celle de MATLAB en double précision (qui est donnée par le commande 
eps = 2 . 2 2 0 4 e - 0 1 6 ), et ceci avec simplement le terme d' indice n = 0 dans la somme. 
Si on utilise de façon naïve le membre de gauche de l ' identité, on observe une diminution 
géométrique de l 'erreur relativement lente. 
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4 Exercices 

Exercice 11.1 (Preuve géométrique de la réciprocité quadratique). Cet exercice est tiré 
d'un article de LAUBENBACHER [45] .  Nous allons détailler pas à pas la preuve de la ré­
ciprocité quadratique qu'EISENSTEIN a donnée en 1 844. Cette preuve est assez originale 
puisqu'elle utilise essentiellement des arguments de nature géométrique. Dans la suite de 
cet exercice, on note [x]p le reste de la division euclidienne de x par p (qui est toujours 
un élément de { 0, . . .  , p - 1 } , même si x � 0), et lx J la partie entière de x. On considère 
deux nombres premiers impairs distincts p et r, et on souhaite démontrer la formule de 
réciprocité quadratique (1 . 1 8) .  

1 .  On note A � {2, 4, 6, . . .  , p - 1 } et B � { [ra]p \ a E A } . Montrer que l 'on a 

2. En déduire que modulo p, on a l 'égalité suivante : 

puis que 

II b = /9· II a =  r� (- l )LbeBb II b mod p, 
bEB aEA bEB 

3 .  Démontrer l 'égalité suivante : 

En déduire 

L ra = p L l raj + L b. 
aEA aEA p bEB 

4. Dans le but de donner une signification géométrique à cette équation, on construit 
la figure 2 .3 .  Montrer qu'aucun point à coordonnées entières ne se trouve sur ]AB[. 
Montrer alors que le nombre de points d' abscisse paire dans le triangle ABD est 
égal à l":aEA 

l lff J . 
5 .  On considère une abscisse entière a >  f Montrer que, modulo 2, le nombre de 

points d'abscisse a situés en dessous de (AB) (marqués + sur la figure) est égal au 
nombre de points de même abscisse mais situés au-dessus de (AB) (marqués x ) . 
Montrer que ce nombre est aussi égal au nombre de points d'abscisse p - a situés 
au-dessous de (AB) (notés • ). En conclure que I,aEA l lff J est égal, modulo 2, au 
nombre de points à coordonnées entières dans l ' intérieur du triangle AH K. 

6. En échangeant les rôles de p et r, puis en comptant les points dans le rectangle 
ALHK, en déduire la loi de réciprocité quadratique. 

Exercice 11.2 (Théorème de Fermat sur un corps fini). Cet exercice utilise les notations 
et les résultats de l 'exercice 1 .5 .  Soit q = p' où p est un nombre premier. On souhaite 
montrer que si k est un entier tel que q ;;;:: k4 + 4, alors l 'équation de Fermat sur IF q 

x, y, z  E IF; (4. 1 )  
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F 
x = p/2 x = a D 

FIG. 2.3 - Démonstration géométrique de la loi de réciprocité quadratique 

a une solution. Pour ce faire, nous allons utiliser la transformée de Fourier sur le groupe 
(lFq , +) . 

1 .  Soit klq - 1 .  Montrer qu' il existe un unique sous-groupe Hk d' indice k dans JF; et 
que 

Hk = {Je \ x E lF; } . 

2. On note xo , . . .  , Xk- 1 les caractères multiplicatifs du groupe quotient JF;/Hk. On les 
étend de manière canonique en des caractères multiplicatifs de JF; en composant par 
la projection canonique. Montrer alors que pour tout caractère additif l/f on a 

- 1 k- 1 
fnk (l/I) = k L, G(x; , 1p") . 

i=O 
En utilisant la proposition 1 . 17 ,  montrer alors que t.I>(Hk) < ..;q, où <I> est définie à 
l 'équation (5 . 1 ), chap. I. 

3 .  Soient A1 ,A2 c G. On note N et N' respectivement le nombre de solutions des 
équations 

x+y = t\ 
x+y = u, 

Montrer que N = kN' , puis montrer que 

avec x E A 1 , y E A2 , z E lF; , 
avec x E A i ,  y E A2 , u E Hk. 

,
N _ 

IA i l lA2�(q - l ) 1 < kJIA 1 l lA2 lq. 

(4.2) 

(4.3) 

(4.4) 

On pourra commencer par démontrer une inégalité similaire pour N' en utilisant le 
résultat de l 'exercice 1.5, question 2. 

4. Si on note l; � ii[. alors montrer que si q ;;;::: k2l1 Zi + 4 l ' équation (4.2) admet une 
solution. Dans le cas où k ne divise pas q - 1 ,  montrer que 

où d � pgcd ( q - 1 ,  k) . En déduire que le résultat est valide pour tout k vérifiant 
q ;;;::: k2l1 1i + 4. 
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5. En utilisant les ensembles Ai = A2 = Hko montrer que si q � k4 +4, alors l ' équation 
(4 . 1 ) admet au moins une solution. 

Exercice 11.3 (Transformée de Walsh et étude statistique). Cet exercice est tiré d'un 
article de ROCKMORE et MALSEN [52] , qui présente une technique connue sous le nom 
d'analyse de Yates, du nom du statisticien qui a inventé cette méthode. On considère 
la situation suivante : un fermier souhaite connaître l ' influence de trois paramètres sur 
sa production de blé. Ces paramètres sont l 'éclairage (représenté par la variable a), la 
quantité d'herbicide (variable b), et la quantité d'engrais (variable c). Chacune de ces 
variables peut prendre deux valeurs : forte quantité (notée +-) et faible quantité (notée -) . 
Un compte rendu d'expériences est donné sous la forme du tableau suivant regroupant les 
valeurs pour la taille moyenne du blé (en centimètres) sous les différentes conditions : 

a b c aabc 
+ + + 69 

+ + 8 1  
+ + 63 

+ 77 
+ + 6 1 

+ 92 
+ 54 

89 
On peut donc représenter ces résultats sous la forme d'une fonction 

f .  { (Z/2Z)3 � {- ,+}3 � � 
. (a , b , c) 1---t aabc 

. 

Dans le but d' analyser ces résultats, on définit l ' interaction d'ordre 0, notée µ, qui est 
simplement la moyenne : 

déf. 1 � µ = 8 .L.i aabc · 
(a , b, c)E {  +,-}3 

On définit ensuite les interactions d'ordre 1 , notées �. µb et µc. comme correspondant à 
l ' effet d'un seul paramètre, les deux autres étant supposés constants . Par exemple on a 

déf. 1 � 1 � � = - .L.i a+bc - 4 .L.i a-be . 
4 (b, c)E {  +,-}2 (b, c)E {  +,-}2 

Dans le même ordre d'idée, définir les 3 interactions d'ordre 2, notées µab • µbe et �c. ainsi 
que l ' interaction d'ordre 3, notée µabc · Comment peut-on calculer toutes ces interactions 
à l ' aide de la transformée de Walsh ? En déduire un algorithme de calcul rapide. Faire le 
calcul dans le cas du fermier. 
Exercice 11.4 (Ondelette de Haar). On note l/fo la fonction indicatrice de [O, 1 ] et l/f la 
fonction qui vaut 1 sur [O, H - 1 sur [! , l ] ,  et 0 partout ailleurs. On définit ensuite une 
suite de fonctions l/f n par 

\;/ j � 1 , \lk E {O, . . . , 2i- l - 1 } ,  lfln (x) � l/fj,k (x) � 2� l/f (2ix - k) , 

où n = 2i- l +k. On note, pour j � 0, Fj l ' espace des fonctions de [O, 1 ] dans � constantes 
sur chacun des intervalles Ik � [k2-i , (k +  1 )2-i [, pour k E {0, . . .  , 2i - 1 }  (on inclut le 
point 1 dans le dernier intervalle) . 

1 .  Montrer que { lf!n} ��o 1 forme une base orthonormée de Fj pour le produit scalaire 
usuel de L2 ( [0, l ] ) .  
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2. Soit f une fonction continue de [O , 1] dans R Pour J � 0, on note fJ la projection 
de f sur F1 : 

J 2i- l _ 1  
Ji � Li Li (!, l/lj,k) l/lj,k ·  

j=O k=O 
Montrer que fJ converge uniformément sur [O , 1] vers f quand J ---+ +oo. On définit 
ensuite, pour n � 0, la fonction 

n 
fn � L (!, V'm) V'm · 

m=O 

Montrer que fn converge uniformément vers f lorsque n ---+ oo. Montrer ensuite 
que {V'n}neN forme une base de Hilbert de L2 ( [0 , 1 ] ) .  La figure 2.4 représente la 
décomposition d'une fonction f sur les premiers vecteurs de la base des l/fn, que 
l 'on nomme base de Haar. 

0 

0 

0 

f = ('l/Jo , /)'l/Jo 
1 

1 

1 

'l/Jo 
1 - - - - - - - - -

0 

1 

L _ _ _  _ 

FIG .  2.4 - Décomposition sur la base de Haar 

3 .  On introduit, pour j � 0, les fonctions « en escalier » <(Jj,k (x) � 2� l/fo (2ix - k) .  
Montrer que <(Jj,kt pour k E { 0 ,  . . .  , 2i - 1 } , forme une base orthonormée de Fj . On 
définit Gj- 1  l ' espace vectoriel tel que Fj = Fj- 1  E9 Gj- 1  (espace des « détails »). 
Montrer que {l/lj,k}�::-�-l est une base orthonormée de Gj- 1 · Exprimer ensuite la 
fonction l/fj,k comme combinaison linéaire des 'Pi+l ,s • s E {O, . . .  , 2i - 1 . 

4. Soit f E Fj. On note x(O) E JR2i le vecteur des produits scalaires x(D) [k] = (!, '{Jj,k) · 
Comment les calcule-t-on à partir de f ?  Pour i E { 1 ,  . . .  , j} , on définit des vecteurs 
x(i) et d(i) de taille 2i-i, par les relations, pour k E {O, . . .  , 2i-i - 1  } , 

( .) dér x(i- l ) [2k + 1 ]  +x(i- l ) [2k] 
X 1 [kj =' ,,/2 
( .) du x(i- l ) [2k + 1 ] - x(i- l ) [2k] 

d '  [k] = . 
./2 
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De façon intuitive, xCil représente la tendance dans le signal x(i- l ) , et d(i) représente 
les détails. La figure 2.5 symbolise la succession des calculs à effectuer pour obte­
nir les vecteurs d(i) ainsi que le dernier coefficient xUl [O] . Montrer que l ' opérateur 
x(i) � (x(i+ l ) , d(i+ I ) )  peut être vu comme une isométrie (plus précisément une ro­
tation) de JR/-i. Montrer que les x(i) ont tous la même moyenne, et donc que xU) [O] 
représente la moyenne du signal i0l d'origine. 

FIG .  2.5 - Calcul en cascade des coefficients de décomposition 

5. Montrer que l 'on a, pour i E { 1 , . . . , j} et pour k E {O, . . .  , 2i-i _ l } ,  

et xU) [O] = (!, l/fo) . 

Grâce à cet algorithme, quel est le nombre d'opérations nécessaires pour décompo­
ser une fonction de Fj sur la base des l/fn ? 

6. On suppose que n = 2i . Montrer que l 'opérateur r qui à x E JR.n associe le vecteur 
(d( 1 ) , x(2) , • • •  , dU) , xUl ) est une isométrie de JR.n pour le produit scalaire canonique 
(on a mis bout à bout les vecteurs d(i) , xCi) , . . . ). En déduire que l ' application de cet 
opérateur correspond à la décomposition de x dans une base orthonormée de JR.11 que 
l 'on précisera. Comparer cette base à la base de Walsh décrite au paragraphe 2. 1 .  
Comparer en termes de complexité l' algorithme de décomposition dans la base de 
Haar et celui de décomposition dans la base de Walsh (algorithme FWT, paragraphe 
2.2). 

La figure 2.6 montre deux exemples de transformées y = rx. On peut voir que comme 
les signaux sont réguliers, seuls les coefficients correspondant aux échelles grossières 
(c'est-à-dire pour j petit, les indices de droite de la transformée) sont grands. La base de 
Haar est l ' exemple le plus simple de base d'ondelettes. L'algorithme de transformation 
en ondelettes rapide a été introduit par MALLAT, [5 1 ] .  Les différences entre les bases de 
Walsh et de Haar illustrent le passage de la transformée de Fourier (ici sur (IF2)k) à la 
transformée en ondelettes. L'exercice VII. 1 1  présente la construction d'ondelettes sur les 
corps finis. 

Exercice 11.S (Compression d'images). Le but de cet exercice est d'ordonner de façon 
appropriée les fonctions de Walsh pour réussir à compresser des signaux ID et 2D. 

1 .  Généraliser la transformée de Walsh discrète au cas bidimensionnel. On utilisera 
les fonctions 

X;, j (s, t) = x; (s)xj (t) . 

Ecrire un algorithme de calcul rapide de la transformée de Walsh 2D. 
2. Montrer que l 'on peut classer les fonctions de Walsh discrètes (définies à l ' équation 

(2. 1 )) par ordre croissant du nombre de changements de signe. La figure 2.7 montre 
les matrices de Walsh obtenues en classant les fonctions dans l' ordre usuel et dans 
l 'ordre du nombre de changements de signe. 
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Signal original 
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Transformée de Haar discrète 
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2 

. .. 
0 • • • ·•· • • ·• • • • .. . . .  .

. 
"<t. 

. : . . . 

0.2 0.4 0.6 0.8 

FIG. 2.6 - Exemples de transformées de Haar discrètes 
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3 .  Intuitivement, un tel classement permet d'ordonner le spectre de Walsh depuis les 
tendances (basses fréquences) jusqu' aux détails (hautes fréquences). Calculer pour 
quelques fonctions les spectres obtenus avec les deux classements, et vérifier cette 
interprétation. La figure 2.8 montre les spectres de la fonction représentée en haut 
à gauche de la figure 2.9. 

4. Nous avons donc classé les fonctions de Walsh selon un ordre Xia , . . .  , X;N . On consi­
dère un signal f E <CN. Pour 0 � n < N, on construit la fonction 

n 
fn � L (f, x;k ) X;k . 

k=O 
Expliquer pourquoi ce procédé permet de compresser le signal f. La figure 2.9 
montre la compression progressive d'un signal. On indique à chaque fois le pour­
centage de coefficients de Walsh qui ont été conservés. Après avoir étudié la trans­
formée de Fourier discrète au chapitre III, on pourra effectuer le même procédé, 
mais avec le spectre de Fourier. Quels sont les avantages et les désavantages de 
chaque méthode (temps de calcul, qualité de la reconstruction, etc.) ? 

5 .  Quel(s) classement(s) peut-on adopter pour les fonctions de Walsh 20 ? La figure 
2. 10 propose un tel classement (de gauche à droite et de haut en bas) . Appliquer 
ce classement pour compresser des images 20. Ecrire un programme MATLAB 

permettant d'effectuer cette compression. La figure 2. 1 1  montre la compression 
progressive d'une image représentant la lettre A. 

Exercice 11.6 (Matrices de Hadamard). Cet exercice fait la liaison entre les matrices de 
Walsh considérées au paragraphe 2. 1 et les résidus quadratiques introduits au début de ce 
chapitre. Une matrice Hn. de taille n x n, dont les entrées sont + 1 ou - 1 ,  est dite matrice 
de Hadamard si elle vérifie 
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Ordre naturel Ordre par nombre de changements de signes 

FIG .  2. 7 - Deux façons de classer les fonctions de Walsh 

30 
25 
20 
15 

30 
25 
20 
15 
10  

OO 

Speclfe, ordre naturel 

Spectre, ordre par nombre de changements de signe 

FIG . 2.8 - Spectre de Walsh d 'un signal ID 

où on a noté Hn T la matrice transposée de Hn. 

1 .  Expliquer pourquoi la matrice Wn, définie à la proposition 2.4, pour n = 2k, est une 
matrice de Hadamard. 

2. Montrer que s ' il existe une matrice de Hadamard Hn de taille n x n, alors, n vaut 
1 ,  ou 2, ou est un multiple de 4. On pourra commencer par montrer que l 'on peut 
supposer que H11 est normalisée, c'est-à-dire avec des 1 sur la première ligne et la 
première colonne. Ensuite on montrera que si n � 3, on peut supposer que les trois 
premières lignes de H11 s 'écrivent sous la forme 

1 1 1 1 1 1 1 
1 . . . 1 1 1 - 1  . . .  - 1  - 1  - 1  
1 . . .  1 - 1  - 1  1 1 - 1  - 1  
------ � � � 

j k l 

où les entiers i, j, k, et l désignent les longueurs de chaque portion (ils peuvent 
éventuellement être nuls) . Enfin, on montrera que l 'on a en fait i = j = k = l .  

3 .  Le problème inverse, à savoir la construction d'une matrice Hn pour un n multiple 
de 4 donné, est très complexe. En fait, on conjecture qu' il est toujours possible de le 
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1 00% 80% 60% 40% 30% 

FIG .  2.9 - Compression d 'un signal ID 
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FIG .  2. 10  - Classement des fonctions de Walsh 2D 

S9 

faire, bien qu'on ne l 'ait pas encore prouvé. On suppose que n = p + 1 ,  où p est un 
nombre premier impair. On suppose aussi que n est un multiple de 4, et nous allons 
montrer que l 'on peut alors construire une matrice Hn. Nous utiliserons le caractère 
de résidu quadratique modulo p, noté 1} ,  qui est défini à l 'équation (1 .2). On définit 
une matrice Q de taille p x p par 

Q déf. { ( . •) } 
= 11 ] - l O�i, j�p- 1 · 

Montrer que Q est anti-symétrique, et que l 'on a QQT = pldp -J, où J est la matrice 
dont toutes les entrées valent 1 .  Montrer aussi que l 'on a QJ = JQ = O . Une telle 
matrice est appelée matrice de Paley. 

4. On définit maintenant la matrice H11 de taille n x n par 

H � ( l v ) n VT Q - ldp ' 

où on a noté v = ( 1 , . . . , 1 ) E JR.P. Montrer que Hn est une matrice de Hadamard. 
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1 00% 80% 60% 50% 40% 

[A [A [A � [A  
30% 20% 1 5% 1 0% 5% 

[A] [AJ � 
FIG . 2. 1 1 - Compression d 'une image 2D 

Voici un exemple pour p = 7 : 

1 1 1 1 1 1 1 
1 - 1  1 1 - 1  1 - 1  - 1  
1 - 1  - 1  1 1 - 1  1 - 1  

H dér. 1 - 1  - 1  - 1  1 1 - 1  1 s = 1 1 - 1  - 1  - 1  1 1 - 1  
1 - 1  1 - 1  - 1  - 1  1 1 
1 1 - 1  1 - 1  - 1  - 1  1 
1 1 1 - 1  1 - 1  - 1  - 1  

5 .  Soit A une matrice de taille n x n telle que ses entrées a;1 vérifient 

Montrer l ' inégalité de Hadamard : 

1 det(A ) I � n� . (4.5) 

Montrer que s ' il existe une matrice de Hadamard, alors cette dernière atteint cette 
borne. 

L' interprétation géométrique de la borne (4.5) est très simple. Il s ' agit de considérer un 
système de n vecteurs (les colonnes de la matrice) à l ' intérieur du cube lx; 1 � 1 ,  (où on note 
{xï}i=l un système de coordonnées), enfermant un parallélépipède rectangle de volume 
maximal. Dans le cas des matrices de Hadamard, ces vecteurs sont des grandes diagonales 
du cube, et sont donc de longueurs maximales . De plus, elles sont orthogonales, de façon à 
produire le volume maximal. Dans les dimensions où les matrices de Hadamard n' existent 
pas, il n'est pas possible de produire des diagonales orthogonales, même si l 'on pense 
que les vecteurs qui minimisent (4.5) sont proches des grandes diagonales . Ceci reste un 
problème ouvert. 
L'exercice Vl. 1 1  présente une application des matrices de Hadamard pour la construction 
de codes correcteurs hi-orthogonaux. 

Exercice 11.7 (Produit tensoriel matriciel). Soit A une matrice carrée de taille s et B une 
matrice carrée de taille t. On définit le produit tensoriel A ® B comme la matrice de taille 
s x t  
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1. On suppose que A vérifie AA* = sld8 • Montrer que A®n = A ® · · ·  ®A (n produits) 
vérifie A®11 (A®n) * = s"Ids'' · 

2. Quel rapprochement faire avec la transformée de Walsh ? 
3 .  En vous inspirant de l ' algorithme rapide FWT, écrire un algorithme rapide qui cal­

cule la transformée y = A ®nx. Comment se calcule la transformée inverse ?  
4 .  On prend comme matrice de base 

A � v'2 (c?s (a) sin ( a) ) . a sm(a) - cos (a) 
En quoi la transformée x f-+ A�nx peut être vue comme une transformée de Walsh 
intermédiaire ? 

La figure 2. 12  montre les transformées d'une fonction « triangle » pour des valeurs de 
a dans [O ,tr/2] . La transformée de Walsh ordinaire correspond à la 5ième courbe. Pour 
a = tr/2, on trouve le signal d'origine symétrisé. On pourra regarder l 'exercice VIII.7, 

FIG . 2. 1 2 - Transformée de Walsh intermédiaire 

qui utilise la théorie des représentations linéaires pour construire une matrice A de taille 
8. 

Exercice 11.8 (Généralisation de l 'identité de MacWilliams). Dans cet exercice, on 
propose d'étendre l ' identité de Mac Williams au cas de l 'espace vectoriel E = lF�. 

1 . On définit la forme bilinéaire suivante sur E x E, à valeur dans lF q : 

p- I  
1,..1 ( ) E2 ( ) déf. "°' 
v a,x E , a , x = ,,l,.,i aix; . 

i=O 

Expliquer en quoi elle représente la forme bilinéaire de la dualité (crochet de la 
dualité) entre l 'espace E et son dual E* (correctement identifié à E). 

2. On note XI le caractère additif canonique de lF q. comme défini par l 'équation (1 .6). 
Soit a = {ao , . . .  , ak-d E (Z/qZ)k. On définit { E -----t C* 

Xa : x 1----+ XI ( (a , x) ) · 

Expliquer pourquoi les applications Xa permettent de définir un isomorphisme entre 
E et son dual en tant que groupe additif, Ê. 
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3 .  Soit H un sous-groupe de E. Montrer que c'est aussi un sous-espace vectoriel. Dé­
duire de la question précédente que l 'on peut identifier l 'orthogonal de H pour la 
structure de groupe, noté ntt, et celui pour la structure d'espace vectoriel, noté H -1 .  

4 .  Démontrer l ' identité de Mac Williams dans le  cadre de l'espace E :  
1 

AH.L (X , Y) = 
IH I

AH (X + (q - l )Y,X - Y) . 

Exercice 11.9 (Formule de Poisson et distributions). Cet exercice demande certaines 
connaissances en théorie des distributions, notamment la définition de la transformée de 
Fourier d'une distribution. Ici on prend comme convention la transformée définie à l 'équa­
tion (1 . 1) ,  chap. IV, qui diffère d'un facteur 21t' de celle employée en (3 .9). On note Ils le 
peigne de Dirac de pas s, c'est-à-dire 

II déf. � � 
S = ,,{,.i Uks ' (4.6) 

kEZ 
où ô, est la distribution définie par (ô, , cp) � <p (t) pour <p E CC0(1R) (fonctions de classe <6'00 
à support compact). Montrer que la formule de Poisson (3 . 1 2) implique l 'égalité suivante : 

--- 21t' Ils = -II � .  
s s 

Exercice 11.10 (Echantillonnage de Shannon). Soit T > O. On note 

lr � [-; , fJ et Er � {f E L2 (IR) \ Supp(J) c /r } . 

Soit f E Er .  On veut démontrer le théorème d'échantillonnage de Shannon, qui dit que 
f peut être reconstruite (interpolée) à partir des échantillons f(nT) ,  pour n E Z. D'une 
façon plus précise, si on note 

. ( )  � sin (m/T) smcr t - 1t't /T , 

alors on veut montrer que 

f(t) � L f(nT) sincr (t - nT) .  
nEZ 

1 .  Montrer que f est de classe <6'00• 
2. On note fd la distribution qui correspond à l 'échantillonnage de f : 

fd � L f(nT)Ônr .  
nEZ 

En utilisant l 'égalité (4.6), montrer que l 'on a 
1t' ,,... 1 ,,... l ro l � T ==> fd(œ) = Tf(œ) .  

(4.7) 

3. Calculer la transformée de Fourier inverse de la fonction indicatrice de l ' intervalle 
Ir.  En déduire le théorème d'échantillonnage. 

4. Montrer que la famille { t i--+ sincr (t - nT) }nEZ forme une base orthogonale (base de 
Hilbert) de l 'espace Er . Comment se calcule la projection d'une fonction f E L2 (IR) 
sur cet espace ? 



Chapitre 1 1 1  
Transformée de Fourier discrète 

Le développement de l ' informatique au cours des années 

1 960 a donné beaucoup d'importance aux programmes de 

calcul rapide. [ . . . ] Des programmes de calcul rapide de 

transformée de Fourier (FFf) furent créés à cette époque 

et leur usage se répandit immédiatement à une vaste 

échelle, en même temps que la réputation de leurs 

initiateurs, Cooley et Tukey. 

JEAN-PIERRE KAHANE (38] ( 1 998) 

L'utilisation de la transformée de Fourier discrète est à la base de la quasi-totalité des 
algorithmes numériques digitaux. La découverte de l ' algorithme de transformation rapide 
FFT (pour Fast Fourier Transform, en français Transformée de Fourier Rapide) a révo­
lutionné l 'univers du traitement du signal en permettant des calculs numériques en des 
temps raisonnables. C'est en grande partie cette découverte qui a fait comprendre que 
l 'on pouvait travailler de façon aussi rapide dans le monde digital (constitué de signaux 
discrets) que dans le monde analogique (constitué de signaux continus). De plus amples 
détails sur l 'histoire de cette découverte, et de ces conséquences, se trouvent dans l ' article 
de ROCKMORE [60] . Plus qu'un simple cas particulier de la transformée de Fourier sur un 
groupe fini, la transformée de Fourier discrète possède son propre langage et surtout des 
algorithmes efficaces nettement moins évidents que les formules limpides du chapitre pré­
cédent. Ce chapitre vise en quelque sorte à faire un tour du propriétaire ; il montre en tout 
cas que la multitude d'algorithmes FFf existants est impressionnante. Mais le plus im­
portant, au-delà d'une compréhension totale des différentes déclinaisons de l ' algorithme, 
est de percevoir la stratégie de l ' algorithme, pour pouvoir décider, le cas échéant, quelle 
implémentation utiliser. 

L'algorithme FFf en version décimation temporelle est relativement bien décrit (et surtout 
bien implémenté) dans les NUMERICAL RECIPES [3 1 ] .  En ce qui concerne la version 
décimation fréquentielle ainsi que de nombreuses améliorations, on se réfèrera au livre de 
BRIGHAM [ 1 1 ] .  Pour des détails d'implémentation en langage C, on pourra regarder le 
livre de ARNT [2] . 

1 Le langage du traitement du signal 

Dans ce paragraphe, nous allons traduire les propriétés algébriques de la transformée 
de Fourier dans le langage de la théorie des signaux discrets . Dans un premier temps, 
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nous nous restreindrons à une étude unidimensionnelle (pour présenter les algorithmes 
et quelques applications), puis nous ferons le lien entre la transformée de Fourier sur un 
groupe abélien produit et la transformée de Fourier discrète en dimension deux et plus. 

Pour fixer les idées, nous allons considérer des signaux temporels à valeurs complexes. 
Ces derniers correspondent à des fonctions J :  t E lR ---+ f{t) E C. Pour traiter de façon 
numérique ce signal, nous n' allons considérer qu'un nombre fini de valeurs du signa� et 
travailler sur ces valeurs. On nommera donc échantillon de taille N du signal original f le 
vecteur f � {f[n] }�;J , où l 'on a noté f[n] � f{tn) la valeur du signal f à l ' instant tn . La 
notation entre accolades est censée rappeler que l 'on considère nos vecteurs comme des 
échantillons d'un signal (continu), mais il arrivera que l 'on considère ces éléments comme 
de simples vecteurs de cN. Pour que l ' analyse qui suit ne soit pas biaisée (particulièrement 
lors du rW-prochement avec la transformée continue à la section 1 ,  chap. IV), les valeurs 
des {tn }n;J sont supposées espacées régulièrement dans un intervalle [a,b] , c'est-à-dire 
tn = a +  b· ·;/n. 
Définition 1.1 (Transformée de Fourier discrète). On définit la Transformée de Fourier 
discrète (en abrégé TFD) de l'échantillon f = {f[n] }�;J comme étant le vecteur Î = 
{Î[k] }f;J E cN avec 

N- l 
Î[k] � L f[n]coiVnk pour k = 0, . . . , N - 1 , 

n=O 

où l 'on a noté CON = e� une racine tvième primitive de l'unité. 
On notera aussi $ (!) � Î. ce qui permet de définir 

( 1 . 1 ) 

Cette notation peut prêter à confusion avec la transformée de Fourier sur un groupe fini 
définie par l 'équation (4. 1 ), chap. I, cependant, la grande similitude entre les deux appli­
cations (tout ceci est justifié un peu plus bas) fait qu' il est commode d'employer la même 
notation. 

Remarque 1.2. On aurait pu choisir une autre racine primitive de l 'unité à la place de 
CON. Cela revient à choisir un autre générateur pour le groupe de départ 'll.,/N'll.,, et donc à 
numéroter dans un ordre différent les éléments de f. 

Remarque 1.3. (Lien avec la transformée de Fourier sur un groupe fini) . Nous avons 
déjà vu à la section 1 .2, chap. I, que les caractères (Xk)f,:-0

1 sur le groupe cyclique 'll.,/N'll., 
peuvent être définis par 

( 1 .2) 

On remarque que notre échantillon f E cN permet de définir une fonction /1 : '1!.,/ N'll., ---+ C, 
et réciproquement. On peut faire le lien entre transformée de Fourier discrète et carac­
tères : 

Î[k] = Îi (Xk) · 

On peut donc réécrire la formule d' inversion de Fourier de la proposition 4.4, chap. I, en 
termes de transformée de Fourier discrète. 
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Proposition 1.4 (Transformée de Fourier inverse). On a la formule d'inversion sui-
vante : 

1 N- 1 
""' � nk Vn = O, . . .  , N - 1 , J[n] = - � f[kjcoN . N k=O 

( 1 .3) 

Corollaire 1.5. § : rr:,N ---+ rr:,N est un isomorphisme d 'espaces vectoriels. 

Rappelons aussi la formule de Plancherel. 
Proposition 1.6 (Formule de Plancherel). Soient f et g deux échantillons de taille N. 
On a la formule suivante : 

N - 1 � � -
L f[iJg [iJ = - �J[iJiliJ . 
i=O N i=O 

2 Transformée de Fourier rapide 

The discrete Fourier transform can, in fact, be computed 

in O (N log2 N) operations with an algorithm called the fast 

Fourier transform, or FFT. The difference between 

N log2 N and N
2 

is immense. With N = 106, for example, 

it is the difference between, roughly, 30 seconds of CPU 

time and 2 weeks of CPU time on a microsecond cycle 

time computer. 

W.H . PRESS et Al . [31] (1988) 

Ce paragraphe se veut directement tourné vers les applications informatiques de la TFD. 
Il ne nécessite pas de connaissance en théorie des groupes. Les connexions entre l 'algo­
rithme FFI' et l ' algèbre sont discutées dans certains exercices, par exemple lors de l 'étude 
de la méthode de Good-Thomas Ill.2. En parallèle à la lecture de ce chapitre, il faut bien 
sûr avoir un œil sur les algorithmes référencés au paragraphe 3, annexe A, pour faire le 
lien entre implémentation concrète et formules mathématiques. 

2.1 Présentation de l'algorithme 

Pour un signal f dont on connaît un échantillon {f[n] }��J , le calcul direct des N coeffi­
cients de la transformée de Fourier discrète 

N- 1 . 
Î[k] � L J[n]e-kn 2N" 

ll=Ü 
pour k = 0, . . .  ,N - 1 (2. 1 )  

nécessite 2N2 opérations (additions et multiplications complexes). L' algorithme FFT per­
met, en réordonnant les calculs de manière dichotomique, de réduire considérablement le 
temps de calcul en le ramenant à un ordre de O (Nlog(N) ) . Dans tout ce chapitre, nous 
allons présenter différentes versions de l ' algorithme FFT, en commençant par la version 
originale, et sans doute la plus simple, l ' algorithme de COOLEY et TUKEY. Cependant, 
nous verrons que cet algorithme s 'est décliné en un nombre quasi infini de versions plus 
savantes les unes que les autres, pour s 'adapter à différentes conditions (longueur des 
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vecteurs principalement), et obtenir le résultat toujours plus rapidement. Derrière une 
transformation en apparence très simple, la TFD, se cache donc une multitude d' idées de 
nature combinatoire et algébrique. 
Avant de nous lancer dans une description périlleuse de l' algorithme, notons un fait ras­
surant : nous allons pouvoir réinvestir facilement notre algorithme pour calculer la trans­
formée inverse, comme le précise la remarque suivante. 
Remarque 2.1. (Transformée inverse) . On remarque que la formule de transformée in­
verse ( 1 .3) peut s 'obtenir en remplaçant roN par roN 1 dans l' algorithme de calcul, puis en 
divisant le résultat par N. En conséquence, on peut aussi calculer la transformée de Fou­
rier discrète inverse en temps O(Nlog(N) ) , en modifiant de façon évidente l' algorithme 
utilisé. De façon plus synthétique, en considérant l 'échantillon {!1 [n] }�:J défini par 

1 
\fn E { l ,  . . .  ,N - 1 } ,  Ji [n] = Nf[N - n] !1 [O] � �f[O] , 

on dispose d'une écriture de la transformée de Fourier inverse de f en terme d'une trans­
formée de Fourier directe : 

L'algorithme que nous nous apprêtons à décrire a été découvert par COOLEY et TUKEY 

en 1965. Il permet, lorsque l 'on dispose d'une « bonne » décomposition de l'entier N, 
de calculer la transformée de Fourier discrète de façon très rapide. Nous verrons dans 
la suite de l 'exposé d' autres algorithmes qui permettent d'exploiter certaines décompo­
sitions moins optimales de N. Cependant, dans cette première approche de l ' algorithme 
FFT, nous allons supposer que N = 2P. Cette factorisation très simple de N va permettre 
d'employer la célèbre « philosophie » diviser pour régner, en effectuant une progression 
dichotomique dans le calcul de la TFD. Pour mettre en œuvre cette dichotomie, regrou­
pons les termes de la somme d'une TFD suivant la parité des indices . 
On obtient alors, pour k E {O, . . .  ,N - 1 } , 

N/2- 1  N/2- 1  
Î[k] = L f[2n]e-2iirk(2n)/N + L f[2n + l ] e-2iirk(2n+ l )/N (2.2) 

n=O n=O 
N/2- 1  N/2- 1  

= L f[2n]e-2iirkn/(N/2) + (J)Nk L f[2n + 1 ] e-2iirkn/(N/2) , (2.3) 
n=O n=O 

où l 'on a noté roN = e2iir/N . Donc si on note 

J° � {f[0] , /[2] ,  . . .  , J[N - 2] }  

J 1 � {f[ l ] , /[3] ,  . . .  , J[N - 1 ] } 
(2.4) 
(2.5) 

les vecteurs d' indices pairs (resp. impairs) formés à partir de f, on remarque que pour les 
N /2 premiers indices k E {O , 1 , . . .  , N  /2 - 1  }, l 'équation (2.3) s 'écrit comme la somme de 
deux transformées de Fourier discrètes : 

(2.6) 

Pour les indices k E { N /2, . . .  , N - 1 } , si on note k! = k - N /2, en utilisant le fait que 
les vecteurs fa et Î1 représentent des échantillons de période N /2, et que rot = -ro% on 
obtient cette fois la différence de deux transformées de Fourier : 

Î[kJ = fa[k'J - roN!é Î1 [k'] . (2.7) 
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Définition 2.2 (Quelques notations). Pour résumer tout ceci sous une forme plus _algo­
rithmique, notons 

k � {f[O] , Î[ l ] , . . .  , f[N /2 - 1 ] } 

ÎrJ � { Î[N /2] , Î[N /2 + 1 ] , . . .  , Î[N - 1 ] } . 

(2.8) 

(2.9) 

Ce sont les parties droite et gauche du vecteur transformé Î = �(!) . Nous allons aussi 
définir l 'opérateur .5"N, pour x E �. qui prend un vecteur a = {ao , . . .  , aN- I } E CN de 
longueur N et renvoie 

{ 

2. 
}

N- 1 
{ }

N- 1 
cLJX déf. -xj -1!! -xj tr<N vNa = aie N • = aiœN . E IL- . 1=0 1=0 (2. 10) 

On a alors l' expression très simple de la récurrence que nous allons utiliser pour implé­
menter l' algorithme FFT : 

(2. 1 1 ) 

(2. 12) 

Les équations (2. 1 1 ) et (2. 12), aussi appelées équations de Danielson-Lanczos, expriment 
le fait que la transformée de Fourier discrète d'un signal de longueur N peut se calculer en 
fonction de deux signaux de longueur N /2, ici notés J° et f 1 . On appelle cette approche 
décimation temporelle (en anglais Decimation In Time, ou DIT), par opposition à une 
autre approche, la décimation fréquentielle, qui sera décrite rapidement au paragraphe 
2.6. C'est la décimation temporelle qui va être développée (et optimisée) au paragraphe 
suivant, mais avant toute chose, commençons par présenter une implémentation naïve. 

Remarque 2.3. (Ueffet papillon). L'opération consistant à mélanger deux entrées des 
parties paire et impaire d'un vecteur en suivant les équations (2. 1 1 ) et (2. 1 2) est appelée 
schéma papillon (en anglais butterfly scheme) . La figure 3 . 1  montre de façon schématique 
les opérations effectuées. Elle donne aussi une idée du câblage à réaliser pour effectuer 
une telle opération directement sur une carte dédiée au traitement de signaux. En effet, 
comme le montre la figure 3 .2, une itération dans l' algorithme FFT (ici pour une entrée 
de taille 8) n'est qu'une succession de schémas papillons effectués en cascade. 

La façon la plus simple de mettre en œuvre les équations (2. 1 1 )  et (2. 12) est d'utiliser une 
procédure récursive. C'est un fait connu qu'une procédure récursive puisse être écrite, au 
moyen de boucles, de façon non récursive (mais ce procédé peut être parfois périlleux) . 
Nous verrons au paragraphe suivant 2.5 que l ' algorithme FFT a beaucoup à gagner à être 
écrit de façon non récursive, et ce, pas seulement à cause d'un gain de temps. Mais dans 
un but pédagogique, et afin de présenter quelques optimisations qui peuvent être faites 
sur l ' implémentation de la FFT, nous allons nous attarder sur l ' implémentation récursive 
écrite à la section 3, annexe A. 
La procédure fft_rec prend donc en entrée un entier d i r  qui vaut + 1 ou - 1  selon 
que la transformée de Fourier est directe ou inverse. Pour simplifier la compréhension du 
code, une procédure ope rateur_s a été écrite pour réaliser l 'opérateur Y'N : elle prend 
en entrée un vecteur ainsi qu'un nombre réel x (qui dépend du signe de la transformée). 
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i i Entrée 
H 

Sortie 

FIG. 3 . 1  - Schéma papillon élémentaire 

2.2 Analyse du coût 

En utilisant les équations de récurrence (2. 1 1 ) et (2. 1 2), on calcule facilement le coût de 
l 'algorithme. 
Proposition 2.4 (Complexité de la FFT). Si on note C(N) le coût de l 'algorithme FFT 
pour une entrée de longueur N, alors C(N) vérifie l 'équationfonctionnelle 

C(N) = 2C(N /2) + KN, 

où K est une certaine constante. Au.final, on arrive à l 'expression C(N) = KN1og2 (N) . 

Démonstration. Le calcul de Î nécessite le calcul de Î1 et fa (soit 2C(N /2) opérations), 
puis le mélange des deux transformées par le schéma papillon (soit KN opérations). Pour 
se ramener à une récurrence linéaire, il suffit de poser P = log2 (N) , et C' (N) = et) 
vérifie l 'équation fonctionnelle C' (P) = C'(P - 1 ) + K. Comme C' (O) = 0, on en déduit 
C' (P) = KP, ce qui permet de conclure. D 

L'algorithme FFI' peut sembler un peu magique, toujours est-il que sa découverte a rendu 
possibles de nombreux calculs en réduisant le coût du calcul de N coefficients de Fou­
rier de O(N2) pour une approche naïve à O(Nlog(N) ) .  Sa découverte assez récente (au 
milieu des années 1 960) a été une mini révolution : un calcul qui nécessitait jusqu'alors 
deux semaines sur un ordinateur de l 'époque était tout à coup réalisable en à peine trente 
secondes 1 . 

2.3 Variations autour de l'algorithme 

Avant de décrire une implémentation plus efficace de l ' algorithme FFI', faisons quelques 
remarques complémentaires, qui fournissent de nombreuses variations autour de l' implé­
mentation récursive proposée. 

Remarque 2.5. (Longueur des entrées). Dans le cas où la longueur N des données 
d'un échantillon {f[n] }�,:J ne serait pas une puissance de deux, on peut faire un calcul 

1 .  Source : [3 1 ] ,  pour N de l'ordre de 106 



§ 2. Transformée de Fourier rapide 

Vecteur de taille 8 

Indices {O ,  2 ,  4,  6} Indices { 1 ,  3 ,  5 ,  7} 
FFT (taille 4)  

Vecteur de taille 8 

FIG. 3.2 - Une itération de l 'algorithme FFT 
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approché en complétant l 'échantillon par une suite de zéros, pour obtenir un échantillon 
{!1 [n] }!<i1 , avec M = 2P . Bien sOr, on ne calcule plus exactement la même transformée, 
mais dans le cas d'un calcul approché (calcul de transformées continues, comme c 'est 
expliqué à la section 1 ,  chap. IV), cela revient à calculer la transformée à des fréquences 
légèrement différentes, ce qui est souvent acceptable. 

Remarque 2.6. (Base de calcul) .  Les équations (2. 1 1 ) et (2. 1 2) qui nous ont servi pour 
implémenter l' algorithme sont la conséquence du partage des vecteurs en deux sous­
vecteurs de taille N /2. C'est ce que l 'on appelle une FFT en base 2 (radix-2 en anglais). 
On peut penser utiliser une autre base, par exemple 4, ce qui amène à considérer des 
sommes des quatre sous-FFT de longueur N /4. L'avantage d'un tel choix (par rapport 
à la base 2) est que l 'on évite de faire les calculs évidents des racines quatrièmes de 
l'unité (qui sont codées simplement par des soustractions à la place d' additions dans les 
formules), ce qui diminue un peu le nombre d'opérations à effectuer. Par contre, il faut 
faire attention, car les signes ne sont pas les mêmes pour la transformée directe et pour la 
transformée inverse. Pour écrire les notations, introduisons les sous-vecteurs f°, f1 , f2 et 
/3 , de longueur N / 4, qui sont construits à partir de f en ne considérant que les indices 
congrus respectivement à 0, 1 ,  2 et 3 modulo 4. On utilise aussi <J qui vaut + 1 pour la 
transformée directe, et - 1  pour la transformée inverse. Pour discerner les différentes por­
tions de longueur N /4 du résultat, on écrira f.014) pour le premier quart, etc. Voici les 
équations :  

j(0/4) _ c/J0/4 ;{) 
- JN/4J -

j(l/4) _ c/J0/4 ;{) 
- JN/4J -

j(2/4) _ c/J0/4 ;{) 
- JN/4J -

j(3/4) _ c/J0/4 ;{) 
- JN/4J -

+ 7.1/4/î 
N/4 

. a11 /41î 
l<JJN/4 
7.1/4/î 

N/4 
+ . (J c/Jl/4JÎ 1 JN/4 

+ 7.2/4ji N/4 
7.2/4ji N/4 

+ 7.2/4ji N/4 
7.2/4ji N/4 

+ 7.3/4'f3 N/4 
+ . 7.3/4'f3 l<J N/4 

7.3/4'f3 N/4 
. 7.3/4'f3 l<J N/4 . 
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En choisissant une base p quelconque, et en réalisant des calculs analogues, on peut ma­
nipuler des vecteurs de taille p8 , ce qui peut être avantageux. Voici d'ailleurs la formule 
de récurrence en toute généralité : 

Proposition 2.7. On garde les notations définies précédemment, mais cette fois pour le 
calcul d 'une TFD en utilisant une base p � 2. On a les équations 

Remarque 2.8. Bien sûr, cette formule n'est intéressante en pratique que quand on sait 
calculer explicitement et simplement les facteurs /�nkq, par exemple pour p = 2 ,4 ,8 .  
L'exercice III .3 montre comment, en mélangeant à la  fois des transformées en base 2 
et en base 4, on peut optimiser encore un peu le nombre d'opérations. 

2.4 La transformation de Cooley-Tukey 

Nous venons donc de voir un algorithme FFf qui permet de calculer très rapidement la 
transformée de Fourier d'un vecteur dont la taille est 2P . Mais que se passe-t-il si la taille 
N du signal ne s 'écrit pas sous cette forme ? La solution de facilité, si on se contente de 
faire des calculs approchés, consiste à ajouter des zéros pour atteindre une taille raison­
nable, qui sera bien entendu la puissance de 2 immédiatement après N. Mais souvent, on 
ne peut pas agir aussi directement, et il faut trouver un algorithme plus fin, pour tirer parti 
d' autres propriétés de l 'entier N. C'est ainsi que de nombreuses autres versions de l ' algo­
rithme FFf ont vu le jour depuis l ' article fondateur de Cooley-Tukey. Dans ce chapitre, 
différentes variantes de l ' algorithme sont présentées, et certaines permettent réellement 
de se tirer de mauvaises passes (par exemple l ' algorithme de Good-Thomas ou celui split­
radix, présentés aux exercices III.2 et 111 .3) .  

Dans le cas où le nombre N est un entier que l 'on sait factoriser, il y a cependant une 
méthode très simple, qui consiste à regarder de plus près le travail effectué par la méthode 
de Cooley-Tukey dans le cas où N = 28 = 2 x 2s- I . Ainsi, sans que N soit nécessairement 
une puissance de 2, supposons que l 'on dispose d'une factorisation N = p x  q. Dans le 
cas où les entiers p et q sont premiers entre eux, une remarquable propriété algébrique 
(le lemme chinois) permet d'optimiser les calculs, et donne naissance à l ' algorithme de 
Good-Thomas déjà cité. Mais pour l ' instant, ne nous préoccupons pas de tels raffinements, 
contentons-nous de suivre pas à pas les transformations déjà effectuées « à la main » au 
paragraphe 2. 1 .  Rappelons la définition de la TFD d'un vecteur f E c_N : 

N- 1  ]lk] � L f[n] co,vkn pour k = O, . . .  ,N - 1 . (2. 1 3) 
n=O 

L'idée clef pour obtenir une factorisation de cette expression est de réaliser un changement 
de variables en utilisant les deux bijections suivantes : 

� = { {0, . . .  , q - 1 }  X {0, . . . , p - 1 } ---t {O, . . .  ,N - 1 } 
(a , b) 1---+ ap + b 

Vf : { {0, . . .  , p - 1 } X {0, . . .  , q - 1 }  ---t {0, . . .  ,N - 1 }  
(c, d) 1---+ cq + d 
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On peut en effet réécrire la somme (2. 1 3) sous la forme 

q- l p- 1 
Î[lff(c, d) ] = L L œ;;(ap+b) (cq+d) f[<p(a,b) ] 

a=O b=O 
p- 1 q- 1 

= L œ;;b(d+cq) L œ;çad f[<p(a,b)] .  
b=O a=O 
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Si on note fb [a] � f[<p(a, b) ] (ce qui correspond à ne prendre qu'une colonne de f, si on 
la représente sous la forme d'une matrice de taille p x  q), alors on obtient 

p- 1 
Î[lff(c, d) ]  = L œ;cb ( œNbd]b [dJ) . 

b=O 
(2. 14) 

Nous avons donc réussi à modifier l ' algorithme de calcul pour obtenir un algorithme 
fonctionnant en 20, sur la matrice de taille p x  q que constitue F � {f[<p(a ,b)] }a,b · En 
fait, si nous n' avions pas les termes parasites œNbd (souvent appelés « twiddle factor » 
en anglais, voir l ' exercice IIl.3), nous serions simplement en train de calculer la TFD 
bidimensionnelle de la fonction 20 F (que l 'on peut aussi considérer comme une image). 

Si l 'on compte le nombre d'opérations nécessaires pour calculer la TFD de f par cette 
méthode, on obtient Cpq(p + q) , où C représente une constante prenant en compte le 
temps de calcul des additions et multiplications complexes. Mais l ' intérêt de la méthode 
est que l 'on peut l ' appliquer récursivement sur chacune des sous-TFD à calculer. Ainsi, 
si N se factorise sous la forme P l x pz x · · · x Ps• on obtient un nombre d'opérations 
proportionnel à N"'LPi· Bien sûr, dans le cas où N = 2s , on retrouve l ' algorithme FFI' 
traditionnel déjà décrit au paragraphe 2. 1 .  Cependant, on voit qu'avec un peu d' adaptation, 
on peut aisément prendre en compte des N admettant des décompositions plus complexes. 
Attention cependant à ne pas tomber dans un excès d'optimisme : cette méthode va être 
totalement inefficace lorsque N se factorise mal. Il faut dans ce cas opter pour d' autres 
approches, comme celle suggérée à l 'exercice V.9 .  De plus, lorsque la factorisation N = 
pq possède des particularités (typiquement si p et q sont premiers entre eux), il existe des 
algorithmes plus optimisés, comme celui de Good-Thomas présenté à l ' exercice IIl.2. 

2.S Implémentation concrète 

L'implémentation naïve présentée au paragraphe 2. 1 (dans le cas N = 2P) souffre de 
nombreux points faibles, parmi lesquels on peut relever : 

- une structure récursive : les appels récursifs nécessitent des instructions systèmes sup­
plémentaires, ce qui fait perdre beaucoup de temps. 

- une utilisation de mémoires temporaires : le calcul explicite des deux sous-vecteurs f° 
et f1 de taille N /2 est à l 'évidence une perte de mémoire énorme (puisque l 'on crée de 
.l ' information redondante) . 

Nous allons voir dans ce paragraphe comment implémenter une routine qui permet de 
résoudre ces deux problèmes d'un seul coup. L' idée principale est de réarranger le vecteur 
de départ. On veut que les éléments du vecteur soient rangés de façon à ce qu'à  chaque 
subdivision (sous forme de deux vecteurs de taille moitié), le premier vecteur soit les N /2 
premières entrées, et le deuxième vecteur soit les N /2 dernières (et non pas les indices 
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pairs et impairs). Pour une implémentation dans un langage classique (C ou C++ par 
exemple), le gain sera énorme : par l 'utilisation de pointeurs (ou, pour les non-initiés, en 
déplaçant le début du tableau), la seule mémoire utilisée par le vecteur d'origine permet 
de loger les deux sous-tableaux. 

Dans la suite, nous allons noter les indices sous forme binaire, c 'est-à-dire 
p- 1 

i = [ip- 1 . . .  io]b = L i,2' . 
t=O 

Notre but est de démarrer l ' algorithme avec un vecteur g � {f[np (O)J , . . .  , J[np (N - 1 ) ] } , 

où i t---t np (i) désigne une permutation des indices. On veut que lors de l ' application de 
l 'équation de Danielson-Lanczos 

(2 . 1 5) 

le vecteur g0 soit constitué des entrées de f d' indices 0, . . .  ,N /2 - 1 ,  et que le vecteur g1 
soit constitué des entrées de f d' indices N /2, . . .  ,N - 1 .  Ainsi le partage de g en deux 
s 'effectue sans avoir à déplacer de valeurs dans la mémoire de l 'ordinateur. Pour que cette 
construction marche encore lors des appels récursifs sur g0 et g1 , ces deux sous vecteurs 
sont, eux, permutés depuis f° et /1 par np- 1 • qui répond aux mêmes exigences que np .  
Cette condition, traduite sur l a  permutation np s 'exprime de l a  façon suivante : 

np ( [ip- 1 . . .  io]b) = io2p- l + np- 1 ( [ip- 1 . . .  i i ] b) ·  

En itérant cette équation p fois, on trouve l 'expression de la permutation np :  
p- 1 

np (i) = np ( [ip- 1 . . .  io]b ) = L i12
p- l-t . 

t=O 
De façon plus concise, np ( i) est le transposé de i écrit en binaire. Par exemple, pour N = 8, 
si i = 6, qui s ' écrit 1 10 en binaire, alors np (i) va s 'écrire 0 1 1 ,  c'est-à-dire np (6) = 3 .  

Au  final, on voit que l 'on doit classer les éléments du  vecteur selon l 'écriture binaire ren­
versée des indices . C'est ce que réalise la procédure rev _b i t s ,  décrite au programme 
3 .5 ,  annexe A. Cette procédure nécessite O(N) opérations . Pour une implémentation plus 
fine, on pourra regarder les NUMERICAL RECIPES [3 1 ] .  La figure 3 .3  montre la matrice 
de permutation correspondant à np. c'est-à-dire la matrice M(P) telle que Mlf) = ôtp (j) . 
Les points noirs représentent les entrées non nulles (égales à 1 )  dans la matrice M(P) . 

p=5 p=6 p=7 p=8 

� FD F21 �  
LJ LJ füSj .  

FIG . 3 .3  - Matrice d'inversion de bits 

L'exercice 111. 1 propose d'écrire une fonction récursive pour effectuer le renversement de 
bits . L'utilisation de la procédure rev_b i ts permet d'écrire une fonction fft_di t qui 
n'utilise pas de mémoire temporaire. La fin de cette procédure remplace les appels récur­
sifs par des boucles for imbriquées. La figure 3 .4 montre les opérations à effectuer pour 
inverser les entrées d'un vecteur, en mettant en évidence les permutations nécessaires. 
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0 = [OOO]b 0 = [OOO]b 0 = [OOO]b 
1 = [OOl]b 4 = [lOO]b 1 = [OOl]b 
2 = [OlO]b 2 = [OlO]b 2 = [OlO]b 
3 = [Oll ]b 6 = [l lO]b 3 = [Ol l]b 
4 = [lOO]b 1 = [OOl]b 4 = [lOO]b 
5 = [lOl]b 5 = [lOl]b 5 = [lOl]b 
6 = [llO]b 3 = [Ol l]b 6 = [l lO]b 
7 = [1 1 1]b 7 = [ 1 1 1]b 7 = [ 1 1 1]b 

FIG. 3 .4 - Inversion de bits par permutation des entrées 

2.6 Décimation fréquentielle 

Nous allons refaire les calculs qui ont mené aux équations (2. 1 1 )  et (2. 1 2), mais cette fois­
ci en effectuant un regroupement selon les fréquences de la transformée. L' algorithme 
que nous obtiendrons sera en quelque sorte le symétrique de l ' algorithme « classique » 
proposé par COOLE Y et TUKEY. Même si cette nouvelle implémentation ne fera pas 
gagner en vitesse d'exécution, il est important d' avoir à l ' esprit les deux versions duales 
de la FFT, au même titre qu' il est important de maîtriser les propriétés temporelles et 
fréquentielles de la transformée de Fourier. 

Conformément aux notations (2.8), on note fg (resp. fd) les N /2 premières entrées (resp. 
N /2 dernières) du vecteur /. On a 

N/2- 1 
Î[k] =  L (fg [n] + e-kN/2�/d[nJ) e-nk� . 

n=O 
On est donc amené à faire une distinction selon la parité de k. En suivant les notations de 
l'équation (2.4), on considère (Î)0 (resp. (Î) 1 ) la partie paire (resp;._imp�re) du vecteur 
transformé. Attention, il ne faut pas confondre ces vecteurs avec !° et J1 , qui sont les 
transformés des vecteurs f° et / 1

• On écrit donc, pour k E {O, . . .  , N  /2 - 1 } ,  

N/2- 1 2. 
(Î)0 [k] = Î[2k] = L (!8 [n] + fd [n] ) e-nk'ffh 

n=O 
..... ..... N/2- 1 2iir 2iir 

(! ) 1 [k] = /[2k+ l ] = L e-k-;v (f8 [n] - fd [n] ) e-nkN72 . 
n=O 

En utilisant l 'opérateur .Yt, introduit en (2. 10), on obtient les équations de récurrence 
suivantes : 

(Î)0 = $ (/g + id) 

(Î) 1 = $ (Y��i (/8 - fd)) · 

Contrairement à la technique de la décimation temporelle, on voit que les sous-vecteurs 
dont on doit calculer la transformée de Fourier sont directement obtenus à partir du vec­
teur d'entrée (il suffit de prendre les parties gauche et droite). Par contre, le vecteur de 



74 Chapitre III. Transformée de Fourier discrète 

sortie doit être composé, selon la parité de l ' indice, soit des valeurs d'une transformée 
soit de l ' autre. Pour ne pas avoir à utiliser de mémoire temporaire, nous allons utiliser la 
même astuce que pour la décimation temporelle, mais dans l ' autre sens. Nous allons nous 
contenter de juxtaposer les deux transformées, c 'est-à-dire de mettre à la suite les vecteurs 
(Î)o puis (Î) 1 • Pour obtenir le bon résultat, il suffira, à la fin de la procédure, de remettre 
les fréquences dans le bon ordre, en appelant la fonction rev _b i ts. On peut alors écrire 
une version non itérative de la FFf qui utilise le principe de décimation fréquentielle, 
c 'est la procédure f f t_d i f qui est écrite au paragraphe 3 .3 ,  annexe A. 

Remarque 2.9. (Temporel et fréquentiel) . On voit bien que la décimation fréquentielle 
est l ' exact symétrique de la décimation temporelle. Le fait d' agir sur les indices du vecteur 
résultat (c'est-à-dire sur les fréquences) au lieu d' agir sur les indices du vecteur d'entrée 
se traduit par un renversement des bits en phase finale de l ' algorithme. 

Pour conclure, on peut d'ores et déjà remarquer la grande variété des déclinaisons de l ' al­
gorithme FFf à notre disposition. De nombreuses autres méthodes seront en outre décrites 
dans les chapitres et exercices qui suivent. La littérature tournant autour de la FFf est gi­
gantesque, c'est sans doute l 'un des domaines les plus fournis de l ' analyse numérique. 
Des articles récapitulatifs ont été écrits, par exemple par BURRUS [ 1 2] .  La question est 
donc de savoir quelle est la meilleure méthode. Bien sûr, il n 'y a pas de réponse définitive, 
car de trop nombreux facteurs entrent en jeu, non seulement concernant la longueur de 
la transformée et le type de données (réelles, complexes, etc.), mais surtout le type d' ar­
chitecture (machine, système d'exploitation, architecture parallèle, cache mémoire, etc.) 
et le type de précision voulue. Dans le doute, mieux vaut rester sur une implémentation 
simple, mais robuste, quitte à sacrifier un peu d'efficacité. 

2. 7 Ecriture matricielle 

Si l 'on écrit la matrice O.N de l' opérateur linéaire §: : e,N ---+ e,N dans les bases canoniques, 
on obtient 

1 1 1 1 
1 - 1  

(J)N 
-2 

(J)N -(N- 1 } 
(J)N o. d�f. 1 -2 -4 -2(N- l )  

(2. 1 6) N = (J)N (J)N (J)N 

1 -(N- 1 }  
(J)N 

-2(N- l }  
(J)N 

-(N- l ) (N- l }  
(J)N 

Cette matrice correspond à une matrice de Vandermonde. Ces matrices interviennent 
lorsque l 'on écrit le système linéaire correspondant à la recherche de l 'unique polynôme 
de degré N passant par N points distincts . Il n 'y a rien d'étonnant à cela, puisque nous 
verrons à la section 5, chap. IV, que le calcul de TFD inverse correspond au calcul des 
coefficients du polynôme d'interpolation en des points bien particuliers, les racines Nièmes 
de l 'unité. 

La formule de la transformée de Fourier inverse (1 .3) se traduit par le fait que l ' inverse de 
la matrice O.N est la matrice kO.'J.,, où l 'on note M* � MT la matrice adjointe de M. Ceci 
signifie que la matrice JNnN est unitaire, c 'est-à-dire O.NO.'/., = NldN. Les équations de 
Danielson-Lanczos (2. 1 1 )  et (2. 1 2) peuvent alors s 'écrire sous la forme d'une factorisation 
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de la matrice D.N : 

Ù I '  , A d" ( 1  - 1  - (N/2- 1 ) ) o on a note u.N ;2 = iag , œN , . . .  , œN • 

3 Convolution circulaire 

75 

ao 

Nous avons défini au paragraphe 4.3, chap. I, le produit de convolution sur un groupe abé­
lien quelconque, et nous allons maintenant appliquer cette définition ainsi que le théorème 
de .convolution 4. 15 ,  chap. 1, dans le cas simple d'un groupe cyclique, et plus précisément 
en employant le langage de la transformée de Fourier discrète qui a été définie au para­
graphe 1 .  

3.1 Convolution circulaire 

Commençons par rappeler la définition du produit de convolution ainsi que les principaux 
résultats déjà obtenus. 
Définition 3.1 (Produit de convolution discret). Soient {/[n] }�==:-J et {g [n] }�==:-J deux 
échantillons discrets (supposés représenter des signaux échantillonnés à des mêmes ins­
tants, espacés de façon régulière). On définit le produit de convolution f * g des deux 
signaux par l 'équation 

N- 1 
(f * g) [n] � L, f[k]g [n - k] , n = O, . . .  , N - 1 .  (3 . 1 )  

k=O 

Remarque 3.2. Dans l'équation (3 . 1 ), la quantité n - k est bien sûr calculée modulo 
N, ce qui revient à considérer les échantillons f et g comme des fonctions périodiques 
de période N. Cette formule est la traduction de l 'équation (4.6), chap. 1, dans le cas du 
groupe G = Z/NZ, en prenant soin d'utiliser une notation additive à la place de la notation 
multiplicative. Dans l 'optique d'une implémentation informatique, on peut donner une 
formule plus explicite : 

n N- 1  
(! * g ) [n] � L, f[k]g [n - k] + L, f[k]g [n - k + N] , 

k=O k=n+l 
n = O, . . .  , N - 1 . 

Proposition 3.3. Le produit de convolution circulaire est commutatif, et l 'application 
(f, g) 1--+ f * g munit e,N d'une structure d 'algèbre. 

Démonstration. La seule chose non triviale à vérifier est la commutativité, que l 'on ob­
tient en faisant le changement de variable /( = n - k  dans l ' équation (3 . 1 ) .  D 



76 Chapitre III. Transformée de Fourier discrète 

On peut maintenant énoncer le théorème de convolution 4. 15 ,  chap. I, en termes de trans­
formée de Fourier discrète. 
Proposition 3.4 (Convolution et TFD). Soient {f[n] }�==-J et {g [n] }�==-J deux échan­
tillons discrets. On a la formule de convolution 

'ln E {O, . .  . , N - 1 } , N[n] = f[n]81n] . (3 .2) 

Démonstration. Pour que les explications soient plus claires, nous allons noter /1 et g1 
les fonctions de Z/NZ dans C associées aux échantillons f et g (qui sont de taille N). On 
a alors, pour n E {O, . . .  , N - 1 } (où, en termes de groupe abélien, n E Z/NZ), 

f[n] = li (X11 ) et (3.3) 
-

où l 'on a noté {Xo , . . .  , XN- I } les caractères, c 'est-à-dire les éléments du dual Z/NZ (voir 
l ' équation (1 .2)). En utilisant le théorème 4. 15 ,  chap. I, pour les fonctions /1 et g1 sur 
G = Z/NZ, on obtient 

Or, on a aussi 

----- � 

!1 * g1 (X11 ) = !1 (X11)ii (X11 ) · 

-- -----
! * g[n] = /1 * g1 (X11 ) ·  

Ceci qui permet donc d' écrire, en utilisant les équations (3 .3) , 

N[n] = li (X11 )ii (Xn ) = Î[n]81n] · D 

Remarque 3.5. (Signaux finis et périodisation). La principale difficulté théorique de 
la transformée de Fourier discrète est l ' assimilation entre notre échantillon {f[n] }�==-J et 
une fonction f définie sur Z/NZ. Cette assimilation a pour avantage d'obtenir à moindres 
frais des formules algébriques comme le résultat d'inversion 1 .4 ainsi que celui de convo­
lution 3 .4. Cependant, cette démarche implique que notre fonction f, si on la regarde 
comme un signal dans le temps est en fait une fonction périodique, de période N. Ceci 
va à l 'encontre de l ' intuition naturelle qui veut que l 'on considère notre signal (fini) f 
comme nul en dehors de l ' intervalle où il est défini. C'est sur ce point qu' il va falloir faire 
attention lorsque nous allons vouloir calculer des produits de convolution entre deux si­
gnaux finis. C'est justement ce problème qui est soulevé au paragraphe 3 .3  lors de l 'étude 
de la convolution non circulaire. 

3.2 Calcul avec la FFT 

Une implémentation naïve de l'équation (3 . 1 ) mène à un nombre d'opérations (multipli­
cations et additions complexes) de l 'ordre de O(n2) . En effet, il faut calculer les N valeurs 
de la convolée, et à chaque fois, une somme de N produits apparaît. Cependant, en uti­
lisant la formule de convolution (3 .2) et la formule d' inversion (1 .3), on peut écrire une 
équation qui va s ' avérer très utile : 

f * g = �-I 
(l i) ' 

où l 'on a noté f et g E CN deux échantillons de taille N. Grâce à l ' algorithme FFI', le 
calcul des transformées j et g peut se faire en un nombre d'opérations de l' ordre de 
O(Nlog(N) ) ,  et le calcul du produit Î· g nécessite bien sûr seulement N multiplica­
tions complexes. Au final, on parvient ainsi à calculer un produit de convolution avec 
un nombre d'opérations de l 'ordre de O(Nlog(N) ) .  
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3.3 Convolution acyclique 

Nous allons quitter pour un court instant les transformations liées à la structure de groupe 
de Z/NZ pour définir une opération qui ne respecte pas du tout cette structure cyclique, 
la convolution acyclique (aussi appelée convolution linéaire), notée * (à ne pas confondre 
avec le * de la convolution cyclique) . Le support d'un signal f E ccz est défini par 

Supp(f) � {n E Z \ f[n] f= O} . 

Commençons par définir la convolution acyclique pour deux signaux {!1 [n] }nEZ ainsi que 
{h [n] }nEZ dont le support est supposé fini, ce qui signifie que Supp(/1 ) et Supp(h) sont 
des ensembles finis. On définit alors la suite !1 * h par 

\;/n E Z, !1 * h [n] = L Ji [k]h [n - k] . 
kEZ 

Il est à noter que l 'on a l ' équation très utile : 

Supp(/1 * h) C Supp(/1 ) + Supp(/2) � { n + p \ n E Supp(/1 ) , p E Supp(h)}  . 

(3 .4) 

La convolution linéaire n'a donc rien à voir avec à la convolution cyclique, qui, elle, est 
une opération sur les vecteurs de ccN (et donne pour résu,!!at un_vecteur de ccN). Cependant, 
en créant à partir de nos deux suites, deux vecteurs !1 et h de taille N suffisamment 
grands, nous allons voir quej'oI_!_peut calculer les valeurs non nulles de !1 * h comme 
certaines entrées du vecteur /1 * f2. 
Commençons par remarquer que la taille nécessaire pour stocker les entrées de f1 * fz est 
N � N1 + N2 - 1 ,  où l 'on a noté N1 et N2 les tailles des supports de !1 et fz. On peut trans­
later les indices de !1 , ce qui permet de supposer que ces derniers sont { 0, . . .  , N1 - 1 } .  
Ceci implique qu' il faut effectuer la même translation sur le vecteur f. Commençons donc 
par créer un vecteur li E ccN en recopiant d 'abo� les N1 entrées non nulles de /1 , puis en 
ajoutant des zéros. La construction du vecteur fz est un peu plus difficile, puisqu' il faut 
tenir compte des indices négatifs . Recopions dans h E CCN les entrées d' indices positifs 
de /1 , puis mettons suffisamment de zéros, puis recopions les entrées d' indices négatifs. 
De façon plus précise, si on écrit Supp(fz) = {-P, . . .  , 0 , . . .  , Q} ,  avec N2 = Q + P + 1 ,  
alors on aura 

h � {fz [O] , J2 [ l ] ,  . .  . , Jz [Qj , O, . . .  , O, J2 [-P] ,  . . .  , J2 [- l ] } E CCN. 

Une fois toutes ces transformations effectuées, on peut enfin écrire : 

\;/n E {O, . . . , N1 + Q - 1 } , !1 * fz [n] = li * h[n] .  

Pour les indices situés dans l ' intervalle { -P, . . .  , - 1 } ,  il faut faire attention car, à cause 
de la convolution circulaire, ils ont été déplacés dans l ' intervalle { N - P, .  . . , N - 1 } . 
Cependant, dans la pratique (par exemple, pour le filtrage), on n'utilise que les indices 
{0, . . .  ,Ni } .  
Une fois cette transformation effectuée, on peut bien sûr utiliser l ' algorithme présenté 
à la section 3 .2 pour calculer rapidement la convolution. Cet algorithme, qui va de pair 
avec la technique d 'ajout de zéros que nous venons d' expliquer va permettre de réaliser 
rapidement des filtrages. Tout ceci sera expliqué en détail au paragraphe 2, chap. IV. On 
pourra noter que lorsque la taille d'un des deux vecteurs est beaucoup plus petite que 
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celle de l ' autre, il existe une stratégie qui permet d'éviter d'ajouter trop de zéros à la fin 
du vecteur le plus court. Cette méthode est exposée à l ' exercice III.4. 

Dans la suite, on considérera souvent directement la convolution linéaire de deux vec­
teurs de e,N, et dans ce cas, les indices négatifs seront placés à la fin du vecteur, (il 
faudra donc ajouter des zéros entre les indices positifs et ces indices négatifs pour pou­
voir utiliser l ' algorithme FFf). Il faut cependant bien se rappeller que les convolutions 
cycliques et acycliques donnent des résultats bien différents . Par exemple, la figure 3 .5 
montre une comparaison des deux convolutions. Le filtrage par g réalise en quelque sorte 
une « moyenne locale » .  Pour les valeurs centrales de k, plus précisément 2 ::::;; k ::::;; N - 4, 
on a f * g[k] = f * g[k] . Cependant, pour les valeurs du bord, on trouve des résultats diffé­
rents. Ainsi, dans la majeure partie des applications où le vecteur x représentera un signal 

g 
8 

6 0.8 

0.6 
4 

0.4 

2 0.2 
1 .

. . • 

0 0 
0 5 1 0  1 5  -5 0 5 

Convolullon cyclique Convolullon acyclique 
40 40 

.. . 
· •. 

35 35 

30 30 

25 25 

20 20 

1 5  1 5  

1 0  ' ·  1 0  .. 

5 5 
0 5 1 0  1 5  0 5 1 0  1 5  

FIG .  3 .5 - Convolutions cyclique et acyclique 

temporel, la convolution acyclique sera préférée, pour ne pas altérer les valeurs sur les 
bords. Tout ceci sera repris en détail lors de l 'explication des différents types de filtrages, 
à la section 2, chap. IV. 

4 En dimension supérieure 

The FFf is part of the revolution in digital image 

processing. A typical image contains a million values; 

they are the responses to the original image. [ . . .  ] lt hardly 

needs saying that all deconvolutions are computed by the 

convolution rule-transform, multiply, and transform back. 

With the FFf what else would we do? 

G. STRANG [68] ( 1986) 

Dans ce paragraphe, pour simplifier les explications, nous allons nous restreindre à des 
calculs de transformées en dimension 2. La généralisation aux dimensions supérieures, 
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même si elle peut être périlleuse du point de vue de la programmation, ne présente pas de 
difficultés théoriques . 

4.1 Transformée de Fourier discrète en 2D 

Définition 4.1 (TFD bidimensionnelle). Un échantillon bidimensionnel est représenté 
par une matrice {f[i, j] } E e,NxP. 
Les indices sont donc i E { 0, . . .  , N - 1 }  et j E { 0, . . .  , P - 1 } .  Sa transformée de Fourier 
discrète est une matrice N x P définie par 

Î[k, l] � L,J[i, j] e-�ike-�jt , (4. 1 )  
i, j 

où k E {O, . . .  ,N - 1 }  et l E {0, . . .  , P - 1 } .  

Comme pour le cas unidimensionnel, on peut encore faire le lien avec la transformée de 
Fourier sur un groupe abélien, en considérant le groupe G � Z/NZ x Z/PZ. Les carac­
tères de ce groupe sont les Xij . pour 0 � i < N et 0 � j < P, définis par 

V(n,p) E Z/NZ x Z/PZ, Xij (n ,p) � (œN)-in (œp) -jp . 

On peut donc traduire l ' équation (4. 1 )  par 

Vk E {O, . . .  ,N - 1 } ,  Vl E {O, . . .  , P - 1 } , Î[k, l] = Î(Xkt ) , 

où l 'on a noté f à la fois l' échantillon et la fonction associée f :  G ---+ C. 
Encore une fois, on constate que la fonction { e,NxP ----+ e,NxP 

$ :  f � $(f) = Î 

est un isomorphisme d' algèbre dont on connaît explicitement l ' inverse. 
Proposition 4.2 (Formule d'inversion 2D). Soit f E e,NxP un échantillon 2D de taille 
N x P. On a la formule d 'inversion 

J[i, jJ = �p LÎ[k, 1J e�ik/jl! j1 , 
k, l 

pour i E {O, . . .  ,N - 1 } et j E {O, . . .  , P - 1 }. 

Le point important est bien sûr de savoir si l 'on dispose encore d'un algorithme rapide 
pour calculer la TFD en dimension deux. La réponse est donnée par une simple réécriture 
de - l 'équation (4. 1 ), pour k E {O, . . .  ,N - 1 }  et l E {O, . . .  , P - 1 } :  

où l 'on a noté F; E e,P le vecteur formé par la ëème ligne de la matrice f, et F; sa TFD 
unidimensionnelle. 
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Pour calculer la TFD en 2D d'une matrice f, il suffit donc de calculer la TFD de chacune 
de ses lignes, puis de calculer la TFD des colonnes de la matrice obtenue. De façon plus 
synthétique, on peut écrire matriciellement : 

_..... ( T) T 
f = §ID §ID (!) , 

où l 'opérateur §ID réalise la TFD unidimensionnelle sur les lignes d'une matrice. On peut 
également effectuer les calculs en sens inverse, c 'est-à-dire calculer d' abord la transfor­
mée sur les colonnes, puis sur les lignes . Matriciellement, comme ÜN T = D.N, l ' équation 
de transformation s 'écrit Î = D.N fO.p, où D.N est défini à l ' équation (2. 16) . 

La figure 3 .6 montre la transformée de Fourier 2D d'une image, qui est une façon comme 
une autre de représenter un échantillon 2D (les valeurs de la fonction sont représentées 
par des niveaux de gris, variant du noir pour 0 au blanc pour 1) .  On peut interpréter in­
tuitivement le spectre obtenu. La valeur de Î[i , j] , que l 'on peut « lire » directement sur 
l ' image représentant le spectre, correspond à une certaine quantité d'oscillations (bidi­
mensionnelles) présentes dans l ' image. Attention, pour la transformée de Fourier (image 
de droite), les grands coefficients sont représentés en noir. Ces oscillations sont caractéri­
sées par une fréquence, � Ji2 + j2, et une direction, celle du vecteur (i , j) . 
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FIG. 3 .6 - Transformée de Fourier 2D 

4.2 Convolution 2D 

La convolution entre deux signaux bidimensionnels est une généralisation directe de la 
convolution cyclique décrite à la section 3 . 1 .  Encore une fois, on peut garder en mémoire 
la définition de la convolution sur un groupe fini (définie au paragraphe 4.3, chap. 1) . 
Il s ' agit bien sOr de considérer le groupe G � Z/NZ x Z/PZ. On peut alors interpréter 
les fonctions de C[GJ comme des images de taille N x P, que l 'on aurait étendues par 
périodicité selon les deux axes . Voici la définition de la convolution entre deux signaux 
bidimensionnels .  On vérifie qu' il s ' agit d'une traduction immédiate de la définition don­
née dans le cadre des groupes finis abéliens. 
Définition 4.3 (Convolution bidimensionnelle). Soient f et g deux échantillons de taille 
N x P. On définit leur produit de convolution cyclique f * g, qui est une matrice de taille 
N x P, de la façon suivante : 
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pour i E { 0, . . .  ,N - 1 }  et j E { 0, . . .  , P - 1 } .  Bien sûr, toutes les opérations sur les indices 
doivent être effectuées modulo N (resp. P) pour les indices de gauche (resp. de droite). 

Un calcul naïf du produit de convolution directement par la formule (4.2) nécessite (NP)2 
opérations . Dans le but de calculer de façon rapide un tel produit, il faut utiliser la pro­
priété de morphisme d' algèbre de la transformée de Fourier sur un groupe fini, qui est ici 
rappelée dans le cadre de la transformée de Fourier 20. 
Proposition 4.4 (Convolution 2D et TFD). Soient f et g deux échantillons de taille 
N x P. On a la formule de convolution 

\li E {O, . . .  ,N - 1 } , \1 j E {O, . .  . , P - 1 } , _T;g[i, j] = Î[i, j)g[i, j] . (4.3) 

Démonstration. La démonstration est la copie conforme de celle de la proposition 3 .4. 
Il convient simplement de changer le cardinal du groupe (qui vaut NP et non plus N), et 
d'utiliser un indexage adapté pour les caractères et les indices des échantillons, c 'est-à­
dire i E { 0, . . .  , N - 1 }  et j E { 0, . . .  , P - 1 } .  0 
Ce théorème suggère, pour calculer une convolution, d'utiliser la technique à laquelle 
nous commençons à être habitués . Il faut dans un premier temps calculer les TFD des 
deux signaux que l 'on souhaite convoler. Ensuite, il faut les multiplier point à point, et 
enfin calculer la transformée inverse du signal obtenu. On prendra garde au fait que pour 
implémenter cet algorithme, il faut déplacer les entrées d' indices négatifs dans les deux 
signaux, de façon à avoir un signal N périodique sur les abscisses, P périodique sur les 
ordonnées, et avec des indices ( i, j) tels que i E {O, . . .  ,N - 1 }  et j E {O, . . .  , P - 1 } .  
Nous verrons au paragraphe 2.3,  chap. IV, où i l  sera question de filtrage 20, quelles 
sont les propriétés « intuitives » de la convolution cyclique, ainsi que des applications 
immédiates à l ' analyse d' image. On peut cependant donner un exemple de convolution 
sur des fonctions représentées par leur graphe en 30. Ainsi la figure 3 .7 représente une 
fonction f irrégulière que l 'on a convolée avec une fonction g ayant la forme d'une bosse 
(et d'intégrale égale à 1) .  La convolution a un effet de régularisation puisqu'elle réalise 
une moyenne pondérée de la fonction d'origine au voisinage de chaque point. 

g 

5 0.08 
0.06 

0 0.04 
0.02 

0 

FIG.  3 .7 - Convolution 2D 

5 Symétrie et transformée discrète 

f'g 

5 

0 

Dans ce paragraphe, nous allons donner quelques propriétés annexes de la transformée de 
Fourier discrète, et les ainsi créer ses vecteurs propres à partir de vecteurs donnés. 
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5.1 Propriétés de symétrie 

Commençons par définir différentes opérations sur les fonctions de Z/NZ dans <C. 
Définition 5.1 (Opérateur de symétrie). Soit f = {f[O] , . . .  , f[N - 1 ] } , un vecteur de 
taille N auquel on associe une fonction périodique fi ,  que l 'on peut voir comme une 
fonction /1 : Z/NZ --7 <C. On définit la fonction symétrisée JP par : 

{ - }  P [ ] � (- ) 'Vn E 0, . . . ,N 1 , f n - /1 n . 

Ainsi, on a jP = {f[O] , f[N - l ] , f[N - 2] ,  . . .  , f[ l ] } .  

(5 . 1 ) 

Un vecteur f est dit symétrique s ' il vérifie JP = f. Il est dit anti-symétrique si JP = -f. 

Définition 5.2 (Décomposition). Pour f E <CN, on note fs et fa les parties symétrique et 
anti-symétrique de f, définies par les équations 

fs � � (J + J"
) ' 

fa � � (! - J"
) · 

On a bien sûr la décomposition f = !s + fa · 

Proposition 5.3 (Propriétés de symétrie). Soit f E <CN un échantillon. On a les proprié­
tés suivantes. 

(i) §(!P) = N§-l (!) ainsi que §2 (/P ) = Nf. 
(ii) Si f est symétrique, alors §2 (!) = Nf et $(!) est symétrique. 

(iii) Si f est anti-symétrique, alors §2(!) = -Nf et $(!) est anti-symétrique. 
(iv) Si f E RN est symétrique, alors $(!) E JR.N. 
(v) Si f E JR.N est anti-symétrique, alors $(!) E (iJR.)N. 

Démonstration. Prouvons (i) et (iv) : 
Pour (i), on a 

N- l 
§(JP ) = L, f[-k]œiVkn + f[O] = L f[kJœtn = $(f) [n] . 

kf O k=O 

Pour (iv), si on note z le conjugué de z E <C, on a 

§(f) [n] = L,J[kje+�kn = L,JP [k]e�kn = §(JP) [n] = $(f) [n] . D 
k k 

5.2 Valeurs propres de la TFD 

L'étude d'un opérateur linéaire est grandement facilitée par la connaissance de ses valeurs 
propres et des vecteurs propres associés . Bien que la matrice )ND.N soit sans doute la ma­
trice unitaire la plus importante, la recherche de ses vecteurs propres est un sujet difficile. 
Nous allons maintenant donner un moyen simple pour construire des vecteurs propres de 
la TFD. 
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Théorème et définition S.4. Soit f E c_N un échantillon. On définit 

%'+ (!) � VNfs + $(fs) 

"Y+ (!) � VN fa + i$ Ua) 

On a alors 

et 

et 
%'_ (!) � VNfs - $(fs) 

"f/_ (!) � VN fa - i$ (fa) · 

$(%'+ (!) )  = VN<Pt'+ U) et $(%'_ (!) )  = -.JN%'_ (!) 

$("//+ (!) )  = -iVN"Y+ (f) et $("//_ (!) )  = i.,/N"f/_ (f) .  
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Ceci signifie que les vecteurs %'+ (!) , %'_ (!) ,  "Y+ (!) et "f/_ (f) sont des vecteurs propres 
de la transformée de Fourier discrète. 

Démonstration. Démontrons la première égalité : $ ( %'+ (!) )  = ../N $ (!s) + $2 Us) .  Et 
comme fs est symétrique, on a $2 (/s) = N fs . d 'où le résultat. D 

Remarque S.S. On peut ajouter que les valeurs propres que nous venons de trouver 
sont les seules, puisque la transformée de Fourier vérifie $4 (!) = N f. Donc ses valeurs 
propres sont nécessairement des racines 4èmes de N2 . 

La figure 3 .8  montre les différents vecteurs propres construits à partir de la fonction que 
l 'on peut voir à gauche de la figure 3 .9 (c 'est-à-dire pour A. =  0). Cette proposition permet 

7 

6 

5 

4 

3 

2 

· • · u.<fl 
+ U_(f) 

Vecteurs propres pour± 1 

-5 0 1 0  

· • · v.<fl 
+ V_(f) 

Vecteurs propres pour± 1 

3 

2 

. • ·• . • . f  
0 · '!- +·+·li! 

-1 

-2 

-3 

-5 

"' ·. 

· .. 
� 
0 5 1 0  

FIG.  3 .8 - Vecteurs propres %'+ (!) , %'_ (!) ,  "Y+ (!) et "f/_ (f) 

une construction intéressante, simplement en écrivant la décomposition d'un vecteur f E c_N en fonction des vecteurs propres de la transformée de Fourier : 

f = %'+ (!) + %'_ (!) + "Y+ (!) + "f/_ (f) .  

Ceci permet de considérer l 'opérateur # défini de la manière suivante : 

où l 'on aura choisi pour i 1 /2 une racine carrée de i (choix arbitraire) . 
On a alors # o # = $ : l 'opérateur # est une racine carrée de la transformée 
de Fourier discrète. De même, pour A. E JR., on peut construire ainsi $Â , une transfor­
mée A,ième de $ (encore une fois, la construction n 'a  absolument rien de canonique) . 
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1[]-0.0 : :  1[]-0.3 � :  1[]-0.5 .. . 1[]-0.8 .... 
1[]-1.0 , ·· 

0.5 · :  0.5 · \  0.5 i \  0.5 ./ '., 0.5 / \  
j � } � . ..) �- · - ..

. ·
.• ,. .... ... \ ! 

0 . ... . . . ... ; . . . ... 0 . . .. . . . . . . . . . ... 0 . . . . . . . . . 0 
· 
• . · • • 0 •. .. ·. ; 

-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 1 0  

FIG . 3 .9 - Vecteurs transformés intermédiaires §À (!) pour Â E [O, 1 J 

La figure 3 .9 montre différentes transformées intermédiaires. Pour Â = 0.5 on obtient 
#. L'exercice III.9 permet de manipuler une transformée de Fourier partielle, qui gé­
néralise la construction que nous venons d'effectuer. On pourra voir, grâce à l ' exemple 
d'une gaussienne, que ces manipulations correspondent à des notions très intuitives . Pour 
plus d' informations sur la transformée de Fourier partielle (continue comme discrète), 
on pourra consulter l ' article de CARIOLARO [ 14] . Enfin, l 'exercice III. IO propose une 
méthode pour diagonaliser de manière canonique la matrice de la TFD. 

6 Exercices 

Exercice 111.1 (Inversion de bits). On définit, pour n ;;:: 0, des vecteurs u(n) de taille 2n , 
par u(O) = {O} et 

n (n) � { 2u(n- l ) [k] si k < 2n- l 
'v'n > O, 'v'k E {0, . . .  , 2 - 1 } ,  u [k] - 2u(n- l ) [k - 2n- l ] + l  si k ;;:: 2n- l · 

1 .  Calculer la valeur de u(n) pour n = 1 , 2, 3 .  
2. Montrer que u(n) est en fait la  suite 0, . . .  , 2n - 1 , classée en considérant les écritures 

binaires inversées des entrées .  
3 .  Soit f un vecteur de taille 2n . On note f la suite déterminée par 

'v'k E {O, . . .  , 2n - 1 } , f[k] � f[u(n) [k] J . 

Quelle est l 'utilité de f lors du calcul de la transformée de Fourier discrète de f? 
4. On note J° e!J1 les parties paire et impaire de f. On note 'Ji et fg les parties gauche 

et droite de f. Quelle relation lie tous ces vecteurs ? 
5 .  Implémenter en MATLAB un algorithme récursif pour calculer j. Comparer sa com-

plexité à celle de la procédure rev_b i t s .  

Exercice 111.2 (Algorithme de Good-Thomas). Nous avons vu au paragraphe 2.4 que 
l ' algorithme FFT de Cooley-Tukey se généralisait sans problème au cas où l 'on disposait 
d'une factorisation adéquate de N, la taille du vecteur transformé. Dans cet exercice, nous 
allons voir que si certains entiers de cette factorisation sont premiers entre eux, on peut 
concevoir un algorithme encore plus rapide. 

1 .  On suppose que N = pq où p et q sont deux nombres premiers entre eux. On rap­
pelle le lemme Chinois, qui dit que l ' application { Z/NZ ---+ Z/pZ x Z/qZ <p n 1-----t (n mod p, n mod q) 
est un isomorphisme d' anneaux. Expliciter le morphisme inverse 1JI. 
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2. Soit f E cN. On définit alors un signal 2D : 

Vk1 E {O, . . .  , p - 1 } , Vk2 E {O, . . .  , q - 1 } ,  F [ki , k2] � /[1J1(ki , k2) ] .  

Montrer que l 'on a 

Î[(s1 q + s2p) mod N] = F[si , s2] .  
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3. Montrer que lorsque s i parcourt {0, . . .  , p - 1 } et s2 parcourt {O, . . .  , q - 1 } , alors 
(s 1 q + s2p) mod N parcourt {O, . . .  ,N - 1 } .  En déduire comment on peut calculer 
la transformée de Fourier de f à partir de celle de F, en explicitant le changement 
d' indices . 

4. Quel est le gain par rapport à une étape de l ' algorithme FFf classique ? En parti­
culier, que devient l'opérateur .5"{, introduit à l ' équation (2. 10) ?  Proposer une pro­
cédure récursive qui, suivant la factorisation de N obtenue à chaque étape, appelle 
la procédure de calcul de TFD optimale. En plus des procédures FFf de Cooley­
Tukey et Good-Thomas, on pourra inclure la procédure Chirp décrite à l' exercice 
V.9, qui est intéressante lorsque N - 1 est un nombre premier. 

Exercice 111.3 (Algorithme Split-Radix). Nous avons vu au paragraphe 2.3 qu' il était 
possible d'étendre la méthode de dichotomie de Cooley-Tukey pour calculer des TFD 
de longueur pr, en réalisant un regroupement des entrées par paquets de taille p. Dans 
cet exercice, nous allons montrer comment, en choisissant astucieusement des paquets de 
tailles variables, on peut réduire le nombre d'opérations. Ce choix part de la constatation 
que l' algorithme de Cooley-Tukey passe beaucoup de temps à calculer l'opérateur .Yf,, 
alors que pour certaines valeurs de N (par exemple 2 ou 4), ce dernier est trivial. Dans 
la littérature anglo-saxonne, on nomme les racines de l 'unité ajoutées par cet opérateur 
« twiddle factors » (littéralement, « qui se tournent les pouces » ). On pourra comparer 
cette approche avec celle de l ' algorithme de Good-Thomas, exercice 111.2, qui dans le 
cadre d'une certaine factorisation de N, permet d'éliminer l ' opérateur .5"{,. 

1 .  On considère un schéma de décimation fréquentielle. On suppose que N est une 
puissance de 2. On rappelle que l ' algorithme classique DIF organise le regroupe­
ment suivant : 

{f[k] \ k =  0, . . .  ,N - 1 } = {f[2k] \ k =  0, . . .  ,N/2 - 1 } 

U {f[2k +  1 ] \ k = O, . . .  ,N/2 - 1 } . 

Expliquer pourquoi l 'on n 'a  pas intérêt à toucher à la première partie de ce re­
groupement. En ce qui concerne la deuxième partie, on propose le regroupement 
correspondant à des transformées en base 4, c'est-à-dire : 

{f[2k+  1 ] \ k =  0, . . .  ,N/2 - 1 } = {f[4k +  1 ] \ k = 0, . . .  ,N/4 - 1 } 

U {f[4k + 3] \ k = O, . . .  ,N/4 - 1 } 

Montrer que ceci mène aux formules de transformation suivantes : 

� 
�- 1 . 3 . 

/[4k + 2j + l ]  = L œ;J;1 œ;ni (2J+ l ) L f [n1 + n2N/4] ro4n2 (2J+ 1 ) , 
n 1=0 n2=0 

pour j = 0, 1 et k = 0, . . .  , � - 1 .  Les sommes intérieures sont-elles compliquées à 
calculer? Identifier les « twiddle factors » .  
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2. Trouver d' autres schémas de regroupement. Pourquoi le regroupement par 4 est 
avantageux ?  Calculer le nombre d'opérations nécessaires à chaque fois, et compa­
rer avec celui du schéma DIF classique, en base 2. 

3 .  Transformer les algorithmes décrits plus haut pour obtenir un schéma de décimation 
temporelle (regroupement des entrées) .  Décrire une implémentation itérative des 
algorithmes, en n'oubliant pas les procédures de renversement de bits permettant 
d'économiser des mémoires temporaires. 

