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Présentation de la Collection

Mathématiques a I’Université

Depuis 1997, cette collection (alors appelée “Mathématiques pour le deuxie¢me cycle”) se
propose de mettre a la disposition des étudiants de troisi€éme, quatrieme et cinqui¢me
années d’études supérieures en mathématiques des ouvrages couvrant I’essentiel des
programmes actuels des universités frangaises. Certains de ces ouvrages pourront étre
utiles aussi aux étudiants qui préparent le CAPES ou 1’ Agrégation, ainsi qu’aux éleves
des Grandes Ecoles et aux ingénieurs désirant actualiser leurs connaissances.

Nous avons voulu rendre ces livres accessibles a tous : les sujets traités sont présentés
de maniere simple et progressive, tout en respectant scrupuleusement la rigueur
mathématique. Chaque volume comporte un exposé du cours avec des démonstrations
détaillées de tous les résultats essentiels, des énoncés d’exercices et leurs solutions.

L’ouvrage de Monsieur Gabriel Peyré, que nous sommes heureux d’accueillir dans cette
collection, est tout a fait novateur et d’un grand intérét. Alors que la transformation de
Fourier est traditionnellement enseignée d’abord en Analyse, pour les fonctions d’une
variable réelle, I’auteur a choisi de présenter cette théorie pour les fonctions définies sur
un groupe fini. Cette présentation lui permet, d’une part d’éviter les difficultés liées a la
convergence des intégrales (remplacées par des sommes finies), d’autre part et surtout de
mettre en lumiere le rdle des symétries provenant de la structure de groupe, a I’origine des
remarquables propriétés de cette transformation.

L’auteur a su présenter de maniére naturelle et facile a assimiler des notions riches et
profondes. Dans son ouvrage, les chapitres présentant des aspects théoriques alternent
de maniére trés heureuse avec ceux traitant d’applications. Les débutants ne seront pas
déroutés, et les lecteurs plus avancés trouveront dans cet ouvrage des points de vue
nouveaux qui enrichiront leurs connaissances et approfondiront leur compréhension du
sujet.

Charles—Michel Marle Philippe Pilibossian






Avant-propos

Loin du temps, de I’espace, un homme est égaré,
Mince comme un cheveu, ample comme I’ aurore,
Les naseaux écumants, les deux yeux révulsés,
Et les mains en avant pour téter le décor.

RAYMOND QUENEAU, L’explication des métaphores,
Les Ziaux (1943).

Il existe de trés nombreux livres sur la transformée de Fourier ; cependant, rares sont ceux
s’adressant & un public pluridisciplinaire. Ecrire un livre pour des ingénieurs avec des
concepts algébriques est un vrai défi, autant, si ce n’est plus, qu’écrire un livre d’algebre
qui fasse toucher du doigt les applications des théories rencontrées. C’est ce défi que
ce livre a tenté de relever. Ainsi, chaque lecteur pourra se faire un programme « a la
carte » et puiser dans des énoncés ou des programmes informatiques des éléments précis
pour asseoir ses connaissances dans le domaine, ou les appliquer & des problémes plus
concrets.

L’exposé est volontairement tres détaillé et ne nécessite que peu de connaissances préa-
lables, mentionnées au début des chapitres concernés. Nul doute qu’un bon éleve de li-
cence devrait pouvoir aborder cet exposé sans grande difficulté. Le lecteur pourra avoir
besoin de fagon ponctuelle de quelques notions avancées sur les groupes finis ainsi que
d’une certaine familiarité avec les actions de groupes. Un éleve agrégatif devrait quant a
lui pouvoir trouver de nombreuses applications et développements autour du programme
officiel.

Je n’ai pas hésité a répéter les définitions et notations importantes. Par exemple, la notion
de convolution, abordée sous de nombreux angles (groupe abélien, traitement du signal,
groupe non commutatif), est a chaque fois replacée dans son contexte. Ainsi, les différents
paragraphes, bien que suivant une progression logique, ont une vraie unité et peuvent étre
lus de fagon non linéaire.

Le premier chapitre utilise le langage de la théorie des groupes pour expliquer les notions
principales et démontrer les énoncés dont il sera fait usage par la suite. Le deuxiéme cha-
pitre applique les résultats obtenus & des problémes divers, et constitue un premier contact
avec les algorithmes rapides (transformée de Walsh par exemple). Le troisiéme chapitre
est un exposé sur la transformée de Fourier discréte. Méme s’il réinvestit les résultats du
premier chapitre, il peut étre lu par exemple par un informaticien souhaitant comprendre
les mécanismes des algorithmes de transformées discretes. Le quatriéme chapitre présente
des applications diverses de la transformée de Fourier discréte, et constitue un complé-
ment indispensable du chapitre précédent, pour bien comprendre les mécanismes mis en
jeu ainsi que leur utilisation dans des situations pratiques. Le cinquiéme chapitre décline
des idées et des algorithmes plus originaux autour de la transformée de Fourier, donnant
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lieu & de nombreuses applications. Le sixi¢me chapitre nécessite quelques connaissances
un peu plus poussées, notamment un peu de familiarité avec la théorie des corps finis.
11 étudie les transformées & valeurs dans un corps fini, et présente des applications aux
codes correcteurs. Les deux derniers chapitres (les plus difficiles), sont de nature plus
algébrique, et se proposent de généraliser les constructions déja effectuées au cas des
groupes finis non commutatifs. Le septieme chapitre expose la théorie des représentations
linéaires. Le huitieéme et dernier chapitre applique cette théorie dans des champs a la fois
théoriques (étude de la simplicité des groupes) et pratiques (analyse spectrale).

Une bonne connaissance des propriétés algébriques de la transformée de Fourier est, a
mon sens, treés utile pour construire des lecons d’agrégation a la fois tournées vers les
applications et avec des bases théoriques solides. De nombreuses notions au programme
de 1’agrégation seront passées en revue dans ce livre. Tout d’abord la notion de groupes
finis est au cceur du probléme abordé dans ce livre. Les groupes cycliques tels Z/nZ sont
plus particuliérement mis en avant: ce sont les groupes les plus simples, mais aussi les
plus utilisés dans la pratique. Les nombres complexes de module 1 sont présents tout au
long de I’exposé. L'utilisation d’espaces hermitiens et de transformations unitaires est une
constante dans la théorie de Fourier. La transformée de Fourier continue et les séries de
Fourier ne seront abordées que dans les exercices, toutefois, la transformée de Fourier
discrete permet d’enrichir leur analyse. La résolution d’équations aux dérivées partielles
utilise pleinement les propriétés algébriques des transformées de Fourier. De plus, le cal-
cul des coefficients de Fourier par I’algorithme de transformée de Fourier rapide, ainsi
que les considérations sur la convolution lors de la résolution par différences finies, font
de la transformée de Fourier discréte un outil incontournable. Enfin, la théorie des corps
finis peut, elle aussi, &tre abordée a travers le monde de Fourier.

Un certain nombre de programmes informatiques sont présentés ; ils sont rédigés en M AT-
LAB pour la plupart, et en MAPLE pour ceux qui nécessitent des manipulations algé-
briques (calculs dans les corps finis, etc.). Bien qu’il s’agisse de logiciels payants, on peut
en trouver des versions pour les étudiants a un prix raisonnable, et de nombreuses facul-
tés et écoles d’ingénieurs en sont équipées. De plus, des logiciels gratuits & la syntaxe
trés proche existent, principalement SCILAB et MUPAD. Le choix d’un langage particu-
lier pour implémenter les algorithmes est bien évidemment discutable, mais 1’utilisation
de MATLAB et MAPLE semble assez naturelle, ces logiciels permettant de tester rapide-
ment les programmes écrits. On pourra par la suite les traduire dans un langage compilé
et plus rapide, tel que le C ou le C++. De plus, ces langages sont utilisés pour I’épreuve
de modélisation a I’oral de I’agrégation de mathématiques. Les agrégés ou futurs agré-
gés ne seront donc pas dépaysés. Il est a noter que tous les programmes présents dans
cet ouvrage sont disponibles au téléchargement, ainsi que de nombreux autres, sur le site
http://www.cmap.polytechnique. fr/~peyre/adtf/.

Je tiens a remercier mes parents, Lucien et Marie-Noglle, qui m’ont soutenu pendant toute
I’écriture de ce livre. Je dédie ce livre a Elisa Maugein. Enfin, j’adresse ma plus profonde
gratitude & mes relecteurs, qui ont apporté leur expérience pour m’aiguiller dans la bonne
direction : Abdellah Bechata, Vincent Beck, Christophe Bertault, Charles-Michel Marle,
Jérome Malick et Jean Starynkévitch.

Gabriel Peyré.
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Chapitre premier
Transformée de Fourier sur un groupe fini

En fait, pour construire les ondelettes de base, on utilise ce
qui « fonctionne bien » dans I’analyse de Fourier,
c’est-a-dire le formalisme algébrique.

YVES MEYER [54] (1990)

Dans ce premier chapitre, nous allons aborder 1I’étude de la transformée de Fourier sous un
angle original, celui de la théorie des groupes. La théorie de Fourier, qu’elle soit envisagée
d’un point de vue algébrique ou non, consiste avant tout en 1’analyse de fonctions. Il faut
ici prendre le mot analyse au pied de la lettre, dans son sens étymologique. Il s’agit de dé-
composer des données complexes sous une forme plus simple. Il va donc étre question de
construire un moyen systématique pour obtenir cette décomposition, et c’est précisément
la ou les outils de Fourier interviennent. Pour parvenir a réaliser de fagon efficace cette
décomposition, on doit tout de méme utiliser un certain nombre d’informations a priori
sur les fonctions que I’on étudie. Ce premier chapitre portera sur I’étude des fonctions
sur un groupe fini ; la décomposition en « briques élémentaires » que réalise 1’analyse de
Fourier résultera des symétries inhérentes a la structure de groupe.

Le cadre le plus élémentaire pour mener a bien ce projet est celui des groupes finis com-
mutatifs, puisque 1’on n’a a se soucier ni de la régularité des fonctions rencontrées, ni de
la convergence des séries manipulées (puisqu’elles sont finies !). Bien sfir, on sera tenté
de crier au scandale tant le travail alors accompli semble simpliste par rapport a la théorie
« analytique » des séries de Fourier. Cependant, cette étude permet d’amener de nouveaux
points de vue et de poser de nouvelles questions qui seront abordées dans les prochains
chapitres.

— En quoi I’étude de la transformée de Fourier sur un groupe fini peut-elle nous aider a
comprendre la construction de la transformée de Fourier continue ?

— En quoi la transformée de Fourier sur les groupes finis rejoint-elle la transformée de
Fourier discrete ?

— Quelles utilisations peut-on faire de la transformée de Fourier sur un groupe fini ? Com-
ment construire des algorithmes efficaces, et comment les implémenter ?

— Enfin, que devient cette théorie quand on essaie de 1’appliquer aux groupes non com-
mutatifs ? Cette question motivera I’introduction de nouveaux outils, décrits en détail
dans les deux derniers chapitres.

C’est a cet ensemble de questions que nous allons tenter de répondre. Les méthodes mises
en ceuvre sont multiples, elles empruntent souvent a plusieurs disciplines mathématiques.



2 Chapitre premier. Transformée de Fourier sur un groupe fini

Les références au sujet de la dualité sur les groupes finis sont nombreuses. Il y a bien
sir le livre de J.P.SERRE [65], mais aussi par exemple celui de WARUSFEL [76], pour
une présentation plus détaillée. Pour une introduction a la transformée de Fourier sur un
groupe commutatif, on pourra regarder 1’ouvrage de DYM et MAC KEAN [29].

1 Dual d’un groupe fini

Le but de ce livre est d’étudier, d’un point de vue algébrique, les fonctions a valeurs com-
plexes dont I’espace de départ est un groupe fini noté G. Il s’agit d’utiliser au maximum
les propriétés du groupe pour obtenir des décompositions fonctionnelles intéressantes.
L’idée de base de ce chapitre, celle qui guidera nos réflexions jusqu’a la fin de ce livre,
consiste a étudier la fagon dont on peut représenter une fonction sur un groupe G. La fa-
con généralement la plus commune d’envisager une fonction f : G — C est de considérer
I’ensemble de ses valeurs f(g) pour g € G. L'inconvénient majeur de cette représentation
est qu’elle n’exploite pas du tout la structure de notre groupe G. En quelque sorte, c’est
une représentation universelle, qui ne dépend pas du tout du groupe que ’on a choisi.
Pour étudier une fonction de maniere efficace, il semble logique de construire une nou-
velle représentation qui exploite les symétries que 1’on peut trouver dans un groupe G.
L’exemple le plus simple de ces symétries est le caractére cyclique du groupe Z/nZ, mais
on peut bien sfir envisager des constructions plus complexes.

1.1 Définitions

Pour comprendre comment une fonction peut étre plus ou moins simple a représenter,
on abordera en premier lieu les fonctions les plus simples, celles qui n’opposent aucune
résistance a la structure du groupe de départ G. Nous allons donc nous intéresser aux
fonctions qui transportent la structure du groupe. Ces fonctions sont les morphismes du
groupe G dans un groupe de I’ensemble d’arrivée, c’est-a-dire un sous-groupe de C*.
Nous allons donc introduire les définitions adéquates.

Définition 1.1 (Caractéres et dual d’un groupe). Soit G un groupe fini. Par définition,
un caractére ¥ est un morphisme du groupe G dans le groupe multiplicatif C*. On note G
I’ensemble des caracteres, qu’on appelle le dual de G.

G estun groupe pour la multiplication des applications. On rappelle que cette multiplica-
tion est définie de la maniére suivante.

Vi 2) € G e x e x1(x)x ().

Nous verrons, notamment au paragraphe 2.3, que la dualité sur un groupe fini posseéde de
nombreux points communs avec la dualité entre les espaces vectoriels. Au prochain cha-
pitre, plus précisément au paragraphe 3.1, chap. II, nous verrons méme que dans certains
cas, ce rapprochement peut devenir une identité entre les deux structures (de groupe et
d’espace vectoriel). La dualité sur un groupe fini permet alors de démontrer des proprié-
tés linéaires intéressantes. En attendant, commengons par étudier I'image d’un caractere
X €G.

Proposition 1.2. Soit G un groupe fini de cardinal |G| = n. Les éléments de G sont en
fait les morphismes de G dans le groupe des racines n'®™®S de I’unité,

Un={exp(2—l,’:£> \0<k<n}.
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En particulier,

veeG, lx(@l=1, x(e™)=2x(e)"=x(e),
ot I’on a noté |z| le module d’un nombre complexe z, et Z son conjugué.

Démonstration. Notons 1 1’élément neutre de G. Il faut remarquer que, pour tout élément
g € G, on a g" = 1. Ceci entraine donc, pour tout y € G, que x(g)" = x(g") =1, ce qui
signifie bien que y est 2 valeurs dans I’ensemble des racines 7™ de I’unité. O

Remarque 1.3. 11 en découle qu’en particulier, G est un groupe fini (car il n’y a qu’un
nombre fini d’applications de G dans Uy, qui sont des ensembles finis), commutatif. De
plus, tout élément ¥ € G est constant sur les classes de conjugaison de G, puisque

V(g,h) € G*, x(h7'gh)=x(h)'x(&)x(h)=2(e)x(g) =2(8). (LD

Définition 1.4 (Espace des fonctions sur G). On note C[G] I’ensemble des fonctions de
G dans C. La notation C[G] sera expliquée au paragraphe 4.2. C’est un espace vectoriel
sur C. On y définit un produit scalaire hermitien, par

V(f,8) €CIG, (f.8) IGIZf (1.2)

x€G
On définit aussi une norme || - || sur C[G] par ||f|3 = (f, f).

Remarque 1.5. Le produit hermitien que nous venons de définir sur C[G] présente de
fortes similitudes avec celui que ’on peut définir entre deux fonctions de L?(R) de la
facon suivante :

V(f.8) ePRY, (f,8)= [ f@)g09

La principale différence est le changement de la somme en intégrale. Une des propriétés
communes de ces deux produits scalaires est I’invariance par translation. En effet, si on
note T, (f) la fonction x € G— f(xy) € G (ou son analogue continu T;,(f) = f(- +¥)), on
a

(Tu(f), Th(8)) = (f>8)-

Cette propriété sera constamment utilisée par la suite, entre autres pour démontrer les
relations d’orthogonalité entre les caractéres.

Dans le but d’étudier les fonctions de C[G], nous allons introduire une base canonique. La
décomposition dans cette base correspond a la fagon standard de représenter une fonction
d’un ensemble dans %'

Proposition 1.6. Une base de C(G] est donnée par les fonctions (8;)gcG suivantes :

def. 1 si h=g
5g(h)—{ 0 o hay (1.3)

En particulier, C[G] est un espace vectoriel de dimension n = |G| sur C.
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Démonstration. On vérifie de facon immédiate que la famille est orthonormée pour le
produit hermitien (1.2). Comme ces fonctions ne sont pas nulles, ceci implique qu’elles
forment une famille libre de C[G]. Le fait que cette famille soit aussi génératrice provient
de la décomposition canonique

VfeC[G], f=2D, f(g)d, (1.4)

geG
ce qui termine la démonstration. O

Cette proposition permet de plonger G dans C[G] de fagon canonique par g — &,. De
plus, nous avons vu que toute fonction f € C[G] se décompose dans la base {Jg},ca,
c’est ce qu’exprime 1’équation (1.4). Cette décomposition est en apparence treés simple.
Nous verrons cependant au paragraphe 4.3, avec la notion de convolution, qu’elle ne
facilite nullement les calculs. C’est pourquoi nous allons chercher une base qui présente
les deux propriétés suivantes.

— Elle doit étre simple a utiliser (la décomposition dans cette base doit étre simple a cal-
culer).

— Elle doit avoir des propriétés intéressantes pour les opérations algébriques que 1’on sou-
haite utiliser (combinaison linéaire, produit, et produit de convolution de fonctions).

La famille des caractéres, formée des éléments de G, pourrait étre une bonne candidate ;
il reste a démontrer qu’elle posséde les qualités requises.

1.2 Dual d’un groupe cyclique

Avant de nous lancer dans 1’étude générale de la dualité sur un groupe quelconque, pre-
nons le temps de voir comment tout ceci se comporte dans le cas le plus simple, celui d’un
groupe cyclique (dont 1’archétype est Z/nZ, pour un entier n donné). En fait, cet exemple
est de premiére importance, d’une part parce que dans la pratique, c’est la structure que
’on rencontre le plus souvent (nous verrons au chapitre III que les calculs unidimension-
nels en traitement du signal utilisent la structure de Z/nZ), et d’autre part parce que nous
allons utiliser ces résultats pour démontrer le cas général.

Proposition 1.7 (Le cas cyclique). Soit G = {1,g0,83,. .. ,g§‘1} un groupe cyclique de
cardinal n et de générateur g.Soit @ une racine primitive n'eme de ’unité, par exemple
© = &%, Les éléments de G sont de la forme, pour j € {0,...,n—1},

G — C
J g:glé — (a)-’)kze n

~

En particulier, ona G ~ G.

Démonstration. Pour déterminer un caractére y € 6, il nous faut calculer la valeur de
x(gk), pour k € {0,...,n — 1}, ce qui donne

1(h) = (@) = o,

Dans cette égalité, on a noté @’ = x(80), avec 0 < j < n— 1, puisque, comme nous
I’avons vu dans la proposition 1.2, cette quantité est une racine #®™ de I’unité. Donc
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notre caractére Y € G est bien un des {Xo0,-..,Xn—1}- Réciproquement, on constate que,
pour j € {0,...,n—1}, les applications y; sont bien des morphismes de G dans C*, donc
sont bien des éléments de G.

Enfin, si I’on identifie les éléments de Z/nZ et leurs représentants dans {0,...,n—1}, on
définit une application ¥ : j — x; de Z/nZ dans G. Nous avons vu que cette application
était surjective. D’autre part, cette application est injective (il suffit d’évaluer x; = y(j)
en gO)Aet c’est un morphisme (vérification élémentaire). C’est donc un isomorphisme et
donc G est isomorphe a Z/nZ, lui-méme isomorphe a G. (]

La figure 1.1 montre les quatre premiers caractéres du groupe Z/12Z. En abscisse, on
a noté {0,...,11} les représentants du groupe Z/12Z, et les valeurs des caractéres sont
notées *. La ligne du haut montre les parties réelles des caracteres, et la ligne du bas les
parties imaginaires. On voit bien que les points sont réguli¢rement espacés le long des

courbes d’équations y = cos (2%x) et y = sin (¥x).

1 L ALl EAAARAL] 1 ” *‘ 1 -x- 1 J -Jp qe
05 05| * * | o050k % x k| o5/ [
0 o| * * of Lt o[k ke kok x
-05 05| x ¥ 05| * % ¥ % |-0s| i i
Re Re(X,)y x Refy;, R PR
» (xo) » ) % | Retry) » o)
0 5 10 0 5 10 0 5 10 0 5 10
' ¥ N T
05 05|% % 05| . % 05 1 I
09 o s o o e o * . o * * * o% * * * * *
-05 -05 ¥ #|-os] 7 . o8] i i
Im(x,) Imx,) Ty % M) % -~ Im(x,;)
™% N A e I e
0 5 10 0 5 10 0 5 10 0 5 10

FIG. 1.1 - Les quatres premiers caractéres du groupe 7./ 127

Remarque 1.8. On peut déja remarquer que cet isomorphisme n’est pas canonique, puis-
qu’il dépend du choix de la racine primitive de 1'unité @ choisie. Ce phénomene est
récurrent dans 1’étude de la dualité (on le retrouve dans la dualité linéaire entre espaces
vectoriels), le dual n’étant pas canoniquement isomorphe au groupe de départ. Tout ceci
sera précisé par la suite, notamment au paragraphe 2.3.

Remarque 1.9. Tout groupe cyclique est isomorphe a Z/nZ pour n = |G|. En quelque
sorte, I’étude de la dualité sur le groupe Z/nZ résume celle que 1’on peut faire sur n’im-
porte quel autre groupe cyclique. Dans la suite de 1’exposé, on considerera des groupes
construits a partir des briques élémentaires que sont les groupes du type Z/nZ. C’est pour
cela qu’il faut garder a I’esprit la structure de la dualité sur ces groupes particulierement
simples. En appliquant la proposition 1.7, on obtient 1’isomorphisme qu’il faut retenir :

Vn € N*, Z//\nZ'z Z/nZ.

Nous allons voir qu’en fait cette propriété s’étend aux groupes finis commutatifs quel-
conques.