Pour plus d'informations, et une généralisation aux TFD de longueur p'" , on pourra consul­
ter [75] .  

Exercice 111.4 (Convolution optimisée). On souhaite calculer la convolution acyclique 
de deux suites finies f et g de tailles respectives N et M. On suppose que M est beaucoup 
plus petit que N. Pour simplifier, on suppose que les indices des deux suites commencent 
à O. 

1 .  On prend N = pM . On note fj � {f[k + jM] }!(/,  pour j = 0, . . .  , p - 1 .  Montrer 
que l 'on a 

p- l 
f*g[k] = L fi *g[k - jM] . 

j=O 
2. En déduire un moyen rapide de calculer f * g sans avoir à ajouter N - M - 1 zéros 

à la fin de g. Quelle est la complexité de l' algorithme obtenu ? 

3. Dans le cas où N n'est pas un multiple de M, que peut-on faire ? 

Exercice 111.5 (Matrice circulante). Cet exercice présente de fortes similitudes avec 
l 'exercice I. 1 sur les déterminants circulants, avec une présentation utilisant cette fois le 
produit de convolution. Soit c � ( co , . . .  , CN- l )  T E ff un vecteur de taille N. On définit 
la matrice circulante C qui est associée à ce vecteur par 

co c1 . . . c2 
• • • 1 . . . . . . 

c �  ( �: 
CN- l 

CN- l CN-2 · · · C}) 
CN-2 CN-3 CQ 

1 .  Soit { e 1 , . . .  , eN} la base canonique de cN. On considère la matrice R dont les co­
lonnes sont {e2 , e3 , . . . , eN , e i } . On rappelle que QN désigne la matrice de Fourier, 
qui est définie à l' équation (2. 1 6). Montrer que l 'on a 

2. Montrer alors que l 'on a 

D.NCD./V1 
= L\ 

_ · ( - 1 - {N- 1 ) ) avec D - diag 1 , œN , . . .  , œN . 

avec L\ = diag(ê[O] , ê[l ] , . . .  , ê[N - 1] ) .  

En déduire que pour x E e,N, on peut calculer le produit Cx de la manière suivante : 

où l 'on a noté · le produit composante par composante des matrices . 

3 .  Montrer que pour x E C, on a Cx = c * x. En utilisant le théorème de convolution 
3 .4, en déduire une démonstration immédiate de la question précédente. 



§ 6. Exercices 87 

Exercice 111.6 (Interpolation trigonométrique). Soit f E e,N un échantillon de taille 
N = 2No + 1 . On définit un vecteur fo de taille P = 71N (avec 11 E N suffisamment grand) 
de la façon suivante : 

Îo � 11 {Î[O], Î [ l] , . . .  , Î [No], 0, . . .  , O, Î [No + 1], . . .  , Î [N - 1]} . 
Montrer que l 'on a 

Vk E {O, . . .  ,N - 1 } ,  f[k] = fo [11k]. 
En déduire un algorithme rapide pour interpoler une fonction par des polynômes trigono­
métriques. On peut voir cet algorithme en action à la figure 3 . 10. 

u r--�������---r-r_="""""�""""'= 

... 

•• 

, ' - • Coutbeklla e 
' ' 

' ' 
' ' 

FIG. 3 . 1 0  - Interpolation trigonométrique 

Exercice 111.7 (Interpolation de Chebyshev). On définit les polynômes de Chebyshev 
par 

Tk(X) � cos(k arccos (X) ) .  
La figure 3 . 1 1  montre les représentations graphiques des polynômes n pour des pe­
tites valeurs de k. Ce sont des cas particuliers de figures de Lissajous (qui sont utilisées 
pour étudier les phénomènes ondulatoires), c 'est-à-dire des courbes paramétrées du type 
(x = a cos (kt + c) , y = bcos (t) ) .  On considère une fonction continue f : [- 1 , l]---+ R On 
souhaite l ' interpoler en N points {xk}f,:J par un polynôme i'N-1 de degré N - 1 ,  où les 
Xk sont définis par 

VkE{O, . . .  ,N - 1 } , xk �cos ( (k + l/2);) . 

1 . Montrer que TN est bien un polynôme, en déterminant une relation de récurrence 
entre Tk et Tk-I· Montrer que les racines de TN sont les Xk, pour k E {O, . . .  ,N - 1 } .  

2. Montrer que PN-I peut se  mettre sous la  forme 
N-I 

PN-I = L akTk. 
k=O 

3 . On considère deux types de transformées discrètes en cosinus (souvent notées DCT-
2 et DCT-3 en anglais, car il en existe d' autres) d'un échantillon {f[k]}f,:J E �N : 

'612 (/) [j] � � f[k]cos ( (k + 1 /2);) 

'613 (/) [j] � �f[O] + i: J[k] cos (u + 1 /2)�) . 
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FIG . 3 . 1 1  - Polynômes Tk pour k = 1, .. . , 6 

Montrer que l ' inverse de '6'2 est �'6'3 . Implémenter en MATLAB ces transformées 
en utilisant une TFD de taille 4N (on pourra penser à rendre le signal pair, puis à 
insérer des 0 aux indices impairs) .  Pour plus d ' informations sur la transformée en 
cosinus, on pourra consulter l ' article de STRANG [69] . On pourra noter que c 'est la 
transformée '6'2 qui est utilisée pour la compression d' images JPEG. 

4. Comment calculer les { ak}f,;01 à partir des {f[k] = f(xk) }f,;01 ? En conclure un 
algorithme rapide d' interpolation polynomiale aux points xk. 

La figure 3 . 1 2  montre une comparaison entre l ' interpolation de Lagrange (points équidis­
tants) et l ' interpolation de Chebyshev sur une fonction en apparence anodine : 

!(X) � 1 11"l>* 2 2 pour a E m.+. 
a +x 

Pour la figure, on a pris N = 1 1 , et a= 0.3 .  Essayer, expérimentalement, de déterminer 
la valeur ao à partir de laquelle le polynôme de Lagrange converge uniformément vers f 
quand n � +oo. L' interpolation de Chebyshev est un cas simple de méthode spectrale. Ces 
méthodes utilisent des décompositions selon des polynômes orthogonaux pour approcher 
les solutions d'équations aux dérivées partielles . Il s ' agit d'une extension des décompo­
sitions en séries de Fourier adaptée aux fonctions non périodiques . Tout ceci est très bien 
décrit dans le livre de BOYD [9] . 

Exercice 111.8 (Dérivation fractionnaire). Soit f : lR � lR une fonction de classe C00 dé­
croissant rapidement à l ' infini . Montrer que la transformée de Fourier (définie à l ' équation 
(1 . 1 ) ,  chap. IV) de /(11) est 

Expliquer en quoi cette propriété permet de définir une dérivation fractionnaire, c'est­
à-dire que l 'on peut définir une dérivation pour des valeurs réelles de n. Implémenter 
une routine MATLAB qui réalise un calcul approché de dérivée fractionnaire à l 'aide de 
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10 

a'. 

°'· ·. 

'·: 

FIG. 3 . 1 2 - Interpolation de Lagrange et de Chebyshev 

FIG .  3 . 1 3  - Dérivées fractionnaires successives d'une gaussienne 

l'algorithme FFf. La figure 3 . 1 3  montre la dérivée fractionnaire d'une gaussienne obtenue 
par cette méthode, et ceci pour différentes valeurs de n entre 0 et 2. 

Exercice 111.9 (Transformée de Fourier intermédiaire). On rappelle que l'on note n.N 
la matrice de Fourier, qui est définie à l'équation (2. 1 6) . C'est une matrice autoadjointe, 
donc comme tout endomorphisme normal (c'est-à-dire qui commute avec son adjoint), 
elle diagonalise en base orthonormée de c_N (ce qui est faux dans !RN). Ceci signifie qu'il 
existe une matrice P unitaire et une matrice D diagonale telle que 

ÜN = PDP* . 

1 . Quelles sont les entrées de D ?  Vérifier ceci avec MATLAB, en employant la com­
mande eig qui fournit les valeurs propres ainsi qu'une décomposition selon les 
vecteurs propres. On remarquera que comme le nombre de valeurs propres dis­
tinctes est inférieur à N, le choix de la base orthonormée de vecteurs propres est 
totalement arbitraire. 

2. On définit la matrice n�. pour a E IR, par 
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où Da est une puissance aième de D. On définit alors des transformées de Fourier 
intermédiaires : 

Montrer que l 'on a 

V(a,j3) E �2 , §ao§f3= g-a+f3 et §1= §. 

3 .  La figure 3 . 14 montre le module de la matrice g-a pour un paramètre a variant entre 
0 .3 et 1 .  Que représentent les deux diagonales blanches que l 'on peut distinguer (on 
pourra s ' aider du calcul de la matrice ni)? 

1.00 0.95 0.91 0.86 

0.81 0.77 0.72 0.67 

0.63 0.58 0.53 0.49 

0.44 0.39 0.35 0.30 

Il Il Il 

FIG . 3 . 14 - Module de différentes matrices de transformées de Fourier partielles 

4. Expliquer pourquoi on peut construire une infinité de transformées intermédiaires. 
En laissant MATLAB décider d'une factorisation de QN, implémenter la transformée 
obtenue, puis la tester avec différentes valeurs de a et différents signaux. 

La figure 3 . 15  montre un panel de transformées intermédiaires pour une gaussienne. Le 
paramètre de transformation a varie entre 0 et 2. Bien sûr, pour a = 2, on retrouve le 
signal d'origine (car la gaussienne est symétrique). 

Exercice 111.10 (Diagonalisation de la TFD). Dans l ' exercice précédent, on a utilisé 
MATLAB pour diagonaliser en base orthonormée la matrice de la TFD. La construction 
théorique d'une base orthonormée n' est pas simple, principalement parce que les valeurs 
propres ont une multiplicité plus grande que 1 ,  ce qui laisse un choix potentiellement infini 
de décompositions. Le but est donc de construire un procédé canonique pour déterminer 
une base de diagonalisation. Cet exercice est inspiré de l ' article de DICKINSON [27]. On 
pourra aussi lire l ' article de CANDAN [ 1 3] qui fait la relation entre la matrice S et la 
discrétisation d'une équation différentielle. 

1 .  On définit une matrice S E  MN(�) de la façon suivante : 

Co 1 
1 C1 

s� 0 1 

1 0 

0 
1 

C2 

0 

1 
0 
0 

CN-1 

où C � 2 ( ( 
2kn) 2) k - cos N - . 
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FIG. 3 . 15 - Transformées de Fourier partielles successives d 'une gaussienne 

Expliquer pourquoi S diagonalise en base orthonormée. 

91 

2. Montrer que Set Q.N, la matrice de Fourier, commutent, c ' est-à-dire que SQ.N = 
Q.NS. On pourra décomposer S en S = r + A, où r est une matrice circulante astu­
cieusement choisie de façon à ce que Q.N r = AQ.N. 

3 .  Montrer que si f et g sont deux endomorphismes diagonalisables de e,N qui com­
mutent, alors il existe une base commune de diagonalisation. 

4. On souhaite montrer que les valeurs propres de S sont distinctes. Soit P la matrice 
de l ' endomorphisme unitaire de e,N qui envoie un élément f de e,N sur 

Vn E { 1 , . . .  , l (N - 1 ) /2J} , Pf[n] � f[n] "Yz[-n] , 

\..1 { r (N 1 ) /21 N 1 } Pf[n] � f[n] -�
2
[-n] . vn E 1 + , ... , - , 

V .t. 

et P f[O] = f[O] . Dans le cas où N est pair, il faut de plus ajouter P f[N /2] = f[N /2] . 
Montrer que cet opérateur est symétrique et orthogonal, et qu'il correspond à la 
décomposition de f en ses parties symétrique et antisymétrique. Montrer ensuite 
que psp-l est une matrice tridiagonale symétrique. 

5. Montrer que les valeurs propres d'une matrice tri-diagonale symétrique à éléments 
diagonaux non nuls sont distinctes. On pourra s'aider du livre de CIARLET [ 1 6] qui 
décrit la méthode de Givens-Householder pour calculer les valeurs propres d'une 
matrice symétrique. En conclure que les valeurs propres de S sont bien distinctes. 

6. En déduire que 1' on a ainsi construit de façon canonique une base orthonormée de 
vecteurs propres de Q.N. 

Sur la figure 3 . 16 on peut voir le module des premiers vecteurs propres de la TFD (c' est­
à-dire ceux qui ont le moins de changements de signe) construits à l ' aide de la méthode 
que nous venons d' exposer. Sur la figure 3 . 1 7  on peut voir la matrice des modules des 
vecteurs propres de la TFD (les grands coefficients sont noirs). 

Exercice 111.11  (Orthogonalisation sur un groupe cyclique). Cet exercice étudie dans 
un cas particulier la notion d'orthogonalisation introduite à l ' exercice 1.8. Il est cependant 
indépendant. On considère le groupe fini G = Z/nZ, ainsi que l ' espace vectoriel C[G] des 
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-premier 
dtv�6rne 

- -11oisltin• 

300 320 

FIG . 3 . 1 6  - Modules de quelques vecteurs propres de D.N 

FIG .  3 . 1 7  - Matrice des modules des vecteurs propres orthogonaux 

fonctions de G dans C. Pour f E C[G] et k E G, on définit deux actions de G sur C[G] en 
posant 

kT f : X t--t f(x - k) 

, l '  � déf. 2iH 
ou on a note COn = e " . 

et 

1 .  Montrer que les opérations T et 1- sont reliées par 

§(kTf) = k1-§(f) et §(k1-f) = kT §(!) . 

2. On rappelle que f est dite orthonormée sous l' action de T si { k T !} kEG est une base 
orthonormée de <C[G]. En utilisant la question précédente, expliquer comment sont 
reliées les bases orthonormées pour T et les bases orthonormées pour 1-. 

3. Montrer que f est orthonormée pour T si et seulement si 'r/k E G, IÎ[k] I = 1 .  
4 .  Soit f E C[G] telle que Î n e  s' annule pas. On définit alors fo E C[G] par 

'r/k E G, Îo[k] = �k] 
. 

lf[kJ I 

Montrer que fo est orthonormée pour T. Proposer une construction similaire pour 
1-. 
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5 .  On suppose maintenant que g est orthonormée pour T. Soit <p E C[G] quelconque. 
On note, pour k E G, �(<p) [k] � (<p, kTg) les coefficients de décomposition de <p 
dans la base orthonormée {kTg}kEG· Montrer que �(<p) = �f * g =: �Corr{<p, g) , 
où g[k] � g[-k] ,  et Corr est par définition la corrélation de deux vecteurs (voir aussi 
l ' exercice IV.7 pour la corrélation de deux images) . En déduire un algorithme rapide 
de calcul de �(<p) en O{n log(n) )  opérations. 

La figure 3 . 1 8  montre deux exemples d'orthogonalisation. La fonction du haut, qui est 
plus proche de l 'orthogonalité que celle du bas (on le voit sur les modules des coeffi­
cients de Fourier qui sont loin de 1) ,  donne naissance à une fonction g moins oscillante. 
Intuitivement, pour orthogonaliser une fonction quelconque, il faut la « faire osciller ». 

Fonction orlgfnale Fonction orthogonallsde 

0.8 
0.8 

0.6 
0.6 

;, 0.4 
0.4 0.2 * 

• 
0.2 0 

......
. ... . ••••••• 

-0.2 
-5 10 -5 10 

Fonction originale Fonclion orthogonalisée 

:,,. 0.6 0.8 .. 
0.4 0.6 
0.2 • 0.4 • • • . .  • 

0 .. .• • 
· . ······· 0.2 * • 

-0.2 o: 

-5 10 -5 10 

FIG. 3 . 1 8  - Exemples d'orthogonalisation 





Chapitre IV 
Applications de la transformée de Fourier discrète 

A paper by Cooley and Tukey [20] described a recipes for 

computing Fourier coefficients of a time series that used 

many fewer operations than did the straightforward 

procedure . . .  What lies over the horizon in digital signal 

processing is anyone's guess, but 1 think it will surprise us 

ail . 

B.P. BOGERT (1967) 

Nous avons donc vu, au chapitre précédent, que l 'on dispose d'un algorithme efficace, 
l' algorithme FFf, pour calculer la transformée de Fourier discrète. Dès lors, toutes les ap­
plications utilisant de près où de loin la théorie de Fourier vont pouvoir bénéficier de cette 
« trouvaille » algorithmique. Mais ce phénomène va même plus loin, puisque de nom­
breux autres problèmes, pourtant fort éloignés de l ' analyse harmonique, vont être résolus 
de manière rapide grâce à l ' algorithme FFf. Nous verrons ainsi que l 'on peut calculer 
rapidement des produits de grands entiers, ou bien approcher la solution de l ' équation de 
Poisson, ce qui peut paraître quelque peu déconnecté des préoccupations que nous avions 
jusqu'alors ! 

1 Lien avec la transformée de Fourier sur lR 

To a considerable extent the continuous case can be 

obtained through a limiting process from the discrete case 

by dividing the continuum of messages and signais into a 

large but finite number of small regions and calculating 

the various parameters involved on a discrete basis. 

C . E .  SHANNON [66] (1948) 

Ce chapitre est avant tout utile pour mieux comprendre de façon intuitive la transfor­
mée de Fourier discrète, grâce à de nombreuses analogies avec la transformée de Fourier 
continue. Il n' est pas là pour donner à la TFD une nature numérique, car il faut avant 
tout concevoir la transformée discrète comme une transformation algébrique, avec une 
formule de reconstruction exacte (la transformée de Fourier discrète inverse). Cependant, 
il est vrai que l ' algorithme FFf est souvent employé pour calculer de manière approchée 
des coefficients de Fourier, même si nous allons vite voir que la formule de quadrature 
correspondante n' est pas très précise. 
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1.1 Transformée de Fourier continue 

Nous venons de définir, de façon que l 'on pourrait qualifier d'abstraite, la transformée 
de Fourier discrète. On peut donc fort naturellement se demander si cette dernière a un 
quelconque rapport avec la transformée de Fourier usuelle sur R Cette dernière, pour une 
fonction f E L 1 {R) est définie par l ' équation 

1+
00 VÇ E R, J(Ç ) � 

00 
f(t)e-il;tdt. ( 1 . 1 ) 

Cette transformation fonctionnelle a une signification très importante, particulièrement 
dans le domaine du traitement du signal. Si l 'on considère que la fonction f représente 
un signal continu qui se propage dans le temps, la transformée de Fourier permet de .l?as­
ser d'une représentation temporelle à une représentation fréquentielle. La quantité f ( Ç ) 
représente intuitivement combien il y a de variations à la fréquence Ç dans f. 
De plus, on peut étendre par densité la transformée de Fourier aux fonctions f E L2 {R) 
d'énergie finie, c ' est-à-dire telles que fR lf(x) l2dx < +oo. Ainsi, la célèbre formule de 
Parseval : 

'tif E L2 {R) , llfl2 = 2nll/llL2 
peut s'interpréter comme une conservation de l 'énergie lors du passage du domaine tem­
porel au domaine fréquentiel. Pour plus de détails sur la construction de la transformée de 
Fourier sur R, on pourra consulter le livre de RUDIN [62]. 
De même que pour la transformée de Fourier sur un groupe fini, on a aussi un théorème 
d'inversion, sous des hypothèses un peu restrictives. 
Proposition 1.1 (Formule d'inversion). Lorsque f E L 2 et Î E L 1, on a presque partout 

(1.2) 

En fait, on pourrait refaire une théorie des caractères sur le groupe {R,+) telle qu' elle l 'a 
été faite sur les groupes abéliens finis. Voici par exemple la détermination des caractères 
de la droite réelle : 
Proposition 1.2 (Caractères de R). On nomme caractère de (R,+) les morphismes 
continus de R dans r � {z E C \ lzl = 1 }. Comme d'habitude, on note i le groupe formé 
des caractères. Pour y E IR, soit 

{ R � C* ey : i� . t t------t e 1 • 

Alors on a i = { ey }rER et l 'application r t--t ey est un isomorphisme entre R et i. 

Démonstration. Les ey sont bien sûr des éléments de i .  Soit donc X un morphisme 
continu de R dans r. Nous allons commencer par montrer que x est une fonction dé­
rivable. Pour ce faire, il suffit d'intégrer la propriété d'homomorphisme au voisinage de 
0 :  !oh 

x(s + t)dt = x(s) !oh 
X(t)dt. 

Comme x(O) = l, pour h suffisamment petit, on a Jt x(t)dt f: O. On a donc, pour un 
certain h, 

fih+s X(t)dt x(s) = Jt X(t)dt ' 
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ce qui définit bien une fonction continûment dérivable. Notons Â = x' (O) . En factorisant 
le taux d' accroissement, on obtient 

'v's E JR, X' (s) = lim x(s + t) - X(t) 
= x(s) lim X(t) - X(O) 

= ÂX(s) . 
HO h HO h 

On remarque que la seule fonction f qui vérifie f' = Âf et f(O) = 1 est si---+ eÂ.s . Il ne reste 
plus qu'à  montrer que Â E iR Il suffit d'utiliser z(s)x(s) = X(O) = 1 .  En différenciant 
cette égalité en 0, on trouve Â + I = O. D 
Ainsi, la formule d' inversion (1.2) est à rapprocher la formule (4.4), chap. I, sur un groupe 
fini : on s ' est en quelque sorte contenté de remplacer la somme finie par une intégrale. De 
même, on pourrait analyser la décomposition d'une fonction 2ir-périodique en série de 
Fourier. Cette fois-ci, il s ' agirait d'utiliser les caractères du cercle S1 � JR/2irZ, qui sont 
les fonctions 

\../ '71 \../ llD ( ) déf. int vn E tLJ, vt E JN.. , e11 t = e . 

La formule de décomposition d'une fonction périodique en série de Fourier (sous de 
bonnes hypothèses, et en précisant le sens de la convergence) est une fois encore une 
formule d' inversion, avec cette fois-ci une somme dénombrable. Pour une introduction 
aux séries et intégrales de Fourier sur un groupe, on pourra consulter le livre de DYM et 
MACKEAN [29] , chapitre 4. 

1.2 Calcul approché de la transformée de Fourier sur 1R 
Avant de se lancer dans des calculs approchés d' intégrales, il faut être conscient que la 
transformée de Fourier discrète ne se résume pas à de telles approximations . On peut en 
partie expliquer les propriétés « intuitives » de la transformée de Fourier discrète en in­
voquant des approximations de la transformée de Fourier continue. Cependant, ce qui fait 
que la transformée de Fourier discrète marche si bien ne vient pas de sa capacité à ap­
procher fidèlement la transformée continue (c' est même le contraire), mais vient du fait 
qu'elle transpose les propriétés algébriques que l 'on utilise pour la droite réelle (convo­
lution, inversion, translation, . . .  ) au cas d'un domaine fini et cyclique. Ce sont donc bien 
les propriétés algébriques de la TFD qui en font un outil puissant en analyse numérique, 
et qui permettent d' avoir des algorithmes simples et rapides. Dans ce paragraphe, nous 
allons néanmoins expliquer les connexions qui relient, en termes de calculs approchés, 
les deux transformées, discrète et continue. 
Bien sûr, la bonne méthode pour calculer de façon approchée la transformée continue est 
de chercher la valeur de Î en certains points . En effet, on ne connaît en pratique le signal f 
que sous la forme d'un échantillon {f[n] }�::-J , chaque valeur f[n] étant mesurée pour une 
valeur du paramètre x égale à x11 � nt:., pour n = 0, . . .  , N - 1 .11 est le pas de discrétisation, 
c' est-à-dire l' intervalle (de temps si on considère un signal variant dans le temps) entre 
deux mesures du signal f. 
Dans la suite, en vue de simplifier les explications, on suppose que N est un entier pair. 
Il est clair qu'étant donné un échantillon de N valeurs du signal f, il est vain de vouloir 
calculer plus de N valeurs indépendantes de la transformée de Fourier J: Cette remarque 
intuitive va être confirmée par le calcul approché suivant : 

N-I 
'v'Ç E lR, Î(Ç ) � /1 L f[n] e-iÇx,, . 

11=0 
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Cette approximation est obtenue en utilisant la méthode des rectangles à gauche pour 
calculer de manière approchée l ' intégrale (1 . 1 ) .  Pour que cette approximation ait un sens, 
il faut bien sûr qu'en dehors de l ' intervalle [O, Nd] la fonction l soit sinon nulle, du moins 
à décroissance très rapide. 
On voit alors qu' en calculant les valeurs de f pour des valeurs du paramètre Ç de la forme 
Çk � �X on obtient une écriture particulièrement agréable pour le calcul approché de 
J(Çk) :  N-l . 

J ( Çk) � d L l[n] e =j}!f kn. ( 1 .3) 
n=O 

Comme nous l ' avons déjà mentionné, il est logique de ne calculer que N valeurs de la 
transformée de Fourier, donc nous allons appliquer le calcul précédent aux points Çk pour 
k variant dans {-N /2+ 1 ,  . . .  ,N  /2} . On pourrait se demander pourquoi on ne commence 
pas à l ' indice k = -N /2, mais on voit que l 'on obtient le même résultat pour Ç-N/2 et 
pour ÇN/2 (ce qui est conforme à notre idée : inutile de calculer plus de N coefficients) . 
En rapprochant l 'expression ( 1 .3) et la définition de la transformée de Fourier discrète 
(1 . 1 ) ,  chap. III, on obtient 

\;/k E {O, . . .  , N - 1 } ,  J(Çk) � d J [k] , ( 1 .4) 

où l 'on a noté f[k] la !cÏème entrée de la transformée de Fourier discrète du vecteur 
{f[OJ , . . .  , f[N - 1 ] } E CN (comme défini par l ' équation (1 . 1 ), chap. III) . 
Cependant, il y a une légère astuce dans l 'équation (1 .4). En effet, l ' indice k varie dans 
{-N /2 + 1 ,  . . .  ,N  /2}, alors que le vecteur de transformée discrète {J [OJ , . . .  , f[N - 1] } a 
ses indices dans { 0, . . .  , N - 1 } .  Il est néanmoins facile de voir que l 'on n 'a  pas commis 
d'erreur en écrivant l 'égalité (1 .4), puisque le vecteur de transformée discrète peut être 
vu comme une fonction périodique de période N. On peut donc remplacer les fréquences 
négatives { -N /2 + 1 ,  . . .  , - 1 }  par les fréquences { N /2 + 1 , . . .  , N - 1 }  : on obtient bien 
un vecteur dont les indices varient entre 0 et N - 1 .  
Ainsi, la formule (1 .4) nous dit qu' à  un facteur d près, le vecteur de la transformée de 
Fourier discrète {flOJ , . . .  , J [N - 1 ] }  représente une approximation de la transformée de 
Fourier du signal l. mais prise à des fréquences bien particulières : les indices n entre 0 
et N /2 - 1 correspondent aux fréquences positives entre 0 et le � � (exclue), les indices 
n = N /2 + 1 ,  . . .  , N - 1 correspondent aux fréquences négatives entre -le (exclue) et 0 
(exclue), alors que l ' indice N /2 correspond à la fois à la fréquence le et -le (ce qui est 
normal, puisque le signal discret transformé est périodique de période N). Il faut donc 
faire attention aux deux points suivants. 

- Le vecteur transformé {J [OJ , . . .  , J [N - 1 ] } est considéré comme une donnée périodique 
de période N (c'est le propre de la transformée de Fourier sur un groupe abélien, en 
l 'occurrence Z/NZ). Ce n'est bien sûr pas le cas de la fonction l : lR ---+ C qui n'a 
aucune raison d'être périodique de période 2le· 

- Par rapport à la transformée de Fourier sur lR du signal continu l, les fréquences sont 
rangées dans le désordre : fréquences négatives, puis fréquences positives. 

1.3 Ajout de zéros 

Il y a deux techniques de base pour influer sur la façon dont on peut calculer, à l ' aide de 
la transformée discrète, différentes valeurs de la transformée continue. 
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- On peut échantillonner le signal avec plus ou moins de précision. Nous avons vu que 
plus l' échantillonnage est précis (c'est-à-dire plus on prend de points pour représenter 
la fonction analysée), plus le spectre de la transformée est large. Ainsi, si l 'on désire 
couvrir un spectre deux fois plus grand, il suffit de diviser par deux l ' intervalle d' inter­
polation. Bien sûr, cela rallonge aussi le temps nécessaire pour faire le calcul. 

- On peut ajouter des zéros à la fin du vecteur. Si l 'on est satisfait du spectre sur lequel 
on calcule la transformée (plus précisément des fréquences maximales et minimales 
que l 'on peut calculer), on peut ensuite vouloir calculer la transformée avec plus de 
précision, par exemple si on veut tracer une courbe pour représenter graphiquement la 
transformée. Dans ce cas, la marche à suivre est simple : il suffit de rajouter des zéros à 
la fin du vecteur, pour rajouter autant de fréquences intermédiaires calculées. 

En jouant sur ces deux paramètres (précision d'interpolation et ajout de zéros), on peut 
calculer des transformées discrètes « sur mesure », pour avoir une certaine taille de vec­
teur fixée (ceci peut être utilisé pour créer des filtres, cf. section 2), mais aussi pour la 
représentation de la transformée. La figure 4. 1 montre les différents résultats que l 'on 
peut obtenir en jouant à la fois sur le nombre de points d'échantillonnage et sur l 'ajout de 
zéros. Les fonctions représentées sont les modules de la TFD de la fonction indicatrice 
de [0 .5 ,  1 ] , échantillonnée sur [O, 1 ] à intervalles réguliers. Chaque ligne utilise un même 
nombre de points d'échantillonnage, mais avec plus où moins de zéros ajoutés. L'exercice 
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: 

IV.9 est instructif à cet égard, puisqu' il réinvestit tout ceci dans le but de créer et tester un 
filtre passe-bas. 
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1.4 Dualité temps/fréquence 

Dans le temps à une dimension, la répétition à intervalle 

égaux est le principe du rythme. Pendant qu'une pousse 

effectue sa croissance, on pourrait dire qu'elle traduit un 

rythme temporel lent en un rythme spatial. 

H. WEYL [77] (1952) 

Le calcul approché que nous venons de faire nous permet, via l 'utilisation de la trans­
formée de Fourier discrète de calculer la valeur de la transformée de Fourier d'un si­
gnal pour certaines fréquences uniquement, précisément celles de la forme �� pour 
k E {-N /2 + 1 , . . .  , N  /2} . On remarque donc que plus la précision avec laquelle on réa­
lise le calcul est grande (c'est-à-dire le pas de discrétisation il est petit), plus le spectre sur 
lequel on calcule la transformée est étalé. Ceci n'est pas un phénomène isolé, et résulte 
d'une dualité très forte entre la fonction de départ et sa transformée de Fourier. 

Le résultat suivant illustre bien cette dualité entre les propriétés temporelles d'un signal 
(c'est-à-dire les propriétés d'une fonction f) et ses propriétés fréquentielles (c'est-à-dire 
celles de la fonction transformée Î). 
Proposition 1.3. Soit f une fonction de L 2 (JR ) . Alors f et Î ne peuvent être simultanément 
à support compact. 

La démonstration de ce résultat est proposée à l 'exercice IV. 1 .  Cette propriété a un ana­
logue discret immédiat, que l 'on peut voir en considérant l ' impulsion discrète Ôo (le vec­
teur qui vaut 1 en 0, et qui est nul partout ailleurs). Sa transformée de Fourier discrète a un 
spectre qui couvre tout l ' intervalle considéré, puisqu'il s ' agit de la fonction exponentielle 
t 1--t e2im échantillonnée à intervalles de temps réguliers. 

2 Filtrage 

La notion de filtrage d'un signal échantillonné est simple à définir, mais est utilisée d'une 
manière intensive et variée. Nous ne ferons donc pas le tour de la question, cependant, il 
est intéressant de relier la technique du filtrage avec des outils tels l ' algorithme FFf et la 
convolution linéaire. 

2.1 Filtres linéaires 

Commençons par définir le filtrage d'un signal théorique infini, avant de nous intéresser 
au calcul pratique sur des signaux finis . Le filtrage d'un signal f E cz consiste à convoler 
(de manière acyclique bien sûr) ce signal avec un autre signal g E cz fixé à l ' avance. On 
obtient ainsi un opérateur de filtrage 

�={ 

On dit que g est la fonction de transfert du filtre «I>H. 
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Une des propriétés remarquables des filtres linéaires est l ' obtention de la réponse im­
pulsionnelle (c'est-à-dire la façon dont le système que représente le filtre réagit à une 
impulsion), qui se calcule très simplement : 

où on a noté êo l ' impulsion en 0, c'est-à-dire la suite qui vaut 1 en 0, et qui est nulle 
partout ailleurs (on parle de Dirac discret) . Autrement dit, la fonction de transfert du filtre 
n'est rien d'autre que la réponse impulsionnelle. 

Une fois exposées toutes ces définitions, on est amené à se poser la question du calcul 
pratique du filtre. Si l 'on veut pouvoir calculer la convolution f * g en un temps fini, 
une hypothèse naturelle est d' imposer à la réponse impulsionnelle g d'être finie (plus 
précisément à support fini). C'est un choix assez radical, mais l ' intérêt est qu' il va nous 
permettre d' appliquer un filtre linéaire à des signaux finis de façon très simple. Il va en 
effet suffire d'utiliser les techniques de convolution acyclique déjà présentées à la section 
3 .3 ,  chap. III. Rappelons brièvement la marche à suivre. On suppose que le signal à filtrer 
est du type : f = {/[OJ , . . .  , f[N - 1 ] } , et que la réponse impulsionnelle, elle, est peut être 
définie pour des indices négatifs, mais est, dans tous les cas, de taille finie P. On doit : 

- ajouter assez de zéros au deux vecteurs pour qu' ils atteignent la taille de N + P - 1 ; 
- déplacer les entrées d'indices négatifs de g à la fin du vecteur (c'est la coutume pour les 

convolutions cycliques); 
- calculer la convolution cyclique par FFf puis FFI' inverse ; 
- extraire du résultat les indices qui nous intéressent et les remettre dans l 'ordre (si on 

souhaite récupérer les entrées d'indices négatifs). 

L'une des caractéristiques principales des filtres de convolution que nous venons de dé­
crire est qu'ils possèdent une réponse impulsionnelle finie, dans le sens où elle devient 
nulle en dehors du support de g. C'est pour cela que l 'on nomme souvent les filtres de 
convolution filtres à réponse impulsionnelle finie, en anglais FIR (pour Finite Impulse 
Response) . Nous verrons au paragraphe 2.2, chap. V, que l 'on peut construire de façon 
simple des filtres qui ne possèdent pas cette propriété, mais qui peuvent quand même être 
calculés en un temps fini. 

Dans la plupart des cas, la fonction de transfert g a un support limité au voisinage de 0 
(c'est-à-dire que seules les entrées au voisinage de 0 sont non nulles). Un bon exemple 
est le filtre gaussien, donné par l ' équation 

1 ( (2k/N)2 ) 
\;/k E {-N /2, . . .  ,N  /2} , g [k] = M exp - 2t 

. 

Le paramètre M est ajusté de sorte que l lg l l 1 � Lk lg [k] 1 = 1 .  Le paramètre t représente la 
variance de la gaussienne. Plus t est petit, plus la gaussienne est « ramassée », donc plus 
g tend vers le Dirac êo (et le filtre� tend vers l ' identité). Au contraire, plus t devient 
grand, plus la gaussienne est « étalée », et plus le filtre lisse le signal . Il faut faire attention 
au fait que les indices de g ont été pris dans [-N /2,N /2] ,  car on souhaite réaliser un filtre 
acyclique. Pour réaliser un filtre cyclique et/ou calculer le filtre par FFf, il faut bien sûr 
reporter les fréquences négatives à la fin du vecteur. 

La figure 4.2 montre différents noyaux gaussiens (en haut) . Le noyau gauche a une va­
riance t tellement faible qu'il est égal au Dirac. La ligne du bas montre le filtrage d'un 
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signal irrégulier (représenté à gauche, puisque le filtrage par un Dirac n 'a  pas d'effet) . 
On voit que plus la variance est élevée, plus le signal filtré est régulier. Ceci rejoint la 
théorie classique de la convolution continue : lorsque l 'on filtre par un noyau de classe 
'f/00 (par exemple une gaussienne), la fonction devient instantanément de classe 'f/00, donc 
extrêmement lisse ! 

1=0.000 1=0.005 1=0.01 0  1=0.020 

§�::co::::o:··.. ::::o .... ... · :::: ./ .... 

ts 1 � • : • 
c0 0.4 0.04 · , 0.02 : 
LL • • 0.02 • , "., 

0.2 0.02 • : •• 0.01 ! . 
0 : \ .. • """"/-' ____ .... � .. 
-20 0 20 -20 0 20 -20 0 20 -20 0 20 

0 50 100 

!'. 

J\ ; ,,r- ; . ; 0.5/ :/\: ' ;  
:j \:; ' i 

V o�---� 
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1\ ! .. 
!"'-: j 0.5 • \ /\ / : V �· � ! 

,!\, . 
11 i � : 0.5 I 1\1\J/ \ ; ' : ' \ ! . : : v· V o�---� o�---� 

0 50 100 0 50 1 00 

FIG . 4.2 - Lissage par une gaussienne 

2.2 Types de réponses et stabilité 

Nous avons donc vu que la réponse impulsionnelle définit un filtre. Cependant, on peut 
aussi caractériser ce filtre par d' autres types de réponses, dont notamment : 

- la réponse fréquentielle. C'est simplement la transformée de Fourier de la fonction de 
transfert, c'est-à-dire LkEzg[k]eikx, pour x E [-n, n] .  C'est une fonction 2n-périodique, 
puisque c'est la série de Fourier associée aux coefficients g [ k] .  Puisque la réponse impul­
sionnelle g est finie, on peut la calculer par transformée discrète (FFf), en ajoutant beau­
coup de zéros à la fin de g pour avoir une très bonne précision (un tracé quasi-continu de 
la fonction, cf. paragraphe 1 .3) . Elle représente la façon dont le filtre opère dans le do­
maine fréquentiel. En effet, en utilisant le théorème de convolution 3 .4, chap. III, on voit 
que la réponse fréquentielle indique par quelle quantité le filtrage va multiplier l ' ampli­
tude de chaque harmonique (c' est-à-dire chaque composante du vecteur transformé) du 
signal d'origine. 

- la réponse indicielle. Il s ' agit du vecteur obtenu en filtrant un échelon, c'est-à-dire la 
suite qui est nulle pour les indices négatifs, et qui vaut 1 pour les indices égaux ou 
supérieurs à O. Cette réponse indique comment le filtre va réagir face à une disconti­
nuité. Pour un esprit humain normalement constitué, c' est la réponse qui a le plus de 
sens, puisque l 'œil humain est avant tout entraîné à repérer les discontinuités . Ainsi, en 
observant la réponse indicielle d'un filtre 2D, nous aurons des indications sur la façon 
dont le filtre va transformer les contours de l' image (là où il y a une variation forte de 
l ' intensité) . 

D'une façon pragmatique, la réponse fréquentielle se calcule très simplement en em­
ployant l ' algorithme FFf (en prenant soin d 'ajouter suffisamment de zéros pour obtenir 
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une précision suffisante, et en remettant les fréquences négatives à leur place). Pour la 
réponse indicielle, il y a au moins deux manières de procéder. 

- On peut donner un échelon en entrée du filtre. Pour un filtrage linéaire, il suffit de donner 
en entrée un vecteur constant égal à 1 ,  l ' algorithme étant censé ajouter suffisamment de 
zéros pour éviter la convolution circulaire. 

- Si on connaît la réponse impulsionnelle Yo et que l 'on souhaite calculer la réponse indi­
cielle y1 , il suffit de remarquer que la fonction échelon est la primitive discrète (c'est-à­
dire la somme partielle), et donc en utilisant la linéarité du filtre, il en sera de même des 
deux réponses. On obtient donc la formule simple 

n 
\1'n � 0, yi [nJ = L, Yo [kJ . 

k=-oo 

La figure 4.3 montre les trois différents types de réponses pour 3 fonctions de transfert dif­
férentes. La première ligne représente une gaussienne, et on constate bien que la réponse 
impulsionnelle est aussi une gaussienne (ce qui est logique, puisque la transformée d'une 
gaussienne est gaussienne, voir le lemme 3 . 10, chap.  Il) . Les deux autres lignes montrent 
des filtres avec une décroissance moins rapide, et on constate quelques oscillations dans 
la réponse fréquentielle. Il est à noter que les filtres ne sont pas causaux, c 'est-à-dire que 
les fonctions de transfert sont définies pour des indices négatifs. 

Signal d'origine Réponse fréquentielle (zoom) Réponse indicielle 
•'· 

1 
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� 0.04 0.6 ; 

1 0.5 

l 0.02 
0.4 . 

; 0.2 . \ / �· 0 -20 0 20 -0.4-0.2 0 0.2 0.4 -20 0 20 40 

0.04 
..
. ·· ... 11 .. .. 0.8 ! -; 0.03 ;' .. • 0.6 / Il'! 0.02 i 0.5 \ 0 i 0.4 I 0.01 • i ! J \ 0.2 

. / . 
0 

-20 0 20 -0.4-0.2 0 0.2 0.4 -20 0 20 40 

0.03 _....r 
'\ 

0.8 )( ! .. 0.02 . 0.6 � i . 0.5 / • 0.4 I 0.01 
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FIG .  4.3 - Réponses fréquentielles et indicielles 

Remarque 2.1. (Domaine temporel et fréquentiel). Suivant la réponse qui nous inté­
resse, on peut voir un filtre comme opérant dans le domaine temporel (même si le signal 
n'est pas échantillonné dans le temps mais par exemple dans l ' espace) où bien dans le 
domaine fréquentiel. Dans certaines applications, il est naturel de créer le filtre en fonc­
tion des propriétés temporelles que l 'on veut donner au filtre (par exemple pour lisser 
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des images dans une direction privilégiée) . Dans d' autres applications, nous allons nous 
intéresser au comportement fréquentiel du filtre (à la façon dont le filtre va supprimer 
les hautes fréquences, pour un filtre passe-bas à la sortie d'un micro). Les remarques sur 
la dualité temps/fréquence faites au paragraphe 1 .4 expliquent que l 'on ne peut pas ga­
gner sur les deux tableaux. Par exemple, si l 'on souhaite créer un filtre passe bande très 
précis (c'est-à-dire avec un support le plus compact possible), il sera nécessairement peu 
utilisable dans le domaine temporel, car il aura une réponse impulsionnelle très étendue. 

Avant de passer à l ' étude des filtres bidimensionnels, présentons brièvement une notion 
importante qui sera reprise par la suite (lors de l ' étude de la transformée en Z, au para­
graphe 2, chap. V). Il s ' agit de la notion de stabilité d'un filtre, qui se définit d'une façon 
très intuitive. 
Définition 2.2 (Stabilité). Un filtre� est dit stable si pour tout signal borné f E cz, la 
sortie � ( <I>) est aussi bornée. 

Un calcul simple montre que 
+oo 

\ln E Z, l<I>K(f) [n] I :::;; sup( l/[n] I ) L lg [k] I . 
nEZ k=-oo 

En conséquence, pour qu'un filtre soit stable, il suffit que g E .e1 (Z) , où l 'on a noté .e1 (Z) 
l ' espace des suites absolument sommables . On peut vérifier que cette condition est éga­
lement nécessaire, en prenant une suite f telle que /[k]g [-k] = l g [k] 1 (pour les k tels que 
g [k] i= 0). On a alors, si g (j. .e1 (Z) , 

+oo +oo 
<J>K (!) [O] = L J[k]g [-k] = L lg [k] 1 = +00• 

k=-oo k=-oo 

Si g E .e 1 ( Z) , l 'opérateur de filtrage <J>K est un endomorphisme continu de l ' espace des 
suites bornées, et sa norme est exactement l lg l le1. 

Les filtres linéaires à réponse impulsionnelle finie que l 'on a considérés jusqu'à présent 
sont donc toujours stables . Nous verrons au paragraphe 2.2, chap. V, qu' il est possible de 
construire des filtres qui ne possèdent pas cette propriété sympathique. 

2.3 Filtrage 2D et analyse d'image 

On peut bien sûr considérer la convolution bidimensionnelle telle qu'elle est expliquée au 
paragraphe 4.2, chap. Ill. Ceci donne naissance à un filtre �, qui agit sur des signaux 
bidimensionnels f : {O, ... ,N - 1 }  x {O, ... ,N - 1 }  ---+ R Ces signaux peuvent être re­
présentés comme des images, puisqu'en chaque pixel (i , j) de l ' image, on a une intensité 
lumineuse f[i , j] . De façon plus précise, on restreint le plus souvent l ' ensemble d' arrivée 
à un ensemble fini, par exemple {O, . . .  , 255} .  Ces 256 valeurs représentent les fameux 
niveaux de gris qui seront affichés à l ' écran. 

Pour « lisser » une image, nous allons une fois de plus considérer des fonctions de trans­
fert g resserrées autour de 0, par exemple une gaussienne : 

\/(k, l ) E {-N/2, ... ,N/2}2, g[k, l] = � exp (-(2k/N)2;(2Z/N)2). 
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Le paramètre M est comme dans le cas 1 D choisi de tel sorte que l l g l i  1 = 1 ,  et t est ajusté 
en fonction de la puissance du lissage souhaité. La figure 4.4 montre différents noyaux 
gaussiens (ligne du haut) ainsi qu'une image lissée par ces mêmes noyaux gaussiens (ligne 
du bas). 

1=0.001 1=0.005 1=0.o10 1=0.020 

FIG . 4.4 - Lissage d 'une image par une gaussienne 2D 

Une application très courante du filtrage d' image est d' adoucir le bruit présent dans une 
image naturelle dégradée. C'est ce que montre la figure 4.5, où l 'on peut voir Maurice 
dont l ' image, de mauvaise qualité, a été améliorée par un filtre gaussien. L'exercice IV.7 

Image bruitée Après filtrage par une gaussienne 

FIG . 4.5 - Exemple de .filtrage d'image 

propose d' aller plus loin dans l ' analyse d' image, en appliquant le calcul de corrélation à 
la recherche de sous-images dans une image plus grande. 

3 Aspects géométriques du filtrage 

Dans cette section, nous allons aborder le problème du filtrage d'un signal sous un angle 
original et simple, celui de la géométrie plane. Plutôt que de considérer le signal étudié 
comme une suite de valeurs espacées dans le temps, on va l 'utiliser pour décrire un poly­
gone dessiné dans le plan complexe. Nous allons alors nous intéresser à l ' action d'un filtre 
sur la forme de ce polygone. Plus précisément, nous allons voir comment se comportent 
les itérés successifs du polygone filtré. 
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3.1 Filtrage de polygones 

Dans la suite de cet exposé, nous allons étudier un polygone à N sommets, Il, que nous 
allons considérer comme un vecteur Il E cN. Ainsi, IT[O] représentera le premier sommet 
du polygone, IT[l ]  le deuxième, etc. De façon équivalente, on peut aussi considérer un 
polygone comme une fonction Il : Z/ NZ ---+ C. Cette description est très commode, puis­
qu'elle s ' adapte bien à la notion de polygone fermé. En effet, on considère que le sommet 
Il [i] est relié au sommet IT[i+ l ] ,  et on a naturellement envie de relier le sommet IT[N - 1 ] 
au sommet IT[O] . Ceci revient à considérer un signal N-périodique. 

Nous nous intéressons à l ' action d'un filtre circulaire <l>8 sur un polygone Il. Nous allons 
donc considérer les polygones itérés rr(k), pour k ;;::: 0, qui sont définis de la manière 
suivante : 

(3. 1 )  

où g est l a  fonction de transfert du  filtre. La question naturelle est de savoir s i  IT(k) va 
tendre vers un certain polygone limite, rr(oo), si les polygones itérés vont rester bornés, où 
si au contraire ils vont « exploser ». Pour mener à bien cette étude, il suffit de calculer la 
transformée de Fourier de la relation d' itération (3 . 1 ), et on s ' aperçoit que 

'ïlk ;;::: 0, ii(k) = (g)" . fi. 
L'étude de la convergence de rr(k) se fait donc de façon très simple dans le domaine de 
Fourier. De plus, grâce à la formule d' inversion de la transformée, une convergence dans 
le domaine de Fourier est équivalente à une convergence du polygone. Voici donc les 
différents cas qui peuvent se présenter. 

- Si 3i E {O, . . . , N - 1 }  tel que li{i] 1 > 1 : alors les polygones itérés vont exploser. Cela 
correspond aux cas (a) et (b) de la figure 4.6. 

- Si pour tout i, on a soit li{i] I < 1 soit g{i] = l, alors les polygones itérés vont converger 
vers un polygone rrH qui est défini par 

v·-o N - 1 rrH[ ·J - � 5L 
-- { o si lg-;;riJ I < 1 

z - ' ... ' ' z -
IT[i] si g{i] = 1 

Cela correspond au cas (c) de la figure 4.6. 
- Si 'ïli E {O, . .. , N - 1 }, li{i] 1 � 1 ,  mais s ' il existe uni tel que li{i] 1 = 1 et g{i] =/= 1, alors 

les polygones itérés ne vont pas converger, mais ils vont rester bornés . Ceci correspond 
au cas (d) de la figure 4.6. On peut remarquer que si g{i] est une racine de l 'unité, alors le 
mouvement est périodique (même si le phénomène est difficile à étudier numériquement 
à cause des erreurs d' arrondi). 

On peut donner deux exemples typiques de filtrage de polygones. Ils sont représentés à la 
figure 4.7. 
Exemple 3.1 . Le premier correspond au filtre 

g = { 1 /2, 1 /2, 0, . . .  , O} . 

Ceci consiste à remplacer le polygone Il par la polygone rr(t) tel que 

rr( I) [i] = � (IT[i] + IT[i + 1 ] ) . 
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(a) Fiitre qui explose 

-2 0 2 4 6 

(c) Fillre qui converge 

0.2 0.4 0.6 0.8 

(b) Fillre qui explose 

0 
40 0 
30 0 
20 

1 0  

0 0 

-10 çf> 
--40 -20 0 

(d) Fiitre qui tourne 

-1 -0.5 0 0.5 

20 

FIG. 4.6 - Différents cas de.filtrages de polygones. 
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En quelque sorte, ceci revient à joindre les milieux consécutifs de chaque côté du poly­
gone. De façon intuitive (et sur le dessin de la figure 4.7, à gauche), on à l ' impression que 
les polygones itérés convergent vers le centre du polygone. Confirmons ceci par le calcul : 

g{k] = � ( 1 + e-2t'k) = cos (';;) e-Wk . 

Comme on a g{O] = 1 et pour k;?: 1 , 18fk]I < 1 ,  on conclut donc que les polygones itérés 
vont converger vers le point Ô[O] , qui correspond au centre de gravité du polygone. 

Exemple 3.2. Pour le deuxième exemple, il s ' agit d 'un filtre qui agit dans le domaine de 
Fourier de la manière suivante : 

g =  {0. 8 ,  1 , 0 . 8 ,  . . .  , 0 . 8 } . 

Les polygones itérés vont donc converger vers un polygone nH tel que 

fi{:) = {O, fi[ l ], O, . . .  , O} .  

On vérifie que ceci correspond à u n  polygone régulier inscrit dans u n  cercle de rayon 
IÔ[ l ] I, comme on peut le voir à la figure 4.7 (droite). 

3.2 Inégalités polygonales 

Ce paragraphe est tiré du livre de TERRAS [72] . J'ai souhaité l ' insérer dans une étude 
plus générale de l ' analyse de Fourier géométrique, qui fait l 'objet de ce paragraphe. II 
s 'agit d'utiliser la transformée de Fourier afin de démontrer des inégalités de nature eucli­
dienne sur les polygones. L'outil principal sera l ' égalité de Plancherel 1 .6, chap. Ill, qui 
va permettre de démontrer les inégalités en passant dans le domaine de Fourier. 



108 Chapitre IV. Applications de la transformée de Fourier discrète 

Filtre moyenne 

0.2 0.4 0.6 0.8 

0.4 

0.2 

-0.2 

-0.2 0 0.2 0.4 0.6 0.8 

FIG . 4.7 - Filtrage moyenne et filtrage passe fréquence 

Comme au paragraphe précédent, nous considérons un polygone n à N côtés, qui peut 
être vu comme une fonction n : Z/ NZ --+ C. Nous allons définir plusieurs quantités liées 
à ce polygone. Tout d' abord la somme des carrés des longueurs des côtés : 

N- l 
S(Il) � L IIl[i + 1] - Il[i] 1 2. 

i=O 

Ensuite, la somme des carrés des distances au centre de gravité du polygone : 

N- l 
T(n) � I IIl[iJ - fi[o] l 2 . 

i=O 

Enfin, l ' aire orientée du polygone : 

A(n) � � I1 Jm (n [i]Il [i+ 11). 
1=0 

Proposition 3.3. On a les inégalités suivantes : 

(i) A(Il) � !T(Il) 
(ii) 4 sin2 {]5) T(Il) � S(Il). 

Démonstration. Inégalité (i): On introduit l ' opérateur de décalage T défini par la rela­
tion Til[k] = Il[k+ 1], ce qui permet d' écrire 

1 (
N- 1 -) 

A(Il) = 2Jm 
k
� Il[i]Til[i] . 

Il suffit d'utiliser ensuite la formule de Plancherel pour calculer A(Il) dans le domaine de 
Fourier : 

A(n) � �Jm (�ÎÎlkW(Tn)ik]). 

On utilise ensuite le fait que ff (Til)[k] = e�kfi[k] pour obtenir 
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En remarquant que sin (2tn) ::::::; 1 ,  on obtient bien l ' inégalité voulue, après avoir utilisé 
une fois de plus la formule de Plancherel. 
Inégalité (ii) : Pour ce faire, introduisons le filtre dont la fonction de transfert est égale à 
g � { - 1 ,  1 , 0, . . .  , 0 } .  On peut réécrire la quantité S(II) de la manière suivante : 

N- 1 1 N- 1 
S(II) = L lg * II[k] l 2 = 

N L l§(g * II) [k] J2 . 
k=O k=O 

Pour la dernière égalité, on a utilisé la formule de Plancherel. Calculons le module de la 
transformée de Fourier de g : 

2 _ 2i1rk 2 . 2 (kn) . 2 ( n )  Vk = l ,  . . .  , N - 1 , lg(k] I = l e -w - l i = 4 sm 
N � 4 sm 

N 
. 

Il ne reste plus qu'à  utiliser la propriété de convolution pour obtenir, comme g(O] = 0, 

1 N- 1 1 N- 1 
S(II) = 

N L lg(k] l 2 IIT[k] l 2 � N
4 sin2 (;) L IIT [k] J 2 . 

k= l k= l 

On conclut ensuite en utilisant une fois de plus la formule de Plancherel : 

1 N- 1 1 N- 1 2 - I lfî [k] i 2 = - I j§ (II[kJ - fî[oJ) j = T(II) . 
N k= l N k=O 

Ce qui termine la démonstration. 

3.3 Descripteurs de Fourier 

D 

Pour terminer ce chapitre sur les applications de la théorie de Fourier à la géométrie, 
nous allons aborder le problème de la reconnaissance de formes. Pour être plus précis, on 
souhaite savoir si deux polygones II 1 et II2 représentent la même forme, à translation, ro­
tation et homothétie près . Nous allons bien sûr essayer de comparer les deux transformées 
de Fourier fî 1 et fî2. 

Il s ' agit donc, à partir d'un vecteur transformé, de créer une quantité �(II) caractérisant 
un polygone II à translation et similitude près. Voici les trois opérations à effectuer : 

- pour la translation : on sait que seule la composante fî[O] est modifiée par une transla­
tion. En fait, fî[O] représente précisément le centre de gravité du polygone. Nous allons 
donc purement et simplement ignorer la première entrée du vecteur transformé. 

- pour la rotation et l 'homothétie : on considère une similitude plane de centre œ, d' angle 
0, et de rapport r. Ceci correspond à la transformation z 1--t œ + rei8 (z - œ) . On vérifie 
que cette transformation change les coefficients de Fourier fî[k] (pour k > 0) en les 
multipliant par rei8 . Supposons que ÎÏ[l ]  i= 0 (sinon, on prend un autre indice ko > 0 tel 
que ÎÏ[ko] i= 0). Pour annuler l ' effet de l 'homothétie, il suffit de considérer les quantités 
w êlli fi�-1) II[l ] ' II[ l ] ' . . .  ' II[ l ]  . 

- pour l 'invariante par décalage circulaire des données : on veut que le polygone II' � TII 
défini par II' = {II[ l  J ,  II[2] ,  . . .  , II [N - 1 ] ,  II [O] } soit indiscernable du polygone II, ce 
qui signifie que �(II) = �(II') . On constate que IT[k] = e 

2ff kfî[k] . Pour avoir cette 
invariance, nous allons donc considérer le module des quantités déjà calculées. 
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Après toutes ces constatations, nous sommes donc amenés à assigner à chaque polygone 
II un descripteur de Fourier, que l 'on définit de la manière suivante. 
Définition 3.4 (Descripteur de Fourier). Soit II un polygone à N côtés tel que fi[l ]  =!= O. 
Son descripteur de Fourier �(Il) est un vecteur complexe de taille N - 2 défini de la 
manière suivante : 

�(II) � { 1� [2] I 1�[3] I . . . lfi[� - 1 ] I } . 
III[ l J I ' III[ l ]  I '  

, 
III[ l ] I 

On définit alors la distance entre deux polygones (on suppose qu' ils vérifient n[l]  =/= 0) 
II1 et II2 de la façon suivante : 

N-3 

d(II1 , II2)2 � L (�(II1 ) [k] - �(II2) [k] )2 . 
k=O 

Deux polygones II1 et II2 qui sont images l 'un de l ' autre par une similitude plane vérifient 
donc d(II1 , II2) = O . Cependant, on prendra garde au fait que la réciproque est fausse. En 
effet, si on choisit des nombres 80 , . . .  , 8N- l arbitraires, alors le polygone II2 défini par 
fi2 [k] � ei9kfi1 [k] vérifie d(II1 , II2) = O . Dans la pratique cependant, la valeur de d donne 
une bonne idée sur la similitude entre deux formes. C'est ce qu' illustre la figure 4.8 , où le 
deuxième polygone est proche du premier. 

4 Résolution numérique d'équations aux dérivées partielles 

On voit donc que les valeurs particulières 

-x b -3x 3 -5x 5 ae cos y, e cos y, ce cos y, . . .  

prennent leur origine dans la question physique elle 

même, et ont une relation avec les phénomènes de la 

chaleur. Chacun d'eux exprime un mode simple suivant 

lequel la chaleur s' établit et se propage dans une lame 

rectangulaire, dont les côtés, infinis, conservent une 

température constante. 

JOSEPH FOURIER, Théorie analytique de la chaleur 

( 1 822) 

L'une des principales utilités de la transformée de Fourier continue est la résolution 
d'équations aux dérivées partielles. D'un point de vue purement formel (presque tota­
lement algébrique), elle permet de remplacer un problème complexe (une équation diffé­
rentielle linéaire) en un problème beaucoup plus simple, une équation polynomiale. Ceci 
provient du fait que la transformée de Fourier remplace la dérivation par rapport à x en 
multiplication par ix. Bien sûr, il faut se soucier des problèmes de convergence ainsi que 
des conditions aux bords, mais la transformée de Fourier s' avère un outil théorique très 
puissant pour démontrer l ' existence de solutions pour de nombreuses équations. 

D'un point de vue pratique, le calcul numérique de la solution d'une équation peut, à 
divers moments du procédé de discrétisation, mener à l 'utilisation de la transformée de 
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Fourier discrète. Ceci peut provenir d'une discrétisation pure et simple de la  transformée 
de Fourier continue (par exemple pour l 'équation de la chaleur, paragraphe 4.2), ou bien 
d'une manière plus ingénieuse pour simplifier et accélérer les calculs (par exemple pour 
l 'équation de Poisson, paragraphe 4.3) .  Dans les paragraphes qui suivent, nous allons nous 
concentrer sur ces aspects numériques; l 'utilisation théorique de la transformée continue 
est détaillée notamment à l ' exercice IV.3 .  

4.1 Calcul de coefficients de Fourier 

Comme nous l 'avons vu au paragraphe 1 .2, l ' algorithme FFT permet de calculer de ma­
nière approchée la valeur de la transformée de Fourier continue à certaines fréquences Çk . 
Mais en réalité, le calcul de Î[Çk] que l 'on a effectué correspond à l' approximation de 
l' intégrale : 

(4 . 1 ) 

Or, si on note fi la fonction périodique de période N!i qui coïncide avec f sur l' intervalle 
[O,Nti] , l ' équation (4. 1 )  correspond au calcul de ck (f1 ) , le kime coefficient de Fourier de 
la fonction !1 . 
Résumons tous ces résultats par une formule permettant de calculer de manière approchée 
N coefficients de Fourier pour une fonction f périodique de période 1 : 

\in E {-N /2 + 1 , . . .  , 0 , . . .  ,N  /2} , cn (f) � f 1 f(t)e-2iirm dt � _!._ Î[n] , Jo N 

où 1' on a noté Î le vecteur transformé de Fourier du vecteur {! ( k / N) }  �;01 • 

L'algorithme FFT va donc permettre de calculer d 'un seul coup N coefficients de Fourier 
d'une fonction échantillonnée en N points . De plus, les techniques d 'ajout de zéros et 
de raffinement de l ' échantillon permettent de moduler le nombre de coefficients calculés 
pour un même échantillonnage. Le seul problème potentiel réside dans le manque de pré­
cision (la méthode des rectangles n'est que d'ordre 1 ) ,  ce qui peut s ' avérer problématique 
lorsque les coefficients de Fourier décroissent rapidement vers 0, comme c' est le cas pour 
une fonction très régulière. Deux solutions sont alors possibles : 

- augmenter le nombre de points d' interpolation. 
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- utiliser une méthode d'intégration plus élevée. Il est possible de faire apparaître une 
transformée de Fourier discrète avec d' autres formules que celle des rectangles (par 
exemple celle de Simpson). L'exercice V. 10, question 2, détaille cette technique. 

4.2 Application à l 'équation de la chaleur 

Dans ce paragraphe, nous allons appliquer la méthode décrite au paragraphe précédent, 
qui permet de calculer d'un seul coup un très grand nombre de coefficients de Fourier 
(certes avec une précision discutable) . Il s' agit de résoudre l 'équation de la chaleur, qui 
historiquement a eu un rôle très important, puisque c'est elle qui a poussé JOSEPH FOU­

RIER à élaborer sa théorie, dans son article Théorie Analytique de la Chaleur ( 1 822) . 

On veut résoudre de manière approchée l ' équation de la chaleur sur le cercle S1 � R/Z : 

\f(t , x) E "'M.* X S ' 
at - K: 

ax2 ' 
{ 

+ 1 au - a2u 

\lx E S1 , u (O ,x) = f(x) 
(4.2) 

où la solution cherchée u est supposée suffisamment régulière sur "'M.;!- x S1 , et continue 
sur R.+ x S1 . Dans ce paragraphe, nous n' allons pas utiliser de méthode de différence 
finie, contrairement à ce que nous ferons au paragraphe 4.3 pour résoudre l 'équation 
de Poisson. L'exercice IV.2 étudie la stabilité d'une telle méthode pour l 'équation de la 
chaleur. Nous allons plutôt résoudre de façon explicite l 'équation continue, et calculer des 
approximations de la solution par FFI'. 
Cette équation traduit l ' évolution de la chaleur dans un cercle de longueur 1 ,  totalement 
isolé, et dont on connaît la répartition initiale de la température. La constante K: traduit la 
conductivité du matériau, et sans perte de généralité, elle sera prise égale à ! dans la suite. 
En effet, on peut remplacer la fonction u par (t , x) � u (iJC , x) ,  ce qui ne modifie pas le 
problème. Pour un exposé sur les différentes applications des séries et de la transformée 
de Fourier aux équations différentielles (et en particulier à l 'équation de la chaleur), le 
livre de DYM et MACKEAN (29] est une excellente source. Dans la suite, nous nous 
contenterons d'énoncer les principaux résultats. En particulier, le résultat d'unicité est 
détaillé à l ' exercice IV.3 .  

Pour débuter, nous recherchons une solution formelle sous la forme 

u (t , x) � L Cn (t)en (x) 
nEZ 

déf 2· avec en (x) = e m:nx , 

puisque intuitivement, la solution doit être périodique à t fixé. Les coefficients cn (t) sont 
définis par 

\ft > 0, cn (t) � fo 1 
u (t , x)en (-x)dx. 

En faisant deux intégrations par parties, on obtient une équation différentielle vérifiée par 
Cn : 
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Comme cn (O) = f(n) (le nième coefficient de Fourier de f), on obtient une solution 
formelle de l ' équation de la chaleur (4.2) : 

V(t , x) E Rt X S1 ' u (t , x) = L f(n) exp(-2n2n2t)en (x) . (4.3) 
11EZ 

Le fait que la fonction u ainsi définie soit bien solution du problème posé pour t > 0 vient 
du fait que l 'on peut dériver sous le signe somme car la série de terme exp (-2n2n2t) est 
normalement convergente pour t � e > 0, ainsi que toutes ses dérivées par rapport à t. La 
seule chose difficile à montrer est que l 'on a bien 

l l u (t , · ) - Jl loo -----t 0, 
t--+O 

c'est-à-dire que les conditions initiales sont bien respectées . On rappelle que 11 · l loo désigne 
la norme uniforme sur S1 . Tout ceci est détaillé dans l ' exercice IV.3 en même temps que 
la démonstration de l 'unicité de la solution. 

Remarque 4.1. (Filtrage continu). De façon intuitive, le passage de u(O, · ) = f à u(t , · ) 
correspond à la multiplication des coefficients de Fourier f(n) de f par exp (-2n2n2t) . 
Ceci revient à filtrer f par une gaussienne, c'est-à-dire à lisser la fonction de départ. Plus t 
est grand, plus la variance de la gaussienne est forte, donc plus l 'effet de flou induit par le 
filtrage est prononcé. A la limite, lorsque t ---+ +=, le filtrage correspond tout simplement 
à moyenner la fonction, donc la répartition de la chaleur est uniforme. 

Dans le but de calculer de façon approchée la solution u de l 'équation de la chaleur, nous 
allons, pour un certain N assez grand fixé (que l 'on suppose être une puissance de 2), 
calculer 

N/2- 1 
UN(t , x) � L Cn (t)en (x) . 

11=-N/2 

Bien sfir, nous allons utiliser la technique développée au paragraphe 4. 1 et donc échan­
tillonner la fonction f selon un vecteur f � {!( k / n ) }f,;01 • Le calcul de la FFT de ce 
vecteur nous permet, à un facteur � près, de calculer de façon approchée N coefficients 
de Fourier de la fonction f, et donc de construire la fonction UN. Tout ceci est détaillé 
dans les programmes MATLAB présentés au paragraphe 6, annexe A. La seule difficulté 
t�chnique est que les coefficients de Fourier calculés par la FFT ne sont pas rangés dans 
le bon ordre, mais via l ' indexation {O, . . .  , N /2 - 1 ,  - N /2, . . .  , - 1 } .  On peut voir l ' évo­
lution de la solution dans le temps à la figure 4.9, où la donnée initiale est une fonction 
indicatrice (donc discontinue). On voit bien l ' effet régularisant de l ' équation de la cha­
leur : pour t > 0, la solution devient lisse, et tend vers une fonction constante quand t tend 
vers +=. 

Remarque 4.2. (Filtrage discret). La résolution de l ' équation de la chaleur par TFD 
revient donc à réaliser un filtrage discret avec un filtre passe bas de plus en plus fort. En 
substance, le fait de filtrer par un filtre passe bas symétrique revient à résoudre l' équation 
de la chaleur pour un certain temps t. Plus le filtre est régularisant, plus t est grand. 
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FIG . 4.9 - Evolution de la solution de l 'équation de la chaleur 

4.3 Résolution de l'équation de Poisson par différences finies 

On souhaite trouver une fonction u : [O, 1 ] x [O , l ] --+ R suffisamment régulière (de classe 
<C2) qui satisfasse l ' équation de Poisson : { V(x,y) E [O, 1 ] x [O, 1 ] ,  ôu(x, y) � �:� + �:� = f(x, y) 

Vx E [0, 1 ] ,  u(x, O) = ux0(x) et u(x, l ) = ux1 (x) C4.4) 

Vy E [O ,  1 ] ,  u(O ,y) = uoy (y) et u( l , y) = u 1y (Y) 

où f : R2 --+ R est une fonction continue connue à l ' avance, et les fonctions ux0, Uxl • 
uoy et u1y sont aussi des fonctions continues supposées connues (on fixe les valeurs de la 
solution sur les bords). 

L'équation de Poisson a des interprétations très importantes, notamment en physique. On 
peut noter : 

- équation d'une membrane élastique : la surface de la membrane est représentée par 
l 'équation z = u(x, y) .  La fonction f représente la quantité surfacique de forces appli­
quées verticalement à la surface. Le fait d' imposer la valeur de la fonction u sur les 
bords correspond à fixer les bords de la surface à une armature. 

- équation d 'un potentiel électrique : la quantité u(x, y) représente la valeur d'un potentiel 
électrique surfacique en un point (x, y) , et la fonction f prend en compte une répartition 
surfacique de charges électriques. 

Dans le cas particulier où la fonction f est nulle, on parle d'équation de Laplace, et 
la fonction u est alors appelée fonction harmonique. De façon évidente, on montre que 
la partie réelle d'une fonction holomorphe est harmonique. On peut même montrer que 
localement, la réciproque est vraie (et donc une fonction harmonique possède des dérivées 
partielles à tout ordre ! ) .  Pour plus de détails sur la théorie des fonctions harmoniques, on 
pourra consulter le livre de RUDIN [62, p.275] .  

On  s e  propose d' approcher l a  solution u de l 'équation (4.4) par l a  méthode des différences 
finies. Pour ce faire, nous allons discrétiser le carré [O, 1 ] x [O , 1 ]  selon N + 1 points sur 
les deux directions .  On cherche donc une solution approchée {U (i, j) }o�i, j�N· où U(i, j) 
représente une approximation de u(ih, jh) (on a noté h � k le pas de la subdivision). 
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En replaçant le Laplacien !1u par une approximation discrète, on obtient, pour les points 
intérieurs au carré les équations suivantes, pour i et j dans { 1 , . . .  , N - 1 } , 

;2 {U(i - 1 , j) + U(i + 1 , j) + U (i, j + 1 ) + U (i, j - 1 ) - 4U(i, j) } = F(i, j) ,  (4.5) 

où l 'on a noté F(i, j) � f(ih , jh) le membre de droite de l ' équation. On a bien sûr fait 
attention aux termes de bord (i , j = O,N), qui ne font pas partie du système puisqu' ils sont 
fixés une fois pour toutes par les conditions au bord. 
On serait ainsi tenté d'écrire l ' équation (4.5) comme une convolution par un filtre cl> :  

où * désigne l 'opérateur de convolution circulaire 20, défini au paragraphe 4.2, chap. III, 
et la fonction de transfert s 'écrit 

1 

<I> � _!_ 0 (4.6) 
h2 

1 
-4 1 1 

(il faut se rappeler que les fonctions considérées sont N périodiques, donc que les fré­
quences négatives sont repoussées à l ' autre bout du tableau). Cependant, il y a au moins 
deux objections à faire à cette écriture. 

- Les filtres opèrent sur un signal périodique, or ce n'est pas le cas ici : les valeurs des 
bords n'ont aucune raison de se « recoller » .  De plus, l ' équation (4.5) n'est valide qu'à  
l ' intérieur du domaine, c'est-à-dire pour 0 < i , j < N. Elle ne décrit pas une convolution 
circulaire. 

- Les valeurs du bord sont prises en compte dans le filtrage, donc font partie des incon-
nues : on veut au contraire qu'elles soient fixes . 

Pour contourner ce problème, il suffit de rendre nulle U aux extrémités, c'est-à-dire pour 
i , j = O, N, tout simplement en faisant passer dans le membre de droite les termes de bord. 
Voici par exemple une équation obtenue pour i = 1 et 1 < j < N - 1 : 

1 1 
h2 {O + U(2, j) + U( l , j + 1 ) + U ( l , j - 1 ) - 4U( l , j) } = F(i, j) -

h2 uoy (jh) 

� F(i , j) ,  

(on a utilisé le fait que U(O, j) = uoy (jh) la valeur fixée sur le bord x = 0). En faisant de 
même pour les quatre bords de la matrice F, on crée une nouvelle matrice F nulle sur les 
�ords, et grâce à cette manipulation, on peut remplacer l ' inconnue U par une inconnue 
U qui est nulle sur les bords. Il reste justement à régler le problème de l ' application du 
filtre sur les bords (l' équation (4.5)) n'est valable qu' à  l ' intérieur). Pour pouvoir le faire, 
il suffit de prolonger les fonctions considérées par imparité selon les deux axes. En effet, 
la nullité de la fonction sur les bords ainsi que l ' équation (4.5) du filtre montre que les 
termes symétriques par rapport à un bord doivent être de signes opposés . Par exemple, on 
a l 'équation 

U( l , j) + U(- 1 , j) = F(O, j) = 0, 
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d'où U( l , j) = -U (- 1 , j) . On étend donc les matrices iJ et F pour obtenir des matrices 
(toujours notées de la même manière) de taille 2N impaires. Ainsi, dans le cas (simpliste, 
mais instructif) où N = 3, la matrice F va s 'écrire 

0 0 0 0 0 0 
0 i( 1 , 1 ) i(2, 1 ) 0 -i(2, 1 ) -i( 1 ,  1 ) 

F = 
0 i( 1 , 2) i(2, 2) 0 -i(2, 2) -i( 1 , 2) 
0 0 0 0 0 0 
0 -i( 1 , 2) -i(2, 2) 0 i(2, 2) i( 1 , 2) 
0 -i( 1 , 1 ) -i(2, 1 ) 0 i(2 , 1 ) i( 1 , 1 ) 

Avec toutes ces nouvelles conventions, l ' équation (4.5), qui s 'étend à 0 :::;; i , j :::;; 2N et est 
aussi vraie en tant que convolution périodique, s 'écrit 

û * ii> = F, 

où ii> est encore définie comme à l ' équation (4.6), mais est cette fois de taille 2N. 

L' idée est ensuite de prendre la transformée de Fourier 20 des deux membres, puisque 
cette dernière transforme le produit de convolution en produit simple, comme énoncé à la 
proposition 3, chap. III. On obtient l ' équation très agréable 

où l 'on a noté · le produit terme à terme des deux matrices. Cette éq�tion est maintenant 
très simple à résoudre, puisque l 'on sait calculer la transformée de <I>, comme le montre 
le lemme suivant. 
Lemme 4.3. La transformée de Fourier de la fonction de transfert <I> est donnée par 

Démonstration. Il suffit d' appliquer la définition et de faire un regroupement de termes : 

On obtient donc 

§: (ii>) [i , j) = L<l>[k, l] e�kie��lj 
k, l  
1 { 2ix · 2ix · 2ix · 2ix · } 

= h2 eïN' + eml + e-"ïN' + e-wl - 4 

= -- sin - + sm -4 { . ( in ) 2 . ( jn ) 2} 
h2 2N 2N 

. 

G(i , j) = g; (ü) (i , j) = 
� (F) ( i , j) . 

, 
sin2 G�) + sin2 ( �Z) 

D 

(il faut faire attention à la division 0/0 pour i = j = 0, mais on sait que le résultat est 0). 
On termine grâce au calcul de la transformée inverse, iJ = g;-I ( G) . Il ne reste plus qu'à 
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extraire la partie de la matrice U qui nous intéresse (c' est-à-dire 0 � i , j � N), et à ajouter 
les termes de bord que l 'on avait retranchés au début. 
L' intégralité de cette méthode pour résoudre l ' équation de Poisson est reprise de façon 
algorithmique en MATLAB au paragraphe 5, annexe A. Pour pouvoir observer la qualité 
de l ' approximation, on a choisi une équation dont on connaît la solution (en fait, on choisit 
d'abord la solution, puis on calcule le membre de droite), et on crée les fonctions de bord 
en conséquence. La figure 4. 10  montre la résolution d 'une équation de Poisson dont on 
connaît explicitement une solution, à savoir u (x, y) = �- La figure 4. 1 1  reprend la même 
équation, mais modifie les conditions sur deux des bords . 

.. 1 .� 

FIG .  4. 10 - Solution de l 'équation de Pois­
son FIG . 4. 1 1  - Solution modifiée 

Remarque 4.4. (Cas d'une fonctionnelle quadratique). Si l 'on considère une solution 
exacte quadratique, par exemple la fonction u(x, y) = x2 + y2 , qui satisfait l ' équation de 
Poisson : 

a2u a2u 
()x2 + (Jy2 = 4, 

on remarque que l 'erreur obtenue lors de la résolution par une méthode de différences 
finies est quasi-nulle. Ceci s 'explique par le fait que l ' approximation du laplacien par 
l ' équation (4.5) est en fait exacte pour un polynôme de degré inférieur à deux (c'est une 
formule d' interpolation d'ordre deux). 

L'exercice IV.5 reprend cette méthode de résolution en expliquant son fonctionnement par 
des décompositions matricielles . 

5 Calculs de produits 

Our interest in multiplying large numbers is part 

theoretical, however, because it is interesting to explore 

the ultimate limits of computational complexity. 

D .  E. KNUTH [39) ( 1 997) 

Contrairement à ce que l 'on pourrait penser après toutes ces application dédiées au calcul 
numérique, l ' algorithme FFT possède des applications de nature nettement plus algé­
briques. C'est principalement la propriété de convolution qui est utilisée. Cet algorithme 
a permis des avancées significatives pour certains calculs arithmétiques, par exemple pour 
les calculs intensifs de grands nombres (la recherche des décimales de n en est le meilleur 
exemple) . On pourra lire à ce sujet [5] qui explique quelques anecdotes instructives . 
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5.1 Présentation théorique 

Avant de décrire des méthodes utilisant l ' algorithme FFf présenté au paragraphe 2. 1 ,  
chap. Ill, pour calculer des produits, on peut expliquer de manière un peu théorique la 
démarche que nous allons suivre. 
Considérons, pour ( Ço , . . .  ' c;N-l ) E cN' le morphisme d'évaluation 

<I> · { qx] � cN 
. P 1--t (P(Ço) ,  . . .  , P(ÇN_ i ) )  . 

Le noyau de ce morphisme est l ' idéal de C[X] engendré par le polynôme Tif,,:-01 (X - Çk) . 
Dans le cas où les points Çk sont distincts, on obtient, par passage au quotient, un isomor­
phisme linéaire (puisque les deux espaces ont même dimension N) 

<i> .  { qx]/ Tif:01 (X - Çk) � cN 
. P 1-t (P(Ço) ,  . . .  , P(ÇN- 1 ) ) . 

C'est même à l ' évidence un isomorphisme d' algèbre, si on munit C[X] du produit des 
polynômes, et CN du produit composante par composante. 
Grâce à ce morphisme d'évaluation, et son morphisme inverse (interpolation), on peut 
tracer le diagramme suivant : 

(Po ,  . . .  , PN- 1 ) , (Qo ,  . . .  ' QN-l ) 

1 évaluation 

(P( Ço) , . . .  , P( ÇN-l ) ) ,  
(Q( Ço) ,  · · · , Q (  ÇN_ i ) )  

mult .polynômes 

O(N2 ) 

mult .ponctuelle 

O(N) 

(Ro ,  . . .  , RN-l ) 

illtel"polatio11 î 
(R( Ço) ,  . . .  , R( ÇN-l ) )  

qui nous suggère une nouvelle façon de multiplier deux polynômes, en passant « par en 
bas », à savoir en utilisant l ' application 

'I' .  { qx] x qx] � qx]/l!_(X - Çk) . (P, Q) 1--t <I>-1 (<I>(P) · <I>(Q) )  ' 

où l 'on a noté P la classe de P dans l ' algèbre C[X] /TI (X - Çk) . D'après ce que nous 
venons de dire, ce morphisme calcule donc le produit des deux polynômes modulo le 
polynôme TI (X - Çk) · Les questions naturelles sont donc les suivantes. 

- Quel choix faire pour les points { Ço , . . .  , ÇN-l } afin que cette nouvelle manière de cal­
culer un produit soit rapide ? 

- Comment faire pour récupérer vraiment le produit des deux polynômes, et pas seule-
ment le produit modulo un certain polynôme ? 

En réalité, nous avons déjà répondu à ces deux questions au chapitre Ill. Il suffit de relier 
la TFD à l ' évaluation de polynômes pour réinvestir les algorithmes déjà construits . 

Remarque 5.1. L' isomorphisme <i> est en fait l ' isomorphisme canonique donné par le 
théorème chinois : 

N-l N-l 
qx]/ II (x - Çk) ..::.+ II qx]/(x - Çk) � cN. k=O k=O 

En effet, les X - Çk sont premiers entre eux (car les Çk sont distincts), donc l 'application 
du théorème est licite, et la réduction modulo X - Çk envoie un polynôme P sur P( Çk) · 
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5.2 Multiplication de polynômes modulo XN - 1 

Le but de ce paragraphe est de présenter la transformée de Fourier comme une transfor­
mation (en fait un morphisme) sur les polynômes de degrés fixés . Nous pourrons alors 
utiliser les propriétés algébriques de la transformée de Fourier discrète ainsi que l' algo­
rithme FFT pour effectuer des opérations sur les polynômes de façon très rapide. Derrière 
ces procédés particulièrement efficaces se cache un problème plus subtil que la simple 
utilisation de la transformée de Fourier, puisqu' il s ' agit de la question de la représentation 
des polynômes. En effet, la transformée de Fourier permet de jongler entre deux types de 
représentations, et ainsi d' exploiter les points forts de chacune. 

La finalité de cette approche étant de réinvestir les algorithmes déjà présentés au chapitre 
III (principalement FFf et convolution rapide), nous nous empressons de choisir judi­
cieusement les points d'évaluation/interpolation Çh en l ' occurrence, les N racines tvièmes 
de l 'unité, c�st-à-dire Çk = roi/ =  e- 2t" pour k = 0, . . .  , N - l .  On constate alors que le 
morphisme <I> est en fait la transformée de Fourier discrète. Plus précisément on peut le 
réécrire de la manière suivante : 

où l 'on a noté Po , . . .  , PN-1 les coefficients du polynôme P (on a choisi le représentant 
de degré inférieur à N). Bien sûr, on a utilisé ici l ' identité flf;J (X - Çk) = XN - 1. On 
s'aperçoit donc que le calcul de la transformée de Fourier discrète de P (en tant que 
vecteur de CN) n'est rien d' autre que le calcul des valeurs que prend P en les N racines 
tvièmes de l 'unité, et on retrouve exactement le morphisme <I> du paragraphe précédent. 

La transformée de Fourier discrète permet ainsi de jongler entre deux représentations des 
polynômes de degré N - 1 (en fait modulo XN - 1) : 

- la représentation par coefficients : ceci revient à considérer un polynôme comme un 
vecteur de e,N. Bien que très couramment utilisée, cette représentation a un point faible : 
elle n'est pas du tout appropriée pour calculer le produit de deux polynômes. Alors que 
la somme de deux polynômes P et Q de degré au plus N se calcule en N opérations 
(comme le montre l ' égalité (P + Q)k = Pk + Qk), le produit, calculé de façon naïve, 
nécessite N2 opérations . 

- la représentation par valeurs : on se donne le polynôme par les valeurs qu'il prend en 
N points distincts (ici pris de façon bien particulière, les racines Nièmes de l 'unité) . 
Cette représentation est bien plus adaptée au calcul du produit, puisqu'il suffit de faire 
le produit des valeurs de chaque polynôme. 

Ceci est à prendre au pied de la lettre : l ' algorithme FFf fournit un moyen rapide et simple 
de passer de l 'une à l ' autre des représentations. 

Pour terminer, rappelons donc l ' équation obtenue pour le calcul du produit de deux poly­
nômes modulo xN - 1 : 

(5 . 1 )  

Dans cette équation, on a confondu vecteur et polynômes modulo xN - 1 , et le produit 
P * Q peut aussi être vu comme un produit de convolution circulaire entre deux vecteurs. 
On peut représenter graphiquement l ' opération effectuée. Les deux premiers graphiques 
de la figure 4. 12  montrent les polynômes définis par P = 1 + 2X + X3 -X4 + X5 ainsi que 
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Q = X - X2 + 2X3 + 2X5 . En abscisse, on a mis les degrés des monômes 1 , . . .  ,X 10 • On 
choisit donc de travailler dans Z/ 1 lZ. Ceci est judicieux, car le degré du produit P * Q 
est justement 10 .  Ainsi, lorsque l 'on représente dans le graphique de droite le produit des 
deux vecteurs, on trouve bien la représentation graphique du produit P * Q, puisque la 
réduction modulo X1 1 - 1  n'a pas eu d'effet. 

1 +2X+X3-X4+X5 X-X2+2X3+2X5 X+X2+5X4+8X6+4X8-3X7-2X9+2X1o 
2 2 8 

6 
* 

* * 1 * 4 * 

2 ; 
0 * * * * *  0 * * * * *  * *  

()l * * 

-2 * 
-1 -1 

0 5 1 0  0 5 1 0  0 5 1 0  

FIG .  4 . 12 - Représentation graphique du produit de polynômes par convolution 

Remarque 5.2. (Interpolation de Lagrange) . Des algorithmes permettent de calculer 
les polynômes d' interpolation dans le cas où les points Çk ne sont pas nécessairement des 
racines de l 'unité. Il y a bien sûr le résultat de Lagrange, qui donne une base explicite de 
<CN-I [X] (espace des polynômes de degré au plus N - 1 )  dans lequel le calcul s 'effectue 
simplement. En effet, si on cherche le polynôme P qui prend les valeurs Yi aux points x;, 
pour i = 0, . . . , N  - 1 ,  alors P = 'I,�(/ Yï

f'ï
, où P; est le ième polynôme de Lagrange associé 

· { }N- 1 aux pomts x; i=O : 
f'ï � IJf:ol (X - Xj)

. II#ï(Xï - Xj) 

Cependant, le calcul numérique du polynôme d'interpolation dans la base des {I'ï}�0 
n'est pas utilisé dans la pratique, car il conduit à une accumulation des erreurs numériques. 
On préfère utiliser la technique des différences divisées, qui est expliquée par exemple 
dans [23] .  

5.3 Multiplication de polynômes 

La difficulté à laquelle on est confronté lors du calcul du produit de deux polynômes P et 
Q (de degré N - 1 )  par la méthode présentée plus haut est qu'a  priori, le produit PQ est 
un polynôme de degré 2N - 2. Ce polynôme sera donc réduit modulo xN - 1 ,  ce qui a 
souvent un effet plus qu' indésirable . . .  De façon plus précise, les coefficients du produit 
sont donnés par l ' équation 

n 

\ln E {O, . . .  , 2N - l } , (PQ),, = L PkQ11-k · 
k=O 

(5 .2) 

Il s ' agit en fait d'un produit de convolution acyclique (à comparer au produit cyclique de 
l ' équation (5 . 1 )) ,  et nous allons pouvoir utiliser la technique déjà présentée à la section 
3.3 , chap. III, pour le calculer. 
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Cette démarche (ajout de zéros à la fin du vecteur pour rendre le produit cyclique) est très 
intuitive, puisqu'elle consiste à considérer les deux polynômes comme des polynômes 
de degré 2N - 1 (en ajoutant des coefficients nuls). On peut alors appliquer l ' approche 
présentée au paragraphe précédent (c'est-à-dire employer un produit de convolution cy­
clique, où si on préfère, calculer le produit modulo X2N - 1) .  Bien heureusement, ceci ne 
change rien au résultat, puisque le polynôme PQ n'est pas affecté par la réduction modulo 
X2N - 1 . D'une façon plus théorique, ceci revient à utiliser la bijectivité de l ' application 

{ c2N-dXJ � 
·
qx]/ (x2N - 1 ) 

p � p mod x2N - 1 , 

où l 'on a noté C2N-dX] l 'espace des polynômes de degré inférieur ou égal à 2N - l .  

5.4 Multiplication de grands entiers 

On note (ao ,  . . .  , aN- I ) la représentation en base b d'un grand entier a, c'est-à-dire 

a = ao + aob + · · · + aN- I �- 1
. 

On remarque que la multiplication de deux entiers a et a' s ' apparente au calcul d'un pro­
duit de polynômes, à une exception près : les entiers ak et a� , pour k = 0, . . .  , N  - 1 ,  doivent 
appartenir à l ' ensemble {O, . . .  , b - 1 } . Si on veut calculer rapidement la multiplication de 
deux grands entiers, on pourra donc utiliser la technique de produit de polynômes que 
nous venons d'exposer au paragraphe précédent, suivie d'une phase de « propagation des 
retenues ». Des programmes MATLAB permettant de réaliser tout ceci sont rassemblés au 
paragraphe 4, annexe A. 
Cette approche souffre néanmoins de quelques points faibles, principalement liés à l 'uti­
lisation de calculs en virgule flottante (pour l ' algorithme FFf classique), qui sont soumis 
à des erreurs d' arrondi (alors que les calculs entiers sont à la fois plus rapides et exempts 
d'erreurs) . Ce problème sera résolu au chapitre VI, chap. VI, grâce à l ' introduction de la 
transformée de Fourier sur les corps finis et les anneaux. 

6 Exercices 

Exercice IV.1 (Transformée à support compact). Il s ' agit de démontrer la proposition 
1 .3 . Soit f une fonction telle que Supp( J) c [-A ,A] .  Expliquer pourquoi f est de classe 
CC°°, et calculer ses dérivées successives j(n) (to) , pour to E :IR, sous forme d' intégrale entre 
-A et A. En utilisant un développement limité de t i--+ eit en to, en déduire un développe­
ment de f. En déduire que f -=f=.  0 ne peut s ' annuler sur tout un intervalle non vide. 

Exercice IV.2 (Résolution de l 'équation de la chaleur par différences finies). On sou­
haite résoudre de manière approchée l ' équation de la chaleur sur le cercle, dont on rappelle 
la formulation, pour 1C = 1 : 

, * , at axr { V(t x) E JR+ X sI au = a2u 

\lx E S1 , u(O ,x) = f(x) 
' (6. 1 )  

où l a  solution cherchée u est supposée suffisamment régulière sur JRt x S1 , et continue 
sur JR+ x S1 • Pour se faire, on considère une discrétisation de pas d = k en espace, et de 
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pas h en temps. Ceci nous amène à considérer les vecteurs u11 E !RN, pour n � 0, censés 
approcher la fonction u : 

\:/n � 0, \:/k E {O, . . .  ,N  - 1 } ,  u11 [k] � u(nh, kd) . 

1 .  Montrer que l 'on peut, suite à une discrétisation de l 'équation (6. 1 ), considérer 
l ' équation aux différences 

pour n � 0 et k = 1 , . . .  , N - 1 .  On a noté s � -Ife, et par convention, on définit 
u11 [- 1 ] � u11 [N - l] et u11 [N] � u11 [0] . 

2. Montrer que ce schéma explicite peut s 'écrire sous la forme d'une convolution. Est­
il avantageux de calculer u11 par convolutions itérées en utilisant l ' algorithme FFf? 
Proposer une implémentation MATLAB de l ' algorithme choisi. 

3 .  On dit que le schéma numérique choisi est stable si, pour tout uo tel que l l uo l loo ::;;; 1 ,  
alors la  solution approchée u11 reste bornée quel que soit n. Donner, en utilisant la 
transformée de Fourier discrète, une condition nécessaire et suffisante pour que le 
schéma que nous venons de construire soit stable. 

4. On souhaite maintenant envisager des schémas non explicites, c 'est-à-dire tels que 
u11+ 1 ne soit pas donné directement en fonction de u11 • On considère le schéma 

u11+ 1 - u11 = A * (Ou11+ 1 + ( l - O)u11 ) ,  

où 0 est un paramètre variant dans [O , l ] , et A est le vecteur tel que A [O] = -2s, 
A ( l ] = A [- 1 ] = s, et dont toutes les autres entrées sont nulles. En particulier, on 
remarque que pour 0 = 0 on retrouve le schéma explicite déjà construit, et que pour 
0 = 1 ,  on obtient un schéma implicite. Expliquer comment on peut résoudre cette 
équation en utilisant la transformée de Fourier. Etudier ensuite le problème de la 
stabilité du schéma obtenu. 

5 .  Reprendre les questions précédentes dans le cas de l ' équation de la chaleur en 
dimension 2, c'est-à-dire sur JR+ x S1 x S1 . En particulier, on proposera une im­
plémentation des algorithmes implicites utilisant des calculs de FFf bidimension­
nelles . 

La figure 4. 1 3  montre la résolution de l ' équation de la chaleur 20 par différents schémas. 
Horizontalement, chaque image représente un pas de l ' algorithme. La première ligne cor­
respond à 0 = 0, et un pas h1 = 4 x 10-5 : le schéma est complètement instable (il faut 
prendre h de l 'ordre de 10-6 pour que le schéma soit stable). La deuxième ligne corres­
pond à 0 = 0 . 5  et h2 = 4 x 10-4 = lOh1 : on commence à appercevoir des instabilités . La 
dernière ligne correspond à 0 = 1 et hJ = 4 x 10-3 = 100h1 : même avec un pas temporel 
aussi grand, le schéma est complètement stable, l ' image devenant totalement floue. 

Exercice IV.3 (Unicité pour l'équation de la chaleur). Cette démonstration est tirée du 
livre de DYM et MCKEAN [29] . On considère l 'équation de la chaleur sur le cercle (4.2). 
On souhaite montrer que sous l 'hypothèse f continue, l ' équation (4.3) définit bien une 
solution de l ' équation, et que c' est en fait la seule. 

1 .  Montrer que pour t > 0, la solution u peut s 'écrire sous la forme d'une convolution : 

déf � 2 2 2, u(t , x) = Pt * f(x) avec p1 (x) = .4..t e- n 11 e11 (x) . 
11EZ 
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1=49-005 1=8e-OOS 1=0.0001 2 

0 

i 

1=0.0004 1=0.0008 1=0.0012 

1=0.004 1=0.008 1=0.012 

FIG .  4. 1 3  - Résolution de l 'équation de la chaleur par différences finies 

2. Dans le cas où f E <5'2(S1 ) , montrer que l 'on a bien l l u (t ,  · )  - fl loo � O. t->O 

123 

3. On désire montrer que si f � 0, alors u � O . On considère la fonction v définie 
v(t , x) = ef31u(t , x) , pour un certain paramètre f3 . Montrer que si on suppose que 
u(to ,xo) < 0, la fonction v atteint son minimum a < 0 sur [O , to] x S1 pour un certain 
temps t1 > 0 et une position x1 .  Montrer alors que l 'on a 

En déduire une contradiction en prenant f3 < O. 
4. En utilisant le produit de convolution qui définit u, en déduire que Pr est positif. En 

déduire le principe du maximum pour l ' équation de la chaleur : 

Vt > 0, l l u (t ,  · ) l loo � l lJ l loo · 

Montrer que ceci assure l 'unicité de la solution de l 'équation de la chaleur. 
5. En utilisant une suite de fonction fn E <5'2 (S1 ) qui converge uniformément vers f, 

en déduire que dans le cas où f est simplement continue, on a quand même la 
convergence l l u (t , · ) - Jl loo � O. t->O 

Exercice IV.4 (Potentiel électrique 30). On souhaite généraliser l ' algorithme de résolu­
tion de l ' équation de Poisson décrit au paragraphe 4.3 pour des problèmes tridimension­
nels. Par exemple on souhaite déterminer un potentiel électrique u qui satisfasse l ' équation 
de Poisson : 
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avec des conditions aux bords ainsi qu'une fonction f spécifiée par l 'utilisateur. Il faudra 
bien sûr utiliser une transformée de Fourier tridimensionnelle, et penser à rendre impairs 
les tableaux 30 rencontrés. Pour représenter la solution, on pourra dessiner des surfaces 
équipotentielles, c'est-à-dire les surfaces d'équation f(x, y, z) = À pour certaines valeurs 
du paramètre À .  
Exercice rv.s (Formulation matricielle pour l 'équation de Poisson). Cet exercice, qui 
propose une explication plus calculatoire de l ' algorithme de résolution de l ' équation de 
Poisson, est en partie inspiré de l ' article de SWARZTRAUBER et SWEET [70] . On reprend 
les notations du paragraphe 4.3 ,  et on considère notamment une matrice carrée U de taille 
N - 1 (les indices variant de 1 à N - 1 )  qui est la solution de l ' équation aux différences 
finies (4.5) à l ' intérieur du carré [O, 1 J x [O , 1 J (c'est-à-dire sans les termes de bord) . 

1 .  Sans prendre en compte les termes de bord, montrer que l 'on peut écrire l ' équation 
aux différences sous la forme 

TN- 1 U + UTN- l = F, 

où TN- l est la matrice de taille N - 1 avec -2/h2 sur la diagonale et 1 /h2 sur la 
sous-diagonale et la sur-diagonale. 

2. Puisque la valeur de la solution sur les bords est supposée connue, utiliser la même 
approche que celle employée au paragraphe 4.3 pour obtenir une équation modifiée 
du type 

TN- 1 U + UTN- l = F. 
3 .  Montrer que les vecteurs propres de TN- l sont les 

V déf. • ljtr { ( . . ) }N- 1 
j = sm -

N i= l 

(6.2) 

Déterminer les valeurs propres associées. On note V la matrice de changement de 
base, ce qui signifie que ses colonnes sont les Vj . et D la matrice diagonale dont les 
entrées sont les valeurs propres calculées . En notant Uo � v- 1 iJv et Fo = v- 1 FV, 
en déduire que Uo vérifie l ' équation 

DUo + UoD = Fo .  

Résoudre cette équation. 
4. Montrer alors que la matrice V est en fait orthogonale, et que le calcul de V x, où 

x est un vecteur de taille N - 1 ,  est équivalent à un calcul de transformée en sinus 
(c'est-à-dire la partie imaginaire d'une certaine transformée de Fourier discrète). 
En déduire que le calcul de iJ = VUov- 1 est en fait équivalent au calcul d'une 
transformée en sinus bidimensionnelle (c'est-à-dire une transformée sur les lignes 
suivie d'une transformée sur les colonnes d'une matrice) . 

5 .  Expliquer comment on peut calculer des transformées en sinus (unidimensionnelles 
puis en 20) grâce à une TFD de taille double. Comment calculer la transformée in­
verse ? Enfin, faites le rapprochement entre la démarche matricielle proposée dans 
cet exercice et le calcul de convolution qui soutenait l ' algorithme proposé au para­
graphe 4.3 .  

Exercice IV.6 (Lissage d'image). Ecrire un  programme qui permet de lisser une image 
20 en niveau de gris, comme le montre la figure 4.5 .  On pourra utiliser une fonction de 
transfert gaussienne, et adapter les paramètres à la taille de l ' image. 
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Exercice IV.7 (Corrélation et détection d'image). Cet exercice est inspiré d'un article 
de LEWIS [47] , qui remet au goût du jour l 'utilisation de la corrélation pour la détection 
d' images. Soit f E JR.NxN une image de taille N, et g E JR.PxP une autre image, dont la 
taille est typiquement beaucoup plus petite que celle de f. La question est de déterminer 
si l ' image g est une sous-image de /, et si c 'est le cas, de repérer son emplacement. A cet 
effet, on définit la distance entre f et g 

'v'(u , v) E {O, . .  . , N - 1 }2 , d(f, g) [u ,  v] 2 � L, (f(x, y) - g(x - u, y - v) )2 , 
(x, y) ED(u, v) 

où D(u, v) désigne le sous-ensemble de {O, . . .  , N - 1 }2 formé des couples (x, y) tels que 
(x - u, y - v) E {O, . . .  , P - 1 }2 • 

1 .  Quelle est la signification intuitive de d(f, g) ? En quelle circonstance d(f, g) est­
elle voisine de zéro ? Dans le cas où la quantité 

Pu,v (/) = L f(x, y)2 
(x, y)ED(u, v) 

est presque constante, montrer que la recherche des points où d(f, g) est petite 
revient à maximiser la corrélation entre f et g 

Corr(f, g) [u ,v] � L, f(x, y) g(x - u, y - v) . 
(x,y) ED(u, v) 

2. Montrer que Corr(f, g) peut s 'écrire comme un produit de convolution acyclique. 
En déduire que l 'on peut calculer cette corrélation de façon rapide en utilisant l 'al­
gorithme FFT. 

3 .  On souhaite corriger le défaut que l 'on a introduit en supposant que P11,v (/) est 
presque constante. On note !u,v la moyenne de f sur D(u, v) ,  et g la moyenne de g. 
On définit alors la corrélation normalisée 

-C (/ ) [ ] � L(x,y) (f(x, y) - fu,v) (g(x - u, y - v) - 8) 
OIT , g U , V 

_ 1 /2 ' { L(x,y) (f(x, y) - fu,v)2 L(x,y) (g(x, y) - 8)2} 
où les sommes portent sur (x, y) E D(u, v) . Expliquer en quoi cette quantité apporte 
bien une correction. Dispose-t-on toujours d'un algorithme de calcul rapide par 
FFT ?  

4 .  Montrer que le numérateur de Corr(f, g) s 'écrit comme une convolution. On note, 
pour k = 1 , 2, les « sommes glissantes » 

'v'(u, v) E {O, . . .  , N - 1 }2 , sk (u , v) � L, f[x, y]k , 
(x,y)ED(u, v) 

avec par convention sk (u ,  v) = 0 pour u � N ou v � N. Montrer que sk vérifie l ' équa­
tion de récurrence 

sk (u ,  v) =sk (u + 1 , v) + sk (u ,  v +  1 )  - sk (u + 1 , v +  1 )  
+ f(u,  v )  + J(u + P, v + P) - f(u,  v + P) - J(u + P, v) . 

En déduire un algorithme de calcul rapide de Sk (évaluer sa complexité), puis de 
Corr(f, g) . 
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La figure 4. 14  présente un exemple d' application de cette méthode. On voit bien que 
la corrélation normalisée (image (d)) présente un maximum beaucoup plus franc que la 
corrélation non normalisée (image (c)) . On pourra noter que [47] propose un algorithme 
de calcul rapide qui a été employé entre autres pour effectuer les recalages dans le film 
Forest Gump ( 1994) . 

(a) Image d'origine (b) Image extraite 

(c) Correlation (d) Correlation normalisée 

FIG . 4. 14 - Corrélation entre deux images 

Exercice IV.8 (Rotation par FFT). Soit f E e,NxN un signal bidimensionnel . On définit, 
pour v = (v1 , v2 ) E IR2 et À E IR, 

Tv (J) [k, l] = J[k - v1 , l - v2] ,  sr) (J) [k, /] = f[k - Âl , l] , Sf) (J) [k, l] = J[k, l - Âk] . 

1 .  Exprimer ff(Tv (J) ) en fonction de §(!) .  En déduire un algorithme rapide pour 
réaliser une translation quelconque d'une image. En translatant chaque ligne (resp. 
chaque colonne) de J, écrire un algorithme rapide pour calculer sr) (!) (respecti­
vement sf) (J) ) . 

2. Montrer qu'une rotation d' angle 8 autour de l'origine peut s 'écrire sous la forme 

(cos (O)  - sin(O)) = 
( 1 Â1) ( 1 0) ( 1 Â3) 

sin(O)  sin(O)  0 1 Â2 1 0 1 · 

Avec la question précédente, en déduire un algorithme rapide pour effectuer une 
rotation à une image f E e,NxN autour de l' origine. 

3. Quels sont les avantages et les inconvénients de cet algorithme ? Comment les ré­
soudre ? Comment faire tourner une image autour de son centre ? 

La figure 4. 1 5  montre plusieurs rotations d'une image autour de son centre. 
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FIG. 4. 15  - Rotation d 'une image par FFT 

Exercice IV.9 (Filtre passe bas). On souhaite réaliser un filtre de convolution passe bas . 

1 .  Ecrire un programme MATLAB qui construit un vecteur f, de taille N, tel que 
le filtre cpf conserve les N /2 basses fréquences, et supprime les N /2 hautes fré­
quences. 

2. Représenter avec une grande précision la transformée de Fourier continue de la 
réponse impulsionnelle f (autrement dit la réponse fréquentielle du filtre) . Que 
constate-t-on ? 

3 .  En considérant une coupure moins brutale dans les fréquences conservées/rejetées, 
reprendre les questions précédentes et commenter les résultats. En particulier, ima­
giner une famille de filtres Je .  e E [O, l ] , avec une coupure brutale pour e = 0 et 
douce pour e = 1 .  

La figure 4. 16  montre trois filtres différents, avec des coupures de plus en plus douces . 
On peut aussi voir les transformées discrètes des filtres, et leurs transformées de Fourier 
continues. 

� 
Il 
.. 

Filtre ! 

0.4 
; ; 

0.2 

0 '·, "· ·  
,, . . , . 

·, , : ;  ; . . .  

-1 0  0 

0.5 

. .  . , 
·. ·  •. 

0 
1 0  -1 0  

TFD de f 

0 1 0  

TF  continue de f 

-1 0 

-1 0 

-1 0 

FIG . 4. 16  - Filtres passe bas pour différentes valeurs de e 

Exercice IV.10 (Itérations entières). On considère l ' expérience suivante : on dispose n 
enfants en cercle, et on leur donne à chacun un nombre pair, arbitraire, de bonbons. Le 
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jeu consiste à ce que chaque enfant donne à son voisin de droite la moitié de ses bonbons, 
et à itérer le procédé. 

1 .  On s 'arrange pour que les enfants aient à chaque partage un nombre pair de bon­
bons. Pour cela, une personne extérieure distribue, après chaque itération, un bon­
bon à chaque enfant ayant un nombre impair de bonbons .  Montrer qu'après un 
nombre fini d ' itérations, tous les enfants ont le même nombre de bonbons. 

2. Si on autorise des parties fractionnaires de bonbons, montrer comment on peut tra­
duire cette expérience par un calcul de convolution. En déduire qu' après un nombre 
potentiellement infini d' itérations, tous les enfants ont le même nombre de bonbons. 

3 .  Etudier les deux premières questions pour des règles de partage différentes. Par 
exemple, que se passe-t-il si chaque enfant donne la moitié de ses bonbons à son 
voisin de gauche, et l ' autre moitié à son voisin de droite ? 

Exercice IV.11 (Algorithme de Karatsuba). Nous allons expliciter la construction d'un 
algorithme récursif de multiplication de polynômes. Il utilise une technique dite diviser 
pour régner, souvent employée en algorithmique, voir par exemple le livre de CORMEN 
(21 ]  pour d' autres exemples. On considère deux polynômes P et Q de degré n sur un corps 
K. On note k � l(n + 1 ) /2J . 

1 .  On écrit les polynômes P et Q sous la forme 

P(X) = Po (X) + XkPi (X) et Q(X) = Qo (X) + XkQi (X) , 

où les polynômes Po ,Qo sont de degré inférieur à k, et les polynômes Pi ,Qi  sont de 
degrés inférieurs à k ou k +  1 ,  selon la parité de n. Montrer que le produit P(X)Q(X) 
peut se mettre sous la forme 

P(X)Q(X) = Ro (X) + xkRi (X) + x2kR2 (X) .  

Préciser la valeur des polynômes qui interviennent dans cette égalité. 
2. Montrer que le polynôme Ri peut se calculer à l ' aide de seulement une multiplica­

tion, mais par contre 4 additions. 
3 .  Implémenter un algorithme récursif en utilisant à chaque étape la décomposition 

que nous venons d'effectuer. 
Prouver que la complexité de cet algorithme est O(n10g2 (3) ) .  Pour quelles valeurs de 
n cet algorithme est préférable à l ' algorithme utilisant la FFf décrit au paragraphe 
5 .3 ? 

Exercice IV.12 (Spline et filtrage). Cet exercice nécessite quelques connaissances sur les 
séries de Fourier. Si {f[k] }kEfll est une suite de f2 (Z),  on définit sa transformée de Fourier 
par 

'ïlx E R, Î(x) � L f[k]e-ikx . 
kEZ 

C'est une fonction 2n-périodique, que l 'on peut assimiler à une fonction de L2 (R/2nZ) . 
Soit u : R ---+ R une fonction continue qui décroît suffisamment vite en ±oo. On suppose 
que l 'on connaît en fait des valeurs échantillonnées de u, notées ud [k] � u(k) , pour k E Z. 
On souhaite interpoler ces valeurs sous une des deux formes suivantes : 

v(x) � L ud [k] cp (x - k) 
kEZ 

v(x) � L a [k] lfl(x - k) , 
kEZ 

(6.3) 

(6.4) 
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les fonctions <p et 1f1 étant données à l ' avance, avec un petit support. On suppose bien sûr 
que l ' interpolation est exacte, c 'est-à-dire Vk E Z, v(k) = u(k) . La suite a [k] , k E Z, est 
inconnue, et il va falloir la déterminer. Le schéma d'interpolation (6.3) correspond à une 
interpolation directe, alors que (6.4) correspond à une interpolation indirecte. 

1 .  On note lf/d [k] � lfl(k) la suite échantillonnée de lfl· On suppose que 

VÇ E �, 1/fd(Ç ) :f: O. 

Montrer alors que le problème d' interpolation indirecte admet une solution c uni­
que, donnée par la relation 

� û(Ç ) 
VÇ E �' c(Ç ) = 

1/fd(Ç )
. 

Comment peut-on ramener cette interpolation à une interpolation directe ? Quel 
problème rencontre-t-on ? 

2. On définit la fonction B-spline d'ordre n, notée pn par 

/3° = l [_ l lJ et Vn > 0, W = /3° * w-1 . 2 • 2 
Quel est le support de 13n ? Ces fonctions permettent-elles de définir un schéma 
d' interpolation direct ? Indirect ? La figure 4. 1 7  montre les 4 premières fonctions 
splines pn. 

p• p' 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 -2 -1 -2 -1 

p' p' 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 -2 -1 -2 -1 

FIG .  4. 17  - Fonctions splines de base 

3 .  Calculer la valeur de 13n (transformée de Fourier �ntinue) . On note /3:; la suite 
échantillonnée à partir de 13n . Calculer la valeur de /3:; (série de Fourier), et montrer 
que cette fonction ne s ' annule pas (on aura à distinguer selon la parité de n) . 

4. En déduire une expression de la fonction /3��rd qui permet de réaliser une interpola­
tion indirecte à partir des fonctions splines. Quel est son support ? Montrer que l 'on 
a la convergence suivante, dans L2 (�) :  

/3n . , 
card --t smc ' ou 

n---++oo 

• ( ) déf. sin( nx) smc x = . 

1t'X 
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Quand n -t oo, quel type d' interpolation réalise-t-on ? La figure 4. 1 8  montre une 
comparaison entre les fonctions cardinales correspondant à l ' interpolatibn spline 
de degré 3 (c 'est-à-dire f3;ard) et à l ' interpolation Shannon (c'est-à-dire sine) . On 
voit que la fonction spline a beaucoup moins de « rebonds ». 

0.8 

... 

�· 

0.2 

0 .  

-0.2 
-5 

, - ' 
, ' ·, 

FIG . 4. 1 8  - Comparaison entre spline et sinus cardinal 

5 .  En écrivant c comme une convolution, expliquer comment on peut en calculer une 
valeur approchée à l ' aide de l ' algorithme FFT. Quel est l ' inconvénient de cette 
méthode ? A l ' exercice V.8, nous verrons comment on peut calculer c par des calculs 
récursifs bien plus efficaces. 

Il existe des méthodes plus classiques pour calculer l ' interpolation par des splines cu­
biques. Par exemple, dans [ 1 6] ,  CIARLET décompose la fonction cherchée dans une base 
de polynômes adaptée, et résout un système linéaire tridiagonal. Comparer cette méthode 
avec celle par filtrage proposée dans cet exercice. Dans la pratique, on considère seule­
ment un nombre fini de valeurs ud [k] , pour k E { 0, . . . , K - 1 } . On peut alors montrer que 
l 'on perd l 'unicité de la solution, mais que l 'on peut imposer des conditions au bord pour 
remédier au problème. L'exercice V.8 propose d'étudier ce problème pour les splines cu­
biques. La figure 4. 1 9  montre l ' interpolation par des splines cubiques, avec deux types de 
conditions aux bords : 

- Splines libres : on impose que la dérivée de la fonction interpolante s 'annule au bords. 
- Splines « not-a-knot » :  on n' impose pas de conditions sur les points du bord, mais on 

impose que la dérivée troisième de v soit continue en 1 et K - 2. 

Spline libre Spline •not-a-knol• 
1 .s �------� 1 .s �------� 

0.5 

2 

FIG . 4. 1 9  - Interpolation par des splines cubiques 



Chapitre V 
Extension de la notion de transformée de Fourier 

The truth is that the digital computer has totaly defeated 

the anlog computer. [ . . .  ] The question is wether the 

special ideas of Fourier analysis still have a part to play, 

and the answer is absolutly yes. 

G. STRANG [68] (1986) 

Ce chapitre regroupe de nombreuses notions voisines de la transformée de Fourier, ainsi 
que des applications directes de ces développements . Nous allons ainsi être amenés à dé­
finir de nouvelles transformations, entre autres la transformée de Hartley, la transformée 
en Z, et la transformée de Fourier fractionnaire. Le plus souvent, il s ' agit de trouver des 
algorithmes pour pallier certaines faiblesses de la TFD {par exemple la transformée de 
Hartley), ou bien d'étendre de façon naturelle certaines notions (la transformée en Z par 
exemple). Nous allons étudier dans quels cas ces transformations sont plus efficaces ou 
plus adaptées que la transformée de Fourier discrète, et quelles applications peuvent tirer 
bénéfice des algorithmes rapides obtenus .  Les deux points importants qu' il faut garder à 
l' esprit lorsque l 'on travaille avec de telles transformations sont les suivants : 
- Elles ne correspondent pas à des calculs approchés. Il s ' agit de formules exactes, qui 

bien souvent possèdent une formule d' inversion. Ces transformées peuvent être utiles 
pour certains calculs numériques (par exemple le calcul approché d'une transformée 
de Fourier ou d'une convolution infinie), mais il s ' agit avant tout de calculs de nature 
algébrique. 

- Elles disposent d' algorithmes de calcul rapides .  Ce sont ces algorithmes qui donnent 
toute sa valeur à une transformée, et qui font qu'elle sera utilisable de façon intensive. 
Ces algorithmes sont des conséquences directes de la nature algébrique des transfor­
mées, et ne font que refléter certaines symétries et invariances algébriques. 

1 Transformée de Hartley 

L'un des désavantages de la transformée de Fourier discrète est qu' elle nécessite des cal­
culs avec des nombres complexes, ce qui n'est pas adapté au calcul des convolutions 
avec des signaux réels . En effet, d' inutiles multiplications et additions complexes (plus 
coOteuses que les multiplications et additions réelles) sont effectuées, et les erreurs d' ar­
rondi n'en sont qu' amplifiées. Nous allons définir une transformée, appelée transformée 
de Hartley, qui permet, à l ' instar de la TFD, de calculer des produits de convolution, mais 
qui ne fait intervenir que des calculs avec des nombres réels .  Une référence très complète 
sur la transformée de Hartley et ses applications est le livre de BRACEWELL [ 10] .  
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1.1 Définition et premières propriétés 

Définition 1.1 (Transformée de Hartley). Soit / =  {f[n) }�,:J E CN. On définit sa trans­
formée de Hartley discrète .Ye(f) E ff par 

où l 'on a noté cas (x) � sin(x) + cos (x) = v'2cos (x - �) . 
Remarque 1.2. La transformée de Hartley discrète a son analogue continu, à savoir, pour 
une fonction f E L 1 (R) , la fonction 

.Ye(f) : s ---+ k f(x) cas (2nsx)dx. 

La plupart des énoncés valables dans le cas discret ont une formulation analogue pour le 
cas continu, et nous laissons au lecteur le soin de les énoncer. 

Proposition 1.3 (Formule d'inversion) • .Yt1 est un isomorphisme de RN dans RN. Plus 
précisément, pour f E RN, on a .Yt12 (f) = N f, ce qui signifie que l 'inverse de la trans­
formée de Hartley est ye-1  = �.Ye. 

Démonstration. Nous allons utiliser, pour n et n' E {O, . . .  ,N  - 1 } ,  la relation d'orthogo-
nalité 

% cas ( � nk) cas ( � n'k) = No:' , 
, s:.n' 1 . I Q . 0 2iir d' 

, 
ou vn vaut s1 n = n et smon. n note CO =  eT ,  ou 

On calcule donc 

( 1 .
2) 

( ) _ ( 1 - i)2 "' (n+n')k ( l + i)2 "' (n+n')k ( 1 - i) ( l + i� "' (n-n' )k Vn , Vn' - 4 � (O + 4 � (O + 2 � (O • ( 1 .3) 
k k k 

Les deux premières sommes sont opposées, et la dernière vaut No:' . Pour obtenir la for­
mule d' inversion, on note que .Ye(f) [n] = (!, vn) . d'où 

N- l  N- l  
.Ye(.Ye{f) ) [n] = L .Ye(f) [k]vn [k] = L f[k] (vk , Vn) = Nf[n] . D 

k=O k=O 

Proposition 1.4. On a les relations suivantes entre la transformée de Fourier discrète et 
la transformée de Hartley d'un vecteur f E RN : 

.Ye(f) =9le(${!) ) + Jm($(f) ) 
$(!) =.Ye(f)s - i.Ye(f)a · 

( 1 .4) 

On a noté, pour g E RN, gs et gs les parties symétrique et anti-symétrique de g, introduites 
à la définition 5.2, chap. Ill. 
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Remarque 1.5. Les relations (1 .4) impliquent, dans le cas où l 'on se restreint à des vec­
teurs réels, une correspondance bijective entre transformée de Fourier discrète et transfor­
mée de Hartley. Comment expliquer que N nombres complexes (pour la TFD) puissent 
contenir autant d' informations que seulement N nombres réels ? En réalité, il n 'y a pas de 
contradiction, il faut simplement se rappeler que dans le cas d'un signal réel, le vecteur 
§(!) est le conjugué de $(JÜ )  (où jH est défini à l ' équation (5 . 1 ), chap. III), il y a donc 
une redondance d' informations (exactement deux fois trop d' informations). Pour un si­
gnal réel, la transformée de Hartley est nettement plus économique (que ce soit en matière 
de temps de calcul ou d'espace mémoire) que la transformée de Fourier, puisque l 'on va 
manipuler exactement deux fois moins d' informations. C'est cette qualité que nous allons 
exploiter au paragraphe suivant. 

1.2 Transformée de Hartley rapide 

Comme pour la TFD, on dispose d'un algorithme rapide pour calculer la transformée de 
Hartley. Cet algorithme a été décrit en détail par ULLMANN [73] .  Pour le comprendre, 
nous allons effectuer un découpage de la transformée, comme nous l ' avons déjà fait lors 
de l ' étude de l ' algorithme FFf. Il s ' agit bien sûr d' exploiter les symétries (algébriques) 
de la transformation, ainsi que les propriétés de la fonction cas . Une fois tout ceci mis en 
place, nous verrons tout naturellement apparaître un algorithme récursif. 

Cet algorithme utilise une propriété de décimation temporelle. Pour obtenir l 'équation 
de récurrence correspondante, nous allons procéder comme nous l ' avons déjà fait pour 
la transformée de Fourier discrète. If faut décomposer la somme qui définit .Ye{f) , pour 
f E (f, de la manière suivante : 

N/2- 1 (21t' ) N/2- 1  (21t' ) 
.Ye{f) [k] = Io /[2n] cas N2nk + 1� /[2n + l ] cas N (2n + l )k . ( 1 .5) 

Utilisons les notations de (2.4), chap. III. On reconnaît dans la somme de gauche une 
transformée de Hartley de longueur N /2, plus précisément .Ye(.f°) .  La somme de droite 
pose problème, mais on peut lever cette difficulté en utilisant la propriété suivante de la 
fonction cas . 
Proposition 1.6. On a, pour (a , /3 )  E JR2, 

cas ( a + /3 )  = cas ( a) cos (/3 )  + cas (-a) sin(/3 ) .  ( 1 .6) 

Démonstration. Cette propriété se démontre très simplement en utilisant les identités 
trigonométriques bien connues des fonctions cos et sin. D 

En utilisant cette propriété, on peut réécrire la deuxième somme de l ' équation (1 .5) pour 
obtenir 

On définit alors l' opérateur xtt. pour X E  IR, de la manière suivante : 

déf 1t' X • • 1t' ]X { (2 · ) ( 2 · ) }N- 1  
Va E cN, xita = a [j] cos � + a" [1] sm N j

=O 
E cN. ( 1 .7) 
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On rappelle que att est le vecteur symétrisé, équation (5 . 1 ), chap. III. Nous allons mainte­
nant découper le vecteur Yt1(!) en ses parties gauche et droite, notées Yt1(f)g et Yt1 (f)d . 
La relation 

cas (� (n +N/2)) = - cas (� n) 

permet d'obtenir une écriture très simple de l ' équation de récurrence cherchée : 

Yt1 (f)g = Yt1(f) + x1J;;Yt1(!1 ) ,  
Yt1 (f)d = Yt1(f) - x1J;;Yt1(!1 ) .  

( 1 . 8) 

( 1 .9) 

Ces équations permettent d' implémenter de façon immédiate un algorithme de calcul ra­
pide que l 'on nomme FHT pour Fast Hartley Transform. La procédure fh t réalise cet 
algorithme par des appels récursifs, et son programme se trouve à la section 2, annexe A. 

Remarque 1.7. Les équations de récurrence (1 .8) et (1 .9) montrent que le calcul de Yt1(!) nécessite en fait le calcul de deux transformées de taille moitié. Cependant, à cause 
du terme inversé att présent dans l 'opérateur X�(a) , il est difficile d'utiliser un schéma 
papillon comme pour l ' algorithme FFT. Dans le but d'écrire un algorithme itératif, ULL­
MANN, dans [73 ] ,  montre comment on peut faire le calcul par un double schéma papillon, 
en utilisant quatre entrées. 

On peut montrer qu'une transformation papillon de l ' algorithme FHT nécessite quatre 
multiplications et six additions réelles . En ce qui concerne l' algorithme FFT, on trouve 
une addition et deux multiplications complexes, soit quatre additions et six multiplica­
tions. Cependant, la boucle effectuée pour calculer les transformées papillons de l ' algo­
rithme FFT court de 0 à N - 1 ,  alors que pour l ' algorithme FHT, il s ' agit d'une boucle 
entre 0 et N /2 - 1 .  Au final, l ' algorithme FHT présente le double avantage de nécessiter 
deux fois moins d'opérations, et d'utiliser deux fois moins de mémoire (on ne manipule 
pas de nombres complexes) .  

Remarque 1.8. (Zero padding). Nous avons déjà expliqué au paragraphe 1 .3 ,  chap. IV, 
qu' il était possible de représenter assez fidèlement la TFD continue d'un signal fini par 
zero padding. Il est bien sûr possible de faire de même avec la transformée de Hartley. 
L' algorithme FHT, allié à une procédure de zéro-padding permet donc de calculer sim­
plement une transformée de Hartley continue. Plus on ajoute de zéros, plus on calcule 
de valeurs intermédiaires de la transformée, et plus la précision de calcul est bonne. La 
figure 5 . 1  montre ce procédé sur un signal simple (trianglulaire), et permet de compa­
rer le spectre de Fourier (en fait sa partie réelle) et son spectre de Harley. Le spectre de 
Hartley étant la différence entre les parties réelle et imaginaire du spectre de Fourier, les 
ressemblances ne sont donc pas fortuites ! 

1.3 Calcul de convolution par transformée de Hartley 

Les équations (1 .4) montrent qu' il est possible de calculer une TFD d'un signal réel au 
moyen d'un calcul de transformée de Hartley, ce qui évite d' avoir recours à des multipli­
cations et additions complexes .  Dans le même ordre d' idée, on peut établir une formule 
qui permet de calculer un produit de convolution de deux signaux réels en utilisant uni­
quement des transformées de Hartley. 
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Signal original Transformées de Fourier et de Hartley 
8 

80 
7 * * 

60 
6 * * 

40 
, ,  
i 1 

5 * * i 1 

* * 20 
4 

3 * * 0 

2 * * -20 

1 1 

v 1 1 

1 

\r 
1 
1 

1 * -40 

- . -60 -0 5 1 0  1 5  -5 0 5 

FIG. 5 . 1  - Comparaison entre le spectre de Hartley et le spectre de Fourier 

Proposition 1.9 (Convolution et transformée de Hartley). Soient a et b deux vecteurs 
réels de taille N. On a 

.Yt'(a * b) = l { .Yt'(a ).Yt'(b) - .Yt'(a ) Ü.Jit'(b ) Ü + .Yt'(a ).Yt'(b ) Ü + .Yt'(a ) Ü.Jit'(b) } , 

soit, pour n = 0, . . .  ,N - 1, 
1 

.Yt'(a * b ) [n] = l { c[n] (d [n] + d [-n] )  + c [-n] (d[n] - d[-n] ) } ,  

où l 'on a noté c � .Yt'(a) e t  d � .Yt'(b) . Il faut bien sûr considérer l 'indice -n comme 
pris modulo N. 

Démonstration. Après interversion des sommations dans l ' expression de .Yt'(a * b) [k] on 
trouve 

N- I N- I (2 ) 
.Yt'(a * b) [n] = � a [!J lo b [k] cas :n(k + l) . 

Il suffit ensuite d'utiliser la relation ( 1 .6) pour obtenir 
N- I (2 ) N- 1  (2 ) 

.Yt'(a * b) [n] = .Yt'(b) [n]
1� a [l] cos :nk + .Yt'(b) Ü [n]

1� a[l] sin :nk . 

Pour conclure, il ne reste plus qu' à  exprimer les fonctions cos et sin à l ' aide de la fonction 
cas de la manière suivante : 

{ cos (x) = cas (x) + cas (-x) 
sin(x) = cas (x) - cas (-x) · D 

Le programme fht_c onvo l ,  que l 'on peut trouver à la section 2, annexe A, réalise cette 
convolution de signaux réels à l ' aide de l ' algorithme FHT. Il est plus économique, à la 
fois en termes de temps de calcul, et en termes de place mémoire utilisée. 
Remarque 1.10. (Auto corrélation). Dans le cas où les signaux a et b sont égaux, on 
peut optimiser légèrement l ' implémentation de l ' algorithme de calcul de convolution en 
écrivant 
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2 Transformée en Z et applications 

Notre objectif ici est de donner un cadre relativement général pour étudier des transfor­
mées qui possèdent des propriétés similaires à celles de la transformée de Fourier discrète, 
et en quelque sorte, la généralisent (comme par exemple la transformée en Z vectorielle 
à la section 3, et la transformée de Fourier fractionnaire à la section 4). Pour ce faire, 
nous allons nous intéresser aux fonctions génératrices, que l 'on appellera transformée en 
Z. Après la définition de cette transformée, nous présenterons une application immédiate 
de la transformée en Z à la construction de filtres définis par des équations de récurrence. 
L'ouvrage de WICH [78] regroupe quantité d' informations sur la transformée en Z. Le 
lien avec les séries génératrices et les fonctions holomorphes est longuement discuté dans 
le livre de DEMENGEL [25] . 

2.1 Définition et propriétés formelles 

Notre but est de faire le lien entre transformée en Z et séries entières . Nous allons donc 
définir la notion de transformée en Z dans le cadre de signaux de taille potentiellement 
infinie. Dans la pratique, nous utiliserons la transformée sur des signaux de taille finie, 
ce qui permet de ne pas avoir à se soucier d'éventuels problèmes de convergence. Nous 
considérerons donc une suite f = {f[n] }11Ez E cz. Seule l ' étude de la fonction de transfert 
d'un filtre récursif (au paragraphe 2.2) requiert l 'utilisation d'une série infinie. Cependant, 
même dans ce cas, nous aurons une expression exacte de la transformée (sous forme de 
fraction rationnelle), ce qui nous évitera tout problème. 
Définition 2.1 (Transformée en Z). Soit f E cz. On appelle transformée en Z de f la 
fonction 

{ D ---+ C 
fZ(f) : �+oo J[ ] -Il ' z i---+ "-'ll=-oo n z 

où D est l ' ensemble (éventuellement vide) des points où la série converge. 

(2. 1) 

Remarque 2.2. (Transformée en Z et fonctions holomorphes) .  La théorie des séries 
de Laurent montre que la transformée en Z est en fait définie à l ' intérieur d'une couronne 
du type 

c� � {z E C; a <  l z l < /3}  pour 0 � a < J3 , 
où J3 peut éventuellement valoir +oo. On pourra se référer par exemple au livre de CAR­
TAN [ 1 5] pour une étude complète de la décomposition d'une fonction holomorphe en 
série entière et en série de Laurent. La fonction fZ(f) est donc holomorphe à l ' intérieur 
de son disque de convergence. On dit aussi souvent que fZ(f) est la série génératrice as­
sociée à la suite f. Comme nous le verrons plus tard (en considérant les filtres récursifs), 
cette notion permet de représenter de façon élégante certaines suites qui sont définies par 
récurrence. Pour un exposé intéressant sur la résolution de récurrences par séries géné­
ratrices, on pourra regarder l 'ouvrage de référence de DONALD KNUTH [37] .  Un exposé 
plus simple se trouve dans [34] . Le livre [79] constitue un ouvrage original sur le sujet. 

Exemple 2.3. Voici quelques exemples simples. 

1 .  Soit la suite f E cz définie par /[n] � 0 pour n < 0 et /[n] � 1 sinon. On a 

fZ(f) (z) = L z-11 = 
1 

1 
- 1 ' 

11;;:,:0 - z 
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2. Pour (a , b) E C2, on définit la suite f E cz par f[n) � an pour n ;:::: 0 et f[n] � bn 
sinon. On a 

(a) n ( z ) n 1 1 
!Z'(f) (z) = I - + I -

b 
- 1 = 1 - / 

+ 1 - /b
- 1 ' 

n;i:o z n;i:o a z z 

la somme étant convergente dans c/!/ . 

Proposition 2.4 (Propriétés de la transformée en Z). On note f et g deux suites de cz. 
Outre la linéarité, voici les propriétés importantes de la transformée en Z :  

(i) convolution linéaire : 
!Z'(f *g) = !Z'(f)!Z'(g) ,  

la série définissant !Z'(f *g) étant au moins convergente sur l 'intersection des cou­
ronnes de convergence de !Z'(f) et !Z'(g) (si elle est non vide). 

(ii) dérivation : 
d 

!Z' ( {nf[n] }nEz) (z) = -z 
dz 

!Z'(f) (z) . 

Démonstration. Nous allons faire la preuve de la propriété la plus importante, la propriété 
de convolution (i) . La convergence absolue sur l ' intersection des domaines de conver­
gence nous permet d'écrire, pour z dans cette intersection : 

+oo +oo +oo 

!Z'(f *g) (z) = L (f*g [n] ) z-n = L L f[n]g [n - m]z-n 
n=-oo n=-oo m= -oo 

= 
m
%oo f[m]z-m c�oo g [n - m]z- (n-m)) 

= !Z'(f) (z)!Z'(g) (z) . 

La convergence absolue justifie l ' interversion des deux sommations .  D 

Remarque 2.5. Il existe aussi des formules permettant d' intégrer la fonction !Z' (!) . Elles 
nécessitent l 'utilisation d' intégrales curvilignes, ainsi que d'éventuelles précautions sur le 
comportement à l' infini de f. 

2.2 Filtres récursifs 

Nous avons déjà vu à la section 2, chap. IV, la définition des filtres linéaires, ainsi que 
leur utilisation pour modifier de façon adéquate des signaux. Nous allons définir ici un 
nouveau type de filtres, nommés.filtres récursifs, qui permettent eux aussi de réaliser des 
opérations intéressantes sur des signaux. La transformée en Z est très souvent utilisée 
pour représenter la fonction de transfert de filtres récursifs. Elle est en effet très pratique 
pour au moins deux raisons : 

- la représentation sous la forme d'une fonction va permettre d'utiliser des opérations 
algébriques pour modifier le filtre (somme, produit, dérivée, etc .) .  

- la représentation complexe sous forme de module et argument (c'est-à-dire en coordon­
nées polaires) va permettre de créer de toutes pièces des filtres de façon intuitive. 
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D'excellents livres sont disponibles sur le traitement du signal digital en général, et l 'uti­
lisation de la transformée en Z pour la création de filtres . On peut citer entre autres [67] 
ainsi que [ 17] .  
Définition 2.6 (Filtre récursif). Soient a = { ao , . . .  , ak} et b = { b1 , . . .  , b1 } deux vecteurs 
de nombres complexes .  Ils permettent de définir le filtre récursif <I>� opérant sur des suites 
X E ([:fil en définissant y = <I>� (x) E ([:fil par 

Vn E Z, y[n] = aox[n] + a 1x[n - l ]  + . .  · + akx[n - k] 
+ b1y [n - l ]  + · · · + b1y[n - l] . (2.2) 

Remarque 2.7. L'équation (2.2) définit donc le filtre par récurrence. Le filtre n'utilise, 
pour le calcul de y [n] , que des valeurs déjà calculées de y ainsi que des entrées du vecteur 
x d' indice inférieur à n. Conformément à la terminologie déjà employée (pour les filtres 
de convolution), on dit que le filtre est causal . On obtient ainsi un algorithme simple pour 
évaluer l ' action du filtre sur un signal x. Dans la suite, on ne considérera que des filtres x à 
support fini, et tous les signaux mis en jeu (en particulier x et y) seront indexés à partir de 
zéro. On remarque que le calcul des premières entrées du vecteur y demande la connais­
sance de y[- 1 ] , y [-2] , . . .  , y [-l] , ainsi que x[n - 1 ] , x[n - 2] ,  . . .  , x[-k] .  Par convention, on 
supposera, sauf mention explicite du contraire, que ces entrées sont nulles . 

Remarque 2.8. (Lien avec les filtres de convolution). Nous avons déjà défini, à la sec­
tion 2, chap. IV, des filtres de convolution finis. On remarque que dans le cas où le vecteur 
b est nul, le filtre récursif est en fait un filtre de convolution fini. Les filtres récursifs 
peuvent être vus, d 'un point de vue théorique, comme une généralisation des filtres de 
convolution linéaire. En fait, nous verrons même dans l ' étude qui suit, par le calcul de 
la transformée en Z, que les filtres récursifs sont des filtres de convolution, mais dont la 
réponse impulsionnelle est infinie. C'est pour cela qu'on les nomme filtres /IR dans la 
littérature anglo-saxonne (abréviation d'lnfinite Impulse Response) . D 'un point de vue 
pragmatique, il n 'en va pas de même : les usages de ces deux types de filtrages sont diffé­
rents, principalement à cause des propriétés inhérentes à la fois à leur implémentation, et à 
leurs réponses impulsionnelles . Contrairement à un filtre de convolution linéaire qui peut 
être calculé de façon rapide par FFI', un filtre récursif se limitera généralement à quelques 
termes de récurrence seulement (ce qui signifie que k et l seront souvent supposés petits) . 
Ces filtres permettent donc, sans avoir à calculer de convolutions, d'obtenir des réponses 
très longues (en théorie infinies) pour des coûts très faibles, de l' ordre de O (N) (où N 
désigne la taille des vecteurs filtrés), si on suppose que k et l sont petits devant N. Par 
contre, le fait de n' avoir qu'un petit nombre de coefficients à sa disposition pour créer ces 
filtres les rend moins maniables . Enfin, il est à noter que le calcul d 'un filtre par récurrence 
facilite la propagation des erreurs d' arrondi (puisqu'elles s 'ajoutent au fur et à mesure des 
calculs). Pour enrayer ce phénomène, on est souvent obligé de faire des calculs en double 
précision. 

L' idée de ce paragraphe est d'utiliser la transformée en Z pour définir un filtre récursif 
d'une façon plus agréable que par l ' équation de récurrence (2.2). Pour ce faire, calculons 
la transformée en Z de cette équation. Après regroupement des termes, on obtient 

�(y) (z) = H(z)�(x) (z) , 
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avec 
+ - 1 + + -k 

H(z) � ao a 1 z · · · akz . 
l - b1 z- 1 - . . .  - biz-1 
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On souhaite affirmer que H est la transformée en Z d'une certaine fonction de transfert 
h, dans le but d'écrire le filtre <I>� comme étant le filtre de convolution <l>h. En effet, 
supposons que l 'on ait réussi à trouver un tel h. En utilisant le résultat de convolution 2.4 
(i), on obtient 

.2'(y) = H · .2'(x) = .2'(h *x) = .2'(h) · .2'(x) . 
On voit donc que H = .2' ( h) . Le problème est de savoir si la connaissance de H permet 
de déterminer un tel h, autrement dit, s ' il est possible de calculer l ' inverse de la trans­
formée en Z. La réponse est loin d'être évidente. On sait, grâce auxformules de Cauchy, 
qu'une fonction holomorphe définie sur une couronne cg admet un unique développe­
ment en série de Laurent à l ' intérieur de cette couronne. Cependant, il reste à savoir à 
quelle couronne nous avons à faire. Selon le choix du domaine de convergence, on ob­
tient une suite h différente. Nous avons donc besoin de plus d' informations sur le filtre. 
En prenant la transformée en Z de l ' équation de récurrence (2.2), nous avons en quelque 
sorte « oublié » les conditions aux limites, c 'est-à-dire les valeurs de x[- 1 ] ,  . . .  ,x [-k] 
ainsi que y[- 1 ] ,  . . .  , y[-l] .  Dans la pratique, on dispose en fait d' informations simples 
qui permettent de retrouver le domaine de convergence qui correspond à l ' équation de 
récurrence, et ainsi retrouver la suite h à partir de H. 
- Si on considère l ' équation de récurrence écrite en (2.2), on voit que le filtre considéré 

est causal (c'est-à-dire que la détermination de y [n] ne dépend que des entrées d' indices 
inférieurs à n de x[nj ) . Ceci implique que la réponse impulsionnelle est nulle pour les in­
dices négatifs, ce qui se traduit par le fait que le domaine de convergence est l ' extérieur 
d'un cercle (il suffit d'utiliser le critère de convergence pour une série entière, puisque 
l 'on a en fait une série entière en 1/z) .  

- Le plus souvent, on veut que le filtre soit stable en plus d'être causal, ce qui implique, 
comme nous allons le voir à la proposition 2. 1 0, que le domaine de convergence doit 
contenir le cercle unité. 

Voici un exemple qui montre l ' importance de la spécification du domaine de convergence. 
Exemple 2.9 (Causalité et domaine de convergence). On considère un signal y qui 
satisfait à l ' équation aux différences 

y[n] = ay[n - 1 ] +x[n] , (2.3) 

où x E cz est le signal d'entrée. On obtient donc pour la réponse impulsionnelle la trans­
formée en Z suivante : 

1 H(z) = 1 1 . - ac 
De façon naturelle, l ' équation (2.3) définit un filtre causal, et on peut essayer de trouver sa 
réponse impulsionnelle par la méthode que nous venons d'expliquer. La fonction H doit 
donc être considérée comme définie à l ' extérieur du cercle de rayon l a l . On obtient alors, 
par développement de la fraction en série entière en fonction de z- 1 , 

\fz E Cj�. H (z) = I, anz-n . 
n�O 

D'où la valeur de la réponse impulsionnelle h : 
\ln < 0, h [n] = 0, 

\ln � 0, h [n] = an . 
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C'est donc bien un filtre causal. Si l 'on veut qu' il soit stable, on vérifie qu' il faut en outre 
supposer que 1 a 1  < 1 .  Cependant, un autre cas peut se produire, si on considère que la 
fonction H est définie sur Cbal .  Il faut, cette fois faire la manipulation suivante : 

On obtient ainsi l ' expression de h :  

\ln < 0, h [n] = -a11 , 
\ln ;;;:: 0, h [n] = O. 

Le filtre est donc anti-causal, et la stabilité impose que l a l > 1 .  Le fait qu' il soit anti­
causal s 'explique simplement en réécrivant l ' équation de récurrence (2.3)  sous une forme 
inverse (propagation des calculs dans l ' autre sens) : 

1 1 y[n - 1 ]  = -y[n] - -x[n] . a a 

Une fois que l 'on a réussi à obtenir la valeur de h, on voit que le filtre <I>� est bien un filtre 
de convolution, mais qui reste un peu spécial, puisque sa réponse impulsionnelle, dans le 
domaine de la transformée en Z, peut être mise sous la forme d'une fraction rationnelle. 

Nous venons de voir la façon dont on peut représenter la fonction de transfert d'un filtre 
récursif grâce à sa transformée en Z. Cette représentation a l ' avantage d'offrir une écriture 
compacte et simple. Ceci permet de faire des calculs de façon efficace sur les filtres, plus 
simplement que ne l' autorise la représentation sous forme de convolution exposée au 
paragraphe 2. 1 ,  chap. IV. Avant d'étudier l 'utilisation de la transformée en Z pour la 
création de nouveaux filtres, voyons le rapport entre la fraction rationnelle représentant 
un filtre, et la stabilité de ce filtre. 
Proposition 2.10 (Pôles et stabilité). Soit H(z) = �fü�� la transformée en Z de la fonc­
tion de transfert d 'unfiltre <I>� (qui est donc causal). Alors, ce filtre est stable si et seule­
ment si tous les pôles de H sont situés à l 'intérieur du cercle unité r. 
Démonstration. Nous avons déjà dit que pour un filtre causal, la série qui définit H 
converge à l ' extérieur d'un certain cercle, et la réciproque est vraie (il suffit de considé­
rer le développement en 1 /z d'une fonction holomorphe définie au voisinage de l ' infini) . 
Comme <I>� est bien sûr causal, cette remarque s ' applique. De plus, nous avons vu au pa­
ragraphe 2.2, chap. IV, qu'un filtre de réponse impulsionnelle h était stable si et seulement 
si l l h l l ti < +00• Si h est absolument sommable, on a la majoration 

+oo +oo 

\:/z E r, IH(z) I :::; L lh [n]z-11 1 = L lh [n] I =: l l h l l t t . 
n=-oo ll=-oo 

On voit donc que la condition l l h l l e 1 < +00 implique que la série qui définit H est abso­
lument convergente sur le cercle r. La réciproque est vraie. Le fait que l l h l l e 1 < +oo est 
donc équivalent au fait que la région de convergence contienne tout l ' extérieur du cercle 
r. Or, la région de convergence ne saurait contenir de pôle. Tous les pôles de la fraction 
rationnelle H doivent donc être de module strictement inférieur à 1 .  Encore une fois, la 
réciproque est vraie. D 
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Dans ce paragraphe, nous allons nous concentrer sur l 'utilisation de la transformée en 
z pour la création de filtres récursifs digitaux. La démarche pour créer un filtre est de 
décider de l ' emplacement des zéros et des pôles de la fonction de transfert. Comme nous 
l ' avons déjà vu, les pôles doivent être contenus dans le cercle unité pour que le filtre soit 
causal et stable. Par exemple, on peut choisir les emplacements repérés sur la figure 5 .2, 
ce qui conduit à l' expression de la fonction de transfert : 

(z - einf4) (z - e-inf4) 1 - l .414z + z2 H(z) = (z - 0.9ein/4) (z - 0.9e-in/4) 
� 0 .8 10 - l .273z - z2 ' 

Cette transformée en Z est représentée à la figure 5 .3 .  De cette expression, on déduit 

FIG .  5 .2 - Positionnement des pôles et des zéros 

immédiatement les coefficients du filtre récursif associé : 

ao = 1 a 1 � - 1 .414 a2 = 1 
ho � 1 .273 b1 � -0.8 10 . 

Dès lors, si l 'on désire calculer la  réponse fréquentielle, deux méthodes s 'offrent à nous : 

- calculer la réponse fréquentielle directement à partir de H : il suffit de considérer la va­
leur de la fonction de transfert sur le cercle unité, c 'est-à-dire la fonction Ç 1-+ H ( e2inÇ ) , 
pour Ç E [0 , 1 ] .  Par transformée de Fourier inverse, on en déduit la réponse impulsion­
nelle (le calcul approché se fait en échantillonnant la réponse fréquentielle, puis par FFT 
inverse) . 

- calculer la réponse impulsionnelle en utilisant l ' équation de récurrence du filtre et en 
l' appliquant pour l ' impulsion ÔQ. On peut ensuite utiliser une transformée de Fourier 
(discrète) pour approcher la réponse fréquentielle. Pour avoir suffisamment de précision, 
il faudra calculer une réponse impulsionnelle approchée assez longue. 

La figure 5 .4 montre les réponses impulsionnelles et fréquentielles du filtre. Elles ont été 
calculées directement à partir de la fonction de transfert H représentée à la figure 5 .3 .  
Au paragraphe 3 . 1 ,  nous présenterons un algorithme de calcul rapide pour déterminer 
la valeur de la transformée en Z sur certains contours, et nous calculerons la réponse 
impulsionnelle à partir de l ' équation de récurrence (2.2). 
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FIG. 5 .3 - Transformée en Z du.filtre 
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FIG. 5 .4 - Réponse fréquentielle et impulsionnelle du filtre 

L'exemple précédent est loin d'être aussi anecdotique qu'il en a l ' air. En effet, en dé­
composant la fraction rationnelle H, on va pouvoir se ramener au cas de filtres simples, 
c 'est-à-dire avec au plus deux pôles et deux zéros. Voici deux démarches que l 'on peut 
suivre. 

- Décomposition en produits. On peut factoriser les numérateurs et les dénominateurs 
en polynômes de degré 1 ou 2 sur IR[X] (respectivement de degré 1 sur <C[X] ) . On obtient 
ainsi l ' écriture du filtre <I>� sous la forme d'une cascade de filtres : 

où chaque a; et /3; représente les coefficients d 'un polynôme de degré au plus 2 (respec­
tivement au plus 1 ) .  Le filtre <I>� correspond donc à la mise en série d'une suite de filtres 
récursifs d'ordre au plus 2 (respectivement au plus 1 ) .  
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- Décomposition en éléments simples. On peut décomposer la fraction H en somme 
d'éléments simples sur �[X] (respectivement C[Xj) . On obtient alors la décomposition 

<l>b = <l>/31 + . . .  + <l>/J" 
a ai a" ' 

où chaque ai et f3i représente les coefficients d 'un polynôme de degré au plus 2 (respec­
tivement au plus 1 ) .  

Dans le cas où l 'on réalise des décomposition sur C[X] , même si les signaux sont réels, 
il faudra faire les calculs de convolution avec des nombres complexes .  Chacune de ces 
décompositions fournit une nouvelle façon d' implémenter le filtre récursif, en plus de 
l'implémentation naïve de l ' équation (2.2). L'exercice V.8 applique ces deux méthodes 
pour calculer les coefficients d'une interpolation par splines. 

2.4 Rapprochement avec le filtrage analogique 

Avant d'entrer dans les détails de l ' implémentation d'une transformée en Z discrète, nous 
allons essayer d'établir une connexion entre les filtres récursifs digitaux et les filtres ana­
logiques . Les filtres analogiques sont en quelque sorte les ancêtres des filtres digitaux 
modernes, mais sont encore utilisés dans de nombreuses situations . Il est donc intéres­
sant de comprendre pourquoi les filtres récursifs (qui effectuent des transformations dis­
crètes) permettent de replacer les filtres analogiques (qui effectuent des transformations 
continues) dans le cadre « moderne » du traitement digital du signal . Sans entrer dans 
la description du filtrage analogique, disons simplement qu' il s ' agit de faire passer un 
signal continu par un ensemble de composants électroniques, de sorte que le signal de 
sortie soit relié au signal d'entrée par une équation différentielle linéaire. Le filtre digital 
se comporte alors comme un système dynamique régi par une équation différentielle. 

L'équation aux différences (2.2) est en fait l ' analogue discret des équations différentielles 
que doivent satisfaire les systèmes dynamiques. On peut prendre l ' exemple d'un circuit 
RLC (c.f. le schéma de la figure 5.5) . On a alors l ' équation différentielle suivante qui relie 
Ve et Vs, les tensions d'entrée et de sortie : 

2)., dVe 
= 2v, + 2)., dVs + 

d2Vs 
dt <Oô s dt dt2 ' (2.4) 

où l 'on a noté œ6 = zl. et Â. = fi . On peut considérer ce circuit comme un filtre analo­
gique. Comme nous avons développé la transformée en Z pour étudier les filtres discrets, 
nous allons introduire une autre généralisation de la transformée de Fourier, continue 
cette fois, pour étudier les filtres analogiques. Il s ' agit de la transformée de Laplace, qui 
est définie de la manière suivante. 
Définition 2.11 (Transformée de Laplace). Pour une fonction f : � ---+ C, on définit 
formellement sa transformée de Laplace par 

Vs E D, .Z(f) (s) 
� 1 f(t)e-s1dt . 

tEIR 

La fonction .Z(f) est définie sur un domaine D où l ' intégrale converge. 

Moyennant des précautions sur les domaines de définition des fonctions considérées, on 
peut définir la fonction de transfert du filtre analogique, dans le domaine de Laplace : 

K(s) 
� .Z(Vs) (s) = 

2Â.s 
.Z(Ve) (s) œ6 + 2Â.s + s2 · 



144 Chapitre V. Extension de la notion de transformée de Fourier 
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FIG. 5 .5 - Circuit RLC 

On a calculé ici simplement la transformée de Laplace des deux membres de l 'équation 
(2.4). On a utilisé le fait que la transformée de Laplace transforme la dérivation en la 
multiplication par le paramètre s. 

Nous nous intéressons maintenant au problème résultant de la discrétisation, à intervalles 
de temps régulier L\, des signaux étudiés . On obtient des signaux discrets Ve et Vs. qui 
vérifient l 'équation aux différences 

2Â (- - ) 2 - 2Â (- - ) 
T Ve [n] - Ve [n - 1 ] = CO()Vs [n] + T Vs [n] - V8 [n - 1] 

+ 
(
fs[n - 1 ] + Vs[n + 1 ] - 2Vs[nJ

) . 

La résolution de l ' équation différentielle d'origine est ainsi remplacée par un schéma 
aux différences finies. Bien sûr, on aurait pu choisir d'autres méthodes pour calculer de 
façon approchée les dérivées mises en jeu. Cela aurait conduit à une équation légèrement 
différente. L'exercice V.7 propose de calculer quelques équations aux différences finies 
pour un circuit analogique intégrateur. 

D'un point de vue purement discret, on obtient un filtre récursif, qui peut être calculé 
à l ' aide d'un ordinateur (et non plus d 'un circuit électrique comme c' était le cas pour 
le filtre RLC). On peut ensuite calculer la fonction de transfert dans le domaine de la 
transformée en Z pour étudier ce filtre : 

La réponse fréquentielle du filtre analogique est la fonction 8 1--t K(i8 ) , pour 8 E R. La 
réponse fréquentielle du filtre digital est 8 1--t H (ei9 ) ,  pour 8 E [0, 2n[ . La figure 5.6 
montre que dans les deux cas, on obtient des filtres passe-bande (il laissent passer une 

petite gamme de fréquences et diminuent beaucoup les autres). La transformée en Z est 

en quelque sorte l 'outil qui permet d'étudier les filtres récursifs, alors que la transformée 

de Laplace permet elle d'étudier leurs cousins continus, les filtres analogiques . Ainsi, 

les principes de construction de filtres digitaux par l 'utilisation de la transformée en Z 
(placement des pôles et des zéros, mise en série de filtres, etc.) s ' appliquent aussi à la 

création de filtres analogiques, à condition d'utiliser la transformée de Laplace. 
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La présentation que nous venons de faire de la transformée en Z est avant tout théorique. 
Dans le but de calculer effectivement les valeurs d'une fonction transformée en Z, il nous 
faut échantillonner et faire un nombre fini de calculs .  C 'est ce que nous allons faire dans 
ce paragraphe, en définissant une nouvelle transformée, que l 'on appelle transformée en 
Z vectorielle. L'algorithme qui en résulte s ' appelle algorithme chirp. Il a été découvert 
pour la première fois, dans le cadre (plus restreint) de la TFD par BLUESTEIN, et est 
bien expliqué dans l ' article [7 1 ] .  Quelques aspects concernant la programmation de la 
transformée en Z sont abordés dans [2] . 

3.1 Algorithme de calcul discret 

La transformée en Z, même opérant sur des échantillons discrets et finis, n 'en demeure 
pas moins une fonction de la variable complexe z. Le fait est qu'un ordinateur ne sait pas 
travailler directement avec de telles fonctions (si l 'on excepte des logiciels tels MAPLE 

qui savent faire certaines manipulations formelles). Il nous faut donc un moyen d'évaluer 
de façon numérique la valeur de la transformée en Z en certains points, et ceci de façon 
rapide. Pour construire cet algorithme, nous allons introduire une transformée dédiée au 
calcul de !Z'(f) en un nombre de points suffisant (autant que de points dans l ' échantillon 
d'origine) . 

Définition 3.1 (Transformée en Z vectorielle). On se fixe z E C. Pour un vecteur f E cN, 
on définit la transformée en Z vectorielle (au point z) par 

(3 . 1 )  

Remarque 3.2. Le vecteur obtenu peut être vu comme le calcul de la valeur que prend la 
transformée en Z le long d'une courbe tracée dans le plan complexe. Si le point z est pris 
de module 1 ,  cette courbe sera le cercle unité, sinon, il s ' agira d'une spirale. 
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Soit z E C fixé. Pour construire un algorithme de calcul efficace de r.1z(f) , nous allons 
utiliser la relation 

1 
\:/(n, k) , nk = 2 (n2 + k2 - (n - k)2) .  

En l ' appliquant à l ' équation de définition (3 . 1 ) ,  on obtient 

où l 'on a noté g le vecteur défini par 

et f le vecteur 
- déf k2 

'Vk E {O, . . .  , N - 1 } ,  /[n] =' /[k]z-2 .  

Il faut faire attention au fait que la convolution est une convolution linéaire entre un vec­
teur de taille N et un vecteur de taille 2N - 1 .  En utilisant la méthode décrite à la section 
3 .3 ,  chap. III, on peut calculer une convolution acyclique très rapidement en la rempla­
çant par une convolution cyclique de taille plus grande. Plus précisément, les vecteurs à 
convoler étant de taille N et 2N - 1 , il faut en théorie calculer une convolution cyclique de 
taille 3N - 2.En réalité, pour utiliser un l ' algorithme FFT de Cooley-Tukey « classique », 
on ajoute des zéros pour atteindre une taille M = 2k juste après 3N - 2. On peut cepen­
dant faire beaucoup mieux (taille 2N - 1 ) en exploitant le fait que g[k] = g[-k] . Ceci est 
expliqué à l 'exercice V.6 et donne naissance à la procédure MATLAB c z t (pour Chirp Z 
Transform) (voir la correction de l ' exercice V.6). On peut ainsi calculer la transformée en 
Z vectorielle en un temps de l 'ordre de O(Nlog(N) ) .  

L' approche « chirp » consiste donc à remplacer un calcul de transformée par un calcul de 
convolution. Une autre astuce (l'utilisation d'un corps fini) permet d' arriver à un résultat 
similaire (lorsque N est un nombre premier) . Ceci est l 'objet de l 'exercice V.9. 

Pour terminer, utilisons l ' algorithme de calcul que nous venons de construire pour des­
siner des transformées en Z vectorielles d 'un filtre récursif. On a choisi le filtre dont les 
pôles et les zéros sont placés sur la figure 5.2 .  On a calculé la réponse impulsionnelle du 
filtre en utilisant directement l ' équation de récurrence (2.2). On a choisi deux contours, 
qui correspondent respectivement à z = /);' (cercle unité) et z = 1 .001/ff (spirale). Le 
premier contour permet de calculer la réponse impulsionnelle (on retrouve la figure 5 .4). 
En effet, calculer la transformée en Z pour z = e � revient à calculer une TFD (avec un 
gain de temps substantiel si N n'est pas une puissance de 2). Pour le deuxième contour en 
revanche, on constate que le deuxième « saut » est moins marqué, car la spirale est plus 
éloignée du deuxième pôle que ne l 'est le cercle unité. 

3.2 Applications à la transformée de Fourier discrète 

Ce paragraphe fait la liaison entre la transformée en Z vectorielle, et la TFD. En particu­
lier, nous allons voir comment ce rapprochement permet de réaliser des calculs de TFD 
dans le cas où la longueur N des signaux n'est pas un nombre composite du type N = 2P 
(cas où l ' algorithme FFT est très efficace) . 
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On peut en effet voir la transformée de Fourier discrète comme un cas particulier de 

transformée en Z vectorielle. Pour cela, on choisit z = WN � e� et on obtient, pour un 
vecteur f E CN, 

Or une des forces de l ' algorithme chirp transform présenté au paragraphe précédent est 
qu'il peut s ' appliquer à n' importe quel entier positif N. Contrairement à l ' algorithme 
FFI', il n 'est pas restreint aux seuls entiers N dont on connaît une « bonne » factorisa­
tion (l' exemple le plus simple est N = 2P), comme cela est expliqué au paragraphe 2.4, 
chap. III. On peut même appliquer l ' algorithme chirp transform pour des transformées 
dont la longueur N est un nombre premier, alors que dans ce cas il est impossible de 
réduire le temps de calcul par une approche FFf ! Bien sür, cet algorithme nécessite un 
certain nombre de calculs supplémentaires, entre autres : 

- ajout de zéros pour transformer la convolution acyclique en convolution circulaire. En 
fait, nous allons calculer des FFf de longueur M = 2k juste après 2N - 1 .  

- calcul de deux FFI' (voire trois en prenant en compte le vecteur g) pour calculer une 
convolution circulaire. 

Cependant, dans le cas où l 'on doit calculer une TFD de longueur N (et où on ne peut 
pas remplacer ces calculs par une transformée plus grande), cet algorithme constitue une 
alternative avantageuse par rapport au calcul naïf. Toute fois, il faut garder à l ' esprit que 
dans bon nombre d' applications, on peut se contenter de calculer une transformée aux fré-

quences {k/N'}t.i��,112 plutôt que {k/N}���-;}12 , et donc que cette approche est à pros­
crire !  

Remarque 3.3. Le pire des cas pouvant se présenter pour l ' algorithme chirp pour le 
calcul d'une TFD est 2N - 1 = 2P + 1 .  On doit en effet calculer 3 FFf de taille 2P+ l � 

4N pour le calcul de la convolution (on a N' = 2P+ 1 et il faut doubler la taille car la 
convolution n'est pas circulaire). On voit donc que l 'on réalise environ 12  fois plus de 
calculs que pour une FFI' de taille 2P . . .  
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4 Transformée de Fourier fractionnaire 

Dans cette section, nous allons étudier la transformée de Fourier fractionnaire. Il s ' agit 
simplement de considérer des fréquences intermédiaires lors de l ' évaluation de la somme 
qui définit la TFD. Certes, on perd de nombreuses propriétés de la transformée de Fourier 
discrète (convolution, inversion, etc.), puisque l 'on n'utilise plus les caractères exponen-

tiels en : k 1--t e�kn . Cependant, nous allons voir que l 'on dispose d'un algorithme de 
calcul rapide, ce qui rend cette transformée simple à utiliser. Une présentation relative­
ment complète de la transformée de Fourier fractionnaire est faite dans [6] . 

4.1 Définition et algorithme de calcul 

Voici la définition, très naturelle, de cette nouvelle transformée. 

Définition 4.1 (Transformée de Fourier fractionnaire). Soit a E R  On définit la trans­
formée de Fourier fractionnaire G(f, a) d'un vecteur f E (f par 

N- I . 
\fk E {O, . . .  ,N - 1 } ,  G(f, a) [k] � L f[n] e-a�kn . 

n=O 

Remarque 4.2. (Lien avec la TFD). On constate que si a = 1 ,  on retrouve la transformée 
de Fourier discrète. Pour a = - 1 ,  on retrouve la transformée de Fourier discrète inverse 
(à un facteur l /N près). C'est dans ce sens que la transformée fractionnaire généralise la 
TFD usuelle. 

Dans le but de construire un algorithme de calcul, nous allons faire le lien avec la trans­

formée en Z, définie par l ' équation (3 . 1 ) . On constate en effet que dans le cas où z = e�, 
les deux transformées coïncident. En utilisant l ' algorithme chirp de transformation en Z, 
on va donc pouvoir calculer la transformée de Fourier fractionnaire de façon rapide. 

La transformée de Fourier fractionnaire n 'a  pas vraiment de signification intuitive simple. 
Nous verrons au prochain paragraphe qu'elle permet de calculer des valeurs intermé­
diaires de la transformée de Fourier d 'un signal discret. Elle va ainsi se révéler efficace 
pour analyser des signaux dont la périodicité est inconnue. Cependant, la transformée 
de Fourier fractionnaire n'est pas ce que l 'on pourrait appeler une transformée partielle, 
comme nous avons pu en définir au paragraphe 5 .2, chap. III, et à l ' exercice III.9. En 
effet, la composée de deux transformées fractionnaires avec a = 1 ne redonne pas la 
transformée de Fourier classique. 

La figure 5 .8  montre les transformées de Fourier fractionnaires G{!, a) d'une fonction en 
escalier pour plusieurs valeurs de a. L'exercice V. 1 1  propose de calculer les transformées 
de Fourier fractionnaires d'une image. 

4.2 Analyse de signaux à périodicité non entière 

La transformée de Fourier discrète est un outil puissant pour analyser des données phy­
siques récoltées par des capteurs ou d' autres méthodes plus ou moins sophistiquées. Ce­
pendant, toute cette analyse faite à laide de la transformée de Fourier suppose que le 
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signal enregistré est périodique, et surtout que sa période est un diviseur de la longueur 
sur laquelle on a échantillonné le signal . Cependant, dans la majeure partie des applica­
tions ,  on est loin d'être en mesure de connaître a priori cette période. Dans certains cas, 
on dispose d' informations sur la valeur de cette période. Un bon exemple est celui des 
données météorologiques. On sait que la période de rotation de la terre autour du soleil 
est de 365 ,2422 jours . Cependant, même dans ce cas favorable, les données acquises le 
sont au rythme d'une fois par jour, soit 365 données par an. En conséquence, le spectre 
du signal va être anormalement compliqué, en tout cas beaucoup plus que si on avait pu 
obtenir exactement 365 ,2422 échantillons par an. 

On est donc confronté à un double problème. 

- Comment déterminer, à partir d'un spectre donné, la vraie période du signal ? 

- Une fois cette période connue, comment modifier le spectre d'origine pour qu' il corres-
ponde à des données échantillonnées suivant la bonne période ? 

Il nous faut construire un algorithme qui automatise ces deux tâches, et fasse les calculs de 
façon rapide. Nous allons voir que l 'utilisation de la transformée de Fourier fractionnaire 
et de son algorithme rapide permet de résoudre ce problème. 

Pour avoir une idée sur la façon de rechercher la période, il est intéressant d'étudier ce 
qui se passe sur un échantillon monochromatique, c 'est-à-dire sur une sinusoïde. Soit le 
signal { "'k2in }N- 1 

! = e'' ïV k=O ' 
où /3 est un nombre réel. Si /3 n'est pas un entier, on est en présence d'un signal que l 'on 
sait périodique (de période N //3), mais dont l ' échantillonnage ne reflète pas la périodicité. 
La figure 5.9 montre le spectre obtenu pour f3 = 4.63 . On y a tracé à la fois la transformée 



150 Chapitre V. Extension de la notion de transformée de Fourier 

de Fourier discrète et la transformée de Fourier continue (qui est approchée en ajoutant 
un nombre conséquent de zéros à la fin du signal avant de calculer la TFD). Bien que le 

FIG . 5 .9 - Spectre d 'une sinusoïde mal échantillonée 

spectre ne soit pas égal à celui que devrait avoir une onde monochromatique (on devrait 
obtenir une seule raie placée à la fréquence 4.63), il présente un maximum à partir duquel 
les valeurs de la transformée décroissent. Sur le dessin, il est facile de déterminer la valeur 
exacte de l ' abscisse de ce maximum, qui correspond à la fréquence cherchée et qui nous 
permet de déterminer la période. Cependant, il est beaucoup trop coûteux de calculer la 
transformée de Fourier continue pour avoir une bonne valeur approchée de la période. 
Sans connaître cette transformée de Fourier continue, on est néanmoins en mesure de 
déterminer la période à une unité près . Ici nous voyons que cette fréquence cherchée est 
comprise entre 4 et 5 .  Notons b l 'entier immédiatement inférieur à {3 .  Pour calculer avec 
plus de précision {3 ,  nous allons calculer de façon plus fine le spectre de f dans l ' intervalle 
[b , b + 1 ] .  Soit donc 8 un pas de subdivision. On cherche la valeur de la transformée de 
Fourier de f aux fréquences intermédiaires b, b + 8 ,  . . .  , b + mô � b + 1 ,  ce qui revient à 
faire le calcul : 

N- 1 . 
\fk E {0, . . . , m} ,  Î(b + ko) = L f[n]e- �n(b+k<5) = G(f, o) [k] ,  

11=0 
où f est le vecteur 

j = {f[n] e_ 2ff11b }N- I . n=O 
La figure 5 . 1 0  (a) montre un signal périodique (bruité) dont la longueur d'échantillonnage 
n'est malheureusement pas choisie multiple de la période. A la figure (b), on peut voir le 
spectre de ce signal, qui présente un pic en b = 2. La figure (c) réalise un zoom sur la 
fenêtre fréquentielle [2 , 3] , et l 'on peut voir précisément que f3 = 2.23 . 

Maintenant que nous avons calculé avec précision la fréquence f3 qui détermine la période, 
nous aimerions modifier le spectre de manière à ce que cette fréquence f3 prenne la place 
d'une fréquence effectivement calculée par la TFD, en l 'occurrence la fréquence b. On 
espère ainsi que les coefficients vont décroître plus vite, comme c 'est le cas avec une onde 

monochromatique bien échantillonnée. Posons a = * · qui est légèrement plus petit que 

1 .  Notons r l ' entier le plus proche de Na. Pour que la fréquence f3 devienne la fréquence 

b, il nous faut calculer une transformée de Fourier en multipliant les fréquences par � . ce 
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qui conduit à calculer 

Vk E {O, . . .  , r - 1 } ,  Fk � Î( �) = :�f[n]e-�kn = G (!, :a ) [k] , 

où il faut faire attention à compléter le vecteur f par des zéros pour qu' il atteigne la 
longueur r. Dans le cas où Na = r est un entier, et que le signal f est monochromatique 
comme nous l ' avons déjà défini, on obtient 

( k ) r- l 2· 2· 
_ 

� _ _ -Ff-f3n - �1Cnk _ k Vk E {O, . . .  , r 1 } ,  f - _L e e - rôb . 
a n=O 

On obtient donc bien le résultat voulu, à savoir une correction parfaite du spectre. Si Na 
n'est pas un entier, la correction n'est toute fois pas parfaite ; on peut calculer l 'erreur 
obtenue pour une onde monochromatique : 

{ déf. 

I 
�( k ) 1 1 - e-�n(b-k) 

Vk E O, . . .  , r - 1 } , k # b, Fk = f a = l - e-� (b-k) 

= 
sin (�) 

sin ( 
n��k) ) ' 

où l 'on a noté s � r - Na. En notant que l s l  < ! . on voit que 

- on a Fb = r, comme dans le cas où Na est entier, 
- lorsque k est voisin de b, au premier ordre, on a IFk l = l s l  qui est borné par ! .  donc 

nettement plus petit que Fb, 
- Lorsque k est loin de b en revanche, la situation est moins favorable (le dénominateur 

de IFk l peut devenir petit) . Cependant, en utilisant le fait que 

Vx E [O ,n/2] , 2x ::;:; sin(x) ::;:; x, n 

on montre que IFk l reste majoré par � ou n(ff-/3) . 

Dans le cas où le signal n'est pas monochromatique, la décroissance sera bien entendu 
plus faible, et l ' amélioration moins visible. La figure 5 . 1 0  (d) montre l ' effet de cet ajus­
tement de fréquence, et on observe une nette diminution des valeurs de la transformée 
hors du pic à la fréquence 2. On a obtenu une représentation fréquencielle de la fonction 
analysée beaucoup plus efficace et apte à être utilisée pour des traitements ultérieurs. 

5 Exercices 

Exercice V.1 (Vecteurs propres et transformée de Hartley). Quelles sont les valeurs 
propres de la transformée de Hartley définie à la section 1 ?  En s ' inspirant de la construc­
tion du paragraphe 5 .2, chap. 111, proposer une méthode pour obtenir des vecteurs propres 
pour chacune des valeurs propres.  En s ' inspirant de ce qui a été fait au paragraphe 5.2, 
chap. III, en déduire la construction d'une transformée de Hartley intermédiaire .JfeÂ . La 
figure 5 . 1 1 montre différentes transformées intermédiaires. On pourra faire la comparai­
son avec la figure 3.9,  chap. III. 
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FIG .  5 . 1 1 - Parties réelles des transformées intermédiaires YflÂ (j) pour Â. E [0 , 1 ] 

Exercice V.2 (Transformée de Hartley généralisée). En remarquant que 

cas (x) = v'2cos (x - �) , 
on peut définir, pour f E JRN, une transformée de Hartley généralisée par 

\:/n E {O, . . . , N - 1 } ,  .Jri (f) [n] � nÎ f[k] cos (2; nk + Â.) , 
k=O 

(5 . 1 ) 

où Â. est un paramètre réel dans [0 ,1t' [ .  Pour Â. � { 0, � } , montrer que cette transformation 
est bijective, et que son inverse est donné par 

- l 2 
(.?ri) = 

sin(2Â.) �-.t · 
(5.2) 

La figure 5 . 1 2  montre la transformée généralisée du signal triangulaire de la figure 5. 1 
(gauche), pour Â. variant entre 0 et 21t'. 

Exercice V.3 (Interpolation et transformée de Hartley). A l 'exercice III.6, nous avons 
vu comment on peut interpoler un signal échantillonné grâce à la transformée de Fourier 
discrète. Toujours en utilisant la technique de zero padding, expliquer pourquoi la trans­
formée de Hartley discrète permet aussi d'interpoler des valeurs échantillonnées. Montrer 
qu'en fait les interpolations obtenues par Fourier et par Hartley sont les mêmes . 
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Exercice V.4 (Transformée de Hartley 2D). Soit f E JR.Ni xN2 • On définit sa transformée 
de Hartley bidimensionnelle .J"t'(f) par 

où ni E {O, . . .  ,N1 - 1 }  et n2 E {O, . . .  , N2 - 1 } .  Montrer que l 'on a la formule d' inversion 
suivante : 

f = 
N1�2 

.J"t'(.J"t'(f) ) . 

Comment calculer rapidement cette transformée à l ' aide de l ' algorithme FHT ? 

Exercice V.5 (Transformée de Hartley et corps finis). Etendre la définition de la trans­
formée de Hartley dans le cadre des corps finis (puis des anneaux dans lesquels on dispose 
d'une racine nième principale). Si Ç représente une racine nième de l 'unité, on pourra 

utiliser '�Ç 1 pour remplacer cos ( 2:) . Ecrire l ' algorithme FHT correspondant. 

Exercice V.6 (Transformation chirp et matrices de Toeplitz). Dans cet exercice, on 
reprend la description de l ' algorithme chirp pour le calcul de la transformée en Z, dans le 
but de trouver une formulation matricielle. Rappelons la définition de l ' algorithme chirp. 
Il consister à calculer la transformée en Z d'un vecteur f E cN par l ' intermédiaire d'un 
vecteur {y[n] }�,:-J défini par 

où l 'on a noté 

2 N- 1 
'v'n E {O, . . .  ,N - 1 } ,  y [n] � z'!-�z (f) [n] = L h [k]g [n - k] ,  

n=O 
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et déf k2 
Vk E {-N+ l , N - 1 } ,  g [k] =' z-2 . 

1 .  Montrer que y peut se calculer comme un produit matriciel y = Gh, où G est ce que 
l 'on nomme une matrice de Toeplitz, c'est-à-dire une matrice constante le long de 
chacune de ses diagonales . Par exemple, montrer que pour N = 3, on a 

(g [O] g [ l ]  g [2]) 
G = g [ l ]  g [O] g [ l ]  . 

g [2] g [ l ]  g [O] 

2. En toute généralité, une matrice de Toeplitz T de taille m x n se note [tm- 1 tm · · · tm+n-2) 
T � tm�2 tm- 1 · · · tm+;i-3 . 

to tm- 1 

Elle est donc entièrement déterminée par sa première colonne, que l 'on note sous 
1 ç déf. ( )T . ,  l ' é déf. ( )T (  a iorme te = to , . . .  , t11- 1 et sa prem1ere igne not e t1 = tm , . . .  , tm+n-2 on ne 
prend pas l ' élément tm_ 1 ) . On considère le vecteur 

déf. ( )T M c =  tc 1 0 , . . .  , 0 , t1 E C . 

où M est la puissance de deux immédiatement après n + m - 1 .  On note C matrice 
circulante associée à c, comme définie à l ' exercice 111 .5 .  Où peut-on retrouver la 
matrice T à l ' intérieur de la matrice C ?  Comment calculer un produit Tx, où x E 
C11 , en utilisant la matrice C ?  En déduire un algorithme permettant de calculer Cx 
rapidement, à l ' aide de l ' algorithme FFI'. 

3 .  Appliquer la construction précédente à la matrice G. Montrer par exemple que dans 
le cas N = 3, on obtient la matrice C suivante : 

C = 

g[O] g [ l ]  g [2] 0 0 
g [ l ]  g [O] g [ l ]  g [2] O 
g [2] g [ l ]  g [O] g [ l ]  g [2] 

0 g [2] g [ l ]  g [O] g [ l ]  
0 0 g [2] g [ l ]  g [O] 
0 0 0 g[2] g [ l ]  

g [2] 0 0 0 g[2] 
g [ l ]  g [2] 0 0 0 

0 g[2] g [ l ]  
0 0 g[2] 
0 0 0 

g[2] 0 0 
g[ l ]  g [2] 0 
g[O] g [ l ]  g [2] 
g [ l ]  g [O] g [ l ]  
g [2] g [ l ]  g [O] 

En déduire un algorithme permettant de calculer y, puis C§z(f) rapidement. 

Exercice V.7 (Méthodes de quadrature et filtres récursifs). On considère un circuit 

intégrateur, qui relie les tensions d'entrée x(t) et de sortie y(t) par l ' équation 

y(t) = fo' x(-r)dî. 
Quelle est la fonction de transfert de ce filtre dans le domaine de Laplace ? On souhaite, à 
partir de ce filtre analogique, créer un filtre récursif digital . On envisage les méthodes de 
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quadrature suivantes, pour une fonction f : :IR ---+ :IR continue : 

(Mo) fo 1 
f(t )dt � /(0) , (5 . 3)  

(MI ) 
fol 

1 
0 f(t )dt � 2 (/(0) + /( 1 ) ) ' (5.4) 

(M2) fol 
1 2 1 

0 f(t)dt � 6/(0) + 3/( 1 /2) + 6/( 1 ) . (5 .5) 

Ces méthodes sont appelées respectivement méthode des rectangles à gauche , méthode 
des trapèzes, et méthode de Simpson. En considérant une discrétisation des signaux x et 
y de pas Ll, donner les équations de récurrence obtenues en employant chacune des trois 
méthodes. Quelles sont les fonctions de transfert associées (pour la transformée en Z) ? 

Exercice V.8 (Spline et filtres récursifs). On reprend les notations de l ' exercice IV. 12. Il 
s 'agit d'expliquer comment on peut calculer les coefficients d' interpolation c[k] par l ' in­
termédiaire d'un filtre récursif. Nous allons essentiellement nous concentrer sur l 'exemple 
des splines cubiques, et nous laissons au lecteur le soin de s 'entraîner sur d' autres exemples, 
puis de généraliser la méthode. On pourra pour se faire s ' aider d'une expression de f3:i, et 
se référer à l ' article de UNSER [74] . 

1 .  Calculer f3J , puis montrer que sa transformée en Z vaut 

1l'(/3]) (z) = z + 4 + z- 1 
6 

- -
2. On rappelle que l 'on a c =  <I>� * ud, où «I>� est défini par «I>� = 1 //3J . Décomposer 

la fraction rationnelle 1!'(«1>�) en éléments simples . Comment peut-on calculer les 
coefficients c de l ' interpolation indirecte en utilisant deux filtres récursifs ? 

3 .  On suppose que l 'on connaît le signal ud [k] pour k E { 0, . . .  , K - 1 } . Montrer que 
l 'on peut organiser les calculs de c de la manière suivante : 

{ Vk E { l ,  . . .  , K - 1 } ,  c+ [k] = ud [k] + b1c+ [k - l] 
Vk E {0, . . .  , K - 2} ,  c- [k] = ud [k] + b1 c- [k + 1 ] 
Vk E {O, . . .  , K  - 1 } ,  c [k] = bo (c+ [k] + c- [k] - ud [k] ) 

On précisera les valeurs des constantes bo et b1 . Quelles valeurs donner à c+ [O] et 
c- [K - 1 ] ? On pourra par exemple faire en sorte que le signal produit puisse être 
prolongé par symétrie miroir en K - 1 et 0 (pour éviter des discontinuités) .  

4. Reprendre les deux questions précédentes en exploitant une décomposition en pro­
duit de la forme 

1!'(«1>3 ) -
A 

d - ( 1 - az- 1 ) ( 1 - az) ' 

Exercice V.9 (Transformation Chirp et corps fini). Soit p un nombre premier. On note 
g un générateur du groupe lF;. 
Une fonction f :  {O, . . .  , p  - 1 } ---+ C sera considérée comme une fonction définie sur lF p ·  
Montrer que l 'on peut écrire l a  transformée de  Fourier de  f de l a  manière suivante : 

p-2 
Vb E {O, . . . , p  - 2} , f(g-b) = /(0) + L f(g0)ro-pt'-b , 

a=O 
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où OJp = e /J .  En déduire que l 'on peut calculer la transformée de Fourier de f à 1' aide 
d'une convolution sur Z/ (p - 1 )Z. Préciser les vecteurs mis en jeu, et implémenter cet 
algorithme. 

Exercice V.10 (Calculs approchés par transformée de Fourier fractionnaire). Soit 
une fonction continue f : lR ---+ lR que l 'on suppose à support dans [-a/2, a/2] . On dis­
pose d'un échantillonnage régulier f[k] = f(xk) avec Xk = f((k - N /2)a/N) pour k = 

0, . . . ,N - 1 . 

1 .  On souhaite évaluer la transformée de Fourier continue de f autour d'une fréquence 
Ç, plus précisément aux points Yk = Ç + 2: (k -N  /2)y, où y représente la précision 

voulue. Si l 'on souhaite effectuer le calcul des Î(xk) à l ' aide de l ' algorithme FFT, 
quelle est la taille de la transformée à calculer (on supposera que y E Q) ? Montrer 
que l 'on peut effectuer ce calcul de façon plus économique à l ' aide de la transformée 
de Fourier fractionnaire. 

2. On souhaite maintenant augmenter la précision des calculs. En utilisant la méthode 
de quadrature de Simpson (exercice V.7, méthode (M2) ), expliquer comment il faut 
modifier la méthode de la question précédente. 

Exercice V.1 1  (Transformée de Fourier fractionnaire d'une image). Proposer une 
transformée de Fourier fractionnaire 2D qui étend la transformée lD par produit tenso­
riel (on pourra s ' aider de la construction de la transformée de Hartley 2D, exercice V.4) . 
Ecrire la fonction MATLAB qui correspond, et tester la transformée sur plusieures images. 
La figure 5 . 1 3  présente les transformées de la fonction indicatrice d'un disque. 

Image d'origine 

a=1 .00 

a=1 .60 

a=0.60 

, .  
' , ' t 

a=1 .20 

a=1 .80 

a=0.80 
I '  

, . .  , 

a=1 .40 

a=2.00 

. . .  

FIG.  5 . 1 3  - Transformées de Fourier fractionnaires d'une fonction 2D 



Chapitre VI 
Transformée de Fourier à valeurs dans un corps fini 

Many people regard arithmetic as a trivial thing that 

children can leam and computer do, but we will see that 

artihmetic is a fascinating topic with many interesting 

facets. lt is important to make a thorough study of efficient 

methods for calculating with numbers, since arithmetic 

underlines so many computer application. 

D. E. KNUTH [39] ( 1 997) 

Nous avons déjà rencontré à de nombreuses reprises les corps finis, en particulier au cha­
pitre Il. Cependant, nous nous sommes bornés à les exploiter en tant que domaines de 
départ des fonctions que l 'on souhaitait analyser. Pourtant, il est très fréquent de mani­
puler des données à valeurs dans un ensemble fini, que l 'on peut souvent munir d'une 
structure de corps fini . L'exemple le plus frappant est celui des données binaires, qui 
peuvent être modélisées par des fonctions à valeurs dans 1F2 � {O, l } .  Dans ce chapitre, 
nous allons présenter de nombreuses situations similaires, et nous verrons comment les 
outils de Fourier s ' étendent naturellement à de telles structures de corps. 

1 Calculs sur un corps fini 

Depuis le début de l ' exposé, nous nous sommes limités à l ' étude des fonctions à valeurs 
dans le corps C des complexes, et nous nous sommes particulièrement intéressés aux 
morphismes de G (groupe fini abélien) dans le groupe multiplicatif C* . Cependant, la 
majeure partie des résultats reste valide si on considère les morphismes de G dans un corps 
commutatif quelconque. Dans cette section, nous allons étudier de plus près le cas des 
corps finis. Non seulement nous allons reprendre les résultats déjà énoncés aux chapitres 
précédents, mais nous allons les particulariser et expliquer pourquoi et comment effectuer 
les calculs dans un corps fini. 

11 s ' agit d'effectuer nos calculs modulo un nombre premier p. Il faut se garder de croire 
que nous allons nous restreindre au seul corps lF P � Z/ pZ. Par exemple, au paragraphe 
1 .4, nous allons nous placer dans un corps plus grand, du type lF p' , où r ;;::: 1 ,  pour définir 
une transformée d'une longueur arbitraire. 
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1.1 Transformée de Fourier sur un corps fini 

On se fixe donc un entier premier p. Tous nos calculs seront effectués modulo p. Pour 
construire une transformée à valeurs dans un corps fini, nous avons besoin d'une racine 
primitive nième de l 'unité. Précisons un peu ce que cela signifie. 

Définition 1.1 (Racine primitive). Soit K un corps. Un élément Ç E K est appelé racine 
de l 'unité si c 'est un élément d'ordre fini de K* , c 'est-à-dire s ' il existe un entier s > 0 tel 
que çs = 1 . 
Un élément d'ordre n de K* est appelé racine primitive nième de l 'unité, ce qui signifie 
que çn = 1 et que pour tout s tel que 0 < s < n, on a çs -::/= 1 .  
Dans un corps fini K de cardinal q = pr, tout élément de K* est nécessairement une racine 
(q - l ) ième de l 'unité. Bien sûr, l 'existence d'une racine nième ,  pour un n quelconque, 
n 'est pas assurée. En effet, l 'ordre de tout élément de K* est un diviseur de q - 1 . Ré­
ciproquement, si n jq - 1 , c'est-à-dire - 1 = nk, alors, si on note œ un générateur de K* ,  
Ç = œk est une racine nième primitive. 

Pour simplifier, nous allons supposer que q = p est un nombre premier. On admet aussi 
que l '  on dispose de Ç, une racine nième primitive de l 'unité sur IF p· Il est alors très simple 
de définir la transformée de Fourier à valeurs dans le corps lF p ·  
Définition 1.2 (Transformée sur lF p)· Pour un vecteur f E (IF P ) 11 , on définit la transfor­
mée de Fourier : 

11- l  
Vj E {O, . . .  , n - 1 } ,  ff:(f) [j] = f[j] � L, f[k] Ç-ki . 

k=O 
( 1 . 1 ) 

La transformée de Fourier sur lF P possède exactement les mêmes propriétés que la trans­
formée de Fourier classique ; les voici brièvement rappelées .  