Avant de clore ce paragraphe, remarquons que I’on a |G| = |G| = dim¢(C[G]). On a méme
une propriété plus forte.
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Proposition 1.10. Soit G un groupe cyclique. G forme une base orthonormale de C[G],
ce qui signifie que

V(p.g) €{0,-.n=13%, (tpka) =5,

oix on définit le symbole de Kroneker 8] de la maniére suivante :

59 = 0 si p;éq.
p 1 si p=gq

Demonstration On peut supposer que G = Z/nZ.
Onnote G = {y; _0 , avec ¥i(k) = @™, ol @ est une racine 7™ primitive (conformé-
ment 2 la proposition 1.7). On a alors

n—1

1 .
V() €40,...,n =11 (Xptg) =~ X (077 =] (15)
i=0

(on obtient la demlere egahte en sommant la série geometrlque de raison wP~9).

La famille G = { x, est donc orthonormale, donc en particulier libre. Pour conclure
qu’elle forme bien une base, il suffit de remarquer que son cardinal est égal a la dimension
de C|[G], puisque nous avons vu que |G| = |G]|. O

Remarque 1.11. La démonstration de I’orthogonalité des caractéres dans le cas général
d’un groupe abélien est a peine plus compliquée, et sera exposée a la proposition 2.11.
Cependant, la démonstration que nous venons de faire est essentielle puisqu’elle est a la
base des résultats de la transformée de Fourier unidimensionnelle, qui sera présentée a la
section 1, chap. IIL.

2 Dual d’un groupe abélien

Notre but est d’étendre le résultat que nous venons de démontrer (G est une base orthonor-
male de C[G]) a un groupe abélien fini quelconque. Pour y parvenir, nous allons utiliser
une démarche purement algébrique, qui utilise un théoréme d’extension des caracteres.
Ensuite, nous établirons un résultat plus fort, & savoir que I’on a en fait un isomorphisme
entre G et G, propriété qu’une fois de plus, nous avons démontrée dans le cas des groupes
cycliques.

2.1 Approche algébrique

Le lemme suivant est le résultat principal dans I’étude de la structure de G.

Lemme 2.1 (Prolongement de caracteres). Soit G un groupe fini commutatif et H C G
un sous-groupe. Tout caractére ¥ de H peut étre prolongé en un caractére de G.

Démonstration. On effectue une récurrence sur [G : H] = |G/H| 'indice de H dans G.
La propriété étant triviale pour [G : H] = 1, puisque G = H ; on suppose donc [G : H]| > 1,
ce qui nous autorise a prendre x € G tel que x ¢ H. Soit K = (H,x) le groupe engendré
par x et H. Soit n le plus petit entier tel que x" € H. Tout é€lément z € K s’écrit de fagcon
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unique sous la forme z = yx* avecy € H etk € {0,...,n—1}. En effet, si yxk = y’xj/, avec
0< k<K <n—-1,alors on ax** cHetk—k < n, donc nécessairement k — k' = 0 par
définition de n.

Analyse : Supposons que 1’on dispose d’un prolongement ¥ de x.

Posons § = x(x). Il nous faut {" = x(x") = x(1) = 1. Donc § doit étre une racine n
de I’unité. On a alors, nécessairement, si z € K s’écrit z = yx" avecyeHet0<k<n-1,

X(2) =x0d*) = x ()¢~ 2.1)

Synthése : soit { une racine n'®™® de Iunité. Définissons, pour z € K décomposé comme
précédemment sous la forme z = yx*, le prolongement ¥ par I’équation (2.1). Il s’agit de
montrer que (2.1) définit bien un élément de K. L unicité de la décomposition montre que
la définition n’est pas ambigu€. Pour montrer que c’est bien un morphisme, il suffit de
prendre h = yx* et i’ = y'x¥ deux éléments de K, et de distinguer deux cas.

ieme

-Si0<k+k <n—1,onaalors
R(h') = F Oy = x 0¥V = g I ) = Z (T ().
—-Sin < k+k <2n—1, on peut se ramener au cas précédent,
Z (k) = ZOy ) = ()2 @) = FmET ().
La propriété de multiplicativité des degrés nous dit que
(G:H|=[G:K|[K:H], avec [K:H]>1.
On adonc [G: K] < [G: H]. On peut avec ’hypothése de récurrence prolonger ¥ 4 G. U

Comme le montre le choix (arbitraire) de la racine n®™® de ’unité ¢, le prolongement
du caractere n’est bien siir pas unique. Cependant, c’est ce résultat qui va permettre de
démontrer que G et G ont méme cardinal. Pour ce faire, commencons par traduire le
résultat de prolongement des caractéres en termes de groupe quotient.

Lemme 2.2. On note p : G—»Hle morphisme de restriction et j : G//E < G le mor-
phisme d’extension, défini par

. — def.
J:
X —

G avec X (x) = x(xH).
x
On a la suite exacte : b
{1}—>G/H<i>6-»ﬁ—>{1}.
Démonstration. D’apres le lemme 2.1, p est surjectif.
De plus, si on consideére y € ker(p), alors H C ker(), et donc par la propriété universelle
du quotient, il existe un unique ¥ € G/H tel que y(x) = ¥ (xH), c’est-a-dire j(¥) = x.
Réciproquement, un élément de Im(j) est trivial sur H, ce qui montre que I’on a bien

ker(p) = Im(j) = G/H. 0
Corollaire 2.3. Soit G un groupe fini commutatif. Alors G est de méme ordre que G.

Démonstration. On raisonne par récurrence sur n = |G|. Pour n = 1, le résultat est trivial
car G = {1}, ot I’on a noté 1 le caractere trivial sur G (c’est-a-dire la fonction qui a tout
élément associe 1). Soit donc n 2> 2, ce qui permet de considérer un groupe cyclique non
trivial H C G. Si H = G, on peut utiliser I’étude menée a la section 1.2 sur les groupes
cycliques pour/cglclure. Dans le cas contraire, on voit par I’hypothése de récurrence que
|H| = |H| et |G/H| = |G/H|, et le lemme 2.2 montre que |G| = |ﬁ||6/71|

On déduit donc que |G| = |H||G/H| =|G|. O



8 Chapitre premier. Transformée de Fourier sur un groupe fini

2.2 Théoreme d’isomorphisme

Les groupes G et G ont donc le méme cardinal. Bien que ce résultat soit suffisant pour
la suite de 1’exposé, on peut néanmoins donner un résultat plus précis, en I’occurrence
expliciter un isomorphisme entre G et G. Pour ce faire, nous allons utiliser le résultat
obtenu pour les groupes cycliques a la section 1.2, et nous allons nous y ramener en
utilisant le théoréme de structure des groupes abéliens. On peut trouver une démonstration
de ce résultat important dans le livre d’ ARTIN [3]. On rappelle I’énoncé du théoréme, sans
donner de démonstration.

Théoréme 2.4 (Théoréme de structure des groupes abéliens). Soit G un groupe abé-
lien fini. Il existe des entiers strictement positifs ny,...,n, uniquement déterminés tels que
ny divise ny41, et tels que ’on ait I’ isomorphisme

GZ/MmZLXZ/nZ X - xZL/nL.

Corollaire 2.5 (Théoréme d’isomorphisme). Soit G un groupe fini commutatif. Alors G
est isomorphe a G. En particulier, G et G ont méme ordre.

Démonstration. 1 suffit de remarquer que si G et H sont deux groupes finis commutatifs,
onaGx H~Gx H. Eneffet,sionnoteig: G— Gx Hetiyg:H— G XxH les injections
canoniques, alors 1’application
o:{ GxH —  GxA
: x +— (xoig,Xoin)

est un isomorphisme. Elle est trivialement injective et, pour (x1,%2) € G x H, I’applica-

tion x : (g,h) — x1(g)x2(h) vérifie bien y € GxHet®(y) = (X1,22)-
On conclut ensuite en utilisant le théoréme de structure 2.4 ainsi que la remarque 1.9. O

Remarque 2.6. L’isomorphisme G ~ G que nous venons de mettre a jour n’a absolu-
ment rien de canonique. En effet, ce dernier dépend totalement de choix arbitraires pour
décrire la structure du groupe, telle qu’elle est donnée par le théoréme 2.4. En effet, si
on conserve les notations de ce théoréme, chaque choix d’un élément d’ordre n; envoyé
sur (1,0,...,0) € Z/nZ x - -- x Z/n,Z permet de construire un nouvel isomorphisme. Il
faut rapprocher ce phénoméne de 1’isomorphisme d’espaces vectoriels E ~ E* qui est réa-
li/scf,\via le choix (arbitraire) d’une base. Enfin, on peut ajouter que méme 1’isomorphisme
Z/nZ ~ 7 /nZ n’est pas canonique, puisqu’il dépend du choix d’une racine primitive de
I’unité, comme ex pliqué a la proposition 1.7.

2.3 Lebidual

Nous avons vu au paragraphe 2.2 que I’isomorphisme G ~ G n’était pas canonique. Ce-
pendant, toujours par analogie avec la dualité en algébre linéaire, on peut s’intéresser a
I’étude du bidual. Nous allons voir que, dans ce cas, on a bien un isomorphisme canonique
avec le groupe de départ.

Définition 2.7 (Bidual). Nous avons construit le dual G d’un groupe fini commutatif G,
qyi a son tour est un groupe fini commutatif. On peut lui associer son dual que 1’on notera

@, le bidual de G.



§ 2. Dual d’un groupe abélien 9

Proposition 2.8 (Isomorphisme canonique). On a un isomorphisme canonique G ~ G,
qui est donné par ’application

. G — 5
CD'{ g — (Dlg:x—x(g) @2

Démonstration. Tout d’abord, on constate que @ est bien un morphisme de groupes.

Comme G et G ont méme cardinal (en effet, un groupe et son dual ont méme cardinal,
et on applique ce résultat d’une part au groupe G, d’autre part au groupe G), il suffit de
montrer que ® est injective. Dire g € ker(®) signifie que Vy € G, x(g) = 1. Pour en
conclure que g = 1 il suffit d’exhiber, pour k € G différent de 1, un caractere y € G tel
que x(h) # 1. Pour construire ce caractére, on peut considérer le groupe H C G engendré
par h # 1. Comme il est cyclique, de cardinal plus grand que 1, on sait construire un
caractére xp tel que xo(h) # 1 (a la section 1.2 on a énuméré tous les caractéres d’un
groupe cyclique). Le lemme 2.1 montre qu’on peut prolonger xp en un caractére ¥ € G
qui vérifie encore x (h) # 1 puisque x(h) = xo(h) # 1. O

Remarque 2.9. On retrouve un phénomene semblable a celui que 1’on rencoritre sur les
espaces vectoriels de dimension finie avec 1’isomorphisme canonique E ~ E** qui est
défini de 1a méme maniere qu’en (2.2). Bien siir, cette remarque ne tient plus si 1’espace
vectoriel est de dimension infinie, ou si le groupe est infini. On est tout d’abord obligé
d’introduire des contraintes de continuité sur les applications que 1’on envisage, et méme
sous ces conditions, il arrive rarement que le dual soit isomorphe a la structure de départ.
Un bon exemple est donné au paragraphe 1.1, chap. IV. Nous verrons en effet que le dual
du tore R/2nZ est isomorphe a Z. L’exercice 1.2 propose de traiter le cas d’un groupe
infini non commutatif, SO(3).

2.4 Relations d’orthogonalité

On peut étendre sans grande difficulté 1’orthogonalité des caractéres obtenue dans le cas
cyclique (proposition 1.10) au cas d’un groupe abélien quelconque. Commengons par
démontrer un lemme qui sera tres utile pour la suite.

Lemme 2.10. Soit G un groupe abélien fini. Pour x € G ona

_J o siox#1

geG

Démonstration. Si x = 1, alors la propriété a démontrer est bien siir vérifiée. Supposons
donc que y # 1. Soit ¢ € G tel que x(¢) # 1. On a alors

x@) Y x(g) = x(tg) = Y, x(h),

geG geG heG

ot I’on a fait le changement de variable 4 = tg dans la derniére somme (qui est valide car
g — tg est une bijection de G). On en déduit donc que

(x0-1)Y x8)=0 = 3 x(e)=0.

geG geiG



10 Chapitre premier. Transformée de Fourier sur un groupe fini

Ce qui termine la démonstration. O

Proposition 2.11 (Orthogonalité des caracteres). Soit G un groupe fini commutatif.
Alors G est une famille orthonormale d’éléments, c’est-a-dire :

0 si xl#xz

V(xl)x2)€é\2a (XI,X2)={ 1 si yi=x2 "

Démonstration. On note ¥ = 1%z = x1x; ' (les x2(s) sont de module 1, donc il vient
22(8) = x2(s)"1). On a

(x2) == 2 x(8
|G| geG
Il ne reste plus qu’a remarquer que si y; = X2, alors x = 1, et que sinon, } # 1. On termine
en appliquant le lemme 2.10. O

Corollaire 2.12. Soit G un groupe fini commutatif. Alors G est une base orthonormale
de C[G].
Démonstration. Le fait que G soit une famille orthogonale implique en particulier que

c’est une famille libre de C[G]. Comme G et G ont méme cardinal, qui est aussi la dimen-
sion de C[G] en tant que C-espace vectoriel, c’est une base. O

Nous avons donc mené a bien le programme que nous nous étions fixé, en explicitant
une base de I’espace des fonctions C[G] 2 la fois simple (comme on le verra a la section
2, chap. III, les propriétés des racines de I’unité vont permettre des calculs rapides des
projections sur notre base), et avec des propriétés algébriques intéressantes (qui seront
exploitées entre autres au paragraphe 4.3).

Une fois démontrées ces relations d’orthogonalité entre les caractéres, on peut démontrer
d’autres relations, qui sont en quelque sorte « duales ».
Proposition 2.13. Soit g et h deux éléments de G. On a alors

S 2 ={ g 4 20

xeG

Démonstration. 11 s’agit juste d’appliquer la proposition 2.11 au groupe abélien G. Pour

gethe G, on obtient alors

=10 si g#h
x%@g(X)h(X)—{ IGl=|G| si g=h" (2.4)

Nous avons vu au paragraphe précédent que 1’on peut en fait identifier canoniquement un

élément g € G 2 un élément g € G en posant g(x) = x(g)- Si on réécrit I’équation (2.4)
en utilisant ces nouvelles notations, on obtient exactement la formule voulue. O

Remarque 2.14. On peut représenter les caractéres d’un groupe G sous la forme d’une
matrice carrée M = {m;;}1<; j<n de taille n = |G|. Chaque ligne représente les valeurs
d’un caractére. Plus précisément, si on note G = {g1,...,8n} €t G= {X1,--Xn}, alors
on pose m;; = i(g;). Dans ce cadre, la proposition 2.11 énonce des relations d’orthogo-
nalité entre les lignes de la matrice, tandis que la proposition 2.13 énonce des relations
d’orthogonalité entre les colonnes de la matrice.
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3 Dual d’un groupe non commutatif

Apres avoir mené & bien I’étude de la dualité sur un groupe abélien fini, on peut vouloir
étendre ces résultats au cas des groupes finis non commutatifs. Cependant, nous allons
voir que la belle mécanique que nous venons de développer tombe trés vite en défaut,
méme sur des groupes extrémement courants comme les groupes symétriques. Nous al-
lons ensuite voir que cette situation est générale, puisque nous allons démontrer que pour
tout groupe non commutatif, on est systématiquement confronté & un manque de carac-
teres.

3.1 Exemple du groupe symétrique

Le fait que G soit isomorphe a G, et méme que |€;| = |G| tombe en défaut lorsque G
n’est plus commutatif. Nous allons le voir sur un exemple concret, le groupe symétrique
G,.. Rappelons tout d’abord la définition de la signature ainsi que quelques propriétés
fondamentales.

Définition 3.1 (Signature). On considére la décomposition d’une permutation ¢ € G,
en produit de cycles disjoints. On rappelle en effet qu’une telle décomposition existe et
est unique a I’ordre pres des facteurs. Pour démontrer ceci, on pourra regarder le livre de
LANG [43]. Si 0 € G, se décompose en produit de k cycles disjoints, on pose

£(c) & (—1)*,

Cette définition est non ambigug, et pour vérifier que c’est bien un morphisme, on revient
a la définition en termes de transpositions en utilisant le lemme suivant.

Lemme 3.2. Soit 0 € &, et T une transposition. Alors on a €(01) = —€(0).

Démonstration. On note 7 la transposition (a, b). Pour démontrer le lemme, il faut comp-
ter le nombre de cycles dans chaque décomposition et considérer deux cas. Tout d’abord,
si a et b interviennent dans un méme cycle ¢ de la décomposition de o. Alors, 67T va
avoir la méme décomposition, a I’exception du cycle c qui va étre scindé en deux. Dans le
deuxieme cas, on suppose que a et b interviennent dans deux cycles disjoints ¢; et ¢ dans
I’écriture de 0. Dans ce cas, I’écriture de 67 va présenter un cycle de moins, puisque les
cycles c; et ¢, seront réunis. Dans les deux cas, les nombres de cycles intervenant dans
les écritures de o etde o 7 différent d’une unité, ce qui prouve le lemme. O

On peut alors démontrer la propriété fondamentale suivante.

Proposition 3.3. On suppose que 6 € G,, s’écrit comme le produit de p transpositions.
On a alors €(0) = (—1)P.

Démeonstration. On démontre cette propriété par une récurrence sur la longueur de la
décomposition en transposition, et en utilisant le lemme précédent. O

I1 faut insister sur le fait que cette propriété ne permet pas de définir directement la signa-
ture €, car la décomposition en transposition n’est pas unique. On est obligé d’utiliser la
décomposition en cycles disjoints. Une fois ce travail de construction effectué, on est en
mesure de déterminer le dual de G,,.

Proposition 3.4. Le seul caractére non trivial de S, est la signature €.
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Démonstration. Soit ) un caractere de G,. Comme les transpositions engendrent G,,, il
suffit de déterminer les valeurs que peut prendre ) sur les transpositions. Or on constate
que deux transpositions 71 = (a,b) et 72 = (¢,d) de &,, sont toujours conjuguées. En effet,
construisons une permutation g dans S, telle que g(a) = c, g(b) =d.

On a 7p = g1~ . Ceci implique que ¥, qui est constant sur les classes de conjugaison
(comme nous I’avons vu a I’équation (1.1)), prend une seule et méme valeur sur toutes les
transpositions. Comme ¥ (72) = x(71)?> =1, on a (1) = +1 ou x(71) = —1. Donc né-
cessairement, un caractére non trivial ¥ doit vérifier (1) = —1. De plus, cette condition
suffit, sous réserve d’existence, & déterminer .

Réciproquement, on a établi I’existence d’un caractére non trivial : 1a signature. C’est
donc le seul. O

On voit donc que I’on a é\n ~ 7./27Z. Cette étude faite dans le cas du groupe symétrique
peut étre généralisée ; c’est ce que nous allons voir dans le prochain paragraphe.

3.2 Utilisation du groupe dérivé

On peut en fait décrire de fagon précise le dual d’un groupe en termes de groupe dérivé,
puis appliquer cette description pour retrouver le dual du groupe symétrique S,. Com-
mengons par rappeler la définition ainsi que les principales propriétés du groupe dérivé.

Définition 3.5 (Groupe dérivé). Soit G un groupe, on note [x,y] = xyx~!y~! le commu-
tateur associé au couple (x,y) € G2. On note D(G) le groupe engendré par les commuta-

teurs de G, que 1’on nomme groupe dérivé de G. c’est-a-dire D(G) = ([x,y] ; (x,y) € G?).

Proposition 3.6 (Propriétés du groupe dérivé). On a D(G) < G (c’est-a-dire D(G)
est distingué dans G), et G/D(G) est un groupe commutatif. De plus, D(G) = {1} si et
seulement si G est commutatif.

Démonstration. Si ¢ € Aut(G) est un automorphisme de G, on a

Y(x,y) €G*, o(lny]) =lo(x),00)),

de sorte que les commutateurs sont conservés par les automorphismes. Il en est donc
de méme du groupe dérivé qui est engendré par ces commutateurs. En particulier, D(G)
est conservé par les automorphismes intérieurs, ce qui est la définition d’un sous-groupe
distingué.

Si on note X et ¥ les classes de x et y éléments de G/D(G), alors [x,y] = xyx~!y~! est
un élément de D(G), donc ¥yx~'5~! = 1 dans G/D(G), ce qui veut dire que X et j com-
mutent.

La demiére propriété est claire avec la définition du groupe dérivé. O

Proposition 3.7. Soit G un groupe fini. On a G ~ G/D(G).

Démonstration. On peut introduire le morphisme suivant :

)

X — X
ol ¥ est défini par (%) = x(x), ot I’on a noté % la classe de x dans G/D(G). Cet élément
% € G/D(G) est bien défini. En effet, comme C est commutatif, pour tout commutateur
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[x,y] on a x([x,y]) = [x(x),x(y)] = 1. Ainsi, la définition de ¥ (X) ne dépend pas du re-
présentant choisi.

Ce morphisme @ est trivialement injectif, puisque Vx € G, x(x) = ¥(x). De plus, on
peut construire explicitement un antécédent pour un élément y; € G/D(G), il suffit de
construire le caractere )y défini parl égalité y(x) = x1(%).

Nous avons donc montré que G ~ G/ D( ). Mais comme G/D(G) est commutatif (propo-
sition 3.6), on peut utiliser le théoréme d’isomorphisme 2.5 et conclure a I’isomorphisme

Gﬁ)(\G) ~ G/D(G), ce qui termine la preuve de cette proposition. O

Remarque 3.8. En fait, la propriété que I’on a utilisée dans la démonstration est qu’un
morphisme qui est trivial sur les commutateurs passe au quotient par D(G), ce qui conduit
au diagramme commutatif suivant :

G X, c*

I
X *
D(G) — C
Montrons maintenant que 1’on retrouve bien la description du dual du groupe G,, obtenue

a la section précédente 3.1. Rappelons tout d’abord que 1’on note £, le sous-groupe des
permutations paires, c’est-a-dire

={0e6,\e(0)=1},

ol € désigne la signature. 2, est un sous-groupe distingué de G, puisque 2, = ker(€), et
que € est un morphisme (2 valeurs dans {—1, 1}). Mais avant toute chose, voici un lemme
qui précise la structure du groupe 2,,.

Lemme 3.9. Pour n 2 3, U, est engendré par les cycles de longueur 3.