Proposition 1.3 (Propriétés). ff: est un isomorphisme d'algèbre de ( (JF P )n , * ) dans 
( (IF P )n , · ), où l 'on a noté * le produit de convolution circulaire et · le produit composante 
par composante. Son inverse est donné par 

n- l 
g;- l (f) [n] = n- l L f[k] Çkn . 

k=O 
( 1 .2) 

La transformée de Fourier modulo p présente un avantage certain : tous les calculs se 
font avec des entiers (certes modulo p, mais au final, on réalise toujours des additions et 
multiplications d'entiers). Il n 'y a donc pas d'erreur numérique susceptible d'entacher les 
résultats des calculs. En revanche, dans des calculs nécessitant une grande précision, l 'uti­
lisation d'une FFT classique peut conduire à des erreurs. Lorsque l 'on veut par exemple 
calculer le produit de deux grands entiers (en utilisant la technique présentée au para­
graphe 5 .4, chap. IV), il est très important de minimiser les erreurs numériques, puisque 
l 'on veut, au final, retrouver des valeurs entières (nous allons en fait arrondir à l 'entier le 
plus proche) . Par exemple, dans [5] ,  l ' auteur explique qu'en double précision, passé 10 
millions de décimales, l ' algorithme de FFT, utilisé pour des calculs de produits d'entiers, 
donnait de mauvais résultats à cause des erreurs d' arrondi . C'est pourquoi les algorithmes 
de calculs sur les corps finis (et plus généralement sur 'll/m'll) sont au cœur des systèmes 
informatiques nécessitant des calculs entiers de haute précision. 

Au delà de tous ces avantages, il faut garder à l' esprit que le résultat obtenu par transfor­

mée sur un corps fini n 'a  plus aucune signification « physique ».  En effet, la transformée 
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de Fourier à valeurs dans C représente une approximation de la transformée de Fourier 
continue sur � (se référer aux calculs effectués au paragraphe 1 .2, chap. IV), ce qui est 
bien sûr loin d'être le cas pour la transformée sur un corps fini. On peut considérer la 
transformation effectuée dans les complexes comme un moyen de passer d'une repré­
sentation temporelle des données à une représentation fréquentielle, alors qu' il n 'y a pas 
d'interprétation aussi évidente pour la transformation réalisée sur lF p · 

1.2 Un cas particulier 

Le problème auquel nous sommes confrontés pour construire cette transformée est la 
recherche d'une racine primitive nième de l 'unité. Pour bien comprendre les difficultés 
que l 'on rencontre, commençons par montrer un cas où tout se passe bien, mais qui, 
comme nous allons le voir, est très restrictif. 

On suppose que l 'on a choisi n = p - 1 .  On sait que le groupe multiplicatif JF; = lF P - { 0} 
est un groupe fini cyclique. En conséquence, il possède un élément générateur : notons le 
Ç .  Par définition, on a donc 

lF; = { l , Ç , Ç2 , . . .  , Çn- l } et Çn = l . 

Nous avons donc exhibé une racine nième primitive de l 'unité, mais au prix d'un choix 
particulier pour la valeur de n. Un algorithme naïf pour déterminer un générateur du 
groupe multiplicatif (Z/nZ) * consiste à essayer un par un tous les éléments du groupe. 
Un algorithme plus efficace est présenté dans le livre de COHEN [ 1 8] .  

1.3 Corps cyclotomiques 

Dans le paragraphe précédent, nous avons construit une transformée de Fourier de taille 
n sur lF P dans un cas bien précis, ce qui imposait une relation entre les entiers n et p. 
Cependant, on peut souhaiter choisir indépendamment ces deux paramètres, par exemple 
dans le cas fréquent où l 'on veut réaliser des TFD de taille très grande, beaucoup plus 

que p. Le problème est qu' il n 'y a aucune raison que le corps lF P � Z/ p'll., contienne des 
racines nièmes primitives. Nous allons donc devoir travailler dans une extension de lF P• 
c'est-à-dire un certain lF p' pour r E N* . 

Pour mener à bien la recherche de cette extension, on a besoin d' étudier les facteurs ir­
réductibles du polynôme X" - l ,  puisque ce seront les polynômes minimaux d'une éven­
tuelle racine primitive. Rappelons, sans démontration, quels sont ces facteurs irréductibles 
sur le corps Q. 
Théorème et définition 1.4 (Polynômes cyclotomiques). On note c1>11 le nième poly­
nôme cyclotomique, défini de la façon suivante : 

<l>11 (X) � II (X _ 
/i,�k ) .  

kE (Z/11Z)* 

Les polynômes cyclotomiques vérifient 

xn - 1 = II ct>d (X) . 
dl11 

Ils sont à coefficients dans Z, et de plus, ils sont irréductibles dans Q[X] . 

( 1 .3) 
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Pour une preuve de ce théorème, ainsi qu'une construction très claire des corps finis, on 
pourra regarder le livre de DEMAZURE [24] . 

Exemple 1.5. L'équation (1 .3) fournit un algorithme qui permet de déterminer par récur­
rence les polynômes cyclotomiques, dont voici quelques exemples : 

<1>1 (X) = X - 1 ,  

<l>2 (X) = X + 1 ,  

<1>3 (X) = x2 +x + 1 ,  

<1>6 (x) = x2 - x - 1 . 

Le programme MAPLE 1 . 1  permet de calculer un polynôme cyclotomique. Voir à ce sujet 
l 'exercice Vl. 1 .  

Programme 1.1 Calcul d 'un polynôme cyclotomique 
with ( numtheory ) : cyc l o tomi c ( l 0 5 , X ) ; 

1 + x  - xs + x2 - xs _ 2x1 + x3s - x2s + x4s + x46 _ x43 _ 2x41 _ x40 _ x39 + x36 + x34 
+ x33 + x3 1 - x26 _ x24 _ x22 _ x2o + x 11  + x 16 + x 1 s + x 14 + x 12 _ x9 - x6 + x41 
- x42 + x32 + x 1 3 

Les polynômes <I>n étant à coefficients dans Z, on peut donc les réduire modulo p et les 
regarder comme éléments de IF p [X] . Bien qu' ils soient irréductibles sur Q, il n 'y  a aucune 
raison qu' ils le soient encore sur 1Fp . Plus précisément, c 'est le théorème suivant qui va 
nous permettre de construire l ' extension de corps dont on a besoin. 

Proposition 1.6 (Cyclotomie sur 1Fp)· On suppose pgcd (n , p) = 1. Soit r l 'ordre de p 
dans le groupe (Z/nZ) *, c 'est-à-dire le plus petit entier t tel que p' = 1 modulo n. Alors 
le polynôme cyclotomique <I>n (X) se décompose dans 1Fp [X] en produit de polynômes 
irréductibles de degré r, tous différents. 

Démonstration. Comme n est premier avec p, le polynôme xn - 1 est premier avec sa 
dérivée nxn- l , donc il n 'a  pas de racine multiple dans une extension. Avec la relation 
(1 .3), on en déduit donc que le polynôme <l>n n 'a  pas de facteur multiple. Il suffit donc de 
montrer que tout facteur irréductible de <l>n est de degré r. 
Soit donc P un facteur irréductible de degré s. On note K = Fp [X]/ (P) le corps résiduel. 
Son cardinal est IK I = ps. L'image Ç de l ' indéterminée X dans K est une racine primi­
tive de l 'unité, puisque P est un facteur irréductible de xn - 1 et que Ç est racine de P. 
Comme tout élément x de K* vérifie xP' - l = 1 ,  en particulier, Ç P' - l = 1 ,  et la définition 
d'une racine primitive nième implique que n lps - 1 . Par définition de l 'ordre r de p dans 

(Z/nZ) * , on a donc r � s. 
Montrons l ' inégalité inverse. Comme n lpr - 1 , on a pr - 1  = 11..n, d'où ÇP

'
- l = ( çn)À = 1, 

donc ÇP
' = Ç .  Notons alors k le sous-corps de K formé des racines de l 'équation XP

' 
= X . 

Il contient Ç qui engendre K* , donc il est en fait égal à K tout entier. Comme X P
' 

- X a 
au plus pr racines distinctes, on obtient que IK I = lk l  � pr, donc s � r qui est l ' inégalité 

cherchée. D 

Remarque 1.7. Dans le cas où les entiers n et p ne sont pas premiers entre eux, n est un 
multiple de p, soit n = mp' , où cette fois m est premier avec p. On écrit alors 
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On peut maintenant appliquer la proposition précédente au polynôme xm - 1 pour trouver 
une décomposition de xn - 1 .  

Remarque 1.8. En fait, la proposition 1 .6 est encore valable sur un corps du type IF q où 
q = l (sans modification de la démonstration) . Le polynôme <I>n se décompose dans IF q [X] 
en produit de polynômes irréductibles de degré r, où r est l ' ordre de q dans (Z/nZ) * . Il 
faut faire attention : le fait de regarder le polynôme <I>n sur IF P revient à réduire ses coeffi­
cients modulo p (et pas modulo q ! ) .  Cependant, comme il y a plus d'éléments dans 1Fq que 
dans IF P• il est possible que certains facteurs irréductibles de <l>n sur IF P se décomposent 
sur 1Fq. 

Si on note P un facteur irréductible de <I>n.  le corps K � IF P [X] /  (P) est donc 1' extension 
de IF P que l 'on cherche. C'est un corps de cardinal p'', et on peut le voir comme un espace 
vectoriel de dimension r sur IF P• simplement en considérant ses éléments comme des 
polynômes de degré au plus r - 1 .  On note généralement IF p' ce corps, mais il ne faut 
pas le confondre avec Z/ prz : en effet, dans K, on continue à effectuer l ' addition modulo 
p, et la multiplication est plus complexe puisqu'elle correspond à la multiplication des 
polynômes modulo P. Pour finir, notons que l 'on a bien ainsi trouvé une racine primitive 
de l 'unité. Il suffit de considérer la classe de l ' indéterminée X dans K : c'est en fait une 
racine que l 'on notera Ç de P dans K. On peut alors voir ie corps K comme 1Fp [ÇJ , le corps 
engendré par Ç sur IF p · On nomme ce corps le corps cyclotomique d'indice n sur IF p · 
Exemple 1.9. On considère le polynôme 

<l>15 (X) = 1 - X +x3 - X4 +X5 - X7 +x8 E Z[X] . 

Comme l 'ordre de 2 dans (Z/ 15Z) * est 4, <1>15 se décompose sur IF2 en produit de 2 
polynômes de degré 4 irréductibles : 

Un corps de décomposition de <1>15 est donc par exemple 

où l 'on a noté a une racine de 1 +X +X4 (c'est-à-dire la classe de l ' indéterminée X dans 
le corps quotient IF2 [X] / ( 1 +X +X4) ) .  

D'une façon pratique, pour construire ce corps, il faut dans un premier temps calculer le 
polynôme <I>n (par exemple en utilisant par récurrence la relation (1 .3)), puis rechercher 
un facteur irréductible de <I>n sur IF p · Pour ce faire, on pourra utiliser MAPLE, toute la 
démarche étant détaillée dans le premier programme du paragraphe 1 ,  annexe B. Un 
algorithme permettant de factoriser des polynômes sur un corps fini est l ' algorithme de 
Berlekamp. Il est détaillé dans le livre de DEMAZURE [24] . 

1.4 Transformée sur un corps cyclotomique 

Grâce à la décomposition du polynôme <I>n sur le corps IF P • on a réussi à construire une 

extension de IF P• notée K � IF P' ,  dans laquelle se trouve une racine nième primitive de 



162 Chapitre VI. Transformée de Fourier à valeurs dans un corps fini 

l 'unité, a. De plus, la connaissance de son polynôme minimal P nous permet de calcu­
ler avec les éléments de K (qui sont des vecteurs de r éléments de IF p). puisqu'il suffit 
d'utiliser la multiplication polynomiale modulo P. 

En se plaçant dans le corps K, on définit donc la transformée d'un vecteur f E Kn par 
l ' équation (1 . 1 ) . Cette fois, $(!) est lui aussi un vecteur de Kn. Dans la pratique, on 
utilise souvent cette transformée pour des données qui sont des éléments de (IF p r, mais 
il faut bien sûr garder en tête que le résultat n 'a  aucune raison de rester dans IF P . On 
retrouve le même phénomène que pour le calcul de la TFD (classique) d 'un vecteur réel, 
pour laquelle on est obligé de se placer dans l 'extension C du corps des réels .  Rappelons 
que si on note les éléments de IF p' comme des vecteurs (plutôt que des polynômes), un 
élément du corps de base IF P se distingue par le fait que seule la première composante du 
vecteur est non nulle. 

Cette construction d'un algorithme de transformée rapide pour une longueur N arbitraire 
sera utilisée à la section 3 .  Il sera en effet question de décoder certains codes correcteurs 
à l ' aide de la transformée de Fourier. Nous verrons que l'utilisation d'un sur-corps (qui 
peut paraître pour l ' instant un peu artificielle) devient alors très naturelle pour rechercher 
l ' ensemble des codes vérifiant certaines propriétés (on les appelle codes cycliques) . 

1.5 Calculs effectifs 

Nous allons pouvoir utiliser la transformée de Fourier à valeurs dans un corps fini pour 
faire des calculs de convolution. Comme tous les calculs sont effectués modulo p, nous 
allons devoir choisir un entier p suffisamment grand pour pouvoir récupérer des résultats 
de calculs dans Z, et non pas modulo p. 
Le meilleur exemple de l 'utilisation de cette transformée de Fourier est le calcul de pro­
duits de grands entiers, écrits en base b. Le paragraphe 5 .4, chap. IV, explique comment 
calculer le produit de deux entiers à l' aide d'une convolution acyclique. On peut déter­
miner facilement une borne sur la valeur des entrées d'une convolution linéaire de deux 
entiers représentés en base b : 

n- l  11- l 

If* g [kJ 1 = 2, f[ZJg [k - ZJ � 2, lf [lJ l lg [k - ZJ I � n ( b - 1 )2 . 
1=0 1=0 

Pour pouvoir calculer de façon exacte le produit de deux entiers, il faut que If* g [k] 1 < p. 
On aura donc intérêt à choisir p > n ( b - 1 )2 . 
Pour terminer, il convient de dire quelques mots sur l ' implémentation pratique de l ' algo­
rithme de calcul de la transformée. Le plus souvent, on va considérer que n est de la forme 
2k, et on va utiliser l ' algorithme dichotomique de FFT présenté à la section 2, chap. Ill. 
Les détails de l ' algorithme restent inchangés. Entre autres, si Ç est la racine d'ordre 2k 

cherchée, alors Ç2 sera la racine d'ordre 2k- l , etc. Bien sûr, il faut remplacer les opéra­
tions dans le corps des complexes par des opérations dans le corps fini K = IF p' . Il faut 
donc choisir une façon de représenter les éléments du corps K, et savoir comment les 
multiplier. Si on a recherché la racine primitive Ç comme il est indiqué au paragraphe 
1 .3 ,  on a un moyen très naturel de le faire. En effet, on dispose par la même occasion du 
polynôme minimal P de Ç ,  de degré r, et on peut donc représenter les éléments du corps 
comme des polynômes de degré au plus r- 1 (c'est-à-dire par des vecteurs de taille r dans 
la mémoire de l '  ordinateur). L' addition s 'effectue alors composante par composante, alors 
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que la multiplication s ' effectue comme une multiplication de polynômes modulo P. Cette 
multiplication se calcule de façon classique, puis en prenant le reste de la division eucli­
dienne par P. 

Le programme MAPLE de la section 1 ,  annexe B, effectue pas à pas les différentes étapes 
menant à la construction d'une transformée sur un corps fini. Il débute par la factorisation 
de <I>n sur lF P • et contient un algorithme FFf récursif. Il utilise pleinement les facilités de 
MAPLE, ce qui permet de ne pas avoir à se soucier des opérations dans le corps lF p' . On 
notera enfin qu' il précède le programme sur les codes correcteurs BCH (paragraphe 4, 
annexe B ), ce dernier utilisant les procédures de calcul de transformée sur un corps fini. 

2 Calculs sur un anneau 

Il est naturel, après avoir présenté la transformée de Fourier à valeurs dans un corps fini, 
d'essayer d'étendre cette notion à un anneau commutatif quelconque. Cette généralisation 
n'est pas du tout gratuite, puisqu' elle va permettre de calculer dans un anneau Z/mZ 
quelconque à moindre frais (le calcul des sommes et des produits se fait tout simplement 
modulo m). Nous allons ainsi obtenir un algorithme FFI' nettement plus simple que celui 
construit au paragraphe précédent, qui nécessitait le passage dans un sur-corps et le calcul 
de divisions euclidiennes pour effectuer les produits dans ce corps. Bien sûr, tout comme 
dans l ' exemple simpliste du paragraphe 1 .2, où nous avions n = p - 1 ,  nous allons encore 
une fois avoir des limitations sur le choix de n ou de p. Cependant, nous allons voir 
qu'en considérant des anneaux du type Z/2'Z, on peut construire un algorithme FFI' très 
simple, où la recherche de racine primitive devient triviale. 

2.1 Racines principales de l 'unité 

Dans ce paragraphe, nous considérons des structures plus générales, à savoir des anneaux 
commutatifs quelconques. Dans la pratique, on utilise surtout l ' anneau Z/mZ, où m est un 
entier positif, ce qui permet de faire des calculs de façon simple à l ' aide d'un ordinateur 
(addition et multiplication modulo m). Un problème se pose lorsque l 'on souhaite définir 
une transformée de Fourier à l ' aide de l ' équation ( 1 .2) sur un anneau A quelconque : la 
transformation ainsi définie n 'a  aucune raison d'être bijective. Ceci est dû à la présence 
de diviseurs de zéro dans l' anneau A. On rappelle qu'un diviseur de zéro x =/: 0, est un 
élément de A tel qu' il existe un y =/:  0 vérifiant xy = O . Par exemple, dans l' anneau Z/6Z, 
on a l ' égalité 2 · 3 = 0, donc les éléments 2 et 3 sont diviseurs de zéro. Pour pallier ce 
problème, nous allons devoir imposer des restrictions supplémentaires sur le choix de la 
racine nième Ç . En suivant les notations de DEMAZURE [24] , nous allons introduire le 
concept de racine principale de l 'unité. 
Définition 2.1 (Racine principale de l 'unité). Soit A un anneau commutatif quelconque. 
Un élément Ç E A est appelé racine nième principale de l 'unité si : 

(i) on a çn = 1 (en particulier, Ç est inversible) . 

(ii) pour tout i E { 1 ,  . . .  , n - 1 } , l ' élément 1 - Çi n'est pas un diviseur de zéro dans A. 
Ceci signifie que s i  aÇi = a, alors a = O. 

Remarque 2.2. Le fait que Çi - 1 ne soit pas diviseur de zéro pour i = 1 ,  . . .  , n - 1 im­
plique en particulier que Çi =/: 1 ,  donc une racine principale est une racine primitive. On 



164 Chapitre VI. Transformée de Fourier à valeurs dans un corps fini 

constate que si l ' anneau est intègre (et a fortiori si c ' est un corps), les notions de racine 
nième primitive et de racine nième principale coïncident. Par contre, si on considère 
par exemple l ' anneau Z/ 15Z, on voit que l ' élément 2 est une racine primitive 4ième de 
l 'unité, mais elle n'est pas principale, puisque 22 - 1  = 3 est un diviseur de zéro. 

Nous allons donc rechercher une racine principale de l'unité, par exemple en menant une 
recherche exhaustive parmi les éléments de A* . Comme ce calcul est effectué une fois pour 
toutes, il n'est pas important de disposer d 'un algorithme rapide. On peut alors définir la 
transformée de Fourier discrète à valeurs dans A de la façon habituelle. 

Définition 2.3 (Transformée de Fourier dans un anneau). Soit A un anneau commuta­
tif, et Ç E A* une racine nième principale. Pour un v�eur f E An , on définit la transformée 
de Fourier § ainsi qu'une autre application notée § par 

n- l 
Vj E {0, . . .  , n - 1 } ,  $/(f) [j] � L J[k] Ç-ki , 

k=O 
n- l 

Vj E {O, . . .  , n - 1 } ,  9/(f) [j] � L f[k] Çki . 
k=O 

(2. 1 )  

(2.2) 

Dans le but d'étudier les relations entre ces deux transformées, nous avons besoin du 
lemme suivant. 

Lemme 2.4. Soit A un anneau commutatif et Ç une racine nième principale de l 'unité. 
On a alors 

L Çki = 
n s� = n- l { . k 0 

i=O 0 sinon 
mod n 

De plus, n n 'est pas un diviseur de zéro dans l 'anneau. 
Démonstration. Nous allons démontrer l 'égalité polynomiale suivante : 

n- l 
xn - 1 = II (X - Çi) . 

i=O 

Notons P(X) = X" - 1 . On a P( l )  = 0, donc P s 'écrit (X - l )Q(X) ,  où Q est un polynôme 
unitaire (en effet, comme le polynôme X - 1 est unitaire, on peut réaliser la division 
euclidienne de P par X - 1 et voir que le reste est nul). Comme Ç est aussi racine de P, 
on voit que ( Ç - 1 ) Q( Ç) = 0, et le fait que Ç - 1 ne soit pas diviseur de zéro permet de 
conclure que Q( Ç) = O. On recommence avec Q, que l '  on écrit sous la forme (X - Ç)R(X) .  
On a alors P(Ç2) = (Ç2 - l ) Ç ( Ç  - l )R(Ç2) .  Le fait que Ç2 - 1  ne soit pas diviseur de 
zéro permet d' affirmer que R( Ç2) = O. On continue ainsi jusqu 'à  trouver la factorisation 
annoncée. En enlevant le facteur X - 1 ,  on trouve 

n- l 
xn- l + . . .  +x  + 1 = TI (X - Çi) . 

i= l 
D'où, en évaluant l ' égalité précédente en X =  1 ,  

n- l 
nlA = II ( t  - Çi) . 

i= l 
Ceci montre que n n'est pas diviseur de zéro dans A. En évaluant une autre fois la même 

égalité, mais pour X =  Çk, on obtient l ' égalité annoncée. 0 
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On peut alors énoncer le résultat principal. 
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Théorème 2.5 (Propriétés de la transformée sur un anneau). On note * le produit de 
convolution circulaire et · le produit composante par composante. $ est un morphisme 
d 'algèbre de (An , *) dans (An , · ) .  On a les relations 

et $($(!) ) = nf. 

Les morphismes $ et $ sont injectifs. De plus, si n lA est inversible, alors l 'application 
$ est un isomorphisme d'inverse n- 1$. 
Démonstration. La propriété de morphisme ne présente pas de difficulté, la démonstra­
tion est identique à celle effectuée pour la transformée à valeur dans C, théorème 4. 15 ,  
chap. I .  

� 

Nous allons calculer $(${!) ) : 

$($(J) ) [n] = L, ç-inlJ[j] Çii = L,fUJ L, Çi(j-n) . 
i j j i 

Il suffit ensuite d'utiliser le lemme précédent 2.4 avec k = j - n pour conclure. 
L'injectivité de $ résulte simplement du fait que n n'est pas diviseur de zéro dans A, car 

si $(!) = 0, alors $(${!) ) = nf = 0, donc f = O. D 

Dans le cadre de l ' anneau A �  Z/mZ, les conditions sous lesquelles on peut construire 
une transformée de Fourier deviennent plus simples. L'exercice VI.2 détaille les étapes 
qui permettent de démontrer la proposition suivante : 

Proposition 2.6. Soit m = p�1 x · · · x p�' où les p; sont des nombres premiers distincts. On 
peut construire une transformée de Fourier de taille n inversible sur l 'anneau A � Z/mZ 
si les conditions suivantes sont satisfaites. 

(i) pgcd {n , m) = 1 .  
(ii) Si m s 'écrit sous la forme , alors n divise pgcd {p 1 - 1 , . . . , Pr - 1 ) .  

La condition (i) permet d'inverser n dans A, et la condition (ii) permet de construire une 
racine nième principale. Dans le paragraphe suivant, nous allons particulariser cette étude 
à certaines classes d'entiers m, dans le but de construire un algorithme de calcul rapide de 
type FFr. 

2.2 Implémentation d'un algorithme FFT 

On souhaite implémenter un algorithme FFf dichotomique sur un anneau A quelconque. 
On suppose donc que n = 28, et le problème, pour pouvoir implémenter l ' algorithme, est 
tout d' abord de trouver une racine 2sïème principale de l 'unité. Mais lorsque le deuxième 

appel récursif sera lancé, il faudra trouver une racine (2s- I ) ième principale, puis une 

racine {28-2) ième , etc. Si on veut que l ' algorithme FFr soit réellement utile, il faut que 
cette recherche d'une racine principale prenne le moins de temps possible. 

La proposition suivante, dont la démonstration fait l 'objet de l ' exercice VI.3 ,  va nous 
permettre de construire cette racine principale Ç .  
Proposition 2.7. Soit A un anneau commutatif. Pour que Ç soit une racine principale 
(2k/ème , il faut et il suffit que 2 ne soit pas diviseur de zéro dans l 'anneau, et de plus que 
ç2k- I = -

1 . 
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On va choisir un entier m impair pour que 2 soit inversible dans A � Z/mZ (en particu­
lier, 2 ne sera pas un diviseur de zéro). De plus, en prenant simplement Ç = 2, on voit 

que Ç2k- I = - 1 dans A en assignant à m la valeur 22k- I + 1 .  On a bien trouvé une racine 

(2k) ième de l 'unité, en l 'occurrence Ç = 2, de plus, comme on le voit en reprenant l ' exer­

cice Vl.3 ,  Ç2 sera alors une racine (2k- I ) ième de l 'unité principale, puis on utilisera Ç4, 
etc. 

Remarque 2.8. Les nombres de la forme 2211 + 1 sont d'une grande importance, et sont 

appelés nombres de Fermat. On note Fern � 22" + 1 le nième nombre de Fermat. On voit 
facilement que tout nombre premier de la forme 2k + 1 est en fait un nombre de Fermat. 
On peut voir que Fero = 3, Fer1 = 5, Fer2 = 17 , Fer3 = 257 et Fer4 = 65537 sont tous 
premiers, malheureusement, Fer5 ne l ' est pas . . .  

En conclusion, cette méthode, bien que moins souple au niveau du choix de n , est net­
tement plus simple à mettre en œuvre que la transformée de Fourier dans un corps cy­
clotomique. De plus, elle demande nettement moins de calculs. Comme un programme 
complet vaut mieux que de longs discours, on pourra se référer au paragraphe 2, annexe 

B, où l ' algorithme FFf de longueur n sur l ' anneau Z/mZ avec m = 22•- I est implémenté 
en MAPLE. 

3 Application aux codes correcteurs 

The fundamental problem of communication is that of 

reproducing at one point either exactly or approximately a 

message selected at another point. Frequently the 

messages have meaning ; that is they refer to or are 

correlated according to some system with certain physical 

or conceptual entities. 

C. E. SHANNON [66] ( 1948) 

Ce paragraphe est une modeste introduction à la théorie des codes correcteurs ; il s ' agit 
avant tout de donner envie au lecteur de chercher des informations complémentaires dans 
la bibliographie proposée. Le but est d' appliquer les outils introduits depuis le début de ce 
chapitre, d'une part pour mieux comprendre les conditions mises en jeu dans la construc­
tion des codes, et d' autre part pour obtenir des algorithmes de décodage rapides et ef­
ficaces . Dans un premier temps, les définitions des notions principales sont données, en 
mettant en avant la théorie des codes cycliques. Puis ,  il s ' agit de réinvestir au mieux les 
connaissances que l 'on possède sur les corps cyclotomiques et sur la transformée de Fou­
rier discrète, pour arriver, à la fin de l 'exposé, à construire des codes et des algorithmes. 

La théorie classique des codes correcteurs d' erreurs aborde une grande variété de sujets, 
ce qui la rend particulièrement attractive (par exemple pour illustrer une leçon d' agréga­
tion) . Tout d' abord, elle traite de la géométrie finie (puisqu' il s ' agit au fond de manipuler 

des boules dans un espace fini) . Ensuite, l ' aspect combinatoire des codes présente bon 
nombre de propriétés remarquables, principalement autour des relations liant entre eux 
les différents paramètres des codes. Enfin, il sera beaucoup question de théorie des corps, 
qui constitue le cœur de cet exposé. 
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Une très bonne référence sur la théorie des codes correcteurs est le livre de PAPINI et 
WOLFMAN [56] . Celui de DEMAZURE [24] constitue un très bel exposé, avec entre autres 
un algorithme de décodage des codes BCH très efficace. 

3.1 Notion de code correcteur 

La notion de codage d'une information n'est pas nouvelle : elle est même intimement 
liée à l ' activité humaine, au besoin naturel de communiquer par des moyens divers mais 
pas toujours très fiables. Le meilleur exemple est le langage humain, très complexe, et 
qui répond parfaitement au besoin de correction des erreurs . Après tout, pourquoi utiliser 
des langues naturelles si compliquées, alors que l 'on pourrait utiliser des mots certaine­
ment beaucoup plus courts, avec une syntaxe beaucoup plus simple ? Une des explications 
consiste à dire que ces langues naturelles permettent de mieux se comprendre (à condi­
tion d'en maîtriser les rudiments). En effet, la diversité des mots employés diminue le 
risque d'erreur lors d'une conversation, et la rigidité des règles de grammaire rend cette 
communication moins sensible aux aléas (bruit ambiant, mauvaise prononciation, etc.) . 
En quelques sorte, tout ceci contribue à rendre les mots qui composent la langue très dif­
férents les uns des autres, de façon à ce qu'on puisse facilement les distinguer. Le cas 
échéant, si une erreur de communication se produit, il sera relativement simple pour le 
locuteur de retrouver le sens du message orignal. 

Ce premier exemple donne tous les points clefs d'une théorie des codes correcteurs d'er­
reurs. Il s ' agit de trouver un moyen de coder une certaine information de façon à la rendre 
moins sensible aux erreurs lors d'une communication. On peut découper le processus de 
codage de la manière suivante : 

- la transformation de l ' information (qui peut être une pensée, un son, une séquence 
d' ADN, etc.) sous la forme d'une suite de symboles . Dans la théorie qui va suivre, 
nous allons nous désintéresser du sens de cette suite de symboles. Il s ' agit en quelque 
sorte d'une couche d' abstraction qui va nous permettre de fixer une façon de représenter 
l ' information que l 'on veut traiter. 

- le codage mathématique proprement dit. C 'est cette partie du processus de codage qui 
va nous intéresser. Il s ' agit de modifier de façon adéquate la suite de symboles de façon 
à la rendre le moins sensible possible aux erreurs de transmission. Cette tranformation 
va exiger l 'ajout d' information redondante. 

Le but de la théorie des codes correcteurs est donc d'utiliser des structures algébriques et 
des algorithmes pour que : 

- l ' information redondante ajoutée au message lors du codage soit la plus faible possible, 
pour un nombre d'erreurs corrigées fixé. 

- les algorithmes de codage et surtout de décodage soient rapides et efficaces. 

Pour y parvenir, nous allons imposer des structures (algébriques) plus ou moins rigides 
sur l 'ensemble des mots manipulés (que l 'on nomme le code) . 

Le premier choix à faire est celui de l ' alphabet que nous allons utiliser pour écrire les mots 
des messages. L' information d'origine (par exemple un message que l 'on veut transmettre 
sur un réseau) sera ainsi transformée, lors de la première étape du codage, en une suite de 
symboles puisés dans cet alphabet. Un exemple capital d' alphabet est celui utilisé pour 
coder les informations génétiques du code humain. Dans ce cas, l ' information à coder est 
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l 'ADN (Acide Désoxyribonucléique), et les symboles sont 4 « bases azotées », que l 'on 
note symboliquement A,T,G et C. Ce premier exemple de codage est symptomatique de la 
construction mathématique que nous allons effectuer. Il s ' agit de remplacer l ' information 
(qui possède un certain sens pour celui qui la transmet) en une suite de symboles fixés. 
Des études récentes discutent d' ailleurs de l 'existence de codes correcteurs dans la suite 
de séquences azotées de l '  ADN, voir par exemple [49] . 

De façon à rendre agréable l ' analyse mathématique qui va suivre, nous allons prendre pour 
symboles des éléments de certains ensembles algébriques. Le choix que nous allons faire, 
et qui peut paraître arbitraire, est celui d 'un corps fini. En pratique, ce choix n'est pas 
si restrictif que cela. Par exemple, le codage binaire des éléments du corps IF2 = Z/2'11., 
convient parfaitement à la façon dont l ' information est stockée dans la mémoire d'un 
ordinateur. Dans le même ordre d' idée, les éléments d'un corps du type IF2r pourront être 
stockés sous la forme de vecteurs de r bits . Le deuxième choix à faire est celui des mots 
que nous allons effectivement envoyer sur un réseau. Ils auront tous la même longueur, 
que l 'on notera n. Ainsi nous allons regrouper les éléments de l ' alphabet envoyés par 
paquets de n pour obtenir des n-uplets (xo , . . .  , Xn- 1 ) , avec Xk E IF q· Dans la suite, nous 
supposerons donc que ces mots sont des éléments de l' espace vectoriel (!Fq)n , où q � pr 
avec p un nombre premier. 

On souhaite exploiter certaines structures algébriques pour donner naissance à des codes 
de plus en plus efficaces. Cependant, il existe de nombreux codes utilisés très fréquem­
ment et qui ne nécessitent pas des constructions algébriques complexes .  En voici deux 
exemples . 
Exemple 3.1 (Bit de parité). Il s ' agit sans doute du code le plus simple et le plus utilisé. 
L'information que l 'on souhaite coder consiste en une suite de n bits, que l 'on notera donc 
sous la forme a = aoa 1 . . .  an- 1 . où ak E {0, 1 } .  L'opération de codage consiste à ajouter 
un ( n + 1 ) ième bit an défini de la manière suivante : 

- d 2  an = ao +  · · · + an- 1 mo . 

En fait, on s ' arrange pour que la somme de tous les bits du mot transmis soit toujours 
un nombre pair. On constate alors que ce code permet, à la réception, de déceler une 
erreur due à la modification d'uniquement un bit, puisque alors la somme des bits sera 
impaire. Cependant, si deux erreurs simultanées ont lieu, le code sera incapable de les 
remarquer. En outre, il est vain de vouloir corriger une erreur avec un code aussi simple. Il 
va donc falloir construire des codes plus complexes (avec plus d' informations redondantes 
ajoutées), pour obtenir des performances qui satisfassent nos exigences .  Cependant, ce 
premier exemple est fondamental, d'une part parce que dans bien des cas, il est suffisant 
(si la communication est très fiable, comme c'est le cas pour le stockage en mémoire 
centrale d'un ordinateur), et d' autre part parce qu' il peut être superposé à un code déjà 
existant pour le rendre plus efficace. 

Exemple 3.2 (Code ISBN). Le code ISBN (pour International Standard Book Number) 
est un identificateur unique attribué à chaque livre. Il s ' agit d'une suite de 9 chiffres dé­
cimaux suivis d'un autre chiffre compris entre 0 et 1 0  (on note alors 10 sous la forme du 
chiffre romain X). Si on note l ' ISBN d'un livre do . . .  d9 , le dixième chiffre est calculé de 
façon à satisfaire l ' égalité 
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En général, on regroupe les d; en 4 paquets séparés par des tirets, comme par exemple 
dans l ' ISBN 0-201 -89683-4, dont les significations sont les suivantes . 

- Le premier groupe est composé d'un seul chiffre, qui caractérise le pays de l ' éditeur (0 
pour l 'Angleterre, 2 pour la France, 3 pour l 'Allemagne, etc .) .  

- Le deuxième groupe caractérise l ' éditeur, et sa longueur peut varier de 2 à 7 chiffres 
(moins il y a de chiffres, plus l 'éditeur est important). 

- Le troisième groupe caractérise le livre, et sa longueur peut varier de 1 à 6 chiffres. 
- Le quatrième et dernier groupe correspond au chiffre dg censé détecter d'éventuelles 

erreurs . 

On voit facilement que ce code permet de détecter une erreur, ainsi qu'un échange entre 
deux chiffres consécutifs. Cependant, il ne permet pas de corriger les erreurs, ni de détec­
ter certaines inversions de chiffres. Ce codage est très astucieux, car la plupart du temps, 
les codes ISBN sont saisis par des humains, qui ont souvent tendance à inverser deux 
chiffres consécutifs. 

Il existe de nombreux autres exemples de codes correcteurs dans la vie courante. On 
pourrait citer les numéros de Traveler 's Checks American Express, les codes barres, et 
bien sûr les disques compacts, qui utilisent des codes beaucoup plus complexes (pour 
contrer d'éventuelles rayures sur leur surface). 

Nos mots sont donc des vecteurs de l ' espace (lFq)n . Pour étudier les propriétés de notre 
code � c (lFq)n ,  il est intéressant d ' introduire une notion de proximité entre les mots qui 
le composent, pour pouvoir considérer ce code sous un angle géométrique. On est amené 
à considérer une distance sur l ' ensemble des mots . Voici celle qui est la plus couramment 
employée. 
Définition 3.3 (Distance de Hamming). On définit le poids d'un mot x E (lFq)n ,  que l 'on 
note w (x) , comme le nombre d'entrées non nulles dans x. La distance de Hamming entre 
deux mots x et y  de (lFq)n est définie par d (x, y) = w (x - y) . 
On voit facilement que d est bien une distance, c 'est-à-dire que pour des éléments x, y, et 
z de (lFp)n :  

(i) x =f: y ==9 d (x, y) > O ; 
(ii) d (x, y) = d (y,x) ; 

(iii) d (x, y) � d (x, z) +d (z, y) . 
Cette distance correspond donc au nombre d'entrées qui diffèrent entre deux mots . Par 
exemple, l ' illustration 6. 1 permet de visualiser la distance de Hamming sur {lF2)3 ,  chaque 
arête du cube reliant deux points à distance 1 .  On aurait pu choisir une autre distance, mais 
il s ' avère que la distance de Hamming est à la fois suffisamment simple pour permettre 
de faire des calculs efficaces, et assez précise pour bien rendre compte de l 'efficacité des 
codes. 

3.2 Présentation des codes linéaires 

Après le choix de l ' alphabet (qui est donc un corps fini lFq). la seconde hypothèse que nous 
allons faire concerne l ' ensemble des mots que l 'on peut coder. En effet, il est évident que 
l'opération de codage va ajouter de l ' information au message original, donc l ' ensemble 
des mots « valides » (c'est-à-dire les mots que nous serons en mesure de produire par 
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FIG . 6. 1 - Distance de Hamming sur (IF 2 ) 3 

codage) n'occupera pas l ' espace (IFq)n en entier. De façon intuitive, on peut voir que 
plus il y aura d'espace entre les mots valides (c'est-à-dire les mots du code), plus nous 
serons en mesure de les discerner les uns des autres, et donc plus il sera facile de repérer 
d'éventuelles erreurs . 

La recherche d'un ensemble CC c (IF q )n présentant, pour une taille ICC I donnée, la meilleure 
répartition de poids (dans un sens à préciser, mais intuitivement, tel que les mots soient les 
plus éloignés possibles des uns des autres) est un problème extrêmement difficile. Ainsi, 
cette recherche est intimement liée à celle d'empilement de sphères les plus compacts 
possibles , et au fameux problème du Kissing Number. On renvoie pour plus de détails à 
l' article de ELKIES [30] . On peut définir un ensemble de constantes caractérisant avec 
plus ou moins de finesse la répartition des mots d'un code. 
Définition 3.4 (Fonctions de répartition). On note {A;}î=o la répartition des poids d'un 
code CC C (1Fq)n :  

Vi = O , . . .  , n , A; � #{x E CC \ w(x) = i} . (3 . 1 ) 

On note {B;}Ï=o la répartition de distance de CC : 

1 
\li = 0, . . .  , n , B; � 

ICC l #
{ (x, y) E CC \ d(x, y) = i} . (3 .2) 

Il est à noter que les couples (x, y) sont considérés ordonnés c 'est-à-dire (x, y) i= (y, x) . 

Remarque 3.5. On constate que l 'on a Bo = 1 ,  et que 

Ao + ·  · · +A11 = Bo + · · · +Bn = ICC I . 

De plus, si u est un vecteur quelconque de (IF q )n , les codes CC et CC + u ont la même 
répartition de poids. C 'est pourquoi dans la pratique on suppose que 0 E CC, même si CC 
n'est pas linéaire. 

Nous reviendrons sur le calcul et l 'étude de ces répartitions à la section 4. Pour quantifier 
de façon plus simple cette répartition, nous introduisons une notion très utile, celle de 
distance minimale. 
Définition 3.6 (Distance minimale). On note d la distance minimale du code CC consi­
déré, qui est définie de la façon suivante : 

d � min {d(x,y) \ x i=  y E CC} . 
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Intuitivement, on se rend compte que plus cette distance minimale est grande, plus le code 
va être efficace, puisque les mots seront plus éloignés les uns des autres. Ce choix est très 
partial, et en quelque sorte très pessimiste, puisqu' il ne prend en compte que la plus petite 
distance. Cependant, il nous donne des conditions sous lesquelles on est assuré de corriger 
une erreur, ce qui est précisé par la définition suivante. 
Définition 3.7 (Capacité de correction). La capacité de correction t d'un code CC est 
le nombre maximum d'erreurs qu'il peut corriger. De façon plus précise, si l 'émetteur 
envoie un mot codé x E CC à travers un réseau, et que le récepteur reçoit un mot x (qui est 
peut être différent du mot envoyé), alors il doit être en mesure de retrouver le mot original 
si d (x,x) � t . 
Ceci signifie que les boules de rayon t (pour la distance de Hamming) dont le centre est 
un mot du code doivent être disjointes les unes des autres, ou, en d' autres termes, que les 
mots doivent être à une distance d 'au moins 2t + 1 les uns des autres. On obtient donc le 
résultat suivant. 
Proposition 3.8. Un code CC est t-correcteur (c 'est-à-dire qu 'il a une capacité de cor­
rection d'au moins t) si la distance minimale entre deux mots distincts est supérieure ou 
égale à 2t + 1 . La. capacité de correction du code est t = l ( d - 1 ) /2 J ,  où l 'on a noté lx J 
la partie entière d 'un réel x. 

Pour simplifier grandement la recherche de codes efficaces (par exemple avec une grande 
distance minimale d), nous allons imposer une structure très restrictive aux mots du code. 
Définition 3.9 (Code linéaire). Un code linéaire CC de taille n et de dimension m sur 
Fq est un sous-espace vectoriel de dimension m de (Fq)n . Si on considère une matrice G 
(appelée matrice génératrice) dont les colonnes forment une base de CC, on a 

CC = { Gx \ x E {lF q r} . 

Notons bien qu' il n 'y a pas unicité dans le choix de G. Certes, un code linéaire, même 
optimal, sera dans le meilleur des cas aussi bon que le meilleur des codes non linéaires 
(c'est-à-dire un code quelconque), et, dans la pratique, il sera beaucoup moins bon. Ce­
pendant, le fait de se restreindre à des sous-espaces vectoriels va rendre notre recherche 
beaucoup plus fructueuse, et va aussi amener son lot d' algorithme de décodage efficace. 
Par exemple, la propriété de linéarité de CC nous permet de calculer la distance minimale 
d beaucoup plus simplement : 

d � min { d(x, y) \ x =fa y E CC} = min { w(x) \ x =fa 0 E CC} . 
De même, dans le cas linéaire, on constate que les répartitions de poids et de distance 
coïncident. Sauf mention explicite du contraire, on suppose maintenant que le code CC est 
un code linéaire, de taille n et de dimension m. 
La première phase de l 'opération de codage consiste à transformer le message d'origine 
contenant une certaine information en un mot du code CC. Il faut que cette opération soit 
bijective. Dans le cas d'un code linéaire, il est très facile d 'y parvenir. La façon la plus 
simple d'opérer est tout simplement de considérer que nos messages sont des « petits » 
vecteurs de (Fqr. et qu'on les envoie sur des « grands » vecteurs de (Fq)n ,  simplement 
en les multipliant à gauche par la matrice G. La matrice G n'est pas choisie de façon ca­
nonique, mais le choix d'une autre base conduit à un code ayant sensiblement les mêmes 
propriétés (on parle de code isomorphe) . 

Remarque 3.10. (Matrice de contrôle). Un code de taille n et de dimension m sur 
Fq peut être vu comme le noyau d'une matrice H de taille (n - m) x n. On appelle cette 



172 Chapitre VI. Transformée de Fourier à valeurs dans un corps fini 

matrice une matrice de contrôle du code <:ef? ; elle permet de vérifier si un vecteur x E (IF q )n 
appartient au code puisque x E <:ef? <=? Hx = O . Il n 'y a pas unicité dans le choix de G. 

Exemple 3.11 (Code de répétitions). Prenons l ' exemple simple du code de répétition. 
Il consiste à répéter, par exemple, 4 fois un symbole x E IF2 . Les deux seuls mots du code 
sont ( 0000) et ( 1 1 1 1 ) .  Des matrices génératrices G et de contrôle H sont par exemple 

( 1 1 0 0) 
H = 1 0 1 0 . 

1 0 0 1 

Le code dual (notion précisée un peu plus tard, définition 4 . 1 ) est constitué des vecteurs 
x E (IF2)4 tels que (x, [ 1 1 1 1 ] )  = O . C'est donc simplement le code consistant à ajouter à 
x E IF� un bit de parité. On constate qu' il suffit, à une transposition près, d 'échanger les 
matrices génératrices et de contrôle. On pourra voir à ce sujet l ' exercice Vl.6. 

Exemple 3.12 (Code de Hamming de longueur 7). On considère le code de taille 7 et 
de dimension 4 sur IF 2 dont la matrice génératrice est r , 0 , 0 0 0) 

G �  0 1 1 0 1 0 0 
0 0 1 1 0 1 0 . 
0 0 0 1 1 0 1  

On peut expliciter les 1 6  éléments qui composent le code : 

XT (Gx)T w(Gx) XT (Gx)T w(Gx) 
(0000) (0000000) 0 ( 1000) ( 1 101000) 3 
(0 100) (0 1 10 100) 3 (00 10) (00 1 10 10) 3 
(000 1 ) (0001 10 1 ) 3 ( 1 100) ( 10 1 1 100) 4 
( 10 10) ( 1 1 100 10) 4 ( 100 1 )  ( 1 1 00101 ) 4 
(0 1 10) (010 1 1 10) 4 (0 101 ) (01 1 1001 ) 4 
(00 1 1 ) (00 10 1 1 1 ) 4 ( 1 1 10) ( 1 0001 10) 3 
( 1 10 1 ) ( 10 10001 ) 3 ( 10 1 1 ) ( 1 1 1 1 1 1 1 ) 7 
(0 1 1 1 ) (0 10001 1 ) 3 ( 1 1 1 1 ) ( 100101 1 ) 4 

Comme on peut le constater, chaque mot non nul du code est de poids supérieur à 3, donc 
la capacité de correction de ce code est 1 .  De plus, il possède une propriété intéressante : 
les 4 vecteurs lignes de la matrice G se déduisent les uns des autres par permutation 
circulaire. Par conséquent, l ' ensemble du code est invariant par permutation circulaire. 
Dans la suite, nous nous intéresserons aux propriétés algébriques de tels codes, et nous 
verrons que l 'on dispose d'outils fort pratiques pour les construire, et, dans certains cas, 
les décoder. L'exercice VI.7 propose de généraliser la construction qui vient d' être faite, 
pour donner naissance à une famille de codes très utilisée, les codes de Hamming. 
Pour terminer ce paragraphe, voici une relation importante entre les différents paramètres 
d'un code, qui montre bien le choix à faire entre capacité de correction et redondance de 
l ' information transmise. 
Proposition 3.13 (Borne de Singleton). Soit <:ef? un code correcteur linéaire de longueur 
n, de dimension m, et de distance minimale d. On a alors 

d ::::;; n + 1 - m. (3 .3) 
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Démonstration. Soit E le sous-espace de (JF q )n formé des vecteurs dont les m - 1 der­
nières composantes sont nulles . C'est un espace de dimension n - m + 1 .  
On a dim('lf) + dim(E) = n + 1 ce qui implique que 'If n E =f:. {O} . Il existe donc un 
élément x non nul dans 'If dont les m - 1 dernières composantes sont nulles, donc qui 
vérifie w(x) :::;; n + 1 - m. On a donc la relation voulue de part la définition de la distance 
minimale. [] 

Remarque 3.14. Les codes qui vérifient d = n + 1 - m sont appelés codes MDS (pour 
Maximum Distance Separable, en Anglais dans le texte), ils sont donc optimaux pour la 
borne de Singleton. L'exercice VI. 12 étudie en détail ces codes. 

3.3 Codes cycliques 

Le problème des codes linéaires est que dans le cas général, on ne dispose pas d' algo­
rithmes rapides de décodage, ou alors ces derniers nécessitent le stockage de tables de 
décodage qui deviennent vite énormes pour des codes de tailles respectables . Pour remé­
dier à ce problème, nous allons imposer une structure supplémentaire aux codes linéaires. 
Définition 3.15 (Code cyclique). Un code 'If de taille n sur lF P est dit cyclique s ' il est 
stable par décalage circulaire, c'est-à-dire 

\:la = (ao ,  . . .  , an- 1 ) T E 'If, a� (an- 1 ,ao ,  . . .  , a11-2) T E 'If. 

Une façon très commode de représenter les mots d 'un code cyclique consiste à les consi­
dérer comme des éléments de la lF p-algèbre J2I de dimension n qu'est 1Fp [X]/ (X11 - l ) . On 
considère donc qu'un mot a est en fait un polynôme de degré au plus n - 1 (on choisit un 
représentant modulo Xn - 1 ), noté a0 + a1X + · · · + an_ 1xn- l . On remarque alors que 

a= an- 1 + aoX + · · · + a11-2xn- l = Xa + a11- 1 (X11 - l ) . 
Donc modulo xn - 1 (c 'est-à-dire dans Jll), on a a = Xa. Le code 'If est stable par mul­
tiplication par X. Comme c'est aussi un espace vectoriel, par linéarité, on en déduit qu'il 
est en fait stable par multiplication par tout polynôme P E Jll. Ceci signifie que c 'est un 
idéal de l ' anneau Jll. On sait que les idéaux de J2I sont en bijection avec les idéaux de 
lF P [X] qui contiennent l ' idéal engendré par X11 - 1 . Comme l ' anneau de polynômes lF P [X] 
est principal, un idéal de lF P [X] / (Xn - 1 ) est engendré par un unique polynôme unitaire 
qui doit en plus être un diviseur de X11 - 1 .  
Si on note P le polynôme générateur du code 'If, on a, en notant s � deg(P) , 

'If =  {PQ mod Xn - 1 \ Q E 1Fp [X] } = {PQ \ deg(Q) :::;; n - s - 1 } . 

Le code 'If est donc de longueur n et de dimension n - s. L'opération de codage est encore 
plus simple que pour un code linéaire. L'information que l 'on veut transmettre, au lieu 
d'être contenue dans un vecteur de taille n - s, est cette fois représentée par un polynôme 
de degré au plus n - s - 1 (mais c'est la même chose) . Pour obtenir un mot du code que 
nous allons envoyer sur un réseau, il suffit de multiplier ce polynôme par le polynôme 
générateur P. 

Nous pouvons dès maintenant faire un rapprochement avec les idées que nous avons in­
troduites lors de l ' étude de la transformée de Fourier sur un groupe cyclique, et plus par­
ticulièrement lors de la recherche de techniques de multiplication rapide de polynômes 
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(section 5, chap. IV) . Nous avons déjà remarqué que la multiplication par un polynôme 
modulo xn - 1 correspond au calcul d 'une convolution cyclique de vecteurs de taille 
n (l' équation (5 . 1 ), chap. IV, montre très clairement le rapprochement) . On peut écrire 
l 'opération de codage d 'un vecteur x E (F p)n-s comme la convolution circulaire X *  y où 
on a noté y le vecteur des coefficients du polynôme P. Il convient d 'ajouter des zéros à 
la fin de chacun des vecteurs pour qu' ils atteignent la taille n. La matrice génératrice G 
du code correspond donc à une matrice circulante comme nous l ' expliquons à l ' exercice 
111.5 .  

Nous ne nous étions intéressés, à la  section 5, chap. IV, qu' à  des calculs pour des poly­
nômes de C[X] . Mais cette limitation n'était justifiée que parce que nous ne disposions 
pas de transformée de Fourier sur un corps autre que C. Grâce à la construction du para­
graphe 1 .4, cette limitation est levée, et nous sommes capables de réaliser une transformée 
de Fourier à valeurs dans le corps F P (même si cette dernière, rappelons-le, nécessite de 
passer dans un corps plus grand, que l 'on a noté F p' ). Donc en reprenant la formule de cal­
cul du produit de convolution cyclique (5 . 1  ), chap. IV, on voit que nous pouvons effectuer 
de façon rapide l 'opération de codage, moyennant bien sûr l 'utilisation d'un algorithme 
FFT pour réaliser la transformée de Fourier. 

3.4 Construction des codes BCH 

Dans ce paragraphe, nous allons présenter une classe de codes cycliques nommés codes 
BCH, du nom de leurs inventeurs, BOSE, CHAUDHURI et HOCQUENGHEM . La construc­
tion utilise pleinement la décomposition des polynômes cyclotomiques expliquée au pa­
ragraphe 1 .3 .  L' intérêt majeur de ces codes, outre leur description simple à l ' aide de la 
transformée de Fourier, est que l 'on dispose explicitement d 'un minorant de leur capacité 
de correction. Ceci permet d 'ajuster les paramètres du code en fonction des besoins. De 
plus, nous allons voir au paragraphe 3 .5 que l 'on dispose d'un algorithme de décodage 
efficace, ce qui rend ces codes utilisables de façon pratique. 

Nous allons construire un polynôme générateur d'un code cyclique à l ' aide des corps 
cyclotomiques présentés au paragraphe 1 .3 .  En effet, puisque nous nous intéressons aux 
diviseurs du polynôme xn - 1 ,  il est naturel de considérer le comportement modulo p 
des polynômes cyclotomiques «l>n . Dans la suite, on suppose que pgcd {n ,p) = 1 (voir 
la remarque 1 .7 dans le cas contraire). Rappelons que si on note r l 'ordre de p dans le 
groupe multiplicatif (Z/nZ) * ,  alors K � F p' est un corps de rupture du polynôme cl>n. 
Ceci nous permet donc de choisir a E K une racine nième primitive de l 'unité (un tel 
choix, rappelons-le, résulte du choix d'un facteur irréductible de «l>n modulo p, qui est de 
degré r) . Nous allons alors choisir le polynôme générateur P sous la forme 

P = II {X - ai) ,  (3 .4) 
iE/ 

où I est un sous-ensemble de { 1 ,  . . .  , n - 1 }  à déterminer. En effet, pour que l 'on obtienne 
un code cyclique sur F P • encore faut-il que le polynôme P soit à coefficients dans F P• et 
non pas simplement dans K. Voici un lemme simple mais important qui nous donne un 
moyen pour voir si un polynôme appartient à F P [X] . 
Lemme 3.16. Un polynôme Q E K[X] appartient à Fp [X] si et seulement s 'il vérifie 
Q(XP) = Q(X)P. 
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Démonstration. On sait qu'un élément y E K appartient au sous-corps premier IF P si et 
seulement s ' il vérifie yP = y (reprendre les arguments de la preuve de la proposition 1 .6 
en considérant les racines de XP - X). En utilisant le morphisme de Frobenius x f-+ xP de 
K dans K, on voit que si on note Q = a0 + · · · + akXk, on a 

Q(X)P = (ao + a 1X + · · · + akXk)P = ag + afXP + · · ·  + af (XPt (3.5) 

Ainsi, dire que af = a; pour i = 0, . . . , k  revient donc à dire que Q(X)P = Q(XP) . D 

La proposition suivante nous donne alors un critère qui va nous permettre de choisir de 
façon effective l ' ensemble /. 
Proposition 3.17. Le polynôme P appartient à 1Fp [X] si et seulement si I est stable par 
multiplication par p modulo n. 
Démonstration. Si P E IF p [X] et si f3 est une racine de P, on voit avec le lemme précédent 
que P(f3P) = P(/3 )P = 0, en conséquence de quoi l ' ensemble I est stable par multiplication 
par p. 
Réciproquement, si I est stable par multiplication par p, alors 

P(X)P = II (X - ai)P = II (XP - aiP) = II (XP - ai) = P(XP) ,  
iE/ iE/ iE/ 

donc on a bien P E 1Fp [X] . 

On a enfin en mains tous les outils nécessaires à la définition des codes BCH. 

D 

Définition 3.18 (Codes BCH). On appelle code BCH de distance assignée ô un code 
cyclique dont le polynôme générateur est obtenu par l ' équation (3 .4), où I désigne la plus 
petite classe cyclotomique (c'est-à-dire le plus petit ensemble stable par multiplication 
par p modulo n) contenant l ' ensemble d' indices { 1 , . . .  , ô - 1 } .  
Avant d' aller plus loin dans l ' investigation des propriétés de ces codes, nous allons donner 
un moyen simple de calculer le polynôme générateur une fois que l 'on connaît la décom­
position sur IF p du polynôme cyclotomique <I>n . Pour ce faire, nous allons considérer les 
classes cyclotomiques les plus simples qui soient, c ' est-à-dire les classes engendrées par 
un seul élément k E {O, . . .  , n - 1 }  : 

1 d6f. {k k k s- 1 } k = ' p , . . .  , p ' (3 .6) 

où on a noté s le plus petit entier tel que kp8 = k (dans le cas où k = 1 ,  on a bien sûr s = r 
degré de P). De façon plus élégante, on peut considérer la relation d' équivalence rv sur 
Z/nZ : 

'v'(x,y) E (Z/ nZ)2 , (x rv y) {::} (:li, x = yqi) . 
Les classes cyclotomiques sont alors les classes d'équivalence de Z/nZ pour cette rela­
tion, et forment une partition de {O, . . .  , n - 1 } .  On remarque que le polynôme 

Pk � II (X - ai) (3.7) 
iE/k 

est, d' après la proposition 3 . 17 , un polynôme de IF p [X] irréductible de degré s admettant 
a,k comme racine. En conséquence, c 'est le polynôme minimal de a.k. On obtient alors 
facilement la description suivante du polynôme générateur du code. 
Proposition 3.19. Le polynôme P générateur d 'un code BCH de distance assigné ô est 
le PPCM des polynômes P1 , . . .  , Pô- I dé.finis par l 'équation (3 .7). 
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Exemple 3.20. Voici un exemple de l 'utilisation des classes cyclotomiques, dans le cas 
de codes sur le corps JF2 . On souhaite construire des codes de longueur n � 25 - 1 = 3 1 ,  
donc on a ici r = 5 .  Voici la liste des facteurs irréductibles de xn - 1 sur lF2 : 

Polynôme : 

Po = X + l  
P1 = 1 +x +x2 +x4 +x5 
P3 = l +X3 +X5 
P5 = 1 +x +x2 +x3 +x5 
Pu = 1 +x +x2 +x3 +x4 +x5 
P14 = 1 + X2 + X5 
P1s = 1 + x + x3 + x4 + x5 

Classe cyclotomique : 

Io = {O} 
li = { l , 2, 4, 8 ,  16} 
h = {3 , 6 , 12 , 24, 17} 
Is = {5 ,  10 , 20, 9 , 1 8 }  
In = { 1 1 , 22, 1 3 , 26, 2 1 }  
I14 = { 14, 28, 25 , 19 , 7 }  
lis = { 1 5 , 30, 29 , 27 , 23 }  

Conformément à ce que nous avons conseillé de faire pour construire un corps cycloto­
mique, on choisit arbitrairement un facteur irréductible de plus haut degré, par exemple 
P1 , et on note a une de ses racines, qui sera donc une racine primitive de l 'unité, et que 
l 'on peut voir comme un élément de K � lF2s . Le polynôme Po est ainsi le polynôme 
minimal de 1 associé à la classe Io, le polynôme P3 le polynôme minimal de a3 associé 
à la classe h etc. Pour construire un code BCH, il suffit de choisir de façon judicieuse 
certaines classes cyclotomiques, et de multiplier entre eux les polynômes correspondants, 
pour obtenir le polynôme générateur du code. Par exemple, si on choisit les classes li et 
IJ ,  on obtient la classe cyclotomique { 1 , 2 , 3 , 4, 6, 8 ,  12 ,  16 ,  17 , 24}, et on voit que c'est la 
plus petite classe contenant { 1 ,  2, 3 ,  4} .  Par conséquent, le polynôme 

engendre un code BCH de distance assignée 5. Des exemples plus conséquents sont fa­
cilement constructibles à partir du programme MAPLE présenté à la section 4, annexe B, 
et qui permet de construire des codes BCH de paramètres arbitraires . Avant d'étudier les 
relations qui peuvent exister entre ô et la capacité de correction du code, on va introduire 
un formalisme matriciel qui va naturellement conduire à l'utilisation de la transformée de 
Fourier. 

Le polynôme P que nous venons de construire est le polynôme de lF p [X] de plus bas 
degré ayant pour racine a , a2 , . . .  , a0- 1 . En conséquence, les polynômes Q E lF P [X] qui 
constituent le code sont donc les polynômes de degré inférieur à n qui vérifient 

'v'i E { 1 ,  . . .  , Ô - l } ,  Q ( ai) = 0. (3 .8) 

Matriciellement, si on note q = { qo , . . .  , qn- 1 } le vecteur constitué des coefficients de Q, 
l 'équation précédente est équivalente à 

Aq = O avec A � { ij }i=O, . . . , n- 1 M (K) - a ,·-o "- 1 E ô- 1 n- 1 . 
- , . . .  , u  ' 

On peut aussi utiliser le langage de la transformée de Fourier discrète. On note .ffe la 
transformée obtenue avec la racine nième primitive a - 1 , comme définie à l ' équation 
(1 .2) (en prenant Ç = a- 1 ). La condition (3 .8) devient alors 

'v'i E { 1 ,  . . . , Ô - 1 } ,  Q (ai) = qti] � .ffe(q) [i] = 0. 
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Autrement dit, le code est maintenant défini en termes de conditions spectrales, de façon 
plus précise, par la nullité de ô - 1 composantes du vecteur transformé. En employant 
la notion de matrice de contrôle introduite à la remarque 3 . 10, on peut donc dire que les 
ô - 1 lignes de la matrice de Fourier constitue une matrice de contrôle pour le code BCH 
considéré. 

Remarque 3.21. (Dualité et distance minimale) . Intuitivement, on commence à com­
prendre quel effet peut avoir l 'utilisation d'un ô élevé. En forçant le vecteur transformé 
à avoir un support très réduit (par les conditions de nullité que nous venons d'explici­
ter), on force aussi le vecteur d'origine (c'est-à-dire un mot du code) à avoir beaucoup 
de composantes non nulles . Ceci est en accord avec le principe d ' incertitude discret, tel 
qu'il est énoncé à l' exercice 1. 1 1  (le résultat s ' étend sans difficulté au cas de la transfor­
mée de Fourier à valeur dans un corps fini) . De ce fait, nous allons obtenir une grande 
distance minimale pour le code, qui va donc avoir un taux de correction élevé. Encore 
une fois, nous voyons apparaître le principe de dualité que nous avons mentionné au pa­
ragraphe 1 .4, chap. IV. Précisons un peu tout ceci en indiquant un résultat qui nous donne 
un minorant sur le taux de correction du code. 

Proposition 3.22 (Distance minimale d'un code BCH). La distance minimale du code 
C(f construit est au moins ô. 

Démonstration. Il s ' agit de montrer que la boule de centre 0 et de rayon r � ô - 1 ne 
contient que O. Soit Q E C(/, qui est donc un polynôme de degré au plus n - 1 .  On suppose 
qu' il est dans cette boule, donc il a au plus r coefficients non nuls. Si on l ' écrit sous la 
forme 

Q(X) = a1Xb1 + · · · + a,.xb, , 

le fait qu' il appartienne à C(f implique 

w ·  E { l  } Q( i ) _ ib 1 + + ib, v l  , . . .  , r ' a - a1 a . . .  ara . 

Ceci signifie que le vecteur a �  { a 1 , • . •  , ar} E cr satisfait le système linéaire Ma = 0, 
où M � { a/bi } 1 _... . .  _... . On constate que c 'est une matrice de Vandermonde, et comme ""-'•J""-r 
les a;bi sont distincts, elle est inversible. Ceci implique donc que a = 0, ce qu' il fallait 
démontrer. D 

Dans la suite, pour simplifier les explications, on supposera que ô = 2t + 1 ,  de sorte que le 
code est au moins t-correcteur, puisque alors l ( ô - 1 ) /2 J = t. On peut remarquer que dans 
le cas où p = 2, on peut toujours supposer que ô = 2t + 1 ,  puisque la partie { 1 , . . .  , ô - 1 }  
peut être supposée stable par multiplication par p = 2. 

3.5 Décodage par transformée de Fourier 

L'un des intérêts des codes BCH que nous venons de construire est que l 'on dispose 
d' algorithmes simples et rapides pour les décoder. Par exemple une méthode utilisant 
l 'algorithme d'Euclide étendu est présentée dans le livre de DEMAZURE [24] . Dans ce 
paragraphe, nous allons présenter un autre algorithme, fondé sur la description du code 
en termes de transformée de Fourier discrète. 
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On suppose que l 'on vient de recevoir un mot codé x = x + e, où x représente le mot 
d'origine, et e l ' erreur de transmission. Notre but est de retrouver le mot x, ou de façon 
équivalente, de déterminer l ' erreur e, que l 'on écrit sous la forme 

e est inconnu, mais pour avoir une chance de pouvoir résoudre ce problème, on suppose 
tout de même qu' il vérifie w(e) � t. On rappelle que l 'on a supposé que 8 = 2t + 1 ,  de 
sorte que la proposition 3 .22 nous assure que le problème est bien posé. Mais il nous faut 
trouver un moyen de le résoudre de manière efficace. 

Nous savons, par la définition du code en termes de transformée de Fourier, que 

'v'i E { l , . . .  , 2t} , Ê[i] = .? l i] -XJi] = .? l i] . 

Nous savons donc calculer 2t = 8 - 1 coefficients du vecteur Ê. Il reste encore à calculer 
les autres, pour pouvoir, par transformée de Fourier inverse, retrouver l' erreur e. Pour ce 
faire, on introduit une inconnue intermédiaire, un autre polynôme. 
Définition 3.23 (Polynôme localisateur d'erreurs). On note 

J �  {i E {O, . . .  , n - 1 }  \ E; # O} . 

Nous avons déjà supposé que Card (J) � t, puisque w (x) � t .  On appelle polynôme loca­
lisateur d 'erreurs, et on note a, le polynôme 

a(Z) � II ( 1 - aiz) � 1 + a1z + · · · + a,zr . 
iEJ 

Le polynôme localisateur d'erreurs est donc un polynôme de degré au plus t , comportant 
t coefficients a priori inconnus. Les inverses des racines de a correspondent aux ai, où i 
est la position d'une erreur dans le mot transmis. 

On remarque que les polynômes e et 8 possèdent une propriété d'orthogonalité, au sens 
que 

- si s E J, &[s] � a(a-s ) = 0 et e [s] # O. 
- si s ri. J, &[s] � a(a-s) # 0 et e [s] = O. 

On peut résumer ceci par l ' équation 8 · e = 0, où on a noté · la multiplication coefficient 
par coefficient des polynômes. En utilisant le théorème de convolution (qui est encore 
valable pour une transformée sur un corps fini, comme l 'explique la proposition 1 .3), on 
obtient par passage à la transformée de Fourier l ' équation de convolution 

On rappelle que êll , considéré comme un vecteur, est obtenu conformément à la définition 
5 . 1 ,  chap. III. C'est donc le vecteur {Ê[O] , Ê[n - 1 ] ,  . . .  , Ê[l ] } .  Il suffit ensuite de rempla­
cer la convolution de vecteurs par la multiplication modulo zn - 1 des polynômes, pour 
obtenir une équation polynomiale assez complexe : 

mod zn - 1  = 0. 



§ 4. Codes correcteurs et dualité sur un groupe abélien fini 179 

On peut remplacer cette équation polynomiale en deux systèmes d'équations linéaires : 
� + � + � + + � 0 eo e1 0"1 E20'2 EtO't = 

� + � + � + + � 0 En- 1 EQ0'1 e1 0"2 Er- 1 O't 

(.9'1 ) � + � + � + + � 0 En-i En-i+ I  0"1 En-;+20'2 Et-iO't 

� + � + êf+30'2 + + � 0 Er+ I  &+20'1 . . .  E2r+ I  O't = 

r 
� 

Êr+20"2 
� 0 Et + Er+ I  0"1 + + + E2tO't 

(.9'2) _:._ + � � + + � 0 e2 830'1 + 840'2 . . .  ei+2<1r = 

� + � + � + + � 0 e1 E20'1 830'2 . . .  Et+ I  O't = 

Comme on connaît les valeurs de êi , . . •  ,ê21 , le système (.9'2) nous permet de calculer 
a1 , . . .  , O't de façon très simple (le système est en fait triangulaire) . On peut maintenant 
utiliser le système ( .9'1 ) pour trouver êo, ê21 ,  . . .  , En- 1 . puisque l 'on dispose de n - t équa-
tions pour seulement n - 2t inconnues . 

Remarque 3.24. Une fois que l 'on a calculé 0"1 , . . .  , O't (en résolvant le système .9'2), une 
autre alternative s 'offre à nous. En effet, puisque l 'on connaît O', il est possible de tester, 
pour i = 0, . . .  , n - 1 ,  si a(a-i) = 0, et ainsi de détecter les positions des erreurs . Le 
système .9'1 étant très simple à résoudre, les deux méthodes sont cependant équivalentes . 

Cette méthode de décodage est implémentée à l ' aide de MAPLE au paragraphe 4, annexe 
B .  Elle utilise les routines définies au paragraphe 1 ,  annexe B,  pour réaliser des transfor­
mées de Fourier à valeur dans IF p ·  

4 Codes correcteurs et dualité sur un groupe abélien fini 

Dans cette dernière partie, nous allons voir comment les outils développés dans les cha­
pitres précédents peuvent être utiles pour étudier les caractéristiques d'un code. Ainsi, 
vont tour à tour intervenir les notions d'orthogonalité, de dualité sur un groupe fini, et 
bien sûr les diverses transformations qui sont liées à toutes ces notions (transformée de 
Walsh et de Fourier entre autres). 

Le livre fondamental sur l ' étude combinatoire des codes correcteurs est celui de MAC­

WILLIAMS et SLOANE [50) . Ce paragraphe reprend les principaux résultats sur la dualité, 
en les exposant à travers le langage qui nous est maintenant familier, celui des algèbres 
de groupe C[G] et des caractères . Il est important de jeter un coup œil aux exercices pro­
posés, l ' exercice VI. 1 1  par exemple, propose une construction de codes non linéaires très 
efficaces .  

4.1 Polynômes énumérateurs de poids 

Dans la suite, nous allons nous restreindre à l ' étude des codes binaires, mais tous les 
résultats donnés s 'étendent au cas des codes définis sur un corps fini IF q quelconque. Il 
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faut utiliser les caractères additifs appropriés, et on se reportera à l ' exercice 11. 8 pour 
obtenir la formule de Mac Williams correspondante. Dans les pages suivantes, nous allons 
considérer et', un code linéaire sur 1F2, de taille n et de dimension m. 
Définition 4.1 (Orthogonal d'un code). On rappelle que l 'on dispose d'une forme bili­
néaire symétrique non dégénérée canonique sur (1F2)n , déjà introduite au paragraphe 3 .2, 
chap. II : 

n- 1 
V'(x, y) E (1F2) ll x (1F2)ll , (x ,y) � L x;y; . 

i=O 

On note ct'l. le code orthogonal de et' pour cette forme bilinéaire, c 'est-à-dire : 

ct'l. � {x E (1F2)ll \ V'y E et', (x ,y) = 0} . 

C'est donc un code de taille n et de dimension n - m. 

(4. 1 )  

Remarque 4.2. (Code dual) . On parle aussi de code dual pour désigner ct'l. . Cette dé­
nomination est très naturelle, puisque nous avons déjà vu à la section 3, chap. II les 
similitudes (et même l ' identité dans le cas de (1F2)n) entre les notions d'orthogonalité, de 
dualité sur un espace vectoriel, et de dualité sur un groupe abélien fini. 

Remarque 4.3. (Code auto-dual) . Il est important d' insister sur le fait que, même si on 
a toujours dim(ct') + dim(ct'l.) = n, un code et son dual ne sont en général pas supplé­
mentaires . Il arrive parfois que l 'on ait et' c ct'l., et l 'on parle de code auto-orthogonal. 
Lorsque l 'on a ct'l. = et' , on dit que le code est auto-dual. Cette notion est étudiée plus en 
détail à l 'exercice VIII.9. Le fait que la matrice génératrice puisse en même temps servir 
de matrice de contrôle permet de simplifier les procédures de décodage. 

Définition 4.4 (Polynôme énumérateur). On note W'I' E Z[X, Y] le polynôme énuméra­
teur de poids de et', qui est défini par 

n 

W't'(X , Y) � LA;xn-iyi , 
i=O 

où on a noté {A;}i=o la répartition de poids de et', définie par l 'équation (3 . 1 ) . 

Le résultat fondamental pour la détermination du polynôme énumérateur est l ' identité de 
Mac Williams, déjà démontrée au théorème 3 .6, chap. Il, et que l 'on rappelle ici. 
Théorème 4.5 (Identité de MacWilliams). On a 

1 W'l'.L (X , Y) = 

2m W't'(X + Y,X - Y) . 

Plusieurs exercices proposent d'utiliser tous ces outils dans le but d'obtenir des informa­
tions de nature combinatoire sur les codes correcteurs . L'exercice VI. 8 propose de calculer 
les polynômes énumérateurs pour les codes de Hamming. L'exercice Vl. 12 étudie la ré­
partition des poids des mots dans les codes MDS (c'est-à-dire ceux qui sont optimaux pour 
la borne de Singleton) . Enfin, l ' exercice VIIl.9 étudie les codes auto-duaux, en employant 
les techniques de la théorie des invariants pour exploiter les identités de Mac Williams. 
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4.2 Algèbre d'un groupe et codes correcteurs 
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Toutes ces techniques combinatoires sont donc très utiles pour analyser la structure d'un 
code linéaire. Elles tombent cependant en défaut dès qu' il s ' agit d'étudier un code non 
linéaire, c 'est-à-dire d'étudier la répartition des mots d 'un ensemble '(/ c (F2)n . On rap­
pelle que la notion essentielle pour étudier un code non linéaire n'est pas la répartition 
de poids {A;}Ï=o mais la répartition de distance {B;}�0, définie à l ' équation (3 .2). Dans 
le cas non linéaire, ces deux répartitions ne coïncident pas, et il peut être très complexe 
de les déterminer. Nous allons cependant voir qu'en utilisant la transformée de Fourier 
sur l ' algèbre C[(F2)n] ,  on peut obtenir de nombreuses informations sur '(/. Pour plus de 
commodité, on notera G � (F2)n , qui peut être vu comme un groupe additif. On rappelle 
que C[G] désigne l ' algèbre des fonctions de G dans C. Les caractères de G sont notés, 
pour a E G, 

{ G --+ C* 
Xa : X 1-----t ( - 1 ) (a,x) · 

On rappelle la définition de la transformée de Fourier de f E C[G] ,  déjà donnée en 
(4. 1 ), chap. 1 :  

� { G --+  C f : a 1-----t LxeGXa (x)f(x) · 
Ces définitions bien en tête, expliquons comment on peut représenter un ensemble de 
vecteurs de (F2)n = G comme une fonction de C[G] . 
Définition 4.6 (Fonction indicatrice). Soit '(/ c G (qui n'est pas nécessairement un code 
linéaire). On définit la fonction indicatrice de '(/ par 

1"' � Li ôx . 
xE<t' 

C'est la fonction qui vaut 1 sur '(/, et zéro partout ailleurs . On peut ainsi identifier les 
sous-ensembles de G (c'est-à-dire les codes quelconques) à des fonctions de C[G] .  
Ces fonctions indicatrices sont étudiées en détail à l ' exercice 1.4. Cet exercice fait en 
particulier le lien entre les propriétés spectrales de la fonction f <e et la « régularité » 
de '(/. Attardons-nous un instant sur le cas des codes linéaires . La question qui se pose 
naturellement est de savoir s ' il y a un rapport entre la fonction indicatrice de '(/ et celle de 
'(f.L .  Nous avons déjà vu à l 'équation (3 .6), chap. II, que 

x E '(/1- {::} Vt E '(/, (x, t) = 0 {::} Vt E '(/, Xx(t) = 1 .  (4.2) 

Cette propriété est fondamentale ; elle va nous permettre de calculer la transformée de 
Fourier de la fonction f <e. 
Proposition 4.7 (Transformée d'une fonction indicatrice). Soit '(/ un code linéaire. On 
a alors 

h = l'(f lf <e.L • 

Démonstration. Si x E '(/1-, alors l ' équation (4.2) nous dit que 

h(x) = L, Xx(t) = Li 1 = 1'(/1 . 
tE<t' tE<t' 

De même, si x (j. '(!1-, l ' équation (4.2) nous dit qu' il existe to E '(/ tel que 

Xx (to) f: 1 , c'est-à-dire Xx(to) = - 1 .  
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On obtient donc 

-h(x) = L Xx(to)Xx(t) = L Xx(t + to) = h(x) , 
tE<6' tE<6' 

la dernière égalité provenant du fait que Cfl est un sous-espace vectoriel de G (ou un sous­
groupe additif, en changeant de vocabulaire). On a donc bien 

X fj_ Cfl.l ===? h(x) = Ü.  0 

Notre but est d'étendre la notion de dualité à des ensembles Cfl quelconques.  Il serait 
tentant d'étudier l ' espace formé des vecteurs orthogonaux à Cfl. Cependant, la construction 
qui va permettre d'obtenir des informations sur Cfl est plus complexe. En effet, il s ' agit de 
construire une fonction duale de la fonction indicatrice f <6'. Dans un souci de généralité, 
nous allons définir la fonction duale d'un élément quelconque de C[G] , à partir du moment 
où sa moyenne n'est pas nulle. 

Définition 4.8 (Fonction duale). Soit / E C[G] telle que Mt � LxEaf(x) =/= O. On définit 

la/onction duale de f, notée f.l par /1- � tJ1f 
On peut donc énoncer le résultat important suivant. 

Proposition 4.9. Si Cfl est un code linéaire, on a (!<6' ) 1- = f<6'1- ·  
Démonstration. I l  suffit de remarquer que pour f = /<6' , on a Mt = ICt!I . Il ne reste plus 
qu'à  appliquer la proposition 4.7. 0 
Toujours dans l ' idée d'étendre les notions propres aux codes linéaires à des codes plus 
généraux, définissons le polynôme énumérateur de poids d'une fonction. 

Définition 4.10 (Polynôme énumérateur d'une fonction). Soit f E C[G] . 
Pour i = 0, . . .  , n, on définit 

A; � L f(x) , 
w(x)=i 

ainsi que le polynôme énumérateur de poids de f : 
n 

Wt(X , Y) � I,A;xn-iyi , 
i=O 

On constate que ce polynôme généralise celui défini en 4.4, puisque l 'on a, pour Cfl un 
code linéaire, 

W<6'(X, Y) = Wh (X, Y) . 
La question est de savoir si les identités de Mac Williams sont encore valides . La réponse 
est positive, et on peut reformuler ces identités avec le vocabulaire des codes correcteurs. 

Théorème 4.11 (Identité de MacWilliams pour des fonctions). Soit f E C[G] telle que 
Mt =/= O. On a alors 

1 Wp (X , Y) = Mt Wt(X + Y,X - Y) . (4.3) 

Démonstration. On a, en utilisant la définition de /1-, 

wtl. (X , Y) = L _
1 (r Xx(Y)f(y)) xn-w(x)yw(x) 

xEG Mt yEG 
= _

1 L f(y) L Xx(y)xn-w(x)yw(x) . Mt yEG xEG 
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Or nous avons déjà calculé la somme interne lors de la preuve du théorème de Mac­
Williams 3 .6, chap. II : 

L Xx(y)xn-w(x)yw(x) = (X + Yt-w(y) (X - Y)w(y) ' 
xEG 

et on arrive bien au résultat voulu. D 
On voit que si l 'on applique l ' identité (4.3) à la fonction indicatrice d'un code linéaire, on 
retrouve l ' identité de Mac Williams pour les codes linéaires . 

4.3 Etude combinatoire de codes quelconques 

Nous allons maintenant voir comment on peut appliquer toutes ces constructions effec­
tuées sur l ' algèbre C[G] à l 'étude d'un code. Soit donc 1f c (IF2)n un ensemble quel­
conque. On peut voir 1f comme un code correcteur quelconque, non nécessairement li­
néaire. 

Définition 4.12 (Fonction de distance). La fonction de distance D"' E C[G] est définie 
par : 

d6f. 1 
0"' = IWI 1"' * 1"'' 

où * désigne le produit de convolution des fonctions sur G, comme nous l ' avons défini à 
l 'équation (4.6), chap. 1.  
Cette fonction peut se calculer de façon explicite : 

1 D"' = lîf l  L L Ôx+y · 
xE"'yE"' 

(4.4) 

En particulier, on voit que si 1f est un code linéaire, on a D"' = f"'. Dans la suite, on note 
le polynôme énumérateur de poids de D"' sous la forme 

Il 

WD'i!' = L D;xn-iyi . 
i=O 

On a alors la proposition suivante, qui permet d'obtenir simplement des informations sur 
la répartition des mots de 1f les uns par rapport aux autres. 

Proposition 4.13 (Répartition de distance). {D;}?=0 représente la répartition de dis­
tance de 16', c 'est-à-dire : 

D; = B; � l�I #{ (x, y) E 16'2 \ d(x, y) = i } , 

où d(x, y) désigne la distance de Hamming entre x et y. 
Démonstration. L'équation (4.4) peut se mettre sous la forme 

n 1 Dw = L IW I L Ôx-y · 
i=O d(x, y)=i 

Or on a, par définition, D; = Lw(z)=iDw (z) . Ce qui donne donc, en utilisant (4.5), 

1 D; = IWI L 1 , d(u, v)=i 

(4.5) 
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ce qui est exactement le résultat voulu. 0 

Remarque 4.14. On peut remarquer que le raisonnement effectué pour démontrer la 
proposition 4. 1 3  utilise le fait que, pour (x, y) E (IF�)2 , on a x +  y = x - y. Pour étendre 
cette proposition à un corps fini IF q quelconque, il faut introduire, pour f E q (IF q )11] la 
fonction symétrisée f :  x f-t j(-x) . On doit alors définir la fonction de distance comme 
suit : 

déf. 1 � 

D� = llfl f� * f� . 
On vérifie sans problème que la proposition 4. 1 3  est encore valide, tout comme le reste 
des résultats de ce paragraphe. 

Dans le cas linéaire, on sait donc que le polynôme énumérateur de D� = D�l_ va repré­
senter la répartition de distance du code dual <tf.L . Il est donc naturel d'étudier la géné­
ralisation de ce procédé aux codes non linéaires. Ceci signifie donc étudier le polynôme 
énumérateur de la fonction D�, qui n 'a  a priori aucune raison d' avoir des propriétés inté­
ressantes . Pour calculer cette fonction, remarquons que, d'après (4.4), 

(4.6) 

Le théorème 4. 1 1  nous permet de calculer, à partir de Wvc,r•  le polynôme de la fonction 
duale. Pour l ' instant, contentons nous de l ' écrire sous la forme 

(4.7) 

On peut remarquer que, par définition de la fonction duale et en utilisant (4.6), les B� 
valent 

' 1 � -
Bi = llf l k.J . D� (x) , 

w(x)=1 

même s ' il est moins simple d'utiliser cette expression plutôt que le résultat du théorème 
4. 1 1 .  A priori, les nombres B� ne possèdent aucune propriété particulière. En particulier, 
il n 'y a aucune raison pour que les B� représentent la répartition de distance d'un code. 
En effet, <if n'étant pas linéaire, le code dual <rf.L n'est pas défini : tout repose donc sur la 
fonction duale Jrj .  Par exemple, B� n 'a  aucune raison d'être entier ! Voici cependant un 
résultat simple qui précise les choses . 

Proposition 4.15. Les B� sont des nombres rationnels positifs. 

Démonstration. Il suffit d'utiliser le théorème de convolution 4. 15 ,  chap. 1 pour réécrire 
les B� sous la forme 

' 1  � 1 � - 2 Bi = l<rf l 2 k.J .§ (j� * f�) (x) = llfl 2 k.J _J� (x) � O. 
w(x)=1 w(x)=1 

D 

Cette propriété, en apparence anodine, permet de démontrer une inégalité très fine sur la 
taille maximum des codes de taille n et de distance minimale d. Ce développement néces­
site l ' introduction des polynômes de Krawtchouk, qui sont définis au début de l 'exercice 

VI. 12. L'exercice VI. 1 3  détaille les étapes qui permettent de démontrer cette inégalité. 
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Exemple 4.16. Les codes de Hadamard sont définis à l ' exercice Vl. 1 1 .  On considère 
l ' exemple du code .!<(g, calculé grâce aux résidus quadratiques modulo 7. Les vecteurs qui 
le composent sont donnés à l 'équation (5 .2). C'est un code simplexe contenant le vecteur 
nul, donc sa répartition de poids est égale à sa répartition de distance : 

Ao = Bo = 1 , A4 = B4 = 7 et \;fi fj. {0, 4} , A; = B; = O. 
On obtient donc le polynôme énumérateur de poids suivant : 

Wv..,.8 (X , Y) = X1 + 7X3Y4 . 
La répartition de distance duale se calcule de la façon suivante : 

1 1 Wv.L = -8Wv..,.. (X + Y,X - Y) = -8 ( (X + Y)1 + 7 (X + Y)3 (X - Y)4) 
dg 8 

= x1 + 7x4y3 + 7x3y4 + y1 . 
Ce qui donne donc 

i 1 3 4 7 
B� 1 7 7 1 1 

Pour un code de Hadamard H12. on obtient 

1 Wv.L (X , Y) = 12Wv"" (X + Y,X - Y) 
d12 12  

Ce qui donne donc 

1 
B� 1 1 

= 1
1
2 
( (x + Y) 1 1  + l l (X + Y)5 (X - Y)6) 

= X1 1  + 55 y3xs + n
oy4x1 + 88ysx6 + 88y6xs 

3 3 3 3 
noy1x4 55 ysx3 yn + 3 + 3 + . 

3 4 5 6 7 8 1 1  
1 81  3 39� 3 29! 3 29! 3 36� 3 1 8 1  3 1 

On constate que l 'on a bien B� ;:: 0 et que 

n 5 12 2 1 1  
�

B� = 3 = J oli  J '  1=0 12 
Ceci est tout à fait normal, puisque CC est un code qui contient 0 et que 

S Exercices 

1 2n 
#'v� ( l , 1 ) = ICCI #'v<Ç (2, 0) = ICCI . 

Exercice VI.1 (Polynômes cyclotomiques). En utilisant MAPLE, montrer que les plus 
petites valeurs de n pour lesquelles <l>n possède un coefficient égal à ± 1 , ± 2, ± 3 , . . .  sont 

0, 105 , 385 , 1 365 , 1785 , 2805 , 3 1 35 , 6545 , 6545 , 10465 , 10465 , 
10465 , 10465 , 10465 , 1 1 305 , 1 1 305 , 1 1 305 , 1 1 305 , 1 1 305 , 
1 1 305 , 1 1 305 , 150 15 , 1 1 305 , 17255 , 1 7255 , 206 15 , 20615 , . . .  
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Exercice VI.2 (Condition d'existence d'une racine principale). Cet exercice détaille 
les étapes de la démonstration de la proposition 2.6. Il s ' agit de trouver une condition 
pour que l 'on puisse construire une transformée de Fourier sur Z/mZ, où m s 'écrit sous 
la forme m = p�1 x · · · x p�' et les p; sont des nombres premiers distincts . On rappelle le 
théorème d'Euler : si x est inversible dans Z/sZ, alors x<l>(s) = 1 mod s. On a noté <l>(s) 
la fonction d'Euler, c 'est-à-dire le nombre d' inversibles dans Z/ sZ. 

1 .  Expliquer pourquoi il existe une racine nième principale dans IF P• pour p premier, 
si et seulement si n lp - 1 .  Soit alors Ç une telle racine, que l 'on assimile à son 
représentant dans { 0, . . .  , p - 1 } ,  vu comme sous-ensemble de Z/ prz. 

2. On se place dans Z/ prz, et on note Ço � ÇP'- 1 • Montrer que Ç est inversible dans 
Z/prz puis que çg-

1 = 1 . 
3 .  Montrer que dans IFp, et pour s =  1 ,  . . . , n - 1 , 

En déduire que Ç0 - 1 est premier avec pr et donc que Ç0 est une racine nième 
principale de l 'unité dans Z/ prz. 

4. En utilisant le théorème chinois, conclure. 

Exercice VI.3 (Racines dyadiques principales). On souhaite démontrer la proposition 
2.7, qui donne un critère simple pour trouver une racine (28) ième principale dans un 
anneau commutatif A. 

1 . Montrer que pour que Ç E A soit une racine (nm) ième principale de l 'unité, i l  faut 
et il suffit que çm soit une racine nième principale, et que Ç11 soit une racine mième 
principale. 

2. Quelles sont les racines carrées principales de l 'unité ? Préciser à quelle condition 
elles existent. 

3. Montrer par récurrence sur k la proposition 2.7 
Exercice VI.4 (Fonctions booléennes). Cet exercice utilise la transformée de Walsh dé­
finie à la section 2, chap. Il. Une fonction 1 :  (IF2 ) 11 ---+ IF2 est appelée fonction booléenne 
à n arguments .  D'une façon pratique, on peut aussi se représenter une telle fonction par la 
fonction réelle f � ( - 1 )f à valeurs dans { - 1 ,  1 } , ce qui permet de calculer la transformée 
de Walsh 'W(f) : 

\;/k E (IF2)11 , 'W(f) (k) � li f(t) (- l ) (t , k} .  
tE (IF2)" 

Dans la sui�. on jonglera entre ces deux types de représentations f et 1 Une fonction 
booléenne f est dite affine si elle s 'écrit 

\;/x E (IF2)" ,  f(x) = la,b (x) � (x, a) + b, 
où a E (IF2)11 ,  b E IF2, et ( · , · ) désigne la forme bilinéaire canonique sur (IF2)11 , déjà ren­
contrée à l ' équation (4. 1 ) .  On va utiliser la distance d(f, g) entre deux fonctions boo­
léennes, qui est, par définition, la distance de Hamming (définition 3 .3) entre les vecteurs 
V(!) = {f(x) }xEIF� et V(g) = {g(x) }xEIF� On définit alors la non-linéarité de J par 

N(f) � inf { d(!Ja,b) \ a  E (IF2)11 , b E IF2} . 
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1 .  Expliquer pourquoi toute fonction booléenne f peut se mettre de façon unique sous 
la forme polynomiale suivante : 

VxE (lF2)", f(x) =b+aoxo+ .. ·+an-IXn-I 
+ao1xox1 +ao2xox2 + · · · +ao .. ·n-JXO · · ·Xn-1· 

Justifier de façon intuitive le terme de non-linéarité. 
2. Montrer que l 'on a 

N(f) = 211-1 - � max{ l'.tf'(f) (k) I  \ k E (lF2)" - {O}} . 
En déduire une méthode rapide de calcul de N(f) qui utilise l ' algorithme FWT. 