Démonstration. La premiére chose a remarquer est que G,, est engendré par les trans-
positions (1,i) pour i = 2...n. Ceci est évident en remarquant que pour i # j, on a
(i, ) = (1,i)(1, j)(1,i). Maintenant, il suffit de réaliser qu’un élément de 2, ne peut étre
engendré que par un nombre pair de transpositions. On voit donc que 2, est engendré par
les éléments de la forme (1,i)(1,j) = (1,i, j) qui sont des 3-cycles. O

Proposntlon 3.10 (Cas du groupe symétrique). Pour n > 3, on a D(G,) =U,. On a
donc 6,, ~ &S, /Uy ~ Z[2Z.

Démonstration. Comme € est un caractére, on a D(S,) C A,. Comme pour n > 3, 2,
est engendré par les 3-cycles, il suffit de montrer que tout 3-cycle est un commutateur
pour montrer I’inclusion inverse. Pour tout 3-cycle ¢ = (a,b,c) on a 62 = (a,c,b) qui
est encore un trois cycle. Comme deux cycles de méme longueur sont conjugués dans S,,
(résultat classique qui fait I’objet du lemme 1.36, chap. VII), on peut trouver un élément
7 € &, tel que 6% = 767~ !. On a donc ¢ = 7, 5] et on a terminé,

Le fait que &, /2, ~ Z/2Z résulte du passage au quotient de € : G, — {—1,1} par 2,
qui est le noyau de ce morphisme. (]

Remarque 3.11. La solution pour contourner ce probléme de « manque » de caractéres
est d’introduire la notion de représentation linéaire, qui généralise la notion de caractere
(G est constitué des caractéres des représentations de dimension 1). En quelque sorte, un
groupe non commutatif n’a pas assez de représentations en dimension 1, et il faut passer
aux dimensions supérieures. Tout ceci sera 1’objet du chapitre VII.
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4 Transformée de Fourier

L’idée directrice des paragraphes suivants est de formaliser de maniére algébrique la trans-
formée de Fourier en utilisant la structure de groupe de 1’ensemble de départ. On retrou-
vera de nombreuses similitudes avec la transformée de Fourier sur R (les intégrales étant
remplacées par des sommes finies), et les propriétés utiles de la transformée de Fourier
(par exemple celles qui sont liées au produit de convolution) seront expliquées en termes
de morphismes de groupes (en 1’occurrence finis).

4.1 Coefficients de Fourier et transformée de Fourier

Ce paragraphe présente la construction des coefficients de Fourier puis de la transformée
de Fourier, dans le cadre d’un groupe abélien fini. Il s’agit simplement d’exploiter la
propriété d’orthogonalité des caracteéres que nous venons de démontrer.

Définition 4.1 (Coefficients de Fourier). Pour f € C[G] on définit, pour y € G,le coef-
ficient de Fourier c¢()) par

VX €G, cr()E ()
Ceci permet donc de définir 1’application c:

.. {C[G] — C[G]
1

Dans la pratique, on utilise souvent une autre notation que celle des coefficients de Fourier,
en introduisant la transformée de Fourier.
Définition 4.2 (Transformée de Fourier). L’application transformée de Fourier, notée
&, est définie par
C[G] — C[G
F: { (4] L ] , 4.1)
fo—  f

ou fest définie par

V2 €G, f(x)€IGles(@) = X f)x().

x€G

Cette définition est en fait treés naturelle, comme le montrerala proposition 4.15. La figure
1.2 montre les valeurs de la transformée de Fourier d’une fonction « en cloche » f définie
sur Z/17Z. En abscisse, on a noté les indices i € {-38,...,0,...,8} des caractéres y; (les
indices sont pris dans [—8,8] plut6t que [0,16] pour que les dessins soient plus jolis). En
ordonnée, on trouve les valeurs de la transformée de Fourier f( %i). On pourra vérifier que
la valeur centrale (pour i = 0) est bien la somme des valeurs de la fonction f.

Remarque 4.3. Les morphismes c et & sont bien siir linéaires, ce sont donc des mor-
phismes d’espaces vectoriels de C[G] dans C[G]. Ce sont en fait des isomorphismes d’es-
paces vectoriels, et pour le démontrer, nous allons utiliser la formule d’inversion de Fou-
rier suivante.
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Fonction originale Transformée de Fourier
1 —k- - e -

0.9 R 6
0.8 'A
0.7 4
06 4 .
05
0.4 .
0.3 3 2
0.2 * 4'* : .
01} ¥ s * *

*
*
*
*
*
*

o
o
-
=
¥
R
o
¥

FIG. 1.2 — Exemple de transformée de Fourier

Proposition 4.4 (Formule d’inversion). Pour f € C(G], on a la formule d’inversion

7= 3 e =g 3 Fon “2)

x€5 xeG

Démonstration. L’équation (4.2) résulte immédiatement du fait que G est une base or-
thonormale de C[G], en décomposant f dans cette base. g

Proposition 4.5 (Isomorphisme de Fourier). c et & sont des isomorphismes d’espaces
vectoriels de C[G] dans C[G].

Démonstration. Montrons que c est injectif. Si ¢y = 0, alors la formule d’inversion (4.2)
montre que f =0. Comme G et G ont méme cardinal (proposition 2.3) les espaces C[G] et
C[G) ont méme dimension |G| = |5|. On en conclut donc que c est bien un isomorphisme.
Le raisonnement est identique pour % . O

Remarque 4.6. En réalité, % est plus qu’un isomorphisme d’espaces vectoriels, puis-
qu’il conserve aussi une structure d’algebre bien particuliere, celle définie par le produit
de convolution. Tout ceci est 1’objet du paragraphe 4.3.

Pour I’instant, continuons & énoncer les formules que 1’on obtient en utilisant la décom-
position dans la base des caractéres.

Proposition 4.7 (Formule de Plancherel). Pour (f,g) € C[G)? on a les formules sui-
vantes :

2 f(5)8(s) =1G] X cs(x 4.3)
seG XEG
G 2 flx 4.4)
,‘(EG

Démonstration. En décomposant f et g sous la forme f(s) = X, 5¢r(¥)x(s) ainsi que
8(s) =%, c5ce(x)x(s), il vient

Y[98 =1GI{f,8) =16l X cr(m)es(n) (41, 22)-

$€G (XI;XZ)E@
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D’ou I’équation (4.3) en utilisant les relations d’orthogonalité entre les caracteéres. On
démontre de méme I’équation (4.4). O

Remarque 4.8. (Lien avec la théorie L2). Cette formule est en tout point semblable 2
la formule que 1’on obtient pour la transformée de Fourier de deux fonctions de L?(R).
Elle traduit la conservation du produit scalaire (2 une constante prés) par la transformée
de Fourier, puisqu’on peut la réécrire sous la forme :

I /-0
V(f.0) € CloP, (1.8) =15 (F:8),

le deuxiéme produit scalaire étant bien siir celui de «:[6]. Ceci sera expliqué en détail a la
section 1, chap. IV, ol I’on aborde le lien entre la transformée de Fourier sur les vecteurs
de CN (appelée transformée discréte) et la transformée de Fourier continue.

4.2 Algebre d’un groupe abélien

G désigne toujours un groupe abélien fini. Depuis le début de cet exposé, on a noté C[G]
I’espace (vectoriel) des fonctions de G dans C. On peut lui conférer une structure d’al-
gébre grice au produit de fonctions défini de la fagon suivante :

V(fi,£2) €C[G%, Y €G, (fi-f2)(8) = fi(8)a(e)- 4.5)

Cependant, ce n’est pas cette structure qui va nous €tre utile pour la suite, mais plutdt
celle définie par le produit de convolution. En effet, comme nous allons le voir, le produit
de convolution dépend intimement de la structure du groupe G considéré, contrairement
au produit terme a terme défini par 1’équation (4.3). Nous verrons ainsi au paragraphe
4.3 que la transformée de Fourier se comporte de fagon trés agréable pour le produit de
convolution.

Nous avons déja vu (a la proposition 1.6) qu’une base de ’espace vectoriel C[G] est
donnée par les fonctions {Jg}ec, ol la fonction g, pour g € G, vérifie J,(g) =1 et
0g(h) = 0 pour k € G tel que g # h. De méme, nous avons vu qu’une fonction f € C[G]
se décomposait dans la base {8, }¢ec en

=2 (g8

geG
On injecte alors le groupe G dans I’espace vectoriel C[G] via I’application
j:g€ G & €C[G].
Ceci permet de définir (par transport de structure) une multiplication notée * entre les
éléments {8, } e :
‘v’(g,h) € Gz, 5g * O = 63;,.
Il ne reste alors plus qu’a étendre par bilinéarité cette multiplication & C[G] tout entier

pour munir C[G] d’un structure d’algébre. Ce produit est nommé produit de convolution,
et on calcule facilement la formule donnant I’expression d’un produit de deux fonctions.

Définition 4.9 (Produit de convolution). Pour f; et f, deux fonctions de C[G], le produit
de convolution f; * f, est donné par

VeeG, (i*A)E)E Y AMAHK =Y fikfp(H ).  (46)

(h,k) € G heG
hk=g
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Remarque 4.10. Pour f € C[G] on a
V(g,h) € G*, (fx8;)(h) = f(hg™").

Ainsi la convolution par un élément de G (c’est-a-dire la convolution par une fonction
J,, en utilisant ’identification) correspond a une translation de la fonction. Ces propriétés
seront expliquées a nouveau dans le cadre simple de G = Z/nZ a la section 3, chap. IIL
Contentons-nous d’énoncer les premiéres propriétés du produit de convolution.

Proposition 4.11. Le produit de convolution est commutatif, associatif, et I’application
(f1,/2) = f1* fa est bilinéaire. On munit ainsi l’espace vectoriel C[G] d’une structure
d’algébre.

Démonstration. La commutativité se vérifie aisément en faisant le changement de va-
riable 4’ = h‘lg dans la somme de I’équation (4.6). L’associativité peut é&tre démontrée a
la main, ou en utilisant le théoréme 4.15. Le reste est sans difficulté. O

Avant de continuer, voyons « graphiquement » ce que donne un produit de convolution.
La figure 1.3 montre le produit de convolution avec elle méme d’une fonction « porte »,
sur Z/16Z. En abscisse, on a noté {0,...,15} des représentants de Z/16Z. C’est la pre-

1 F—h—k—k—k—K 6 *
08 5 *ox
4 aé' *
06
3 * *
0.4
2 * *
0.2 y % *
Or—F—k——* *—k— %l Ox—% S
0 5 10 15 0 5 10 15

FIG. 1.3 — Exemple de calcul de convolution

miére fois que I’on aborde ce genre de figures. Celles-ci peuvent étre un peu déroutantes
et les résultats ne sont pas nécessairement évidents. Il y a plusieurs possibilités.

— On peut faire le calcul a la main, et vérifier que 1’on obtient bien une fonction « tri-
angle ».

— On peut attendre la section 3, chap. III, qui étudie en détail la convolution cyclique
discréte. Nous serons alors en mesure de faire les calculs avec MATLAB, en utilisant
I’algorithme FFT.

— On peut lire la section 5, chap. IV, qui explique le lien entre le calcul de convolution et
la multiplication de polyndmes modulo X” — 1.

Le fait que le produit de convolution soit défini par extension du produit des éléments de
G nous permet d’énoncer la proposition suivante.

Proposition 4.12 (Morphisme d’algébre). Soit p : G — C* un morphisme de groupe. Il
existe une unique fagon de I’étendre en un morphisme d’algeébre p : C[G] — C.
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Démonstration. En effet, la construction de C[G] nous dit que p est uniquement déter-
miné par la donnée des valeurs de p(J,), pour g € G. Or dans I’identification de G comme
base canonique de C[G], on a p(8g) = p(g), ce qui montre I'unicité de la construction. Il
suffit alors de montrer que le morphisme construit est bien un morphisme d’algébre. Par
définition du produit de convolution, on peut se contenter de montrer la conservation du
produit sur les éléments {3, },cG, ce qui est équivalent au fait que p soit un morphisme
de groupe. O

Cette proposition nous dit qu’il y a une correspondance parfaite entre les morphismes de
groupes de G dans C* et les morphismes d’algebres de C[G] dans C.

Remarque 4.13. (Interprétation probabiliste). Le produit de convolution, qui a été
introduit comme 1’extension par linéarité d’une opération de groupe, posseéde une inter-
prétation probabiliste trés importante. Soient X et Y deux variables aléatoires indépen-
dantes a valeurs dans un groupe fini commutatif G. On note Py et Fy les distributions de
probabilité correspondantes, c’est-a-dire Vg € G, Px(g) = P({X = g}). Le résultat fonda-
mental est que la distribution de probabilité de la variable aléatoire X + Y est le produit
de convolution des distributions de X et Y. Ceci s’écrit donc Py.y = Py * Py. Ce théo-
réeme s’étend aux variables continues (a valeurs dans R) et discrétes (a valeurs dans Z), a
condition d’utiliser le produit de convolution adéquat. Ce résultat est trés simple 8 mon-
trer (le lecteur peut en faire la vérification immédiate), et on pourra consulter [55] sur les
applications du produit de convolution en probabilité (dans le cadre continu et discret).
Les exercices 1.9 et I.10 étudient 1’utilisation de la transformée de Fourier sur un groupe
fini pour résoudre des problémes de probabilité.

4.3 Convolution et transformée de Fourier

Soit G un groupe fini commutatif d’ordre n. La proposition suivante montre que la défini-
tion de la transformée de Fourier est en fait trés naturelle.
Proposition 4.14 (Morphisme d’algebre). Soit ¥ € G. L’application
ClG C
Py { 6] —

~

f — flx)

correspond a l'unique fagon d’étendre le morphisme de groupe X en un morphisme d’al-
gébre.

Démonstration. L'unicité résulte directement de la proposition 4.12. Il ne reste plus qu’a
montrer sur les éléments J; que &, correspond a ¥, ce qui est trivial :

Vg€ G, Fy(8) =2, &(x)x(x) =2x(8) 0

x€G

Cette propriété, qui justifie a posteriori I’introduction de la transformée de Fourier, est
d’une importance capitale, et 1’on peut la résumer sous la forme du théoréme de convolu-
tion suivant.
Théoréme 4.15 (Convolution et transformée de Fourier). Pour f et g deux fonctions
de C[G]ona o

f*g=f'§ et Cfxg = |G|cf'cga 4.7
oivl’on a noté - le produit terme a terme de deux fonctions. La transformée de Fourier F
est donc un isomorphisme d’algébre de (C[G), *) dans (C[G],-).
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Cette propriété de convolution est sans doute la propriété de la transformée de Fourier la
plus utilisée, puisqu’elle permet de changer un probléme assez complexe (le calcul d’une
convolution de deux fonctions) en un probleme plus simple (le calcul du produit terme
a terme). Les occurrences de ce principe de simplification seront nombreuses a travers
le livre, qu’il s’agisse d’études théoriques (calcul de déterminant circulant, formule de
Poisson, etc.) ou bien plus appliquées (filtrage, produit de grands entiers, décodage de
codes correcteurs, etc.).

5 Exercices

Exercice 1.1 (Déterminant circulant). Soit G un groupe cyclique. On fixe f € C[G]. On
souhaite calculer le déterminant de I’endomorphisme

u —  fxu

On rencontrera souvent ce type d’applications, notamment au paragraphe 2.1, chap. IV,
ou il sera question de filtrage.

1. Expliquer pourquoi les éléments y € G sont les vecteurs propres de ®/. Quelles
sont les valeurs propres associées ?

2. Quelle est la matrice A de 1'endomorphisme @/ dans la base {8, }zcG de C[G]?
Déduire de la question précédente une expression de det(A).

3. Enchoisissant judicieusement le groupe G et 1’application f, montrer que 1’on a

ao ay a ... Qp-1
ap—1 ap ai ... Gu— n=1 (n-1 .
det . . . = H Z a;n’ |,
: Do : i=0 \ j=0
ay az asz ... ao
N . 2ir . . Y , ,
ou (ag,...,an-1) €C", et @ P (Un tel déterminant est appelé déterminant cir-
culant).
4. Apres avoir lu le chapitre III consacré a la transformée de Fourier discréte et a

I’algorithme FFT, proposer une implémentation rapide du calcul de déterminant
circulant.

Exercice 1.2 (Dual de SO(3)). On note SO(3) le groupe des matrices 3 x 3 réelles, or-
thogonales, et de déterminant 1. Il correspond aux rotations de R3. On souhaite montrer
que SO(3) n’a pas de caractére non trivial.

1. Montrer que deux rotations de méme angle sont conjuguées.

2. Soit x un élément du dual de SO(3). Pour g € SO(3), montrer que ¥ (g) ne dépend
que de I’angle de g.

3. On note ry la rotation d’angle « autour de (1,0,0), et s, la rotation d’angle o
autour de (0,1,0). On considére ¢ < raSy'. Montrer que tg est une rotation d’un
certain angle f3, et que lorsque o parcours [0, 7], alors 3 fait de méme.

4. En déduire que y = 1.
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Exercice 1.3 (Dénombrement de solutions). Soit G un groupe abélien fini, et une fonc-
tion ¢ : G" — G. Pour h € G, on note N(h) le nombre de n-uplets (gi,...,8,) tels que
o(g1,---,8n) = h. Montrer que ’on a

Yo Y Y x(0g,-.,80) X (h).

81€G gnereG

N(h) = |G|

Exercice L4 (Fonctions indicatrices). Soit G un groupe abélien fini et A C G. On note
fa 1a fonction indicatrice de A.

1. Montrer que
_ s
Il =y/15 et Falw)=lal,
Vial
ou I’on a noté Yo le caractere trivial.
2. On suppose que |4| < 3|G|. On définit

o(4) Emax {|fa(0) \ 1 € 6,2 # 10} - 5.1)

Vol <o) < al. (52)

3. On se place dans le cas on 3|G|. Montrer que ’on a ®(4) = ®(G\A), o I'on
a noté G\A le complémentaire de A dans G. En déduire une minoration de ®(A)
similaire a (5.2).

4. Montrer que si & est un automorphisme de G, alors ®(0(A)) = ®(A).

Montrer que I’on a

Intuitivement, plus ®(A) est proche de la borne inférieure, plus les éléments de A sont
distribués uniformément dans G. L’exercice 1.9 étudie et quantifie ce phénomene. On peut
voir une analogie avec I’étude de la transformée de Fourier d’une fonction continue : plus
les coefficients de Fourier hautes fréquences sont faibles, plus la fonction est « lisse ».
Ces fonctions indicatrices seront utilisées au paragraphe 4.2, chap. VI dans le cadre ou A
est employé comme code correcteur. Une fois encore, ce sont les propriétés spectrales de
fa qui seront utilisées pour étudier la « géométrie » de I’ensemble A.

Exercice 1.5 (Equations sur un groupe abélien fini). Cet exercice utilise les notations
et résultats de I’exercice 1.4. Il est tiré de I’article de synthese de Babai [4].

1. On considére Ay,...,A; C G, et on étudie I’équation
X1+ +xy=a avec x; €A;, i=1,...,k (5.3)

Expliquer comment on peut se ramener au cas a = 0. On note N le nombre de
solutions de (5.3), dans le cas a = 0. En utilisant le résultat de I’exercice I.3, montrer

que
2 2 KO+ ) = |A |IG||Ak| :

xer,GA,

* g 3 e

XF#x0i=1

avec
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2. On suppose que k = 3. Montrer que

K< 282 5 |7 ol < @00 VA&

| X€EG

ou @ est défini a I’équation (5.1) (on pourra utiliser 1’inégalité de Cauchy-Schwartz).
Montrer, en utilisant le résultat de I’exercice 1.4, question 4., que ceci est encore va-
lable quand a # 0.

3. En déduire que si

D(43) _ |A;]]A2]

)
|As] |G|
alors I’équation x; + x +x3 = a, avec x; € A;, i = 1,2,3, a au moins une solution.

Ce résultat surprenant nous dit donc que si au moins 1’un des trois ensembles A; est bien
réparti, et que si les trois ensembles sont suffisamment grands, alors I’équation considérée
a au moins une solution. L’exercice II.2 applique ce résultat sur G = IF; pour étudier le
théoreme de Fermat sur les corps finis.

Exercice 1.6 (Groupe de Heisenberg). Soit G un groupe abélien fini. On note % le
groupe des nombres complexes de module 1. On note J#(G) = % x G x G muni de
I’opération
(A,X,X) ’ (#,)’, T) = (;Wf(x),xy,xf)

le groupe de Heisenberg associé a G.

1. Montrer que 1’on définit bien ainsi une structure de groupe. En particulier, quel est

I’élément neutre et quel est I'inverse d’un élément générique (A,x,x) € £(G)?
2. Montrer que I’on peut définir une action de 5#(G) sur C[G] en posant

Vf e C[G),Y(A,x,x) € £(G), (A, x, %) f:2— Ax(2)f(xz).

3. Pour (A,x,%) € #(G) et f € C[G], on définit respectivement les opérateurs de
dilatation, translation, et modulation par

DA(@)=Af(2), T(f)e)=rf(x2),  My(f)(2) =x(2)f(2).

Exprimer I’action de ##(G) sur C[G] en fonction de ces trois opérateurs. Comment
se comportent ces trois opérateurs vis-a-vis de la transformée de Fourier définie a
I’équation (4.1)? Quel liens y a-t-il avec la transformée de Fourier continue sur R?

4. En identifiant canoniquement G a G comme décrit au paragraphe 2.3, comment
le produit sur 5#(G) = % x G x G est-il défini? Comment définir une action de

2#(G) sur C[G)?
5. On définit la fonction

a:{ #G —  H#G)
Axx) — Ax'(x),2x7")

Montrer que « est un isomorphisme de groupes, et que 1’on a
Vf €C[G],Y(A,x,x) € #(G), F((A,x,%) f)=0a(A,x,x) F(f),

ou & désigne la transformée de Fourier définie a 1’équation (4.1).
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6. On suppose que @ : C[G] — C[G] commute avec I’action de J#(G), c’est-a-dire
que

Vf € CIG],Y(A,x,x) € £(G), @((A,x,%)- f) = (A, %, %) - D(f).

Montrer qu’il existe r € C* tel que Vf € C[G], ®(f) = rf. On pourra raisonner sur
la matrice de ® exprimée dans la base {Jg};ec de C[G], ou alors utiliser le lemme

de Schur 2.5, chap. VIL Que se passe-t-il si @ : C[G] — C[G] fait commuter les
actions de J#(G) et #(G)?

Exercice 1.7 (Transformée de Fourier et orthogonalisation). On considére une fonction
f € L*(R). On note 7, la translation de r sur L>(R), c’est-a-dire 7,(f) = f(- —r).

1. Montrer que la famille {1, (f) }»cz est orthormée si et seulement si

pptweR, 1f(0+2km)|? =1,
kezZ

ou I’on a noté fe L? (R) la transformée de Fourier de f, définie, pour les fonctions
f € L'(R) par
ppt.weR, flo)Z / f(x)e 9% dx,
R
et étendue par densité a L2(R) tout entier.
2. On suppose qu’il existe A > 0 tel que

ppt.weR, ALY, |7 (@ + 2km) 2.
keZ

Montrer que si on note ¢ la fonction de L*(R) telle que
def. f ((0)
-~ 1/2°
(Skez | flo+2km)2)

alors la famille {7,(¢@)},cz est orthonormée (les égalités sont a considérer pour
presque tout ®).

pptw€eR, ()=

L’exercice suivant 1.8 propose d’étudier le méme probléme d’ orthogonalisation, mais dans
le cadre d’un groupe abélien fini.

Exercice 1.8 (Orthogonalisation sur un groupe abélien). Cet exercice est inspiré de

I’article de BERNARDINI et KOVACEVIC [7]. Soit V un C-espace vectoriel de dimension

n, muni d’un produit hermitien (-,-). Soit G un groupe abélien fini de transformations

unitaires de V, et soit b € V. On dit que b est orthonormé pour ’action de G sur V si
déf.

I’ensemble G, = {Ab \ A € G} est orthonormé. Ceci signifie que
V(x,y) €G3, (x,y)=8.
1. On note
G — C
Voi\ A — (Abb)
Montrer que b est orthonormé pour I’action de G si et seulement si Yy = 1, Cest-a-
dire si et seulement si Vy € G, |G| (%,b, b) =1, ot I’on a noté

VyeG, %% |G|A2E;x A € ZVV).
€
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2. Montrer que les opérateurs %, sont des projecteurs orthogonaux, et qu’ils sont deux
a deux orthogonaux, c’est-a-dire

0 i
V(i x2) € G, %x]oz/m:{ 2, s ;C: iﬁz ,

et %, = %y (A* désigne I’adjoint de A).
3. On suppose que ¥, ne s’annule pas. On note

1%

'Edf.
26 V¥(X)

ol 1/ () désigne 1’une des deux racines possibles. Montrer que b est orthonormé
pour I’action de G.
4. Quel rapprochement peut-on faire avec 1’exercice .77

Pour une étude plus poussée de cette méthode dans le cas des groupes cycliques Z/nZ,
on pourra regarder 1’exercice ITIL.11.

Exercice 1.9 (Répartition de probabilité). Soit G un groupe abélien fini, et P: G — R*
la fonction de répartition d’une loi de probabilité sur G, ce qui signifie que X, P(8) = 1.
On note U la répartition uniforme, c’est-a-dire U(g) = |—(1;| pour tout g € G. On note Yo le
caractere trivial de G.

1. Calculer P(xp) ainsi que U () ), pour x € G. En déduire une expression de [P — U I13.
2. Montrer que I’on a

ngG, ’P(g)_

En quelque sorte, la quantité |P— U ||% mesure I’uniformité de la distribution P, et comme
nous I’avons déja vu pour les fonctions caractéristiques (exercice I.4), ceci est caractérisé
par les coefficients de Fourier P(y), pour x¥ # Xo-

Exercice I.10 (Marche aléatoire). On considére une marche aléatoire sur Z/nZ construi-
te comme suit. La variable aléatoire X € Z/nZ désigne une position sur le cercle Z/nZ a
I’instant k € N. Le déplacement entre I’instant & et K+ 1 est donné par une probabilité de

transition p; ; ZPXpp1 = j|Xe =1).

1. On note p(") : G — [0, 1] la répartition de probabilité de Xy, c’est-a-dire que pour
0<i<n, p(")(i) = P(X; = i). On peut aussi noter p™® sous la forme d’un vec-
teur de taille n. Montrer que p*+1) = Pp(X), ol on a noté P la matrice de transition
{pij}o<i,j<n—1- En déduire que p® = P¥p(®), ot p0) = {1,0,...,0} est la distri-
bution initiale.

2. Soit 0 < p < 1. On considére la marche aléatoire la plus simple, donnée par

Piji-1= P, pii+1=1-p,
pii=0 si i¢g{i-li+1} "

Montrer que 1’on a alors Px = vxx, ol * désigne le produit de convolution et v =
{0,p,0,...,0,1 — p}. Comment peut on retrouver ce résultat en considérant des
sommes de variables aléatoires, et en utilisant la remarque 4.13?
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3. Exprimer la transformée de Fourier p(®) i partir de p(0). En déduire que si n est
impair, alors

p® ——u oll u={1/n,...,1/n}.

k—-+oo
Que se passe-t-il si n est pair?
4. Généraliser cerésultat & une marche aléatoire invariante par translation, c’est-a-dire
telle que
pij="Vj-i avec ve ([0,1)".

La figure 1.4 montre la progression de la répartition de probabilité p®) dans le cas de
deux marches aléatoires. On voit que la deuxieme marche converge plus rapidement vers
la répartition uniforme (on pourra faire le lien avec la taille des coefficients de Fourier).

k=0 k=0
0.5 0.5
0 Lot 0 Lk
1 - 1

k=1 k=1
0.5 * 0.5

* ¥
* * x

0 kR 0 H— ek —k—h—H—
1 1

k=5 k=5
0.5 0.5

*

0 :*:*m‘r‘rm"l*m *******&mw**t*‘
1 1

k=20 k=20
0.5 0.5
»
N N SN SIS, S GLEE XK KKK E XX £ £ x4

FIG. 1.4 — Marches aléatoires pour les probabilités de transition {0,1/2,0,...,0,1/2}
(gauche) et {0.3,0.3,0.2,0,...,0,0.1,0.1} (droite)

Exercice .11 (Principe d’incertitude discret). Soit G un groupe fini, et f € C[G] une
fonction non nulle. On souhaite montrer que I’on a

| Supp(£)| x | Supp (f)| > |61, (5.4)

ol | Supp(f)| désigne la taille du support de f.

1. On considére, tout d’abord, le groupe G = Z/nZ. Montrer que si f a p éléments
non nuls, alors, f ne peut pas avoir p zéros consécutifs. En déduire 1’équation (5.4).
Ce résultat a été démontré en premier par DONOHO et STARK [28].

2. Onrevient au cas général d’un groupe abélien fini G.
On note M = sup{f(x) \ x € G} et || f|3 = {f, f). Montrer que

2 1_14_28 M< - £
I1£117 < |G|| upp(f)| et <G Ealf(x)l-
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En utilisant I’inégalité de Cauchy-Schwartz, en déduire que

| Supp(f)

M?
|G|

//\

18wl Ae  puis, w2 < | 71RISupp ().

En conclure que

113
|G|

3. Soit H C G, un sous-groupe et fi € C[G], sa fonction caractéristique. Montrer que
I'ona

17113 < ==2| Supp(£)| x | Supp(f)|-

fH = IHlleh

ol I’on a noté H! ¢ G I’orthogonal de H, comme défini en 3.1, chap. II. En dé-
duire que la fonction f atteint la borne de 1’équation (5.4). En fait, on peut montrer
que toute fonction qui atteint cette borne est reli¢e a une telle fonction fx par une
translation et une dilatation. Ceci est démontré dans I’article de MATUSIAK [53].

Cette conclusion sur la localisation des supports temporels et fréquentiels peut paraitre
négative au premier abord: elle nous interdit de construire des signaux bien localisés
a la fois en temps et en fréquence. Cependant, on peut 1’utiliser & profit, par exemple
pour construire des codes correcteurs efficaces, comme le montrera la proposition 3.22,
chap. VL.






Chapitre I
Applications de la dualité sur un groupe fini

Actually Gauss is often called the greatest mathematician
of all time. So it’s nice to be able to understand at least
one of his discoveries.

R. GRAHAM, O. PATASHNIK, D.E. KNUTH [37] (1994)

Pour mieux comprendre la théorie des caractéres sur un groupe commutatif, il faut la
mettre en application dans des situations ou elle est vraiment utile. Le but de ce chapitre
est donc de comprendre, grace a des exemples, pourquoi cette théorie est si puissante.
Nous allons ainsi démontrer sans trop d’efforts des formules qui peuvent paraitre com-
plexes, du moins pour quelqu’un qui les aborde pour la premiére fois. Le meilleur exemple
est la formule de réciprocité quadratique, dont la démonstration repose sur 1’utilisation de
deux types de caracteres.

1 Sommes de Gauss

[Parlant du théoréme 1.20]

Théorémes remarquables par leur élégance. [...] Ces
théoremes conservent toute leur élégance, ou plutét en
acquierent encore davantage, lorsque » est un nombre
composé quelconque; mais nous sommes forcés de
supprimer ces recherches qui demanderaient trop de
développements, et de les réserver pour une autre
occasion.

C.F. GAUSS Disquisitiones Arithmeticae (1807)

L’idée qui sous-tend 1’exposé de ce paragraphe est treés simple. Il s’agit de mieux com-
prendre les corps finis, et plus précisément, de percevoir de fagon plus claire comment
les deux structures qui composent un tel corps (groupe multiplicatif et groupe additif)
peuvent co-exister, et s’influencer mutuellement. L’outil principal sera bien siir 1a dualité
sur un groupe abélien, et I'idée & développer sera la combinaison de deux types de ca-
racteres. C’est justement pour combiner ces caractéres que 1’on va introduire la notion de
somme de Gauss, qui est présentée au paragraphe 1.3.

La principale référence pour cet exposé est le livre de LIDL et NIEDERREITER [48], qui
constitue une véritable encyclopédie des corps finis. On pourra aussi lire avec beaucoup
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d’intérét le trés bel exposé de LANGEVIN [44], qui relie de nombreux sujets connexes,
tels les sommes de Gauss, les codes correcteurs, et la théorie des nombres.

1.1 Résidus quadratiques

Avant de se lancer dans 1’étude de la dualité sur un corps fini, donnons un exemple simple
qui va justifier I’introduction de la théorie des caracteres. Considérons I’équation suivante,
qui est a inconnues entiéres :

=22 +7k avec (x,y,k) € Z°. (1.1)

Pour la résoudre de fagon quasi triviale, il suffit de la remplacer par son homologue mo-
dulo le nombre premier 7, et d’utiliser la structure de corps de Z/7Z qui nous autorise a
effectuer des divisions :

(x/y)>=2 mod7,
pour x # 0. Il ne reste plus qu’a dresser la liste des carrés de {0,1,...,6}, pris modulo 7.
On obtient facilement {0, 1,4,2,2,4,1}. On conclut donc que les solutions non nulles de
I’équation sont données par

;=3+7k’ et §=4+7k’, pour k' € Z.

De fagon évidente, maintenant que 1’on connait les racines carrées de 2 dans Z/7Z, on
peut considérer la factorisation suivante de 1’équation (1.1):

(x—3y)(x—4y)=0 mod7,

ce qui conduit bien siir au méme résultat.

Cette démarche naive est évidemment a proscrire dans le cas d’étude de grands nombres.
On est amené a considérer, pour un nombre premier p le symbole de Legendre, défini de
la maniére suivante :

0 sin est divisible par p
n . )
VrneZ, <—> = 1 sin est un carré modulo p
p —1 sinn’est pas un carré modulo p

11 est évident que I’on peut restreindre 1’étude de ce symbole aux seuls éléments de Z/pZ,
que I’on note usuellement FF,. La remarque capitale pour la suite est que I’application

J F, — {11}
n-{ L (12)

est un caractére du groupe multiplicatif ¥, puisque 1’on a

(7)=G) )

p) \p)\p)

Cette propriété résulte directement du lemme suivant.

Lemme 1.1 (Formule d’Euler). Soit p un nombre premier impair. Un élément x € F ;‘, est

. . _1 771 2 ’ .
un carré si et seulement si x°T = 1. Un élément x € F ;‘, n’est pas un carré si et seulement

—1
six'T =—1.En conséquence, on a la formule d’Euler

Vx e F, (f) =x'7.
p
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Démonstration. On considére le groupe multiplicatif Fy,.Comme p est impair, le mor-
phisme x — x? a pour noyau le sous-groupe {1, — 1}, de sorte que les éléments qui sont
des carrés modulo p forment un sous-groupe de [, de cardinal P;—l

Si x = y?, alors x5 = y?~1 = 1. Donc les %1 résidus quadratiques modulo p sont tous
racines du polynéme X b 1, qui ne saurait avoir plus de %1 racines. Les résidus sont
donc exactement ces racines, c’est-a-dire les éléments x tels que xp‘E_l =1.

Pour conclure la démonstration, il suffit de constater que (xpi_l> ’ = 1 implique que Py

. . (g 1
est un élément de {—1,1}. Les non résidus quadratiques sont caractérisés par T =1,
ce qui acheve de démontrer la formule d’Euler. g

Le but de ce chapitre est de démontrer la propriété importante de ces caractéres de Le-
gendre, que 1’on appelle formule de réciprocité quadratique. Elle relie le fait d’étre un
carré modulo p a celui d’étre un carré modulo g. En son temps, Euler avait déja remar-
qué, en calculant & la main de nombreux cas, que pour deux premiers impairs distincts p
etg,ona (3) = (%), sauf dans le cas ol p et g sont tous deux de la forme 4k — 1. Ce ré-
sultat est cependant loin d’étre évident, et il fallut attendre Gauss pour obtenir une preuve
complete de ce résultat.

Grice a cette formule, nous allons pouvoir calculer facilement le caractére de Legendre,
en appliquant successivement des inversions du symbole (%) (avec la formule de réci-

procité) et des réductions de g modulo p (car le symbole ne dépend que de la classe de n
modulo p).

1.2 Caracteres additifs et multiplicatifs

Dans le chapitre précédent, nous nous sommes intéressés aux groupes finis commutatifs.
Nous allons maintenant imposer une structure plus rigide a notre groupe, puisque nous
allons nous intéresser a un corps fini IF,, avec g = p” oul p est un nombre premier. C’est
un corps de caractéristique p, et il peut €tre vu comme un espace vectoriel de dimension
finie r sur son corps premier IF,. Une description plus détaillée des corps finis sera faite a
la section 1, chap. VI, lors de la construction d’une transformée de Fourier a valeurs dans
un corps fini.

Sur notre corps, on peut dégager deux structures de groupe. Tout d’abord on peut consi-
dérer F; comme un groupe additif (en fait un espace vectoriel sur ). Ensuite, on peut

aussi considérer le groupe multiplicatif Iy = IF, — {0}, qui est un groupe cyclique d’ordre
g — 1. Ceci conduit & considérer deux types de caractéres.

Définition 1.2 (Caractéres additifs et multiplicatifs). Les éléments de ]@‘; sont appelés
caractéres additifs. Ce sont donc les morphismes

¥ (Fg,+) — (C).
Les éléments de ]i‘g sont appelés caracteres multiplicatifs. Ce sont donc les morphismes

X i (Fg, %) — (C*,%).

Les caracteres les plus simples a déterminer sont les caracteéres multiplicatifs c’est-a-dire
les éléments de F7. En effet, le groupe Fy est cyclique. Soit donc § un générateur de ce
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groupe, de sorte que I’on ait F; = {1, {, ¢2,...,£972}. On peut alors énumérer les g — 1
caracteres multiplicatifs

) FF — T
Vi=0,...,.9—1, x;: an -

Ckr—->equ

On obtient ainsi une description complete du groupe dual %, et on constate bien sir que

I’on a ﬁ‘g =~ [Fg. Cette description n’est pas canonique, dans le sens ou elle nécessite le
choix (arbitraire) d’une racine primitive .

Ence qui concerne le groupe additif I, 1a situation est un peu plus complexe, puisque ce
groupe n’est pas cyclique. Cependant, en tant que groupe additif, IF; est en fait isomorphe
au groupe produit (Z/pZ)". Comme Z/pZ est un groupe (additif) cyclique, il va étre
relativement aisé de dresser la liste des caractéres additifs de IF,. Cependant, dans le but
de produire le moins d’efforts possible, et de simplifier 1a description du dual, nous allons
introduire la notion suivante.

Définition 1.3 (Application trace). Soit K un corps fini, contenant un sous-corps k de
cardinal s. On note ¢ < [K : k] 1a dimension de K en tant que k-espace vectoriel, de sorte
que |[K| = s'. Soit @ € K. On définit I’application trace de K sur k de la fagon suivante :

sr—l

Trg (@) S+ o'+ + o

Dans la suite, nous allons nous intéresser aux corps k =F,, et K = F, (on fixe donc s = p
ett =r). Lorsqu’il n’y aura pas de risque de confusion, on notera simplement Tr a 1a place
de Try, /F,-

On rappelle quelques propriétés importantes des corps finis, que 1’on trouvera démontrées
dans le livre de PERRIN [58].
Proposition 1.4 (Propriétés des corps finis). Soit K un corps fini de caractéristique p.

(i) Soit k un sous-corps de K de cardinal s Un élément x € K appartient a k si et
seulement si x° = x.

(ii) L’application ® : x — xP est un morphisme, appelé morphisme de Frobenius. Les
itérés @ : x s xP* sont aussi des morphismes.

Voyons les principales propriétés de cette application.
Proposition 1.5 (Propriétés de la trace). La trace de K sur k est une forme k-linéaire
non nulle a valeurs dans k.

Démonstration. La premiére chose a montrer est que pour & € K, on a Trg /() € k. 11
suffit de montrer que 1’on a x* = x. En utilisant la linéarité du morphisme x — x* (qui est
un itéré du Frobenius), il vient

Trg (@) = & + 0 +---+ 0.

Comme K* est un groupe de cardinal s’ — 1, on a Vo € K*, a1 = 1, d’ou le résultat
souhaité, puisque Vo € K, af = a.

En utilisant le morphisme de Frobenius et le fait que A* = A pour un scalaire A € k, il est
clair que 1’application trace est bien k-linéaire. Il reste &8 montrer qu’elle n’est pas triviale,
c’est-a-dire qu’il existe un élément o € K tel que Trg /k(a) #0.Or, si Trg /k(a) =0, ceci
signifie que o est racine du polyndme

PX)EX4+XS 44X,
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qui estde degré s*~1. Ce polyndme a donc au plus s*~! racines, et comme K a s* éléments,

il existe bien un certain o € K tel que P() # 0. a

On peut maintenant fournir une description compléte des caractéres additifs de IF,. Pour
ce faire, on introduit un caractére dit canonique, dans le sens ol il est indépendant de la
fagon dont on construit le corps Fy.

Définition 1.6 (Caractére canonique). On définit le caractére additif canonique y,

élément de F, par
Vi UL Ty(x)

X — eP

Le théoréme suivant nous explicite la construction des autres caracteéres a partir de ce
caracteére canonique.

Proposition 1.7. Soit, pour a € Fy, I’application

{ F, — C*
Ya !

x — yi(ax) ’

C’est un caractére additif, Y, € I, et réciproquement, tout caractére additif s’écrit de
cette facon.

Démonstration. 11 est évident que 1’on a bien construit ainsi des caractéres. Montrons
qu’ils sont tous différents.
Comme la trace est non identiquement nulle, le caractére canonique est non trivial. Si on
considére deux éléments a # b de IF,, alors on peut trouver un autre élément ¢ € [, tel
que

Va(c)

——==vi((a=b)c)#1.

i(c)
On a donc y, # . Ceci signifie que le nombre de caractéres du type y, est égal a g. Or
nous savons, avec le corollaire 2.3, chap. I, que |F,| = |F4| = g. Nous avons donc bien
construit ainsi tous les caractéres. g

Remarque 1.8. (Caractere trivial). Nous avons ainsi construit un isomorphisme entre
I, et son dual ]I/T; par I’application a — y,. On note yp = 1 le caractere additif trivial. Il ne
faut pas le confondre avec le caracteére multiplicatif trivial o, puisque ce dernier n’est pas
défini en 0. Nous verrons plus tard que 1’on prolonge souvent les caractéres multiplicatifs
X € E‘E en posant ¥ (0) = 0, ce qui léve toute ambiguité entre les deux caractéres triviaux.

Remarque 1.9. (Extension des caractéres). Soit K un sur-corps fini de Fy, ce que I’on

peut écrire sous la forme K = F, ou ¢ Z [K : F,). On vérifie aisément que pour 8 € K,

on a
Trg/r,(B) = Trr, /¥, (TTK/IF,,(ﬁ )) :

Si on note y; le caractére canonique de K, ceci implique que

11 (B) = w1 (Trgr, (B))- (1.3)
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Avant de détailler les propriétés des caractéres additifs et multiplicatifs, donnons un exem-
ple fondamental.

Exemple 1.10 (Caractére quadratique). Soit g un entier impair. On définit un caractére
multiplicatif n € ﬁ‘g de la fagon suivante :

Vx € Iy,

) . | 1 si x est un carré dans [,
~ | -1 sinon :

On voit facilement que 1’on a N = ),4-1. De plus, dans le cas ou g = p est un nombre
2

premier, on a 1(x) = (%) , ce qui signifie que 7 est le symbole de Legendre.

Nous allons maintenant rappeler les propriétés d’orthogonalité des caracteres démontrées

au paragraphe 2.4, chap. I, en les énongant pour les caractéres additifs et multiplicatifs.

Proposition 1.11 (Propriétés des caractéres additifs). Soient a et b des éléments de .
On a alors

0 si a#b
S wewt={ g 5% o7, 14
xellq
2 Va(x)=0 sia#0 (1.5)
x€lF,
—— [0 si a#b
ng, ‘Vx(a)‘l’x(b):{q o Zfb. (1.6)

Proposition 1.12 (Propriétés des caractéres multiplicatifs). Soient a et b des éléments
de T et soient ) et T deux éléments de F. On a alors

— 0 ] T
xe%}(x)r(x):{ o1 : iit (L.7)
2 x(x)=0 six#xo (1.8)
x€lFy

—— {0 i a#b
Z?x(a)x( )={ am1 s b (19)
x€F;

Remarque 1.13. Comme nous I’avons déja expliqué au paragraphe 2.4, chap. I, on peut
représenter les caractéres d’un groupe fini abélien sous la forme d’une matrice (chaque
ligne représente un caracteére). Dans ce cadre, les équations (1.4) et (1.7) représentent
des relations d’orthogonalité entre les lignes de la matrice, et les équations (1.6) et (1.9)
représentent des relations d’orthogonalité entre les colonnes de la matrice.

1.3 Sommes de Gauss

On peut maintenant définir I’objet important de ce chapitre, qui fait la liaison entre les
caracteres additifs et multiplicatifs d’un corps fini.