3 .  Montrer que l 'on a 

On suppose que n est pair. Montrer qu'une fonction f atteint la borne précédente 
si et seulement si pour tout k E (lF2)", 11f'(f) (k) I  = 2�. Dans la littérature anglo­
saxonne, on les appelle « bent functions ». Elles ont été introduites pour la première 
fois par ROTHAUS dans [6 1 ] .  

4 .  Pour u E (lF2)" et v E (lF2)m, on pose w � (u, v )  E (lF2)n+m. Soient j et g des 
fonctions de n et m variables. On définit h une fonction de n + m variables par 
h(w) = f{u) + g(v) . Montrer que h est bent si et seulement si jet g le sont. 
Montrer que Jo(u1,u2) = u1u2 est bent. En déduire l 'exsitence de fonctions bent 
pour n pair. 

5 .  On nomme code de Reed-Muller d'ordre 1 en n variables (noté R( l , n)) le sous­
espace vectoriel de l 'espace des fonctions booléennes formé des fa, b · pour a E JF� et 
b E lF 2· Quelle sont la dimension et la distance minimale de ce code ? La procédure 
de codage consiste, à partir du couple (a,b), à produire la table de vérité V(fa, b ) , 
c' est-à-dire le vecteur {!a, b (u) }uE (IFz)" = Fa, b · Proposer un algorithme de codage 
rapide. Pour F = V(!) E (lF2)2", quel est le couple (a,b) tel que d(f.fa, b ) soit 
minimal ? En déduire un algorithme de décodage rapide. 

La détermination des fonctions les moins linéaires dans le cas où n est impair est un pro­
blème ouvert. Les fonctions fortement non-linéaires sont très utilisées en cryptographie. 
Un exposé complet sur ce sujet est l ' article de PASALIC et JOHANSSON [57] . 

Exercice VI.5 (Apprentissage de fonctions booléennes). Dans cet exercice, on conserve 
les notations de l 'exercice VI.4. On se propose, en utilisant quelques notions de proba­
bilité, d'effectuer des prédictions booléennes sur une fonction f en n'utilisant qu'une 
connaissance approchée de sa transformée de Walsh. Cette théorie a été développée ini­
tialement par KUSHILEVITZ et MANSOUR dans [40] . On note lP la distribution de pro­
babilité uniforme sur (JF2)11, c'est-à-dire Vx E (lF2)11, JP(x) = 2-11• En représentant une 
fonction booléenne j par la fonction réelle f = ( - 1 )f, on peut alors calculer l 'espérance 
de / : 

E [/ ] � � L f(x) = l
n 11'(!) (0) .  2 xE (IF2)" 2 

Enfin, on rappelle la borne de Chernoff-Hoeffding, que l 'on pourra trouver dans [55] . 
Soient X1, ... ,Xm des variables indépendantes identiquement distribuées telles que X; soit 
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à valeurs dans (- 1 ,  l ] ,  E [X;] = p et Sm = I�1 X; . Alors on a 

Dans la suite, on considère f une fonction booléenne inconnue, dont on suppose seule­
ment pouvoir accéder à des échantillons f(xk) , où les Xk sont tirés au hasard de façon 
indépendante selon une loi uniforme. Notre but est de donner, avec aussi peu d'informa­
tions que possible, une bonne estimation de f. On dit que l 'on « apprend » la fonction 
f. 

1 .  Supposons qu'un des coefficients a13 = (f ,X,13 ) = z-n1f/(f) (/3 ) soit très grand. 
Quelle est l 'erreur quadratique E[{f - h)2] que l 'on commet en remplaçant f par 
h dll. ? = a13X,13 · 

2. A priori, h n'a aucune raison d'être une fonction booléenne. On remplace donc h 
par ho = Signe{h) . Montrer que l 'on a alors 

JID {f(x) # ho (x) ) :::;; E [ (f - h)2] .  
3 .  On est donc intéressé par le calcul approché de a13 = E [f'X,13] . On propose d'utiliser 

m échantillons f (xk) et de calculer la valeur moyenne : 

�déf. 1� ( )  ( )  a13 = - k.J f Xk X13 Xk . m k= l 
(5. 1 )  

On souhaite donc approcher l a  fonction inconnue f par <Po � Signe( a13X13 ) . Montrer 
que si m � f! ln ( % ) alors 

En déduire que l 'on a, avec une probabilité d 'au moins 1 - ô , la majoration suivante 
de la probabilité d'erreur : 

4. On souhaite maintenant approcher toute une classe de fonctions possédant des coef­
ficients « hautes fréquences » faibles. On dit qu'une fonction booléenne f a un 
degré (a , d) si 

L a ;::-;;;a, 
w(s)>d 

où w(s) est le poids de Hamming d'un mot s E {IF2)n . Pour tous les s tels que 
w(s) :::;; d, on calcule fis par l ' équation (5 . 1 ) . On considère ensuite la fonction 

déf. s· ( ) , déf. � _ <Po = 1gne <p ou <p = k.J asXs· 
w(s)�d 

Montrer que si l 'on choisit m � 2�d ln ( 2t) , alors on a 

JID {f(x) # <Po (x) ) :::;; a + e 
avec une probabilité d 'au moins 1 - ô .  
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On pourra noter que l'exercice VIII.7 utilise la théorie des représentations pour trouver 
une base orthonormée de C[(IF2)n] qui diffère de la base de Walsh. Ceci permet d'envisa­
ger d'autres méthodes pour apprendre une fonction booléenne. 
Exercice VI.6 (Matrices génératrice et de contrôle). Soit CC un code linéaire de dimen­
sion m et de taille n sur IFq . 

1 .  Quel liens y a-t-il entre les matrices de contrôle et les matrices génératrices de CC et 
de CC.l ? 

2. On suppose maintenant que la matrice génératrice de CC est sous forme systéma­
tique, c'est-à-dire que 

G = (1!m) avec A E (IFq) (n-m) xm . 
Quels sont les avantages d'une telle fome ? Comment s'écrit une matrice de contrôle 
de CC?  

3 .  Montrer que tout code linéaire CC est équivalent à un code systématique. On dit que 
deux codes sont équivalents si ils ne diffèrent que par l'ordre des symboles formant 
chaque mot du code (ils possèdent les mêmes caractéristiques, en particulier, la 
même répartition de poids). 

Exercice VI.7 (Codes de Hamming). On appelle code de Hamming sur IF2 tout code 
CC de longueur n = 2k - 1 admettant comme matrice de contrôle une matrice H définie 
comme suit : les colonnes de H sont tous les vecteurs de (IF2)k - {O} . 

1 .  Montrer que sa dimension est m = 2k - 1 - k et que sa distance minimale est 3 .  
Comment décoder une erreur ? 

2. En reprenant la construction des codes BCH dans le cas où q = 2 et n = 2k - 1 ,  
montrer que l'on peut définir ainsi un code cyclique qui est un code de Hamming 
(on considérera le corps cyclotomiques K = IF2k , et on utilisera le fait que si a est 
une racine nième primitive, alors ai parcourt tout K*). 

3 .  Prouver que le code ainsi construit est parfait, dans le sens où les boules de rayon 1 
(la capacité de correction), dont le centre est un mot du code, forment une partition 
de (1Fq) 11 (ici avec q = 2 et n = 2k - l ) . Expliquer pourquoi le code défini à l'exemple 
3 . 1 2  est bien un code de Hamming. 

4. Montrer que le code dual de CC est un code simplexe, c'est-à-dire que la distance 
entre deux mots quelconques du code est constante. Combien vaut cette distance ? 

5 .  Comment généraliser la construction des codes de Hamming à un corps fini quel­
conque (on pensera à utiliser des vecteurs représentant les droites vectorielles) ? 
Montrer en particulier que sa dimension est ��l - k, sa taille ��/ • et sa distance 
minimale 3 .  

Exercice VI.8 (Polynômes énumérateurs et  codes de  Hamming). On note H la  matrice 
de taille k x 2k - 1 ayant pour colonnes toutes les représentations binaires des entiers entre 
1 et 2k - 1 = n. 

1 . Expliquer pourquoi le code CC, dont H est une matrice de contrôle, est un code de 
Hamming, comme défini à l'exercice Vl.7.  Calculer le polynôme énumérateur de 
poids du code de Hamming de taille 7 décrit à l'exemple 3 . 12 . 

2. Quelle est la matrice génératrice du code CC..L? Montrer que chaque colonne de cette 
matrice a un poids de Hamming égal à 2k- 1 

• 
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3. En déduire que le polynôme énumérateur de poids de � s' écrit 
1 ( 11+1 11-I ) W�= 2k (X + Yt +n(X - Y)T(X + Y)T . 

4. Quel est le nombre de mots de poids 1 et 2 ?  Ceci est-il en accord avec les résultats 
de l 'exercice VI.7 ? Montrer que le nombre de mots de poids 3 est !n(n - 1 ) .  

5 .  Montrer que l a  répartition des poids est symétrique, c 'est-à-dire que An-i = Ai. 
Exercice VI.9 (Code de Hamming étendu). On note � le code de Hamming étendu de 
taille 8. C'est le code obtenu en ajoutant un bit de parité au code de Hamming de taille 
7 présenté à l'exemple 3.12. Ceci signifie que tous les vecteurs x E � vérifient, modulo 
2, 'Lk=oXi = O. Quels sont les paramètres de ce code ? Dresser la liste des mots qui le 
composent. Calculer son polynôme énumérateur, et montrer que ce code est auto-dual. 
Exercice VI.10 (Code de répétition). On note � le code de répétition pure. Il consiste à 
remplacer un élément x E lF q par le vecteur de (JF q t dont les entrées sont x. 

1 .  Quels sont ses paramètres (dimension, distance minimale) ? Quel est son polynôme 
énumérateur ? 

2. Identifier le code dual � J.. Quel est son polynôme énumérateur ? Dans quel(s) cas 
ce code est-il auto-dual, c 'est-à-dire � = � J. ? 

Exercice VI.11 (Codes de Hadamard). Les matrices de Hadamard sont définies à l'exer­
cice Il.6. Soit Hn une telle matrice, de taille n x n. On la suppose normalisée, c 'est-à-dire 
�e les entrées de la première ligne et de la première colonne sont égales à 1 .  On définit 
Hn la matrice obtenue à partir de Hn en remplaçant les 1 par des 0 et les - 1  par des 1 .  On 
définit alors deux codes : 
- Le code .afn, dont les mots sont les lignes de Hn auxquelles on a enlevé la première 

colonne. 
- Le code fÀn, qui est constitué de l 'union des mots de .afn et de leurs compléments (on 

met à 1 les entrées égales à 0, et vice et versa). 

1 .  Ces codes sont-ils linéaires (on pourra distinguer selon la construction de Hn) ?  
2 .  Montrer que deux lignes distinctes de Hn ont 9 entrées communes et 9 entrées 

différentes. Quels sont les paramètres de ces deux codes (taille, nombre d'éléments, 
et distance minimale) ? En déduire que .afn est un code simplexe, c 'est-à-dire que la 
distance entre deux mots quelconques du code est constante. 

Voici par exemple les mots de deux codes dg générés par la méthode des résidus quadra­
tiques (dite de Paley) et des matrices de Walsh (chaque ligne représente un mot) : 

Résidus quadratiques : Matrice de Walsh : 

(0000000) 
( 1 0010 1 1 )  
( 1 100101 ) 
( 1 1 10010) 
(0 1 1 100 1 )  
( 10 1 1 100) 
(010 1 1 10) 
(0010 1 1 1 ) 

(0000000) 
( 10 10 10 1 )  
(01 1001 1 )  
( 1 1001 10) 
(0001 1 1 1 ) 
( 1 0 1 10 10) 
(01 1 1 100) 
( 1 10 100 1 )  

(5 .2) 



§ 5. Exercices 191 

Exercice VI.12 (Codes MDS). On considère un code de taille net de dimension m sur 
lF2 . On note d sa distance minimale, et on rappelle que le code est dit MDS s ' il y a égalité 
dans la borne de Singleton (3 .3), c'est-à-dire d = n+ 1 - m. On note A; le nombre de mots 
de poids i dans �. et A� le nombre de mots de poids i dans � J... 

1 . On définit les polynômes de Krawtchouk Pkt par 
k 

\:/k = o, . . . ,n, Pk(x) � L, ( - l )ic{c!={ , j=O 
où le coefficient binomial d. pour j EN, est défini par 

j � x(x - 1 ) · · · (x- j + 1 ) Cx - ·r . 
J. 

Montrer que l 'on a 
1 n 

A� = l�I �A;Pk(i). 
1=0 

2. Montrer que l 'on a les égalités suivantes : 

\:/k = O, . . .  ,n, 
n-k k 
� d -A·= 2m-k� cn-�A� ,,(.. n-1 1 ,,(.. 11-1 1 • 

i=O i=O 
On pourra penser à dériver formellement le polynôme P( 1 , Y) par rapport à Y. 

(5 .3) 

3 .  On suppose maintenant que le code � est MDS. Expliquer pourquoi on a A; = 0 
pour 1 � i � n - m, ainsi que A� = 0 pour 1 � i � m. En déduire que l 'on a 

11-k 
\:/k = O, . . . , m - 1 , Li d -A·= d(2m-k _ l ) n-1 1 11 • 

i=n-m+I 
4. Expliquer pourquoi les identités précédentes déterminent de façon unique la répar­

tition des poids de �. Par exemple, donner le nombre de mots de poids non nul 
minimal d'un code MDS. 

Exercice VI.13 (Borne de la programmation linéaire). On note R(n , d) le cardinal 
maximal d'un code de taille n et de distance minimale d sur lF2 . Cette quantité est ex­
trêmement difficile à estimer en général, et nous allons voir qu'en utilisant les résultats 
de Mac Williams, on peut donner un majorant, appelé borne de la programmation linéaire 
(car cette quantité apparaît comme solution d'un problème d'optimisation d'une forme 
linéaire sous contraintes linéaires). 

1 . Soit � un code binaire de taille n. On note Pk le kième polynôme de Krawtchouk, 
qui est défini à l ' équation (5 .3) . On note B; la répartition de �. montrer que l 'on a 

2. En déduire que l 'on a 

Il 
VkE{O, . . .  ,n} , L,B;Pk(i);::o. 

i=O 

R(n, d) .;max {�B; \ (Bo, ... ,B.) Ee:} 

L'ensemble E11 est défini de la manière suivante : 

E!� { ( I , 0 , .. . ,0,xd+l, ... ,xn)EIR�+t \ \:/k = O, . . .  ,n, �x;Pk(i);::o}. 





Chapitre VI 1 
Représentations linéaires des groupes finis 

Quand vous vous habillez, l 'ordre dans lequel vous 

effectuez les phases successives de l'opération n'est pas 

sans importance : vous commencez par votre chemise et 

finissez par votre manteau. Et pour vous deshabiller, vous 

suivez l'ordre inverse: vous ôtez d' abord le manteau, la 

chemise en dernier lieu. 

H. WEYL [77] (1952) 

Ce chapitre traite de la théorie des représentations, qui permet d'étendre la notion de ca­
ractère et de transformée de Fourier aux groupes non commutatifs. Cette théorie parvient 
à faire la liaison entre plusieurs domaines des mathématiques et à utiliser des outils spé­
cifiques à une discipline pour résoudre des problèmes formulés dans le langage d'une 
autre : 

- algèbre générale : le problème initial est celui de l 'étude d'un groupe abstrait. 
- algèbre linéaire : le but est de réaliser « géométriquement » notre groupe comme un 

groupe de transformations linéaires . L'utilisation des outils matriciels va permettre d'ef­
fectuer des calculs sur notre groupe, et d'obtenir des informations précises (résolubilité, 
simplicité, classes de conjugaison, etc.). 

- géométrie : l ' étude abstraite d'une géométrie revient à l ' étude des invariants pour une 
action de groupe donnée. La plupart des actions considérées sont linéaires et la théorie 
des représentations rentre alors naturellement en jeu. 

La notion de représentation linéaire, bien qu'assez complexe au premier abord, est en fait 
au centre de nombreux problèmes au programme de l ' agrégation : actions de groupes, 
matrices équivalentes, groupes finis, espaces hermitiens (l'espace C[G] est naturellement 
muni d'une telle structure), dimension des espaces vectoriels, dénombrement, groupes de 
permutations, sous-espaces stables, dualité, sous-groupes distingués (étude de la simpli­
cité). 
En ce qui concerne la théorie des représentations, la référence principale en français est 
le livre de J.P.SERRE [64] . La démonstration de l ' orthogonalité des caractères est assez 
calculatoire, et ne sera abordée qu'au chapitre suivant. On pourra regarder le livre de 
référence en langue anglaise de FULTON et HARRIS [35] pour retrouver celle qui est 
faite ici . En complément, [36] explicite de façon complète la théorie de Fourier sur q G], 
[ 1 ]  donne bon nombre de tables de caractères des groupes classiques, tout comme [ 1 9] . 
L'histoire de l a  théorie des représentations des groupes finis est expliquée dans les deux 
articles de LAM [4 1 ] et [42] . 
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1 Premières définitions 

Cette première partie est consacrée à la définition même de la notion de représentation, 
mais aussi (et surtout) à la mise en place de la problématique déjà énoncée : la recherche, 
à isomorphisme près, des représentations irréductibles . Nous donnons donc la définition 
de la notion d' isomorphisme de représentations, ainsi que les détails des notions connexes 
à celle d' irréductibilité. Pour mettre en relief ces définitions, de nombreux exemples sont 
exposés, qu' ils soient fondamentaux (dans le sens où ils mènent à des constructions uti­
lisées par la suite) ou seulement instructifs (permettant de faire des calculs « à la main » 
sans utiliser les outils développés par la suite). 

1.1 Représentations linéaires 

Définition 1.1 (Représentation linéaire). Soit V un K-espace vectoriel de dimension 
finie n. Une représentation linéaire d'un groupe G dans V est la donnée d'un morphisme 
p : G---+ GL(V) .  Ceci correspond à la donnée d'une action linéaire du groupe G sur V, 
en notant V(g, v) E .G x V, g.v = p (g) (v) . On dit aussi que V est un G-module (cette 
terminologie sera expliquée par la suite). 
Définition 1.2 (Représentation fidèle). Une représentation p sur un espace vectoriel V 
est dite fidèle si p est injective. On dit aussi que G agit fidèlement sur V . 
Exemple 1.3. Les exemples qu' il faut avoir en tête sont de nature géométrique : une 
action de groupe fidèle permet de réaliser un groupe abstrait comme un groupe de trans­
formations (le plus souvent unitaires ou orthogonales, cf. la proposition 1 .27) d'un espace 
vectoriel. Par exemple, on peut voir le groupe symétrique 64 comme l'ensemble des iso­
métries qui conservent un cube. Cette identification établit une représentation du groupe 
abstrait 64 sur l 'espace vectoriel R3 comme un groupe de transformations orthogonales. 

Nous avons déjà vu au paragraphe 4.2, chap. 1, la définition ainsi que les principales 
propriétés de l ' algèbre d'un groupe abélien (sur le corps(; des complexes). Ces définitions 
s 'étendent sans difficulté à un groupe non commutatif et à un corps K quelconque. Nous 
allons voir que cette algèbre permet de définir la notion de représentation d'une autre 
manière, en utilisant le langage des modules. 
Définition 1.4 (Algèbre d'un groupe). On suppose donné un espace vectoriel V de 
dimension IGI sur un corps K dont une base est indexée par G, c'est-à-dire une base de 
la forme {eg}gEG · On peut alors définir une structure de K-algèbre sur V par l ' égalité 
eg * eh = egh qui s ' étend par bilinéarité à tout l' espace.On note K[G] cette algèbre, et on 
identifie souvent g E G et eg E K[G] de sorte que l 'on parle de l'algèbre du groupe G, et 
que G s ' injecte canoniquement dans K[G] par g f-t eg . 
L'utilité principale de l ' algèbre K[G] qui englobe notre groupe G est qu'elle vérifie une 
propriété universelle, dans le sens où toute représentation sur G s 'étend de manière unique 
en une représentation sur K[G] . Définissons d' abord la notion de représentation d' algèbre. 
Définition 1.5 (Représentation d'algèbre). Une représentation d'une K-algèbre asso­
ciativeA est la donnée d'un espace vectoriel V sur K de dimension finie et d'un morphisme 
de K-algèbre p : A ---+ End(V) . 
On voit facilement qu'une représentation d'un groupe p: G ---+ GL(V) s'étend par linéarité 
de façon unique en une représentation d' algèbre p: K[G] ---+ End(V) . Donc les représen­
tations de K[G] correspondent exactement aux représentations de G. En fait, tout énoncé 
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concernant des représentations de G a  un équivalent en terme d' algèbre du groupe G. Il 
s ' agit simplement d'un choix de langage, chacun ayant des préférences pour telle ou telle 
formulation. 

Remarque 1.6. (Représentations et K[G]-modules) .  La définition d'une représentation 
p de l ' algèbre K[G] correspond exactement à la définition d'un K[G] -module à gauche. La 
multiplication externe d'un vecteur v E V  par un « scalaire » Â. E K[G] est alors donnée 
par Â. · v � p(À. ) (v) . Réciproquement, la donnée d'une telle structure définit sans ambi­
guïté une représentation d' algèbre. Ainsi, les notions de représentation de groupe, de re­
présentation d' algèbre, et de K[G] -module sont totalement équivalentes. Dans la suite, on 
rencontrera la notion de G-morphisme, qui correspondra aux morphismes pour la struc­
ture de G-module. 

Comme nous l 'avons déjà remarqué au paragraphe 4.2, chap. 1, dans le cas d'un groupe 
fini, l ' algèbre d'un groupe s ' identifie de façon naturelle (et canonique) à l 'espace des 
fonctions de G dans le corps K considéré, muni d'un produit appelé produit de convo­
lution. Rappelons ces constructions dans le cadre d'un groupe fini G quelconque et d'un 
corps K quelconque. 

Remarque 1.7. (Fonctions sur G et algèbre du groupe) . Si on note, pour g E G, 88 la 
fonction qui vaut 1 en g et 0 ailleurs, alors on peut décomposer une fonction f : G --t K 
dans la base { 88 }gEG: 

1 = L, J(g) og . ( l . l )  gEG 
Ceci permet d' identifier f avec l 'élément 

L, f(g)e8 E K[G] . gEG 
On identifiera donc K[G] avec l 'espace des fonctions de G dans K, dont une base est 
donnée par { 88 }gEG· 

Rappelons la formule qui donne la multiplication sur l ' algèbre C [G] ,  et que l 'on nomme, 
en utilisant le vocabulaire de l 'analyse fonctionnelle, produit de convolution. 
Définition 1.8 (Produit de convolution). La multiplication sur K[G] est définie par ex­
tension de la multiplication dans G. En quelque sorte, on sait comment multiplier entre 
eux les éléments de la base { ôg}gEG (en se rappelant qu'un élément 88 E K[G] s ' identifie 
à g E G), et par bilinéarité de la multiplication, on peut ainsi calculer le produit de deux 
éléments en les décomposant comme en ( 1 . 1 ) . Ainsi, pour (f, g) E K[G]2 on obtient 

Vs E G, (f * g) (s) � L, f(h)g(k) = L, f(h)g(h- 1s) .  
hk=s lzEG 

Cette multiplication est nommée produit de convolution. L'élément neutre pour cette opé­
ration est 81 (qui s ' identifie à l ' élément neutre 1 de G), et il ne faut donc pas confondre 
* avec la multiplication composante par composante des fonctions de G dans K (notée 
habituellement · ), pour laquelle l ' élément neutre est la fonction constante 1 .  
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1.2 Exemples fondamentaux 

La représentation régulière 

Cette représentation est la plus élémentaire, et aussi la plus importante. C'est en décom­
posant la représentation régulière en sous-représentations que l 'on obtiendra bon nombre 
d' informations sur le groupe G, comme on le verra au paragraphe 4.2. 
Définition 1.9. La représentation régulière à gauche est la représentation de G sur l 'es­
pace vectoriel K[ Gj définie par le morphisme 

{ K(Gj � K[G] 'Vs E G, Pr (s) : f t---+ Ôs * f . 

Remarque 1.10. On peut, comme cela est expliqué à la définition 1 .5 prolonger la re­
présentation régulière en une représentation d' algèbre définie sur K[G] tout entière. On 
voit que l 'on obtient tout simplement la structure d' algèbre de K[G] (pour le produit de 
convolution). Ceci signifie que le K[G] -module donné par K[G] lui même correspond à la 
représentation régulière. 

Proposition 1.11.  La, représentation régulière est fidèle. 
Démonstration. Si p (g) = Id, alors p (g) (ôe) = Ôe, c'est-à-dire Ôg * Ôe = Ôg = Ôe, donc 
g = e. D 

La représentation somme 

L'opération la plus simple que l 'on puisse faire entre deux représentations est la somme 
directe, qui est définie de la manière suivante. 
Définition 1.12 (Représentation somme). Pour deux représentations Pv et Pw respecti­
vement sur V et W, on définit une représentation Pvew sur V E9 W par 

Vg E G, 'V(v, w) E V x W, Pvew (g) ( (v, w)) � Pv (g) (v) + Pw(g) (w) .  
La notion de somme est à rapprocher de la notion de décomposabilité qui est abordée 
au paragraphe 1 .3 . La question est de savoir à quelle condition une représentation peut 
s 'écrire comme la somme de deux autres. Nous verrons (au théorème 1 .29) que ceci est 
simplement lié au fait que la représentation admet ou non des sous-représentations . 

La représentation des morphismes 

La représentation produit (au sens du produit tensoriel d'espaces vectoriels) ne sera pas 
abordée. Cependant, on peut utiliser, à la place, la notion de représentation sur l 'espace 
vectoriel des morphismes. 
Définition 1.13 (Représentation des morphismes). Pour deux représentations pv et pw 
respectivement sur V et W, on définit une représentation p .Z'( V, W) sur !L' ( V, W) (espace 
des applications linéaires de V dans W) par 

'Vg E G, 'V/ E !L'( V, W) , P.Z'( V,w) (g) (f) � Pw (g) o f o Pv (g- 1 ) . 
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Proposition 1.14. On définit bien ainsi une représentation. 
Démonstration. On note p � P�( V , W) · Tout d'abord, constatons que p (g) est bien une 
application linéaire. La proposition résulte simplement du calcul, pour f E Jf(V, W) et 
pour \t(g, h) E G2: 

p (gh) (f) = Pw (gh) o f  o pv ( (gh) - 1 ) 

La représentation duale 

= Pw (g) {Pw (h) o f o Pv (h- 1 ) }  Pv (g- 1 ) 
= p (g) {p (h) (f) } .  D 

Dans le même ordre d' idées que pour la représentation des morphismes, on peut définir 
une représentation duale. 
Définition 1.15 (Représentation duale). Pour une représentation p sur V, on définit une 
représentation p* sur V* le dual de V par 

\tg E G, p* (g) � p (g- l )t , 
où l 'on a noté q>T E Jf(V*) l 'opérateur transposé de <p E Jf(V). 
Remarque 1.16. On peut voir que cette définition correspond à la représentation des 
morphismes P�( V , K) (où K est considéré comme un espace de dimension 1 ), puisque 
V* = .if(V,K) , avec la représentation triviale PK(g) = Id. 

Définition 1.17 (Crochet de la dualité). On note, pour f E V* et pour x E V, 
(x, f) ( E , E*) � f(x) . 

On nomme cette application le crochet de la dualité, qui est une forme bilinéaire sur 
E x E* . 
On montre facilement que la représentation duale que nous venons de construire a un 
comportement intéressant vis-a-vis du crochet de la dualité. 
Proposition 1.18. La représentation duale sur V* conserve le crochet de la dualité, 
c'est-à-dire : 

\tg E G, \t(f,x) E E* XE, (x, pv·(g) (f) ) ( E , E*) = (Pv (g- 1 ) (x) , J) ( E , E*) . 

Une action sur les polynômes 

Définition 1.19. Soit G un sous-groupe fini de GLn (K) . Si on note, pour A E G, A- 1 
sous la forme (a;,j ) l �i,j�n· on définit une action linéaire de G sur K[X1 1 • • •  , Xn] en dé­
finissant p (A ) (P) le polynôme obtenu par la substitution de X; par I.'J=I aj,iXj . On note 
symboliquement p(A)(P)(X) = P(A- 1 · X ) . 
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Si on considère cette action sur K[X1 ,  • • . ,Xn] tout entier, on obtient une représentation de 
dimension infinie. Cependant, il est facile de voir que cette action respecte le degré des 
polynômes. On peut donc restreindre cette action au sous-espace Ks [X1 ,  . . .  ,X11] constitué 
des polynômes de degré inférieur ou égal à s. C'est un espace de dimension finie, et 
ceci donne naissance à une représentation linéaire de dimension finie. Mais on peut aussi 
considérer l 'espace K� [X1 ,  . . . ,Xn] des polynômes homogènes de degré s (en incluant le 
polynôme nul), ce qui fournit une deuxième famille de représentations de dimension finie. 
C'est ce point de vue qui sera adopté pour prouver le théorème de Molien, à l 'exercice 
VIl.6. 
Enfin, notons que la théorie des polynômes invariants sous cette action est très importante. 
L'exercice VII.5 propose de démontrer un résultat fondamental de cette théorie. Dans le 
cadre de l'étude des codes correcteurs, ce sont ces outils de théorie des représentations qui 
permettent de classifier les codes auto-duaux. On trouvera une instance de cette approche 
dans l 'exercice VIII.9. 

Représentation de degré 1 

On se place dans le cas où K = C. Une représentation de degré 1 est simplement un 
morphisme de G dans le groupe multiplicatif C* (on identifie GL1 (C) et C*). C'est donc 
un caractère de G comme défini au chapitre I. On retrouve ainsi la théorie classique de 
dualité sur un groupe fini. Nous savons déjà que si G est abélien, les caractères forment 
une base de l 'espace C[G] des fonctions de G dans C. Dans la suite, nous étendrons la 
notion de caractère, et nous verrons que cette notion a bien les propriétés espérées. 

- Dans le cas où G est commutatif, cette nouvelle notion n' apporte rien de nouveau : on 
retrouve uniquement les caractères déjà définis. Intuitivement, on sait que la dimension 
1 suffit pour étudier les groupes commutatifs. 

- Dans le cas non commutatif, l ' ajout de « nouveaux » caractères permet de développer 
une théorie de Fourier généralisant la théorie déjà développée dans le cas commutatif. 

Dans un premier temps, contentons nous de la remarque suivante : 

Remarque 1 .20. Si p est une représentation de G sur un espace vectoriel V, alors l ' appli­
cation qui à s E G associe det(p (s) ) est une représentation de degré 1 sur C (c ' est-à-dire 
un caractère au sens où nous l ' avons déjà défini). 

1.3 Représentations irréductibles 

La notion de représentation irréductible est très intuitive. Comme dans toute construction, 
on cherche les « briques de bases », celles avec lesquelles nous allons pouvoir recons­
truire tout l ' édifice (ici toutes les représentations). Notre outil est, comme nous l ' avons dé­
fini au paragraphe 1 .2, la somme de représentations. La définition intuitive d'une « brique 
de base » est qu'elle doit être minimale (au sens de l ' inclusion des sous-espaces non 
nuls). Cette définition est-elle bien compatible avec la construction par somme de nou­
velles représentations ? C'est ce que précisera le théorème 1 .29, dans le cas d'un corps 
algébriquement clos . En effet, nous allons petit à petit quitter la généralité des construc­
tions du paragraphe précédent, pour nous restreindre au cas du corps K = C, pour lequel 
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il y a déjà beaucoup à faire. Cependant, nous essaierons, dans la mesure du possible, de 
mentionner les résultats qui restent valables sous des hypothèses plus faibles. 
Définition 1.21 (Représentations isomorphes). Deux représentations p et p' d'un même 
groupe G respectivement sur deux K-espaces vectoriels V et V' sont dites isomorphes 
s ' il existe un isomorphisme d'espaces vectoriels 't' : V ---+ V' tel que pour tout s E G, 
-r o p (s) = p'(s) o 't', ce qui permet d'identifier les deux représentations. 

La notion d'isomorphisme de représentations définit une relation d'équivalence sur les re­
présentations d'un groupe G donné. Dans la suite, nous allons nous intéresser aux classes 
d'équivalence pour cette relation. Nous allons maintenant donner les définitions qui per­
mettent d'expliciter les notions de « briques de bases ». 
Définition 1.22 (Sous-représentations). Si une représentation p de G sur V admet un 
sous-espace vectoriel W c V stable par tous les p ( s) E GL(V) , elle induit une représenta­
tion Pw sur W appelée sous-représentation. 
Remarque 1.23. En utilisant le langage des K[G] -modules, on voit qu'une sous-repré­
sentation n'est rien d' autre qu'un sous K [G] -module, et qu'un isomorphisme de représen­
tations est un isomorphisme de K [G] -modules. 

Définition 1.24 (Représentations irréductibles). Une représentation sur un espace V 
est dite irréductible si elle admet exactement deux sous-représentations : {O} et V tout 
entier. 

Définition 1.25 (Représentation indécomposable). Une représentation sur un espace V 
est dite indécomposable si à chaque fois que l 'on a un isomorphisme de représentations 
V �  W1 EEJ W2, alors W1 = {O} ou W2 = {O}. 

Remarque 1.26. (Irréductibilité et indécomposabilité). Il est évident qu'une représen­
tation irréductible est en particulier indécomposable, puisqu'une décomposition de V sous 
la forme V � W1 EEJ W2 non triviale donne naissance à deux sous-représentations. Nous al­
lons maintenant nous intéresser à la question réciproque. Pour résoudre ce problème, il 
faut savoir si, étant donnée une sous-représentation non triviale W1 de V, on peut trouver 
une autre sous-représentation W2 telle que V � W1 EEJ W2 . Ceci signifie exactement trouver 
un supplémentaire de W1 stable sous l ' action de G. L'exercice VII. 1 montre qu'en général 
cet aspect réciproque n 'a aucune raison d'être vrai. Cependant, sous certaines hypothèses 
restrictives sur le corps de base, nous allons voir que l 'on peut démontrer l' équivalence 
entre irréductibilité et indécomposabilité. 

Important : À partir de maintenant, sauf mention explicite du contraire, nous travaille­
rons dans le corps des complexes K = C. 
Proposition 1.27 (Représentation unitaire). Soit p une représentation d'un groupe .fini 
G sur un espace V. Alors p laisse invariant le produit hermitien suivant : 

(x, y)a � L (p (s) (x) , p (s) (y) ) , 
sEG / 

où l 'on a noté ( · , · ) un produit hermitien quelconque sur V. 

Démonstration. Le fait que ( · , · ) G est invariant par G est trivial : 

(p (g) (x) , p (g) (y) )a � L (p (sg) (x) , p (sg) (y) ) = (x, y)a ·  
sEG 
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Le seul point important est que ( · ,  ·) 0 est bien un produit hermitien, comme somme de 
produits hermitiens. Ceci est valide car on travaille sur le corps C des complexes . D 

Remarque 1.28. (Représentation unitaire). Ce résultat est équivalent au fait que les 
matrices Ms des p (s) sont unitaires dans une base orthonormée pour ( · , · )0, c'est-à-dire 
vérifient MsM; = Id, où M; est la matrice adjointe. On dit que Ms est une représentation 
matricielle unitaire. 
Théorème 1.29 (Irréductibilité et indécomposabilité). Une représentation p sur V est 
irréductible si et seulement si elle est indécomposable. 
Démonstration. Soit W1 une sous-représentation non triviale de V. Comme nous l ' avons 
déjà fait remarquer, pour démontrer l' équivalence, il suffit de trouver un supplémentaire 
de W1 stable par G. On peut alors considérer le produit hermitien invariant ( · ,  · )  0, et choisir 
W2 l 'orthogonal de W1 .  Par conservation du produit scalaire, l ' image par G d'un vecteur 
orthogonal à W1 est encore orthogonal à W1 : W2 est bien stable sous l ' action de G. D 

Remarque 1.30. La démonstration qui précède utilise l ' existence d'un produit hermitien 
stable. Elle n'est donc pas valable sur un corps autre que C. On peut cependant proposer 
une autre démarche, qui permet de démontrer le théorème 1 .29 dans le cas d'un corps K 
tel que sa caractéristique ne divise pas IG I . Voici donc une deuxième démonstration : 

Démonstration. Il existe une autre façon de construire un supplémentaire stable de W1 . 
En effet, considérons un supplémentaire W2 quelconque, et notons 7r: la projection sur W1 
associée à la décomposition V = W1 E9 Wz. On peut alors définir un endomorphisme 1l'Q de 
la manière suivante : 

1l'o� l� I L P(g) o n: o p (g- 1 ); 
gEG 

ceci est valide car Car(K) ne divise pas IGI . On peut alors constater que 1l'Q est un pro­
jecteur d' image W1 , et même mieux, que son noyau W1 � ker(1l'Q) est stable par l ' action 
de G (on le vérifie à la main aisément). En vertu des propriétés des projecteurs, on a 
V = W1 E9 Wz. Cette construction, qui peut paraître un peu magique, est en fait très na­
turelle, et deviendra claire une fois définies les notions de G-morphisme (définition 2.3), 
et surtout d'opérateur de Reynolds Ra (définition 2. 10) , puisque l 'on a en fait construit 
1l'Q = Ro (n:) .  D 

Remarque 1.31. Le théorème 1 .29 signifie que si p est réductible, les matrices des p (s) 
s 'écrivent comme une diagonale de deux blocs dans une base bien choisie, ce qui corres­
pond bien à la notion de réductibilité (et à la représentation somme). Voici maintenant le 
résultat qui nous assure que les « briques de base » que sont les représentations irréduc­
tibles permettent de reconstruire toutes les représentations. 

Proposition 1.32. Toute représentation peut s'écrire comme somme de représentations 
irréductibles. 
Démonstration. On raisonne par récurrence sur la dimension de V l 'espace vectoriel de 
notre représentation. Un espace de dimension 1 est irréductible. Si V est un espace de di­
mension plus grande que 1 irréductible, et la démonstration est terminée. Sinon, V admet 
un sous-espace stable non trivial W, et avec le corollaire 1 .29, on peut trouver Wo stable 
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tel qu'on ait V =  W E9 Wo. En appliquant l 'hypothèse de récurrence à W et Wo, on prouve 
ce qui était demandé. D 

Remarque 1.33. Cette écriture n'est pas unique, mais nous allons voir qu'elle est unique 
« à  isomorphisme près », au sens que si l 'on a deux décompositions de W sous la forme 
W1 E9 · · · E9 Wr et W{ E9 · · · E9 WI, alors r = r', et quitte à réordonner les indices, il existe des 
isomorphismes W; � Wf. 

1.4 Le groupe symétrique 

Avant d' attaquer le vif du sujet, à savoir l ' introduction d'outils utiles pour étudier les re­
présentations, intéressons nous à un groupe de première importance, le groupe symétrique 
Sn . Nous allons essayer de dégager « à la main » les principales caractéristiques de ses 
représentations, à défaut de pouvoir en donner une description exhaustive. 
Définition 1.34 (Représentation par permutation). Soit Sn le groupe des permutations 
d'un ensemble à n éléments, identifié à l 'ensemble { 1 , . . .  , n} . Soit V un espace vectoriel 
de dimension n, dont on choisit une base� = { e 1 , . . .  , en } · Sn agit sur V par permutation 
des éléments de la base�. ce qui permet de définir un morphisme PP : Sn ---+ GL(V) . 
On notera donc, pour <J E  Sn, pp(<J) l ' endomorphisme correspondant, c'est-à-dire tel 
que pp(e;) = e<1(i) · On note MC1 la matrice de permutation associée, qui est la matrice de 
Pp(<I) dans la base�. Cette matrice ne comporte qu'un seul 1 par ligne et par colonne, 
et des 0 partout ailleurs . De plus, seule Mid = Id ne comporte que des 1 sur la diagonale 
(ce fait sera utilisé pour l 'exemple 3.5). 
Remarque 1.35. (Lien avec la représentation régulière) . Tout groupe G de cardinal 
n s ' injecte dans le groupe Sn des permutations de l 'ensemble { 1 , . . .  , n} . Pour le voir, 
il suffit de numéroter les éléments de G = {g1 , . . .  , gn } et de considérer, pour h E G, la 
permutation 

j(h) : { { 1 , .k. , n} :: { 1 , .�. , n} où k! est tel que hgk = gk' . 
On a alors le diagramme commutatif suivant : 

G --..!!!_ GL(V) 

lj Il 
GL(V) 

Dans le même ordre d' idées, lorsque l 'on étudie la représentation PP de Sn sur un espace 
de dimension n (qu'on peut supposer sur un corps K quelconque), on peut s ' intéresser 
à la détermination des classes de similitude des matrices des Pp(<J) , <J E  Sn. Commen­
çons par caractériser les classes de conjugaison (c' est-à-dire de similitude) dans le groupe 
symétrique Sn. 
Lemme 1.36 (Classes de conjugaison dans Sn). Deux éléments de Sn sont dans la même classe de conjugaison si et seulement si leur décomposition en cycles disjoints 
possède le même nombre de cycles d 'une longueur donnée. 
En particulie r, il y a autant de classes de conjugaison dans Sn que de partitions de n du type 

n = k1 + kz + · · · + kp avec k1 � kz � · · · � kp > O. 



202 Chapitre VII. Représentations linéaires des groupes finis 

Démonstration. Tout d' abord, notons que deux cycles de même longueur sont conjugués. 
E l!l' , 'd' déf. ( ) / déf. ( / / ) ·1 ffi d' ·1· n euet, s1 on cons1 ere c = c1 , . . .  , ck etc = c1, . . . , ck , 1 su t uti 1ser une permu-
tation a: c; f-t c� pour voir que c = a-1 oc' o a. Donc si deux permutations possèdent des 
décompositions avec des cycles de même longueur, elles sont conjuguées . 
Réciproquement, il est évident que la conjugaison d'une permutation conjugue aussi les 
cycles qui la composent, et donc conserve leurs longueurs. D 

Théorème 1.37 (Théorème de Brauer). On se place sur un corps K de caractéristique 
O. Deux matrices Ma et Ma' sont semblables si et seulement si a et a' sont conjuguées 
dans Sn, c 'est-à-dire : 

Démonstration. Cette démonstration m'a été communiquée par DANIEL FERRAND. 
Le sens réciproque découle directement de la définition d'une représentation. 
En effet, si :3't' E S11 , a' = 't'- 1a't', alors Ma' = M1-ia1 = Mi1MaM1. 
Pour le sens direct, on note ck(a) le nombre de cycles d'ordre k dans la décompo­
sition de a en cycles disjoints. En utilisant le lemme 1.36, il suffit de montrer que 
\;/k E { 1, . . .  , n} , ck( a) = q( a'). Or tout cycle a d'ordre k vérifie ak = Id, donc le po­
lynôme caractéristique de Ma est xk -1. Comme Ma et Ma' ont le même polynôme 
caractéristique (car elles sont semblables), on a 

II (xk -1r(a) = II (xk-1r(a'). 
k�I k�I 

(1.2) 

Pour m E N, on prend Ç une racine mième de l 'unité (dans une clôture algébrique K de 
K) d'ordre m (c 'est-à-dire primitive). Comme on est en caractéristique 0, P = Xk -1 et 
P' = kxk-I sont premiers entre eux, ce qui signifie que P est scindé à racines simples dans 
K. Donc la multiplicité de Ç dans P est 1 si Ç est racine de P (c'est-à-dire si mlk), 0 sinon. 
En égalant les multiplicités dans l 'égalité (1.2), on obtient 

�:Ck(a) = �:Ck(a'). 
mlk mlk 

Supposons maintenant qu' il existe m tel que cm( a) f. cm( a'). On choisit m le plus grand 
possible, notons-le mo (ceci est possible car k f-t ck( a) est une fonction à support fini). 
On a alors 

0 = L ck( a)-L q( a') = Cm0( a) -Cm0( a'), 
molk molk 

ce qui est une contradiction, car c1110 (a) f. Cm0 (a'). D 

Après avoir répondu à ces questions sur les classes de similitudes liées à la représenta­
tion par permutation, se pose le problème de la détermination des représentations de Sn. 
Comme il est vain de vouloir toutes les déterminer (il est facile d'en créer des nouvelles 
par sommes directes), le vrai problème est en fait la détermination des représentations 
irréductibles de S11 • Cette question est difficile, et dans un premier temps, nous allons 
nous contenter de donner des représentations « évidentes ». L'exemple du groupe S4 
sera traité complètement au paragraphe 1.4, chap. VIII. Il existe cependant des descrip­
tions précises des représentations irréductibles de S11 , qui sont fondées sur l ' action de ce 
groupe sur les tableaux de Young. Une description complète se trouve dans le livre de 
FULTON et HARRIS [35]. 
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Tout d' abord, est-ce que la représentation de permutation, pour n � 2, est irréductible ? 
On voit aisément que non, en regardant le sous-espace 

Ho � {.4.(1, . . .  , 1) \ Â E C} = Vect(( l ,  . . . , 1) ) . (1. 3) 

On voit facilement que ce sous-espace est stable ·par toute permutation des coordonnées, 
et qu' il admet un supplémentaire également stable par G :  

(1. 4) 

La représentation par permutation Pp induit la représentation triviale (c'est-à-dire cons­
tante égale à l ' identité) sur Ho. La question de l ' irréductibilité de la représentation H1 
est abordée à l' exercice VII.7. Nous verrons au paragraphe 1. 4, chap. VIII, que dans 
l 'exemple de S4, cette représentation est bien irréductible. On nomme représentation 
standard la représentation induite par pp sur H1 . Outre la représentation triviale (qui est 
bien sOr irréductible), il reste une autre représentation de degré un, donnée par l ' équation 

Va E Sn , Pe (<I) = e (a) ,  
où l 'on a noté e (a) la signature de la permutation <J (comme c'est une représentation de 
degré 1, on a noté Pe ( a) comme un scalaire, alors que c 'est en réalité une matrice de taille 
1). On nomme cette représentation la représentation alternée. De plus, nous avons déjà vu 
au chapitre 1 que c'étaient les deux seules représentations de degré 1 de S11 • 

2 Invariance et représentations 

Un moyen très simple pour créer des sous-espaces globalement stables sous l ' action d'un 
groupe G est de regarder l'ensemble des vecteurs qui ne sont pas modifiés par G, qui 
forme bien un sous-espace. Sur ce sous-espace invariant, G induit la représentation tri­
viale. L' intérêt capital de ce sous-espace est qu'on dispose d'une description complète, 
et d'un moyen très simple d'en générer des éléments . L' idée fondamentale qui se cache 
derrière la construction faite dans ce paragraphe (et derrière l'opérateur de Reynolds, qui 
est présenté au paragraphe 2.3) est que l 'on se trouve sur un groupe fini, et donc que l 'on 
est en mesure de moyenner l ' action de notre groupe. Ce principe très simple, que nous 
avons déjà utilisé pour construire des supplémentaires stables, sera d'un usage constant 
dans la suite de l 'exposé, et c 'est pour cela qu' il est important de le formaliser. 

2.1 Sous-représentation invariante 

Définition 2.1 (Sous-représentation invariante). Soit p une représentation sur V. On 
note v0 le sous-espace des vecteurs invariants, c'est-à-dire : 

v0 = { v E V \  Vs E G, p (s) (v) � s.v = v} . 
C'est une sous-représentation de V. 
Exemple 2.2. On considère l ' action du groupe symétrique Sn par permutation des co­
ordonnées, comme définie au paragraphe 1 .2. Cette action permet de définir une autre 
action, sur K[X1 , . . .  ,Xn] cette fois-ci, via la construction effectuée au paragraphe 1 .2 . La 
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représentation invariante K[X1 , • . •  , X11]611 est formée des polynômes symétriques, ce qui 
signifie que P E K[X1 , . . .  ,X11]611 si et seulement si 

Va E 611, P(Xa( l )• . . .  ,Xa(n) ) = P(X1 , . . . ,Xn ) · 
Ces polynômes, ainsi que l ' action des groupes finis sur les polynômes sont étudiés en 
détail aux exercices Vll.5 et VII.6. 
Définition 2.3 (Opérateurs d'entrelacement). Dans le cas de la représentation des mor­
phismes p .21'(V, w) sur 2 (V, W) de deux représentations Pv et Pw respectivement sur V et 
W, on note Homa(V, W) l 'espace des invariants. On nomme ces éléments des opérateurs 
d'entrelacement ou des G-morphismes. 
Remarque 2.4. Dire que f E .!L'(V, W) est un opérateur d' entrelacement correspond au 
fait que f vérifie Vs E G, f o Pv (s) = pw (s) of, c'est-à-dire f fait commuter, pour tout 
s E G, le diagramme suivant : 

v � w 
lpv(s) lPw(s) 
v � w 

Si f est bijectif, ceci correspond au fait que f est un isomorphisme de représentations. 
Dans le cas général, on parle de G-morphisme, ou d'opérateur d' entrelacement. En re­
prenant le langage des K[G] -modules, un opérateur d' entrelacement est simplement un 
morphisme de K[GJ -modules. 

2.2 Lemme de Schur 

Ce lemme, à l ' apparence très simple, est en fait la pierre angulaire de la plupart des dé­
monstrations qui seront faites dans la suite de l 'exposé. 
Lemme 2.5 (Lemme de Schur). Soient Pv : G � GL(V) et Pw : G � GL(W) deux repré­
sentations irréductibles d'un groupe G. Soit f E .!L'(V, W) un opérateur d'entrelacement, 
c'est-à-dire f E Homa(V, W). Alors 

(i) si Pv et Pw ne sont pas isomorphes, f = O. 
(ii) si f i= 0, alors f est un isomorphisme, les représentations sont isomorphes, et si on 

suppose V =  W, Pv = pw, alors f est une homothétie. 
Démonstration. Si on suppose que f i= 0, alors les hypothèses montrent que ker(f) est 
stable par tous les Pv (s) . En effet, 

Vx E ker(f) , f(Pv (s) (x) )  = Pw (s) (f(x) )  = Pw (s) (O) = 0, 
d'où pv (x) E ker(f) . Donc comme Pv est irréductible et fi= 0, ker(f) = {O}. De même, 
on montre que lm(!) est stable par tous les pw (s) , et comme Pw est irréductible et fi= 0, 
lm(!) = W. Au final, f est un isomorphisme et Pv et Pw sont isomorphes. 
Pour montrer ( ii) , comme on travaille sur des C-espaces vectoriels, f a  au moins une 
valeur propre Â.. En posant f' = f - Â.ld, on voit que ker(f') i= {O}. En appliquant la 
première partie de la démonstration à /' qui est encore un G-morphisme, on a /' = O. D 

Remarque 2.6. Dans le cas où on travaille dans un corps K non nécessairement algébri­
quement clos, on garde le fait que si f i= 0, f est un isomorphisme. En particulier, si V est 
irréductible, alors Homa(V,V) � Endo(V) est un corps non nécessairement commutatif. 
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Remarque 2.1. On peut démontrer le lemme de Schur en employant le langage des 
K[G] -modules. En effet, dire que f est un opérateur d'entrelacement signifie que f est 
un morphisme de K[G] -modules. Or on vérifie que dans ce cas, ker(/) et lm(/) sont 
des sous-K[G] -modules respectivement de V et W. L'irréductibilité de ces deux modules 
permet de conclure de la même manière. 

Corollaire 2.8. On considère toujours deux représentations irréductibles de G sur V et 
W. On a dimc(Homa(V, W)) = 1 si V et W sont isomorphes, et dimc (Homa(V, W)) = 0 
sinon. 
Démonstration. Si V = W ou si les représentations ne sont pas isomorphes, le lemme 
de Schur nous donne le résultat. Dans le cas où les deux représentations sont isomorphes 
(mais non définies sur le même espace), il suffit de se fixer g un isomorphisme entre les 
deux espaces vectoriels. On peut alors considérer p{v(s) = g-1 o Pw (s) o g E Jf(V) . En 
appliquant le lemme de Schur à Pv et p{v, on voit que tout opérateur d' entrelacement entre 
ces deux représentations s 'écrit À.Id. Donc tout opérateur d'entrelacement entre V et W 
s 'écrit Â.g, et on a bien dimc (Homa(V, W) ) = 1. D 

Remarque 2.9. (Cas des groupes commutatifs) . Une fois définie la notion d'opérateur 
d'entrelacement, une question naturelle est de savoir si, pour g E G, p (g) est un opérateur 
d'entrelacement. Or p (g) E Homa(V) est équivalent à 

'ïlh E G, p (g)p (h) = p (h)p (g) , c'est-à-dire p (ghg- 1h- 1 ) = 1 .  

Donc si g E Z(G) ,  le centre de G, alors p (g) E G. 
En particulier, si G est commutatif, alors Z( G) = G, et donc avec le lemme de Schur 2.5, 
pour une représentation irréductible p de G sur V, comme les p (g) , pour g E G sont des 
opérateurs d'entrelacement, ce sont des multiples de l ' identité, ce qui signifie que p est 
une représentation de degré 1 .  On retombe donc dans la théorie classique de la dualité 
sur un groupe fini commutatif (ce qui est rassurant), et on peut utiliser pleinement la 
théorie développée au chapitre précédent. Cette constatation sera redémontrée à l 'aide de 
la théorie des caractères au corollaire 5 . 1 5 .  

2.3 Opérateur de Reynolds 

Nous allons maintenant définir l' opérateur qui va nous permettre de moyenner l 'action de 
G sur un espace vectoriel. 
Définition 2.10 (Opérateur de Reynolds). Soit p une représentation de G sur V. On 
définit l 'opérateur Ra E if(V,V) par 

déf. 1 ""' Ra = 
JG I � p (s) 

sEa 
E if(V,V) . 

On l 'appelle opérateur de Reynolds associé à p .  

Théorème 2.11 (Propriétés de l 'opérateur de Reynolds). Ra est un projecteur sur va. 
En particulier : 

(i) va = lm( Ra) = ker(Ra - Id) . 
(ii) dimc (Va) = tr(Ra) .  
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Démonstration. 

(i) Soit y = Ra(x) E Im(Ra) . alors pour s E G, on a 
1 1 

p (s) (y) = I G I  L p (s)p (g) (x) = -IGI L p (sg) (x) = Ra(x) = y, 
gEa gEa 

donc y E va. La réciproque est évidente : 

si x E Va, Vs E G, p (s) (x) = x, alors x = Ra(x) E lm(Ra) .  

Pour montrer que Ra est un projecteur, i l  faut montrer que Rb = Ra, ce qui est 
évident car Im(Ra) est stable par G. Enfin, en vertu de la théorie des projecteurs, 
Id - Ra est aussi un projecteur de noyau Im(Ra) = va. 

(ii) La propriété (i) nous montre que Ra est un projecteur sur va, donc en particulier 
V = ker(Ra) œ Im(Ra) et en écrivant la matrice de Ra dans une bonne base, on en 
déduit (ii). D 

2.4 Application moyennée 

En appliquant le lemme de Schur à la représentation des morphismes, nous allons pouvoir 
calculer la dimension de l 'espace des G-morphismes. Po_ur clarifier les notations, nous 
allons introduire la définition suivante. 
Définition 2.12 (Application moyennée). Soient Pv et Pw deux représentations respec­
tivement sur V et W. On note P2'(V,W) la représentation des inorphismes sur 2(V, W) . 
Pour f E 2(V, W) ,  on note f � Ra(!) E 2(V, W) ,  ce qui correspond à l ' application 
moyennée : 

-déf 1 � 1 J=-IGI k.. Pw(s) ofopv(s- ). 
sEa 

Proposition 2.13 (Application aux G-morphismes). On reprend les notations de la 
dé.finition précédente. On suppose que les représentations sur V et W sont irréductibles. 
On a 

d. (H (V W) )  _ (R ) _ { 1 si les représentations sont isomorphes, imc orna , - tr a - 0 . sinon. 
Démonstration. Nous avons vu au corollaire 2.8 que dimc (Homa(V, W) )  vaut bien le 
membre de droite de l 'égalité cherchée. De plus, le théorème 2.11 (ii), nous dit que l 'on a 
tr(Ra) = dimc(Homa(V, W) ) .  D 

Au final, pour tout f E 2(V, W) , f est une application G-invariante pour la représentation 
linéaire P2'(V,W)• c 'est-à-dire un G-morphisme, f E Homa(V, W) . On a en quelque sorte 
un moyen de « fabriquer » des opérateurs d'entrelacement. Nous verrons à l 'exercice 
VII.5 une application importante de cette technique. 

3 Caractères 

Dans cette partie, nous allons définir et utiliser l 'outil principal qui sert à analyser des 
représentations, mais aussi à trouver des représentations de certains groupes abstraits. 
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3.1 Définition et premières propriétés 

Définition 3.1 (Caractères). Soit p une représentation d'un groupe G sur V un C-espace 
vectoriel de dimension n. On lui associe son caractère Xp défini par Xp (s) = tr(p (s) ) où 
tr désigne la trace. C'est une fonction de G dans C, c'est-à-dire Xp E C [G] . 
Remarque 3.2. Il faut faire attention au fait que les caractères tels que nous venons de 
les définir ne sont pas, en général, des morphismes de G dans C*. Ce ne sont donc pas des 
caractères au sens du chapitre I. 

La connaissance du caractère X d'une représentation p permet de connaître, pour tout 
g E G et tout k E N, la valeur de tr(p (g )k) = tr(p (l) ) ,  et si on note {-4 .. 1 ,  . . . , Ân} les valeurs 
propres de p (g) , cela revient donc à connaître, pour tout k E N, la valeur de Sk = 'Li= 1 Âl. 
Sk est la kième somme de Newton associée aux valeurs propres de p (g) , et donc, en 
vertu des relations de Newton, ces sommes permettent (moyennant tout de même la réso­
lution d'un système linéaire triangulaire) de calculer la valeurs des a; (Â1 , . . .  , Â,i) ,  où les 
O'; sont les polynômes symétriques élémentaires. Grâce aux relations coefficients/racines, 
on connaît donc le polynôme caractéristique Pg de notre endomorphisme p (g) , et donc 
(moyennant la recherche des racines de ce polynôme tout de même) les valeurs propres 
{ Â1 , . . .  , Âiz} . En conclusion, la connaissance du caractère d'une représentation est en fait 
équivalente à la connaissance de toutes les valeurs propres de tous les morphismes as­
sociés aux éléments de G. Est-ce suffisant pour caractériser une représentation (tout du 
moins à isomorphisme près) ? C'est à cette question que nous allons essayer de répondre. 
Mais avant toute chose, voici un lemme classique qui sera utile pour étudier la représen­
tation des morphismes. 
Lemme 3.3. Soit u E 2'(W) et v E 2'(V) deux applications linéaires. 
On définit Cf> E 2'(2'(V) ,2'(W) ) par l 'égalité <1>(!) = u o f o v. 
On a alors tr( <I>) = tr( u) tr( v ). 
Démonstration. On se donne des bases { e; };El de V et {!j} jEJ de W, ainsi que les bases 
duales {ej} ;EI et {fj }jEJ · On peut construire une base {F;,j} (i,j)E/xJ de 2'(V, W) par 

Vx E V, F;,j (x) � (ej ,x) fj E W. 
Si les endomorphismes de 2'(V, W) sont écrits sous forme matricielle dans les bases (e; ) 
et (fj) , alors Fk,l = ( Ô;kÔjt ) (i,j)EixJ · L' élément Fk,1 de la base duale associe à une matrice 
( a;,j ) la valeur ak,l · La base duale est ainsi définie par la propriété : 

\If E 2'(V, W) ,  (F;�j , J) = (Jj , f(e;) ) . 
On a donc 

tr(Cf>) � L (F;�j , <l>(F;,j) ) = L (Jj , u o F;,j o v(e;) ) (i,j)ElxJ (i,j)ElxJ 
L (fj , u( (ej , v(e;) ) fj) ) = L (fj , u(fj) ) (ei , v(e;) ) 

(i,j)ElxJ (i,j)ElxJ 
= tr(u) tr( v) . 0 

Dans la suite, si Pu est une représentation sur un espace U, nous abrégerons la notation 
Xpu en xu . Commençons par donner les propriétés évidentes des caractères. 
Proposition 3.4 (Propriétés des caractères). On a les propriétés suivantes. 

(i) Xp ( I ) = n. 
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(ii) '<fs E G, Xp (s- 1 ) = Xp (s) . 
(iii) '</(s , t) E G2 , Xp (tst- 1 ) = Xp (s) : on dit que Xp est une fonction centrale (voir para­

graphe 5.2) sur G. 
(iv) Si p se décompose en une somme directe de deux représentations Pv et pw, alors 

déf. 
Xp = Xvœw = Xv + Xw· 

(v) Si on note P2(V,W) la représentation des morphismes sur Z(V, W) de deux repré­
sentations Pv et Pw. alors X2(V,W) = XpvXPw · 

(vi) Si on note p * la représentation duale d'une représentation p , alors Xp• = Xp · 
(vii) Deux représentations isomorphes ont même caractère. 

Démonstration. 

(i) C'est évident car tr(Idv) = dim(V) = n. 
(ii) Ceci vient du fait que l 'on peut prendre une matrice unitaire pour p (s) et du calcul 

Xp (s- 1 ) = tr(p (s)- 1 ) = tr(p (s) * ) = tr(p (s) ) . 
(iii) Ceci vient du fait que '</(A , B) E GLn (C) , tr(BAB- 1 ) = tr(A) .  
(iv) S i  on note f!fiv une base de V et f!fiw une base de W,  la  matrice de Pvœw (s) s 'écrit 

dans la base !!fi � f!fiv U f!fiw : 

M( ) = 
(Mv(s) 0 ) s 0 Mw (s) ' 

où Mv (s) est la matrice de Pv(s) dans la base f!fiv et Mw (s) celle de pw (s) dans 
f!fiw . D'où 

Xvœw (s) = tr(M(s) ) = tr(Mv (s) ) + tr(Mw (s) )  = Xv (s) + Xw (s) . 
(v) Ceci provient du lemme 3. 3, appliqué à u = Pw (s) et v = Pv (s- 1 ) .  
(vi) Ceci provient du fait que la représentation V *  est isomorphe à la représentation des 

morphismes Z(V,K) , ce qui permet d'utiliser (v), et du fait que tr(JT) = tr(f) . 
(vii) Même démonstration que pour (iii) . D 

Exemple 3.5 (Représentation régulière). On note Pr la représentation régulière à gauche 
d'un groupe G, sur un espace de dimension IG I = n. Cette représentation correspond à 
une représentation par permutation des éléments de la base { Ôg }gEG de q G] . La présence 
d'entrées non nulles sur la diagonale de la matrice associée à Pr (g) correspond à des 
points fixes pour la permutation induite par g. Or la permutation induite par un élément 
différent de l 'élément neutre n 'a pas de point fixe, puisque 

On a donc Xr ( l ) = n et '</s =fa 1 ,  Xr (s) = O. 

3.2 Relations d'orthogonalité 

Les caractères sont des éléments (certes un peu particuliers) de l 'espace C [ G] des fonc­
tions de G dans C. Une idée importante est que l 'on peut munir l 'espace vectoriel C [G] 
d'une structure d'espace hermitien, et le produit scalaire associé va s ' avérer un outil à la 
fois calculatoire et théorique très efficace. 
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Définition 3.6 (Produit hermitien). Si <p et 1f1 sont deux fonctions de G dans C, on pose 

(cp , 1/1) � l�I L cp(t) lfl(t) .  
tEG 

( - , · ) est un produit hermitien sur l 'espace vectoriel q G] des fonctions de G dans C. 

Nous allons maintenant réinvestir les propriétés de l ' opérateur de Reynolds pour démon­
trer le premier résultat important de ce chapitre, à savoir l 'orthogonalité des caractères 
irréductibles. 
Théorème 3.7 (Relations d'orthogonalité). Une famille de caractères de représenta­
tions irréductibles deux à deux non isomorphes forme une famille orthonormale de l 'es­
pace des fonctions de G dans C, ce qui signifie que 
- si X est le caractère d'une représentation irréductible, on a (X , X) = 1. 
- si X et x' sont deux caractères de représentations irréductibles non isomorphes, on a 
(x , x') = o. 

Démonstration. Soient PI et P2 deux représentations de la famille considérée, respecti­
vement sur des espaces vectoriels V et W. Avec la proposition 2.13, on a donc tr(Ro) = ô, 
où ô = + 1 si les deux représentations sont isomorphes (donc en fait égales), et 0 sinon. 
Or 

1 1 tr(Ro) = -IG I L, tr(P.51'(v,w) ) (s) = G L XP2(v,w) (s) . 
sEG sEG 

Nous avons vu à la proposition 3.4, (v), que X.51'( V , w) (s) = Xv (s)xw (s) , donc on a bien 

1 "' -- déf tr(Ro) = -1 0 1 � Xv (s)xw (s) = (Xw , Xv ) = o .  
sEG 

D 

Corollaire 3.8. Il y a un nombre fini de classes de représentations irréductibles (sous­
entendu de classes pour la relation « être isomorphe »). 
Démonstration. Les caractères des représentations irréductibles non isomorphes forment 
une famille libre, car orthogonale, de q G] , qui est un espace de dimension finie sur C. En 
conséquence, il y a un nombre fini de caractères, donc un nombre fini de représentations 
irréductibles. Leur nombre est borné par dim(C [G] ) = IG J . D 

4 Représentations et dénombrement 

Avant d' aller plus loin dans l 'étude des caractères, nous pouvons tirer bon nombre de 
conclusions intéressantes en utilisant seulement l 'orthogonalité des caractères, que nous 
venons de démontrer. En particulier, nous allons pouvoir répondre au problème de l 'uni­
cité de la décomposition en représentations irréductibles. 

4.1 Décomposition d'une représentation 

Dans la suite de l 'exposé, on se donne une famille de représentants (Vi)f= 1 de l 'ensemble 
des représentations irréductibles sur G, chaque G-module Vj étant implicitement lié à une 
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représentation p; � PV; . Ceci signifie que les V; sont deux à deux non G-isomorphes, et 
que toute représentation irréductible W est G-isomorphe à un unique V;. 
Définition 4.1 (Dual d'un groupe fini). On note G l ' ensemble des classes d'équivalence 
des représentations irréductibles sur G pour la relation d' isomorphisme. Par abus de lan­
gage, on notera souvent G l ' ensemble (p;)f= I • ce qui correspond à choisir un représentant 
dans chaque classe. De même, on notera souvent LpEÔ à la place de I.f=1 . 
Proposition 4.2 (Unicité de la décomposition). Soit une représentation sur V, de ca­
ractère XV· Alors elle se décompose (c 'est-à-dire est G-isomorphe) en 

p 
V �  ffiv/�a; , 

i= l 
Dans cette relation, on a noté V;œa; � V; œ · · · œ V; (a; fois). 
De plus, on a (Xv , Xv) = I.f=1 ar. 

(4.1 )  

Démonstration. On sait, d' après l a  proposition 1 .32 que l a  représentation sur V s e  dé­
compose en somme de q représentations irréductibles (Wj)j= 1 : 

V = W1 EB · · · EB Wq,  (4.2) 

chaque espace W; étant associé à un morphisme PW; : G --+  GL(W; ) .  Donc d' après le pro­
position 3.4, (iv), on a Xv = Xw1 + · · · + XWq · Comme on a (Xv , X;) = I.j=1 (Xwi , X; ) ,  et 
que (XW; , Xi) vaut 1 si W; est G-isomorphe à W;, et 0 sinon, on en déduit que (Xv , X;) re­
présente le nombre de Wj . pour j = 1 ,  . . .  , q, qui sont isomorphes à Vi. Or par définition, 
c'est ai. 
Au final, dans l 'écriture (4.2), on peut regrouper les Wj isomorphes à V;, et donc écrire 
V;œa; à la place. D 

Remarque 4.3. C'est en ce sens que la décomposition d'une représentation V est unique. 
De plus, si on considère une représentation irréductible W, elle est isomorphe à un certain 
V;, et le nombre de fois que W intervient dans la décomposition (c'est-à-dire le nombre 
de W; isomorphes à W) est indépendant de la décomposition et vaut (Xw , Xv) � ai . En 
particulier, si l 'on dispose de deux décompositions W = W1 œ · · · œ Wr et W = W{ œ · · · œ 
WI, alors r = r', et quitte à réordonner les indices, il existe des isomorphismes W; � W/. 
Corollaire 4.4. Deux représentations sont isomorphes si et seulement si elles ont le 
même caractère. De plus, une représentation sur V de caractère Xv est irréductible si et 
seulement si (Xv ,  Xv )  = 1. 
Démonstration. Le caractère détermine entièrement la décomposition (4. 1 )  en fonction 
des éléments de G, donc détermine la classe d'isomorphisme. 
De plus, un caractère est irréductible si et seulement si sa décomposition ne possède qu'un 
seul terme, c'est-à-dire s ' il existe un j E { 1 ,  . . . , p} tel que ai = 1 et si i =F j, alors ai = O. 
Ceci est équivalent à I.f = 1 ar = 1 .  D 

4.2 Résultats de dénombrement 

Le point central pour démontrer les relations liant les degrés des représentations irré­
ductibles est l 'utilisation de la représentation régulière, puisque nous allons voir qu'elle 
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contient toutes les autres représentations, et que l 'on peut même expliciter sa décomposi­
tion : 
Proposition 4.5 (Décomposition de la représentation régulière). On note p,. la repré­
sentation régulière d'un groupe G, sur un espace vectoriel V de dimension n. Soit Xr son caractère (cf. exemple 3.5). On reprend les notations du paragraphe 4. 1 .  La décompo­
sition de la représentation régulière sur V (c 'est-à-dire en termes de G-isomorphisme) 
s 'écrit 

p 
V � ffiV;Ef)n; 

i= l 
avec n; � dimic (V;) = (x,. , X;) . 

Démonstration. D'après la proposition 4.2, le nombre de fois que V; intervient dans la 
représentation régulière vaut 

déf. 1 � - 1  1 a; = (Xr, Xi) = ïGf /�a Xr(s )X; (s) = ïGf Xr( l )X; ( l ) = X; ( l ) = n; . D 

Corollaire 4.6. On a les relations : 
(i) lf=t nt = IGI . 
(ii) Pour s =/= 1 , lf= t n;X; (s) = O. 

Démonstration. D'après la proposition 4.5, on a Xr(s) = I,n;X; (s) .  On en déduit (i) en 
prenant s = 1 et (ii) en prenant s =!= 1 .  D 

Remarque 4.1. La relation (i) permet de déterminer si on a, ou non, trouvé toutes les 
représentations d'un groupe donné, et, le cas échéant, de déterminer la dimension d'une 
éventuelle représentation manquant à l ' appel. Dans ce cas, on peut utiliser la relation (ii) 
pour déterminer la valeur de ce caractère (voir l 'exemple du groupe 64, paragraphe 1 .4, 
chap. VIII, pour une application) . 

5 Théorie de Fourier 

Avant d'essayer de développer une théorie des séries de Fourier semblable à celle des 
caractères sur un groupe commutatif (ceci sera fait au paragraphe 5.3) , commençons par 
définir le morphisme de transformée de Fourier. Cette construction est identique à celle 
faite dans le cadre des groupes abéliens au paragraphe 4. 1 ,  chap. I, puisqu'elle consiste 
à étendre une représentation sur un groupe G à l 'espace des fonctions de G dans C. En 
effet, nous avons déjà dit qu'une représentation de G s 'étend de manière unique en une 
représentation d'algèbre sur C[G] . Tout natur�llement, n�us sommes en fait en train de 
construire la transformée de Fourier, et nous allons voir que, comme dans le cas des 
fonctions de carré intégrable sur un intervalle réel, cette transformée de Fourier est un 
morphisme d' algèbre. 

5.1 Transformée de Fourier 

Définition 5.1 (Transformée de Fourier). Soit f E C[G] une fonction de G dans C. On 
définit, pour p une représentation de G sur un espace V, l ' application n:(f) (p ) , par 

n:(f) (p ) = L f(s)p (s) E 2(V,V). 
sEG 
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Ceci permet de définir l ' application transformée de Fourier : 

§ . { C[G] � E9f=1 End(V;) 
· f � {n(f) (p;) }f= 1 ' (5.1 )  

où l 'on a noté End(V;) � if(V;, V; )  l 'espace des applications linéaires de V; dans V;. Par 
abus de notation, on notera § (f) (p;) à la place de n(f) (Pi) = ( § f) i (la ëème compo­
sante de p; (f)) . 
Remarque 5.2. (Transformée de Fourier et représentation sur C[Gj) . Cette définition 
est en fait très naturelle, puisque nous nous sommes contentés de prolonger la représenta­
tion p définie sur G à une représentation sur l ' algèbre C [G] (c' est-à-dire en un morphisme 
d'algèbres de C [G] dans End(V)) . En effet, on peut identifier s E G à l 'élément Ôs (c' est 
l ' identification canonique), et on remarque que 

\;/s E G, n(ôs) (p ) = p (s) .  
On veut prolonger p en p sur C [G] .  Pour définir, pour f E C[G] , la valeur de p(f) , il suffit 
d'écrire f sous la forme f = LsEGf(s)ôs . L'unique façon d'effectuer ce prolongement est 
d'utiliser la linéarité que doit avoir la fonction p, et de poser 

p(f) � L f(s)p (s) .  sEG 
Comme par hasard, c 'est la définition que l 'on a prise pour n(f) (p) ! De cette remarque, 
on tire immédiatement la proposition suivante. 

Proposition 5.3 (Convolution et transformée de Fourier). L'application transformée 
de Fourier est un morphisme d 'algèbres de (C[G] , * ) dans E9f=1 (End(V;) , o), autrement dit, 

Vp E G, V(f,g) E C[G]2 , §(j * g) (p) = §(j) (p ) o§(g) (p) . 
Démonstration. Il suffit d'utiliser le fait que l ' application f E C[G] r-+ § f(p) est l 'uni­
que représentation qui étend la représentation p à l 'espace C [ G] . Or une représentation 
d'une algèbre est un morphisme d'algèbres, d'où la proposition. D 

Comme pour la transformée de Fourier sur un groupe abélien, l ' application que nous ve­
nons de définir est en fait un isomorphisme d' algèbre. C'est ce que nous allons démontrer, 
en utilisant une fois de plus la représentation régulière. 
Proposition 5.4 (Bijectivité de la transformée de Fourier). L'application transformée 
de Fourier est un isomorphisme d 'algèbres de (C [G] , *) sur E9f= 1 (End(V;) , o ) . 
Démonstration. Injectivité : Soit f E C[G] telle que \;fi = 1 ,  . . .  , p , §f(p;) = O. Soit 
alors p une représentation quelconque. On peut décomposer p en somme des représen­
tations (p;)f= i · Ceci signifie que dans de bonnes bases, la matrice de p (f) est formée de 
tableaux diagonaux des matrices §f(p;) , i = 1, . . .  , p, donc qu'elle est nulle. 
En appliquant ce résultat à la représentation régulière Pr sur l' espace V = C[ G] , on obtient 
PrUr) = 0, d'où 

0 = §f(Pr) (ôe) � f * Ôe = f. 
Surjectivité : Nous avons déjà vu au corollaire 4.6 que 'Lf= I nf = I G I . Or on sait que 
dimc (C [G] )  est égal à IG I (car les ( ôs)sEG forment une base canonique de C [G] ), et que 
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l 'on a de plus dimic(End(V;)) = nr (c'est une algèbre de matrices) . Par égalité des dimen­
sions, on en déduit que �, qui est injective, est bijective. D 

On peut même aller plus loin en explicitant l ' application inverse, grâce à une formule 
d' inversion qui généralise la formule déjà prouvée dans le cas d'un groupe abélien, à la 
proposition 4.4, chap. 1. 
Théorème 5.5 (Formule d'inversion). Pour f E C [G), on a la formule d'inversion sui-
vante : 

'ïlg E G, f(g) = l�I L,�n; tr (p; (g- 1 ) �f(p;) ) , 
p;EG 

où n; est le degré de la représentation p; et tr désigne la trace. 
Démonstration. En utilisant la linéarité des deux membres de l'égalité, il suffit de dé­
montrer la proposition dans le cas où f = oh . Le membre de droite de l 'égalité se résume 
alors à 

Or, d' après la proposition 4.6, cette dernière quantité vaut 1 si g- 1h = 1 (c' est-à-dire 
g = h), et 0 sinon. En regardant le membre de droite de l'égalité, qui vaut oh (g) , on voit 
que c'est ce qu' il fallait démontrer. D 

5.2 Espace des fonctions centrales 

On suppose comme précédemment que l 'on dispose d'une famille de représentants (X;) iE/ 
des caractères des représentations irréductibles sur V, c 'est-à-dire de G. Nous avons vu 
que les caractères sur un groupe G ont une propriété importante, puisqu' il sont dans le 
centre de C [G) pour le produit de convolution. Ils partagent cette propriété avec une classe 
de fonctions plus grande, que l 'on nomme les fonctions centrales, et que l 'on va étudier 
dans ce paragraphe. Nous allons voir en particulier le résultat primordial de ce chapitre, 
qui dit que les caractères forment en fait une base de cet espace, et que cette base est 
même orthonormée. 
Commençons par rappeler les définitions liées à l ' action de G sur lui-même par conjugai­
son. 
Définition 5.6 (Classes de conjugaison). G agit sur lui même par conjugaison : pour 
un élément g E G, l' action envoie h E G sur ghg- 1 • Les orbites pour cette action sont 
appelées les classes de conjugaison de G. Ainsi, la classe d'un élément h E G est 

Deux éléments sont dits conjugués s ' ils appartiennent à la même classe de conjugaison. 

Définition 5.7 (Espace des fonctions centrales). Une fonction <p :  G -+  C est dite cen­
trale si elle vérifie 

'ïl(s , g) E G2 , cp(sgs- 1 ) = cp(g) . 
On note C [G]0 l 'ensemble des fonctions centrales sur G :  c 'est un sous-espace vectoriel 
de l'espace C [G) des fonctions de G dans C. Chaque fonction étant constante sur chaque 
classe de conjugaison, la dimension de C [G)0 est égale au nombre de ces mêmes classes 
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(égale, donc, au nombre d'orbites pour l ' action de conjugaison de G sur G). De façon plus 
précise, si on note { C1 , . • .  , Cq} les différentes classes de conjugaison de G, une base de 
l 'espace C[G]G est donnée pas les fonctions fc1 , • • •  ,fcq , définies par { 1 si g E C; \;/g E G, fc; (g) = O . . smon (5.2) 

En fait, les fonctions centrales forment un sous-espace très important de l ' algèbre C[G] . 
Proposition 5.8. Les fonctions centrales sont les fonctions f E C [ G] qui vérifient \;/ <p E 
q G] , f * <p = <p * f. En d'autres termes, q G] G est le centre de q G] pour le produit de 
convolution *· 
Démonstration. Il suffit d'écrire la définition du produit de convolution : 

U* <p) (g) � L f(h)<p (h- 1g) = L <p(h')f(gh'- 1 ) ,  
hEG h'EG 

où l 'on a effectué le changement de variable h' = h- 1 g dans la sommation. On conclut en 
utilisant, puisque f est centrale, le fait que f(gh1- 1 ) = f(h1- 1 g) . D 

Remarque 5.9. La notation C[G]G est cohérente avec la théorie des actions de groupes, 
car les fonctions centrales peuvent être vues comme les éléments invariants de C[G] sous 
l' action de conjugaison par G. En effet, G agit par conjugaison sur C[G] par 

\;/g E G, \;/f E C[G] , g · f : x f-t f(gxg- 1 ) . 
Les fonctions centrales forment donc la sous-représentation invariante de C[G] sous cette 
action de G sur C [ G] . 
Lemme 5.10. Si f E C[G]G est une fonction centrale de G dans C, alors, pour toute 
représentation irréductible p sur un espace V de dimension n, g: f (p) est une homothétie 
de rapport 1�1 (f, Xp ) · 
Démonstration. Commençons par remarquer que g: f(p) est un opérateur d'entrelace­
ment pour p :  

Vs E G, p (s) - 1 g: f(p )p (s) = L f(t)p (s- 1 )p (t )p (s) = L f(t)p (s- 1ts) . 
�G t� 

Donc, en utilisant le changement de variable u = s- 1 ts et en utilisant le fait que la fonction 
f est centrale, il vient 

\;/s E G, p (s) - 1 g: f(p )p (s) = L f(sus- 1 )p (u) = L f(u)p (u) � g: f(p ) . 
uEG uEG 

On applique alors le cas (ii) du lemme de Schur 2.5 pour voir que g: f (p ) est une homo­
thétie de rapport Â .  Comme sa trace vaut nÂ , on a 

nÂ = L f(t) tr(p (t ) ) = L f(t)Xp (t) � JGJ (f, xp ) . 
tEG tEG 

D 

Remarque 5.11. Cette propriété, démontrée de façon quelque peu calculatoire, traduit 
simplement le fait que le morphisme d' algèbres g: fait correspondre le centre de C[G] 
(c 'est-à-dire les fonctions centrales) avec le centre de l ' algèbre EJ1f=1 End(V;) (c'est-à­
dire les éléments qui induisent sur chaque V; des homothéties) . Toutes ces propriétés vont 
permettre d' affiner le résultat d'orthogonalité des caractères, démontré au théorème 3 .7. 
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Théorème 5.12. (Xp )pEÔ = (Xi)f= iforme une base orthonormale de l 'espace C[GJ0 des 
fonctions centrales sur G. 
Démonstration. Les (Xi) forme une famille orthonormale, donc libre, il suffit de mon­
trer qu'elle est génératrice. Dire que les (Xi) engendrent q G] G est équivalent (car f E 
C[GJ0 <=? 7 E C[G]0) à dire que les (Xi) engendrent C [GJ0. Autrement dit, si on prend 
f E q G] G orthogonale à H � Vect {Xi \ i = 1 ,  . . .  , p}, on veut montrer que f = O. Or avec 
le lemme 5 . 1 0, on sait que 9f(Pi) est une homothétie de rapport (!, xi) , donc est nulle, 
car f est orthogonale à H. Ceci signifie que la transformée de Fourier de f est nulle, donc 
f = 0 grâce à la proposition 5 .4. D 

Corollaire 5.13. Le nombre p de représentations irréductibles sur G non isomorphes 
(c 'est-à-dire le cardinal de G) est égal au nombre de classes de conjugaison de G. 
Démonstration. Comme les fonctions de C [GJG sont les fonctions constantes sur les 
classes de conjugaison de G, la dimension de C [GJ0 est égale au nombre de ces classes . 
On termine en utilisant le fait que les (Xi)f= I forment une base de C [GJ0. D 

Remarque 5.14. Même si on sait que le nombre de représentations irréductibles à iso­
morphisme près est le même que le nombre de classes de conjugaison, on n 'a, a priori, 
aucun moyen de mettre en relation ces deux types d'objets . Par exemple, étant donnée 
une classe, on aimerait disposer d'un moyen de construire une représentation irréduc­
tible. Dans le cadre du groupe Sn. on sait le faire, mais la construction est compliquée (se 
référer au livre de FULTON et HARRIS [35]) .  

Corollaire 5.15. G est commutatif si et seulement si toutes ses représentations irréduc­
tibles sont de degré 1.  
Démonstration. Si on note p le nombre de classes de conjugaisons, G est commutatif si et 
seulement si p = I G I . Or avec le corollaire 4.6, on a rf= I nr = IG I ,  donc G est commutatif 
si et seulement si \:li = 1 ,  . . .  , p, ni = 1 .  D 

5.3 Séries de Fourier 

Ce paragraphe se contente de synthétiser les résultats précédents sous la forme d'une 
formule de décomposition d'une fonction centrale en série de Fourier. On retrouve exac­
tement les mêmes énoncés que pour les séries de Fourier sur un groupe abélien, en se 
restreignant bien sûr aux fonctions centrales. Dans le chapitre suivant, nous étendrons ces 
séries de Fourier aux fonctions quelconques de C [ GJ , mais ceci demandera de laisser de 
côté nos caractères, pourtant si utiles ! 
Définition 5.16 (Coefficients de Fourier). Pour f E C[G] et pour Pi une représentation 
irréductible, on définit le coefficient de Fourier de f en Pi par 

déf. déf. 1 � --c 1(Pi) = (!, Xi) = -IGI � f(t)Xi (t) ,  
tEG 

(5 .3) 

où l 'on a noté Xi le caractère de Pi . 
Proposition 5.17 (Décomposition en série de Fourier). Soit f E C[GJ0 une fonction 
centrale sur G. On a la décomposition de f en série de Fourier : 

f = L c1(P )Xp · pEG 
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Démonstration. Ceci provient immédiatement du fait que les (Xi) forment une base or­
thonormale de C[G]0. D 

Proposition 5.18 (Formule de Plancherel). Soient f et g deux fonctions centrales sur 
G. On a l 'identité de Plancherel : 

l�I L f(s)g(s) = L� c1 (P )c8 (p ) . sEG pEG 
Démonstration. En écrivant f = LxEâcJ (X)X ainsi que g = LxE0c8 (X)X , il vient 

L f(s)g(s) = I G I (f, g) = I G I L c1 (X1 )c8 (X2) (x1 , X2) . sEG (X1 1X2)EÔ2 
On obtient donc l 'égalité voulue grâce aux relations d'orthogonalité entre les caractères . 

D 

En conclusion, observons comment cette décomposition d'une fonction centrale s 'ex­
plique en termes de changement de base. Nous avons déjà vu que la base « naturelle » 
dans laquelle on représente volontiers une fonction centrale est la base {fc1 , • • •  , fcP } des 
fonctions « plateau ». La décomposition en série de Fourier permet de passer de cette 
base, peu pratique du point de vue calculatoire à la base des caractères, qui a des pro­
priétés beaucoup plus intéressantes vis-a-vis de la convolution. C'est précisément de cette 
utilisation des caractères qu' il va être question dans le paragraphe suivant. 

5.4 Transformée de Fourier et caractères 

Dans ce paragraphe, nous nous intéressons à présent aux propriétés des caractères en tant 
qu'éléments centraux de l ' algèbre C[G] . Mais pour étudier les projecteurs d'une telle 
algèbre, nous sommes amenés à utiliser certains concepts d'une portée plus générale. 
Définition 5.19 (Idempotents centraux). Soit J2I une algèbre associative de dimension 
finie sur le corps C des complexes . Un élément e E J2I est appelé idempotent central s ' il 
vérifie e2 = e et '</x E Jll, e *x = X * e. Une famille {eÂhEL (où L est un ensemble fini) est 
un système d' idempotents orthogonaux si elle vérifie 

Supposons que l 'on dispose d'un isomorphisme d' algèbre 

<I> :  J2I � ffi End(VÂ ) = PÀ, 
ÂEL 

si Â. = µ 
sinon 

où les VÀ sont des espaces vectoriels de dimension finie. Alors, notons 

EÀ � O EB · · · EB O EB ldy.t E9 0 EB · · · E9 0 E PÀ. 

On voit facilement que la famille {EûÀEL forme un système minimal d' idempotents 
orthogonaux, puisque l 'on dispose d'une description complète du centre de PÀ (les mor­
phismes qui sont des homothéties sur chaque VÀ). En conséquence, grâce à <I>, il est très 
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simple de déterminer un système d' idempotents sur .rd, il suffit de considérer les { e Â. }  Â. EL 
avec eÂ. � <1>- 1 (EÂ. ) . 
Si on se place dans le cas où .rd = C [ G] , la transformée de Fourier $ définie par l'équation 
(5 . 1 ) va donc nous permettre de construire notre système formé par les {eûÂ.EÔ' Ici, 
l 'ensemble L a été pris égal à G, puisque à chaque classe de représentation irréductible Â.. 
correspond un idempotent eÂ. . Le point important est que l 'on peut calculer explicitement 
ces idempotents, en utilisant la formule d' inversion de Fourier, proposition 5 .5 : 

où on a noté nÂ. la dimension de la représentation Â. .  Rappelons les deux propriétés essen­
tielles de nos eÂ. : 

et si Â.. = µ 
sinon 

Ces idempotents orthogonaux permettent en particulier de calculer des projections sur des 
sous-représentations. Soit pu une représentation de G sur un espace U. On étend de façon 
naturelle cette représentation en une représentation d' algèbre, que l 'on note encore Pu . 
En utilisant le langage de la transformée de Fourier, on peut même écrire, pour f E C[ G] , 
que pu (!) = $(!) (Pu) . Pour tout Â.. E G, on définit alors un endomorphisme de U, noté 
PÂ. de la façon suivante : 

PÂ. � Pu (eÂ. ) = $(eÂ. ) (pu ) . 
Par ailleurs, on sait, avec la proposition 4.2, que l 'espace U se décompose en somme 
directe de représentations irréductibles, et même plus précisément : 

U = E9 v:aÂ avec aÂ. = (XÂ. , Xu) E N, 
Â.EÔ 

où les VÂ. sont les espaces associés aux représentations irréductibles Â.. E G. 
Définition 5.20 (Espaces isotypiques). On appelle UÂ. � v:aÂ la composante isotypique 
de U associée à la représentation irréductible Â.. . 

On peut maintenant énoncer le théorème important de ce paragraphe. 
Proposition 5.21. PÂ. est le projecteur sur U Â. associé à la décomposition U = EJ1 U Â. · 
Démonstration. Soit V une sous-représentation irréductible. La construction de eÂ. mon­
tre que $ (eÂ. ) (pu ) , restreint à Vµ est l ' identité si V �  VÂ. , et est nul sinon. Ceci veut bien 
dire que PÂ. est le projecteur cherché. D 

6 Exercices 

Exercice VII.1 (Irréductibilité et indécomposabilité). Soit K un corps. On considère la 
représentation 

GL2,(K) 

(� �) 
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Montrer que si K = C ou si K est un corps fini, l ' espace K2 est indécomposable mais 
réductible pour la représentation considérée. En déduire que le théorème 1 .29 est faux, si 
le groupe de départ est infini, ou si le corps de l 'espace d' arrivée n'est pas algébriquement 
clos. 
Exercice VII.2 (Opérateurs stationnaires). Soit G un groupe fini, et un opérateur li­
néaire A :  C [G] ---+ C[G] .  On note, pour h E G, 'rh l 'opérateur de translation, c' est-à-dire : 

\f f E C[GJ , 'r1zf : g 1-+ f(h- 1 g) . 
On suppose que A commute avec les translations, c'est-à-dire A-rh = 'r1zA . Montrer qu' il 
existe <p E C[G] telle que l 'on ait 

\f f E C[G] , Af = f *<p, 
où * désigne le produit de convolution. 
Exercice VII.3 (Représentation irréductible). Soit Xv le caractère d'une représentation 
de dimension 1 non triviale, et Xv celui d'une représentation irréductible. Montrer que 
XvXv est le caractère d'une représentation irréductible différente de Pu et py . 
Exercice VII.4 (Représentation d'un groupe produit). Soient G et H deux groupes fi­
nis . Donner des représentants des représentations irréductibles du groupe G x H en fonc­
tion des représentations de G et de H. Quels sont les caractères correspondants ? 
Exercice VII.5 (Action sur les polynômes). Soit G un sous-groupe fini de GLn (K) , où 
K désigne un corps de caractéristique O. Au paragraphe 1 .2, on a défini une représentation 
de G sur l 'espace vectoriel des polynômes en n indéterminées, K[X1 , . . .  ,Xn] · On rappelle 
que l 'on note K[X1 , . • •  ,Xn]G le sous-espace des polynômes invariants sous cette action. 
C'est aussi un sous-anneau. On souhaite montrer que ce sous-anneau est engendré par un 
nombre fini de polynômes . 
Dans la suite, on aura besoin des notations suivantes : 

\fa =  (a1 , . . . , an) E (:N+t, Xa � Xf1 . .  ·X:!-11 • 

On note alors 1 a 1 = 1 a1 1 + · · · + l an l le degré du monôme obtenu. Par commodité, on note 
aussi 

(A ·X)a � (A · X)f1 · · · (A · X)�" , avec (A · X) ; � a;1X1 + · · · + a;nXn . 
Le but de cet exercice est de trouver un ensemble de polynômes { P1 , . . .  , Ps} générateur 
de l ' anneau K[X1 , . . .  ,X11] G . Ceci signifie que 

\f P E K[X1 , . . .  ,X11] G , 3Q E K[Y1 , . . . , Ys] , P = Q (P1 , . . .  , Ps) · (6. 1 )  
Ce théorème est souvent appelé théorème de Noether. 