Définition 1.14 (Sommes de Gauss). Soient )y € @ etye E des caracteres respective-
ment multiplicatif et additif. On définit la somme de Gauss G(), y) associée a ces deux
caracteres, par

G, v)E Y, wx)x). (1.10)

x€Fy
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Cette somme de Gauss, qui met en jeu les deux structures du corps fini, est en fait treés
proche de la transformée de Fourier, comme on a pu la définir a 1’équation (4.1), chap. 1.
En effet, rappelons la définition de la transformée de Fourier sur le groupe multiplicatif
Fg: _
Fy, — C
* .
er(C[IFq]’ Fmu(f) : x — X fx)xk) -
xely

On peut donc écrire la somme de Gauss de 1’équation (1.10) comme la transformée de
Fourier multiplicative d’un caractére additif. Plus précisément, on a

vy eF, vy eF:, G(x,¥) = Fmu(v)(X)-

Cependant, dans la suite de 1’exposé, nous allons étre amenés & considérer le point de
vue inverse, c’est-a-dire que nous allons plut6t nous intéresser a la transformée de Fourier
sur le groupe additif. C’est pour cela que 1’on étend un caractere multiplicatif y € E‘\;‘]‘ en
une fonction ¥ € C[Fy] en posant % (0) = 0. Dans ces conditions, on peut aussi voir une
somme de Gauss comme la transformée de Fourier additive d’un caracteére multiplicatif.
Rappelons la définition de la transformée additive :

Ffpb—  C
VFECK], Zwa():{ v +— 3 fO)y(x) - (1.11)

x€F,
On obtient alors 1a formule remarquable
Yy eF, vy e, G(x,v) = Fasa (X)) (W) (1.12)
On prendra donc garde au fait que la fonction ¥ correspond au caractére y prolongé en 0.

Comme application de ces constatations, on peut décomposer un caracteére multiplicatif
en série de Fourier additive.
Proposition 1.15. Soit y € F}. Ona

1 _
x=-2 Gx,Vv.
1yer,

Démonstration. En appliquant 2 la fonction ¥ la formule de décomposition en série de
Fourier, proposition 4.4, chap. I, on obtient

=2 Lwv.
yek,

11 ne reste plus qu’a remarquer que (¥, y) = éfadd () (v) = éG( X, V) pour conclure.
O

Dans la pratique, on est bien souvent incapable de calculer simplement les valeurs de ces
sommes de Gauss. La seule majoration (triviale) dont on dispose est |G(x,y)| < g—1.
Cependant, la proposition 1.17 va nous donner la valeur de son module. Commengons par
énoncer une série de propriétés plus ou moins évidentes des sommes de Gauss.
Proposition 1.16 (Propriétés des sommes de Gauss). On rappelle que p est la carac-
téristique du corps IFg, c’est-a-dire que q = p’. Alors, si on note ) € E etyelf,:

(1) pour a et be ]Fq' ona G(X, II’ab) = (G)G(X, lVb)
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() G(x,v)=2(-1)G(x,v).
(i) G(Z,v) = x(-1)G(x, v).

Démonstration. Démontrons (i) :

Gt Vab) = Y, XM Ws(ax) =x(a™") Y, x()
xelF* yeFy

en effectuant le changement de variable ax = y.

La propriété (ii) s’obtient a partir de (i) en prenant b = —1.
La propriété (iii) découle de (ii) en passant a la conjugaison et en utilisant le fait que
x(=1) eR. d

Proposition 1.17 (Calcul des sommes de Gauss). On conserve les notations de la défi-
nition 1.14. On a alors

g—1 si x=x e Y=y (casl)
Gix,w)={ -1 si x=x0 e V#Ww (cas2) .
0 si X#X et Y=y (cas3)

Dans les autres cas, on a |G(y, )| = ¢"/% De plus, on a

G(x,v)G(x,v) =qx(-1), pour x#xo0o et Y#WwW (1.13)

Démonstration. Le cas 1 est trivial.

Le cas 2 résulte immédiatement de 1’équation (1.5) (il manque le terme y(0) = 1 dans la
somme).

Le cas 3 résulte, lui, de I’équation (1.8).

Enfin, pour le cas général, nous allons exploiter le fait que la fonction y — G(x, y) est
la transformée de Fourier (additive) de la fonction } prolongée en 0, comme nous 1’avons
déja remarqué a I’équation (1.12). En utilisant la formule de Plancherel (4.3), chap. I, on

obtient
<G(X,'),G(X,')>=CI(5CV,5CV>=‘I- (1.14)
Choisissons donc un caractére additif y = y, € E‘;. On peut réécrire 1’équation (1.14) de
la fagon suivante :
! Y G(x, Va)G(x, Vab) = ¢
beF,
11 ne reste plus qu’a utiliser le résultat de la proposition 1.16, (i), pour conclure

= 2 X ®)PIG(x, wa)I* = 1G(t, wa) > (X, 2) = 1G(X, Wa)|* = ¢
beIF

On peut maintenant démontrer 1’égalité (1.13). En utilisant la proposition 1.16, (iii), on
obtient

G(x, )G, v) = x(-D)IG(x, v)I*.
On obtient le résultat souhaité en utilisant le fait que |G(x, y)| = ¢4'/2. O

Ces propriétés montrent bien I’importance de la connaissance de y(—1). A priori, on sait
seulement que y(—1) € {—1,1}. La proposition suivante va nous en dire plus.

Proposition 1.18. Soit ¥ un caractére multiplicatif, et soit m son ordre dans %, c’est-a-
dire le plus petit entier positif k tel que x* = xo. Alors x(=1) = —1 si et seulement si m
est pair et 9;1—1 est impair.
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Démonstration. La premiére chose a remarquer est que comme ¥7~! = yp, onam|g—1.
De plus, comme ¥ est 4 valeurs dans I’ensemble des racines m'™ de 1’unité, la valeur
—1 ne peut apparaitre que si m est pair. Donc 1’énoncé de cette proposition a bien un sens,
ce qui est rassurant.

On note go un générateur de Iy, ce qui implique que %(8o) est une racine m primitive
de I’unité (car x(8o) est un élément d’ordre m dans le groupe des nombres complexes de
module 1). Alors, si m est pair (donc g est nécessairement impair), ona

21 =x (g6") = ¢l

Donc on a y(—1) = —1 si et seulement si {(4~1)/2 = {™/2, c’est-a-dire (g—1)/2 =m/2
modulo . Ceci est équivalent a (¢ — 1) /m = 1 modulo 2, ce qui signifie que (g—1)/m
est impair. O

iéme

1.4 Laréciprocité quadratique

Le but de ce paragraphe est d’étudier de plus prés le caractére quadratique, pour au final
démontrer la fameuse formule de réciprocité quadratique. Afin d’y parvenir, nous allons
utiliser la transformée de Fourier additive %#,44, définie par 1’équation (1.11).

A Zaq4, nous préférerons utiliser un endomorphisme de (C[IF ], pour plus de commodité.
Celui-ci sera noté T : C[F;] — C[F7]. I est défini de la fagon suivante :

IF; — ]F;
VFIECF, Tf:{ a — I f@)wa(x)
xEF;

La différence par rapport a la transformée de Fourier additive tient & peu de choses,
puisque I’on a

Vf€CIFy), Tf(a) = Fua (F) (va),

ou I’on a prolongé f en O par f(O) = 0. L'utilité de cet opérateur par rapport a la trans-
formée de Fourier additive est qu’il rend les formules dans lesquelles interviennent les
sommes de Gauss plus simples. L’opérateur T n’est en fait rien d’autre que R.%,44P, ou P
est le plongement de C[F;] dans C[F,] déja décrit et R la surjection de I’espace vectoriel
C[Fy) dans C[F;]. Ainsi, en reprenant I’équation (1.12), on obtient

vy e Yy e, Tx(x) = G(x,w) =T@G(X, w)- (1.15)

La derni¢re égalité a été obtenue grace a la proposition 1.16, propriété (i).
Dans la suite de I’exposé, on se restreindra au cas ol ¢ = p, de sorte que I’on travaillera
dans le corps IF,,. Dans ce cas, ’opérateur T' s’exprime de la maniére suivante :
F ; — F,
VFECF,, Tf:{ a — I flx)¢>

xEF;

olt I’on anoté { = e’ . Nous allons maintenant démontrer un lemme qui fait le lien entre
I’opérateur T et le caractére quadratique 7.

Lemme 1.19. Soit n € F}, le caractére quadratique sur le corps . On a alors

det(T) = (= 1) 7172 5 6(n, wa).
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Démonstration. 11s’agit d’écrire 1a matrice de T dans la base des caractéres multiplicatifs
{x0,---,Xp-2}. Les deux seuls caracteres qui sont a valeurs réelles sont g et 1. On peut
regrouper les autres caractéres par paires (,X), et en utilisant I’équation (1.15), on obtient
une matrice du type

(G(x0,w1) \
G(TI, lVl)

0 G <x EE_ ) II’l)
G\ Xp=3, 0
(s ) )
On sait, avec la proposition 1.17 (cas 2), que G(xo, y1) = —1. La valeur de G(n, y) est
pour I’instant inconnue. Il ne reste qu’a calculer les sous-déterminants de taille 2

0 G(x, w1 )) _
det( . — W) = —x(~Dp.
(G(x,tm) 0 G(x,v1)G(X,v1) = —x(=1)p
Pour ce calcul, on a utilisé 1’égalité (1.13). On obtient donc la valeur du déterminant
£2_3

det(T) = —~G(n,y1)(=p)T" I'[xj

-1 p=3
=(-1)7 pT G(n,y) [T 2i(-
j=1
Or, xi(-1)=x (— 1)/ = (=1), ce qui fournit une évaluation du produit de droite

ij = (—1)l+2+ gt 1)1—{}—1" p=3 :ii-”—aﬁ?—l"‘ =

Ceci correspond bien au résultat annoncé. O

On peut maintenant énoncer un résultat important. Il s’agit de calculer les sommes de
Gauss mettant en jeu le caracteére quadratique. Il a ét€ démontré par Gauss, et lui a per-
mis de fournir, en 1807, la 6°™¢ de ses 8 démonstrations de la formule de réciprocité
quadratique.

Proposition 1.20 (Signes des sommes de Gauss). Soit p un nombre premier impair. On
note 1 le caracteére quadratique de IFp. Alors

1/2 i p=
fp sip=1 mod4
G(n,‘lfl)—{ ip!2 sip=3 mod4

Démonstration. Comme 1 = T], en appliquant I’égalité (1.13), il vient
G(n,y1)* =n(-1)p.
On peut alors utiliser la proposition 1.18, et voir que

_J 1 sip=1 mod4
71(—1)—{_1 sip=3 mod4 °
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On obtient donc presque le résultat voulu, c’est-a-dire

12 & p=
_J &p sip=1 mod4 _
G(n,y) = { eip2 sip=3 mod4 avec €, € {+1, —1}.

Toute la difficulté réside dans la détermination des signes, c’est-a-dire de €, (quantité qui
dépend a priori de p).
Commengons par réécrire la dernicre égalité de fagcon plus compacte :

—1)2
Gn,w) =i 7 p'2.
Cette égalité vient simplement du fait que

i!P_—ADE_{l sip=1 mod4

i sip=3 mod4 °

Nous allons pouvoir utiliser le calcul de det(T') que nous venons d’effectuer au lemme
1.19. En insérant la valeur de G(1, y;) dans ce déterminant, il vient

det(T) = g,(—1) "7 i 40 22 i (1.16)

(p=1)(p-2
—1)%'1—2-“” Pz (1.17)
Pour déterminer le signe qui apparait dans cette expression, nous allons calculer le dé-
terminant dans une autre base, celle des fonctions Dirac {4i,...,8,—1}. Comme on a
T 8 (x) = £*, on obtient
dtT=dt(f") — n_emy
ar)=det(¢*) = T (@"=¢m

1<m<n<p—1
La derniere égalité s’obtient en calculant un déterminant de Vandermonde. En passant a

e, « g. af E
I’angle moitié, c’est-a-dire en posant L = e 7, il vient

det(T) =H(u2n —pmy = H (e

“TTe* [T Hz::n( ”p ’"))

ou le signe [T] signifie [],,<,. Il faut évaluer les trois produits qui apparaissent dans cette
expression. En ce qui concerne le produit de droite, il est positif, et ceci est suffisant pour
ce que I’on veut en faire :

[]2sin (71:(n_—m_)> =A>0.
p
Pour le produit du milieu, il suffit de remarquer que

(r—1)(p-2)
2

(on peut faire un dessin et compter le nombre de points a coordonnées entieres a 1’intérieur
d’un triangle). On obtient donc
[Ti-i*

f{(mn)\1<m<n<p-1}=
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Quant au produit de gauche, on utilise le calcul suivant:

p—1n—1

-2
Y ntm=)Y Zn+m=%pgln(n—l)

1I<Sm<ngp—1 n=2m=1

_3((p=2)(p-3)(2p-3)) , (p—-1)(p-2)
_§< 6 T )

_plp=-1)(p-2)

- )

2

[T =™ = ),

I<m<ngp-1

d’ol

On obtient enfin I’expression du déterminant de T :

1, (p=1)(p=2)

det(T) = (—I)P_;—i 2 A avecA>0.
En comparant cette expression a 1’équation (1.17), on voit que €, = +1. g

Remarque 1.21. Ce résultat se généralise au cas d’un corps IF, quelconque, c’est-a-dire
pour ¢ = p°. On peut en effet énoncer :

B (_l)s—1q1/2 sig=1 mod4
G(TI,‘I’I)—{ (_I)S—li-"ql/z sig=3 mod4 '

La démonstration de ce résultat passe par la démonstration d’un lemme que 1’on trouvera
dans le livre de LIDL et NIEDERREITER [48].

Apres ces démonstrations quelque peu calculatoires, on est enfin en mesure de prouver
la fameuse formule de réciprocité quadratique. Elle fut énoncée par Legendre en 1788,
et démontrée pour la premicre fois par Gauss en 1801. A ce jour, on dénombre plusieurs
centaines de démonstrations différentes. FRANZ LEMMERMEYER en a réuni une grande
quantité, et présente la premiere partie de 1’historique de cette formule dans [46].

Théoréme 1.22 (Réciprocité quadratique). Pour tous nombres premiers impairs dis-

tincts petr,ona
(p=1)(r—
<3> (1) = (-1), (1.18)
r)\p

Démonstration. Soit 1 le caracteére multiplicatif quadratique de F, et y; le caractere
additif canonique. Avec le théoréme précédent, on sait que

déf. ~

-1
G(n,y1)*=(-1)7 p£p.
On note maintenant G = G(1, x;). On a
r=1 r—
¢=(P*)TG=576G.
Dans la suite, nous allons effectuer nos calculs dans I’anneau R des entiers algébriques,

c’est-a-dire des nombres complexes qui sont racines de polyndmes unitaires a coefficients
entiers. Comme les caractéres sont des sommes de racines de 1’unité, les valeurs des
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sommes de Gauss sont des entiers algébriques, donc G € R. On note (r) I’idéal engen-
dré par r dans R. Comme I’anneau quotient R/(r) est de caractéristique r, on obtient

r

G=| Xnxw | =3 (M) yi(x)") mod(r).

xeF} xeF}

Comme 1 (x)" = n(x) (car n(x) € {—1,1} et r est impair) et que y;(x)" = y,(x), on
obtient
G'= 3 n®)vr(x) = G(n, %) = y(r)G mod (r).

x€lFp,

Pour la derniere égalité, on a utilisé le résultat (i) de la proposition 1.16. On a donc
G =n(r)G=p7TG mod(r).

En multipliant cette égalité par G, et en utilisant le fait que G* = p, on obtient I’égalité
suivante : -

pzp=n(r)p mod(r).
Cette égalité est en fait une égalité sur Z/rZ. Comme p et r sont premiers entre eux, on
peut simplifier par p, pour obtenir

ﬁ% = (_1)@%0;12#5_1 =1n(r) modr.

Comme nous I’avons déja fait remarquer, on a (r) = (i) De plus, avec la formule d’Eu-

ler lemme 1.1), on a p% = (1;) On a donc en fait I’égalité suivante :

() ) o

r p

Comme les deux membres de cette égalité sont en fait a valeurs dans {—1,1}, et que
r 2 3, cette égalité est en fait valide sur Z, ce qui est la conclusion a laquelle on voulait
arriver. O

2 Transformée de Walsh

Avant de présenter, au chapitre suivant, une série d’algorithmes rapides pour calculer des
transformées de Fourier sur un groupe cyclique, nous allons décrire une transformée qui
dispose elle aussi d’un algorithme rapide. Il s’agit de la transformée de Walsh. Derricre
ce nom se cache en fait une réécriture de la transformée de Fourier sur un groupe abélien,
dans un cas trés particulier, celui du groupe G = (Z/27)*. Ce groupe est souvent appelé
cube booléen, et on peut voir un dessin du cube de dimension 4 2 la figure 2.1.

2.1 Présentation
En suivant de prés la démonstration du corollaire 2.5, chap. I, on peut construire facile-

ment le dual d’un groupe qui s’écrit comme un produit de groupes cycliques élémentaires.
En effet, chaque caractére va s’exprimer comme un produit des différents caractéres des
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FIG. 2.1 — Cube booléen (F,)*

groupes élémentaires. Dans le cas du groupe (Z/2Z), c’est extrémement simple, puisque
le seul caractére non trivial du groupe Z /27 = {0,1} est défini par

2(0)=1  xe(1)=-1.

A chaque élément a = {ao,...,ar_1} € (Z/2Z)* on peut donc assigner un caractére

. (Z/ZZ)k - {_1’1}
2 e () 1 (<t (i e @D

ol I’on a noté (a,x) la forme bilinéaire canonique sur (Z/2Z)* définie par
e k—1
(a,x) —i- Z aix;.
=

Dans la pratique, on représente les éléments du groupe (Z/2Z)* comme des entiers com-
pris entre 0 et 2¥ — 1, en assimilant I’élément x € G = (Z/2Z)* avec Ientier T—] x;2".
Ceci permet de voir les caractéres X, (ol a peut ére vu comme un élément de G ou
comme un entier de {0,...,2%—1}) comme des vecteurs de taille 2* remplis de —1 et de
1.

Exemple 2.1. Considérons le groupe (Z/2Z)3, de cardinal 8. On peut représenter sa table
des caractéres comme une matrice carrée d’ordre 8, noté Ws, dont la ligne i représente les
valeurs du caractére y;, c’est-a-dire que (Ws);; = xi(Jj). Voici la table :

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1

111 1 -1 -1 -1 -1
1
1
1

def.

Wg = 2.2)

-1 1 -1 -1 1 -1 1
1 -1 -1 -1 -1 1 1
-1 1 -1 1 1 -1

La figure 2.2 montre les matrices de Walsh W3, et Wg4, o1 1’0on a mis en blanc les entrées
égales a 1, et en noir celles égales a —1.
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FIG. 2.2 — Matrices de Walsh W3, et Wg4

On peut alors définir la transformée de Walsh.

Définition 2.2 (Transformée de Walsh). On définit la transformée de Walsh #;,(f) d’un
vecteur complexe f = {f[0],..., f[2* — 1]} de taille 2* par

2k—1
Vie {0,...,25 =1}, #(NWNE Y flln() =2 (f, 1) 2.3)
Jj=0

Remarque 2.3. (Lien avec la transformée de Fourier). On convient de noter encore
f:(Z/2Z)* — C 1a fonction correspondant au vecteur f, c’est-d-dire le vecteur corres-
pondant a la décomposition de f dans la base des fonctions de Dirac {8, }xeg. Alors le
calcul de #(f) est celui d’une transformée de Fourier, puisque

¥ (il =2%(f, ) = Fu),

ou I’on anoté f : G — C la transformée de Fourier de f. En particulier, nous allons donc
pouvoir énoncer sans effort la formule d’inversion pour la transformée de Walsh.

Si I’on représente les fréquences i € {0,...,2" — 1} sur le cube booléen de la figure 2.1,
alors les fréquences situées en bas du schéma sont souvent appelées basses fréquences.
On retrouve de nombreuses analogies avec les spectres de Fourier déja rencontrés (trans-
formées de Fourier sur un groupe fini, transformée continue, etc.). Ainsi, I’exercice VI.5
propose d’utiliser les propriétés spectrales de la transformée de Walsh pour réaliser des
prédictions booléennes (ceci est en rapport avec la théorie de I’apprentissage).

L’opérateur % : €2 - C?% est une application linéaire dont la matrice dans la base ca-
nonique est Wi, la table des caractéres du groupe (Z/2Z)*. On a ainsi #4(f) = Wy f. La
formule d’inversion obtenue a la proposition 4.4, chap. I, nous apporte les informations
suivantes.

Proposition 2.4. La transformée de Walsh est inversible, et son inverse est 5‘;7/;( D’un
point de vue matriciel, ceci signifie que la matrice Wy = {w;}, définie par wij = (1),
vérifie Wy Wy = 2X1d.

La matrice de Walsh permet d’étudier des problémes concrets, par exemple en statistiques,
comme le montre I’exercice I1.3.
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2.2 Algorithme de calcul rapide

L’un des intéréts de la transformée de Walsh est que 1’on dispose d’un algorithme rapide
pour la calculer. En effet, bien que 1’équation qui la définit puisse sembler un peu compli-
quée, elle peut se décomposer de fagon simple. Ceci va permettre de mettre en ceuvre un
algorithme récursif de calcul, bien plus efficace que 1’évaluation naive de la somme qui
définit 1a transformée. Nous étudierons au chapitre suivant la construction de [’algorithme
FFT, et on retrouvera exactement les mémes idées, qui sont a la base de la « philosophie »
algorithmique appelée diviser pour régner.

Plutdt que de passer du temps sur 1’analyse d’un tel algorithme (son cofit, son implé-
mentation, etc.), nous allons simplement décrire 1’équation de récurrence que nous allons
mettre en ceuvre. Les discussions sur I’efficacité d’une telle implémentation sont repous-
sées au chapitre suivant, a propos de !’algorithme FFT. Voici donc la fameuse idée qui est
a la base de notre algorithme. Il s’agit de réécrire 1’équation (2.3), de la fagon suivante :

2k—l_1 k=2 + . 2k—l_1 k—2 +
A= T SUND0 (1t 3 2 ()P
J= J=

Pour écrire cette expression d’une fagon plus simple, introduisons les vecteurs f; et f, de
longueur 24~1 définis de la maniére suivante :

Vjie{0,..., 21 =1}, fAll=fUl et AHll=rfi+2"

De méme, on écrira #;(f); (respectivement #;(f)2) pour désigner les 2¢~! premiers
(respectivement derniers) indices du vecteur transformé #;(f). On a alors 1’équation de
récurrence

Y1 = W1 (N) + #i-1 (f2)
Yi(f)2 = Y—1(f1) = W1 (f2)-

D’un point de vue matriciel cette décomposition s’écrit sous la forme

(Wt Wy
Woe = (Wzk—l —Wzk—l> '

La décomposition de W, trouvée correspond a une structure de produit tensoriel, comme
le précise 1’exercice I1.7.Cette décomposition donne tout naturellement naissance a un
algorithme de calcul trés rapide, nommé FWT pour Fast Walsh Transform. De fagon
plus précise, si I’on compte le nombre d’additions nécessaires pour calculer la transfor-
mée de Walsh d’un vecteur de taille # = 2*, on voit que 1’on obtient k = log, (n) appels
récursifs, avec a chaque fois » additions ou soustractions. D’oll un cofit de nlog,(n) opé-
rations. C’est un gain substantiel par rapport a I’'implémentation naive de 1’équation (2.3),
qui nécessite n? opérations. Le programme MATLAB de cet algorithme est présenté au
paragraphe 1, annexe A.

2.3 Utilisation de la transformée de Walsh

L’intérét principal de la transformée de Walsh est qu’elle permet de décomposer n’importe
quelle fonction de {0,...,2% — 1} dans C sur la base orthogonale des caractéres de (IF,)*.
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De fagon plus précise, on a

2k—l
Vi€ 0,2 -1}, = RZGITCL

Cette transformée est trés rapide a utiliser, car elle n’emploie que des additions et des
soustractions (pas de multiplication). De plus, nous avons vu que 1’on dispose d’un algo-
rithme redoutablement efficace pour calculer de fagon récursive la transformée de Walsh.
Cependant, la transformée de Walsh a un point faible de taille : elle n’a aucune propriété
agréable vis-a-vis de la convolution des fonctions de {0,...,2% — 1} dans C, contraire-
ment 2 la transformée de Fourier, comme nous I’avons vu au paragraphe 4.3, chap. I. En
effet, la transformée de Walsh est une transformée de Fourier sur le cube binaire (Z/ 2Z)k,
pas du tout sur le groupe cyclique Z/2Z. C’est essentiellement A cause de ceci que nous
allons étre amenés au chapitre suivant a étudier de plus pres la transformée de Fourier sur
un groupe cyclique. Ceci va nous permettre de construire un algorithme pour calculer des
convolutions sur Z/2*7Z de fagon extrémement rapide.

L’exercice I1.5 montre comment on peut utiliser la transformée de Walsh pour réaliser de
la compression de signaux. 11 propose aussi d’étendre la transformée de Walsh au cadre
bidimensionnel.

Enfin, la transformée de Walsh permet d’étudier les fonctions booléennes, et en particulier
leur non-linéarité. Comme cette étude suppose de considérer des fonctions a valeurs dans
le corps fini 2, elle n’est abordée qu’a la fin du chapitre VI, & I’exercice V1.4. Dans le
méme ordre d’idées, 1’exercice VL5 introduit des notions probabilistes pour étudier les
fonctions booléennes et leur apprentissage.

3 Formule de Poisson

Nous avons vu, notamment au paragraphe 2.3, chap. I consacré au bidual, la grande si-
milarité entre la dualité sur un groupe fini abélien, et la dualité sur un espace vectoriel.
Dans ce paragraphe, nous allons donner une autre incarnation de ce fait, en I’occurrence
en étudiant la notion d’orthogonalité entre un groupe et son dual. Le point central de
cette approche est la formule de Poisson. Nous allons ainsi voir que si 1’on applique cette
formule dans le cas d’un groupe qui est aussi un espace vectoriel (sur un corps fini), on
obtient des relations trés puissantes, nommées identités de MacWilliams.

3.1 La formule sur un groupe fini abélien

Avant d’énoncer la formule de Poisson sur un groupe fini, il est nécessaire de clarifier
la notion d’orthogonalité. Commengons par rappeler brievement la théorie de 1I’orthogo-
nalité sur un espace vectoriel. Pour une plus ample description, on pourra se référer a
I’ouvrage de RAMIS, DECHAMPS et ODOUX [59].

Si E est un k-espace vectoriel de dimension finie, on note E* & Hom(E, k) son dual,

qui est constitué des formes linéaires. On définit classiquement une forme bilinéaire sur
E* x E, que I’on nomme crochet de la dualité, de la fagon suivante:

V(f,x) EE*xE, (xf)Z f(x).
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On définit alors, pour une partie A C E, son orthogonal
AL E {(f e E*\Vx €A, (x,f) =0}. (3.1)

On vérifie que c’est un sous-espace vectoriel de E, et I’on a El = {0}. De méme, on
définit I’orthogonal de B C E* par

={x€E\VYfeB, (x,f)=0}.

C’est un sous-espace vectoriel de E*, et on a (E*)° = {0}. Notons que ces propriétés sont
encore vraies en dimension infinie, mais on doit utiliser 1’axiome du choix. En dimension
finie, les applications F — FL et G — G° sont des bijections réciproques entre sous-
espaces de E et E*. Elles renversent 1’inclusion.

Une fois en mémoire ces notions linéaires d’orthogonalité, il est naturel d’introduire la
définition suivante :

Définition 3.1 (Orthogonal d’un sous-groupe). Soient G un groupe fini abélien, et
H C G un sous-groupe. On note H! I’orthogonal de H qui est le sous-groupe de G défini
de la maniére suivante :

Hﬂﬁ{xeé\VheH,x(h)=1}.

Nous avons déja vu lors de la démonstration du lemme 2.2, chap I, que tout caractére de
G trivial sur H s’identifie de maniére unique a un element de G/H et réciproquement.
De fagon plus pre01se, on a un isomorphisme H# ~ G/ H. On constate donc que H est un
sous-groupe de G de cardinal |G|/|H|. Par exemple, on a G! = {1}. De plus, I’applica-
tion H — H! renverse les inclusions. Ici encore, la ressemblance avec la dualité entre les
espaces vectoriels est frappante.

On peut maintenant énoncer la formule de Poisson dans le cadre des groupes abéliens
finis.

Théoréme 3.2 (Formule de Poisson). Soit G un groupe abélien fini, et H C G un sous-
groupe. Alors, pour f : G — C, c’est-a-dire f € C[G), ona

VgeG, Y, flgh)= 4] Y fx (3.2)
IGI erﬂ

heH

On a noté f: G—Cla transformée de Fourier de f.

Démonstration. Pour simplifier les notations, on considére S un systéme de représen-
tants de G/H dans G. On note g I'image de g € S dans G/H (c’est-a-dire ’image par la
projection canonique). Commengons par définir une fonction f sur G/H par

VgeS, f@EY flgh).
heH
Ceci revient a remplacer f par une fonction invariante sous la translation par des éléments
de H (on la « périodise »). On constate que cette fonction est définie sans ambiguité,
puisque, si I’on considére un autre représentant g g’ de la classe gH, on a g’ = gh’ avec K’
un élément de H, et en conséquence, f(g) = f(g’). On peut donc décomposer la fonction
f € C[G/H] en série de Fourier :

vges, f@= 3 (Fx)x@. (33)

x€G/H
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On peut alors expliciter la valeur des coefficients de Fourier :

(Fx)= |G/H|Zf 21@) IGIZZf(h (3:4)

geSheH
En remarquant que 1’application

{SxH — G
(g;h) — gh

est une bijection et en utilisant le fait que pour y € G//?I, x(gh) = x (), on peut réécrire
la somme (3.4) sous la forme

7.\ _H| 2 Hl s
(Fx)=1g 6 2,2 % G 7).

Il ne reste plus qu’a reporter la valeur de ces coefficients dans 1’équation (3.3) et de re-
marquer que I’expression de f(g) nous donne le membre de gauche de la formule de
Poisson. (]

En appliquant I’équation (3.2) avec g = 1, on obtient la forme sous laquelle la formule est

souvent écrite :
_ |H]

2= g

heH

Y fx 3.5)
x€EH!
Dans le but de mieux comprendre la formule de Poisson, nous allons donner une autre
preuve, qui utilise uniquement des arguments d’algebre linéaire sur I’espace vectoriel
C[G]. Avant de donner cette preuve, étudions plus précisément I’espace C[G/H].
Si on note @ : G — G/H la projection canonique, on peut définir une application

.. { Clo/H) — cld]
o { GO T T

m* est en fait une application linéaire injective (car 7 est surjective). L'espace C[G/H]|
s’identifie donc a un sous-espace vectoriel de C[G], qui est en fait formé des fonctions
constantes sur chacune des classes a gauche modulo H. Pour démontrer ce fait, il suffitde
constater que 7* peut s’inverser sur son image de la fagon suivante :

(n’*)_l{ Im;n:*) : (C[(}ZH] ’

ol on note f (%) (pour x € G) la valeur de f sur la classe a gauche de x modulo H. Cette
identification étant faite, on peut donner une nouvelle démonstration de la formule de
Poisson.

Démonstration. Comme précédemment, on se fixeune fonction f € C[G]. Rappelons que
I’espace C[G] est muni d’une structure d’algebre grice au produit de convolution *, dont
I’expression est donnée 2 I’équation (4.6), chap. I. On peut alors considérer un opérateur

de filtrage
@ - { Cle] — Cl6]
¢ +— fxo
Nous verrons a la section 2, chap. IV, pourquoi on nomme de tels opérateurs des opéra-
teurs de filtrage. En utilisant I’identification entre les fonctions de C[G/H]| et les fonctions
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de C[G] constantes sur les classes & gauche gH, on peut montrer que C[G/H| est un sous-
espace de C[G] stable par /. En effet, si on se donne ¢ constante sur les classes 4 gauche,
etg' =gh', pour g € Get k' € G, on obtient

o/ (9)(g) = Y flehx o)=Y fexh' ™) o(r' =) = @ () (g).

xeG x€G

Ceci étant montré, on peut donc considérer @/, 1a restriction de ® 2 C[G/H]. L astuce,
pour trouver la formule de Poisson, est de calculer la trace de ®/. On dispose d’une base
évidente de C[G/H), 2 savoir B = {;}4cs (on note toujours S un systéme de représentant
de G/H). On rappelle que &, est la fonction qui vaut 1 en g, et O partout ailleurs. Dans
cette base, 1’expression de la trace de 1’opérateur est simple a calculer, puisque le calcul
des images des vecteurs de base donne

Vs €S, <I>f gHZngx h™")8(x),

xeSheH

caril faut se rappeler que & est vu comme une fonction constante sur les classes a gauche.
En conséquence, on obtient

Vs € S, (Df g»—»ngs nh.

heH

La trace se calcule donc sans effort :

tr (&)f> =Y Y flssT'hh) = llgll Y, f(h).

seSheH heH

A une constante pres, on obtient le membre de gauche de la formule de Poisson. Pour
obtenir le membre de droite, il va suffire de calculer la trace de @/ dans une autre base.
Et bien siir, nous allons réinvestir le travail effectué au chapitre précédent en choisissant
la base orthonormale des caractéres de G/H, c’est-a-dire les éléments de HY. L’intérét
est que les caractéres se comportent de fagon particuliérement agréable vis-a-vis de la
convolution. En effet, le théoréme de convolution 4.15, chap I, permet de montrer que les
éléments de H sont les vecteurs propres de I’opérateur @/, puisque

vy eG/H=H', & (x)=F)zx

L’exercice .1, question 1, détaille la démontration de ceci. Il ne reste plus qu’a exploiter
le fait que la trace de I’opérateur &/ est égale a la somme de ses valeurs propres, pour

conclure que
«(¥)= 3 flw.
xeH!
On retrouve donc bien la formule de Poisson simplifiée (3.5). Pour obtenir I’équation
compleéte (3.2), il suffit d’appliquer I’équation obtenue a la fonction f; : x — f(gx), pour
g € G, puisque I’on a
Vx€G, fo(x)=x(""F.

Ce raisonnement montre d’ailleurs que les équations (3.5) et (3.2) sont complétement
équivalentes. O
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3.2 Application aux identités de MacWilliams

Dans ce paragraphe, nous allons utiliser la formule de Poisson dans le cadre du groupe G
égal A (Z/27)* = (F,)*. Nous allons donc nous placer dans le cadre ol nous avons mené
I’étude de la transformée de Walsh (section 2), et nous allons employer les mémes nota-
tions. L’intérét d’un tel groupe est qu’il est en plus un espace vectoriel, en I’occurrence sur
le corps fini 5. En réalité, la situation est trés simple, puisque la notion de sous-groupe
coincide avec celle de sous-espace vectoriel (I’opération de groupe correspond a 1I’addi-
tion des vecteurs, et comme le corps n’a que deux €léments, la multiplication d’un vecteur
par un scalaire est une opération qui respecte trivialement la structure de sous-groupe). On
ne perd donc pas d’information en traduisant les énoncés issus de la dualité sur un groupe
(la formule de Poisson) dans le langage de 1I’algébre linéaire. Nous allons voir que dans ce
cadre, les notions de dualité et d’orthogonalité sont les mémes pour les deux structures.

Toute 1I’étude faite dans ce paragraphe se généralise sans modification au cas de 1’espace
vectoriel K*, ol K est un corps fini quelconque. L’exercice I.8 reprend étape par étape
cette construction. Cependant, pour rester dans le cadre développé pour la transformée de
Walsh, nous allons nous restreindre au cas de 1’espace (IF2)¥.

On rappelle que I’on a une description compléte du dual F¥, puisqu’a chaque élément
a={ag,...,ar_1} € (Z/2Z)* on fait correspondre un caractére

: (Z/22) — {-11}
xa.{x:{x())"-’xk—l} — (_1)(a,x) '

Ceci nous permet de calculer, pour un groupe H C G, I’orthogonal H. En effet, dire que
Xa €H i est équivalent a

VheH, xu(h)=(-1)@n =1,

Ceci signifie donc que

VhEH, (a,h)=0sacH?', (3.6)
ol I’on a noté H' I’orthogonal de H lorsque I’on considére H comme un sous-espace
vectoriel de (IF2)X. Cet orthogonal peut étre vu bien siir comme 1’orthogonal pour la
forme bilinéaire symétrique canonique sur (IF2)¥. On peut aussi le voir comme 1’ortho-
gonal au sens de la dualité (définition (3.1)), si I’on a identifié 1’espace vectoriel (Fz)k et
son dual en identifiant la base canonique & sa base duale. Il faut faire attention cependant
au fait que I’espace orthogonal H' n’a aucune raison d’étre un supplémentaire de H, par
exemple, dans (F,)*, le vecteur (1,1,1,1) est orthogonal a lui méme. L'exercice VIIL9
étudie justement les cas oll ’espace H coincide avec son dual (il utilise le langage des
codes correcteurs d’erreurs et des actions de groupes).

Aufinal, sil’on identifie les éléments a € G et x, € G, on obtient la propriété remarquable
que H' = H'. On peut maintenant énoncer la formule de Poisson en terme d’espaces
vectoriels.

Proposition 3.3 (Formule de Poisson vectorielle). Soit H un sous-espace vectoriel de
(F)%. Soit f une fonction f : (F2)k — C. On a alors les deux relations

WORE 3, Fiu) 6
a ue

1 ~
Y fla)= H ZHf(xu)- (3.8)
acH! ue
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On rappelle que R
fa g Y (D" f).

xE(]Fz)k

Démonstration. La premiére équation est I’exacte traduction de la formule de Poisson,

avec I’identification H = H' que 1’on a mise 2 jour. Pour la deuxiéme équation, il suffit de
k

remplacer dans la premiére H par son orthogonal H. Comme |H'| = J(%U, on obtient

bien le résultat voulu.

Nous allons maintenant pouvoir appliquer la formule de Poisson a des fins combinatoires.
Le but de cette étude est de mieux comprendre la structure de ’espace (IF2)¥ lorsqu’on
le munit d’une distance un peu particuliére, que 1’on nomme distance de Hamming. Pour
I’instant, il s’agit surtout d’un exercice calculatoire, qui va permettre de révéler des rela-
tions assez spectaculaires. Cependant, nous verrons a la section 3, chap. VI, que tout ceci
a des applications dans 1’étude des codes correcteurs binaires. Mais contentons nous, dans
un premier temps, de définir cette fameuse distance.

Définition 3.4 (Distance de Hamming). Soit x et y € (F,)*. On définit la distance de
Hamming d(x,y) entre ces deux vecteurs de la fagon suivante :

d(xy)Ew(x—y) avec w(z)=§{i=0,....k—1\z#0}.
On appelle w(z) le poids du vecteur z.

La figure 2.1 représente le groupe (IF2)* oti I’on a relié les éléments 2 une distance de 1.
Dans le but d’étudier la structure d’un sous-espace H vis-a-vis de la distance d, on s’inté-
resse a la répartition des poids des mots qui forment H. On introduit alors les définitions
suivantes.

Définition 3.5 (Polyndme énumérateur). Soit H un sous-espace vectoriel de (IF,)%. On
note Ag € Z[X,Y] le polyndme énumérateur de poids de H, qui est défini par

k
AH(X,Y) det. z Xk—w(c)Yw(c) — zAiXk—iyi’
cEH i=0

ol on a noté A; le nombre de vecteurs de H de poids i.

La relation suivante, découverte par MACWILLIAMS, met en relation les poids des mots
de I’espace H avec les poids des mots de son orthogonal.
Théoréme 3.6 (Identité de MacWilliams). Soit H un sous-espace vectoriel de (F,)*.
On a alors )

At (X,Y)= WAH(X-I—Y,X -Y).

Démonstration. Soient x et y deux nombres complexes fixés. On définit alors la fonction
f € C[(F2)¥] par
Vae (Fo)f, fa)E 4@y,

Dans le but d’appliquer la formule de Poisson, il nous faut calculer f:

Va € (Fp)F, Flxa) & 2 AWy (_q)iha)
te(Fp)k



§ 3. Formule de Poisson 49

En utilisant le fait que w(t) = Zf.‘;ol t; dans N, ot ; € {0, 1}, on obtient

Vae (F)¥, f > Hxl fiyfi(— 1)t = H z)gc fiyfi(— 1)t

IE(]FZ k i=0 i=01=0
Si a; = 0, 1a somme intérieure vaut x + y, alors que si a; = 1, on trouve x —y. On a donc
Va € (]F2)k, f(xa) — (x +y)k—w(a) (x_y)w(a)'

On peut maintenant appliquer la formule de Poisson (3.8). L’égalité du théoréme est ainsi
vraie si on considére les valeurs des polynémes quel que soit le point (x,y) € C2. Elle est
donc aussi vraie en tant qu’égalité polynomiale sur Z[X, Y]. g

Cette identité, outre son intérét esthétique certain, constitue 1’outil principal pour I’étude
combinatoire des codes correcteurs. La section 4, chap. VI, reformule I’identité de Mac-
Williams dans le cadre de la théorie des codes, et explique les multiples applications qui
en découlent.

3.3 La formule de Poisson continue

La formule de Poisson que nous venons d’utiliser sur un groupe fini abélien a en fait
un énoncé semblable dans le cadre des fonctions continues définies sur R. Pour que cet
énoncé soit agréable, nous allons définir la transformée de Fourier continue de la maniere
suivante :

VfeL'(R)VxeR, Flx)% /R F()e 25y, (3.9)

On peut alors énoncer la formule de Poisson sur R. On notera avec beaucoup d’intérét que
sa démonstration est en grande partie semblable a celle faite dans le cadre des groupes
finis. La seule difficulté du cas continu réside dans les problémes de convergence des
séries manipulées, ce qui nous oblige & imposer des hypothéses plus contraignantes sur
les fonctions que 1’on analyse.

Théoréme 3.7 (Formule de Poisson continue). Soit f € L' (R) une fonction continue
telle que

WM >0,3a>1, [f(x)|<MA+x])"% (3.10)
Y |f(n)] < 4oo. 3.11)

Sous ces hypotheéses, on a

Y fn 2 fln (3.12)

Démonstration. On commence par périodiser la fonction f en introduisant la fonction

VxeR, fi(x)= z f(x+n)
Nn=-o00
Si on se restreint au compact {x € R, |x| < A}, pour A > 0, ’hypothése (3.10) permet
d’affirmer, pour |n| > 24,

|[f(x+n)| <MQA+|x+n))"* <M(1+|n|—A)"* < M(1+|n|/2)"%,
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ce qui définit le terme général d’une série convergente. On en conclut donc que sur tout
compact, la série qui définit f; est normalement convergente, donc que f; est continue.
De plus, on voit facilement que fj est 1-périodique, puisque

+00
filk+1)= 2 fr+n+1)= Y flx+n)=fi(x),
n=-00 n’=—oo
ol I’on a fait le changement de variable n’ = n+ 1 (autorisé par I’absolue convergence de
la série). On peut donc calculer ses coefficients de Fourier :

Vm € Z, Cm(fl) = /olf] (t)e_Zi””"dt= 2 /lf(t+n)e‘2immdt,

nez
ou ’'interversion entre la somme et 1’intégrale est justifiée par la convergence normale
de la série de terme général f(t +n)e~2™" pour ¢ € [0,1]. On peut ainsi poursuivre les
calculs pour obtenir, par changement de variable u =t +n,

oo
VmeZ, cm(fi)= / u)e Hmm gy — / F(u)e~2mmqy = Fm)
nez et
(la derniere égalité est justifiée par le théoréme de convergence dominé de Lebesgue,
car x — f(x)e~2"% ¢ LI(R)). On constate donc, avec I’hypothése (3.11) que la série
de Fourier associée a f; converge absolument. En utilisant en plus le fait que f; est une
fonction continue, on conclut donc qu’elle est somme de sa série de Fourier. On peut donc

écrire '
Vxe R fl Z Cm 21m7rx Z f 21m7rx.
meZ meZ

Au final, on obtient donc 1’égalité

VeR, Y flx+n)=Y, f(m)ermm,

nez meZ
ce qui donne bien la formule de Poisson voulue en faisant x = 0. d

Remarque 3.8. (Lien avec la formule de Poisson sur un groupe fini). La formule de
Poisson continue que nous venons de démontrer est en tout point semblable a la formule
(3.2), valable sur un groupe fini abélien. En effet, dans le cas continu, il faut considérer
le groupe G = R!, qui est la droite réelle munie de 1’addition, ainsi que le sous-groupe
discret Z C R. Le groupe quotient n’est rien d’autre que le cercle R/Z ~ S!. De plus,
nous verrons au paragraphe 1.1, chap. IV, que 1’on dispose d’une description compléte
des caractéres du cercle, puisqu’ils correspondent aux exponentielles e, : ¢ — A" On
dispose donc d’un isomorphisme explicite S! ~ Z. Dés lors, on peut écrire la formule de
Poisson dans le cas continu sous la forme

S )= (fien)

nez e,,E@

Donc au facteur ]I%} pres, cette formule est en tout point semblable a (3.2).