1 .  Dans le cas où le groupe G est le groupe symétrique 6n, on fait agir G sur l 'espace 
K[X1 , . . .  ,X11 ] par permutation des indéterminées. Expliquer pourquoi cette action 
rentre dans le cadre de cet exercice. Donner alors des générateurs de l ' anneau des 
invariants . 

2. On considère les sous-groupes de GLi ( C) suivants : 

V4 � { ( �l :l) }  et C2 � {Id, - Id}. 

Pour chacun d'eux, déterminer l ' anneau des invariants, et donner un ensemble de 
générateurs minimal. Est-ce que la décomposition d'un polynôme de K[X1 ,X2] en 
fonction de ces générateurs est unique ? 
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3. On rappelle que l 'opérateur de Reynolds pour l ' action de G sur K[X1 , . . .  ,Xn] est 
défini par 

déf. 1 "'"' 
V/ E K[X1 , . . .  ,XnJ ,  Ra (f) (X) = -IGI � f(A · X) ,  AEG 

où on note symboliquement A · X  l ' action de A sur les indéterminées X1 , • • .  ,Xn . On 
souhaite montrer le résultat suivant : 

Expliquer pourquoi il suffit de montrer que pour tout exposant a, Ra(Xcx.) s 'exprime 
comme un polynôme en les Ra(Xf:l ) , 1,8 1 :::;; IG I . 

4. On note 
(Xi + · · · + Xn)k = L acx,Xcx. , lcx. l=k 

où les aa. sont des entiers positifs. Soient alors u 1 , . . .  , Un de nouvelles indétermi­
nées. On note 

Montrer que l 'on a 

Sk (UA ; A E G) � L (UAl = L IGlaa.Ra(Xcx.)ucx. . AEG lcx. l=k 
On rappelle que tout polynôme symétrique de K[Yi , . . .  , Yp] s 'écrit en fonction des 
p premières sommes de Newton Sk définies par 

p 
Vk E  { 1 ,  . . . , p} , Sk (Yi , . . .  ,Yp) = LYl. i= l 

En utilisant cette propriété pour les sommes de Newton Sk (UA ; A E G) , montrer 
qu' il existe un polynôme F à coefficients dans K tel que 

En déduire le résultat voulu. 
5. On considère le groupe 

C � {Id A A2 A3 } 4 ' ' ' ' 

Utiliser l 'opérateur de Reynolds pour déterminer l ' anneau des invariants. 

L'exercice VIIl.9, propose d'utiliser MAPLE pour calculer l ' anneau des invariants par la 
méthode exposée ici. 

Exercice VII.6 (Théorème de Molien). On considère G un sous-groupe fini de GLn (C) , 
et on souhaite étudier l ' action de G sur les polynômes, comme définie au paragraphe 
1 .2 . Plus précisément, pour obtenir une représentation en dimension finie, on considère la 
restriction de cette action à l 'espace Vs � �[X1 , . . .  ,Xn] des polynômes homogènese de 
degré s (dans lequel on inclut bien sûr le polynôme nul) . On note ds la dimension de Vs . 
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On note Ps : G ---+ GL(Vs) l ' action ainsi définie. On rappelle qu'une base de Vs est donnée 
par l 'ensemble des monômes de degré s. Pour i ;;;:: 0, on note a; le nombre maximum 
de polynômes de Vs qui sont homogènes, invariants, et linéairement indépendants. Pour 
étudier ces nombres a;, on introduit la série formelle de Molien : 

CO 

<I>(.:t ) � Li a;Â i . n=O 
On souhaite montrer le théorème de Molien, qui affirme que : 

1 <I>(Â ) = L det(Id - ÂA) AEG 
(6.2) 

1 . Montrer que si un polynôme P E Vs est invariant sous l ' action de G, alors chacune 
de ses composantes homogènes est invariante sous-G. 
Expliquer pourquoi as = dim(Vs0) ,  où on rappelle que vs0 désigne le sous-espace 
vectoriel des invariants . 

2. Pour A E G, on note A [s] la matrice de Ps (A) dans la base de Vs constituée des mo­
nômes homogènes de degré s. On indexera les éléments de cette base dans l 'ordre 
lexicographique X1 < · · · < Xn . Par exemple, pour n = 2 :  

si A = (� �) 
Montrer que 

alors 
( a2 

A [2l = 2ab 
b2 

as = l� I L tr (A[sJ) . 
AEG 

ac 
ad + bc 
bd 

c2 ) 
2cd . 
d2 

3 .  On note ro1 , . . .  , Œn les valeurs propres de A E G. Quelles sont les valeurs propres 
de A [s] ? En déduire que le coefficient en Â s dans det(Id - ÂA )- 1 est égal à la trace 
de A [sJ . En déduire l 'expression (6.2). 

4. Dans le cas des groupes G1 et G2 rencontrés à l 'exercice VIII.9, quelle est l ' expres­
sion de <l>(Â ) ? En quoi ce résultat permet de simplifier la recherche de générateurs 
(au sens de (6. 1 )) de K[X1 , . . .  ,Xn]0 ?  

Exercice VII.7 (Lemme de Cauchy-Frobenius). Soit G un groupe fini agissant sur un 
ensemble fini X. Pour g E G, on note X8 l ' ensemble des points fixes de g, c'est-à-dire : 

Xg � {X E X \ g .  X = X} .  
1 .  On note XI le caractère de la représentation triviale sur G. Soit V un espace vectoriel 

de dimension IX I dont une base est { ex}xEx . Ceci permet de définir une représenta­
tion par permutation n : G ---+ GL(V) par les relations 

Vg E G, \lx E X, n(g) (ex) � eg·x · 

Calculer (X1 , Xir) à l' aide des IX8 1 . 
2. Démontrer le lemme de Cauchy-Frobenius (parfois attribué à Burnside), à savoir 

que (n ,x1 ) est égal au nombre d'orbites de X sous l ' action de G. 
3. A partir de deux types de pierres précieuses, combien de colliers différents de 6 

pierres un joaillier peut-il construire ? On pourra utiliser une action du groupe dié­
dral D6 sur l 'ensemble X =  {O, 1 }6 . 



§ 6. Exercices 221 

4. On suppose que IX I ;:;?: 2 et que l 'action de G sur X est doublement transitive. On 
rappelle que Homo(V) désigne l 'espace des opérateurs d' entrelacement, c'est-à­
dire les f E �(V, V) tels que f o ir(g) = ir(g) o f. Montrer que dim(Homa(V) ) = 2. 
En déduire la décomposition de G-modules V = Cl E9 W, où W est irréductible. 
Conclure que la représentation standard de 611 est irréductible pour n ;:;?: 2. 

Exercice VII.8 (Représentation et théorie des nombres). Soit G un groupe fini . On 
souhaite montrer que les dimensions des représentations irréductibles de G sont des divi­
seurs de G. Cet exercice nécessite quelques connaissances sur les entiers algébriques, que 
l 'on pourra trouver au début du livre de SAMUEL [63]. 

1 .  Soit p : G � V une représentation irréductible, et K une classe de conjugaison de 
G. On définit 

! � L p (g) E GL(V) . 
gEK 

Montrer que f est une homothétie de rapport r(p , K) . Déterminer r(p , K) en fonc­
tion de Xp (K) (la valeur de Xp sur K), et dp . la dimension de V. 

2. Démontrer la relation 
jg = :2ir(p ,K)x (K- 1 ) ,  dp K 

la somme portant sur l 'ensemble des classes de conjugaison de G. 
3. Soit K, K' et K" trois classes de conjugaison de G. On définit, pour x E K", 

a(K, K' ,x) � Card { (k1 , k2) E K x K' \ x = k1 k2 } .  
Montrer que a(K,K' ,x) prend une valeur constante pour x E K". 
On note a(K, K' , K") cette valeur. 

4. Montrer la relation 

r(p , K) r(p , K') = La(K,K', K") r(p , K") ,  
K" 

la somme portant sur les classes de conjugaison de G. 
5 .  En déduire que LK r(p , K)Z est un sous-anneau de C de type fini sur Z. Montrer 

alors que les r(p , K) sont des entiers algébriques, puis que �I est un entier algé­
P 

brique. Conclure. 

Exercice VII.9 (Déterminant d'un groupe). Le lecteur pourra faire le rapprochement 
entre cet exercice et l 'exercice I.1 qui étudie les déterminants circulants . Il s ' agit en 
quelque sorte de généraliser cette notion à un groupe quelconque. Cet exercice est tiré 
de l 'exposé de LAM [4 1 ] ,  qui traduit en des termes modernes la découverte de la théorie 
des représentations par FROBENIUS . 
Soit G un groupe fini, et p :  G � GL11 (C) une représentation. On rappelle qu'elle s 'étend 
de manière unique en un morphisme d'algèbres f 1--t irf encore noté p :  C[G] � M11(C) . 
On considère un ensemble d'indéterminées { Xg} gEG ·  Le déterminant du groupe G est noté 
0( G) , et c' est le déterminant de la matrice A de taille 1 GI x 1 GI , dont les entrées, indexées 
par les éléments de G, sont Ag,h � Xgh- 1 . Pour simplifier les notations, on note 

X � L Xgôg , 
gEG 
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que l 'on peut considérer comme un élément générique de l 'algèbre C [ G] . De même, on 
définit la valeur de p en X : 

p (X) � L Xgp (g) , 
gEG 

que l 'on peut voir comme une matrice à coefficients dans C [ { X8 \ g E G} J . Ceci permet 
de définir le déterminant du groupe G en p : 

0p {G) � det(p (X) ) ,  

qui est donc un polynôme à IG I indéterminées. 
1 .  Soit Pr la représentation régulière de G. Montrer que 0p, ( G) = 0( G) . 
2. Soit Pu et Pv deux représentations de G sur des espaces vectoriels U et V .  On note 

Puœv la représentation somme. Montrer que 

0Puœv ( G) = 0p,, { G)0pv { G) . 
3. On considère un système de représentants des représentations irréductibles, Pi : 

G � GLn; (C) , pour i = 1 ,  . . .  , p. Expliquer pourquoi les morphismes d' algèbres 
associés Pi : C[G] � Mn; (C) sont surjectifs. Si on note Pi (X) � {lljk (X) }  (sous 
forme matricielle), en déduire que les formes linéaires (en chaqueX8, g E G) Âjk (X) ,  
pour 1 :;:::; j, k :;:::; ni sont indépendantes . 

4. Démontrer que le déterminant des matrices de Mn(C) , vu comme un polynôme en 
n2 variables, est irréductible. 

5. Expliquer pourquoi on peut compléter la famille { Âjk (X) }  en une base de l'espace 
des formes linéaires en les variables { X8 \ g E G} . En déduire que 0p; ( G) est irré­
ductible. 

6. En remarquant que X1 n' apparaît que sur la diagonale de Pi (X) ,  en déduire si l 'on 
regarde 0p; {G) comme un polynôme en X1 , alors son terme de degré Xf;- I s 'écrit 

L Xp; (g)Xf;- IXg . 
gf I 

En déduire que la connaissance de 0p; {G) détermine p;, puis que les 0p; {G) , pour 
i = 1 , . . .  , p sont deux à deux non proportionnels . 

7. Conclure que la décomposition de 0{ G) en facteurs irréductibles sur C s 'écrit 
p 

0{G) = Il 0p; {G)lli . 
i= I 

Exercice VII.10 (Groupe affine sur un corps fini). Cet exercice introduit des notions 
importantes que l ' on utilisera à l 'exercice suivant. Soit p un nombre premier. On considère 
le groupe des transformations affines inversibles de IF P • qui sont de la forme 

Cl> • { IF p -----+ IF p a,b • X 1---+ ax+ b  ' 
où a E IF; et b E lF p· On note Gp ce groupe. 

1 .  Montrer que l ' identification de <l>a,b avec le couple (b , a) E lFp x IF; permet de dé­
finir Gp comme un produit semi-direct. Quel est l ' élément neutre ? Donner les for­
mules définissant le produit de deux éléments de ce groupe ainsi que l ' inverse d'un 
élément. 
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2. On définit une application { Gp n :  (b , a) 
C [IFp] 

(/(b, a) : x t--t f(a- 1 (x - b) ) ) 
Montrer qu' il s 'agit en fait d'une représentation unitaire (pour le produit hermitien 
usuel sur C[IF p] ) du groupe Gp . 

3. On considère le sous-espace E c C[IF p] : 
E � {1 E C[IF p] \ l', f(x) = o} . 

xEIFp 
(6.3) 

Montrer que E est un sous-espace invariant sous l ' action de n, et que la restriction 
de n à E définit une représentation irréductible. 

Exercice VII.11 (Transformée en ondelettes sur 1Fp). Cet exercice est tiré d'un article 
de FLORNES et de ses collaborateurs [32]. Il s ' agit de construire une transformée en 
ondelettes sur le corps IF P• en utilisant le langage de la théorie de représentations. On 
reprend les notations de l 'exercice précédent. 
Soit 1f1 E C[IFp] .  que l 'on nommera ondelette. On définit, pour f E C[IFp] la transformée 
en ondelettes "fi/(!) E q G P J : 

"fi/(!) : { Gp 
-----+ 

C . (b, a) � P (!, lfl(b, a) ) = lxEIFp f(x) 1f!(a- 1 (x - b) ) 
1 .  Exprimer "fi/(!) ( b, a) en fonction de j (la transformée de Fourier de f sur le groupe 

additif IF p). 
2. On suppose que 1f1 E E. Montrer alors que si f E E, on a la formule d' inversion : 

1 \lx E 1Fp, f(x) = � L "fl/(!) (b, a)lfl(b, a) (x) , l/f (b, a) EGp 
où l 'on a noté cl/f � p2 ( lfl, 1/1) . On pourra penser à calculer la transformée de Fourier 
des deux membres. 

3. Soit maintenant une ondelette 1f1 telle que 
p- 1 

(p - t ) l i/1(0) 1 2 = l: l i/f(k) l 2 • k= l  
Montrer que "fi/ est, à une constante dl/f près, une isométrie de C[IFp] sur C[Gp] · 
Montrer que son inverse est donné par la formule 

1 \lx E IF P • f(x) = d L "fl/(f) (b, a)lfl(b, a) (x) , 
'I' (b, a)EGp 

avec d'if = (p - l ) l i/1(0) 1 2 . 
4. Ecrire un algorithme de transformée en ondelettes sur IF P • ainsi que la transformée 

inverse. Représenter graphiquement les résultats obtenus pour diverses ondelettes 
et fonctions de test. 

La figure 7 . 1  représente quelques transformées. La colonne de droite représente le module 
de "fl/(!) (b, a) (translation b en abscisse, dilatation a en ordonnée), plus la couleur est 
noire, plus le coefficient est grand. 
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Fonction 1 Fonction v Transformée W(l)(b,a) 
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1 0  " 
20 /' > "' 30 

·· ............... 
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40 / 
..........

. 
· -1 50 ·· ... 
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; 40 ·;·i·i· · · ' . ; · �  -1  50 
20 30 40 50 -20 0 20 1 0  20 30 40 50 

b 

FIG . 7. 1 - Transformée en ondelettes sur IF53 



Chapitre VI I I  
Applications des représentations linéaires 

C'est pourquoi les balles de tennis et les étoiles sont des 

sphères ; la terre serait également une sphère si elle ne 

tournait pas autour d'un axe. [ . . .  ] Le phénomène qui 

demande une explication n'est donc pas cette symétrie de 

rotation mais bien les écarts par rapport à cette symétrie 

H. WEYL [77] (1952) 

Les représentations linéaires ont de nombreuses applications, principalement en algèbre 
théorique. Même dans le cadre simple des groupes finis, cette théorie permet de démontrer 
des résultats difficiles. Sans aller très loin dans cette direction, le deuxième paragraphe 
montre comment, à partir de la connaissance des caractères d'un groupe (c'est-à-dire 
d'informations sur la façon dont notre groupe agit sur des objets extérieurs), on peut 
déduire des informations sur les sous-groupes qui le composent. Avant toute chose, et 
pour fournir un peu de matériel d'étude, le premier paragraphe étudie certains groupes 
finis importants. Enfin, le dernier paragraphe, qui clôt ce livre, transpose le problème de 
l ' analyse de données dans le cadre des groupes non commutatifs. 

1 Représentation de groupes classiques 

La mise en pratique de la théorie développée dans ce chapitre passe par l ' étude de groupes 
élémentaires mais qui interviennent de façon constante aussi bien en physique théorique 
ou en cristallographie qu'en mathématiques. Nous allons donc déterminer la liste de re­
présentations irréductibles de ces groupes, leurs caractères, en essayant de retrouver les 
différentes significations géométriques de nos groupes (groupes d'isométries d'une figure, 
action sur les faces, les arêtes, etc.) . 

1.1 Table des caractères 

Comme les caractères sont constants sur les classes de conjugaison C1 , . . . , Cp de G, il 
nous suffit de dresser un tableau des valeurs des caractères (X;)f= I sur ces classes . Nous 
allons donc considérer les quantités X; (gj ) . où 8j est un représentant de la classe Cj . 
Dans la suite, on place toujours en première position la représentation triviale, de sorte 
que Xi = 1 .  Par commodité, on indique aussi les cardinaux kj des différentes classes Cj . 
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Enfin, on utilise le fait que Xi ( 1 ) = ni , pour établir une table, qui est une matrice carrée de 
taille p : 

1 k2 1 g2 X1 1 1 
X2 n2 X2 (g2) 

Xp np Xp (g2) Xp (gp) 
Nous avons vu, au paragraphe 5 .2, chap. VII, que les caractères forment une base ortho­
normée de l 'espace des fonctions centrales . Ceci se traduit, sur la table de caractères, par 
des relations d'orthogonalité entre les lignes de la table, en prenant bien soin d' affecter 
chaque colonne j du poids kj . En fait, on a aussi des relations similaires sur les colonnes 
de la matrice comme le précise la proposition suivante : 
Proposition 1.1 (Orthogonalité des colonnes). Si on note XJ.. ( C1 ) la valeur du caractère XJ.. sur la classe de conjugaison Ci . on a 

L XJ.. (C1 )XJ.. (C2) = JCiT si C1 = C2 { IGI 

J.. EÔ 0 sinon 
Démonstration. Soit C une classe de conjugaison. On rappelle que 1' on note Je la fonc­
tion caractéristique de cette classe (cf. équation (5 .2), chap. VII). Calculons ses coeffi­
cients de Fourier en utilisant la formule de définition (5 .3) , chap. VII : 

� 1 � - ICl -VÂ E G, CJc (Â) = jGî 8f'o
fc(g)XJ.. (g) = jGîXJ.. (C) . 

En prenant successivement C = C1 puis C = C2 dans cette formule, puis en utilisant la 
formule de Plancherel, équation (5 . 1 8) , chap. VII, on obtient le résultat voulu. D 

1.2 Les groupes cycliques 

Un groupe cyclique étant commutatif, d' après le corollaire 5 . 1 5, chap. VII, il n 'a que 
des représentations de dimension 1 ,  c 'est-à-dire des caractères au sens premier du terme 
(des morphismes de G dans le groupe multiplicatif C*) . Soit G = { 1 , go , g5 , . . .  , gô- 1 } un 
groupe cyclique fini de cardinal n et de générateur go . Soit Œ,z = e 2:.n . Nous avons déjà vu 
que tous les éléments de G sont alors de la forme, pour i E { 0, . . .  , n - 1 } , { G ----+ C* Xi : k ( ; )k 2ïnik • g = g0 � œn = e " 

� ----
En particulier, on a G '.'.::= G. On peut donc écrire la table de Z/nZ, qui est une matrice de 
Vandermonde : 1 

gl = 0  
X1 1 
X2 1 
X3 1 

Xn 1 

k2 = 1 
82 = 1  

1 
Cü,z 
ro2 n 
œn- 1 n 

kn = 1 8n = n - 1  
1 

œn- 1 n ro;(n- 1 ) 

roAn- l ) (n- 1 ) 
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1.3 Les groupes diédraux 
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Définition 1.2 (Groupe diédral). On appelle groupe diédral D11 le groupe des isométries 
du plan qui conservent un polygone régulier à n côtés . Il contient n rotations d' angle 
k:: , k = 0, . . .  , n - 1 qui forment un sous-groupe isomorphe à C11 , ainsi que n symétries. Si 
on note r la rotation d' angle 2:: et s une des symétries, alors on a les relations 

r" = 1 s2 = 1 
Selon qu'un élément de D11 appartient ou non à C11 , un élément de D11 s 'écrit de manière 
unique sous la forme si� avec k = 0, . . .  , n - 1 et i = 0, 1 . De plus on a x E C11 <=:? i = O. 

Notons tout d' abord qu' il nous suffit de donner les valeurs des différentes représentations 
et des différents caractères pour les deux générateurs r et s. 
Cas où n est pair : 
Une représentation p de degré un (ou son caractère, puisque c'est la même chose) doit 
vérifier 1f!(s)2 = 1 ,  c' est-à-dire 1f!(s) = ±1 . Elle doit aussi vérifier 1f!(sr)2 = 1 ,  donc 
1f!(r) = ±1 et 1f!(r)11 = 1 . Comme n est pair, la condition sur r s ' écrit 1f!(r) = ±1 . Au 
final, on obtient les 4 représentations suivantes : 

n n 
� s� 

V'I 1 1 
V'2 1 - 1  
V'3 (- l )k (- l )k 
V'4 (- l )k (- l )k+ l 

Pour les représentations de degré deux, posons ro,1 = e 2:,ir . Nous allons définir pour h E N 
une représentation sur D11 par les formules 

On vérifie que ces formules définissent bien une représentation. De plus, on peut prendre 
h E {O, . . .  , n - 1 } , et les représentations Ph et Pn-h sont isomorphes, puisque 

(0 1) (0 1) - l Vg E G, Ph (g) = l O P11-h (g) 1 0 

On en vient donc à ne considérer que les représentations Ph pour h = 0, . . .  , n/2. La re­
présentation correspondant au cas h =  0 est réductible, puisque les droites C(e1 + e2) et C( e1 - e2) sont stables . Il en est de même pour le cas h = n/2. On peut aussi constater que 
Xpo = V'I + V'2 et que Xp,.12 = V'3 + 1f14, ce qui prouve que les représentations Po et Pn/2 
sont réductibles, et permet de connaître leur décomposition. Pour les autres valeurs de h, 
la représentation Ph est bien irréductible. En effet, si Ph admettait une sous-représentation 
non triviale, il s ' agirait d'une droite, et on voit qu'une droite stable par Ph (r) est nécessai­
rement un axe de coordonnée, qui n'est pas laissé stable par Ph (sr) .  On peut calculer les 
caractères de ces n/2 - 1 représentations irréductibles : 

Xh l 2cos1�) 
s� 
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On voit donc que ces représentations ne sont pas isomorphes (car leurs caractères sont 
différents) . Pour vérifier que l 'on a bien ainsi construit toutes les représentations, il suffit 
de calculer la somme des carrés des degrés des représentations. Au total, on obtient bien 
4 x 1 + (n/2 - 1 ) X 4 = 2n = IDn l · 
Cas où n est impair : 
Cette fois-ci, on ne peut avoir que deux représentations de degré un : 

l/11 1 
l/12 1 

1 
- 1  

On définit les représentations Ph comme dans le cas où n est pair. Pour 1 :::;; h :::;; ( n - 1 )  /2, 
ces représentations sont irréductibles et deux à deux non isomorphes. Leurs caractères 
ont déjà été calculés dans le cas n pair. En calculant la somme des carrés des degrés, on 
obtient 2 x 1 + (n - 1 )/2 x 4  = 2n = IDn l · On a ainsi énuméré toutes les représentations 
irréductibles. 

1.4 Le groupe 64 
La première chose à faire est de déterminer les classes de conjugaison de 64, le groupe 
des permutations d'un ensemble à 4 éléments, identifié à { 1 ,2 ,3 ,4} .  On utilise pour ce 
faire le lemme 1 .36, chap. VII, et on obtient donc 

- la classe de l ' identité, qui correspond à la décomposition 4 = 1 + 1 + 1 + 1 ,  c'est-à-dire 
en quatre 1 -cycles . Elle possède 1 élément. 

- la classe des transpositions, par exemple de l 'élément ( 1 2) ,  qui correspond à la décom­
position 4 = 2 + 1 + 1 .  Elle possède 6 éléments (choix de 2 éléments parmi 4 sans ordre, 
ce qui fait ci). 

- la classe des trois cycles, par exemple de l 'élément ( 1 23 ) ,  qui correspond à la décom­
position 4 = 3 + 1 .  Elle comporte 8 éléments ( 4 choix possibles de 3 éléments parmi 4, 
et 2 cycles possibles par choix). 

- la classe des quatre cycles, par exemple de l 'élément ( 1 234) , qui correspond à la dé­
composition 4 = 4. Elle comporte 6 éléments (24 permutations que l 'on regroupe par 
paquets de 4 4-cycles identiques). 

- la classe des couples de 2-cycles disjoints, par exemple de l 'élément ( 12) (34) , qui cor­
respond à la décomposition 4 = 2 + 2. Elle comporte 3 éléments (6 choix possibles 
pour la première transposition, et le choix de la deuxième divise par deux le nombre de 
possibilités) .  

Par le corollaire 5 . 1 3 ,  chap. VII, nous savons que 64 admet, à isomorphisme près, 5 repré­
sentations irréductibles . Nous avons déjà déterminé un certain nombre de représentations 
au paragraphe 1 .4, chap. VII : 

- la représentation triviale, sur un espace U (de dimension 1 ), de caractère XI = ( 1 , 1 , 1 , l , l )  
(on note ainsi la ligne correspondante dans le tableau des caractères. On indexe les co­
lonnes dans le même ordre que celui utilisé pour les classes de conjugaison) . 

- la représentation alternée, sur un espace V (de dimension 1) ,  qui correspond à la signa­
ture et a pour caractère Xe = ( 1 ,  - 1 ,  1 ,  - 1 ,  1 ) .  
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- La représentation standard, sur un espace Vs (de dimension 3), dont le caractère Xs• 
d'après la décomposition trouvée au paragraphe 1.4, chap. VII, vérifie Xp = Xs +XI (on 
a noté Xp le caractère de la représentation par permutation des éléments d'une base) . 
Or la valeur Xp(<J) correspond au nombre d'éléments laissés fixes par <J, ce qui donne 
Xp = (4,2,1,0,0). Au final, on a donc Xs = (3,1,0, - 1, - 1). On remarque que l 'on a 

I G I (Xs, Xs) = 1Xs(Id)2 + 6Xs((12))2 
+ 8Xs((123))2 + 6Xs((1234))2 + 3Xs((12){34))2 = 24. 

D'où (Xs, Xs) = 1, donc d' après le corollaire 4.4, chap. VII, la représentation standard 
de 64 est irréductible. 

On obtient pour l ' instant une table des caractères partielle : 

1 6 8 
Id (12) (123) 

XI 1 1 1 
Xe 1 -1 1 
Xs 3 1 0 

6 
(1234) 

1 
-1 
-1 

3 
(12)(34) 

1 
1 

-1 

Il reste encore deux représentations à déterminer, et en utilisant la relation (i) du corollaire 
4.6, chap. VII, on a n� + n; = 13, où l 'on a noté n4 et ns les degrés des deux représenta­
tions. On a donc nécessairement une représentation de degré 3 et l ' autre de degré 2. La 
première représentation peut s 'obtenir par l ' intermédiaire de la représentation des mor­
phismes sur W � 2(V5,Ve) des représentations standard et alternée. Elle est de degré 
3, et son caractère est XZ(W,V) = XwXv = (3, - 1,0,1, - 1). On remarque qu' il est bien 
différent des caractères déjà déterminés, et que (Xz(w, v) , Xz(w,v) ) = 1, donc cette repré­
sentation est bien irréductible (voir l 'exercice VIl.3 pour généralisation) . Pour déterminer 
la dernière représentation, sur un espace noté W' (de dimension 2), on utilise la relation 
(ii) du corollaire 4.6, chap. VII, et on trouve Xw' = (2,0, - 1;0,2). Au final, on obtient la 
table des caractères : 

1 6 8 6 3 
Id (12) (123) (1234) (12)(34) 

XI 1 1 1 1 1 
Xe 1 -1 1 -1 1 
Xs 3 1 0 -1 -1 
Xw 3 -1 0 1 -1 
Xw1 2 0 -1 0 2 

Une des réalisations concrètes du groupe 64 est le groupe des isométries directes conser­
vant un cube. On peut voir cette réalisation par l ' action du groupe sur les quatre grandes 
diagonales du cube. En conséquence, le groupe agit aussi en permutant les faces du même 
cube, ce qui donne naissance à une représentation par permutation du groupe 64, c'est-à­
dire PE : 64 ---+ GL(E) , où E est un espace vectoriel de dimension 6. Comme pour toute 
représentation par permutation, la valeur dé XE (<J) ,  pour <J E  64 est égale au nombre de 
faces fixées par l ' action de <J. Identifions les différentes valeurs de ce caractère : 
- une rotation de 180° sur un axe reliant les milieux de deux côtés opposés : cette permu­

tation échange seulement deux diagonales . Elle correspond à la classe de (12). Aucune 
face n'est fixée. 
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- une rotation de 1 20° selon une grande diagonale : seule la diagonale en question est 
invariante, les autres permutant circulairement. Elle correspond à la classe de ( 1 23 ) .  
Aucune face n'est fixée. 

- une rotation de 90° selon un axe de coordonnées : permute en cercle les quatre diago­
nales . Elle correspond à la classe de ( 1 234) . Deux faces sont fixées. 

- une rotation de 1 80° selon un axe de coordonnées : permute deux par deux les diago­
nales . Elle correspond à la classe de ( 1 2) (34) . Deux faces sont fixées . 

Le caractère de notre représentation est donc donné par 

Id ( 1 2) ( 1 23 )  ( 1 234) ( 1 2) (34) 

On a (Xp , Xp ) = 3 ,  donc notre représentation s 'écrit comme somme de trois représen­
tations irréductibles . Pour calculer la décomposition de cette représentation, il suffit de 
calculer les différents produits scalaires : 

(XE , X1 ) = 1 ,  (XE , Xe) = 0, (XE , Xs) = 0, 
(XE , Xw) = 1 , (XE , Xw1) = 1 .  

On obtient ainsi la décomposition E = C E9 W E9 W', en tant que somme de G-modules. 

2 La question de la simplicité 

Dans ce paragraphe, nous allons utiliser la théorie des caractères pour obtenir des infor­
mations sur la structure de notre groupe. Nous allons nous intéresser à la recherche de 
sous-groupes distingués. 

2.1 Noyau des caractères 

Commençons par une proposition, qui va permettre de caractériser le noyau des représen­
tations. 
Proposition 2.1. Soit G un groupe fini, et p : G ---+ GL(V) une représentation, de carac­
tère Xv sur un espace V de dimension d. On note g E G un élément d'ordre k. Alors : 

(i) p (g) est diagonalisable. 
(ii) Xv est somme de Xv ( l )  = dim(V) = d racines kièmes de l 'unité. 

(iii) lxv (g) I � Xv ( l )  = d. 
(iv) Kxv � {x E G \ Xv (x) = xv ( l ) } est un sous-groupe distingué de G. On le nomme 

le noyau de la représentation. 
Démonstration. 

(i) Comme gk = 1 ,  on a p (g)k = Id. Donc le polynôme minimal de p (g) divise xk - 1 ,  
qui est scindé à racine simple. 

(ii) Soient ro1 , . . .  , œd les valeurs propres de p (g) , qui sont des racines kièmes de l'unité. 
On a Xv (g) = ro1 + · · · + œd. 

(iii) lxv (g) I � l ro1 I + · · · + l rod l = d. 
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(iv) Si IXv (g) 1 = d, on a égalité dans l ' inégalité triangulaire précédente. Ceci signifie 
que les nombres complexes ro; sont positivement liés sur R Comme ils sont de 
module 1 ,  ils sont tous égaux. Si Xv (g) = d, on a nécessairement ro; = 1 ,  donc 
p (g) = Id. Donc Kxv = ker(p ) ,  est bien un sous-groupe distingué. D 

Dans la suite, nous aurons besoin du lemme suivant. 
Lemme 2.2. Soit N <J G un sous-groupe distingué de G. Soit Pu une représentation de 
G/N sur un espace vectoriel U. Alors il existe une représentation canonique de G sur U 
telle que les sous-représentations de U sous l 'action de G / N soient exactement celles de 
U sous l 'action de G. 
Démonstration. Il suffit de poser 

Vg E G, Pu (g) � Pu o n:(g) , 
où n: : G ---+ G / N est la projection canonique. Pu définit bien la représentation cherchée. 

2.2 Utilisation de la table des caractères 

D 

Soit G un groupe fini. On note G = {Pi , . . .  , Pr} son dual, formé de représentants des 
représentations irréductibles non isomorphes .  Voici le résultat qui va nous permettre de 
déterminer l 'ensemble des sous-groupes distingués d'un groupe donné. 
Proposition 2.3. Les sous-groupes distingués de G sont exactement du type 

où I c { 1 ,  . . . , r} . 

Démonstration. Soit N <J G un sous-groupe distingué. On note Pu la représentation ré­
gulière de G/N. Ceci signifie donc que U est un espace vectoriel de dimension égale à 
I G/NI = IG l / INI , de base {eg}gEG/N• et l 'on a pu (h) (eg) = ehg · 
Nous avons déjà vu à la proposition 1 . 1 1 ,  chap. VII, que la représentation régulière est 
fidèle, donc Pu est injective. En utilisant le lemme 2.2, on étend cette représentation en 
une représentation Pu : G ---+ U. Notons X le caractère de la représentation pu . On a alors 
l 'égalité ker(pu) = ker(pu o n:) = N, d'où N = Kx . 
Il ne reste plus qu' à  décomposer la représentation Pu en fonction des représentations 
irréductibles, pour obtenir 

X = a1x1 + · · · + arXr · 
On a donc, en utilisant le point (iii) de la proposition 2. 1 ,  

r r Vg E G, lx (g) I ::::;; l: a; IX; (g) I ::::;; l: a; ix; ( l ) I  = z ( l ) . i= l i= l 
On a donc l'égalité z(g) = z( l ) (c'èst-à-dire g E Kx) si et seulement si on a une égalité 
dans l ' inégalité triangulaire précédente. Il s 'en suit que z (g) = z( l ) si et seulement si 
\li, a;z; (g) = a;z; ( l ) . Ceci est finalement équivalent à 

Vi, a; > 0 ==} g E Kx; · 
On a donc bien le résultat voulu, avec I � {i \ a; >  O} . 
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Enfin, la réciproque est évidente : en effet, comme les Kx; sont distingués, tout sous­
groupe du type n;E1Kx; l 'est aussi. D 

Corollaire 2.4. G est simple si et seulement si \fi #- 1 , Vg E G, X; (g) -=/:- X; ( l ) . 
Démonstration. Si on suppose qu'il existe g E G, avec g -=/:- 1 ,  tel que X; (g) = X; ( l ) , alors 
K; c G est un sous-groupe distingué non trivial, donc G n'est pas simple. 
Réciproquement, si G est non simple, alors il existe g -=/:- 1 dans un certain sous-groupe 
distingué N <J G non trivial . Avec la proposition précédente, N = n;E1K;, donc g E K; pour 
i E 1 c {2 , . . .  , r} . Ceci signifie bien que X; (g) = X; ( l ) .  D 

Grâce à la table des caractères, on est donc en mesure de dresser la liste de tous les 
sous-groupes distingués d'un groupe G donné, et même de déterminer les relations d' in­
clusion entre ces sous-groupes . Par exemple, on peut considérer le groupe 64, dont la 
table a été établie au paragraphe 1 .4. On voit qu' il possède deux sous-groupes distingués 
non triviaux : ker(Xe) = !it4 ainsi que ker(Xw' ) = ( ( 1 2) (34) ) (la classe de la permutation 
( 1 2) ( 34) ). De plus, on voit que ker(x� ) c ker(xe) .  

3 Analyse spectrale 

Nous avons vu au chapitre précédent que la famille des caractères d'un groupe fini consti­
tuait une base orthogonale de l ' espace des fonctions centrales. Le résultat fondamental de 
ce paragraphe est la généralisation de ce résultat à l ' espace des fonctions de G dans C 
tout entier. Bien sûr, il va falloir considérer une autre famille de fonctions, qui intervient 
de manière naturelle lorsque l 'on essaiè de calculer de façon matricielle la transformée 
de Fourier. Cette méthode pour trouver des bases orthonormées d'un espace fonctionnel 
est à la base de l ' analyse spectrale sur un groupe fini quelconque, qui a de nombreuses 
applications, notamment en statistiques . 

3.1 Orthogonalité des fonctions coordonnées 

Les caractères sont avant tout des objets théoriques pour la recherche des représentations 
d'un groupe G (grâce aux relations d'orthogonalité des lignes et des colonnes de la table 
des caractères) , et pour l 'étude du groupe G lui même (étude de sa simplicité, résolubi­
lité, etc.) . D'une manière pratique, le fait qu' ils forment une base uniquement de l 'espace 
des fonctions centrales les rend peu utiles pour analyser une fonction de G dans C quel­
conque. Pour résoudre cette difficulté, nous préférerons utiliser la transformée de Fourier 
telle qu'elle est définie au paragraphe précédent. Nous allons même voir que, gràce à 
une certaine formulation matricielle, cette transformée correspond aussi au calcul d'une 
décomposition dans une base orthogonale. 
On considère comme d'habitude un groupe fini G, et on note G = {P1 , . . .  , Pp} les re­
présentants des classes de représentations irréductibles . Chaque représentation Pk est liée 
à un espace Vk de dimension nh et ces différentes représentations sont bien sûr deux à 
deux non isomorphes . Nous avons vu, à la proposition 1 .27, chap. VII, que l 'on pouvait, 
pour chaque représentation Ph trouver une base de Vk dans laquelle les matrices Rk(g) 
des endomorphismes Pk (g) sont unitaires . Nous allons noter ces matrices sous la forme 
Rk(g) = {rf/g) } .  On obtient ainsi une série d' applications : 

Vk E { 1 , . . .  , p} , V(i , j) E { 1 , . . . , nk}2 , r'ji : G � C. 
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Plus précisément, on obtient ainsi Lk= I n� = n éléments de C[G] . La proposition suivante, 
qui est le cœur des développements qui vont suivre, nous dit que ces éléments ne sont pas 
quelconques. 
Théorème 3.1 (Orthogonalité des fonctions coordonnées). Les tfj pour k E { 1 , . . .  ,p} 
et pour (i,j) E { 1 ,  . . . , nk}2, forment une base orthogonale de C[G] . D 'une façon plus 
précise, on a 

V(k, l) E { 1 , . . .  , p }2 , V(a , b , c, d) E { 1 , . . .  , nk}4 ,  (r!b ,  r�d) = ô%ôCôk :k . 
Démonstration. Il s ' agit en fait de reformuler le résultat du paragraphe 2.4, chap. VII. 
Soit en effet Pk et Pl deux représentations irréductibles . On sait, que pour f E !L'(Uki U1) , 
l ' application J �Ra(!) E !L' ( Uk , U1) est un opérateur d'entrelacement. D'après le lemme 
de Schur, c 'est soit une homothétie de rapport tr��) (si k = l), soit le morphisme nul (si 
k =!= l). 
Dans les bases que l 'on a choisies pour Uk et U1 , le m�rphisme f s 'écrit s�us forme 

tri. · 11 { }1= 1 . . .nk D A ' ' t 1 tri' d f 1 fi {- }1= 1 . . .nk 0 ma c1e e Xij i= l . . .di . e meme, on ecn a ma ce e sous a orme Xij i= l . . .di . n 
peut calculer explicitement la valeur des X;i : 

- déf. 1 "" l k - l Xi2i 1 = IG I . � ri2h (g)xhh r]1 i 1 (g ) . J 1 , 12 , gEG 
(3 . 1 ) 

Commenço�s par le cas où les représentations ne sont pas isomorphes, c 'est-à-dire k =!= l . 
Le fait que f = 0 est équivalent à X;2; 1 = 0, et ceci quels que soient les Xjiii . L'expression 
de X;2;1 définit une forme linéaire en x iii i , qui est nulle. Ceci veut donc dire que ses 
coefficients sont nuls. En remarquant que r; 1h (g- 1 ) = rj1 ;1 (g) , on obtient ainsi, dans le 
cas où k =!= l, 

V(i 1 , h ) E {O, . . .  , nk}2 , V(i2 , h) E {O, . . .  , n1}2 , 

l� I I '11 i 1 (g)02h (g) � ('11 i 1 , 02i2 ) = o. gEG 
Il reste maintenant le cas où k = l . On a cette fois-ci j = tr�) Id, d'où 

\..1 ( • · ) {O }2 \../ ( . . ) {O }2 - dér. 1 ( "" s:h ) s:i2 v z i , J 1 E , . . . , nk , v z2 , J2 E , . . .  , n1 x;2; 1 = d· ."'-'. uh Xjij1 u;1 • 
l ] J , ]2 

En réutilisant l ' expression de X;2; 1 obtenue à l ' équation (3 . 1  ), et en égalant les coefficients 
de la forme linéaire obtenue, on a la formule 

1 "" � ( )� ( ) � (r'f t ) _ 
1 0i2 0h o -IGI ""-' ii i 1 g hi2 g - ii i 1 , rhi2 - n · ; 1 h · gEG r 

Remarque 3.2. Comme les caractères des représentations irréductibles sont des sommes 
des fonctions coordonnées différentes, ce résultat affirme en même temps l'orthogonalité 
des caractères, que nous avons déjà démontrée au théorème 3 .7, chap. VII. 

On note I � { (k, i ,j) \ k = 1 ,  . . .  , p et i , j  = 1 ,  . . .  , nk} · Le résultat que nous venons de dé­
montrer affirme l'existence d'une base orthonormée de l 'espace C[G] , que l 'on note sous 
la forme {Llkij } (k,i,j)El· On remarque que l 'on a bien sûr I I I = IGI , qui est la dimension de 
q GJ .  Ces fonctions sont définies de la manière suivante : 

V(k, i , j) E /, Ll(k,i,j) � Vrïilfj · 



234 Chapitre VIII. Applications des représentations linéaires 

3.2 Séries de Fourier généralisées 

Le résultat fondamental du paragraphe précédent met donc à notre disposition une base 
orthogonale de l 'espace des fonctions de G dans C. On ne peut s 'empêcher de faire la 
comparaison avec le résultat déjà obtenu grâce à la théorie des caractères au théorème 
5 . 1 2, chap. VII. Or, il est important de comprendre que ces deux constructions n'ont stric­
tement rien à voir. Les caractères sont définis de façon canonique. Ils ne dépendent pas 
du choix d'une quelconque écriture matricielle de nos représentations. Il s ' agit avant tout 
d'un outil théorique pour obtenir des informations sur les représentations (par exemple 
savoir si une représentation est irréductible) ou sur le groupe lui même (pour déterminer 
les sous-groupes distingués) .  En revanche, on peut construire une quantité de bases ortho­
normées de C[G] grâce aux fonctions coordonnées. Il suffit d'appliquer aux matrices des 
différentes représentations unitaires un changement de base unitaire. Il s 'agit donc d'un 
outil calculatoire. Le seul cas où ces deux constructions coïncident est celui des groupes 
finis commutatifs. En effet, les représentations irréductibles d'un tel groupe sont de di­
mension 1 ,  et l 'unique entrée des matrices correspondantes est égale (à une constante 
près) au caractères de la représentation. On voit d' ailleurs que dans ce cas particulier, 
la construction des fonctions coordonnées, non canonique dans le cas général, devient 
canonique. 
Nous souhaitons maintenant appliquer la construction que nous venons d'effectuer à 
l ' analyse d'une fonction f E C[G] .  On suppose donc que l 'on dispose d'une base or­
thonormée {Llkij } (k,i ,j)EI · On définit alors les coefficients de Fourier par rapport à cette 
base. 
Définition 3.3 (Coefficients de Fourier). Pour f E C[G] , on appelle coefficients de Fou­
rier par rapport à la base {Llkij } (k,i,j)EI > et on note c1(k, i, j) les quantités 

V(k, i , j) E /, c1 (k, i , j) � (f, Llkij ) . 
On a donc le développement de Fourier suivant : 

f = L CJ(k, i , j)Llkij · (k,i ,j)El 
On peut ensuite se demander quel lien il existe entre les coefficients de Fourier que nous 
venons d'introduire, et la transformée de Fourier définie en 5 . 1 ,  chap. VII. Le calcul de 
la transformée de Fourier d'une fonction f E C[G] est équivalent au calcul, pour toute 
représentation irréductible Pb de chaque coefficient de § (f) (pk) , c' est-à-dire de 

V(k, i j) E /, § (f) (pk) ij = L f(s) (Pk (g) ) ij = ch (k, i , j) ,  (3 .2) gEG 
où l 'on a noté h � �f. On voit donc que le calcul des coefficients de Fourier est totale­
ment équivalent à celui du calcul de la transformée de Fourier. En continuant à exploiter 
les analogies entre ces deux notions, on peut aussi dire que le calcul de la transformée 
s ' apparente à un calcul de changement de bases . On s' aperçoit en effet qu' à  condition de 
remplacer f par son conjugué, puis de normaliser le résultat (en le multipliant par ..ftï;), 
le calcul de la transformée de Fourier (sous forme matricielle) revient en fait à passer de 
la base canonique des Ôg à la base orthonormée des Llkij . 
Une des questions est de savoir si l 'on dispose, à l' instar de l' algorithme FFf sur les 
groupes abéliens, d'un algorithme de calcul rapide de la transformée de Fourier sur un 
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groupe non commutatif. On peut en effet constater qu'une implémentation naïve des 
équations (3 .2) nécessite O( IG l2) opérations. L'article de synthèse de ROCKMORE [52] 
explique qu' il existe de tels algorithmes pour de larges classes de groupes, notamment les 
groupes symétriques dont il est question au prochain paragraphe. 

3.3 La représentation du signal 

Le problème fondamental du traitement du signal est celui de la représentation (au sens 
premier du terme) des données étudiées .  Le langage de l ' algèbre linéaire permet de for­
maliser ce problème de façon concise et élégante. Les signaux que l 'on souhaite analyser 
peuvent en effet être vus comme des fonctions f : D --+ C où D est un domaine a priori 
quelconque (par exemple un carré dans le cas d'une image). Dans le cadre d'un traite­
ment informatique, on est amené à considérer des domaines D finis. Le problème de la 
représentation d'un signal fini peut alors se résumer en la recherche d'une « bonne » base 
de l 'espace vectoriel de dimension finie formé des fonctions de D dans C. D'un point de 
vue pratique, la qualité de notre base se mesurera en sa capacité de simplifier notre façon 
d' appréhender les données à analyser. En particulier, il faudra que la représentation des 
données dans la nouvelle base soit plus simple, plus creuse que dans la base d'origine. 
La première propriété importante que l 'on souhaite pour la base cherchée est d'être or­
thonormée. Ceci permet d' avoir des formules d' analyse et de reconstruction simples, et 
plus robustes d'un point de vue numérique. C'est exactement ce que nous avons fait lors 
des différents calculs de transformées de Fourier déjà rencontrés. En second lieu, la re­
cherche d'un bonne base nécessite d'exploiter les symétries du domaine D. Même si ce 
point peut paraître sans rapport avec l'efficacité de la base (a priori, il n 'y a aucune rai­
son pour que les signaux étudiés suivent les symétries du domaine), l ' exploitation des 
symétries est essentielle pour obtenir des algorithmes de calcul rapides . Par exemple, si 
l ' algorithme FFf est si rapide, c'est parce qu' il exploite totalement la symétrie (périodi­
cité) de l'ensemble Z/nZ, ce qui permet d'éviter au maximum tout calcul superflu. Dans 
la pratique, cette propriété de respect de symétrie est en fait également importante pour la 
représentation des fonctions, car la majeure partie des signaux « naturels » respectent les 
régularités du domaine d'origine. L'exemple le plus frappant est l' étude de signaux mu­
sicaux stationnaires par décomposition en série de Fourier. On observe, après quelques 
harmoniques fondamentales, des coefficients qui décroissent très rapidement : la repré­
sentation fréquentielle d'un tel signal est beaucoup plus compacte que sa représentation 
temporelle. 
Pour essayer d'exploiter les idées développées au paragraphe précédent, il semble naturel 
de vouloir munir D d'une structure de groupe fini . Ceci laisse le plus souvent une grande 
latitude pour le choix d'une base orthonormée. D'une part, il existe une multitude de 
structures, qui peuvent être non isomorphes, et même si deux structures sont isomorphes, 
l 'une peut être mieux adaptée que l ' autre au signal étudié. D'autre part, nous avons déjà 
expliqué que le choix de différentes bases pour le calcul des matrices des représentations 
irréductibles donnait naissance à des bases orthonormées différentes. Ainsi, l ' exercice 
VIII.7 propose d'utiliser la théorie des représentations pour trouver une base orthonormée 
de l 'espace des fonctions de {O, 1 }n dans C. Ceci fait écho aux exercices VI.4 et Vl.5 qui 
utilisent la base de Walsh (c' est-à-dire les caractères abéliens) pour étudier les fonctions 
booléennes. Nous allons maintenant voir sur un exemple concret comment effectuer ces 
choix de structures et de bases, et s 'en servir pour analyser un ensemble de données. 
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L'exemple que nous allons mentionner maintenant est tiré du livre de DIACONIS [26] , 
qui a été le premier à appliquer la théorie des représentations aux statistiques. Pour un 
panorama complet des algorithmes de calculs rapides en théorie des représentations, on 
pourra se reporter à l ' article de ROCKMORE [52] . On considère le résultat d'un sondage 
où l 'on a demandé à un nombre conséquent de personnes de classer par ordre de préfé­
rence les trois lieux d'habitation suivants : ville (proposition 1 ), banlieue (proposition 2), 
campagne (proposition 3). Chaque personne répond à l' enquête en donnant une permuta­
tion des trois propositions. Par exemple, la permutation (2 , 3 , 1 ) correspond au classement 
banlieue, puis campagne, puis ville. Voici les résultats de l' enquête : 

ville banlieue campagne résultat 
1 2 3 242 
2 1 3 170 
3 2 1 359 
1 3 2 28 
2 3 1 12 
3 1 2 628 

L'ensemble des résultats peut ainsi être vu comme une fonction f :  63 --+ N, qui à chaque 
permutation de ( 1 , 2 , 3 ) assigne le nombre de personnes ayant donné pour réponse cette 
permutation. Le problème qui se pose maintenant est celui de l ' analyse de ces résultats. 
La permutation avec le plus fort résultat (en l 'occurrence (3 , 1 , 2)) nous donne quelques 
informations sur les préférences des personnes interrogées. Mais pour analyser les inter­
actions entre les différentes permutations, il faut utiliser une analyse plus fine. 
Nous allons donc effectuer un changement de base, et calculer la façon dont f se dé­
compose dans une base orthogonale obtenue grâce aux représentations irréductibles du 
groupe 63 . Outre les représentations p1 , triviale, et pz, alternée, il y a une représentation 
irréductible de dimension 2, la représentation standard p3 . L'exercice VIII.3 propose une 
méthode géométrique pour trouver les matrices orthogonales associées . Nous proposons 
ici un autre choix de base. En l 'occurrence, si on note { e1 , ez , e3 } la base canonique de C3 , 
on choisit { ( e1 - ez) / ../2, ( e1 + ez - 2e3 ) / v'6} pour base orthonormée de l ' orthogonal de 
e 1 + ez + e3 . Les matrices de la représentation p3 s 'écrivent dans cette base : 

p3 ( ( 1 , 2, 3 ) ) = (6 �) ' 
1 ( 1 p3 ( (3 , 2, 1 ) )  = 2 -v'3 
1 ( - 1 p3 ( (2 , 3 , 1 ) ) = 2 -v'3 

-v'3) 
- 1  ' �) , 

(- 1  0) p3 ( (2 , 1 , 3 ) )  = 0 1 ' 
1 ( 1 v'3'\ p3 ( ( 1 , 3 , 2) ) = 2 v'3 - 1 ) ' 
1 (- 1  -v'3) p3 ( (3 , 1 , 2) ) = 2 v'3 - 1 . 

En calculant les produits scalaires entre la fonction f et les 6 fonctions coordonnées de 
ces représentations, on peut décomposer les fonctions f comme suit : 

1 
f = 6 ( 1439p1 + 325p2 - 109pm - 1640.2p3 12 + 493 .6pm - 203p322) ,  

où l 'on a noté P3ij la fonction coordonnée ( i , j) de la représentation matricielle p3 . Le 
premier coefficient, le plus important, correspond à la valeur moyenne de la fonction. 
Il n'est donc pas très informatif. Par contre, on constate que le coefficient de p3 12 est 
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nettement plus important que tous les autres. Il correspond à la composante de f sur la 
fonction 

Pm = (0 , 0 , - 0 . 87, 0 . 87 , 0 . 87 , - 0 . 87) , 

où l 'on a énuméré les valeurs de p3 12 sur les éléments de 63 dans le même ordre que 
celui des résultats du sondage. On constate que cette fonction effectue en fait un groupe­
ment des réponses en 3 paquets de 2 permutations (suivant que la valeur est -0. 87, 0 ou 
0 . 87), chaque paquet étant caractérisé par le choix du lieu classé en dernier. Le meilleur 
estimateur après la moyenne correspond donc ici au choix du lieu de résidence le moins 
apprécié. 

4 Exercices 

Exercice VIII.1 (Orthogonalité des caractères). On note cl> � {X; (Cj) } I :s:;i,j:s;;p la table 
des caractères.  On note K = diag(k1 , . . .  , kp)  la matrice diagonale dont les entrées sont 
les cardinaux des classes de conjugaison. Montrer que l 'on a <l>K<I>* = I G IId, c 'est-à-dire 
que la matrice JÎaiK112ct> est unitaire. En déduire une autre démonstration de la formule 
d' orthogonalité des colonnes, proposition 1 . 1 .  

Exercice VIII.2 (Représentation du groupe diédral). On considère le groupe diédral 
Dn . Montrer qu'on peut le réaliser géométriquement comme le groupe formé des trans­
formations suivantes : 

- les rotations autour de l 'axe Oz et d' angles 2!n , pour k = 0, . . . , n - 1 .  
- les symétries par rapport aux droites du plan Oxy formant des angles �� avec l ' axe Ox, 

pour k = 0, . . . , n - 1 .  

On obtient ainsi une représentation p :  Dn ---+ 03 (JR) . Est-elle irréductible ? Calculer son 
caractère, et en déduire la décomposition de cette représentation. 

Exercice VIII.3 (Représentations de 63). On considère le triangle dont les trois som-
2i" 2il< • mets ont pour affixes 1 , eT , e-3 ,  et on fixe la base { 1 , 1} du plan complexe. Le groupe 

63 agit sur les sommets du triangle en les permutant. Calculer les matrices de deux gé­
nérateurs de ce groupe (par exemple ( 1 2) et ( 1 23) ) .  En déduire la table des caractères du 
groupe 63 .  

Exercice VIII.4 (Action sur les faces d'un cube). Comme indiqué au paragraphe 1 .4, le 
groupe 64 peut être considéré comme le groupe des isométries directes du cube. Il agit 
donc en permutant l ' ensemble à 8 éléments formé par les sommets du cube, ce qui donne 
naissance à une représentation de dimension 8. Calculer le caractère de cette représen­
tation. En utilisant la table des caractères de 64, en déduire une décomposition de cette 
représentation. Faire de même avec la permutation des arêtes .  

Exercice VIII.S (Caractère de 64). On considère le  caractère Xw' de 64 dont la  table 
est donnée par 

Id ( 1 2) ( 1 23 )  ( 1 234) ( 1 2) (34) 
Xw1 2 O - 1  O 2 

1 .  On note Pw' la représentation associée. Montrer que Pw1 ( ( 12) (34) ) = Id. 
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2. Montrer que si H c G est un sous-groupe distingué, alors une représentation p : 
G ---+ GL(V) est triviale sur H si et seulement si elle se factorise par G / H en p : 

G � G/H l GL(V) 
c 'est-à-dire que l 'on peut identifier les représentations de G/H avec les représenta­
tions triviales sur H. 

3 .  On note H le  sous-groupe de 64 engendré par ( 12) (34) . Montrer que 64/H � 63 . 
Par exemple, on pourra considérer l ' action de 64 sur les faces opposées d'un cube. 

4. Conclure en montrant que Pw' est en fait la représentation standard de 63 . 
Exercice VIII.6 (Représentation d'un groupe simple). Soit G un groupe fini simple 
non abélien. On souhaite montrer que G ne possède pas de représentation irréductible de 
dimension 2. 

1 .  Commencer par montrer le lemme de Cauchy : si p est un nombre premier qui 
divise 1 GJ ,  alors G possède un élément d'ordre p. Pour se faire, on pourra considérer 
l 'ensemble X = GP, ainsi que l ' action du groupe Z/pZ sur X :  { (Z/pZ, G) ----t X 

(k, (x0, . . .  , xP_ 1 ) )  1------t (xlë, . . .  , xp- l+k) ' 
à laquelle on appliquera l ' équation aux classes (se reporter au livre de PERRIN 
[58]) . 

2. On suppose que G possède une représentation irréductible p : G ---+ GI,i (C) . En 
admettant le résultat de l 'exercice VII.8, en déduire que G possède un élément t 
d'ordre 2. 

3 .  Montrer que p est en fait à valeur dans S.L,i(C) . Montrer ensuite que p(t)  E S.L,i(C) 
doit être égal à -Id. En déduire que t est dans le centre de G. Conclure. 

Exercice VIII.7 (Groupe quaternionique). On note Hg le groupe quaternionique, qui 
est formé des 8 éléments { ± 1 , ± i , ± j, ± k} dont les multiplications sont données par la 
règle des signes et les formules 

i2 = / = k2 = - 1 , jk = -kj = i, ki = -ik = j, ij = -ji = k. 
On nomme H = R[Hg] l ' algèbre des quaternions. Pour plus d' informations sur les quater­
nions, on pourra consulter [58] . 

1 .  On note q = a 1 + bi + c j + dk un élément générique de H. Montrer que l' applica­
tion : 

q � 
(� �b �� �:) 
d -c b a 

permet d' identifier H à une sous-algèbre de M4(R) . En déduire que H est bien une 
algèbre associative. En déduire aussi une représentation de Hg . 

2. Montrer que l ' application 

dér (a -!) cp : q � M(a + i b, c - id) avec M(a, {3 ) = /3 lh 

permet d' identifier H à une sous-algèbre de Mz(C) . En déduire une représentation 
de dimension 2 de Hg sur le corps des complexes .  Est-elle unitaire ? 
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3 .  Calculer les 4 représentations irréductibles de dimension 1 de H8 . Montrer qu' avec 
la représentation obtenue à la question précédente, on dispose de toutes les repré­
sentations irréductibles . Donner alors la base orthonormée correspondante de l 'es­
pace des fonctions de Hs dans C. 

4. Expliquer comment Hs permet de définir une structure de groupe non-commutatif 
sur l ' espace {O, 1 }3 . En utilisant le résultat de l ' exercice VII.4 décrire les représen­
tations du groupe {O, 1 }311 vu comme produit du groupe {O, 1 }3 . En déduire une 
base orthonormée de l 'espace des fonctions de { 0, 1 }311 dans C. 

On pourra rapprocher cette construction de celle de la base de Walsh rencontrée à la sec­
tion 2, chap. II, qui consistait à utiliser la structure de groupe additif abélien de { 0, 1 }11 • On 
a, en quelque sorte, raffiné la construction pour utiliser une structure non-commutative. 
Il existe des applications importantes de ce type de constructions, par exemple de telles 
bases orthonormées permettent de généraliser la technique d' apprentissage de fonctions 
booléennes présentée à l ' exercice VI.5 .  C' est BONEH, dans [8] qui a le premier introduit 
ce procédé. 
Exercice VIII.8 (Anneau des invariants). On considère G le groupe des isométries di­
rectes de JR.3 conservant un cube centré en l 'origine et dont les arêtes sont alignées avec les 
axes de coordonnées . Cet exercice ne suppose pas connu l ' isomorphisme entre G et 64. 
On garde les notations de l ' exercice VII.5, et on souhaite déterminer géométriquement 
des éléments de K[X , Y,z]G. 

1 .  Expliquer pourquoi X2 + Y2 + Z2 E K[X , Y, ZjG. 
2. Montrer que, si on note f � XYZ, alors 

VA E G , f(A · (X,Y,Z) ) = af(X , Y, Z) , pour a E R 

Montrer ensuite que l 'on a nécessairement a = ± 1 .  
En conclure que (XYZ)2 E K[X , Y, z]0. 

3 .  De même, montrer que les polynômes 

f = (X + Y  +Z) (X + Y  - Z) (X - Y  -Z) (X - Y  -Z) 
et g = (X2 - Y2) (X2 - Z2) (Y2 - z2) 

sont de carré invariant sous G. 
Exercice VIII.9 (Codes correcteurs auto-duaux). Soit Cf! un code linéaire sur IF2 de 
taille n et de dimension k. On note Cf!-1 son code dual et Ww(X, Y) le polynôme énuméra­
teur de poids de Cf!. On suppose que Cf! est auto-dual, c 'est-à-dire Cf! =  Cf!-1 . 

1 .  Quelle relation doivent vérifier n et k ? 
2. On note A la matrice 2 x 2 définie par 

A � � G  !1) · 
En utilisant les identités de Mac Williams 4.5, chap. VI, montrer que Ww(X, Y) est 
invariant sous l ' action de A (comme définie au paragraphe 1 .2, chap. VII) . 

3 .  On note G1 le groupe engendré par A. Ecrire les éléments qui le composent. Ex­
pliquer pourquoi Ww(X, Y) E K[X , Y]Gi . En utilisant le résultat de l ' exercice VII.5, 
montrer que K[X , Y]01 est engendré, au sens de (6 . 1 ) , chap. VII, par les polynômes 

X + (fi- I )Y et Y(X - Y) . 
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4. Montrer que pour tout x E CC, w (x) est pair. 
En déduire que W<t>(X, Y) E K[X , Y]02 , où l 'on a noté G2 le groupe engendré par A 
et -Id2 . 

5 .  Ecrire un programme MAPLE qui calcule des générateurs de l ' anneau des invariants 
sous l ' action d'un groupe donné. Utiliser ce programme pour calculer des généra­
teurs pour K[X ,  Y]G2 . Quels sont les problèmes de cette méthode ? 

Il existe des méthodes plus performantes pour calculer l ' anneau des invariants d 'un groupe 
donné. Le livre de Cox [22) présente les bases de Grobner, et leurs applications à la théo­
rie des invariants . 



Correction des exercices 

1 Correction des exercices du chapitre 1 

Correction de l 'exercice 1.1 : 

1 .  Soit X E  G. Le théorème de convolution 4. 15 ,  chap. 1, nous dit que §:(! *  X)  = l X. 
On vérifie facilement que i = IG l ôx- 1 ,  où Ôx- 1 E C[G] est la fonction qui vaut 
1 en x- 1 et 0 sinon. Ceci permet d'écrire que §: (! * X)  = 1a 1f(x- 1 )ôx- 1 · Il ne 
reste plus qu' à  appliquer la transformée de Fourier inverse en utilisant le fait que 
g;-I (ôx- 1 ) = bx.  On obtient ainsi que <Pf (x) = f * X =  Î(x- 1 )x .  Donc X est un 
vecteur propre pour <P', de valeur propre associée Î(x- 1 ) . 

2. On a et>/ (ô8) = f * Ôg = LhEaf(g- 1h) ôh . Si on note {O, . . . , n - 1 }  les éléments de 
G � Z/nZ, on écrit donc la matrice A =  { aij } sous la forme aij = f(i - j) . 
De plus, avec la question précédente, on a l 'expression du déterminant 

det(A) = II Î(x- 1 ) = Il Î(x) .  
XEG XEG 

3 .  Il suffit de choisir G = Z/nZ, ainsi que \fi E Z/nZ, f(i) = a;. 
4. On peut calculer Î en O(n log(n) ) opérations avec l ' algorithme FFI', et on obtient 

le déterminant en multipliant entre elles les entrées de f. Le programme MATLAB 
1 . 1  réalise ceci, sur un vecteur f de taille 10 tiré au hasard. 

Programme 1.1 Calcul de déterminant circulant 
n = 1 0 ; f = rand ( n , 1 ) ; 

prod ( f f t ( f ) ) 

Correction de l 'exercice 1.2 : 

1 .  On considère Ri (resp. R2) une rotation d' axe unitaire u 1 (resp. u2), ainsi que v1 , w1 
(resp. v2 , wi) une base orthonormée du plan (u 1 ).L (resp. (u2).L) . On prend Q l ' iso­
métrie qui envoie (u 1 , v1 , w1 )  sur (u2 , v2 , w2) . Si les deux rotations ont le même 
angle, on a Ri = .Q* R2.Q · 

2. Comme X (a- 1 ba) = x (a) - 1X (b)x (a) = X (b) , X est constant sur les classes de 
conjugaison. Avec la question précédente, X (R) ne dépend que de l ' angle de la 
rotation R. 

3 .  On utilise le fait que tr(t13 ) = 1 + 2 cos (/3 ) .  En faisant le calcul (avec MAPLE, 
comme le montre le programme 1 .2), on trouve que tr(ras;; 1 ) = 2 cos ( a) + cos( a)2 • 
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Programme 1.2 Calcul de tr(t13 ) 
with ( l ina l g ) : 

rl 
d� · matrix ( 3 ,  3 ,  [ 1 ,  0 ,  0 ,  0 ,  cos ( t )  , s in ( t ) , 0 ,  - s in ( t )  , cos ( t ) ] )  ; 

r2 
d� · ma trix ( 3 , 3 ,  [ cos ( t ) , 0 , - s in ( t ) , 0 , l , O , s in ( t ) , 0 , cos ( t ) ] ) ;  

tr 
d� · trace ( r l & * r2 ) ;  

p l o t ( tr ,  the ta = O  . .  p i ) ; 

L'étude de la fonction a 1---t ! (2 cos ( a) + cos( a )2 - 1 ) montre immédiatement qu'elle 
est strictement décroissante sur [O , n] et prend toutes les valeurs entre 1 et - 1 .  

4 .  On a donc, \1{3 E [O, n] , X (t13 ) = x (ra )X (sa) - 1 = 1 .  Comme une rotation d' angle 
-{3 et d'axe v peut être vue comme une rotation d'angle f3 et d 'axe -v, l 'égalité 
précédente est encore vraie pour f3 E [-n, O) .  Donc X = 1 . 

Correction de l 'exercice 1.3 : Il suffit d'utiliser la relation ôo = far LxEôX · On écrit 
alors que 

N(h) = 
(xi , . . . ,x,. ) EG'1 

L L X(<p(x1 , . . . , xn) - h) . 
(xi , . . . ,x,. ) EG'' XEG 

On trouve bien l ' égalité demandée en remarquant que 

X( <p (x1 , . . .  , xn ) - h) = X ( <p(x1 , . . .  , xn ) )X (h) . 

Correction de l 'exercice 1.4 : Dans la suite, on note n = IGI . 
2 l Ml A 

-.. 
1 .  On a l l!A l ' 2 = 0 LxEA 1 = TGf '  D e  meme, fA(Xo) = LxEGfA(x) = IA I . 
2. E!!_ utilisant la formule de Plancherel, proyosition 4.7, chap. 1, on obtient l 'égalité 

l i/A l i � = n l lfA l l � = IA I . On peut majorer l i/A l i� de la façon suivante : 

n l lÎA. 1 1 � � IÎA. (Xo) l 2 + (n - l )<I>(A)2 = IA l2 + (n - l )<I>(A)2 . 
On obtient ainsi <I>(A)2 � n�1 IA l (n - IA I )  � IA l /2. L' autre inégalité est triviale, 
puisque IÎA. (x) I  � LxEA lx (x) I � IA I . 

3 .  On note B = G\A. On a fB = 1 - fA , donc JB = Î -ÎA. = 1Gl ôx0 -ÎA_. On a donc, 
pour X =!= xo. IÎB(X) I = IÎA (X) I , donc <I>(A) = <I>(B) . Au final, on a les inégalités 

I G I - IA I � <I>(A) � J IGl2 1A I 
-

4. Si X =/= Xo. alors fa(A) (X) = LxEA X o a(x) . Or, l ' application X 1---t X o a est une 
permutation des caractères non triviaux. Donc <I>(A) = <I>(a(A) ) . 

Correction de l 'exercice 1.5 : Dans la suite, on note n = IGI . 
1 .  En remplaçant A 1 par A1 \a = {x - a \  x E A1 } , on se ramène à l ' équation homo­

gène xi + · · ·  +xn = 0, avec x1 E A1 \a, qui possède le même nombre de solutions 
que l ' équation de départ. 
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En appliquant le résultat de l 'exercice 1 .3 ,  avec la fonction <p(x1 , . . .  , xk) = x1 + · · · Xk 
et h = 0, on obtient 1 N =  G L� L x (x1 + . .  · +xk) · 1 1 XEGX;EA; 

La dernière somme peut s 'écrire 

k k 
L, x(x1 + . . · +xk) = TI L, x (x;) = Il!A:(x) . 

x;EA; i= l x;EA; i= l 

( l .l )  

Le terme de la somme (1 . 1 ) correspondant à Xo donne IA i \�/Ak l . Les autres termes 
donnent R. 

2. Pour k = 3, on a 

D'où l ' inégalité 
<l>(A3 ) - -IRI � � L,� lfA 1 (X) l · lfA2 (X) I . 

XEG 
En utilisant l ' inégalité de Cauchy-Schwartz, on obtient 

L,� l� (x) l · l�(x) I � { (r� 1� (x) 1 2) (r� 1� (x) 1 2) }
1 12 

XEG XEG XEG 

� ( n l l� l l 2n l l� 1 1 2) 112 
= n2 l l!A 1 l l l l!A2 l l = n../�IA_i l_IA-2 1 · 

La translation par a étant un automorphisme de G, en utilisant le résultat de l ' exer­
cice 1.4, question 4, l 'inégalité trouvée est invariante par translation par a. 

3. Grâce à la question 2, l ' inégalité proposée est une réécriture de R < IA i  l� l lA3 I . En 
utilisant l ' égalité prouvée à la question 1 ,  on obtient N > O. 

Correction de l 'exercice 1.6 : 

1 .  On vérifie l ' associativité de l 'opération sur la formule donnée. L'élément neutre est 
( 1 , 1 , xo) . et (Â. ,x, x) - 1 = (Â. - 1x (x) , x- 1 , x- 1 ) . 

2. Il faut montrer les différents axiomes d'une action de groupe (voir [58]), en parti­
culier, avec un léger abus de notation, 

(Â. ,x, x) · [ (µ , y, -r) · /] (z) = (Â. , x, x) · [µi-(z)f(yz) ] 
= Â.µ-r(xz)x (z)f(xyz) 
= [ (Â. , x, x) (µ , y, -r)] · f(z) . 

L'action de Jft"'( G) sur C[G] est linéaire (c'est-à-dire que l ' action commute avec les 
lois de l ' espace vectoriel) .  C' est ce que l 'on appelle une représentation linéaire, (se 
reporter au chapitre VII) . 
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3 .  On a 
(Â ,x, x) · f = D'A. o Mx o 1'x o f . 

On peut d' ailleurs, avec ce formalisme, redémontrer facilement le résultat de la 
question précédente. Il suffit de remarquer que TxMi = Di(x)M11'x, ce qui permet 
d'écrire 

On peut ensuite simplifier les termes en utilisant le fait que Â. t--t D'A. , X t--t Mx et 
x t--t Tx sont des morphismes de groupes. 

4. Pour simplifier les notations, on introduit, pour (Â , X , x) E .7!'( G) , les opérateurs de 
dilatation, translation, et modulation par 

Mx ('P) ('t') = 't'(x)<p ('t') ,  
où 't' E G et <p E q GJ .  On montre alors facilement les relations suivantes : 

Par analogie avec l ' action de .7l' ( G) sur C [ GJ , on définit une action de .7l' ( G) (dont 
il reste encore à définir la multiplication ! )  sur C[G] par 

Pour obtenir la loi de multiplication qui nous convienne, on se contente de composer 
l ' action de groupe avec elle même : 

Une fois de plus, c 'est le calcul de commutation translation/dilation qui permet 
d' arriver au résultat TxMy = Dx(y)MyTx .  Au final, on obtient la loi suivante sur 
.J'!'(G) :  

(Â. , x ,x) · (µ , 't', y) = (Â.µx (y) , X't',xy) . 
En quelque sorte, cette loi a été « construite » pour que l 'on obtienne bien une 
action de groupe. 

5. Le fait que a soit un morphisme résulte du calcul suivant 

a( (Â.µ 't'(x) ,xy,x't') )  = (Â.µ 't'(x) (X't') (x- 1y- 1 ' X't',x- ly- 1 ) 
= ( (ÂX- 1 (x) ) (µ't'- 1 (y) )X- l (y) , X't', x- ly- 1 ) 
= (ÂX- l (x) , x ,x- 1 ) . (µ't'- l (y) , 't', y- 1 ) . 

Avec la question précédente, on a 

En traduisant cette égalité en terme d' action de groupe, on obtient le résultat sou­
haité. 
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6. On note, pour g E .Ye{G) , p (g) E .z'{C [G] ) l ' application linéaire f t-t g · f. De 
même, on note, pour g E .Ye( G) , p (i) E 2 ( q G] ) l ' application linéaire <p t-t g · <p. 
p et p sont des représentations linéaires des deux groupes finis Ye ( G) et Ye ( G) . 
L'hypothèse faite sur <I> signifie que <I> o p  = p o <I>. En utilisant le lemme de Schur 
2.5, chap. VII, on a donc que <I> est une homothétie. Si on suppose maintenant 
que <I> commute avec les actions de .Ye( G) et .Ye( G) , alors <I> entrelace les deux 
représentations. En utilisant le corollaire 2.8, chap. VII, comme la dimension de 
l ' espace vectoriel des morphismes d'entrelacement est 1 ,  <I> s 'écrit r'I', où 'I' est 
un isomorphisme (non canonique) entre C[G] et C[G] fixé (ces deux espaces ont 
bien sûr même dimension) et r E C. Comme G c::: G (non canonique), il est même 
facile de construire un isomorphisme d' algèbres entre C[G] et C[G] (toujours non 
canonique) . 

Correction de l 'exercice 1.7 : 

1 .  On a ('Z'n {f) , 'l'p (f) ) = f * f{n -p) , où on a noté f(x) = f(-x) . La famille { 't'n {f) } 
est donc orthonormée si et seulement si f * f(n) = ôo{O) . Ceci s 'écrit, avec les 
distributions, 

( 1 .2) 
où ôo est le Dirac en O. On sait que la transformée de Fourier de f * f est IÎJ2 . En 
prenant la transformée de Fourier de l ' équation (1 .2), et en utilisant la .Erop�té de 
convolution de la transformée de Fourier (voir [62]) on trouve donc 2� 1!1 2 * I11 = 1 .  
En utilisant le calcul de fîl fait à l ' exercice II.9, on trouve le résultat voulu. 

2. On a l q) I ::::; A l.il . donc <p E L2 {JR) . 
La fonction <p vérifie bien LkEZ 1 qJ ( œ + 2kn) 1 2 = 1 ,  donc la famille { 'l'n ( <p) } est 
orthonormée. 

Correction de l 'exercice 1.8 : 

1 .  Le fait que b soit orthonormé est équivalent au fait que lf/b = Ôe, où e est l ' élément 
neutre de G. En prenant les transformées de Fourier des deux membres, on trouve 
Vfi, = � = 1, où on a noté 1 la fonction constante égale à 1 .  Il ne reste plus qu ' à  
remarquer que Vfi, = I G I (%'xb, b) 

2. Il s ' agit de montrer trois choses : 
(i) l 'orthogonalité de %'x1 et %'x2 • 

(ii) l ' idempotence de %'x1 • 
(iii) que %'x1 est auto-adjoint. 
Montrons (i) : 

1 
%'x.%'x2 = IG l 2 L, uvx1 (U)x2 (V) 

(U, V)EG2 
1 

I G l 2 L, Rx1 (u)x2 (U)x2 (R) 
(U,R)EG2 

= 1� 1 2 L X1 (U)x2 (U) L Rx2 (R) = ôf(%'x2 · 
UEG REG 

Pour la deuxième égalité, on a utilisé le changement de variable R = UV, et pour la 
dernière égalité, on a utilisé l 'orthogonalité des caractères X1 et X2 · 
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Pour montrer (ii) , le calcul est identique, il suffit de prendre %'x1 = %'x2 • 
Le fait que %'x1 soit auto-adjoint est immédiat : 

(%'x1 ) * = L u*xi (U) = L u- 1x1 (u- 1 ) = %'x1 • 
UEG UEG 

Pour la dernière égalité, on a simplement utilisé le fait que U i---+ u- 1 était une 
permutation sur l ' indice de sommation. 

3 .  Pour montrer l ' orthogonalité de b, il faut mener le calcul suivant : 

Pour la deuxième égalité, on a développé les sommes, et on a utilisé les relations 
d'orthogonalité entre les %'-r démontrées à la question précédente. Pour la dernière 
égalité, on a utilisé le fait que %'x est auto-adjoint. 

4. L'exercice 1.7 se place dans le cas continu et utilise le groupe lR agissant de façon 
unitaire sur L2 (JR) par translation. Il s ' agit aussi d 'une méthode d'orthogonalisation 
dans le domaine de Fourier. 

Correction de l 'exercice 1.9 : 

1 . On a P(Xo) = 1 et, pour X -=/:- xo. Û(X) = O. En utilisant la formule de Plancherel, 
proposition 4.7, chap. I, on obtient 

2. Il suffit de remarquer que jP(g) - (ar j ::::;; IGJ l lP - U l l � · 
Correction de l 'exercice 1.10 : 

1 . On a la relation 

11- l JP>(Xk+ l = i) = L JP>(Xk = j)JP>(Xk+ l = i lXk = j) , j=O 
ce qui signifie exactement p(k+ l ) = Pp(k) . 
En itérant cette relation, on obtient p(k) = pk p(o) . 

2. Dans ce cas particulier, on a (Px) [i] = ( 1 - p)x[i - 1 ] + px[i + 1 ] .  On reconnaît une 
formule de convolution, et on a Px = v * x. Il est aussi possible de considérer des 
variables aléatoires Y;, indépendantes, de vecteur densité v. On a alors Xk = I,f= 1 Y;. 
En utilisant le fait que Py;+Yi =Pr; * Pyi = v * v, on retrouve p(k) = v * · · · * v * p(O) (k 
produits). 
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3 .  Grâce au théorème de convolution 4. 14, chap. 1, on obtient p(k) = v· . . .  · v· p(O) . On 
peut calculer explicitement V[i] = p/;� + ( 1 - p)�� . Comme 0 < p < 1 et que 
k est impair, on a, pour i f:. 0, IV[i] 1 < 1 ,  et donc p(k) ---+ <5x0 lorsque k ---+ +oo. En 
prenant la transformée inverse de cette relation, on obtient p(k) ---+ u lorsque k ---+ 
+oo. Si k est pair, on a V[n/2] = - 1  et la probabilité ne converge pas. Intuitivement, 
on voit que si on écrit {O, . . .  , n - 1 }  = P U I (partition entre pairs et impairs), alors 
p(2s) va être porté par P, et p(2s+ l ) par /, ce qui exclut toute convergence (les deux 
ensembles ne se « mélangent » pas). 

4. On a p(k+ I ) [i] = Ij:J Vi-jP(k) [i] = p(k) * v [i] . En écrivant cette équation dans le do­
maine de Fourier, et en ! ' itérant, on voit qu' il peut se présenter plusieurs situations : 
- Si 3i, lê{i] I > 1 ,  alors p(k) va exploser. Ceci ne peut pas arriver pour une distribu­

tion de probabilité, puisque lê{i] 1 � 1 . 
- Si 3i, lêf i] 1 = 1 et ê{i] f:. 1 ,  alors p(k) ne va pas converger. 
- Sinon, p(k) ---+ p00 lorsque k ---+ +oo, où on a défini p00 par pco[i] = � [i] si V[i] = 1 ,  

et pco[i] = 0 sinon. 
On pourra comparer ceci avec l ' étude des polygones (paragraphe 3 . 1 ,  chap. IV) 
qui est en tout point identique (sauf que les polygones peuvent exploser ! ) .  Le code 
MATLAB 1 .3 permet, à partir d 'un vecteur de probabilité initiale p O ,  et du vecteur 
de transition v, de calculer la probabilité pk à la kième itération. 

Programme 1.3 Calcul de p(k) 
pk = pO ; 
for i = l : k  

pk = real ( i f f t ( f f t ( pk )  . * f f t ( v )  ) ) ;  
end 

- ,,... 
Correction de l 'exercice 1.11 : Dans la suite on identifie Z/nZ à Z/nZ et on note f(k) 
pour Î(Xk) · 

1 . La méthode est exactement celle utilisée pour démontrer la borne sur la distance 
minimale des codes BCH, proposition 3 .22, chap. VI. 
On suppose que Supp(f) = { a1 , . . .  , ap} . Pour l ' instant, on suppose simplement que 
,,... ,,... b f(O) = · · · = f(p - 1 ) = O. En notant œ = eïl ,  on obtient le système 

œa2 (p- l ) 
La matrice du système est de Vandermonde, elle est inversible, ce qui est absurde 
car les f(a;) ne sont pas tous nuls. Dans le cas général, si on suppose que p entrées 
consécutives de Î sont nulles, on se ramène au cas précédent en effectuant une 
translation sur Î (ce qui revient à une modulation sur f et ne change pas le support). 
Il est maintenant simple de voir que ceci implique le principe d' incertitude. Sup­
posons d' abord que p jN. On partitionne {0, . . .  , n - 1 } en n/p blocs de taille p. 
D' après ce que nous venons de montrer, sur chacun de ces blocs, Î ne peut être 
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nulle. Ainsi, chaque bloc contient au moins un k tel que Î(k) f:. 0 et 1 Supp(Î) I :;;::: 
n/p. 
Si p ne divise pas n, on note d = r n/ pl · Il est impossible de distribuer moins de d 
éléments parmi n places sur un cercle sans laisser deux éléments avec un trou de p 
places entre eux .  
En conséquence, on a 1 Supp(Î) 1  :;;::: d et 1 Supp(!) 1 x 1 Supp(Î) 1  :;;::: dp :;;::: n.  

2. La première inégalité est triviale. Pour la deuxième, il suffit d'utiliser la formule 
d' inversion de Fourier 4.4, chap. 1, et d'écrire 

1 � � l/(x) I � I G I ""� l!(x) l lx(x) I , XEG 
ce qui mène à l ' inégalité voulue en prenant le maximum de toutes ces inégalités, 
pour x E G. 
L'inégalité précédente s 'écrit M2 � (Î, g  ) . où l 'on a noté g la fonction indicatrice 
de Supp(!) . Avec Cauchy-Schwartz, on obtient M2 � 1 1!1 1 2 1 18 1 1 2 , ce qui est la pre­
mière inégalité demandée. La deuxième inégalité s 'obtient en utilisant simplement 
la formule de Plancherel 4. 7, chap. 1. En combinant la première égalité de la ques­
tion 2, et l ' égalité que l 'on a démontrée, on trouve l ' inégalité finale. 

3. La transformée de fH est étudiée à la proposition 4.7, chap. VI. 
On a donc I Supp(/H) I  = IH I et I Supp(/m) I  = IH" I = IGl / IH I . La fonction fH at­
teint bien la borne établie. 

2 Correction des exercices du chapitre 2 

Correction de l'exercice 11.1 : 

1 . Chacun des résidus [ (- l )bb]p est clairement pair. S ' il y a un doublon parmi ces 
résidus, alors (- 1 Y0ra = (- 1 ya' ra' mod p, donc a =  ±a' mod p, et au final on a 
a + a' = 0 mod p. Ceci est impossible car 0 < a+ a' < 2p et a +  a' f:. p (car a + a' 
est pair) . 

2. En faisant le produit des éléments de B on trouve IlbEB b = r9 TiaEA a mod p, 
puisque Card (A) = 9. De même, en faisant le produit des éléments de l 'ensemble 
{ [(- l )bb]p} . on trouve TiaEA a = (- l )l:beB bflbEB b  mod p. Avec le critère d'Eu­
ler, lemme 1 . 1 ,  chap. II, on obtient (�) = r9 , ce qui conduit à l ' égalité souhaitée. 

3 .  On remarque que l r:-J est le quotient de la division euclidienne de ra par p, et 

[ra]p le reste. On a donc ra = l r:-J p + [ra]b · En sommant sur tous les a E A, on 
obtient l ' égalité demandée. Comme tous les a sont pairs et que p = 1 mod 2, on 
a LbEB b = LaEA l r:-J mod 2. On traduit cette inégalité immédiatement en termes 
de puissance de - 1 . 

4. S ' il y avait un point (x, y) sur ]AB[, avec x � r et y � p, alors on aurait py = rx, ce qui 
n'est pas, puisque p et r sont des premiers distincts. Sur chaque droite horizontale 
x = a, avec a pair, c 'est-à-dire pour a E A, le nombre de points situés en dessous de 
[AB] est l r:-J . En sommant pour a E A, on compte tous les points d' abscisses paires 
en dessous de [AB] . 
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5 .  On note Cp (F) le nombre de points d' abscisses paires dans une figure F, C;(F) le 
nombre de points d' abscisses impaires et C(F) le nombre total de points . 
On note ni le nombre de points d' abscisse a situés au-dessous de [AB] , et n2 le 
nombre de points situés au-dessus . On a ni + n2 = r - 1 qui est pair, donc ni = n2 
mod 2. Ceci signifie donc que Cp(HKBD) = Cp (MHB) mod 2. 
Par symétrie par rapport à H, n2 est égal au nombre de points d 'abscisse p - a  situés 
en dessous de [AB] . Ceci signifie donc que Cp (MHB) = C;(ALH) mod 2. 
On a Cp(ABD) = Cp(AKH) +Cp (HKDB) mod 2 (décomposition de ABD en deux) . 
Donc Cp (ABD) = Cp(AKH) +C; (ALH) mod 2. Par symétrie par rapport à [AB] , on 
a C; (ALH) = C;(AKH) . 
Au final, on a Cp (ABD) = Cp (AKH) +C; (AKH) = C(AKH) . 

6. La question précédente nous dit que (�) = ( - 1  f (AKH) . En échangeant les rôles de 
r et p, on a aussi (�) = ( - 1  f(AHL) . Au final, on obtient 

(�) (�) = (- lf(AKH)+C(AHL) = (- lf(AKHL) = (- l ) (p- l�r- I ) . 
Correction de l'exercice 11.2 : 

1 . Cette question traduit la structure des sous-groupes de IF�, qui est un groupe cy­
clique, voir par exemple [24] .  On montre que le seul groupe d' indice k de IF� est 
formé des racines du polynôme x? - 1 , c'est donc Hk. 

2. On a k- i k- i L G(X; , lfl) = L lfl(x) L X; (x) . i=O xEFZ i=O 
Par la proposition d'orthogonalité 1 .9, chap. li, appliquée au caractères multiplica­
tifs du groupe IF�/Hh r�:J X; (x) vaut 0 si X rJ. Hh et k si X E Hk . On obtient ainsi 

k- i L G(X; , lf!) = k L lf!(x) = kÎ14(1f1) . i=O xEHk 
Soit lfl un caractère additif non trivial. Grâce à la proposition 1 . 17 , chap. li, on a la 
majoration 

1 k- i 1 j:h4 (lfl) I � le � IG(x; , lfl) I = le ( 1 + (k - l )Jfi) < Jfi. 1=0 
3. On note A3 = Hh d'où IA3 I  = � · Comme 1Fq possède k racines de l 'unité, l ' équa­

tion zk = u possède k racines, et donc N = kN'. En utilisant le résultat de l 'exercice 
1 .5, question 2, on a 

IN' _ IA i l lA: l lHk l 1 < <l> (Hk)J IAi l lA2 I ,  
ce qui donne bien l ' inégalité voulue. 

4. Sous l 'hypothèse q � k2lih +4, on peut majorer le membre de droite de l 'équation 
(4.4), chap. li : 

(q - 4)q 
(q - 1 )2 . 
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On montre ensuite, par une étude de fonction, que, pour q ;;;:: 0, �:::::i�i � (q;21 )
2
, ce 

qui permet d' avoir l ' inégalité 

et montre que N > O. 
IN _ IA i l lA2 l (q - l )  1 < _IA_i l_IA2_l (_q_-_1 ) q q ' 

Dans le cas où k ne divise pas k - 1 ,  on note d = pgcd (q - 1 , k) . Soit A = {Je} 
et B = {.ri} Comme dlk, k = Â.d pour un certain À ,  d'où Je =  (_xÂ )d et A c  B. 
Réciproquement, avec le théorème de Bezout, :J(u , v) tels que d = u(q - 1 ) + vk. 
On a donc .ri = (.x'l- 1 ) u (xv)k = (xv)k , donc B C A. Donc si q ;;;:: k2/1 l2 + 4, on a 
q ;;;:: d2l1 /i + 4, ce qui permet d' appliquer le raisonnement précédent au groupe Hd 
et montre que l 'équation considérée a encore une solution. 

5. En considérant Ai = A2 = Hd, où d = pgcd (k, q - 1 ) , on a IA; I  = � ;;;:: � - Ceci 
implique l; � k donc k2l1h +4 � k4 + 4. 

Correction de l 'exercice 11.3 : Un exemple d'interaction d'ordre 2 :  

1 1 <X.ab = 4 (Cl+++ + Cl++- + Cl--+ + (X  _ _ _  ) - 4 (Cl+-+ + Cl-++ + Cl+-- + Cl-+- ) . 

L' interaction d'ordre 3 :  

1 1 Clabc = 4 (Cl+++ + Cl+-- + Cl-+- + Cl+-- ) - 4 (Cl++- + Cl+-+ + Cl-++ + (X _ _ _  ) . 
En réordonnant les interactions (pour les mettre dans l 'ordre « de Yates »), on obtient une 
écriture matricielle 

1 1 1 1 1 1 1 1 Cl+++ 8µ 1 - 1  1 - 1  1 - 1 1 - 1  Cl-++ 4µa 1 1 - 1 - 1  1 1 - 1  - 1  Cl+-+ 4µb 1 - 1 - 1  1 1 - 1  - 1  1 Cl--+ 4µab 1 1 1 1 - 1  - 1  - 1  - 1  Cl++- 4µc 1 - 1  1 - 1  - 1  1 - 1  1 Cl-+- 41Lac 1 1 - 1  - 1 - 1  - 1  1 1 Cl+-- 4µbc 1 - 1  - 1  1 - 1  1 1 - 1  (X _ _ _  4µabc 
où, de façon plus compacte Wsa = ji., avec des conventions évidentes (W8 est la matrice 
de Walsh, équation (2.2), chap. Il) .  La multiplication peut être effectuée de façon rapide 
par l ' algorithme FWT. 
Correction de l'exercice 11.4 : 

1 . On vérifie que h 1--+ 2fa (2j · -k) est une isométrie de L2 ( [0 , 1 ] ) , donc en particulier 
I l 1/lj,k l l� = I l 1/11 1 � = 1 .  
Si k1 =f. k2 , 1/fj,k, et 1/fj,k2 ont des supports disjoints donc ( 1/fj,ki , 1/fj,k2 ) = O. Si h < h 
alors 1/fji ,k, est constante sur le support de 1/fh,k2 , et comme J 1/fh,k2 = 0, on a encore 
( 1/lji ,kp 1/fh,k2 ) = o. 
Comme dim(Ej) = 2j, la famille {1/ln}��(/ est une base orthonormée de Ej . 