Une des nombreuses applications de la formule de Poisson concerne la fonction Théta de
Jacobi, qui est définie de la maniére suivante.
Définition 3.9 (Fonction Théta de Jacobi). On définit 1a fonction Théta par

+00

ve>0, (% Y e,

n=-oco
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Avant d’énoncer 1’équation fonctionnelle que vérifie 0, il nous faut démontrer un lemme
classique sur la transformée de Fourier d’une Gaussienne.
Lemme 3.10. Soit g;, pourt > 0, la Gaussienne définie par
X2
VxeR, gx)=e 7.

Alorson a X
VeR, g(x)=V2nte 2" v

ot I’on a conservé la définition de la transformée de Fourier (3.9).

Démonstration. La transformée de la fonction g, s’écrit

o —2 —2imux
&ilx)= | e 7e du.
R

En utilisant le théoréme de dérivation sous le signe somme, on voit que la fonction obtenue
estCl, et que 'on a

dg; 2 o
%(x) = —2i7r/Rue_7e_2'”"xdu = —4m’xg;(x),

ou la derniére égalité s’obtient par intégration par parties. En résolvant 1’équation diffé-
rentielle dont g, est solution, on obtient

2(x) = £(0)e~ 2",

Il ne reste plus qu’a calculer la valeur de g;(0) = /71, avec I = [ e=*/2dx. Pour ce faire,
il convient de passer en coordonnées polaires lors du calcul de I?:

x24y2 +00 2
12=//e__}dedy=27r/ re” 7dr=2m.
RJR 0

En mettant bout a bout tous ces résultats, on obtient bien la transformée de Fourier an-
noncée. O

Voici enfin I’identité de Jacobi sur la fonction 0.
Théoréme 3.11 (Identité de Jacobi).

Ve >0, 0(t)= %9 G) (3.13)

Démonstration. 11 suffit d’appliquer la formule de Poisson a la fonction g;. Il est évident
que g; vérifie bien les hypothéses du théoréme 3.7. On obtient ainsi I’égalité suivante :

San =Y e =3 gn = vam Y e,

nez nez nezZ nez

Ce n’est rien d’autre que I’identité que 1’on cherchait a démontrer, évaluée en 27t. O

L’un des intéréts de cette identité est de permettre de calculer la fonction 6 pour des petites
valeurs du parametre ¢, et ceci avec une précision trés grande. Par exemple, pour ¢ =
0.001, le membre de droite de (3.13) fournit instantanément le résultat avec une précision
supérieure a celle de MATLAB en double précision (qui est donnée par le commande
eps=2.2204e-016), et ceci avec simplement le terme d’indice n = 0 dans la somme.
Si on utilise de fagon naive le membre de gauche de I’identité, on observe une diminution
géométrique de I’erreur relativement lente.
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4 Exercices

Exercice I1.1 (Preuve géométrique de la réciprocité quadratique). Cet exercice est tiré
d’un article de LAUBENBACHER [45]. Nous allons détailler pas a pas la preuve de la ré-
ciprocité quadratique qu’EISENSTEIN a donnée en 1844. Cette preuve est assez originale
puisqu’elle utilise essentiellement des arguments de nature géométrique. Dans la suite de
cet exercice, on note [x], le reste de la division euclidienne de x par p (qui est toujours
un élément de {0,...,p — 1}, méme si x < 0), et |x] la partie enti¢re de x. On considere
deux nombres premiers impairs distincts p et r, et on souhaite démontrer la formule de
réciprocité quadratique (1.18).

déf.

1. Onnote A= {2,4,6,...,p— 1} et B= {[ra], \ a € A}. Montrer que I’on a

Az{[(—l)bb]p \beB}.

2. En déduire que modulo p, on a I’égalité suivante :

[T6=r% [Ja=r%" 0B T[s modp,

beB acA beB

puis que

3. Démontrer I’égalité suivante :

Zra=pz {EJ-sz.

acA aca LP beB

<£> — (_I)ZaeA lrFaJ .

p

4. Dans le but de donner une signification géométrique a cette équation, on construit
la figure 2.3. Montrer qu’aucun point  coordonnées entiéres ne se trouve sur |AB.

Montrer alors que le nombre de points d’abscisse paire dans le triangle ABD est
6gal 2 Toea | 2.

5. On considére une abscisse entiére a > g Montrer que, modulo 2, le nombre de
points d’abscisse a situés en dessous de (AB) (marqués + sur la figure) est égal au

nombre de points de méme abscisse mais situés au-dessus de (AB) (marqués X).

Montrer que ce nombre est aussi €gal au nombre de points d’abscisse p — a situés
au-dessous de (AB) (notés e). En conclure que Y ca [%J est égal, modulo 2, au
nombre de points a coordonnées entiéres dans ’intérieur du triangle AHK.

6. En échangeant les roles de p et r, puis en comptant les points dans le rectangle
ALHK, en déduire la loi de réciprocité quadratique.

En déduire

Exercice IL.2 (Théoréme de Fermat sur un corps fini). Cet exercice utilise les notations
et les résultats de 1’exercice 1.5. Soit g = p" ou p est un nombre premier. On souhaite
montrer que si k est un entier tel que g > k* + 4, alors I’équation de Fermat sur Fq

Kk =2k x,y,2 € F} 4.1)
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A
y=gl L B

X
4
L +
y=q/2 i
‘ +
. F +

Am:}u—a z=p/2 =z=a D7‘

FIG. 2.3 — Démonstration géométrique de la loi de réciprocité quadratique

a une solution. Pour ce faire, nous allons utiliser la transformée de Fourier sur le groupe
(Fgy+).
1. Soit k|g — 1. Montrer qu’il existe un unique sous-groupe H d’indice k dans Fj et
que

Hk={x"\xe]F;}.

2. On note Yo, ..., Xk—1 les caractéres multiplicatifs du groupe quotient F ;/ H;.On les
étend de maniére canonique en des caracteres multiplicatifs de F; en composant par
la projection canonique. Montrer alors que pour tout caractere additif y on a

- lk—l
fu(v) = T ;)G(Xi)ll’)-

En utilisant la proposition 1.17, montrer alors que ®(Hy) < /g, o ® est définie a
I’équation (5.1), chap. L
3. Soient Aj,A; C G. On note N et N’ respectivement le nombre de solutions des
équations
x+y=72, avec xeAl,yeAz,zelF;, (42)
x+y=u, avec x€A[,yEA, u€Hy. 4.3)

Montrer que N = kN', puis montrer que

A1||Azl(g—1
- ¢(|1(—q—2 <kv/|A1]|Az2lg. (4.4)
On pourra commencer par démontrer une inégalité similaire pour N’ en utilisant le
résultat de I’exercice 1.5, question 2.
4. Sionnote; = ff;—,f, alors montrer que si g > k2l + 4 1’équation (4.2) admet une
solution. Dans le cas ol k ne divise pas ¢ — 1, montrer que

{JJ‘\xEJF;}={xd\x€IF‘;},

oil d = pged (9 — 1,k). En déduire que le résultat est valide pour tout k vérifiant
q= K21l + 4.

w
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5. En utilisant les ensembles A} = A, = Hj, montrer que si g > k*+4, alors I’équation
(4.1) admet au moins une solution.

Exercice IL.3 (Transformée de Walsh et étude statistique). Cet exercice est tiré d’un
article d¢ ROCKMORE et MALSEN [52], qui présente une technique connue sous le nom
d’analyse de Yates, du nom du statisticien qui a inventé cette méthode. On considére
la situation suivante: un fermier souhaite connaitre I’influence de trois parameétres sur
sa production de blé. Ces parametres sont 1’éclairage (représenté par la variable a), la
quantité d’herbicide (variable b), et la quantité d’engrais (variable ¢). Chacune de ces
variables peut prendre deux valeurs: forte quantité (notée +) et faible quantité (notée —).
Un compte rendu d’expériences est donné sous la forme du tableau suivant regroupant les
valeurs pour la taille moyenne du blé (en centimeétres) sous les différentes conditions :

Oabe
69
81
63
77
61
92

— | 54

-1 —1 89

On peut donc représenter ces résultats sous la forme d’une fonction
Iz { (Z/227 ={-+P — R

|+ +|=
I+ + + +|o

I+ 1 + 1 + 1 +|=
I+ + 1
|

(a,b,¢) > Ogpe

Dans le but d’analyser ces résultats, on définit I’interaction d’ordre O, notée u, qui est
simplement la moyenne :
z Olgbc-

(a,b,c)e{+,-}3
On définit ensuite les interactions d’ordre 1, notées Ug, Up €t [4;, cOmme correspondant a
I’effet d’un seul parametre, les deux autres étant supposés constants. Par exemple on a

déf. 1 1
Ha = 4 2 Opbe— 7 z O —pc-
(byc)E{+,-}? (b,o)e{+,-}2

Dans le méme ordre d’idée, définir les 3 interactions d’ordre 2, notées L, Upc €t Hac, ainsi
que I’interaction d’ordre 3, notée u .. Comment peut-on calculer toutes ces interactions
a I’aide de la transformée de Walsh? En déduire un algorithme de calcul rapide. Faire le
calcul dans le cas du fermier.

Exercice IL4 (Ondelette de Haar). On note yj la fonction indicatrice de [0,1] et y la
fonction qui vaut 1 sur [0,4[, —1 sur [%, 1], et O partout ailleurs. On définit ensuite une
suite de fonctions y;, par

iz 1LVke{0,., 27— 1}, wa(x) L wis(x) £ 20y (2/x— k),

otin=2/"1 4. On note, pour j >0, F; I’espace des fonctions de [0, 1] dans R constantes

sur chacun des intervalles I, = [k2~/, (k+1)27/[, pour k € {0,...,2/ — 1} (on inclut le
point 1 dans le dernier intervalle).

déf.

“:

0| ==

1. Montrer que {w,,}ﬁj:ol forme une base orthonormée de F; pour le produit scalaire
usuel de L2([0, 1]).
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2. Soit f une fonction continue de [0, 1] dans R. Pour J > 0, on note f; la projection
de f sur Fj:
J 2711

HEY Y Vi) Vik
j=0 k=0
Montrer que f; converge uniformément sur [0, 1] vers f quand J — +-co. On définit
ensuite, pour n 2 0, la fonction

ﬁ‘ﬁ' z (f Wim) Y.

m=0

Montrer que f:, converge uniformément vers f lorsque n — co. Montrer ensuite
que {W,}nen forme une base de Hilbert de L?([0,1]). La figure 2.4 représente la
décomposition d’une fonction f sur les premiers vecteurs de la base des y,, que
I’on nomme base de Haar.

+(ta, f)ha + (P3, s + ...

FIG. 2.4 — Décomposition sur la base de Haar

3. On introduit, pour j > 0, les fonctions « en escalier » @ x(x) & 22y (2/x — k).
Montrer que @, pour k € {0,...,2/ — 1}, forme une base orthonormée de Fj. On
définit G;_; I’espace vectoriel tel que F; = Fj_1 @ G (espace des « détails »).

j-1 . .
Montrer que {wj,k}zl:()_l est une base orthonormée de G;_;. Exprimer ensuite la
fonction y/; x comme combinaison linéaire des @;1,s, s € {0,...,2/ — 1.

4. Soit f € Fj. On note x(© € R? le vecteur des produits scalaires x© (k] = ( £ (pj,k).
Comment les calcule-t-on a partir de f'? Pour i € {1,...,j}, on définit des vecteurs
x) et d© de taille 2/, par les relations, pour k € {0,...,2/7{ — 1},

aa. XD 2K+ 1] + 2D [24]

- V2

D2k + 1] — xU=D[24]
> :

xOk]

d(’) [k] s x(i_
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De fagon intuitive, x(!) représente la tendance dans le signal x(=1), et d @ représente
les détails. La figure 2.5 symbolise la succession des calculs a effectuer pour obte-
nir les vecteurs d() ainsi que le dernier coefficient x(/) [0]. Montrer que I’opérateur
xD (x(i+1),d(i+1)) peut étre vu comme une isométrie (plus précisément une ro-
tation) de R/—!, Montrer que les x() ont tous la méme moyenne, et donc que x()[0]
représente la moyenne du signal £ d’origine.

z = 20) 20 @ ... Y )
4 d® 4@
FIG. 2.5 — Calcul en cascade des coefficients de décomposition

5. Montrer que ’on a, pouri € {1,...,j} et pour k € {0,...,2/= — 1},

d(l) [k] = <f’ Wj—i+l,k> et x(J) [O] = (fa ‘VO) .

Gréce a cet algorithme, quel est le nombre d’opérations nécessaires pour décompo-
ser une fonction de F; sur la base des y;, ?

6. On suppose que n = 2/. Montrer que 1’opérateur I" qui 4 x € R” associe le vecteur
(d M, x@ ... dW) xU ) est une isométrie de R” pour le produit scalaire canonique
(on a mis bout 2 bout les vecteurs d®) x(), .. .). En déduire que I’application de cet
opérateur correspond a la décomposition de x dans une base orthonormée de R" que
I’on précisera. Comparer cette base a la base de Walsh décrite au paragraphe 2.1.
Comparer en termes de complexité I’algorithme de décomposition dans la base de
Haar et celui de décomposition dans la base de Walsh (algorithme FWT, paragraphe
2.2).

La figure 2.6 montre deux exemples de transformées y = I'x. On peut voir que comme
les signaux sont réguliers, seuls les coefficients correspondant aux échelles grossieres
(c’est-a-dire pour j petit, les indices de droite de la transformée) sont grands. La base de
Haar est I’exemple le plus simple de base d’ondelettes. L’algorithme de transformation
en ondelettes rapide a été introduit par MALLAT, [51]. Les différences entre les bases de
Walsh et de Haar illustrent le passage de la transformée de Fourier (ici sur (F 2)") ala
transformée en ondelettes. L’exercice VIL.11 présente la construction d’ondelettes sur les
corps finis.

Exercice I1.5 (Compression d’images). Le but de cet exercice est d’ordonner de fagon
appropriée les fonctions de Walsh pour réussir a compresser des signaux 1D et 2D.

1. Généraliser la transformée de Walsh discréte au cas bidimensionnel. On utilisera
les fonctions

Xi, j(8:) = %i($) % (t)-
Ecrire un algorithme de calcul rapide de la transformée de Walsh 2D.

2. Montrer que I’on peut classer les fonctions de Walsh discrétes (définies a 1’équation
(2.1)) par ordre croissant du nombre de changements de signe. La figure 2.7 montre
les matrices de Walsh obtenues en classant les fonctions dans 1’ordre usuel et dans
I’ordre du nombre de changements de signe.
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3.

Signal original Transformée de Haar discréte
35 100
30
% 50
20
15
10 - or-
5
G i : . " " _so
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1
Signal original Transformée de Haar discréte
1 4
!
3 o
05 .
s n 2
N i)
0 .
1
-05 . ol. . :
-1 Te el 4 s
0 .02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 2.6 — Exemples de transformées de Haar discrétes

Intuitivement, un tel classement permet d’ordonner le spectre de Walsh depuis les
tendances (basses fréquences) jusqu’aux détails (hautes fréquences). Calculer pour
quelques fonctions les spectres obtenus avec les deux classements, et vérifier cette
interprétation. La figure 2.8 montre les spectres de la fonction représentée en haut
a gauche de la figure 2.9.

. Nous avons donc classé les fonctions de Walsh selon un ordre ¥;, ..., Xiy- On consi-

dére un signal f € CN. Pour 0 < n < N, on construit la fonction

n
fn g z (f,xik>xik'
k=0
Expliquer pourquoi ce procédé permet de compresser le signal f. La figure 2.9
montre la compression progressive d’un signal. On indique a chaque fois le pour-
centage de coefficients de Walsh qui ont été conservés. Apres avoir étudi€ la trans-
formée de Fourier discreéte au chapitre III, on pourra effectuer le méme procédé,
mais avec le spectre de Fourier. Quels sont les avantages et les désavantages de
chaque méthode (temps de calcul, qualité de la reconstruction, etc.) ?

. Quel(s) classement(s) peut-on adopter pour les fonctions de Walsh 2D ? La figure

2.10 propose un tel classement (de gauche a droite et de haut en bas). Appliquer
ce classement pour compresser des images 2D. Ecrire un programme MATLAB
permettant d’effectuer cette compression. La figure 2.11 montre la compression
progressive d’une image représentant la lettre A.

Exercice I1.6 (Matrices de Hadamard). Cet exercice fait la liaison entre les matrices de
Walsh considérées au paragraphe 2.1 et les résidus quadratiques introduits au début de ce
chapitre. Une matrice H,, de taille n x n, dont les entrées sont +1 ou —1, est dite matrice
de Hadamard si elle vérifie

H,H,T = nld,,
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Ordre naturel Ordre par nombre de changements de signes

FIG. 2.7 — Deux facons de classer les fonctions de Walsh

Specire, ordre naturel
T T

[ 50 100 150 200 250

Speclre, ordre par nombre de changements de signe
T T T T T

s
0 50 100 150 200 250

FIG. 2.8 — Spectre de Walsh d’un signal 1D

ot on a noté H,T la matrice transposée de H,.

1.

2.

Expliquer pourquoi la matrice W, définie 2 la proposition 2.4, pour n = 2%, est une
matrice de Hadamard.

Montrer que s’il existe une matrice de Hadamard H,, de taille n x n, alors, n vaut
1, ou 2, ou est un multiple de 4. On pourra commencer par montrer que 1’on peut
supposer que H, est normalisée, c’est-a-dire avec des 1 sur la premiere ligne et la
premiére colonne. Ensuite on montrera que si n 2> 3, on peut supposer que les trois
premieres lignes de H,, s’écrivent sous la forme

1 ...11 ... 1 1 ... 1 1 .. 1
1 ...1.1 ... 1 -1 .. -1 -1 .. -1
1 1 -1 -1 1 1 -1 ... -1
. — N ~ 7 - —
i J k l

ou les entiers i, j, k, et I désignent les longueurs de chaque portion (ils peuvent
éventuellement étre nuls). Enfin, on montreraque 'on aen faiti = j=k=1.

. Le probléme inverse, & savoir 1a construction d’une matrice H, pour un n multiple

de 4 donné, est tres complexe. En fait, on conjecture qu’il est toujours possible de le
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M W M W j-

FIG. 2.9 — Compression d’un signal 1D
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FIG. 2.10 — Classement des fonctions de Walsh 2D

faire, bien qu’on ne 1’ait pas encore prouvé. On suppose que n = p+ 1, oll p est un
nombre premier impair. On suppose aussi que n est un multiple de 4, et nous allons
montrer que I’on peut alors construire une matrice H,. Nous utiliserons le caractére
de résidu quadratique modulo p, noté 1, qui est défini a 1’équation (1.2). On définit
une matrice Q de taille p x p par

0= {n(j- 1) }osi, j<p-1-

Montrer que Q est anti-symétrique, et que I’on a QQT = pld, —J, ou J est la matrice
dont toutes les entrées valent 1. Montrer aussi que ’on a QJ = JQ = 0. Une telle
matrice est appelée matrice de Paley.

4. On définit maintenant la matrice H, de taille n X n par

déf. 1 v
H, = (vT Q—Id,,)’

ol on a noté v = (1,...,1) € RP. Montrer que H, est une matrice de Hadamard.



60 Chapitre II. Applications de la dualité sur un groupe fini

50% 40%

i)

10%

100% 80%

AA
AA

FIG. 2.11 — Compression d’une image 2D

Voici un exemple pour p =7:

11 1 1 1 1 1 1
1 -1 1 1 -1 1 -1 -1
1 -1 -11 1 -1 1 -1
1 -1 -1-11 1 -1 1
11 -1 -1 -1 1 1 -1
1
1
1

Hgg
-1 1 -1 -1 -1 1 1
1 -1 1 -1 -1 -1 1
1 1 -1 1 -1 -1 -1

5. Soit A une matrice de taille # x n telle que ses entrées a;; vérifient
V(i,j) € {la .. .,I’l}2, |aij| <L
Montrer I’'inégalité de Hadamard :
| det(A)| < nZ. @4.5)

Montrer que s’il existe une matrice de Hadamard, alors cette derniére atteint cette
borne.

Linterprétation géométrique de la borne (4.5) est treés simple. Il s’agit de considérer un
systeme de n vecteurs (les colonnes de la matrice) a 1’intérieur du cube |x;| < 1, (ot on note
{xi}’, un systéme de coordonnées), enfermant un parallélépipéde rectangle de volume
maximal. Dans le cas des matrices de Hadamard, ces vecteurs sont des grandes diagonales
du cube, et sont donc de longueurs maximales. De plus, elles sont orthogonales, de fagon a
produire le volume maximal. Dans les dimensions ol les matrices de Hadamard n’existent
pas, il n’est pas possible de produire des diagonales orthogonales, méme si I’on pense
que les vecteurs qui minimisent (4.5) sont proches des grandes diagonales. Ceci reste un
probléme ouvert.

L’exercice VI.11 présente une application des matrices de Hadamard pour la construction
de codes correcteurs bi-orthogonaux.

Exercice I1.7 (Produit tensoriel matriciel). Soit A une matrice carrée de taille s et B une
matrice carrée de taille z. On définit le produit tensoriel A ® B comme la matrice de taille

sXt
a11B alsB
def. .

AR®B= :
agB -+ agB
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1. On suppose que A vérifie AA* = sId;. Montrer que A®” = A ®--- ®A (n produits)
vérifie A®" (A®")* = s"Idg.
2. Quel rapprochement faire avec la transformée de Walsh ?

3. En vous inspirant de 1’algorithme rapide FWT, écrire un algorithme rapide qui cal-
cule la transformée y = A®"x. Comment se calcule la transformée inverse ?

4. On prend comme matrice de base

Aagﬁ(cos(a) sin(a) )

sin(at) —cos(a)
En quoi la transformée x — A%"x peut étre vue comme une transformée de Walsh
intermédiaire ?

La figure 2.12 montre les transformées d’une fonction « triangle » pour des valeurs de
o dans [0,7/2]. La transformée de Walsh ordinaire correspond a la 5®™¢ courbe. Pour
o = 1/2, on trouve le signal d’origine symétrisé. On pourra regarder 1’exercice VIIL7,

0=0.00 0=0.20 0=0.39 0=0.59 0=0.79 (Walsh)

-100 : 2 " oL
0 20 0 20 0 20 0 20

FIG. 2.12 - Transformée de Walsh intermédiaire

qui utilise la théorie des représentations linéaires pour construire une matrice A de taille
8.