2. Comme f est continue sur [O, 1 J qui est compact, il existe un module de continuité 
uniforme C tel que IJ(x) - f(y) I � C( lx - yl ) , avec C(t) ---+ 0 lorsque t ---+ O. Pour 
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conclure à la convergence uniforme de fj, il suffit de remarquer qu' il existe Xk E h  
tel que fj(h) = f(xk) (théorème des valeurs intermédiaires) . Pour x E h, on a donc 

Il y a encore un peu de travail à faire pour en déduire la convergence de fn · Il faut 
contrôler le terme complémentaire 

2j- 1 Rj (x) � L 1 (!, lf/j,k ) l l lf/j,k (x) I . k=O 
Il faut en fait majorer finement les produits scalaires. 
On note A 1  � [k2-i , (k+  1/2)2-i [ et A2 � [ (k + 1 /2)2-i , (k+  1 )2-i [. On a 

1 (!, lf/j,k) 1 = 2il2 IL , f - 12 1 j = 2il22-H1 IJ(x1 ) - f(x2) 1 � 2r il2c(r i) . 
où xr E Ar et x2 E A1. Au final, si on prend x E h, on obtient la majoration 

ce qui montre la convergence uniforme de lfn l � l!I I + IR1 I pour un certain J. 
On a l i.ln - Jl l 2 � l i.ln - Jl loo, en conséquence, la suite J,; converge aussi en norme 
L 2, et { 1f1n} forme une base hilbertienne. 

3. Les fonctions 'Pi,k sont les fonctions indicatrices des intervalles h multipliées par 
2il2 . Cette famille forme donc une base de F1. Leurs supports étant disjoints elles 
sont deux à deux orthogonales . 
La transformation h f-t 2il2h(2i · -k) conservant l ' énergie, cette base est orthonor­
mée. 
S . f f . �2j- l _ l (! ) c . . " fi  1 on pose gj- I = j - j- 1 · on v01t que gj- I = 4'k=O , lf/j,k . ec1 s1gm e que 
si on écrit Fj = Fj- I EB Gj- 1 • on a 

Fj- I = Vect { 'Pj- 1 ,k \ k = 0, . . .  , 2i- I _ l }  
et Gj- 1 = Vect { lf/j,k \ k = 0, . . .  , 2i- I _ 1 } .  

On a les relations suivantes, pour k = 0, . . .  , 2i- I - 1 : 
'Pj,2k - 'Pj,2k+ I lf/j,k = V2 

'Pj+ I ,2k + 'Pj+I ,2k+ I et 'Pj- I ,k = Vl (2. 1 ) 

4 .  La quantité x(O) [k] est simplement l a  valeur que prend f sur l ' intervalle h ,  multipliée 
par 2il2 . 
Pour étudier l ' opérateur <l>i : x(i) f-t (x(i+ I ) , d(i+ I ) ) , il faut considérer 
- pour l 'ensemble de départ, la base canonique de �N, N = 2i-i . 
- pour l 'ensemble d' arrivée, la base « alternée » { eo ,Jo , . . .  , eN/2- i JN/2-d. où on 

a noté { eo , . . .  , eN/2- 1  Jo , . . .  JN;2_ r }  la base canonique de �N/2 x �N/2 . 
Dans ces bases, la matrice de <l>i est une diagonale de blocs }i ( _! 1 l ) , donc c'est 
une rotation d' angle n/2 sur chaque sous-espace Vect(e; ,Ji) . 
On vérifie que d(i) est de moyenne nulle, donc x(i) a la même moyenne que x(i+ 1 ) . 
De proche en proche, la moyenne de x(o) est celle de x(i) et donc au final vaut x(j) [O] . 
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5 .  On définit_x{i) [k] � (f, 'fJj-i,k) et tf{i) [k] � (!, l/fj-i+ I ,k) · On ax<0) = x(o) . Il s ' agit de 
montrer que _x(i) et J{i) vérifient les mêmes équations de récurrence que x(i) et d(i) . 
Ceci impliquera que _x(i) = x(i) et J{i) = d(i) Ces relations sont évidentes en prenant 
les produits scalaires des équations (2. 1 )  avec la fonction f. 

6. Comme <I>i est une isométrie, on a l lx(i) l l � = l lx(i+ I ) l l � + l ld(i+ I ) l l � · En itérant, on 
trouve j 

l lJl l � = l lx(O) l l � = L l ld(i) l l � + lx(j) [O] l 2 = l lr(i0) ) 1 1 � · i= l 
Ce qui signifie que r est une isométrie. Ceci revient à décomposer le signal discret 
x(O) sur la base de �n formée des rei, où ei est la base canonique de �n . Cette base 
correspond aux fonctions l/fj,k échantillonnées avec un pas de 2-j . On nomme cette 
base la base de Haar discrète. 
Par rapport à la base de Walsh, cette base est formée de fonctions à support très 
compact. Plus j devient grand, plus le support est réduit. 
Comme le vecteur x(i) est de taille n/2i, l ' application de l 'opérateur <I>; nécessite 
cn2-i opérations (c est une constante, représentant une addition, une soustraction, 
et deux divisions par VZ). L'algorithme nécessite donc lf=0 cn2-i = 2cn, c'est-à­
dire O(n) opérations. C'est beaucoup plus rapide que la transformée de Walsh, qui 
nécessite O(n log(n) ) opérations ! 

Le programme 2. 1 implémente une fonction MATLAB qui réalise l 'opérateur r. 
Programme 2.1 Procédure haar 

funct i on y = haar ( x )  

n = l ength ( x ) ; j = l og2 ( n ) ; y =  [ ] ; 

for i = O : j - 1 

d l / sqrt ( 2 ) * (  x ( 1 : 2 : 2 A ( j - i ) ) - x ( 2 : 2 : 2 A ( j - i ) ) ) ;  

y = [ y ; d ] ; 

x = 1 / sqrt ( 2 ) * (  x ( 1 : 2 : 2 A ( j - i ) ) +x ( 2 : 2 : 2 A ( j - i ) ) ) ;  
end 
Y = [ y ; x ] ; 

Correction de l 'exercice 11.5 : 

1 .  Soit n = 2k . La transformée de Walsh 2D s'écrit simplement, pour f E c;nxn , 

n- I n- I �(f) [i , j] � L L f[s , t]X;, j (s , t ) . s=O t=O 
La transformée inverse est �- I = 12 �. La transformée de Walsh 2D correspond 
à appliquer une transformée lD sur les colonnes, puis une transformée lD sur les 
lignes. En utilisant la fonction fwt écrite à la section 1 ,  annexe A, on peut définir 
une fonction MATLAB réalisant la transformée, comme le montre le programme 
2.2. 

2. Pour plus de clarté, on note X;(k) le caractère Xi sur (Z/271.,)k, que l 'on peut voir 
comme un vecteur de {± l }n . On note n�k) le nombre de changements de signe de 
X�k) c'est-à-dire 1 ' 
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Programme 2.2 Procédure fwt 2 d  

funct ion y = fwt 2 d ( x )  

n = l ength ( x ) ; y =  zeros ( n , n ) ; 

for ( i = l : n ) y ( i , : )  fwt ( x ( i , : ) ' ) ' ;  end ; 
for ( j = l : n )  y ( : , j )  = fwt ( y ( : , j ) ) ;  end ; 
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Nous allons montrer, par récurrence sur k, que n}k) fournit une nouvelle numérota­
tion des X;(k) , c'est-à-dire que i � n}k) est une permutation de {O, . . . , 2k - 1 } .  Pour 
k = 1 ,  on a n�1 ) = 0 et n � 1 ) = 1 donc la propriété est vraie. On suppose la propriété 
vraie pour i � n}k) . Pour i = 0, . . .  , 2k - 1 ,  on a, en notant (a, b) la concaténation 
des vecteurs a et b, 

et X(k+ I ) = (x�k) - x�k) ) i+2k 1 ' 1 • 

Ceci implique les relations suivantes sur les changements de signe : 

n�k+ l ) = 2n�k) + e.(k) et (k+ J ) = 2  �k) + ( l - e�k) ) 1 1 1 ni+2k n, 1 ' (2.2) 
où e?) = 1 s ' il y a une discontinuité au milieu de X;(k+ I ) , ce qui revient à dire que 
x?) [2k - 1 ]  = - 1 .  Avec les relations trouvées, il est facile de voir que les n}k+ I ) 
couvrent tout { 0, . . . , 2k+ 1 - 1 } .  

3 . Le spectre de Walsh se calcule grâce à la fonction fwt (voir section 1 ,  annexe A). 
On peut ensuite classer le spectre par nombre de changements de signe. Ceci peut 
être fait rapidement en calculant en même temps que la transformée le nombre de 
changements de signe grâce aux équations (2.2) . En effet, les quantités e?) vérifient 
aussi une équation de récurrence, i = 0, . . .  , 2k - 1 ,  on a 

et 

Par exemple, la routine MATLAB 2.3 calcule le vecteur n(k) . 
Programme 2.3 Procédure nbr_chg t_s i gne 

funct ion nk = nbr_chg t_s igne ( n )  

p = l og2 ( n ) ; nk = O ;  e k  = O ;  

for k = l : p  

ek = [ ek ;  1 - ek ] ; nk = 2 * [ nk ; nk ] + ek ; 

end 

4. En gardant seulement les coefficients correspondant aux fonctions avec peu de 
changements de signe, on reconstruit une fonction avec moins de détails. Ceci a 
pour effet de conserver moins d' information, et donc permet une compression du 
signal. 
La compression par transformée de Walsh est rapide à calculer (seulement des addi­
tions et des soustractions) . Par contre, elle introduit des discontinuités dans le signal 
souvent inacceptables. 

5 .  Le nombre de changements de signe n'est pas bien défini pour une fonction 20. 
Pour une fonction Xi,j . on note ni le nombre de changements de signe sur l 'axe des 
x, et nj le nombre de changements de signe sur l 'axe des y. On peut par exemple 
classer les fonctions par ordre de ni + n j croissant, et on règle les cas d'égalité par 
ordre de n j croissant. 
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Correction de l 'exercice 11.6 : 

1 C -U/- 1 - 1 -./,// - 1 o/,// T b ' W. W. T - Id - 2k . omme on a ,,,k - 2f11'k - 2f11'k , on a  1en n n - n  n . avec n - . 
2. La première chose à remarquer est que si on permute les lignes et les colonnes 

d'une matrice de Hadamard, alors elle reste de Hadamard. Il en est de même si l 'on 
multiplie une ligne ou une colonne par - 1 . En multipliant par - 1 les colonnes puis 
les lignes qui commencent par - 1 ,  on met ainsi la matrice sous forme normalisée. 
Par permutation sur les lignes, on peut réarranger les trois premières lignes pour 
qu'elles soient de la forme annoncée. Par les propriétés d'orthogonalité entre ces 
trois lignes, on obtient les équations 

i + j + j + l = n, i + j - k - l = 0, i - j + k - l = 0, i - j - k + l = O . 

Ceci mène à i = j = k = l = � . et donc n est divisible par 4. 
3 .  Pour commencer, 7J (i - j) = 7J (- 1 )77 (j - i) = -71 (j - i) puisque p = 4k - 1 (uti­

liser la formule d'Euler 1 . 1 ,  chap. Il, pour le voir) . Donc Q est anti-symétrique. 
Soit c =f. 0, on calcule ensuite 

p- 1 p- 1 
L 71 (b)71 (b + c) = L 71 (b)71 (bz) = L 11 (z) = 0 - 77 ( 1 ) = - 1 .  
b=O b= l z'f l 

On a fait le changement de variable z = btc , en utilisant le fait que b 1--t z est une 
bijection de JF; sur lF q \ { 1 } . 
Si i = j, on a (QQT)u = I�,:;:ci 71 (b) = p - 1 . Si i =/:- j, on a 

p- 1 p- 1 
(QQT) ij = L 71 (k - i)71 (k - j) = L 71 (b) 71 (b + c) = - 1 , 

k=O b=O 
avec b = k - i et c =  i - j. 
Comme IF; contient ! (p - 1) résidus quadratiques et autant de non résidus, chaque 
ligne de Q contient autant de + 1 que de - 1  et QJ = JQ = O . 

4. On a 

HnHnT = (J Q :ldJ G QT:ldJ = (p� l 
J + (Q - Id�) (QT - Idp)) ' 

et J + (Q - Idp) (QT - Idp) = J + pldp - J - Q - QT + Idp = (p + l ) Idp . 
5 .  La quantité 1 det(A) 1 mesure le volume du parallélépipède engendré par les vecteurs 

colonnes de A. Ce volume est plus petit que le produit des normes de ces vecteurs. 
Si on a laii l � 1 ,  alors la norme d'un vecteur colonne est majorée par Vn est on 
trouve bien la majoration de Hadamard. Si A est une matrice de Hadamard, on a 
det(A)2 = det(AAT) = det(nldn) = nn . 

La procédure MAPLE 2.4 construit la matrice de Paley Hn. et on peut la tester avec le 
programme 2.5. 

Correction de l'exercice 11.7 : 

1 .  On vérifie que 

(A ®A) (A ®A) * = : 
( (A 1 ,A 1 )AA* 

(As ,A 1 ) AA* 

où l 'on a noté A; la ëème colonne de A .  Par récurrence, on obtient le résultat voulu. 
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Programme 2.4 Procédure Ma t r i c e Pa l ey 

Ma tricePaley 
d� · proc ( p )  

local H , Q , i , j ;  
wi th ( num theory ) : 

Q 
d� · Matrix ( l .  . p ,  1 .  . p ) ; 

for i from 1 to p do 
for j from 1 to p do 

Q [ i , j )  
d� . l egendre ( i - j , p ) ; 

end do : 
end do : 
H 

d� · Ma trix ( l .  . p+ l ,  1 .  . p + l ) ; 

H [ 2  . .  p + l , 2 . . p + l ) 
d� .Q-Matrix ( l . . p ,  1 .  . p ,  shape = i den t i ty ) ; 

H [ l . . p + l , l )  
d� . l ;  H [ l , 1 . . p + l ) 

d� . 1 ;  
return H ;  

end proc : 

Programme 2.5 Test de la construction de Paley 
H 

d� .Ma tricePa l ey ( 3 1 ) ; 

eva lm ( H& * transpos e ( H ) ) ;  

2. Pour la transformée de Walsh, on a W2k = A ®k avec A = ( � � 1) . 
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3 .  La procédure MATLAB 2.6 réalise le calcul de la transformée de façon rapide (de 
l 'ordre de O(Nlogs (N) ) opérations, où N est la taille du vecteur à transformer) . On 
a x = (A®n ) - 1y = fr,(A*)®n . La transformée inverse s ' obtient donc en passant A* à 
la place de A à l ' algorithme, et en divisant le résultat par sn . 

Programme 2.6 Procédure decompo s e_tensori e l  

funct ion y =  decompose_tensor i e l ( x , A )  
s = l ength ( A ) ; m = l ength ( x ) ; m O  = mi s ; 

i f ( m= = l )  y = x ;  return ; end ; 
B = z eros ( mO , s ) ; % rés u l a ts t empora i res 
for j = l : s  

s e l  = ( ( j - 1 )  *mO + l ) : ( j *mO ) ; 

B ( : , j )  = decompo s e_tensor i e l ( x ( s e l ) , A ) ; 
end 
y =  z eros ( m , l ) ;  

for i = l : s  

s e l  = ( ( i - 1 )  *mO + l ) : ( i *mO ) ; 

for j = l : s  
y ( s e l ) = y ( s e l ) + A ( i , j ) * B ( : , j ) ; 

end 
end -
4. Pour a =  n/4, on obtient la transformée de Walsh ordinaire. Pour a = n/2, la 

transformée réalise une symétrie. 

Correction de lexercice 11.8 : 

1 .  ( · , · ) est la forme bilinéaire canonique sur E x E. On identifie un élément x E E a la 
forme linéaire (x, · ) .  Cette identification marche car la forme est non-dégénérée, et 
correspond au crochet de la dualité. 
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2. On considère l ' application <I> :  a t--t Xa · C'est un morphisme de groupes. On montre 
facilement qu' il est injectif. En effet, si <l>(a) = 0, ceci signifie que pour tout x E E 
on a X1 ( (x, a) ) = 1 ,  et comme X1 est injectif, \;/x E E ,  (x, a) = O . Comme la forme 
bilinéaire ( · , · ) est non-dégénérée, on a a = O. Enfin, comme E et Ê ont même 
dimension, le morphisme est bijectif. 

3 .  Si x E H, par la propriété de groupe, x+ · · · +x = kx E H, donc H est stable pour la 
loi externe, donc c' est un espace vectoriel. 
On a ntt = faa \ \;/x E H, Xa (x) = O}, qui est en correspondance par <I> avec l 'en­
semble {a \ \;/x E H, (x, a) = O} = HJ_ . 

4. La formule de Poisson, 3 .3 ,  chap. Il, est encore valable sur E. La preuve de la 
formule de Mac Williams, théorème 3 .6, chap. II, est encore la même. Seul le calcul 
de Î(Xa) est légèrement changé, puisque l 'on a 

Î(Xa) = (x + (q - l )y)k-w(a) (x - y)w(a) . 
Correction de l'exercice 11.9 : La formule de Poisson s'écrit, pour une fonction f de la 
classe de Schwartz .9' (JR) : 

On vérifie qu'au sens des distributions, le membre de gauche est égal à (f.111 )  = (!, fi; ) , 
et que le membre de droite est égal à ( 2: II 'l:ff- , f) . L'égalité étant valide pour tout f dans 
Y'(JR) , on en déduit la formule demandée. 
Correction de l'exercice 11.10 : 

1 .  On a, avec la formule d' inversion de Fourier, 
1 1 -- . f(x) = -2 f(œ)e1coxdœ. 11: Ir 

Avec le théorème de dérivation sous le signe d' intégration, on voit que f est de 
classe CC°°. 

2. En appliquant le résultat de l 'exercice 11.9, on voit facilement que 

Îtt (œ) = !._ 'Lf(œ - 2k11:) . T kEZ T 

En effet, on a fd = f · Ilr, et en prenant la transformée de Fourier des deux membres 
(au sens des distributions), on trouve Îtt (œ) = f *ITr(œ) . Si n f:. 0, le support de 
Î( · - n;) et celui de j sont d'intersection vide. Ceci implique donc le résultat de­
mandé. 

3. Le résultat de la question précédente peut s 'écrire f(œ) = Thr ÎtJ, où hr est l ' indi­
catrice de l ' intervalle Ir .  Sa transformée de Fourier inverse est $-1 ( hr) = T sincr . 
En prenant la transformée de Fourier inverse de la relation Î( œ) = T hr Îtt , on trouve 
le théorème d'échantillonnage. 

4. On note g = sincr . Le fait que les fonctions {g( . - nT) } soient orthogonales se 
vérifie immédiatement en utilisant la formule de Plancherel : 

1 T2 
( . ) (g, g( . - nT) ) = 211: ($(g) ,$(g( . - nT) ) ) = 211: hr , hr ( · )e-inT· = Tô8 . 
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Le fait que cette famille soit totale résulte du théorème d'échantillonnage, puisque 
la formule de reconstruction (4.7), chap. Il, converge en norme L2 . 
La projection sur cette base correspond à l 'échantillonnage, puisque l 'on a la rela­
tion (f, g( . - nT) ) = f(nT) . 

3 Correction des exercices du chapitre 3 

Correction de l 'exercice 111.1 : 

1 .  On a u( l ) = (0, 1 ) , u(2) = (0, 2, 1 , 3 ) et u(3) = (0, 4, 2, 6 , 1 , 5 , 3 , 7 ) .  
2. Soit k(n+ l ) = 'L7=o ki2i un entier de n + 1 bits . On note k'(n+ l ) l 'entier avec les bits 

renversés . On a 
n n- l k(n+l ) = L ki2n-i = L ki211-i + kn = 2k(n) + kn , i=O i=O 

� qui est exactement l ' équation de récurrence vérifiée par u(n) . 
3 .  f est utile pour construire un algorithme FFf n'utilisant pas de mémoire temporaire, 

comme expliqué au paragraphe 2.5, chap. III. 
4. On a fg = fa et 'li = ji .  
5 .  La question précédente donne naissance à une fonction MATLAB récursive, pro­

gramme 3 . 1 .  Cette procédure nécessite O(Nlog(N) ) opérations, ce qui est la même 
complexité que la procédure rev _bi t s .  

Programme 3.1 Procédure rev _bi t  s_rec 

funct ion y = rev_bi ts_rec ( x )  
n = l ength ( x ) ; 

i f ( n> l ) y =  [ rev_bi t s_rec ( x ( 1 : 2 : n ) ) rev_b i t s_rec ( x ( 2 : 2 : n ) ) ) ;  

e l s e  y = x ;  end 

Correction de l 'exercice 111.2 : 

1 .  <p est un morphisme d' anneaux, et on peut expliciter son inverse. Avec le théorème 
de Bezout, 3(u v) , up + vq = 1 .  On prend alors 1J1(k1 , k2) = k2up + k1 vq mod N. 2iir -

2. On note œ, = e-r .  On calcule tout d' abord la transformée 2D : 
F[s1 , s2] = L f[1J1(k1 , k2 ) ] œ;s1k1 œq-s2k2 = L f[1J1(k1 , k2) ] œN"(qs1 k1 +Ps2k2 ) . 

� . � � . �  
Calculons la quantité A suivante : 

A �  1J1(k1 , k2) (s 1 q + s2p) = qk1 s 1 (qv) + pk2s2 (pv) mod N. 
On veut montrer que A = qs1 k1 + ps2k2 mod N. Avec le théorème Chinois, il suffit 
de montrer que cette égalité est vraie modulo p et modulo q, ce qu'on vérifie sans 
problème. On a donc 

F[s1 , s2] = L f[1J1(k1 , k2 ) ] œN""'(ki , k2 ) (s i q+s2p) k1 , k2 
= Lf[k]œN"k(s i q+szp) = Î[s1 q + s2p] , k 

où l 'on s 'est contenté de faire le changement d'indice k = 1J1(k1 , k2) .  
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3 . On a 0 :E;; s 1 q + s2p :E;; N - 1 .  De plus, par le lemme chinois, le système de deux 
équations { n = s 1 q mod p ; n = s2p mod q} a une unique solution modulo N, et 
le représentant de cette solution est donc n. 
Pour calculer la FFT de f, il suffit de calculer la FFT 2D de F, et de réordonner les 
indices selon (s 1 , s2) H s1 q + s2p mod N. 

4. L'étape de l ' algorithme de Good-Thomas présentée permet de remplacer l ' étape de 
l ' algorithme de Cooley-Tukey expliquée au paragraphe 2.4, chap. III. Ce rempla­
cement permet d'éviter les multiplications internes par oiNbd dans l ' équation 2. 14, 
chap. III, qui correspondent à l 'opérateur Y'!J. Le lemme chinois a en quelque sorte 
éliminé les « twiddle factors » .  
Le programme 3 .2 montre une procédure MATLAB naïve. En réalité, i l  faudrait 

Programme 3.2 Procédure f f t_g t 

funct i on y = f f t_gt ( x , p )  

n = l ength ( x ) ; q = n / p ; 
y =  z eros ( n , l ) ;  m = z eros ( p , q ) ; 
for i = O : n - 1  

m ( mod ( i , p ) + l ,  mod ( i , q ) + l )  = x ( i + l ) ; 

end 
m = f f t 2 ( m ) ; 
for ( s l = O : p - 1 ) for ( s 2 = 0 : q- 1 )  

y (  mod ( s l * q + s 2 *p , n ) + l ) = m ( s l + l , s 2 + 1 ) ; 

end ; end ; 

appeler, plutôt que f f t2  ( rn ) , une procédure de FFT sur les lignes (longueur q) 
puis sur les colonnes (longueur p) qui exploite les décompositions de p et q. 

Correction de l 'exercice 111.3 : 

1 . La première partie du regroupement ne génère pas de « twiddle factors », il n'est 
donc pas la peine de la décomposer. 
En utilisant le fait que (n 1 , n2) i---+ n i +n2N /4 est une bijection de l 'ensemble produit 
{O, . . .  ,N/4 - 1 } x {O, . . .  , 3 } sur {O, . . . ,N - 1 } , on peut écrire 

N/4- 1 3 
Î[4k + 2j + 1 ] = L L œ;(n1 +n2N/4) (4k+2j- l ) / [n1 + n2N/4] . ni =O n2=0 

Pour conclure à l 'expression proposée, il suffit de remarquer que 

00-(n 1 +n2N/4) (4k+2j- 1 ) _ 00-kni 00-n1 (2j+ l ) -n2 (2j+ l ) 'N - 'N/4 'N C04 
Les sommes intérieures sont des TFD de longueur 4, et elles sont triviales à calculer 
puisque les racines complexes utilisées sont { ± 1 , ± i} .  

2. On peut effectuer des regroupements des fréquences par paquets de 21 (le cas l = 1 
correspond à la décimation fréquentielle classique, et l = 2 à la question 1 ) . Ceci 
conduit à la décomposition suivante de la TFD : 

N/zi - 1 zi 
J[21k + 2j +  1 ] = L, ro;;;/ roiV11 1 (2i+ l ) L, f [n1 + n2N/21] œ;,n2 (2i+ l ) , n i =O n2=0 

pour j = 0, . . .  , 21- 1 - 1 et k = 0, . . .  , N /i - 1 . On peut montrer que le split-radix 
de taille 21 optimal correspond à celui de la question 1 (voir [75]) . Ceci provient du 
fait que les TFD de taille 4 ne nécessitent aucune multiplication complexe. 
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3 .  Pour un schéma de décimation temporelle, il s ' agit de regrouper non pas les fré­
quences du vecteur transformé, mais les entrées du vecteur à transformer. Ceci 
donne naissance à l 'équation de décomposition suivante : 

N/2- 1 . 
Î[n 1 + n2N/4] =(- l )n2 L f[2k] co�/�+ 

k=O 1 N/4 
L co�1 (2i+ 1 ) co;2 (2i+ I ) L f[4k + 2j + l ] co;/� .  j=O k=O 

pour n 1 = 0, . . .  , N /4 et n2 = 0, . . .  , 3 .  La TFD de longueur N est ainsi décomposée 
en la somme d'une TFD de longueur N /2 et deux TFD de longueur N /4. L' analyse 
de l 'optimalité de cette décomposition est identique à celle de la version décimation 
fréquentielle de la question 1 .  

Correction de l 'exercice 111.4 : 

1 .  On a f = L.j,:;-J fj[· - jMJ . Par bilinéarité du produit de convolution, on a donc 
f *8 = L.j,:J /j *g[ ·  - jMJ 

2. Il faut donc calculer les p produits de convolution fj * g. Comme les deux vec­
teurs ont pour taille M, ce produit peut se calculer par FFT en ajoutant seulement 
M - 1 zéros. En supposant que l ' algorithme FFT nécessite cMlog(M) , le calcul de 
convolution nécessite 2cMlog(M) + M opérations, et ce calcul est effectué p fois. 

3 .  Si N n'est pas un multiple de M, il convient d 'ajouter des zéros à f pour atteindre 
une taille égale au multiple de M juste après N. 

La procédure MATLAB convo l ,  programme 3 .3 ,  met en place cette méthode. Il est à 
noter que la FFT du vecteur g (auquel on a ajouté M - 1  zéros) est stockée une fois pour 
toutes dans la variable f g .  

Programme 3.3 Procédure convo l 

func t ion y =  convo l ( f , g ) 

N = l eng th ( f ) ; M = l ength ( g ) ; p N / M ;  

y =  z eros ( M+N- 1 , 1 ) ; 

fg = f f t ( [ g ;  zeros ( M - 1 , 1 ) ] ) ;  
for j = O : p- 1  

f j  = [ f (  ( l : M ) + j *M ) ;  zeros ( M- 1 , l ) J ;  
s e l = ( j *M+ l ) : ( ( j + 2 ) *M- 1 ) ; % l es i ndi ces concernés 
y ( s e l ) = y ( s e l ) + i f f t ( f f t ( f j )  . * fg ) ; 

end 

Correction de l 'exercice 111.S : 

1 .  On a, pour x = (xo, . .  . , xN- 1 ? . 
N- 1 

QN(Dx) [k] = (QN(XN- 1 , xo , . . .  , XN-2)T) [k] = L x;- 1 coï/; i=O 
N- 1 -k """ -ki -k (n ) [k] = CON � X;CON = CON :..t.NX , 
i=O 

ce qui est le résultat demandé. 
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2. On utilise la décomposition C = ï,�0 c;Ri, d'où 
N N 

n.Ncn.N1 = _L c;O.NRiO.N1 = _Lc;Di = 8. 
i=O i=O 

On remarque que si y E cN, 8y = (O.Nc) . y. On a donc 80.NX = (O.Nc) . (O.Nx) . 
3 .  Le fait que Cx = c * x  se vérifie immédiatement. Avec le théorème de convolution, 

on a � ( Cx) = � ( c * x) = ê· X. Comme x = O.Nx, on obtient bien la même formule. 

Correction de l'exercice 111.6 : En utilisant la formule d' inversion de Fourier 1 .4, 
chap. III, on a 

1 P- 1 � � S1Jk fo [1Jk] = P .L. fo [s] œp s=O 
1 No 1 N- 1 = N _Lf[s] œff + N .L f[s] œ,if-P+N = f[k] . s=O s=No+ I 

Le programme 3 .4 implémente la technique d' interpolation exposée. 

Programme 3.4 Procédure interp_tr i go 

func t ion y = interp_trigo ( x , eta ) 
N = l ength ( x ) ; NO = ( N - 1 ) / 2 ; P =N*eta ; 

f f f t  ( x ) ; 

f e t a * [ f ( l : NO + l ) ; z eros ( P - N , 1 ) ; f ( N0 + 2 : N ) J ;  
y =  real ( i f f t ( f )  ) ;  

Correction de l 'exercice 111.7 : 

1 .  En utilisant la relation trigonométrique 
cos ( (k + 1 ) 0 ) + cos( (k - 1 ) 0) = cos (kO) cos (O ) ,  avec 0 = arccos(X) , 

on obtient la relation de récurrence Tk+ 1 = 2XTk - n- 1 · Cette relation montre que 
Tk est un polynôme à coefficients entiers de degré k. 
Comme on a TN(xj) = cos (N(j + 1 /2)N) = 0, on a trouvé les N racines de TN qui 
est de degré N. 

2. Comme les {Tk}f,:01 ont des degrés différents, ils forment une famille libre de l 'es­
pace des polynômes de degré inférieur à N - 1 .  Comme ils sont au nombre de N, 
c'est une base de cet espace. 

3. La formule d' inversion peut se vérifier à la main, mais c'est assez pénible. Il faut 
mieux se ramener à des vecteurs orthogonaux. On peut en effet montrer assez faci­
lement que les vecteurs 

- { 2- 1 12 si k = O  avec Âk - 1 
. smon 

forment une base orthonormée de cN. L'article de STRANG [69] propose une jolie 
preuve qui utilise le fait que les vk sont vecteurs propres d'une certaine matrice 
symétrique. 
Le programme MATLAB 3 .5  implémente la transformée �2 par l ' intermédiaire 
d'une FFf de taille 4N. Le programme 3 .6 implémente lui la transformée �3 .  tou­
jours par l ' intermédiaire d'une FFf de taille 4N. 
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Programme 3.5 Procédure dc t2  

func tion y =  dc t 2 ( x )  
n = l ength ( x )  ; 

y ( 2 : 2 : 2 * n , 1 )  = x ;  

y [ y ; z eros ( 2 *n , l ) J ;  

y =  real ( f f t ( y )  ) ;  y =  y ( l : n ) ; 

Programme 3.6 Procédure dc t 3  

function y =  dc t 3 ( x )  

n l ength ( x )  ; 

y =  [ x ; zeros ( 3 * n , l ) J ;  

y =  real ( f f t ( y )  ) ;  y =  y ( 2 : 2 : 2 * n )  - x ( l ) / 2 ; 

4. Les coefficients a = (ao,  . . .  , CXN- 1 )T du polynôme PN- 1 vérifient 
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Il y a donc une légère difficulté à cause du terme « parasite » -12.  Si on note 1 la 
fonction constante égale à 1 ,  on a �z(l) = Nè5o. On peut donc inverser l 'égalité 3 . 1 : 

Le programme 3.7 montre comment, avec MATLAB on peut utiliser la procédure 
dc t 3  pour effectuer une interpolation de Chebyshev. Ici, on interpole la fonction 
f(x) = azlxz connue en n points (les points xk) . Le programme dessine la courbe 
interpolée en l 'évaluant en nn points espacés régulièrement. 

Programme 3. 7 Interpolation de Chebyshev 
n 1 6 ;  nn = 2 0 0 ; alpha = 0 . 3 ;  

x = cos ( ( ( O : n- l ) + l / 2 ) *pi / n ) ' ; 

f = 1 . / ( a lpha A 2 +x . A 2 ) ; 

coef = 2 / n*dct2 ( f ) ; 

coef ( l )  = coef ( l ) * l / 2 ; 

xx = ( - 1 : 2 / ( nn- 1 ) : 1 ) ' ;  
f f  = z eros ( nn , 1 ) ; 

for k = O : n- 1  

f f  = f f  + coef ( k+ l ) *cos ( k * acos ( xx ) ) ;  

end 
p l o t ( x , f ,  ' o '  , xx , f f ) ; 

Correction de l'exercice 111.8 : On prouve la formule demandée simplement par n inté­
grations par parties. 
On remarquera que la multiplication par (iÇ )n correspond à un filtre qui amplifie les 
hautes fréquences. C'est tout à fait logique, puisque la dérivation fait perdre de la ré­
gularité, tout comme un filtre amplifiant les hautes fréquences (décroissance moins rapide 
de la transformée, que l 'on peut comparer à une amplification du « bruit »). 
Le programme MATLAB 3.8 propose une fonction qui réalise une dérivée fractionnaire à 
l 'ordre alpha. La procédure utilise l ' algorithme FFf, donc, pour qu'elle approche avec 
justesse la dérivée de la fonction d'origine, il faut que l 'échantillonnage soit assez fin, et 
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Programme 3.8 Procédure der_frac 

funct i on y =  der_frac ( f ,  alpha ) 
n = l ength ( f ) / 2 ; 

fce = p i * [ ( O : n ) / n ,  ( ( -n + l ) : - 1 ) / n ] ; 
f f f t  ( f ) ; 
f = ( - i * f c e )  . � a lpha . * f ;  f = real ( i f f t ( f ) ) ;  

Correction des exercices 

il faut que h soit à support dans [-n, n] (sinon, attention à l ' aliasing, car on ne remplit 
plus les hypothèses du théorème de Shannon, exercice II. 10) .  

Correction de l 'exercice 111.9 : 

1 .  Comme ( n.N )4 = N21dN, les valeurs propres de n.N sont { ±./N, ± i ./N}. 
2. On a g;a. 0 g;/3 = PDa. P* pv/3 P* = pva.+{3 P* = g;a.+{3 . 

3 .  On remarque que ni = A où A est la matrice telle que Ae; = e_; (inversion du 
signal). Cette matrice correspond à la diagonale inversée. Plus a (modulo 4) est 
proche de 2, plus cette diagonale inversée est prépondérante dans g;a., et plus a est 
proche de 0, plus la diagonale est dominante. 

4. Pour N > 4, il existe une infinité de bases orthogonale de diagonalisation de n.N (les 
espaces propres sont de dimension supérieure à 1 ) .  Chaque base différente donne 
naissance à une transformée intermédiaire. 

La procédure MATLAB 3 .9 calcule une transformée intermédiaire pour une valeur de a 
donnée. 

Programme 3.9 Procédure t f d_interm 

func tion y = t f d_interm ( x , a lpha ) 

n = l ength ( x ) ; 
f = ( 0  : n - 1 )  ' *  ( 0  : n- 1 ) ; 

Omega = exp ( - 2 i * f *p i / n ) ; 

[ V , D ]  = e i g ( Omega , ' noba l ance ' ) ;  
y = V*D� a lpha * c transpos e ( V ) * x ;  

Correction de l'exercice 111.10 : 

1 .  S est une matrice symétrique réelle, qui diagonalise en base orthonormée. 
2. On note <.o =. Le plus simple est d'exploiter la décomposition suivante de S :  

-2 1 0 
1 -2 1 
0 1 -2 

1 0 0 

1 
0 
0 + diag ( 2 (cos ( k �) - 1) \ k = 0, . . .  ,N - 1) , 
-2 

que l 'on note S = r +A. r est une matrice circulante (voir exercice III.5), la multi­
plication par cette matrice correspond à la convolution par v = ( -2, 1 , 0, . . .  , 0, 1 )  T. 
Comme la transformée de Fourier de v est la diagonale de A, on a ON r = AO.N 
(avec le théorème de convolution) . En utilisant la symétrie de S et n.N, il vient 
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3 .  On pourra trouver la démonstration de cette propriété classique dans [59] . Il s ' agit 
essentiellement d'utiliser le fait que les espaces propres de f sont stables par g, ce 
qui résulte du fait que si <p et lJI commutent, alors ker( <p) est stable par 'I'· C'est 
exactement ceci que l 'on utilise pour prouver le lemme de Schur 2.5 , chap. VII. 

4. Un simple calcul montre que cet opérateur est symétrique et orthogonal. Par exem­
ple pour N = 5, on a 

,/2 0 0 0 0 

P = -1 0 1 0 0 1 
0 0 1 1 0 ,/2 0 0 1 - 1  0 
0 1 0 0 - 1 

Pour simplifier les explications, supposons que N = 2p. Pour voir que psp- I est 
tridiagonal, il faut utiliser la base canonique de cN, notée { ôo, . . .  , ÔN- I } , et consi­
dérer la base f!À � { eo = ôo, e1 , . . .  , ep , /1 , . . .  , /p} · 
On a noté ei = }i ( Ô; + ô_;) et f; = }i( Ô; + Ô-; ) .  Alors on a 

S(eo) = S{ôo) = Coôo + ô1 + ô- 1 = Coeo + e1 , 
1 1 1 Vl � i < p, S(e;) = ,/ïS(ô;) + ,/ïS(ô-;) = ,/ï(C; +CN-i)e; + e;+ 1 + e;- 1 , 
1 1 1 Vl � i < p, S(f;) = ,/ïS(ô;) - ,/ïS(ô-;) = ,/ï(Cï -CN-;)f; +f;+1 +f;- 1 . 

Il faut faire attention que les indices sont exprimés modulo N, et que pour i = p, les 
inégalités sont valables à condition de prendre la convention ep+l = ep et fp+l = fp· 
Donc l 'opérateur S, exprimé dans la base f!À est tridiagonal, ce qui revient à dire que 
psp- l est tridiagonal. 

5 . La démonstration utilise une procédure de séparation des valeurs propres grâce aux 
suites de Sturm. Voir [ 16] .  

6. Cette construction est totalement intrinsèque, elle ne repose pas sur un choix arbi­
traire des vecteurs de diagonalisation. Pour construire une TFD partielle, il faut faire 
un choix dans l 'ordre des vecteurs propres . Dans [ 1 3] le nombre de changements 
de signes est utilisé. 

La procédure MATLAB 3 . 1 0  construit la base de vecteurs propres exposée dans cette 
exercice, pour une taille N donnée en paramètre. 

Programme 3.10 Procédure vec t_propre s_t fd 

funct ion V = vec t_propres_t fd ( n )  

x = ( 0  : n- 1 )  ' *  ( 0  : n- 1 ) ; 

Omega = 1 / sqrt ( n ) * exp ( 2 i * x*pi / n ) ; 

d = 2 * ( cos ( 2 *pi /n* ( O : n- 1 ) ) - 2 ) ;  

S = diag ( d , 0 )  + diag ( ones ( n- 1 , 1 ) , 1 ) + diag ( ones ( n - 1 , 1 ) , - 1 ) ; 

S ( l , n ) = l ;  S ( n , 1 )  = l ;  

[ V , D ]  = e i g ( S ) ; 

Correction de l 'exercice 111.11 : 

1 .  Faisons uniquement l 'un des deux calculs : 
n- l 11- I 

$(kTf) [t] = L co;s1f[s - k] = co;kt L co;rrJ[r] = {k..L/) [t] , s=O r=O 
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où l 'on a fait le changement d' indice de sommation r = s - k. 
2. Si 38 = { e;}7,,:-J est orthonormée pour ..L, alors §(38) = { §(e;) }7,,:-J est orthonor­

mée pour T. Bien sûr, ..L et T sont interchangeables . 
3 .  f est orthonormée pour T si et seulement si, pour tout k 

1 - 1 n- 1 -f * f[k] = - L f[s]f[s - k] = ôo[k] , n n s=O 
où on a noté f[s] = /[-s] . En prenant la transformée de Fourier de f * f = ôo. et en 
utilisant le théorème de convolution, on trouve IÎJ2 = 1, où on a noté 1 la fonction 
constante égale à 1 .  

4. Il est évident que IÎo J 2 = 1 ,  donc fo est orthonormée pour T. 
Si on veut que g soit orthonormée pour ..L, alors on applique la construction précé­
dente à f = g, et on considère go = g;-I (/o) . 

5 . On a (<p , kTg) = � I�,:J g [s - k] <p [s] = �! * f[k] . Comme � s' exprime comme une 
convolution, on peut le calculer de façon rapide par FFf. 

La procédure MATLAB 3 . 1 1  permet d'orthogonaliser un vecteur donné. 

Programme 3.11  Procédure f f t_or thog 

function y = f f t_or thog ( x )  

y = f f t  ( x ) ; 
i f ( min ( abs ( y ) ) = = Ü ) error ( ' La TFD de x s ' ' annu l e . ' ) ;  return ; end ; 
y =  y . / abs ( y ) ; y =  real ( i f f t ( y )  ) ;  

4 Correction des exercices du chapitre 4 

Correction de l 'exercice IV.l : Avec la formule d' inversion de Fourier, on a 

1 1A � . f(t) = -2 f(œ)e-u.otdœ. 
Tr -A 

Par dérivation sous le signe intégral, on montre que f est de classe �00• 
Si f(t) = 0 pour t E [c, d] , on aurait, au point to = ! (c + d) , 

( ) 1 1A � . f n (to) = - (-iœrf(œ)e-100'0dœ = o . 2tr -A 
En développant t 1--t exp(-i(t - to) ) au voisinage de 0, on trouve e 

ce qui est absurde. L' interversion entre I et J est justifiée par le théorème de Fubini. 
Correction de l 'exercice IV.2 : 

1 .  On utilise les schémas de différences finies W,.(t ,x) � i (u(t + h ,x) - u(t + h,x) ) et 
�(t ,x) � c}r(u(t , x+d) +u(t , x-d) - 2u(t , x) ) , ce qui mène à l 'équation annoncée. 
Bien sûr, les vecteurs sont considérés comme cycliques. 
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2. On a un+ l = g * un , avec g = { 1 - 2s, s , 0, . . .  , 0, s} . Comme le support de g est très 
petit, on n 'a pas intérêt à utiliser l ' algorithme FFT. 

3 .  Comme la transformée de Fourier est une isométrie, un reste borné si et seulement 
si ûn reste borné. Comme on a ûn = $ (g * · · · * g * u0) = (i)n · ;;o, cette condition 
est équivalente à 181 :::;; 1 .  On peut calculer cette transformée de Fourier, et on trouve 

1 - 4s :::;; 8(k] = 1 + 2s (cos ( 2;) - 1) :::;; 1 

La condition de stabilité s 'écrit donc - 1 :::;; 1 - 4s, c'est-à-dire s :::;; ! ·  Cette condition 
est appelée condition de Courant-Friedrichs-Levy ou CFL. La procédure MATLAB 
4. 1 calcule la solution u' après t itérations, en lui spécifiant la condition initiale 
(variable x) et la précision (variable s) .  

Programme 4.1 Procédure resolu t i on_exp l i c i te 

function y = resolu t i on_expl i c i te ( x , s , t ) 
n = l ength ( x ) ; y =  x ;  

for i = l : t  
for k= l : n  

yl ( k )  = s * y ( rnod ( k - 2 , n ) + l ) + s * y ( rnod ( k , n ) + l ) + ( l - 2 * s ) *y ( k ) ; 

end 
y = yl ; 

end 

4. En utilisant les propriétés de convolution, on obtient la solution 

:n+ï (k] = 1 + ( 1 -�)Â[k] ûn[k] = h (2kn) . ûn 
1 - BA [k] N ' 

qu' il est donc possible de résoudre en Fourier. On remarque que 

1 - 4( 1 - 9 )s h( ) _ 1 + 2s( l  - 9) (cos(ro) - 1 )  ,,,. 1 -----''-----'- :::;; œ - ;:::,, , 1 + 49s 1 - 2s8 (cos(ro) - 1 ) 

ces inégalités étant faciles à trouver par une étude de fonction, et ce sont les meil­
leures possibles . La condition de stabilité s 'écrit donc - 1  ;;::: I-��e:)s , ce qui est 
équivalent à s ( 1 - 29) :::;; ! . Ainsi, si 9 ;;::: ! , le schéma est toujours stable. Si 9 < ! , 
il faut que s :::;; 2(1�29) . On retrouve la condition CFL pour 9 = O. Le programme 
MATLAB 4.2 permet de résoudre l 'équation de la chaleur par cette méthode impli­
cite. Par rapport à la procédure 4. 1 ,  il prend un argument supplémentaire, the ta.  

Programme 4.2 Procédure resolu t i on_imp l i c i  te  

func tion y =  res o l u t i on_irnp l i c i te ( x , s , theta , t )  

n = l ength ( x ) ; y =  x ;  

A =  z eros ( n , l ) ; A ( l )  = - 2 * s ;  A ( 2 )  = s ;  A ( n )  = s ;  

fA = f f t ( A ) ; y =  f f t ( x ) ; 

rnu l t  = ( ones ( n , 1 ) + ( 1 - the ta ) * fA ) . / (  one s ( n , 1 ) - theta * fA ) ;  
for ( i = l : t ) y =  y . *rnul t ;  end ; 
y =  real ( i f f t ( y )  ) ;  
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Programme 4.3 Procédure resolu t i on_imp l i c i  te_2 d 

funct ion y =  resolu t i on_imp l i c i te_2 d ( x , s , the ta , t )  
n = l ength ( x ) ; y =  x ;  

A =  z eros ( n , n ) ; A ( l , 1 ) = - 4 * s ; A ( 2 , l ) = s ;  A ( l , 2 ) = s ;  A ( n , l ) = s ; A ( l , n ) = s ; 

fA = f f t 2 ( A ) ; y =  f f t2 ( x ) ; 
mu l t  = ( ones ( n , n ) + ( l - theta ) * fA ) . / (  ones ( n , n ) - theta * fA ) ;  

for ( i = l : t ) y =  y . *mul t ;  end ; 
y =  real ( i f f t 2 ( y )  ) ;  

5 . Les équations 2D sont les mêmes à condition de considérer le filtre A tel que seules 
les entrées A [O, OJ = -4s , A [±l , O] = s et A [O, ± 1 ] = s soient non nulles . Les condi­
tions de stabilité sont les mêmes. Le programme MATLAB 4.3 résout l ' équation de 
la chaleur pour une fonction 2D donnée. 

Correction de l 'exercice IV.3 : 

1 . On a 

où la convolution est celle de L1 ( [O, 1 ] ) .  On a noté Pt (x) = LnEZ e-2ir2n2ten (x) . 
Par convergence normale des dérivées pour t > 0, on voit que u E �(S1 x Rt) .  
De plus, par dérivation sous le signe intégrale, on voit que pour t > 0 ,  u vérifie 
l 'équation aux dérivées partielles de la chaleur. 

2. Si f E 'if2(S1 ) , on a IÎ(n) I  = 0 (;!i) (voir [80] par exemple), et donc par conver­
gence dominée, il vient 

l l u (t , · ) - /l loo ::::;; L IÎ(n) 1 1 1 - e-2ir2112t 1 � O. 
'71 n--++oo nEtü 

3 .  On suppose u(t0 , x0) < O. Sur [O , to] x S1 qui est compact, v atteint son minimum o: 
en (t1 , x1 ) . Sur l 'axe des x, puisque xi est un point intérieur, on a * (t1 , x1 ) = 0 ainsi 
que � (t1 , x1 ) � O. Sur l ' axe des t, on peut éventuellement avoir t1 = to, mais dans 
tous les cas, on a f, (t1 ,xi ) ::::;; O. On a donc 

ce qui est absurde si on prend /3 tel que que o:f3 > O. 
Si u et îi sont solution du même problème de la chaleur, alors u - îi est solution 
de l 'équation de la chaleur avec pour condition initiale f = O. Par le principe du 
maximum, il vient l l u ( · , t ) - îi( · , t ) l loo ::::;; 1 1/l loo = 0, donc u = îi. 

4. Si on n' avait pas Pt � 0, on pourrait trouver un voisinage ] a , b [ sur lequel Pt < O. 
On note xo = ! (a + b) , et b - a = 2m. En choisissant f régulière, à support dans 
[-m, m] , et f > 0 sur J - m,m[, on a 

f * Pt (xo) = 1b Pt (Y)f(xo -y)dy < 0, 
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ce qui est absurde d' après la question précédente. Ainsi, il vient 

l i u ( · , t ) l lco = l lPt * fl loo =:;; 1 1/l lco fo l Pt = 11/l lco , 
puisque Jd Pt = L,e-2n2n2t Jd en = 1 . 

5 .  On a 

l l u (t , · ) - /l lco =:;; l lPt * fn - Pt * /l lco + l lPt * fn - fn l loo + l lfn - /1100 • 
Soit e > O. On se fixe N tel que l lfn - fl lco =:;; e/4. 
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On a aussi l lPt * fn - Pt * fl lco =:;; l lfn - fl lco =:;; e/4. Puis, comme f est de classe <tf2, 
on fixe to tel que si t =:;; to, on a l i Pt * fn - fn l lco =:;; e /2. 

Correction de l 'exercice IV.4 : Les équations sont les mêmes, sauf qu' il faut prendre 
pour <I> le filtre 3D tel que <1>[± 1 , 0, 0] = <I>[O, ± 1 0] = <I>[O, O ± 1 ] = 1 ,  <1>[0, 0, 0] = 6, et 
les autres entrées sont nulles . La seule chose difficile à coder est la fonction qui rend la 
matrice de données antisymétrique. Ceci est réalisé par la procédure MATLAB 4.4. 

Programme 4.4 Procédure ant i syme t r i s e  

function f f  = an t i syme tri s e ( f )  

n = l ength ( f ) + l ;  f f  = z eros ( 2 * n , 2 * n , 2 * n ) ; 

for ( x= 1 : 2 * n )  for ( y= 1 : 2 * n )  for ( z = 1 : 2 * n )  

i f  mod ( x- 1 , n ) = = Ü  1 mod ( y - 1 , n ) = = O  1 mod ( z - 1 , n ) = = O  

f f ( x , y , z )  = O ;  
el se 

s i gne = 1 ;  nx x; ny = y; nz = z ;  

i f ( x>n ) s i gne = - s i gne ; nx = 2 * n-x+ 2 ; end 
i f ( y>n ) s i gne = - s igne ; ny = 2 * n-y+ 2 ; end 
i f ( z >n )  s i gne = - s igne ; nz = 2 * n - z + 2 ; end 
f f ( x , y , z )  = s i gne * f ( nx- l , ny- 1 , n z - 1 ) ; 

end ; 
end ; end ; end ; 

Correction de l 'exercice IV.S : 

1 . L'équation aux différences finies (4.5), chap. IV, s 'écrit comme la somme de deux 
convolutions acycliques, l 'une sur les lignes et l ' autre sur les colonnes . La multipli­
cation à gauche par TN- 1 réalise cette convolution sur les lignes, et la multiplication 
à droite réalise celle sur les lignes. 

2. En retranchant les valeurs aux bords (entrées U;,j avec i , j  E { 1 ,N - 1 }) , on vé­
rifie que les convolutions acycliques évoquées à la question précédente s'écrivent 
comme des produits matriciels TN_ifJ (colonnes) et UTN- 1 (lignes). 

3. En utilisant les identités trigonométriques, on a, en notant ro = n/N, pour 2 ::;; i ::;; 
N - 2, 

h2 (TN- I Vj ) [i] = sin ( (i - 1 )jro) - 2 sin (ijœ) + sin ( (i + 1 )jro) 
= -4 sin2 (;z) vAiJ . 

On vérifie que ce résultat est encore valable pour i = 1 et i = N - 1 . On peut donc 
diagonaliser TN- 1 . v- 1 rN- I V = D, avec D = {-4sin2 (�Z) } . . l �J�N- 1 
En multipliant l ' équation (6 .2), chap. IV, à gauche par v- 1 et à droite par V, on 
obtient l ' équation demandée. 
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4. Comme TN- 1 est symétrique, ses vecteurs propres sont orthogonaux et donc V est 
une matrice orthogonale. On note y :  cN- l -t cN- I la transformée en sinus, défi-
nie par 

Y(f) [i] = (V f) [i] = 'i1 
f[j] sin ( i�n) . 

J= l 
Si on note fo = {O, f[OJ , . . .  , J[N - 1 ] , 0 , . . .  , O} E C2N, alors, pour i = 1 ,  . . .  ,N - 1 , 
on a Y(f) [i] = Jm(Îo [i] ) . 

5 .  On peut aussi considérer J = {O, f[l ] , . . .  , f[N - 1 ] , 0 , - f[N - 1 ] ,  . . .  , - f[l ] } le 
signal symétrisé par imparité. On a alors Y(f) [k] = -2iÎo [k] . Comme V est or­
thogonale et symétrique, on a y- t = �Y. La procédure MATLAB 4.5 réalise 
la transformée en sinus lD. De même, si F E  C(N- l ) x (N- l ) , on note F la fonc-

Programme 4.5 Procédure trans formee_s inus 

funct ion y = trans f ormee_s inus ( x )  

n l ength ( x ) ; 

x [ O ; x ; O ; - x ( n : - 1 : 1 ) ] ;  x = f f t ( x ) ; 

y =  real ( x ( 2 : n + l ) / ( - 2 i )  ) ;  

tion impaire correspondante (voir le paragraphe 4.3, chap. IV). On a cette fois 
VFV- 1 [k, l] = -4$(F) [k, l] . Cette méthode est en fait identique à celle exposée 
au paragraphe 4.3, chap. IV. La procédure MATLAB 4.6 réalise la transformée en 
sinus 2D, mais utilise uniquement l ' algorithme de transformée lD (sur les lignes 
puis les colonnes) .  

Programme 4.6 Procédure trans formee_s inus_2 d 

funct ion y = trans formee_s inus_2 d ( x )  

y =  z eros ( s i z e ( x ) ) ;  n = l ength ( x ) ; 

for ( i = l : n ) y ( i ,  : )  trans formee_s inus ( x ( i ,  : )  ' ) ' ; end ; 
for ( j = l : n ) y ( : , j )  = trans formee_s inus ( y ( : , j ) ) ;  end ; 

Correction de l'exercice IV.6 : La procédure MATLAB 4.7 calcule un filtre gaussien 2D 
de taille (paramètre n) et de variance (paramètre s) données. Le programme 4.8 applique 
un filtre gaussien à une image chargée depuis un fichier, puis dessine l' image à l ' écran. 

Programme 4.7 Procédure cal cul_f i l  tre 

funct ion f = c a l cul_f i l tre ( n , s )  

X =  - 1 : 2 / ( n - 1 ) : 1 ; 

[ X , Y ]  = meshgrid ( x , x ) ; 

f exp ( - ( X . A 2 + Y . A 2 ) / ( 2 * s )  ) ;  

f = f / sum ( sum ( f ) ) ;  

Correction de l 'exercice IV.7 : 

1 .  d(f, g) [u, v] mesure la similarité entre g et une portion de l ' image f dont le coin 
inférieur gauche est situé en (u, v) . On a 

d(f, g) [u, v] = Corr(f, g) [u, v] +Pu,v (/) + J Jg J J� . 
Comme J Jg J J� est constante, minimiser d(f, g) revient à minimiser Corr(f, g) [u, v] si 
Pu,v (/) varie peu. 
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Programme 4.8 Application d'un filtre gaussien 
[ im ,  cm ] = imread ( ' me t tre i c i  le nom du f i chier ' ) ;  

n l ength ( im ) ; s = 0 . 0 1 ;  
f = calcul_f i l tre ( n , s ) ; 

y =  f i l ter2 ( f , im) ; 

image ( y ) ; colormap ( cm ) ; 
axi s  o f f ;  axi s image ; 
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2. Corr(/, 8) est le produit de convolution acyclique de f avec g[x, y] = 8[-x, - y] .  
3 .  On note fo [x, y] = f[x, y] - fu,v (que l 'on suppose nul en dehors de D(u, v) ), et 

8o [x, y] = 8[x, y] -g. On a 

-C (! ) [ ] (/0 , 80) orr ' 8 u, v = l l!o l l 2 l l8o l l 2 · 
Ainsi, - 1  � Corr(/, 8) � 1 ,  et Corr(/, 8) = 1 si et seulement si fo et 80 sont égaux. 
Ceci donne bien une notion de ressemblance entre 8 et une portion de f, qui de plus 
est insensible aux modifications affines de l ' intensité des deux images. Le problème 
est que cette quantité ne s 'écrit pas comme une convolution. 

4. Le numérateur se simplifie en L(x,y) f[x, y]8o [x - u, y - v] , puisque 80 est de moyen­
ne nulle. On obtient bien ainsi une convolution. La relation de récurrence se voit en 
faisant un dessin, les sk étant des sommes sur des carrés qui se chevauchent. La pro­
cédure MATLAB 4.9 utilise cette récurrence pour remplir, par indices décroissants, 
sk . Sa complexité est d'environ 6N2 opérations. On a 1 1/o l l� = s2 (u, v) - �s1 (u , v)2, 

Programme 4.9 Procédure somrne_gl i s s ante 

funct ion y = s omme_gl i s sante ( x , P , k )  
N = l ength ( x ) ; y = z eros ( N , N ) ; 

for ( u =N : - 1 : 1 ) for ( v=N : - 1 : 1 ) 

i f ( U<N )  y ( u , v ) =y ( u , v ) +y ( u + l , v ) ; end ; 
i f ( V<N )  y ( u , v ) =y ( u , v ) +y ( u , v+ l ) ; end ; 
i f ( U<N && V<N )  y ( u , v ) =y ( u , v ) -y ( u + l , v + l ) ;  end ; 
y ( u , v ) =y ( u , v ) +x ( u , v ) � k ;  

i f ( u+ P< =N ) y ( u , v ) =y ( u , v ) - x ( u + P , v ) � k ;  end ; 
i f ( v+ P< =N ) y ( u , v ) =y ( u , v ) -x ( u , v+ P ) � k ;  end ; 
i f ( u + P< =N && v+ P< =N ) y ( u , v ) =y ( u , v ) +x ( u + P , v+ P ) � k ;  end ; 

end ; end ; 

ce qui peut se calculer avec des sommes glissantes, donc très rapidement. De plus, 
1 18 1 1 2  se calcule une fois pour toutes. La procédure 4. 10 calcule Corr(/, 8) à l ' aide 
de cet algorithme rapide. 

Correction de l'exercice IV.8 : 

1 . On a 2ill" où <.On = eN . 
La procédure MATLAB 4. 1 1  utilise l ' algorithme FFI' pour translater une image. La 
procédure 4. 1 2 applique l 'opérateur sr) en effectuant une translation sur chaque 
ligne de l ' image. Il est à noter que les indices des entrées de l ' image sont prises 
entre -N /2 et N /2 - 1 ,  dans le but d' appliquer sr) pour tourner une image au­
tour de son centre. Nous laissons le soin au lecteur d' écrire lui même la procédure 
f f t_transvec_y. 
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Programme 4.10 Procédure corre l a t i on_norma l i s e e  

funct i on y = corre l a t i on_norma l i s ee ( f , g ) 

N = l ength ( f ) ; P = l ength ( g ) ; 
% renorma l i sa t i on 
g = g - mean ( mean ( g ) ) ;  g = g / norm ( g ) ; 
% ca l cul du n uméra teur 
f f  z eros ( N+ P - l , N+ P - 1 ) ;  f f ( l : N , l : N ) = f ;  

gg z eros ( N+ P - l , N+ P - 1 ) ; gg ( l : P , l : P ) = g ;  

fg real ( i f f t 2  ( f f t 2 ( f f ) . * conj ( f f t 2  ( gg ) ) ) ) ; 

fg  fg ( l : N , l : N ) ; 
% ca l cul du dénomina teur 
sl = s omme_gl i s sante ( f , P , 1 ) ;  

s 2  = s omme_gl i s sante ( f , P , 2 ) ; 
denom = sqrt ( s 2 - 1 / P � 2 * ( s l . � 2 )  ) ;  

y = fg . / denom ; 

Programme 4.11 Procédure f f t_tran s l a t i on 

funct ion y = f f t_trans l a t i on ( x ,  v )  
n = l eng th ( x )  ; 

[ s , t ]  = meshgr i d ( [ O : ( n / 2 - 1 ) , - n / 2 : - 1 ]  ) ;  

mul t  = exp ( - 2 i *p i / n * ( s * v ( l )  + t *v ( 2 )  ) ) ;  

y f f t2 ( x )  . *mu l t ;  

y =  real ( i f f t 2 ( y )  ) ;  

Programme 4.12 Procédure f f t_transvec_x 

funct i on y = f f t_transvec_x ( x ,  l ambda ) 
n = l eng th ( x ) ; 

for k= l : n  

v = x ( : , k ) ;  trans = l ambda * ( k- n / 2 - 1 ) ; 
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mu l t  = exp ( - 2 i * p i / n * ( [ 0 : ( n / 2 - 1 ) , - n / 2 : - l ] ' * trans ) ) ;  
v = f f t ( v )  . *mul t ;  y ( : , k ) = real ( i f f t ( v )  ) ;  

end 

2. On a (cos(8) - sin(8)) = ( 1 - tan(8/2)) ( 1 0) ( 1 - tan(8/2)) 
sin(8) sin (8 )  0 1 sin(8) 1 0 1 · 

Si on suppose qu'une image correspond à une fonction de JR2 dans IR discrétisée aux 
points 0, . . .  , N - 1 ,  alors l 'opérateur de rotation discrète s 'écrit Ra = st) sfj sr} . 

3 . Pour faire tourner une image autour de son centre, il suffit d'utiliser, dans les algo­
rithmes de calcul de Sf) et Sf) , des points de discrétisation -N /2, . . .  ,N /2 - 1 
(c'est ce qu'on a fait pour f f t_transvec_x). La procédure 4. 1 3  permet de 
réaliser une rotation discrète. Cet algorithme est très rapide, puisqu' il nécessite 

Programme 4.13 Procédure f f t_ro t a t i on 

funct i on y = f f t_ro t a t i on ( x ,  theta ) 
y f f t_transvec_x ( x , - tan ( the ta / 2 ) ) ;  

y f f t_transvec_y ( y , s in ( the ta ) ) ;  

y f f t_transvec_x ( y , - tan ( the t a / 2 )  ) ;  

O(N2 log(N) ) opérations. De plus, il est bijectif, et vérifie Ra1Rei = Ra1+ei ·  En 
quelque sorte, le passage par la TFD est la façon « naturelle » de discrétiser une 
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rotation continue. Par contre, puisque l ' image est considérée comme une fonction 
continue, l' image se retrouve « découpée en morceaux » après la rotation. Pour 
empêcher ceci, il faut ajouter des zéros tout autour. C'est ce que réalise le pro­
gramme 4. 14, qui a permis de réaliser la figure 4. 15 , chap. IV. On peut noter que ce 
programme ajoute des 255 autour de l ' image de départ. C'est pour obtenir un bord 
blanc plutôt que noir. 

Programme 4.14 Rotation d'une image 
[ im ,  cm ] = imread ( ' me t tre i c i  l e  nom du f i ch i er ' ) ;  

n = l ength ( im ) ; p = ce i l ( n / 2 * ( sqr t ( 2 ) - 1 ) ) ;  

x = ones ( n + 2 *p , n+ 2 *p ) * 2 5 5 ; 
x (  ( p + l ) : ( n +p ) , ( p+ l ) : ( n +p ) ) = im ; 

nbr = 6 ;  rot = p i / ( 4 * ( nbr - 1 ) ) ;  
for r = O : nbr - 1  

y =  f f t_ro t a t i on ( x , r * ro t ) ; 
subp l o t ( l , nbr , r + l ) ; 

image ( y ) ; colormap ( cm ) ; 
axi s o f f ;  axi s  image ; 

end 

Correction de l 'exercice IV.9 : 

1 . La procédure MATLAB 4. 15 réalise ceci . 
Programme 4.15 Procédure f i l  tre__pas s e_bas 

funct i on f = f i l tre_pa s s e_ba s ( N )  

f ( O : N- 1 )  I ;  f = ( f< =N/ 4 )  1 ( f > = 3 *N/ 4 ) ;  
f = real ( i f f t ( f ) ) ;  

2. Le programme MATLAB 4. 16 dessine la transformée de Fourier d'un filtre, en ajou­
tant des zéros. On constate des oscillations (phénomène de Gibbs), car on essaie 

Programme 4.16 Dessin de la transformée de Fourier continue par zero padding 
N = 6 4 ; P = 1 0 2 4 ; 

f = f i l tre_pas s e_ba s ( N ) ; 

f f  = [ f ( l : N/ 2 ) ; z eros ( P - N , l ) ; f ( ( N / 2 + 1 ) : N ) ] ;  
f f  = real ( f f t ( f f ) ) ;  

p l o t ( f f ) ; axi s t i ght ; 

d'approcher une fonction discontinue (le filtre idéal est la fonction indicatrice de 
[-n/2, n/2] ) par un polynôme trigonométrique. 

3 . Nous allons remplacer le passage brutal de 0 à 1 dans le filtre de la question 1 par 
une progression douce (sinusoïdale) de longueur eN /2. La procédure 4. 17 réalise 
ceci. 

Correction de l 'exercice IV.10 : 

1 . A la f<1ème itération du procédé, on note mk le nombre minimal de bonbons qu'un 
enfant possède, nk le nombre maximal, et sk le nombre d'occurrences de mk. Il est 
facile de voir que mk+ I � mk et nk+ I :-::; nk . De plus, on voit aussi que si Sk > 1 ,  
alors Sk+ I < Sb et si sk = 1 ,  alors mk+ I > mk. Comme sk est borné par n ,  toutes les 
n opérations, mk augmente d'au moins 1 ,  et donc lmk - nk l  vaut 0 après un nombre 
fini d'opérations . 
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Programme 4.17 Procédure f i l  tre_parame trable 

func tion f = f i l tre_parame trabl e ( N , ep s ) 
Pl = f l oor ( ep s * N/ 4 ) ; P = 2 * P l + l ; % P doi t � tre impa i r  
t [ l ] ; i f ( P"' = l )  t = ( cos ( ( O : P - l ) ' *p i / ( P - 1 ) ) + 1 ) / 2 ; end ; 
f [ ones ( N/ 4 - P l , l ) ; t ; z eros ( N/ 2 - P , l ) ; t ( P : - l : l ) ; ones ( N / 4 - P l - 1 , 1 ) ] ;  
f real ( i f f t ( f ) ) ;  

2. On peut assimiler la distribution des bonbons à une distribution de probabilité (en 
la renormalisant pour que sa somme soit égale à 1 ), et on se trouve donc dans 
la situation de l 'exercice 1. 10. Si on note p(k) la distribution des bonbons après k 
itérations, on a p{k) = V *  . .  · * v * p(o) , avec v = { 1 /2, 1 /2, 0, . . .  , O} .  En prenant la 
transformée de Fourier, on obtient;w = (V)k · ;<D). On calcule V[k] = ! ( 1 + e-�) . 
et on constate que pour k f:. 0 , JV[k] J < 1 .  Donc p(k) � {m, . . .  , m} , où m = ;êO}[o] 
(le nombre moyen de bonbons) . 

3 . Dans le cas où chaque enfant distribue la moitié à gauche et la moitié à droite, il 
n 'y a pas de convergence, car on peut avoir mk+ l  = mk . La situation est analogue à 
celle rencontrée à l ' exercice 1. 10 pour v = {O, 1 /2, 0, . . .  , 0, 1 /2} lorsque n est pair. 

Correction de l'exercice IV.11 : 

1 . Il faut prendre Ro = PoQo, R 1 = P1 Qo + PoQ1 et R1 = P1 Q1 . 
2. On peut effectuer le calcul astucieux suivant : Ri = (Po +P1 ) (Qo + Q1 ) - Ro - R2 . 
3 . En tout, il y a log2 (n) appels récursifs imbriqués. A chaque étape, il y a 3 appels 

récursifs, donc pour k = 0, . . . , lofü (n) , il y a 3k appels au total. Le coût des ad­
ditions à chaque étape est de c x 210g2 (n)-k (puisque les polynômes sont de degré 
2Iog2 (n)-k). Au total, le nombre d'opérations est de 

La procédure MATLAB 4. 1 8  calcule le produit de deux polynômes de même taille 
(représentés sous forme de vecteurs) .  Il utilise la procédure 4. 1 9 qui additionne 
deux polynômes de degrés différents . 

Programme 4.18 Procédure kara t suba 

func tion r = kara t suba ( p , q )  

n = l ength ( p ) - 1 ;  

i f ( n = = D l r =p * q ;  return ; end ; 
k = f l oor ( ( n+ l ) / 2 ) ; 

pO  p ( l : k ) ; p l = p ( ( k+ l ) : ( n+ l ) ) ;  

qO q ( l : k ) ; ql = q (  ( k+ l ) : ( n+ l ) ) ;  

rO  kara t suba ( p0 , q0 ) ; r2 = kara t suba ( p l , ql ) ; 

r l  kara t suba ( add ( p 0 , p l ) , add ( q0 , ql ) ) ;  

rl  add ( r l , - r O ) ; r l  = add ( r l , - r2 ) ; 
r add ( r O , [ z eros ( k , l ) ; r l ]  ) ;  

r = add ( r ,  [ z eros ( 2 * k , l )  ; r2 ]  ) ; 
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Programme 4.19 Procédure add 

function r = add ( p , q )  

m = l ength ( p ) ; n = l ength ( q ) ; 

i f ( m> = n ) r = p + [ q ; zeros (m-n , 1 ) ] ;  

e l s e  r = q + [ p ; z eros ( n - m , 1 ) ] ;  end ; 

Correction de l 'exercice IV.12 : 
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1 .  L'équation v( k) = ud [k] s 'écrit ud = a * 1/f d . En utilisant le théorème de convolution 
pour les séries de Fourier (voir [80]) , on obtient ûd = â· ijid. En remplaçant 1/f par 
la fonction cp telle que 

cp(x) = L <l>d(k) l/f(x - k) kEZ 
-- 1 avec <l>d = = , 1/fd 

on se ramène à un problème d'interpolation directe. Même si 1/f est à support com­
pact, cp n'est en général pas à support compact. 

2. 13n est à support dans [ (-n+ 1 ) /2, (n +  1 )/2] . 13n permet de définir un schéma d' in­
terpolation directe si et seulement si 13n (k) = ôo(k) , et on vérifie que ceci est le cas 
seulement pour n = 0 (interpolation constante par morceaux) ou n = 1 (interpolation 
linéaire). 

3 . Avec le théorème de convolution de la transformée de Fourier, il vient 

fn(Ç ) = ( sin(Ç /2) )
n+ l 

Ç /2 
On a /33 = 13n · I11 , d'où, avec le résultat de l 'exercice 11.9, il vient 

ij( Ç ) = 2nfn * I12n ( Ç ) = 2n L (- 1 )P(n+ l ) ( sin ( Ç /2) ) 
n+l 

pEZ np + Ç /2 
Comme ij(Ç ) est une fonction 2n-périodique, il suffit d:2 ' étudier sur [0, 2n [ . Si n  
est impair, tous les termes de la somme sont positifs, et /33 > O. Si n est pair, c'est 
un peu plus compliqué. Le terme pour p = 0 de la somme est strictement positif. 
Pour le reste, il faut regrouper les termes correspondant à p et à -p et utiliser le 
critère des séries alternées. 

4. On a f3�ard = <l>:i * 13n . En Fourier, on obtient 

avec 

( sin(Ç /2) ) n+ l -;- _ çp _ 1 / (2n) f3card (l; ) - ( sin(Ç /2) ) n+ l - 1 + rn (Ç ) ' 2nI.peZ np+l;/2 

r. (Ç ) = k [ (2�p + 1 )
-n- 1 + c�

p - 1) 
n- 1

] · 
r n est de support infini. Comme la transformée de Fourier est une isométrie, on veut 
montrer la convergence dans L 2 (JR.) : 

- 1 f3�ard --;;:::: 2n l [-n , n] · 



274 Correction des exercices 

Par parité, nous allons évaluer seulement les intégrales 

et 1+00 ( 1 )
2 Fn = 

n: 1 + rn (Ç ) dÇ .  
Pour la première, on a En ::::;; Jt r�. et on utilise le fait que si Ç E [O, n] , alors on a 
t = 2n/Ç > 2, d'où la majoration 

r. (  ç )  " 2 (2; - 1 ) -•-
! �/-·- 1 " 4(t - w•- 1 . 

Par changement de variable Ç --+ t, on obtient 

En ::::;; h+oo [4(1 - 1 ) -n- 1 �:f dt = o (�) . 
Pour la deuxième intégrale, on utilise la minoration rn (Ç ) � (Ç /n)n+ l , d'où 

Au final, on voit que l ' interpolation trigonométrique (c 'est-à-dire par zero padding, 
aussi appelée interpolation de Shannon, comme le montre l' exercice 11. 10) peut être 
vue comme une interpolation spline de degré infini. 

---5 . On a c =  <l>d * ud, ce qui s 'écrit en Fourier ê=  ûd/f3J . Si l 'on approche la trans-
formée de Fourier continue par une transformée de Fourier discrète, et que l 'on 
calcule êpar FFf, on va tronquer les fonctions considérées, ce qui est très mauvais 
(oscillations de Gibbs) 

5 Correction des exercices du chapitre 5 

Correction de l 'exercice V.1 : On a .Y/12 = Nid, donc les valeurs propres de .Yt1 sont 
incluses dans {±JiV}. Pour f E RN, on définit 

�+(!) � ./Nf +Yt1(!) et �+U) � ./NJ-Yt1(!) . 
On vérifie que ce sont bien des vecteurs propres de .Yt1 associés aux valeurs propres JN 
et -JN. La procédure MATLAB 5 . 1  calcule, à l ' aide de ces vecteurs propres, une trans­
formée de Hartley intermédiaire. On fera attention au fait qu'elle est à valeur dans C. 

Programme 5.1 Procédure fht_interm 

funct i on y =  fht_interrn ( x , l arnbda ) 

N = l ength ( x ) ; 

ul = sqrt ( N ) *x+ fht ( x ) ; u2 = sqrt ( N ) *x- fht ( x ) ; 
y =  ( sqrt ( N ) � l arnbda ) * (  u l  + ( - l ) � l arnbda *u2 ) ;  

Correction de l 'exercice V.2 : On note a = 2n/N, et vt E RN tel que vt [l] = cos( akl + 
À) .  La transformée de Hartley généralisée s 'écrit .Jfi(f) [k] = (!, vt ) . Pour définir une 
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transformée inverse, on cherche une famille de vecteurs biorthogonale aux v} sous la 
forme { vf }f;J . On veut donc que ( v} , v�' ) = yô( , où y E C est une constante. En 
développant le produit scalaire, on obtient une expression similaire à celle de l 'équation 
( 1 .3) , chap. V. Pour que les deux premiers termes se simplifient, on impose ei(l+l') = 
-e-i(lH') , par exemple Â. + Â.' = n/2. On obtient alors (v} , v�' ) = ! sin(2À.) ô( , et 
donc au final il vient ,YtJÂ o ,Yel' = ! sin(2Â. ) Id. 
Correction de l'exercice V.3 : Soit f E JRN avec N = 2N0 + 1 et g = .Ye(f) . On note g = 
{g [O] , . . .  , g [No] , O , . . .  , O, g [No + 1 ] , . . .  , g [N - 1 ] } .  Ceci permet de calculer, par FHT, les 
quantités .Ye(i) [n] = F(nN /P) , où l 'on a noté F(x) = iï 'Lf,:01 g [k] cas(2nkx/N) . On peut 
donc évaluer la fonction F avec la précision que l 'on veut. Avec la formule d'inversion, 
proposition 1 .3 , chap. V, F interpole f aux points 0, . . .  ,N - 1 . En exprimant les fonctions 
x i--+ cas (2nkx) à l ' aide des exponentielles complexes x i--+ e� ,  on voit que F est un 
polynômes trigonométrique de degré au plus N - 1 .  L' interpolation trigonométrique de 
l 'exercice III.6 utilise aussi un polynôme trigonométrique de degré au plus N - 1 .  Comme 
il passe un seul polynôme trigonométrique de degré au plus N par N points distincts, on 
en déduit que ces deux interpolations sont les mêmes . 
Correction de l 'exercice V.4 : On peut écrire la transformée de Hartley lD comme 
.Ye(f) [k] = (J, cpt' ) ) avec cpt' ) [n] = cas (nk2n/Ni ) . La proposition 1 .3 , chap. V nous 

dit que ( cpt' ) , <p��1 ) ) = Ni ô{ . Les fonctions de Hartley 2D sont des produits tensoriels 

cp{Z',�)) [n 1 , n2] = <p��i ) (n 1 )<p�:2) (n2) . Elles forment donc encore un système orthogonal, 
puisque 

d'où la formule d'inversion proposée. L' algorithme de calcul consiste à appliquer la pro­
cédure FHT sur chaque ligne de la matrice f E JR.Ni xN2 , puis sur chaque colonne. C'est ce 
que réalise la procédure 5.2. 

Programme 5.2 Procédure fht 2 d  

function y = fht 2 d ( x )  

n = l ength ( x ) ; y =  z eros ( n , n ) ; 

for ( i = l : n ) y ( i , : )  fht ( x ( i , : )  ' ) ' ;  end ; 
for ( j = 1 : n )  y ( : , j ) = fh t ( y  ( : , j ) ) ; end ; 

Correction de l 'exercice V.5 : Soit p un nombre premier tel que 4 jp - l . On note Ç un 
générateur de IF; , et r =  ç9 .  Dans l 'équation (1 . 1 ) , chap. V, on remplace cas (2kln/N) 
par ! (Çkl + ç-kl ) + 21r (Çk1 - ç-kl ) . La démonstration de la proposition 1 .3 , chap. V est 
encore valide si on remplace œ par Ç et i par y. Le programme MAPLE 5.3 réalise une 
transformée de Hartley sur un corps fini en utilisant une extension de corps, comme ex­
pliqué au paragraphe 1 .4, chap. VI pour la TFD. 

Correction de l 'exercice V.6 : 

1 .  Il faut prendre G;,j = g[i - j] = g[j - i] . La multiplication par G correspond bien à 
la convolution acyclique qui définit y. 
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Programme 5.3 Transformée de Hartley sur un corps cyclotomique 
> with ( numtheory ) : n : =  1 6 : p : =  5 :  
> l i s te_div : =  op ( Fac tor ( cyc l o tomic ( n , X )  ) mod p ) : 
> P : =  l i s te_div [ l ] ;  
> alias ( z e t a  = RootOf ( P )  ) : # racine ni ème primi t ive 
> g : =  2 :  # 2 e s t  une racine carrée de - 1  modu l o  5 

P := X4 + 3  
> cas : =  proc ( x )  
> 1 / 2 * ( z e ta A ( x ) * ( l - g )  + z e t a A ( -x ) * ( l + g )  ) ; 
> end proc : 

Transformée de Hartley, version O(n2) :  
> Har t l ey : =  proc ( f )  
> local res , formu l e ; 
> formu l e  : =  ' f [ l + l ] *cas ( ( k- 1 ) * 1 )  ' ;  
> res : =  [ s eq ( sum ( formu l e , ' 1 ' = 0 . .  n - 1 ) mod p ,  k= l . . n )  ] ;  
> return ( Norma l ( re s ) mod p ) ; 
> end proc : 

Test simple : 
> hasard : =  rand ( O  . .  ( p - 1 ) ) :  
> x : =  [ s eq (  hasard ( ) , i = l  . .  n ) ] ;  
> y : = s imp l i fy ( Ha r t l ey ( x ) ) ;  # Har t l ey ( x )  n ' es t  plus dans F_p . 
> eva l b ( x = Har t l ey ( y ) / n  mod p ) ;  # do i t  ê tre égal . 

X := [O, 1 ,  1 ,  1 , 2 , 2, 1 , 4, 0, 1 , 2, 0, 1 , 0, 2, 0] 
y := [3 , 3 Ç2 + 4 + 4 Ç  + 3 Ç3 , 2 + 4 Ç2 ,  1 + 4 Ç3 + 3 Ç2, 3 , 2 Ç2 + 2 Ç  + Ç3 + 4, 2, 
2 Ç3 + 2 Ç2 +  1 , 0, Ç  + 2 Ç3 + 3  Ç2 + 4, 2 +  Ç2, Ç3 + 3 Ç2 + 1 , l , 3 Ç  + 4 Ç3 + 2 Ç2 + 4, 
2, 2 Ç2 + 3 Ç3 + 1 J 

true 

2. La matrice T est le bloc constitué des m premières lignes et des n premières co­
lonnes. Pour calculer Tx, on calcule y= Cx où x = (x, O , . . .  , O)T E cM, et on extrait 
de y les m premières composantes pour trouver y. On a y= c * X,  ce qui se calcule 
rapidement par FFf. 

3. Il faut donc considérer c = {g[Oj ,  . . .  , g [N - lj , O , . . .  , O, g [N - lj , . . .  , g [ l ] }  E CM. 
La procédure MATLAB 5 .4 réalise le calcul de transformée en Z vectorielle par 
l ' algorithme CZT. 

Programme 5.4 Procédure c z t 

function y =  c z t ( x , z )  

n l ength ( x )  ; 

g z . A ( l / 2 * ( 0 : n- 1 )  ' . A 2 ) ; h = x . / g ;  

k c e i l ( log2 ( 2 * n - 1 ) ) ;  M = 2 A k ;  
g [ g ;  z eros ( M- 2 * n + l , 1 ) ; g ( n : - 1 : 2 ) ] ;  

h [ h ;  z eros ( M- n , 1 ) ] ;  

y i f f t  ( f f t  ( g )  . * f f t  ( h )  ) ; 

y y ( l : n )  . / g ( l : n ) ; 

Correction de l 'exercice V.7 : On note xn = f(n) le signal discrétisé, et y�i) � fô f(t)dt le 
résultat obtenu avec la méthode (M;) . Soit X =  :l'(xn) et y(i) = :l'(y�) ) les transformées 

( ') déf ( ') en Z. On note H 1 = Y 1 /X les fonctions de transfert. On a 

8( 1 ) (z) = _1_ 1  8(2) ( ) = ! z +  1 H(J) (z) = ! 1 + 4z + z2 
z - 1 z 2 z - 1 ' 2 z2 - 1 
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La figure 8 . 1  montre les réponses fréquentielles de ces trois filtres. On constate qu' ils 
amplifient beaucoup les basses fréquences (ils ne sont pas stables), ce qui est normal, 
puisque l 'on a réalisé des intégrateurs, qui lissent le signal d'entrée. 

0.5 0.5 

0 '----------' o �-----� 0 2 4 6 0 2 

FIG. 8. 1 - Réponses fréquentielles des trois filtres 

Correction de l 'exercice V.8 : 

1 .  On a 
{ 2/3 - lxl 2 + lxl 3 /2 

f33 (x) = (2 - lxl ) 3 /6 0 
ce qui donne /3] = { . . .  , 0 , 1 /6 , 2/3 , 1 /6 , 0, . . .  } . 

2 . On a la  décomposition 

si 0 :::;; lxl :::;; 1 , 
si 1 :::;; lx l :::;; 2 , 
sinon, 

4 6 

fZ'(<1>3 ) (  ) - -6a ( 1 + 1 1) avec a =  v/3- 2. d z - 1 - a2 1 - az- 1 l + az -

La fraction en z- 1 (respectivement en z) correspond à un filtre récursif causal (res­
pectivement anti-causal) qui est stable. Pour calculer c, il faut filtrer ud par les deux 
filtres, (l 'un selon les indices croissants et l ' autre selon les indices décroissants), 
ajouter les résultats, soustraire ud , et multiplier le tout par -6a/( 1 - a2) . 

3 . Avec la question précédente, il vient bo = -6a/( 1 - a2) et b1 = a. On peut imposer 
c+ [o] = c- [K - 1] = O. Pour des conditions plus complexes, on regardera [74] . La 
procédure MATLAB 5.5 calcul les coefficients de l ' interpolation par cette méthode. 

Programme 5.5 Procédure coe f_sp l ine_l 

funct ion c = coef_sp l i ne_l ( ud )  

K = l ength ( ud ) ; a lpha = sqrt ( 3 ) - 2 ;  

bl  = a lpha ; b0 = - 6 * bl / ( 1 -bl � 2 ) ; 

c l = z eros ( K , 1 ) ;  c2 = z eros ( K , 1 ) ; 

for i = 2 : K  

c l ( i )  = ud ( i ) +bl * c l ( i - 1 ) ; 

end 
for i = ( K- 1 )  : - 1 : 1  

c 2 ( i )  = ud ( i ) +bl * c 2 ( i + l ) ; 
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4. On a la décomposition 
3 -6a 

!l'(<I>d) (z) = ( 1 - az- 1 ) ( 1 - az) · 
Le vecteur c s 'obtient donc par la composition de deux filtres (l 'un causal, l ' autre 
anti-causal). Le programme MATLAB 5.6 utilise cette deuxième décomposition. 

Programme 5.6 Procédure coe f_sp l ine_2 

funct i on c = coe f_spl ine_2 ( ud )  

K = l ength ( ud ) ; a lpha = sqr t ( 3 ) - 2 ;  

c = zeros ( K , 1 ) ;  d = z eros ( K , 1 ) ; 
for i = 2 : K  

d ( i )  = 6 * ud ( i ) - alpha * d ( i - 1 ) ; 

end 
c ( K )  = - 6 * a lpha / ( 1 - a lpha � 2 ) * ( 2 * d ( K ) - 6 *ud ( K ) ) ;  

for i = ( K- 1 )  : - 1 : 1  

c ( i )  = a lpha * ( c ( i + l ) - d ( i + l )  ) ;  
end 

Correction de l 'exercice V.9 : En utilisant le fait que a i--+ ga est une bijection de 
{O, . . .  , p - 2} dans lF;, on obtient 

p-2 Î(g-b) = f(O) + L f(x)œ;xg-b = f(O) + L, f(ga)œ-plf'-b . xEIFi a=O 
- - - - -k On note f et h les ve�teurs de cp- l définis par /[k] = f(gk) et h [k] = œ;c . On �érifie 

que la définition de h est indépendante d'une translation de k par p - 1 ,  donc h peut 
être vu comme une fonction (p - 1 ) -périodique. En conséquence, 1' expression de Î(g-b) 
correspond bien à la convolution circulaire f * h[b] . On peut donc calculer une TFD de 
longueur p grâce à une convolution de longueur p - 1 , donc à 3 TFD de longueur p - 1 . 
Ceci est avantageux car p n' admet pas de factorisation, alors que p - 1 en admet une (il 
est au moins divisible par 2), ce qui permet d'utiliser par exemple la méthode de Cooley­
Tukey, paragraphe 2.4, chap. III. 
La procédure MATLAB 5.7 utilise cette méthode. Il faut lui fournir un générateur de lF; 
dans le paramètre g .  Elle utilise une fonction auxiliaire invmod, programme 5 .8 qui 
calcule un inverse modulo p. 

Correction de l 'exercice V.10 : 

1 .  On a 
N- l N- l Î(Yk) � !!._ L f(xs)e-ixsYk = !!._eiô L f[s] e- 2ff sky = !!._ei5G(f, r) [k] , N s=O N s=O N 

où ô = � ( Ç - 2:r�) et f[s] = f[s]e-iÇs . Si Ç = � · on a 

N- l . 
G(f, r) = L f[s]e-�s(pk) . 

k=O 
Ceci peut se calculer en ajoutant N( q - 1 )  zéros à la fin de f, puis en calculant une 
TFD de taille Nq. L'utilisation de la transformée de Fourier fractionnaire est très 
avantageuse si q est grand. 
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Programme 5.7 Procédure f f t_chi rp 

function y = f f t_chirp ( x , g )  

p = l ength ( x ) ; f = z eros ( p - 1 , 1 ) ;  h = zeros ( p - 1 , 1 ) ;  
for k = O : p - 2  

j = mod ( g � k , p ) ; j j = invmod ( j , p ) ; 

f ( k+ l )  = x ( j + l ) ; h ( k+ l )  = exp ( - 2 i *p i /p * j j ) ; 

end 
h = i f f t ( f f t ( f ) . * f f t ( h ) ) ;  

y =  z eros ( p , 1 ) ; y ( l )  = sum ( x ) ; 
for k= O : p - 2  

j = mod ( g � k , p ) ; j j  = invmod ( j , p ) ; 

y ( j j + l )  = x ( l )  + h ( k+ l ) ; 

end 

Programme 5.8 Procédure invmod 

funct ion y = invmod ( x , p )  

[ u , y , d ]  = gcd ( x , p ) ; y =  mod ( y , p ) ; 
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2. Nous allons définir une transformée de Fourier fractionnaire Gsim qui utilise la mé­
thode de Simpson à la place de la méthode des rectangles pour l ' intégrale de Fourier. 
On suppose que N = 2No + 1 ,  et en faisant attention à bien découper les sommes, 
on obtient 

1 No- 1  4 No- 1  
GsimU1 r) [k] = 3 L f[2s]co;2skr + 3 L f[2s + 1 J co;(2s+ l )ky s=O s=O 

1 No � l -2sky ( + 3 �.J[2s CON = G g, y) ,  s= l 
où g est défini par g[O] = �f[O] , g [N - 1] = �f[N - 1 ] et 

{ g[2k] = �/[2k] pour k =  1 , . . .  ,No - 1 , 
g [2k+ 1 ] = 1f[2k+ 1 ] pour k = 0, . . .  ,No - 1 . 

La procédure MATLAB 5.9 utilise cette méthode. Pour calculer Gsim (/, y) , il faut 
l ' appeler avec le paramètre a lpha égal à (CON )Y. 

Programme 5.9 Procédure c z t_s impson 

function y = c z t_s impson ( x , alpha ) 
N = l ength ( x ) ; NO = ( N - 1 ) / 2 ;  y =  zeros ( N , 1 ) ;  

y ( l )  = x ( l ) / 3 ; y ( N )  x ( N ) / 3 ; 

y (  2 * ( 1 : ( N0 - 1 ) ) + 1 ) 2 / 3 * x (  2 * ( 1 : ( N 0 - 1 ) ) + 1 ) ;  

y (  2 * ( 0 : ( N0 - 1 ) ) + 2 ) = 4 / 3 * x (  2 * ( 0 : ( N0 - 1 ) ) + 2 ) ;  

y =  c z t ( y , a lpha ) ; 

Correction de l'exercice V.11 : La procédure MATLAB 5 . 1 0 réalise la transformée de 
Fourier fractionnaire G(f, a) , tout simplement en utilisant l ' algorithme c z t  (procédure 
5 .4 ). On peut ensuite l' appliquer sur les lignes puis les colones d'une matrice pour calculer 
une transformée 2D, comme le fait la procédure 5 . 1 1 . 
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Programme 5.10 Procédure f r f t  

funct i on y = f r f t ( x ,  a lpha ) 
N l ength ( x ) ; 

w exp ( - 2 i *p i * alpha /N ) ;  

y =  c z t ( x , w ) ; 

Programme 5.11 Procédure f r f t 2 d  

funct i on y = f r f t 2 d ( x , alpha ) 

n = l ength ( x ) ; 
for i = l : n  

y ( i ,  : )  = f r f t ( x ( i ,  : ) ,  alpha ) ;  

end 
for j = l : n  

y ( : , j )  f r f t ( y ( : , j ) , a lpha ) ;  
end 

6 Correction des exercices du chapitre 6 

Correction des exercices 

Correction de l 'exercice VI.1 : La procédure MAPLE 6. 1 calcule le premier entier tel 
que <I>n ait un coefficient égal à ±k. Attention, elle est très lente. 

Programme 6.1 Procédure Cyc l oCo e f  

Cyc l oCoef 
d� · proc ( k )  

local i , j , P , s :  

for i from 0 to 1 0 0 0 0  do 
P 

d� · cyc l o tomic ( i , X ) : s 
d� · aegree ( P ) : 

for j from 0 to s do 
i f  abs ( co e f f ( P , X , j ) ) = k then return ( i ) : end i f : 

end do : 
end do : 

end proc : 

Correction de l 'exercice VI.2 : 

1 . Une racine principale Ç sur IF P est une racine primitive. Le groupe engendré par Ç 
est de cardinal n, c'est un sous-groupe de IF;, donc n lp - 1 . 

2. On a pgcd (Ç ,p) = 1 ,  donc pgcd (Ç ,pr) = 1 ,  donc Ç est inversible dans Z/prz. 
Comme <l>(pr) = pr- l (p - 1 ) , on a, avec le théorème d'Euler, Çl>(p') = çg- 1 = 1 . 

r- 1 3 . Dans 1Fp. on a ÇP = Ç, donc çs = (ÇP)3 = · · · = (ÇP )3 . Donc, comme s < n :::; p, 
ÇJ - 1 est inversible dans IF p · Ceci signifie que pgcd ( ÇJ - 1 , -p) = 1 ,  donc on a 
pgcd ( ÇJ - 1 , pr) = 1 ,  et ÇJ - 1 est aussi inversible dans Z/ prz. 

4. Avec le théorème chinois, on a Z/mZ � IIZ/ p�;z . Dans chaque Z/ p�i'll,, on choisit 
une racine nième principale Ç; . On vérifie alors que ( Ç1 , . . .  , Çr) E IJZ/ p�i'll, est une 
racine nième principale. 

Correction de l 'exercice VI.3 : 

1 . Si Ç est une racine mnième de l'unité, alors a =  çm est une racine nième de l 'unité. 
De plus, a i - 1  = çmi - 1 n'est pas diviseur de zéro, puisque 0 < mi :::; mn. Idem 
pour /3 = çn .  
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Réciproquement, si çm est une racine principale nième , alors çmn = ( çm )n = 1 
donc Ç est une racine mnième de l 'unité. Soit 0 < i < mn, et a tel que aÇi = a. 
Montrons que a = O. Par division euclidienne, on écrit i = nq + r, avec 0 :::;; r < n, 
et q < m. Si r = 0, alors, comme çnq - 1  n'est pas diviseur de zéro (puisque çm 
est racine principale nième ), on a terminé. Si r > 0, alors on a, en itérant aÇi = a, 
la relation a ( Çi)k = a. En prenant k = m, on obtient açmnq+mr = çmr = a, ce qui 
implique a = 0 car çm est racine principale nième . 

2. Les racines carrées de l 'unité sont racines du polynôme (X - l ) (X + 1 ) donc sont 
- 1  ou + 1 .  Pour obtenir une racine principale, il faut donc que Ç = - 1  et que 
Ç - 1 = -2 ne soit pas diviseur de zéro. Donc si 2 n'est pas diviseur de zéro, - 1  
est la seule racine carrée principale. 

3 . La propriété a été démontrée à la question précédente pour k = 1 .  On suppose la 
propriété démontrée jusqu' au rang k - 1 > O. Avec la question 1 ,  Ç est une racine 
(2k) ième principale si et seulement si (2k- l ) ième est une racine carrée principale 
(donc égale à -1 )  et si Ç2 est une racine (2k- l ) ième . En appliquant l 'hypothèse de 

2 2 2k-2 2k- 1 récurrence à Ç , on a (Ç ) = Ç = - 1 .  

Correction de l 'exercice VI.4 : 

1 .  On note v2 = 1 + Vk et vl = vk . On a la décomposition 

n- 1 f(vo , . . .  , Vn- 1 ) = L f(io , . . .  , in- 1 ) Il v� . 
{io , . . . , i11_ 1 ) E {O, 1 }" k=O 

En développant les produits, on trouve bien un polynôme de la forme demandée. 
Comme il y a 2n tels polynômes, et 2n fonctions booléennes, la décomposition 
trouvée est unique. 

2. On a 
11/(f) (k) = L (- l ) (u, k)+f{u) , 

uE (IF2)" 
donc 1f/ (!) ( k) est égal au nombre de 0 moins le nombre de 1 dans le vecteur 
{f(u) + (u, k) }uE (IF2)" ·  Ceci signifie que 

11/(f) (k) = 2n - 2d(f, fk, O ) · 
Comme on a aussi 

d(f, 1 + ik,o) = d(f, fk, 1 ) = 2n - d(f, fk, O) ,  
il vient 

min (d(f, fk, o) , d(f,fk, 1 ) ) = � (211 - 111/(f) (k) I ) . 
D'où le résultat, en passant au min sur l 'ensemble des fk. b · 

3 . Si f vérifie 111/(f) (k) 1 = 2nf2 , alors N(f) = 2n- I - 211/2- 1 • Soit g une fonction telle 
que 3k, 111/(g) (k) I  i- 21112 . Avec la formule de Plancherel, proposition 4.7, chap. I, 
on a 2"- 1 L, l1f/(g) (s) l 2 = 2211 . s=O 
Ainsi, comme il y a 2n termes dans la somme, 3k tel que 111/(g) (k) I > 21112 . On a 
donc N(g) < 2n- l - 211/2- 1 . 
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4. On a 

'.Yl'(h) (w) = L (- l ) {w, t)+h(t) 

tE (lF2 )n+rn 

= L L (- l ) {u, r)+f(r) (- l ) {v, s)+g(s) = '.Yf' (J) (u)'.Yf' (g) (v) . 
rE (lF2)" sE (lF2)'" 

Si f et g sont bents, l'.YP'(J) (u) I  = 2n/2 et l'.YP'(g) (v) I = 2m/2 et donc on a bien 
l'.YP'(h) (w) I  = 2(m+n)/2 • Réciproquement, si par exemple J n'est pas bent, nous 
avons déjà vu à la question 3 que :luo , l'.YP'(J) (uo) I > 2nf2 . Si on suppose que h 
est bent, alors pour w = (uo , v) , 

2(m+n)/2 = l'.YP'(h) (w) I  = l'.YP'(J) (uo) l l'.Yl'(g) (v) I ==? Vv, l'.YP'(g) (v) I  < 2mf2 , 
ce qui est impossible car N (g) :::;; 2m- I - 2m/2- 1 . 
On vérifie que 11'(!0) = {2, 2 , 2, - 2} , donc fo est bent. Ainsi la fonction 

est bent. 
5. La dimension de R( 1, n) est n + 1, et sa distance minimale est 2n- I . Ceci vient du 

fait que les fonctions la, b • pour a i=  0, prennent 2n- l fois la valeur 0, et 2n- I fois la 
valeur 1. 
On a fa, b (u) = (- l )h'.Yf'(8a) (u) , ce qui se calcule rapidement à l 'aide de l 'algo­
rithme FWT. La procédure MATLAB 6.2 réalise ce codage. Elle prend comme pa­
ramètre a sous la forme d'un entier 0 :::;; a :::;; 2n - 1. 

Programme 6.2 Procédure encode_rm 

funct i on y = encode_rm ( a , b , n )  

y =  zeros ( 2 � n , l ) ; y ( a + l )  = 1 ;  

y =  fwt ( y ) ; y =  ( 1 - y ) / 2 ; 

i f ( b= = l )  y = 1 -y ;  end ; 

Avec la question 2, on voit que d (Fa,b , F) est minimale lorsque l'.YP'(J) (a) I  est maxi­
mum. Ensuite, on a b = 0 si '.Yl'(f) (a) > 0, et b = 1 sinon. La procédure MATLAB 
6.3 réalise ce décodage, et prend en entrée un vecteur x de taille 2n représentant F. 

Programme 6.3 Procédure decode_rm 

funct i on y = decode_rm ( x )  
N = l eng th ( x )  ; 

f = fwt (  ( - 1 ) . � X ) ; 
[ v , a ]  = max ( abs ( f ) ) ;  

y =  encode_rm ( a - 1 , f ( a ) < 0 , l og2 ( N )  ) ;  

Correction de l'exercice VI.S : 

1. On a, en utilisant la formule de Plancherel, proposition 4.7, chap. I, 

E( (j - h)2) = L a� = 1-a� . 
a'f{J 
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2. On note I(x) la fonction qui vaut 1 si f(x) -=!= ho (x) , et 0 sinon. On a 

1 IP(f(x) -=/= ho (x) ) = 2n 2/(x) . 
X 

283 

Il faut donc montrer que I(x) :::;; (f(x) - h(x) )2 . Si f(x) -=/= ho (x) , alors I(x) = 0 et 
l ' inégalité est vraie. Sinon, alors nécessairement l/(x) - h(x) 1 � 1 ,  et on a bien 
I(x) = 1 :::;; (f(x) - h(x) )2 . 

3 . En appliquant la borne de Chernoff-Hoeffding aux X; = f(x; ) ,  qui sont i .i .d. et tels 
que E(X;) = E(f) , X; E [- 1 , l ] ,  on obtient 

IP( I� - cp l � À) :::;; 2e-).2m/2 :::;; 8 .  

Avec une probabilité inférieure à 8,  on a donc 

IP(f(x) -=/= <po(x) ) :::;; E ( (f - apXp )2) :::;; L a� + (ap - ap )2 :::;; 1 - a� + Â. 2 . 
a# 

4. On note Sd � {s \ w(s) < d} . En utilisant la borne de Chemoff-Hoeffding, on a 
IP( las - t?s l � Â.) :::;; 2e-).2m/2 . De plus, sous la condition las - t?s l :::;; Â. , on a 

E( (f - <p)2) :::;; a +  L (as - t?s)2 :::;; a + ndÂ.2 , 
sESd 

puisque Card (Sd) :::;; nd . Pour avoir IP(f(x) -=/= <p(x) ) :::;; a +  e, il faut donc imposer 
Â. :::;; .;e(iïd, et pour que ceci ait lieu avec une probabilité 1 - 8, il faut que l 'on ait 
2e-À2m12nd :::;; 8, puisque 

IP ('v's E Sd , las - t?s l � À) :::;; L IP( las - t?s l  � À) :::;; 2e-À2m12nd . 
sESd 

Correction de l 'exercice VI.6 : 

1 . On note G et H des matrices génératrices et de contrôle. On a 

Donc une matrice de contrôle de ct'.l est GT, et une matrice génératrice est HT. 
2. Une telle forme simplifie le codage (ainsi que le décodage, comme nous allons le 

voir sur la forme de H). On peut choisir H = (A I Idn-m) .  et on vérifie bien que 
HG = 0, avec rang( G) = m - n. 

3 . Deux codes sont équivalents si on peut passer d'une matrice G1 du premier code à 
une matrice G2 du deuxième par 
- opérations élémentaires sur les colonnes (qui ne modifient pas l 'espace engendré 

par les colonnes, donc le code) . Ceci correspond aux opérations C; +-- Â.C; ainsi 
que C; +-- C; + Â.Cj. pour C; -=/= Cj des colonnes et Â. -=/= O. 

- permutation des lignes (ce qui correspond à une permutation des symboles) .  
Par pivotage de Gauss (voir [ 1 6]) , on peut se ramener, par ces opérations, à une 
forme systématique. 
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Correction de l 'exercice Vl.7 : 

1 . La distance minimale d'un code est le nombre minimal de colonnes linéairement 
dépendantes. Comme deux colonnes sont ici distinctes, leur somme modulo 2 n'est 
jamais nulle, et elles sont donc indépendantes. Par contre, cette somme est néces­
sairement égale à une troisième colonne, donc on peut trouver trois colonnes liées . 
La distance minimale est donc de 3 . 
Comme H possède k lignes, la dimension de � est 2k - 1 - k . Si v' = v + e est 
le mot reçu, avec w(e) = 1 et v E �. alors s = Hv' = He est le syndrome. Ainsi, 
s est une colonne de H. Par exemple, si on a pris comme ;ième colonne de H la 
décomposition de i en binaire, alors la position de l 'erreur dans v' est simplement 
l 'entier dont s est la décomposition binaire. La fonction MATLAB 6.4 réalise le 
décodage. Elle utilise la procédure ecri  ture_binaire 6.5, qui décompose un 
entier en écriture binaire. 

Programme 6.4 Procédure decode_harnming 

function y = decode_harnming ( x )  

n = l ength ( x ) ; k = l og2 ( n + l ) ; 
H = z eros ( k , n ) ; y x ;  

for ( j = l : n ) H ( : , j )  = ecri ture_bina i re ( j , k ) ; end ; 
s = rnod ( H * x , 2 ) ; 

e = do t ( s , 2 . � ( 0 : ( k- 1 ) ) ) ;  

i f ( e� = O )  y ( e ) = l -y ( e ) ; end ; 

Programme 6.5 Procédure ecri  ture_bina i re 

funct i on y = ecri ture_bina i r e ( x , k )  
y =  zeros ( k , 1 ) ;  

for ( i = l : k ) q = f l oor ( x / 2 ) ; y ( i )  = x- 2 * q ;  x = q ;  end ; 

2. Dans la base {a , . . .  , ak} de JF2k comme espace vectoriel sur 1F2, a s 'écrit, sous 
forme vectorielle, ( 1 , 0, . . .  , 0) , a2 s 'écrit (0, 1 , , 0, . . .  , 0) , etc. Les ai, pour i entre 1 
et n, décrivent toutes les représentations binaires des nombres entre 1 et n. Un mot 
de �a. le code BCH généré par a (de distance assignée n) est représenté par un 
polynôme P et P E Ca si et seulem�nt si P( a) = · · · = P( an) = O. En écrivant P 
so�s la forme d'un vecteur binaire P de taille n, les égalités précédentes s 'écrivent 
HP =  O. Ce code est donc bien le code de Hamming de taille n. 

3 . Il y a n + 1 = 2k mots dans une boule de rayon 1 . Comme la distance minimale du 
code est 3, les boules centrées en des mots du code sont disjointes. Cet ensemble de 
boules contient donc 2m x 2k = 22k- t = 2n mots, c 'est-à-dire tout l 'espace (1F2)n . 
Dans le cas n = 7, on peut prendre 

(1 0 1 0 1 0 1) 
H =  0 1 1 0 0 1 1 , 

0 0 0 1 1 1 1 
et on vérifie que HG =  0, où G est la matrice de l 'exemple 3 . 1 2, chap. VI. 

4. La matrice génératrice de �.l est Go = HT. Pour H, on a choisi pour ;ième colonne 
(1 :::;; i :::;; 2k - 1) la décomposition de i en écriture binaire. On fait précéder Go d'une 
ligne de 0 (ce qui ne change pas le poids des mots). On voit alors que la première 
colonne est une alternance de 0 et de 1 , que la deuxième est une alternance de 



§ 6. Correction des exercices du chapitre 6 285 

de OO et de 1 1 , et ainsi de suite. Toutes les colonnes de Go ont ainsi pour poids 
2k- I . On voit facilement qu 'une opération élémentaire sur les lignes du type Li t-­Li + LJEJ L1 se contente d'effectuer une permutation sur les colonnes de la matrice, 
donc le poids des colonnes reste 2k- I . Par de telles opérations, on obtient tous les 
mots non nuls de 1f 1-, qui ont donc comme poids 2k- I . Comme la distance entre 
deux mots est le poids du mot différence, ce code est bien simplexe. 

5 . Sur IF q. on choisit pour les colonnes de H des représentants des droites vectorielles, 
c'est-à-dire de l 'espace projectiflP(IF�) .  Comme Card (JP(IF�) )  = l�11 (chaque droite 
a q - 1 éléments non nuls), on obtient bien la taille et la dimension souhaitées . La 
preuve de la distance minimale est inchangée. Le code est encore parfait, un boule 
de rayon 1 contenant n( q - 1 )  + 1 mots. 

Correction de l 'exercice VI.8 : 

1 . La représentation binaire des entiers permet d'établir une bijection entre l 'ensemble 
{ 1 , . . .  , 2k - 1 } et IF�\{0} . Pour k = 3, on a 

w'if1 (X, Y) = x7 + 7X3Y4 +1x4Y3 +x7 
2. Voir exercice VI.7, question 4. 
3 . On a W'if.L (X, Y) = yn + 2k- Ixn-2k- I Y2k- I , d'où le résultat avec le théorème 4.5 , 

chap. VI. 
4. On note P(Y) = W'if( l , Y) . On a As = � �i,(O) .  Le sript MAPLE 6.6 effectue le cal­

cul, et on trouve bien A 1 = A2 = 0, ce qui est logique, puisque la distance minimale 
est 3 . Voici quelques valeurs de Ak 

5 6 n 11- I n-3 11-7 n n- I n-3 n-5 11-7 120 720 

Programme 6.6 Calcul de Ak pour un code de Hamming 
p d� ·y  - > 1 / ( n + l ) * (  ( l + Y ) A n+n* ( l - Y ) A ( ( n + l } / 2 } * ( l +Y ) A ( ( n- 1 } / 2 } ) ;  

A a� . s - > factor ( 1 / ( s ! ) * eva l ( di f f ( P ( Y ) , Y$ s ) , Y = Ü ) ) ;  

5 . Pour montrer la symétrie, il faut montrer que P(Y) = Y11P( l /Y) , ce qui se vérifie 
facilement. 

Correction de l 'exercice VI.9 : On vérifie que W'if(X , Y) = X8 + 14X4Y4 + Y8, et que 
ce polynôme est invariant par le changement de variable (X , Y) � � (X +  Y, X - Y) (on 
le vérifie aisément à l ' aide de MAPLE) . 

. Correction de l 'exercice VI.10 : 

1 . 1f est un code de dimension 1 et de distance minimale n. Son polynôme énuméra­
teur est yn + (q - 1 )X11 . 

2. On a x E 1f 1- � L,xi = 0 dans IF q· Le code dual correspond au code du bit de parité 
(exemple 3 . 1 ,  chap. VI que l 'on étend à 1Fq). Il est de dimension n - 1  et de distance 
minimale 1 . On voit facilement que 1f = 1f1- si et seulement si n =  1 (code trivial) 
ou n = 2. 
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Correction de l 'exercice VI.11 : 

1 . Dans le cas de la construction par matrice de Walsh (n = 2k) , les mots de .01,1 sont les 
mots de R ( l , k) , le code de Reed-Muller (voir exercice VI.4, question 5), auxquels 
on a enlevé le premier symbole. De façon équivalente, R ( l , k) correspond au code 
ofn avec un bit de parité en plus (qui vaut toujours 1 ) . Pour cette construction, .01,1, 
tout comme PÀn , est donc linéaire. Pour n = 1 2, avec la construction de Paley, on 
obtient le code PÀ12 suivant, qui est non-linéaire. 

di2 PÀ12 \di2 
(00000000000) (000101 10 1 1 1 ) ( 1 1 1 1 1 1 1 1 1 1 1 ) ( 1 1 10 1001000) 
( 1 10 1 1 100010) ( 100010 1 10 1 1 ) (00 10001 1 10 1 ) (01 1 10 100100) 
(0 1 10 1 1 10001 ) ( 1 1000101 10 1 ) ( 10010001 1 10) (00 1 1 10 10010) 
( 10 1 10 1 1 1000) ( 1 1 1000101 10) (010010001 1 1 ) (0001 1 10 1001 ) 
(0 10 1 10 1 1 100) (0 1 1 1000101 1 ) ( 1010010001 1 ) ( 10001 1 10 100) 
(00 101 10 1 1 10) ( 10 1 1 1000101 ) ( 1 10 10010001 ) (010001 1 10 10) 

2. L'orthogonalité des lignes de Hn signifie exactement que deux lignes ont autant 
d'entrées égales que d'entrées qui diffèrent. Deux mots de .01,1 sont donc distants de 
n/2, qui est la distance minimale. Si on note u, v E dn et ïi, v leurs compléments, on 
a d(u , v) = d(ïi, v) = n/2, et d(u, v) = n/2 - 1 . Donc la distance minimale de PÀn 
est n/2 - 1 . Le code ofn est de taille n - 1 avec n éléments, et PÀn est de taille n - 1 
avec 2n éléments. 

Correction de l 'exercice VI.12 : 

1 . En développant l ' égalité de Mac Williams, on obtient 

1w 1w�i ( l , Y) � .�A, (%.c;:_,y1) (t, (- l )lcfY1} 
En égalant les coefficients de ces deux polynômes, on trouve les égalités deman­
dées. 

2. On dérive k fois l ' égalité 2n-m:wcc(X, 1 ) = '.Wcc.L (X +  1 ,X - 1 ) . En utilisant la règle 
de Leibniz pour dériver un produit, on obtient 

11-k k k dk-s ds 2n-m """ A ·k 'Ck .Xi = """ A� """ cs-- (X + 1 )11-i_(X - l ) i � 1 • n-1 � 1 � k dXk-z dXs · 

i=O i=O s=O 
En faisant X = 1 dans cette égalité, seul le terme correspondant à s = i reste dans la 
deuxième somme de droite. On obtient les égalités souhaitées . 

3 . Il n 'y a aucun mot de poids i E { 1 , . . . , d - 1 = n - m} dans 't'. Pour 't'-1, il faut 
montrer que sa distance minimale est m + 1 . En effet, d est égal au plus petit nombre 
de colonnes linéairement dépendantes dans H (une matrice de contrôle de 't'). Donc 
le plus grand nombre de colonnes linéairement indépendantes dans H est égal à 
d - 1 = n - m. Or HT est la matrice génératrice de 't'-1 , donc dès qu'un mot de 
't'.l a moins de n - k coordonnées non nulles, ce mot est nul. En conséquence, la 
distance minimale de CC-1 est au moins de n - (n - k) + 1 = k + 1 . Il y a en fait 
égalité en appliquant .la borne de Singleton à CC-1 . En restreignant les sommes aux 
indices i tels que A; =/:- 0 et A: =/:- 0, en utilisant c�-k = C!, et A� = 1 ,  on obtient les 
m équations demandées . 
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4. On a un système de m équations à m inconnues (les Ai, pour i = n -m + 1, . . .  , n ). 
Ce système est en fait triangulaire, et il se résout facilement par remontée. Ainsi, 
les Ai sont uniquement déterminés. Par exemple, pour i = m - 1 ,  on a Ad = c!-1. 

Correction de l'exercice VI.13: 

1 .  Avec la proposition 4.15 ,  chap. VI, on sait que B: � O. Avec l ' expression de A: 
trouvée à l ' exercice VI. 12, question 1 ,  qui s 'étend à la distribution B: (grâce au 
théorème 4.1 1 ,  chap. VI), on obtient les inégalités souhaitées. 

2. Si C(/ a pour distance minimale d, alors B1 = · · · = Bd = 0, et le cardinal de C(/ est 

'I,f=oBi. La distribution de distance de C(/ appartient donc à E�, et on trouve la borne 
annoncée. 

7 Correction des exercices du chapitre 7 

Correction de l'exercice VII.1 : La droite Vect(e1) est stable, donc la représentation 
est réductible. Par contre, si la représentation était décomposable, on aurait la somme de 
sous-représentations K2 = Vect( e1) E9 Vect( e2 + Âe1 ) , où Â E K. Il est facile de voir que 
Vect( e2 + Âe1) ne peut être stable. 

Correction de l'exercice VII.2: On note <p = Aôe, où e est l ' élément neutre de G. On a 

Af = L f(g)Aôg = L f(g)'t'g(Aôe) = L f(g)('t'gf) = f *<p. 
�G �G �G 

Correction de l'exercice VII.3 : On peut voir Xw = XuXv comme le caractère de la 
représentation des morphismes sur W = !L'(U, V*), ou bien comme le produit tensoriel 
W = U ©V. Comme U est non triviale, Xw est distinct de xu et de Xv, donc on a bien 
construit une nouvelle représentation. Comme lxu 1 = 1 ,  on a 

L lxw(g)l2 = L lxv(g)l2 = IGI, 
gEG gEG 

donc W est bien irréductible. 

Correction de l'exercice VII.4 : On note Pk : G---+ GL(Vk), k = 1 , . . .  ,p, les repré-
sentations irréductibles de G, et cr1 : H 1-+ GL(Wi), l = 1 , . . .  ,q, celles de H. On note 
mk = dim(Uk) et n1 = dim(Vt ) . Pour (k, l) E {1, . . .  ,p} x {1, . . .  ,q}, on définit 

't'k,1(g,h) = Pk(g) © cr1(h) E GL(Vk © Wi), 

qui est une représentation de G x H sur Vk © W[. On a X-rk,I = XpkXa,. en particulier, 
llX-rk,1112 = llXPkll2 llxa,ll2 = 1 ,  donc 't'k,t est irréductible. De plus, on a 

l:dim(Vk©Wi)2= l:m�n� = IGI x IHI = IGxHI, 
�l �l 

donc on a bien trouvé toutes les représentations irréductibles. 

Correction de l'exercice VII.S: 

1 .  Pour a E 6n. on considère la matrice Ma: ei 1-+ ea(i)· Le groupe G = 6n est iso­
morphe au groupe matriciel H = {Ma}aEG• et l ' action de 6n par permutation des 
indéterminées correspond à l ' action linéaire de H sur K[X1, ... , Xn]. 
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Un résultat classique affirme que l'anneau des invariants est généré par les poly-
nô mes 

ak(X1, ... ,Xn )� L X;1Xii"'X;k. 
i1< .. ·< ik 

2. On a K[X,Y]V4 = K[X2,Y2]. L'écriture d'un élément de K[X,Y]v4 en fonction deX2 
et Y2 est unique. 
On a K[X,Yf2 = K[X2,Y2,XY]. La décomposition n'est pas unique, puisque l'on 
a la relation (XY )2 = X2Y2 . 

3. Si f = I.caXa E K[X1, ... ,Xn]0 , alors f = I.caRo(Xa). Ainsi, si on prouve que 
Ro(Xa) s'écrit comme un polynôme en Ra(Xf3 ) pour 1/31 � IGI, on pourra écrire f 
en fonction de ces Ro(Xf3 ). 

4. On a (UA)k 
= L la l= kaa(A ·X)aua. En sommant ces égalités pour A E G, on trouve 

l'expression des Sk = Sk(UA ; A E G) voulue. Tout polynôme symétrique en les 
UA s'écrit en fonction de IGI sommes de Newton S1, ... ,S1a1· Comme Sk est un 
polynôme symétrique, il existe F E K[Y1, .. . , Yjoi] tel que Sk = F(S1, ... , S1a1), ce 
qui donne l'égalité polynomiale demandée. En égalant les coefficients de ua des 
deux membres de l'égalité, on voit que IGlaaRo(Xa) est égal à un polynôme en 
Ro(Xf3 ), pour 1/31 � IGI. Comme K est de caractéristique 0, on peut diviser par 
IGlaa. 

5. On peut calculer les Rc4 (Xf3 ), pour 1/3 1 � 4: 

xiy i Rc4(X;Y ; ) x iy i Rc4(XiYi ) 
X 0 XY 0 
y 0 y 3 0 
xz (X2 +Y2)/2 x 4 (X 4+Y 4)/2 

XY 0 x 3y (X 3Y -XY 3)/2 
y2 (X2 +Y2)/2 x2y2 x2y2 
xJ 0 xy 3 -(X 3Y -XY 3)/2 

xzy 0 y 4 (X 4+Y 4)/2 

L'anneau des invariants est donc généré par 

Cependant, on note que P2 = P'f -2P4, donc on peut supprimer P2 de cette liste. 

Correction de l'exercice VII.6: 

1. L'action de G étant linéaire, elle conserve le degré des composantes homogènes. 
Comme deux polynômes sont égaux si et seulement si leurs composantes homo­
gènes sont égales, on en déduit le résultat souhaité. 

2. Le théorème2.1 1 , chap. VII, nous dit que dimc(V8° ) = tr(R0 ), où Ra est l'opérateur 
de Reynolds pour la représentation Ps· Comme tr(Ro) =for LgEatr(A[sl), on obtient 
la formule demandé. 

3. Soit A E G, de valeurs propres C01, ... , COn· A un changement de base près, on peut 
écrire 

A -A[l] _ d' ( ) A[s] _ d' ( s s s-l ) - - iag C01,".' COn ' - iag C01,". 'con, col roi," .. 
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On a donc 

ce qui correspond bien à la puissance de Â. s dans l ' expansion de 

n 

det(Id -Â.A)-1 = II ( l  -Â.ro;)-1. 
i=l 
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4. Le groupe G1 a pour série de Molien [ ( 1 -Â.) ( 1 -Â. 2) 1-1. Le groupe � a pour série 
de Molien (1 -Â.2)-2. Le nombre de polynômes linéairement indépendants borne 
le nombre de polynômes algébriquement indépendants, ce qui permet de limiter la 
recherche. 

Correction de l'exercice VII.7: 

1 .  On a 
1 1 

(X1,Xn) = -IGI L IXn(g)I = -IGI L IXgl · 
gEG gEG 

2. On note Gx = {g E G \ g ·x = x} le stabilisateur de X, et Gx = {g ·x \ g E G} l 'or­
bite de x. On a IGI = IGxl !Gxl (voir par exemple [58]). 
On note xi, . . .  , x, des représentants des t orbites distinctes de l ' action de G sur X. 
On note T = { (g ,x) E G x X \ g · x = x} . En comptant « dans les deux directions » 
les éléments de T, on a 

t t 

L IXgl = ITI = L IGxl = L L IGxl = L IGx;llGx;I = tlGI. 
gEG xEX i=lxEGx; i=l 

3. Le cardinal de X (les colliers « virtuels ») est de 26 = 64. Le nombre de colliers 
«réels» différents est t, le nombre d'orbites de l ' action de D6 sur X, en appliquant 
une isométrie cr E D6 à l 'hexagone régulier dont les affixes sont les eikn/3 (que l 'on 
assimile à un collier!). On note { co, ... , es} E X un collier virtuel. On calcule IXO' 1 
en faisant les distinctions suivantes. 

- Si cr = Id, alors IX1dl = 64. 

- Si cr est la rotation d' angle ±n/6, alors si c est stable sous cr, il doit vérifier 
C;+l = c;. Ainsi, le collier est unicolore, d 'où IXO'I = 2. 

- Si cr est la rotation d' angle ±n/3 , alors si c est stable sous cr, il doit vérifier 
co = c2 = q et ci = c3 = c5. On a 2 choix de couleurs à faire, d'où IXO'I = 4. 

- Soit cr une symétrie dont l 'axe fait un angle de n/3 avec les abscisses (même 
raisonnement avec 0 et 2n/3). Alors sic est stable sous cr, il doit vérifier co = c2 
et c3 = c5. Il y a 4 choix de couleurs à faire, donc IXO'I = 1 6. 

- Soit cr une symétrie dont l 'axe fait un angle de n/6 avec les abscisses (même 
raisonnement avec n/2 et 5n/6). Alors si c est stable sous cr, il doit vérifier 
co = CJ, c1 = c2 et c4 = c5. Il y a 3 choix de couleurs à faire, donc IXO'I = 8. 

Au final, on a donc 

t = 
1

1
2 

( 64 + 2 x 2 + 2 x 4 + 3 x 1 6  + 3 x 8) = 1 3  colliers différents. 
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4. On écrit f sous forme matricielle f = { <p(s, t)} (s,r)ex2· On voit facilement que le 
fait que f soit un opérateur d'entrelacement est équivalent à <p(g · s,g · t) = <p(s,t), 
donc <p est constante sur chacune des orbites de X x X sous l ' action de G définie 
par g · ( s, t) = (g · s, g · t). Or la double transitivité de G est équivalente au fait que 
X x X ait exactement 2 orbites 

Oi={(s,s) \ sEX} et 02={(s,t) \ s=;ltEX}. 

Si on identifie f à <p, l 'espace Homa(V) admet pour base {lo1, lo2}, les fonctions 
indicatrices de 01 et 02. 
Nous avons déjà vu, lors de la démonstration du théorème 3.7, chap. VII, le fait 
que dim{Homa{V)) = dim( .sf {V, V)G), où on a considéré sur 2( V, V) la représen­
tation des morphismes associée à G. On a aussi vu que dim{.sf{V, V)G) est égal à 
tr( Ra) = (Xn, Xn), où Ra est l ' opérateur de Reynolds associé à la représentation des 
morphismes. Au final, on a donc (Xn,Xn) = 2. 
Il est évident que l 'espace U = lC engendré par le vecteur constant égal à 1 est 
invariant sous G. Il admet donc un supplémentaire stable W. On a Xn = Xi + Xw, où 
Xi est le caractère de la représentation triviale. Avec la question 2, on a (Xn,X1) = 1 ,  
puisque G agit transitivement sur X. On a donc 

Donc W est bien irréductible. 
Le groupe <5n agit doublement transitivement sur X = { 1 , ... , n}. Dans la construc­
tion précédente, W correspond à la représentation standard, qui est ainsi irréduc­
tible. 

Correction de l'exercice VII.8: 

1 .  Il faut montrer que f est un opérateur d'entrelacement : 

p(h) o / o p(h-1) = 'L p(hgh-1) = 1. 
gEK 

On a tr{J) = dpr(p,K) = LgeKtr(p(g)) = Card (K)Xp(K). 
2. On a 

d 
X(K)X(K-1) = 

Car:(K) 
r(p,K)X(K-1). 

Comme p est irréductible, on a LgeaX(8)X(g-l) = IGI, d'où 

IGI = 'L 'L x(g)x(g-1) = dp 'L r(p,K)x(K-1). 
K gEK K 

3. Si K" i. K · K', alors a(K,K',K") = O. Soit K" Ç K · K'. Si hh' = hih'i. E K", alors 
uxu-1 = uhu-1 · uh'u-1 = uh1u-1 · uh'i.u-1, donc a(K,K',hh') = a(K,K',h1h'i.). 

4. On a 

r(p,K)r(p,K')Idv = (L p(g)) ( L p(g)) kEK kEK1 
L p(gh) = 'La(K,K',K") L p(u), 

( g,h)EKxK' K" uEK11 

d'où la formule demandée. 
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5. La formule précédente montre que le produit de deux générateurs deA est encore un 
élément de A. Donc A est bien un anneau. Il admet un nombre fini de générateurs, 
donc il est de type fini sur Z. Ceci est l 'une des définitions équivalentes d'entier 
algébrique (voir [63]). 
On a �I = LKr(p,K)x(K-1). Les r(p,K) sont des entiers algébriques. De plus, 

p 

les x(K-1) sont des racines de l 'unité, donc des entiers algébriques . Ainsi, IGl/dp 
est à la fois un nombre rationnel et un entier algébrique, donc c'est un entier. 

Correction de l'exercice VII.9: 

1 .  On note A la matrice p (X). On a 

Ag,h = (Aôh, ôg) = L Xa ( Ôah' ôg) = Xgh-1 · 
aEG 

2. La matrice de Puœv s 'écrit comme diagonale par blocs de Pu(X) et Pv(X), d'où la 
formule en prenant le déterminant. 

3. Comme les \.'ï sont irréductibles, les morphismes d' algèbres Pi sont surjectifs (sinon, 
il y aurait une sous-représentation non triviale). Supposons que l 'on ait une relation 
du type L,cjkÂjk(X) =O. Par la surjectivité de Pi· on peut trouver une valeur xo de X 
dans C[GJ telle que Pi(xo) = Ejoko (la matrice avec un 1 en (io, jo), et des 0 partout 
ailleurs). On obtient L,cjkÂjk(xo) = Cjoko = 0, d'où l ' indépendance. 

4. On note Dn (Y1, ... , Yn2) le déterminant générique en n2 variables . En développant 
selon la première ligne, on obtient la relation 

Dn(Y1, ... ,Y,12) = Dn-1 (Y2, ... )Y1 +B(Y2, ... ,Yn2). 
Ainsi, D11 s ' écrit comme un polynôme de degré 1 dansA[Yi ] ,  avec A= C[Y2, ... ,Yn2J 
qui est factoriel. Par récurrence, si on a supposé D11_ 1 irréductible, Dn est encore 
irréductible. 

5. D'après la question 3, on peut compléter les n� formes linéaires Âjk en une base 
des formes linéaires, notée {Y1, . . .  , fiai}. Dans cette nouvelle base, on a 1' égalité 
Elp(G)(X) = D11;(Y1, ... ,Y11�). qui est irréductible en tant que polynôme en }j. Par 

1 

changement inverse de coordonnées, on voit que Elp ( G) (X) est encore irréductible 
en tant que polynôme en Xg . 

6. Comme Pi(l) = Id11i' 
X1 n'apparaît que sur la diagonale de Pi(X) . En écrivant l 'ex­

pansion du déterminant, on obtient, en écrivant seulement les termes de degré ni et 
ni-1 enX1, 

11; 
Elp;(X) =II Âjj(X) + . . .  =II L (Pi(g)ôh, ôh}Xg + ... 

j=l hEGgEG 

= xfi + L x;i;-1 ( L (Pi(g)ôh, oh}) Xg, 
gfl hEG 

d'où l ' expression demandée. Les coefficients des termes en XgXf;-l déterminent 
donc Xi· et donc Pi· Si Elp; et Elpj sont proportionnels, ils sont égaux (le terme 
dominant en X1 est égal à 1), donc Pi= Pi· 

7. La décomposition de la représentation régulière, proposition 4.5 , chap. VII, donne, 
avec la question 2, la factorisation demandée. Comme les Elp; ( G) sont deux à deux 
non proportionnels et irréductibles, c 'est bien la factorisation de 8( G) en facteurs 
irréductibles . 
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Correction de l'exercice VII.10 : 

1. Le produit sur Gp est défini par (b,a) · (b',a') = (b+ab',aa'). L'inverse est donné 
par (b,a)-1 = (-a-1b,a-1). L'élément neutre est (0, 1). On peut voir Gp comme 
(IFp,+) �'P (IF;,·), où <p: IF;-+ Aut(IFp) est défini par <p(a): bl--'I ab (voir [58] pour 
la définition du produit semi-direct). 

2. On a une action de groupe de Gp sur 1Fp via (b,a) · X= a(x+b). 1r est l ' action 
par translation induite sur C[IF P J .  Le fait qu'elle soit unitaire est immédiat, puisque 
x 1--'1 (b,a) · x  est une permutation de IF p· 

3. f E E équivaut à(!, 1) = 0, où l 'on a noté 1 la fonction constante égale à 1. Comme 
1r est unitaire, on a donc 

(/(b,a)' 1) = (/(b,a)' l(b,a)) = (!, 1) = 0, 

donc f(b,a) E E. On note Œp = e2in/p et ek : x 1--'1 œ;}. Les ek sont les caractères 
additifs de IF P• donc ils forment une base orthogonale de C[IF P J .  Comme on a la 

décomposition C[IF p] = E E9 Vect(eo) (somme orthogonale), les { e k}f::;:I forment 

une base orthogonale de E. On a n(b,a)(ek) = œr1heka-1. On note X le caractère 
associé à la restriction de 1r à E. D'après le calcul précédent, si ai= 1, e ka-1 i= ek et 
donc X(b,a) = O. Si a= 1, on a 

(b ) = �1 bk _ 1 = 
{ -1 si b i= 0, X 'a � œP -1 . b - 0 k=O p Sl - .  

On note(-,·) le produit scalaire normalisé sur C[Gp]· On a donc 

IGpl (x,x) = I x(b, 1)2 = (p -1)2 + p-1 = IGpl, 
bEIFp 

ainsi, d' après le théorème 4.4, chap. VII, 1r restreint à E est irréductible. 

Correction de l'exercice VII.11: 

1. On a, en utilisant la formule de Plancherel, 

lp-1� --
"fl'(f)(b,a) = - L f(n)œ;niiJ(an). 

Pn=O 
2. On note <l>(x) le membre de droite de l ' égalité. On rappelle que, comme f et 1f1 sont 

dans E, on a Î(O) = iiJ(O) = O. On a 

�(k) = I .!. r Î(n)œ;niiJ(an)œ;;kbiiJ(ak) 
(b,a) P n=O 

= - L Î(n) L œ;(n-k) L iiJ(an)iiJ(ak) . 1 p-1 (p-l ) (p-l ) 

P n=O b=O a=l 

On utilise ensuite le fait que L.�::;:� œ;(n-k) = pôf; ainsi que 

�1 �1 {o 
� liiJ(ak)l2= � liiJ(ak)l2= 2 ( ) 

si k= O, 
� � p ur 11' sinon. a=l a=O .,, , '1' 

On obtient au final 
<î>(k) = p2 (1(1,1(1) Î(k). 
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3. En reprenant la démonstration précédente, on a cette fois 

�1 1 ..... ( k)l2 = { (p- l)IV/(0)12 si k = o, 
"""" 1JI a 

�
p

-
l I"( )12 . 

a=l "'-a=l 1J1 a smon. 

On a donc q; = d.,,Î. ce qui donne la formule d' inversion. 
On note "fi/* : C[Gp] ---+ C[JF p] l ' application définie par 

"f//*<p = L <p(b,a)1Jlb,a· 
(b,a)EGp 
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Il est facile de voir que "fi/* est l ' adjoint de "fi/ pour les produits scalaires usuels sur 
C[lFp] et C[Gp]. c'est-à-dire que 

("f//f,<p)qap) = (!, "f//*<p)qJFp), pour f E C[lFp] et <p E C[Gp]· 

La formule d'inversion s 'écrit ainsi "fi/* o"f// = d.,,Id, donc ,}J;"f// est une isométrie 

(bien sûr non bijective, la transformée en ondelette étant très « redondante » ). 
Il est amusant de remarquer que la démonstration de la formule d'inversion sur 
un corps fini est en tout point semblable à celle de la transformée en ondelettes 
continue (voir [5 1 ]). 

4. La procédure MATLAB 7 . 1  calcule la transformée en ondelette. C'est une procé­
dure lente (O(p2) opérations), il n 'y  a pas d'algorithme dichotomique, comme il 
en existe pour les transformées en ondelettes « classiques » (voir la transformée 
de Haar, exercice 11.4). La procédure 7.2 calcule la transformée inverse (en suppo­
sant la condition d' admissibilité f E E et 1JI E E). Ces deux procédures utilisent la 
fonction invmod, programme 5.8. 

Programme 7.1 Procédure transfo_ondel ettes 

function y = transfo_ondelettes(x, psi) 

p = length(psi); y =  zeros(p-1, p); 

for(a=l:p-1) for(b=O:p-1) 

ordre = mod(invmod(a, p)*((O:p-1)-b), p)+l; 

y(a, b+l) = dot(x, psi(ordre)); 

end; end; 

Programme 7.2 Procédure reconstruct_ondelettes 

function y = reconstruct_ondelettes(x, psi) 

p = length(psi); c = p*dot(psi, psi); y =  zeros(p, l); 

for(a=l:p-1) for(b=O:p-1) 

ordre = mod(invmod(a, p)*((O:p-1)-b), p)+l; 

y =  y +  x(a, b+l)*psi(ordre); 

end; end; 
Y = y/c; 

8 Correction des exercices du chapitre 8 

Correction de l'exercice VIII.1: On a 
p . 

(<PK<P*)i,j = L ksXi(Cs)Xj(Cs) = L X;(g)Xj(g) = 1Glc5/, 
s=l gEG 
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en utilisant la propriété d'orthogonalité des caractères, théorème 3.7, chap. VII. Comme 
les colonnes d'une matrice unitaire sont orthogonales, on obtient la propriété d'orthogo­
nalité souhaitée. 

Correction de l'exercice VIII.2: La droite (Oz) est stable, donc la représentation n'est 
pas irréductible. On calcule le caractère X qui vérifie x(r") = 1+2cos(2kn/n) ainsi que 

X (sr") = -1 .  On se place par exemple dans le cas où n est pair. On obtient les coefficients 
de décomposition 

(x,x.,,1) = (x,x.,,3) = (x,x.,,4) = 1, (x,x.,,2) = 1 , 

ainsi que (x,x1) = 1 et (X,Xk) = O pour k # 1 .  

Correction de l'exercice VIII.3: Les matrices de transformation s 'écrivent ( 1 0 ) 1 (-1 -v'3) 
p((12)) = 

0 -1 
' p((123)) = 

2 v'3 -1 
. 

En ajoutant le caractère trivial et le caractère alterné, on obtient la table suivante : 

1 3 2 
Id (1 2) (123) 

Xi 1 1 1 

Xe 1 -1 1 

Xp 2 O -1 

Correction de l'exercice VIII.4: On note Xso le caractère de la représentation par per­
mutation des sommets, et Xar celui de la permutation des arêtes .  On a 

1 6 8 6 3 
Id (12) (123) (1234) (12)(34) 

Xso 8 0 2 0 0 

Xar 1 2  2 0 0 0 

On obtient donc les multiplicités suivantes : 

XI Xe Xs Xw Xw 1 
Xso 1 1 1 1 0 

Xar 1 0 2 1 1 

Correction de l'exercice VIII.5: 

1 .  Pw,((12)(34)) est une involution (donc est diagonalisable) de trace 2. C'est néces­
sairement l' identité. 

2. Si p est triviale sur H, alors H c ker(p ), donc p passe au quotient par H qui est 
distingué. Réciproquement, si p passe au quotient, alors p = p o n qui est trivial sur 
H puisque n l 'est. 

3. On a H ={Id, (12)(34), (13)(24), (14)(23)}, qui est distingué. L'action de 64 sur 
le cube donne naissance à une permutation des paires de faces opposées, c 'est-à­
dire à une application <p: 64 ---t 63 (après une numérotation convenable des faces). 
Il est facile de voir que les permutations qui laissent stables les paires de faces 
opposées sont les éléments de H. On a donc ker( <p) = H (ce qui montre que H est 
distingué), et par passage au quotient, un isomorphisme entre 64/H et 63. 
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4. D'après la question 1 ,  Pw' est triviale sur H, le groupe engendré par (12)(34). ---- --
Donc avec la question 2, Pw' s'identifie à un élément de 64/ H, c'est-à-dire de 63. 
Comme cette représentation est irréductible, par considération de dimension, c'est 
nécessairement la représentation standard. 

Correction de l'exercice VIII.6: 

1 .  On conserve les notations de la correction de l'exercice VII. 7. On note GxI, ... , Gx1 
les orbites, avec XI = e l'élément neutre de G. Les orbites formant une partition 
de X ,  on a l'équation aux classes 1 + L,�=2 JGxil = IX I = JGJP = 0 modp, puisque 
pJJGJ. Mais comme les JGxil divisentp, on a JGxil E { 1,p}, et l'égalité précédente 
impose qu'au moins un Xi = (g, ... , g) vérifie 1Gxi1 = 1.  Ceci signifie exactement 
que g est d'ordre p. 

2. Avec le résultat de VI I.8, on a que 2 divise JGI, donc avec la question précédente, 
G possède un élément t d'ordre 2. 

3. <p � detop: G 1--t C* est une représentation de degré 1 dont le noyau est un groupe 
simple non réduit à l'élément neutre de G (car si ker( <p) = { 1}, alors <p est injectif et 
G est commutatif). Comme G est simple, on a ker(<p) = G, et det(p(g)) = 1 ,  donc p 
est bien à valeur dans SLi.(C). Comme X2 -1 est le polynôme minimal de p(t), ce 
dernier est diagonalisable. Comme det(p(t)) = 1 ,  et que p(t) i= Id (car p est injectif 
puisque ker(p) est un sous-groupe distingué de G), ses deux valeurs propres sont 
égales à -1. On peut donc trouver P E GLi,(C) telle que P p(t)p-I = - Id2 , et donc 
p(t) = -Id2 . De plus, pour tout g E G, on a p(gtg-I) = p(g)(- Id2)p(g)-I = p(t). 
Mais p est injectif, donc gtg-I = t, et t E Z(G), le centre de G. Comme Z(G) est 
distingué, on a Z ( G) = { 1 } , ce qui est une contradiction, car t i= 1 .  

Correction de l'exercice VIII.7: 

1 .  Il faut montrer que <p est un morphisme d'algèbre. La linéarité est évidente. Il reste 
à vérifier les relations sur les générateurs, par exemple <p(jk) = <p(i). 

2. Il suffit de constater que l'application <p ( q) 1--t lfl( q) est un isomorphisme d'algèbre. 
Ceci est évident, puisque a +  ib 1--t ( [! --:.ib) est un isomorphisme d'algèbre de C dans 
Sim(R2) (les similitudes de R2 ). Ceci montre aussi que la représentation obtenue 
est unitaire. De plus, on vérifie que llX'l'll2 = 1 ,  donc cette représentation est irré­
ductible. 

3. On a la représentation triviale PI ainsi que les représentations suivantes: 

P2 (±l) = P2 (±i) = 1, P2 (±j) = P2 (±k) = -1, 
p3(±l) = p3 (±j) = 1, p3 (±i) = p3 (±k) = -1, 
p4(±l) = p4(±k) = 1, p4(±i) = p4(±j) = -1.  

On vérifie que ces représentations sont bien irréductibles, et si on note Ps la repré­
sentation de la question précédente, et ni les dimensions des représentations, on a 
L,n� = 4 x 12 + 22 = IHs I, donc on a bien toutes les représentations irréductibles. 
On fixe un ordre parmi les éléments de Hs, et on note les entrées des matrices Hs 
sous forme de vecteurs de taille 8, ce qui donne 

VQ = (1, 1 , 1 , 1 , 1 , 1 , 1 , 1 ), V4 = J2(1, - 1,0,0,0,0,i, -i), 
vI = (1, 1 , 1 , 1 , -1, -1, -1, - 1), vs= J2(o,o, -1 , 1 , -i,i,o,o), 

V2=(1,1, - 1, - 1, 1 , 1 , - 1, -1), V6=J2(0,0, 1, - 1, -i,i,0,0), 
V3=(1,1, - 1, - 1, - 1, - 1, 1, 1), V7 = J2(1, - 1,0,0,0,0, -i,i), 
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et forme une base orthogonale de es. 
4. L'exercice Il. 7 explique comment on peut construire, par produit tensoriel, une base 

orthogonale de es11 à partir d'une base de es. La procédure MATLAB 2.6 permet 
de calculer, pour f E es11, (A ®11)!, les coefficients de f dans la base orthonormée 
construite. Les lignes de A sont les vecteurs Vj. 

Correction de l'exercice VIII.8: 

1 .  Les éléments de G sont des rotations, elles conservent la distance à l 'origine, donc 
le polynôme X2 + y2 + z2. 

2. On note V(XYZ) = { (x,y,z) E JR.3 \ xyz = O}. Comme les éléments de G conser­
vent l ' ensemble des faces du cubes, ils conservent l 'union des trois plans de coor­
données, c 'est-à-dire V(XYZ). 
On note I(V(XYZ)) = {P E K[X,Y,Z] \ \f(x,y,z) E V(XYZ), P(x,y,z) = O}. Soit 
alors P E J(V(XYZ)). En faisant la division euclidienne de P par X en tant que 
polynôme en X (ce qui est possible car le coefficient dominant de X est inversible 
dans K[Y,Z]), on écrit P(X,Y,Z) = XQ(X,Y,Z) +R(Y,Z). Comme P(O, Y,Z) = 0, 
on a R = O. En continuant avec les variables Y et Z, on trouve P = ÂXYZ avec 
Â E R. 
Soit A E G. Comme V(XYZ) est stable par A, on a, pour (x,y,z) E V(XYZ), l ' égalité 
f(A · (x,y,z) = 0, c 'est-à-dire f(A · (X,Y,Z)) E I(V(XYZ)). 
On obtient donc f(A · (X, Y,Z)) = Âf. Comme A11 =Id pour un certain n, on a 
nécessairement Â = ± 1 .  

3. Cette fois-ci, V(!) est l 'union des 4 plans orthogonaux aux trois grandes diagonales. 
Comme ces diagonales sont stables par G, on en déduit que V(!) est stable par G. 
On peut faire le même raisonnement qu'à la question précédente, en commençant 
cette fois une division euclienne par X +Y + Z. 
De même, V(g) est l 'union des 6 plans orthogonaux aux 6 paires de diagonales 
opposées inscrites dans les faces du cubes. Une fois de plus, V(g) est stable par G. 

Correction de l'exercice VIII.9: 

1 .  n doit être pair et on a k = n/2. 
2. Comme le polynôme W� est homogène de degré n, l ' identité de MacWilliams se 

réécrit 'W�(A · (X,Y)) = 'W�(X,Y). 
3. On aA2 = ld2 donc G1 = {A,Id2}. En appliquant l ' opérateur de Reynolds, on trouve 

Ra(X) = .;;;, l (X+ (Vi- l)Y), Ra(X2) = �(X2+ (X +Y)2 /2). 

On peut enlever la constante multiplicative devant Ra(X) et soustraire 3/4Ra(X)2 
à Ra(X2) pour obtenir les deux invariants de K[X ,Y]01 annoncés. Pour montrer que 
ce sont les seuls, on peut utiliser la série de Malien calculée à l ' exercice VII.6, 
question 5 ,  ou bien calculer Ra(XY), Ra(Y) et Ra(Y2) pour voir qu' ils s 'écrivent 
en fonction des invariants déjà trouvés. 

4. Si v est un mot du code, on a ( v, v) = ( v, 1) = 0, donc I v; = 0 mod 2. Ainsi, Cef' ne 
contient que des mots de poids pair, et 11"�(-X, -Y)= 'W�(X,Y). Donc 11"� est 
invariant sous l ' action de A et de -Id. 



§ 8. Correction des exercices du chapitre 8 297 

5. Le programme 8. 1 permet de calculer des générateurs de l ' anneau des invariants 
en essayant tous les Ro(Xk), pour lkl ::::;; IGI. Les temps de calcul deviennent très 
importants pour un groupe conséquent. L'explosion combinatoire est double, à la 
fois au niveau du cardinal du groupe et de l ' ensemble des Xk pour k::::;; IGI. 

Programme 8.1 Fichier polynomes-invariants . msw 

Applique une matrice a un polynome : 
> action_matrice := proc(A, p) 
> local g, v, m; 
> v : = array ( [ [x] , [y] ] ) ; 
> m := evalm(A&*v); 
> g := subs ( {x=m[l, 1] , y=m[2, 1]}, p); 
> return (g) 
> end proc: 

Un exemple invariant : 
> A:=l/sqrt(2) *matrix(2, 2, [ [l, l], [l, -1] J); 
> expand( action_matrice(A, xA2+yA2) ); 

Calcule l'opérateur de Reynolds : 

A := � Vi [ � 
_ � ] 

x2+y2 

> operateur_reynolds .- proc(G, p) 
> local i, r; 
> r := (1/nops(G))*sum('action_matrice(G[k], p) ', 'k'=l .. nops(G)); 
> return (r) 
> end proc: 

Calcule des générateurs de l'anneau des invariants : 
> polynomes_invariants := proc (G) 
> local i, j, r; 
> r : = []; 
> for i from 1 to nops(G) do 
> for j from 0 to i do 
> r := [op(r) , expand(operateur_reynolds(G, xAj*yA(i-j)))]; 
> end do: end do: 
> end proc: 

Un exemple en rapport aux codes auto-duaux, pour le cas où 2 divise les poids des mots du code: 
> B:=matrix(2, 2, [[-1, 0J, [0, -1]]): 
> G:=[A, -A, B, -B]: 
> polynomes_invariants( G, 4 ); 





Annexe A 

Programmes MATLAB 

Voici l ' ensemble des programmes MATLAB évoqués dans les chapitres précédents. Chaque 
programme constitue un fichier à part entière. La plupart sont des procédures, cela signi­
fie que ces programmes doivent être recopiés dans un fichier portant le même nom. Par 
exemple, la procédure fh t est écrite dans le fichier fh t . m. 

1 Algorithme FWT 

Le programme fwt est une implémentation MATLAB de l ' algorithme de transformée de 
Walsh rapide présenté au paragraphe 2.2, chap. II. Il est récursif, mais n'utilise pas de 
mémoire supplémentaire, donc est relativement efficace. Il est à noter qu'à  un facteur 
1/N près, la transformée de Walsh est sa propre inverse, donc la routine n' inclut pas de 
paramètre pour calculer la transformée inverse (il suffit de diviser le résultat par N). 

Programme 1.1 Procédure fwt 

function y = fwt(x) 

N = length(x); % N doit être une puissance de 2 
if(N==l) y = x; return; end; 
P N/2; 

x = [fwt(x(l:P)) ; fwt(x( (P+l) :N))]; 

y =  zeros(N, l); 

y(l:P) = x(l:P) + x( (P+l) :N); 

y((P+l):N) = x(l:P) - x((P+l):N); 

2 Algorithme FUT 

Le paragraphe 1 .2, chap. V, expose le fonctionnement de l ' algorithme de transformée de 
Hartley rapide. Voici une implémentation MATLAB de cet algorithme. 

- Procédure fht (programme 2. 1 ) : l ' algorithme FHT proprement dit. Pour calculer la 
transformée de Hartley inverse, il suffit d'utiliser la routine fht et de diviser le résultat 
par N, la longueur de l 'échantillon. 

- Procédure operateur_chi (programme 2.2) : permet de calculer l 'opérateur xtJ. 
- Procédure fht_convol (programme 2.3) : permet de calculer la convolution de deux 

signaux réels à l ' aide de l ' algorithme FHT. 
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Programme 2.1 Procédure fh t 

function y = fht(f) 

% N doit être une puissance de 2 
N = length(f); Nl = N/2; 

if ( N==l ) y =  f; return; end; 
y =  zeros(size(f)); 

% construction des deux sous-vecteurs 

f_p = f(l:2:N); f_i f(2:2:N); 

% appels récursifs 
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f_p = fht(f_p); f_i fht(f_i); 

% application de l'opérateur chi 

f_i = operateur_chi(f_i, 0.5); 

% mixage des deux résultats 

y(l:Nl) = f_p + f_i; y((Nl+l) :N) = f_p - f_i; 

Programme 2.2 Procédure operateur_chi 

function y =  operateur_chi(a, x) 

N length(a); a_inv = [a(l); a(N:-1:2)]; 

y =  a.*cos( 2*pi*x*(O:N-1) '/N )  + a_inv.*sin( 2*pi*x*(O:N-l) '/N ); 

Programme 2.3 Procédure fht_convol 

function y =  fht_convol(x, y) 

% N doit être une puissance de 2 
N = length(x); y =  zeros(size(x)); 

a =  fht(x); b = fht(y); 

a_inv = [a(l); a(N:-1:2)]; 

b_inv = [b(l); b(N:-1:2)]; 

y 0.5*( a.*b - a_inv.*b_inv + a.*b_inv + a_inv.*b ); 

y = fht (y) /N; 

3 Algorithme FFT 

Voici les différentes implémentations de l ' algorithme FFf présentées en détail aux para­
graphes 2. 1 ,  chap. III, 2.5 ,  chap. III et 2.6, chap. III. 

- Procédure fft_rec (programme 3. 1 ) : version naïve et récursive de l ' algorithme (dé­
cimation temporelle). 

- Procédure fft_di t (programme 3.2) : implémentation efficace (à la fois en utilisation 
mémoire et en rapidité) de l ' algorithme (non récursive et décimation temporelle). 

- Procédure fft_di f (programme 3.3) : version décimation fréquentielle de l ' algo­
rithme. 

- Procédure operateur_s (programme 3.4) : implémentation de l 'opérateur Y. 
- Procédure rev_bi ts (programme 3.5) : classe le vecteur selon le sens inverse des bits 

des indices. 

- Procédure rev _index (programme 3.6) : calcule l ' entier obtenu par inversion des bits 
d'un autre entier. 

Il faut garder à l ' esprit que ces programmes MATLAB ont avant tout un but pédagogique. 
L'implémentation est loin d'être aussi efficace que celles que l 'on peut réaliser dans un 
langage rapide (par exemple en C). Il existe de nombreux logiciels disponibles sur internet 
qui sont très performants, par exemple FFTW [33]. 
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Programme 3.1 Procédure fft_rec 

function y = fft_rec(f, dir) 

% N doit être une puissance de 2 
N = length(f); Nl = N/2; 

if ( N==l ) y = f; return end; 
y =  zeros(size(f)); 

% construction des deux sous-vecteurs 

f_p = f(1:2:N); f_i = f(2:2:N); 

% appels récursifs 

f_p = fft_rec(f_p, dir); 

f_i = fft_rec(f_i, dir); 

% application de l'opérateur S 
f_i = operateur_s(f_i, dir*0.5); 

% mixage des deux résultats 

y(l:Nl) = f_p + f_i; y((Nl+l) :N) 

Programme 3.2 Procédure fft_di t 

function y = fft_dit(f, dir) 

% N doit être une puissance de 2 

f_p - f_i; 

N = length(f); ldn = floor(log2(N)); 

f = rev_bits(f); 

for ldm=l:ldn 

m = 2�ldm; ml = m/2; 

for j=O:ml-1 

e = exp(-dir*2.0i*pi*j/m); 

for r=O:m:N-m 

u = f(r+j+l); v = f(r+j+ml+l)*e; 

f(r+j+l) = u + v; f (r+j+ml+l) = u - v; 

end 
end 

end 
y = f; 

4 Multiplication de grands entiers par FFT 
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Les programmes MATLAB qui suivent permettent de multiplier des grands entiers repré­
sentés par leur décomposition dans une base b donnée. 

- Procédure rnul t_entiers (programme 4. 1 ) : permet de multiplier deux entiers repré­
sentés sous forme de vecteurs. On doit bien sûr fournir la base utilisée. 

- Procédure nurnber2vector (programme 4.2) : fonction pratique qui permet de passer 
de la représentation sous forme de nombre entier à la représentation sous forme de 
vecteur (d'un intérêt limité cependant, car MATLAB ne manipule pas des entiers de 
taille arbitraire). 

- Procédure vector2nurnber (programme 4.3) : fonction inverse de la précédente. 
- Fichier test_rnul t_entiers .rn (programme 4.4) : petit programme de test. 

5 Résolution de l'équation de Poisson 

Voici les différents fichiers pour implémenter la résolution de l 'équation de Poisson dé­
crite au paragraphe 4.3, chap. IV. 

- Fichier poisson . rn (programme 5 . 1 ) : fichier principal, construit les différentes ma-
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Programme 3.3 Procédure fft_dif 

function y = fft_dif(f, dir) 

% N doit être une puissance de 2 
N = length(f); ldn = floor(log2(N)); 

for ldm=ldn:-1:1 

m = 2�1dm; ml = m/2; 

for j=O:ml-1 

e = exp(-dir*2.0i*pi*j/m); 

for r=O:m:N-1 

u = f(r+j+l); v = f(r+j+ml+l); 
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f(r+j+l) = u + v; f(r+j+ml+l) = (u-v)*e; 

end 
end 

end 
% remet le vecteur transformé dans le bon ordre 

y = rev_bits (f); 

Programme 3.4 Procédure operateur_s 

function y = operateur_s(a, x) 

N length(a); 

y =  a.*exp( -2.0i*x*(O:N-1) '*pi/N ); 

Programme 3.5 Procédure rev_bi ts 

function y = rev_bits(x) 

n = length(x); t = floor(log2(n)); y =  zeros(n, l); 

for i=O:n-1 

j = rev_index(t, i); y(j+l) = x(i+l); 

end 

trices, calcule les FFT en 20 et résout l ' équation de convolution. 

- Procédure f (programme 5.2): le membre de droite de l ' équation. Il s ' agit de la fonction 
f(x, y) = (x2 +y2)i9'. Elle est calculée pour que la solution soit connue à l ' avance. 

- Procédure sol (programme 5.3): la solution exacte de l ' équation (on triche un peu, 
on utilise une équation dont on connaît déjà la solution!). On a pris s(x, y) = i9'. Son 
laplacien est donc la fonction f du fichier f . m. 

- Procédure u_Oy, u_ly . m, u_xO . m et u_xl . m (programme type: 5.4): valeur de la 
solution u sur chacun des bords x = 0, x = 1 ,  y= 0 et y= 1. On n 'a  reporté que le 
programme de la fonction u_Oy . m, les autres s 'écrivant de la même manière. 

Le choix de la fonction solution est parfaitement arbitraire, on pourra faire des essais avec 
d' autres fonctions (en prenant soin de mettre à jour la valeur du laplacien dans le fichier 
f . m). On pourra faire des essais avec des conditions sur le bord arbitraires (mais on n' aura 
plus de solution exacte de référence .. . ). De même, il est facile de changer la précision 
de la résolution pour observer la convergence de l 'erreur commise par la méthode des 
cfifférences finies. 
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Programme 3.6 Procédure rev _index 

function y =  rev_index(t, index) 

y = O; tmp = index; 

for i=O:t-1 

bit = mod(tmp, 2); 

tmp = floor(tmp/2); 

y = y*2 + bit; 

end 

Programme 4.1 Procédure rnul t_entiers 

function r = mult_entier(x, y, b) 

N = length(x); 

% ajout de zéros pour convolution acyclique 

x = [x; zeros(N, l)J; y =  [y; zeros(N, l)J; 

% calcule la convolution 

r = round( real( ifft(fft(x) .*fft(y)) ) ;  
for i=1:2*N-1 % enlève les retenues 

q = floor(r(i)/b); 

r(i) = r(i)-q*b; r(i+l) = r(i+l)+q; 

end 

Programme 4.2 Procédure nurnber2vector 

function y = number2vector(x, b) 

N = floor( log(x)/log(b) )+1; y =  zeros(N, l); 

for i=l:N 

q = floor(x/b); y(i) = x - q*b; x = q; 

end 

6 Résolution de l'équation de la chaleur 
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Les programmes qui suivent permettent de résoudre l ' équation de la chaleur par la mé­
thode décrite au paragraphe 4.2, chap. IV. 

- Fichier cha 1 eur . rn (programme 6. 1 )  : calcule la solution de l' équation pour diffé­
rentes valeurs de temps en appelant le programme s o 1 ve_ eq . rn, puis dessine l '  évolu­
tion de la solution. 

- Procédure sol ve_eq (programme 6.2): résout l ' équation de la chaleur pour un temps 
donné en calculant les coefficients de Fourier par FFf. 

- Procédure f (programme 6.3) : la répartition initiale de la chaleur au temps t = O. On a 
pris ici une fonction échelon (donc discontinue). 

Bien sûr, il est facile de modifier ces programmes, notamment pour faire des essais avec 
différentes conditions initiales, ainsi qu' avec d' autres valeurs du paramètre temps. 
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Programme 4.3 Procédure vector2number 

function y = vector2number(v, b) 

N = length(v); y =  sum( v.*( b.A(O:N-1)' ) ); 

Programme 4.4 Fichier test_mult_entiers .m 

X = 262122154512154212; y = 314134464653513212; 

b = 20; % la base 

xx = number2vector(x, b); yy = number2vector(y, b); 

zz = mult_entiers(xx, yy, b); z = vector2number(zz, b); 

z - x*y % le résultat doit valoir zéro 

Programme 5.1 Fichier poisson .m 

% quelques constantes 

N = 30; h = 1/N; nb_iter = 30; 

M = zeros(N+l, N+l); f_val = zeros(N-1, N-1); 

% on commence avec X=h (seulement les points du centre) 

for i=l:N-1 % calcul du membre de droite 

for j=l:N-1 

X = i*h; y 

f_val(i, j) 

end 
end 

j*h; 

f (x, y); 

for i=l:N-1 % ajout des termes de bord 

X = i*h; 

f_val(i, 1) = f_val(i, 1) - 1/hA2 * f_Oy(x); 

f_val(i, N-1) = f_val(i, N-1) - 1/hA2 * f_ly(x); 

f_val(l, i) = f_val(l, i) - 1/hA2 * f_xO(x); 

f_val(N-1, i) = f_val(N-1, i) - 1/hA2 * f_xl(x); 

end 
% on rend la matrice impaire 

ff [zeros(N-1, 1) , f_val, zeros(N-1, 1), -f_val(:, N-l:-1:1)]; 

ff = [zeros(l, 2*N); ff; zeros(l, 2*N); -ff(N-1:-1:1, :)]; 

ff = fft2(ff); % on calcule la FFT 
d = -4/hA2 * sin( (0:2*N-l) * pi/(2*N)) .A2; 

for i=1:2*N % résolution du système d*u+u*d ff 

for j=1:2*N 

s = d(i) + d(j); 

if ( S==O ) s=l; end; % éviter la division par 0 
ff(i, j) = ff (i, j) / s; 

end 
end 
ff = real( ifft2( ff ) ); % on calcule la transformée inverse 

% on extrait la solution 

u = zeros(N+l, N+l); u(2:N, 2:N) = ff(2:N, 2:N); 

for i=l:N+l % on remet les termes du bord 

X =  (i-l)*h; 

u(i, 1) f_Oy(x); u(i, N+l) 

u(l, i) = f_xO(x); u(N+l, i) 

end 

f_ly(x); 

f_xl(x); 

surf(u); title('Résolution par FFT'); 

Programme 5.2 Procédure f 

function r = f(x, y) 

r = (xA2+yA2)*exp(x*y); 
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Programme 5.3 Procédure sol 
function r = sol(x, y) 

r = exp (x*y) ; 

Programme 5.4 Procédure u_Oy 

function r = f_Oy(y) 

r = sol (0, y); 

Programme 6.1 Fichier chal eur . m  
% nombre de points d'interpolation pour le calcul d e  l'intégrale 

M = 2A8; h = l/M; 

% valeur de f aux points d'interpolation 

f_val = zeros(M, l); 

for ( i=l:M ) f_val(i) = f((i-l)*h); end; 
% calcul de la fft 

dft_val = fft(f_val); 

% calcul des coefficients de fourier 

fcoef = zeros(M, l); 

for n=l:M 

i = 1 + rnod(-(n-1), M); % il faut renverser les indices 

fcoef(n) = h*dft_val(i); 

end 
% dessine une évolution de la solution 

for t = [ 0.01, 0.02, 0.03, 0.04, 0.05, 0.06] 

xx = [ xx, real( solve_eq(O, fcoef) )]; 

end 
plot (xx); 

Programme 6.2 Procédure sol ve_eq 

function u = solve_eq(t, fcoef_val) 

prec = 3 0 0 ;  h = 1/prec; % précision du tracé 

U= zeros(prec+l, 1); 

M = length(fcoef_val); % taille de la solution 

v = [O:M/2, -M/2+1:-1] '; % fréquences des coefficients 

% calcule la solution 

for i=O:prec 

X = i*h; 

w = exp(-2.0*pi*pi*t*v.*v + 2.0i*pi*x*v) * fcoef_val; 

u(i+l) = surn(w); 

end 

Programme 6.3 Procédure f 

function y = f(x) 

if ( X<0.3 ) y = O; 

elseif ( x<0.7) y =  l; 

else y = O; 

end 
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Annexe B 

Programmes MAPLE 

Ce chapitre rassemble l' ensemble des programmes MAPLE du livre. Chaque programme 
constitue un fichier . dsw à part entière. Ils ont souvent été coupés en plusieurs morceaux 
par souci de clareté. 

1 Transformée sur un corps fini 

Le fichier fft-corps-fini . mswréalise successivemente 

1. une recherche des facteurs irréductibles de X 11 -1 sur un corps fini lF P (on a pris 
p = 2). Par la commande alias, on nomme a une racine primitive de l 'unité. 

2. une implémentation naïve de la transformée de Fourier sur le corps cyclotomique 
lF p'. Dans le cas où n est de la forme 2s, il est possible d'implémenter une version 
récursive de l ' algorithme. Ceci est fait pour la transformée de Fourier sur un anneau, 
appendice 2. 

3. un test sur un vecteur f E JF� tiré au hasard. On peut constater que Î <j. JF�, puisqu'on 
est obligé de faire les calculs dans une extension cyclotomique de lF p· 

2 Transformée sur un anneau 

Le programme MAPLE fft-anneau. msw calcule une transformée de taille n à valeur 
dans un anneau Z/mZ pour un entier m judicieusement choisi (conformément aux expli­
cations données au paragraphe 2, chap. VI). On a choisi n de la forme 2s, ce qui permet 
d'implémenter un algorithme récursif de type FFf. On utilise une fonction intermédiaire, 
FFT_rec, qui permet de mettre à jour à chaque appel la racine principale de l 'unité. 

3 Multiplication de grands entiers 

Le programme MAPLE mult-grands-entiers .mws permet de calculer le produit 
de deux entiers représentés par leur décomposition dans une base b donnée. Ce pro­
gramme utilise les constantes n et m ainsi que la fonction xFFT qui se trouve dans le 
fichier f f t-annea u . msw, 2. 1 .  Voici les différentes choses que l 'on peut trouver dans 
ce programme. 

1. On calcule d' abord une valeur de b optimale, de façon à satisfaire à n(b-1)2 <m. 
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Programme 1.1 Fichier f ft-corps- fini .msw 

Les paramètres pour faire un TFD de taille n fixé sur IF P : 

> with(numtheory): n := 16: p := 3: 
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Liste des facteurs de X" - 1. Choix d'un facteur irréductible de degré r et de la racine primive associée: on 
constate que r est bien l'ordre de p dans (Z/nZ)*. 

> liste_div := op(Factor( cyclotomic(n, X) ) mod p ); 
> P := liste_div [ l]; 
> alias( alpha = RootOf(P) ) : 

liste_div := X4 + 2X2 + 2,X4 + X2 + 2 

P:= X4+2X2+2 

Transformée de Fourier, version O(n2): 
> TFD := proc(f, signe) 
> local res, formule; 
> # pour plus de lisibilité, on écrit à part la formule de TFD 
> formule := 'f [ l+l]*alphaA(-signe*(k-1)*1)'; 
> res := [ seq( sum( formule, '1'=0 .. n-1 ) mod p ,  k=l .. n) ]; 
> if signe=-1 then res := l/n*res mod p end if; 
> return(Normal(res) mod p); 
> end proc: 

Test simple : 
> hasard := rand(O .. (p-1)): 
> x := [ seq( hasard(), i=l .. n )]; 
> y := TFD(x, 1); # TFD(x) n'est plus à coefficients dans F_2. 
> evalb( x = TFD(y, -1) ); #Mais on retombe bien sur nos pattes. 

X:= (0,2,0,2, 1,2,2,2, 1, 1, J,0,0,2,2, 1) 

y:= ( 1,2a3+2a+a2+2, 1,2a3+a+2a2,a2+ 1,a3+a, 1,2a3+a, 1, 

a3 +a+ a2 + 2,2, a3 + 2a+ 2a2,2a2 + 2,2a3 + 2a,2, a3 + 2a] 
true 

2. Ensuite plusieurs fonctions très utiles sont définies (pour passer de la représentation 
sous forme de nombre à celle sous forme de vecteur). 

3. La fonction prod_entiers calcule le produit de convolution des deux vecteurs, 
puis propage les retenues. 

4. Enfin, un test est effectué. Bien sOr, l 'utilité de ces fonctions est de multiplier des 
nombres entiers que MAPLE ne sait pas manipuler (car trop grands), ce qui n'est 
pas le cas dans ce test (car on fait vérifier à MAPLE que le produit est juste). 

4 Décodage des codes BCH 

Ce programme MAPLE utilise la fonction FFT définie dans le programme 1 .  Il faudra 
donc recopier cette procédure au début du programme. Le programme a été découpé en 
trois parties : 

- Partie 1 (programme 4.1) : recherche des facteurs irréductibles de xn - 1 sur IF 2, et 
construction du polynôme générateur du code BCH. 

- Partie 2 (programme 4.2) : définition de routines pour manipuler des mots du code à la 
fois sous forme de vecteurs et de polynômes, pour générer des mots au hasard. 

- Partie 3 (programme 4.3): la première partie de l ' algorithme de décodage, on calcule 
les valeurs de 0'1, . . . , O't. 



§ 4. Décodage des codes BCH 

Programme 2.1 Fichier f ft-anneau . msw 
Définition des paramètres de la transformée 

> s := 4: n := 2As: m := 2A(2A(s-1)) + 1: 

Sous-procédure récursive : 
> FFT_rec := proc(f, signe, zeta) 
> local nn, nl, s, t, r; 
> nn := nops(f); nl := nn/2; #taille du vecteur 
> if nn=l then return (f) end if; # fin de l'algorithme 
> # construction des deux sous-vecteurs de taille nl 
> s := [ seq(f[2*k+l], k=O .. nl-1) ] ; 
> t : = [ seq(f [2*k], k=l. .nl) ] ; 
> # calcul des deux sous-FFT : 
> s := FFT_rec(s, signe, zetaA2 mod m); 
> t : = FFT_rec (t, signe, zetaA2 mod m); 
> # mixage des deux résultats 
> a := seq( s[k]+zetaA(-signe*(k-l))*t[k] mod m, k=l .. nl ); 
> b := seq( s[k]-zetaA(-signe*(k-l))*t[k] mod m, k=l .. nl ); 
> r := [a, b]; 
> return (r) ; 
> end proc: 

Procédure principale (attention, le nom FFf est protégé en MAPLE •.. ) : 
> xFFT := proc(f, signe) 
> local r; 
> r := FFT_rec(f, signe, 2); 
> if signe=-1 then r := 1/n*r mod m; 
> else r; end if 
> end proc: 

Un test: 
> hasard := rand(O .. m-1): 
> x : = [seq( hasard(), i=l. .n ) ] ; 
> y := xFFT(x, +1); 
> evalb( x = xFFT(y, -1) ); #On retombe bien sur nos pattes. 

X := ( 179,220,230,218,49,253, 197,218,67, 177, 136, 127, 190, 106,210,255] 

y := (5,250,28, 179, 190, 157, 195,216,198, 1 1, 13,43,5,59,49,238] 
true 
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- Partie 4 (programme 4.4): la deuxième partie de l ' algorithme de décodage, on calcule 
les valeurs de éQ, é2,:;i", ... , Ci. 
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Programme 3.1 Fichier mul t-grands-entiers . msw 

b désigne la base de calcul. Il faut que n(b - 1)2 <m. 
> b := floor( evalf(sqrt(m/n))+l ): 

Calcule le produit point à point : 
> cw_mult := proc(a, b) 
> [ seq( a [ i]*b [ i], i=l..n )]: 
> end proc: 

Transforme un entier en vecteur: 
> number2vector := proc(x) 
> local N, res, i, r, q, xx: 
> N := floor( log(x)/log(b) )+l; 
> res := [ ]: xx := x: 
> for i from 1 to N do 
> xx := iquo(xx, b, 'r'): 
> res := [ op(res), r]: 
> end: 
> return(res): 
> end proc: 

Transforme un vecteur en entier : 
> vector2number := proc(v) 
> add(v [ k]*bA(k-1), k=l .. nops(v)); 
> end proc: 

Calcule le produit de convolution : 
> convol := proc(f, g) 
> xFFT( cw_mult(xFFT(f, l) , xFFT(g, 1)), -1): 
> end proc: 

Calcule le produit de deux entiers représentés sous forme de vecteurs de taille n. Attention, les n/2 
dernières entrées des vecteurs doivent être nulles. 

> prod_entiers := proc(x, y) 
> local res, i: 
> res : = convol (x, y) : 
> for i from 1 to n-1 do 
> res [ i] := irem(res [ i], b, 'q'): 
> res [ i+l] := res [ i+l]+q; 
> end: 
> return(res): 
> end proc: 

Un test: 
> hasard := rand(O .. b-1): 
> xx := [ seq( hasard(), i=l..n/2 ), seq(O, i=l ..n/2)]; 
> yy := [ seq( hasard(), i=l. .n/2 ) , seq(O, i=l. .n/2) J; 
> x := vector2number(xx): y := vector2number(yy); 
> zz := prod_entiers(xx, yy); 
> evalb( vector2number(zz) = x*y ); #il doit y avoir égalité ... 

.x:x:== [4,0,0,3,3, 1,0,4,0,0,0,0,0,0,0,0] 

yy:== [3,0,4, 1,4,2,3,0,0,0,0,0,0,0,0,0] 

y:== 55853 

zz :== [2,2, 1, 1,3,3,2,2, 1,0,3,3,2,4,2,0] 
true 



§ 4. Décodage des codes BCH 

Programme 4.1 Fichier decodage-bch . msw partie 1 
r: degrés des facteurs irréductibles de X" -1 sur IF2; t: capacité de correction. 

> with(numtheory): with(linalg): 
> n := 15: t := 3: delta:=2*t+l: 
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Liste des facteurs de X" - lchoix d'un facteur irréductible de degré r et de la racine primive associée: on 
constate que r est bien l'ordre de p dans (Z/nZ)*. 

> liste_div := op(Factor( XAn-1 ) mod 2 ) : 
> P := liste_div[2]; 
> alias( alpha = RootOf (P) ) : 

P:=X4+X3+1 

Calcule le polynôme générateur du code de distance prescrite 2t + 1, le PPCM des polynômes minimaux 
des ai, pour i = 1, . . .  ,2t 

> calc_gen : = proc () 
> local result, Q, i, liste_pol_rest: 
> result := P: # on sait déjà que P est dans le PPCM 
> liste_pol_rest := {liste_div} minus {P}: 
> # alphaA2 est racine de P, donc on peut le sauter 
> for i from 3 to 2*t do 
> for Q in liste_pol_rest do 
> if Eval(Q, X=alphaAi) mod 2 = 0 then 
> result := result*Q: 
> liste_pol_rest:=liste_pol_rest minus {Q}: break: 
> end if: end do: end do: 
> result := Expand(result) mod 2 
> end proc: 

Polynôme générateur et dimension du code : 

> G := sort( calc_gen() ); d := n - degree(G); 

G := x10 +x9 +x8 +x6 +x5+x2+1 
d:=5 
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Programme 4.2 Fichier decodage-bch . msw partie 2 
[ ... ]Suite du script précédent 

Calcule le mot de taille n (liste de Oil) correspondant à un polynôme de degré n - l 
> Mot := proc(Q) 
> [seq( coeff(Q, X, it), it=O .. n-1 )] 
> end proc: 

Calcule le polynôme de degré n - l correspondant à un mot de taille n 
> Pol := proc(mot) 
> sum(mot[it]*XA(it-1), it=l .. n); 
> end proc: 

Calcule le syndrôme d'indice i, i.e. P( ai) : 
> Syndi := proc(pol, i) 
> Eval(pol, X = alphaAi) mod 2; 
> end proc: 

Calcule un vecteur aléatoire avec nb_erreurs erreurs 
> Aleat := proc(nb_erreurs) 
> local hasard: 
> hasard := rand(l .. (n-1)): 
> Mot( add(XAhasard(), i=l .. nb_erreurs) mod 2 ) ; 
> end proc: 

Calcule un mot du code au hasard 
> MotCode := proc() 
> local Q; 
> Q := Randpoly(d-1, X) mod 2; 
> Q := Expand( Q*G ) mod 2; 
> Mot (Q); 
> end proc: 

On simule une transmission avec erreur : 
> mot_code := MotCode(); 
> mot_transmis := mot_code + Aleat(3) mod 2; 
> p_recu := Pol(mot_transmis); 

mot_code := [O, 1, 1, 1, 1,0,0,0, 1,0,0, 1, 1,0, 1] 

mot_transmis := [O, 1, 1, 1, 1,0,0,0, 1,0,0,0,0,0,0] 

p_recu :=X +X2+X3+x4+xs 



§ 4. Décodage des codes BCH 

Programme 4.3 Fichier decodage-bch . msw partie 3 
[ ••• ]Suite du script précédent 

lère partie : Résolution des équations pour i = n - t . . .  n -1 pour trouver CJ[l] ... CJ[t] 
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Calcule de l'équation polynomiale à résoudre (attention, on note la e transformée de Fourier de l'erreur): 
> eqn .- (l+add(sigma[i]*ZAi, i=l .. t))* 
> (add(epsilon[n-i]*ZAi, i=l .. n)): 
> eqn := rem(eqn, ZAn-1, Z, 'q'); #l'équation est modulo ZAn-1 

eqn := (CJ't ez + CJ3f4 + e1 + cr2e3)Z14 + (CJ3e5 +e2 + CJ1 e3 + CJ2&i)Z13 

+ (e3 + CJ2es + CJ1 &i + CJ3 E6)Z12 + (CJ3 e-, + CJ2E6 + CJ1 es+ &i)Z11 

+ (cr1 E6 +es+ CJ3es + CJ2e-,)Z10 + (CJ1 e1 + CJ3E9 +E6 + CJ2es)z9 

+ ( CJ3 e10 + CJ2 E9 + CJ1 es + e1) Z8 + ( CJ1 E9 + es + cr2 e10 + CJ3 e11) Z7 

+ (E9 + CJ1 e10+ CJ2e11 + CJ'3e12)z6 + (CJ2e12 + e10+ CJ't e11 + CJ'3e13)Z5 

+ (CJ1 e12 +e11+0'3e14 + cr2e13)z4 + (CJ1 e13 + CJ2e14+e12 + CJ3Eo)Z3 

+ (CJ1 e14 +e13 + CJ3e1 + cr2eo)Z2 + (e14 + CJ1 eo + cr3e2 + CJ2et)Z + CJ3e3 +eo 
+ 0'2 ez + 0'1 e1 

Calcule les équations à résoudre, liste les valeurs de e connues, pour i = 1 . . .  2t, puis évalue les équations: 
> list_eqnl := {seq( coeff(eqn, Z, i), i=n-t .. n-1 )}: 
> epsilon_connu := {seq( epsilon[i] = Syndi(p_recu, i), i=l .. 2*t )}; 
> eqn_evall := eval(list_eqnl, epsilon_connu); 

epsilon_connu := 

{e2 = a3+a2,e1 = a3,E<; = a3 + l,es = l,&i = a3+a2+a+ l,e3 = a3 +a+ l} 

eqn_evall := { CJ1 (a3 + a2+a+1) + a3+a+1+0'3(a3+1) + 0'2, 

CJ2 (a3+ a2+a+ 1) + a3+a2+CJ3+CJ1 (a3+a+1), 

a3 + CJ3 ( a3 + a2 +a+ 1) + CJ2 ( a3 +a+ 1) + cr1 ( a3 + a2)} 

Met sous forme matricielle les équations : 
> ml := matrix(t, t): 
> bl := vector(t): 
> i := 1: 
> for eq in eqn_evall do 
> for j from 1 to t do 
> ml [i, j] : = coeff (eq, sigma [j], l); 
> end do: 
> bl[i] := eval( eq, [seq(sigma[k)=O, k=l..t)) ); 
> i : = i+l: 
> end do: 

Calcule les valeurs de CJ en résolvant le système : 
> sigma_val := Linsolve(ml, bl) mod 2: 
> sigma_connu := { seq(sigma[i)=sigma_val[i), i = l .. t) }; 

sigma_connu := {cr1 = a3 + l,CJ2 = a3 +a2+a,CJ3 = a2+ l} 
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Programme 4.4 Fichier de codage-bch . rnsw partie 4 
2e partie : Résolution des équations pour i = 0 ... n - 2t -1 pour trouver e [O] , e [2t+ l] ... e [n-1] 

Calcule les équations pour i = 0 . . .  n - 2t -1, puis les évalue: 
> list_eqn2 .- {seq( coeff(eqn, Z, i), i=0 .. n- 2*t-1 )}: 
> eqn_eval2 := eval(list_eqn2, epsilon_connu): 
> eqn_eval2 := eval(eqn_eval2, sigma_connu); 

eqn_eval2 := { % 1  e14 +e12 + (a3 + l)e13 + (a2 + l)Eo, 

e14 + (a3 + l)Eo+ (a2+ 1 )  (a3 + a2) + %1 a3, 

e13 + (a3 + l)e14 + %1Eo + (a2 + 1) a3, 

eo+%1 (a3 +a2) + (a3+a+1) (a2 + 1 ) + (a3+ l)a3, 

eu + (a2 + l)e14 + %1 e13 + (a3 + l)e12,e10 + (a3 + l)e11 + (a2 + l)e13 +% le12, 

es+ (a3 + l)E!J + % 1e10 + (a2 + l)eu ,(a2 + l)e12 + % 1  eu + (a3 + l)e10 +E!J, 

(a2+ l)e10+ e, + %1 E9 + (a3 + l)eg} 

% 1  := a3+a2 +a 

Met sous forme matricielle les équations : 
> # les indices de epsilon a calculer 
> epsilon_indices := [0, seq(i, i=2*t+l .. n-1) ) : 
> m2 := matrix(n-2*t, n-2*t): 
> b2 := vector(n-2*t): 
> i = =  1: 
> for eq in eqn_eval2 do 
> j: = 1: 
> for index in epsilon_indices do 
> m2[i, j )  := coeff(eq, epsilon[index ) , l): 
> j : = j +1; 
> end do: 
> b2 [i l : =eval (eq, ( epsilon[O J =0, seq(epsilon[k ) =0, k=2*t+l. .n-1) J ); 
> i : = i+l: 
> end do: 

Calcule les valeurs de e [O] , e[2t+ l] ... e[n- 1 ] ,  puis regroupe toutes les valeurs: 
> epsilon_val := Linsolve(m2, b2) mod 2: 
> epsilon_val := [epsilon_val [ l ) , seq(Syndi(p_recu, it), it=l .. 2*t), 
> seq(epsilon_val[it ) , it=2 .. n-2*t) J ;  

epsilon_val := [ 1 ,a3,a3+a2,a3+a+ 1 ,a3+a2+ a+ 1 ,  1 ,a3+ 1 ,a3+a + 1 ,a3+a, 

a3 +a2+a,1,a3+a2+a,a3 +a2 +1,a3+a2 + 1,a3+1) 

On peut maintenant déterminer l'erreur par transformée de Fourier inverse: 
> erreurs := Normal( TFD(epsilon_val, -1) ) mod 2; 
> mot_corrige := mot_transmis - erreurs mod 2: 
> evalb( mot_corrige = mot_code ); 

erreurs := [0, 0, 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0, 0,1, 1 , 0,1) 
true 
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La collection Mathématiques à l 'Université se propose de mettre à la disposi­

tion des étudiants de troisième, quatrième et cinquième années d'études supé­

rieures en mathématiques des ouvrages couvrant l 'essentiel des programmes 

actuels des universités françaises . Ce1tains de ces ouvrages pourront être utiles 

aussi aux étudiants qui préparent le CAPES ou l 'agrégation, ainsi qu'aux élèves 

des grandes écoles . 

Nous avons voulu rendre ces l ivres accessibles à tous : les sujets traités sont 

présentés de manière simple et progressive , tout en respectant scrupuleuse­

ment la rigt1eur mathématique .  Chaque volume comp01te un exposé du cours 

avec des démonstrations détaillées de tous les résultats essentiels et de 

nombreux exercices. Les auteurs de ces ouvrages ont tous une grande expé­

rience de l 'enseignement des mathématiques au niveau supérieur. 

Ce livre rassemble tout ce qu 'il  faut savoir sur la transformée de 

Fourier discrète . Il s 'adresse à un public d 'algébristes qui désirent 

étendre leurs connaissances vers diverses applications (maîtrise , 

master, DEA, DEES, . . .  ) .  Les agrégatifs pourront trouver une grande 

quantité de développements autour du programme officiel . Il sera 

aussi très utile aux élèves d 'écoles d ' ingénieurs qui découvriront des 

sujets classiques sous un jour nouveau . 

L'auteur fait alterner la présentation des fondements algébriques de la 

théorie de Fourier avec l 'exposé des applications auxquelles celle-ci 

donne lieu . De nombreuses extensions de la théorie conduisent en 

outre à aborder des domaines d'études connexes tels que le traite­

ment du signal ,  les codes correcteurs ou les représentations linéaires . 

Enfin, ce livre contient de nombreux outils . Plus de quatre-vingts 

programmes MATLAB et MAPLE permettent au lecteur de mettre en 

œuvre ce qu'i l  vient d'apprendre . Une grande quantité d'exercices 

corrigés fournit autant d'occasions d'asseoi,r ses connaissances en 

travaillant sur des sujets qui sortent de l 'ordinaire . 