Exercice ILI.8 (Généralisation de I’identité de MacWilliams). Dans cet exercice, on
propose d’étendre I’identité de MacWilliams au cas de I’espace vectoriel E = ]F‘";.

1. On définit la forme bilinéaire suivante sur E x E, a valeur dans [, :

p—1
V(a,x) € E%, (a,x) = Y aixi.
i=0
Expliquer en quoi elle représente la forme bilinéaire de la dualité (crochet de la
dualité) entre 1’espace E et son dual E* (correctement identifié a F).

2. On note y le caractére additif canonique de IF,, comme défini par I’équation (1.6).
Soita = {ag,...,ar_1} € (Z/qZ)*. On définit

| E — C*
"{ x — q((ax)

Expliquer pourquoi les applications ¥, permettent de définir un isomorphisme entre
E et son dual en tant que groupe additif, E.
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3. Soit H un sous-groupe de E. Montrer que c’est aussi un sous-espace vectoriel. Dé-
duire de la question précédente que 1’on peut identifier I’orthogonal de H pour la
structure de groupe, noté H¥, et celui pour la structure d’espace vectoriel, noté H-.

4. Démontrer I’identité de MacWilliams dans le cadre de 1’espace E :

1
Ay (X,Y) = mAH(X+ (g—-1)7,X -Y).

Exercice IL9 (Formule de Poisson et distributions). Cet exercice demande certaines
connaissances en théorie des distributions, notamment la définition de la transformée de
Fourier d’une distribution. Ici on prend comme convention la transformée définie a 1’équa-
tion (1.1), chap. IV, qui différe d’un facteur 27 de celle employée en (3.9). On note I1; le
peigne de Dirac de pas s, c’est-a-dire

ILEY &, (4.6)
keZ

ol & est la distribution définie par (&, ) = ¢(t) pour ¢ € ;°(R) (fonctions de classe €
a support compact). Montrer que la formule de Poisson (3.12) implique 1’égalité suivante :

Iy = —IlIu.
A) s

Exercice I1.10 (Echantillonnage de Shannon). Soit 7 > 0. On note
= [—E E] et Er= {fELZ(R) \ Supp(f) CIT}.

Soit f € ET. On veut démontrer le théoréme d’échantillonnage de Shannon, qui dit que
f peut étre reconstruite (interpolée) a partir des échantillons f(nT), pour n € Z. D’une
facon plus précise, si on note

sincp (1) % % @7)

alors on veut montrer que

f@) £ z f(nT)sincy (¢t —nT).
neZ
1. Montrer que f estde classe €.
2. On note f; la distribution qui correspond a 1’échantillonnage de f :

[ Y f(nT)8ur.

nez

En utilisant 1’égalité (4.6), montrer que ’on a

~

~ 1
0] < 7 = fu(@) = = f(@).

3. Calculer la transformée de Fourier inverse de la fonction indicatrice de I’intervalle
It. En déduire le théoréme d’échantillonnage.

4. Montrer que la famille { — sincr (¢ —nT) }nez forme une base orthogonale (base de
Hilbert) de I’espace Er. Comment se calcule la projection d’une fonction f € L?(R)
sur cet espace?



Chapitre lli
Transformée de Fourier discréte

Le développement de I’informatique au cours des années
1960 a donné beaucoup d’importance aux programmes de
calcul rapide. [...] Des programmes de calcul rapide de
transformée de Fourier (FFT) furent créés a cette époque
et leur usage se répandit immédiatement & une vaste
échelle, en méme temps que la réputation de leurs
initiateurs, Cooley et Tukey.

JEAN-PIERRE KAHANE [38] (1998)

L’utilisation de la transformée de Fourier discréte est a la base de la quasi-totalité des
algorithmes numériques digitaux. La découverte de 1’algorithme de transformation rapide
FFT (pour Fast Fourier Transform, en frangais Transformée de Fourier Rapide) a révo-
lutionné I’univers du traitement du signal en permettant des calculs numériques en des
temps raisonnables. C’est en grande partie cette découverte qui a fait comprendre que
I’on pouvait travailler de fagon aussi rapide dans le monde digital (constitué de signaux
discrets) que dans le monde analogique (constitué de signaux continus). De plus amples
détails sur I’histoire de cette découverte, et de ces conséquences, se trouvent dans 1’article
de ROCKMORE [60]. Plus qu'un simple cas particulier de la transformée de Fourier sur un
groupe fini, la transformée de Fourier discréte posséde son propre langage et surtout des
algorithmes efficaces nettement moins évidents que les formules limpides du chapitre pré-
cédent. Ce chapitre vise en quelque sorte a faire un tour du propriétaire ; il montre en tout
cas que la multitude d’algorithmes FFT existants est impressionnante. Mais le plus im-
portant, au-dela d’une compréhension totale des différentes déclinaisons de 1’algorithme,
est de percevoir la stratégie de 1’algorithme, pour pouvoir décider, le cas échéant, quelle
implémentation utiliser.

L’algorithme FFT en version décimation temporelle est relativement bien décrit (et surtout
bien implémenté) dans les NUMERICAL RECIPES [31]. En ce qui concerne la version
décimation fréquentielle ainsi que de nombreuses améliorations, on se réferera au livre de
BRIGHAM [11]. Pour des détails d’implémentation en langage C, on pourra regarder le
livre de ARNT [2].

1 Lelangage du traitement du signal

Dans ce paragraphe, nous allons traduire les propriétés algébriques de la transformée
de Fourier dans le langage de la théorie des signaux discrets. Dans un premier temps,
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nous nous restreindrons a une étude unidimensionnelle (pour présenter les algorithmes
et quelques applications), puis nous ferons le lien entre la transformée de Fourier sur un
groupe abélien produit et la transformée de Fourier discréte en dimension deux et plus.

Pour fixer les idées, nous allons considérer des signaux temporels a valeurs complexes.
Ces derniers correspondent & des fonctions f : t € R — f(¢) € C. Pour traiter de fagon
numérique ce signal, nous n’allons considérer qu’un nombre fini de valeurs du signal, et
travailler sur ces valeurs. On nommera donc échantillon de taille N du signal original f le
vecteur f = {f[n]}¥_l, ot 'on a noté f[n] = f(a) 1a valeur du signal f a I’instant .. La
notation entre accolades est censée rappeler que 1’on considére nos vecteurs comme des
échantillons d’un signal (continu), mais il arrivera que 1’on considére ces éléments comme
de simples vecteurs de CV. Pour que I’analyse qui suit ne soit pas biaisée (particuliérement
lors du rapprochement avec la transformée continue a la section 1, chap. IV), les valeurs
des {t,,}f:’;()1 sont supposées espacées régulierement dans un intervalle [a,b], c’est-a-dire
th = a+°gn.

Définition 1.1 (Transformée de Fourier discréte). On définit la Transformée de Fourier
discréte (en abrégé TFD) de I’échantillon f = {f [”]}Q:ol comme étant le vecteur f =

{]‘\[k]}f:’;o1 e CVN avec
R N—1
flk) & Zf[n]a)ﬁ”" pourk=0,...,N—1, (1.1)
=0

ot I’on a noté @y = eV une racine N€me primitive de 1’unité.
On notera aussi Z (f) = f, ce qui permet de définir

(CN _ (CN
y{ f o FH=F"

Cette notation peut préter a confusion avec la transformée de Fourier sur un groupe fini
définie par 1’équation (4.1), chap. I, cependant, la grande similitude entre les deux appli-
cations (tout ceci est justifié un peu plus bas) fait qu’il est commode d’employer la méme
notation.

Remarque 1.2. On aurait pu choisir une autre racine primitive de I’unité a la place de
wy. Cela revient a choisir un autre générateur pour le groupe de départ Z/NZ, et donc a
numéroter dans un ordre différent les éléments de f.

Remarque 1.3. (Lien avec la transformée de Fourier sur un groupe fini). Nous avons
déja vu a la section 1.2, chap. I, que les caractéres ( xk)f:’:_Ol sur le groupe cyclique Z/NZ
peuvent étre définis par

Vs €Z/NZ, xi(s) = wy. (12)

On remarque que notre échantillon f € CV permet de définir une fonction f; : Z/NZ — C,
et réciproquement. On peut faire le lien entre transformée de Fourier discréte et carac-
téres :

FlK = fi()-

On peut donc réécrire la formule d’inversion de Fourier de la proposition 4.4, chap. I, en
termes de transformée de Fourier discréte.
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Proposition 1.4 (Transformée de Fourier inverse). On a la formule d’inversion sui-
vante :

N-1
Vn=0,....N—1, f[n]=llv S Kok, (1.3)
k=0

Corollaire 1.5. % : CN — CV est un isomorphisme d’espaces vectoriels.

Rappelons aussi la formule de Plancherel.
Proposition 1.6 (Formule de Plancherel). Soient f et g deux échantillons de taille N.
On a la formule suivante :

N - 1 N -
> flilgll = 3 .
i=0 i=0

2 Transformée de Fourier rapide

The discrete Fourier transform can, in fact, be computed
in O(Nlog, N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between
Nlog, N and N? is immense. With N = 109, for example,
it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle
time computer.

W.H. PRESS et Al. [31] (1988)

Ce paragraphe se veut directement tourné vers les applications informatiques de la TFD.
I1 ne nécessite pas de connaissance en théorie des groupes. Les connexions entre 1’algo-
rithme FFT et I’algébre sont discutées dans certains exercices, par exemple lors de 1’étude
de la méthode de Good-Thomas I11.2. En paralléle a la lecture de ce chapitre, il faut bien
slir avoir un ceil sur les algorithmes référencés au paragraphe 3, annexe A, pour faire le
lien entre implémentation concréte et formules mathématiques.

2.1 Présentation de I’algorithme
Pour un signal f dont on connait un échantillon { f[n] }f:';ol, le calcul direct des N coeffi-
cients de la transformée de Fourier discréte

N—-1 .
FES flae pourk=0,...,N—1 @2.1)
n=0

nécessite 2N? opérations (additions et multiplications complexes). L’algorithme FFT per-
met, en réordonnant les calculs de maniére dichotomique, de réduire considérablement le
temps de calcul en le ramenant & un ordre de O(Nlog(N)). Dans tout ce chapitre, nous
allons présenter différentes versions de 1’algorithme FFT, en commengant par la version
originale, et sans doute la plus simple, 1’algorithme de COOLEY et TUKEY. Cependant,
nous verrons que cet algorithme s’est décliné en un nombre quasi infini de versions plus
savantes les unes que les autres, pour s’adapter a différentes conditions (longueur des
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vecteurs principalement), et obtenir le résultat toujours plus rapidement. Derriere une
transformation en apparence trés simple, la TFD, se cache donc une multitude d’idées de
nature combinatoire et algébrique.

Avant de nous lancer dans une description périlleuse de 1’algorithme, notons un fait ras-
surant : nous allons pouvoir réinvestir facilement notre algorithme pour calculer la trans-
formée inverse, comme le précise la remarque suivante.

Remarque 2.1. (Transformée inverse). On remarque que la formule de transformée in-
verse (1.3) peut s’obtenir en remplagant wy par @y, I dans I’algorithme de calcul, puis en
divisant le résultat par N. En conséquence, on peut aussi calculer la transformée de Fou-
rier discréte inverse en temps O(Nlog(N)), en modifiant de fagon évidente 1’algorithme
utilisé. De fagon plus synthétique, en considérant I’échantillon { f; [n]}ﬁ’;ol défini par

Wne(l,..N-1}, fill=g/N-n A% f0)

on dispose d’une écriture de la transformée de Fourier inverse de f en terme d’une trans-
formée de Fourier directe :
-1
(f) =ZF(H).

L’algorithme que nous nous apprétons a décrire a été découvert par COOLEY et TUKEY
en 1965. 11 permet, lorsque 1’on dispose d’une « bonne » décomposition de 1’entier N,
de calculer la transformée de Fourier discréte de facon trés rapide. Nous verrons dans
la suite de ’exposé d’autres algorithmes qui permettent d’exploiter certaines décompo-
sitions moins optimales de N. Cependant, dans cette premiere approche de 1’algorithme
FFT, nous allons supposer que N = 2”. Cette factorisation tres simple de N va permettre
d’employer la célébre « philosophie » diviser pour régner, en effectuant une progression
dichotomique dans le calcul de la TFD. Pour mettre en ceuvre cette dichotomie, regrou-
pons les termes de 1a somme d’une TFD suivant la parité des indices.

On obtient alors, pour k € {0,...,N—1},

N1 N/2-1
f[k] z f[2n]e-2mk (2n)/N + z f[2n + l]e 2imk(2n+1)/N (2.2)
n=0 n=0
N/2—-1 N/2-1
— Z f[zn]e—2inkn/(N/2) —k 2 f[2n+ l]e—ZIﬂkn/ N/2) (23)
n=0 =0

ot ’on a noté wy = €2™/N_ Donc si on note

=10, 112),.... FIN—2]} (2.4)
f]g{f[ll’fb]’“-sf[N_l]} (25)

les vecteurs d’indices pairs (resp. impairs) formés a partir de f, on remarque que pour les
N/2 premiers indices k € {0,1,...,N/2—1}, I’équation (2.3) s’écrit comme la somme de
deux transformées de Fourier discrétes :

7 = £l + o £ . 26)
Pour les indices k € {N/2,...,N — 1}, si on note k' = k — N/2, en utilisant le fait que
les vecteurs fO et f! représentent des échantillons de période N/2, et que @} = —@f on

obtient cette fois la différence de deux transformées de Fourier :

Flk) = PO - o F1K). @7
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Définition 2.2 (Quelques notations). Pour résumer tout ceci sous une forme plus algo-
rithmique, notons

Fe 2 { PO, ..., v /2 - 11} 28)
T & {Fwya fin2+1),.. fiN-11}. 2.9)

Ce sont les parties droite et gauche du vecteur transformé f= Z (f). Nous allons aussi
définir 1’opérateur 73, pour x € R, qui prend un vecteur a = {ao,...,an—1} € CV de
longueur N et renvoie

oy N=1 N-1
o {aje ¥} = ,wN”}_ jec. (2.10)
Jj= =

On a alors I’expression treés simple de la récurrence que nous allons utiliser pour implé-
menter I’algorithme FFT :

fg=fA°+ AL @.11)
= ‘/2 2.12)

Les équations (2.11) et (2.12), aussi appelées équations de Danielson-Lanczos, expriment
le fait que la transformée de Fourier discréte d’un signal de longueur N peut se calculer en
fonction de deux signaux de longueur N/2, ici notés f° et f1. On appelle cette approche
décimation temporelle (en anglais Decimation In Time, ou DIT), par opposition a une
autre approche, la décimation fréquentielle, qui sera décrite rapidement au paragraphe
2.6. C’est la décimation temporelle qui va étre développée (et optimisée) au paragraphe
suivant, mais avant toute chose, commengons par présenter une implémentation naive.

Remarque 2.3. (L’effet papillon). L’opération consistant & mélanger deux entrées des
parties paire et impaire d’un vecteur en suivant les équations (2.11) et (2.12) est appelée
schéma papillon (en anglais butterfly scheme). La figure 3.1 montre de fagon schématique
les opérations effectuées. Elle donne aussi une idée du cablage a réaliser pour effectuer
une telle opération directement sur une carte dédiée au traitement de signaux. En effet,
comme le montre la figure 3.2, une itération dans 1’algorithme FFT (ici pour une entrée
de taille 8) n’est qu’une succession de schémas papillons effectués en cascade.

La fagon la plus simple de mettre en ceuvre les équations (2.11) et (2.12) est d’utiliser une
procédure récursive. C’est un fait connu qu’une procédure récursive puisse étre écrite, au
moyen de boucles, de fagon non récursive (mais ce procédé peut étre parfois périlleux).
Nous verrons au paragraphe suivant 2.5 que ’algorithme FFT a beaucoup & gagner a étre
écrit de fagon non récursive, et ce, pas seulement a cause d’un gain de temps. Mais dans
un but pédagogique, et afin de présenter quelques optimisations qui peuvent &tre faites
sur I’implémentation de la FFT, nous allons nous attarder sur I’implémentation récursive
écrite a la section 3, annexe A.

La procédure fft_rec prend donc en entrée un entier dir qui vaut +1 ou —1 selon
que la transformée de Fourier est directe ou inverse. Pour simplifier la compréhension du
code, une procédure operateur_s a été écrite pour réaliser I’opérateur 7 : elle prend
en entrée un vecteur ainsi qu’un nombre réel x (qui dépend du signe de la transformée).
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i Entrée §§

Indice

Sortie

FIG. 3.1 — Schéma papillon élémentaire

2.2 Analyse du coiit

En utilisant les équations de récurrence (2.11) et (2.12), on calcule facilement le cofit de
I’algorithme.

Proposition 2.4 (Complexité de la FFT). Si on note C(N) le coiit de I’algorithme FFT
pour une entrée de longueur N, alors C(N) vérifie I’équation fonctionnelle

C(N)=2C(N/2)+KN,
ou K est une certaine constante. Au final, on arrive a I’expression C(N) = KNlog,(N).

Démonstration. Le calcul de f nécessite le calcul de f1 et £2 (soit 2C(N/2) opérations),
puis le mélange des deux transformées par le schéma papillon (soit K N opérations). Pour
se ramener 2 une récurrence linéaire, il suffit de poser P = log,(N), et C'(N) = %
vérifie 1’équation fonctionnelle C'(P) = C'(P — 1) + K. Comme C’(0) = 0, on en déduit

C'(P) = KP, ce qui permet de conclure. O

L’algorithme FFT peut sembler un peu magique, toujours est-il que sa découverte a rendu
possibles de nombreux calculs en réduisant le cofit du calcul de N coefficients de Fou-
rier de O(N?) pour une approche naive 2 O(Nlog(N)). Sa découverte assez récente (au
milieu des années 1960) a été une mini révolution : un calcul qui nécessitait jusqu’alors
deux semlaines sur un ordinateur de 1’époque était tout a coup réalisable en a peine trente
secondes ".

2.3 Variations autour de I’algorithme

Avant de décrire une implémentation plus efficace de 1’algorithme FFT, faisons quelques
remarques complémentaires, qui fournissent de nombreuses variations autour de I'implé-
mentation récursive proposée.

Remarque 2.5. (Longueur des entrées). Dans le cas ou la longueur N des données
d’un échantillon {f [n]}nN;O1 ne serait pas une puissance de deux, on peut faire un calcul

1. Source : [31], pour N de I’ordre de 108
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| Vecteur de taille 8 |

) J
| Indices {0,2,4,6} || Indices {1,3,5,7} |
! )

[ FFT (taille 4) |[ FFT (taille 4) |

| Indices {0,1,2,3} || Indices {4,5,6,7} |
) )

| Vecteur de taille 8 |

FIG. 3.2 — Une itération de I’algorithme FFT

approché en complétant 1’échantillon par une suite de zéros, pour obtenir un échantillon
{fi[n] 24= '01, avec M = 2P, Bien sfir, on ne calcule plus exactement la méme transformée,
mais dans le cas d’un calcul approché (calcul de transformées continues, comme c’est
expliqué a la section 1, chap. IV), cela revient a calculer la transformée & des fréquences
légerement différentes, ce qui est souvent acceptable.

Remarque 2.6. (Base de calcul). Les équations (2.11) et (2.12) qui nous ont servi pour
implémenter 1’algorithme sont la conséquence du partage des vecteurs en deux sous-
vecteurs de taille N/2. C’est ce que 1’on appelle une FFT en base 2 (radix-2 en anglais).
On peut penser utiliser une autre base, par exemple 4, ce qui ameéne a considérer des
sommes des quatre sous-FFT de longueur N/4. L’avantage d’un tel choix (par rapport
a la base 2) est que I’on évite de faire les calculs évidents des racines quatriémes de
I’unité (qui sont codées simplement par des soustractions a la place d’additions dans les
formules), ce qui diminue un peu le nombre d’opérations a effectuer. Par contre, il faut
faire attention, car les signes ne sont pas les mémes pour la transformée directe et pour la
transformée inverse. Pour écrire les notations, introduisons les sous-vecteurs fo, f 1 f2 et
£3, de longueur N/4, qui sont construits a partir de f en ne considérant que les indices
congrus respectivement a 0, 1, 2 et 3 modulo 4. On utilise aussi ¢ qui vaut +1 pour la
transformée directe, et —1 pour la transformée inverse. Pour discerner les différentes por-
tions de longueur N/4 du résultat, on écrira f(o/ 4) pour le premier quart, etc. Voici les
équations :

FOM=Aaf + AP+ SR+ P
PR =g~ oAt = S+ AP

0/4 75 1/4 3 2/4 75 3/4
FeM— il = A+ TP - FP

Fo_ WP iesR - SR s
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En choisissant une base p quelconque, et en réalisant des calculs analogues, on peut ma-
nipuler des vecteurs de taille p°, ce qui peut étre avantageux. Voici d’ailleurs la formule
de récurrence en toute généralité :

Proposition 2.7. On garde les notations définies précédemment, mais cette fois pour le
calcul d’une TFD en utilisant une base p 2 2. On a les équations

pl 2 ~
— _ —c4ry, k/
¥g=0,...,p—1, fP)= 2=0e Trk AP .

Remarque 2.8. Bien sir, cette formule n’est intéressante en pratique que quand on sait

2ix
calculer explicitement et simplement les facteurs e » kq, par exemple pour p = 2,4,8.
L’exercice III.3 montre comment, en mélangeant a la fois des transformées en base 2
et en base 4, on peut optimiser encore un peu le nombre d’opérations.

2.4 La transformation de Cooley-Tukey

Nous venons donc de voir un algorithme FFT qui permet de calculer trés rapidement la
transformée de Fourier d’un vecteur dont la taille est 27. Mais que se passe-t-il si la taille
N du signal ne s’écrit pas sous cette forme ? La solution de facilité, si on se contente de
faire des calculs approchés, consiste & ajouter des zéros pour atteindre une taille raison-
nable, qui sera bien entendu la puissance de 2 immédiatement aprés N. Mais souvent, on
ne peut pas agir aussi directement, et il faut trouver un algorithme plus fin, pour tirer parti
d’autres propriétés de 1’entier N. C’est ainsi que de nombreuses autres versions de 1’algo-
rithme FFT ont vu le jour depuis I’article fondateur de Cooley-Tukey. Dans ce chapitre,
différentes variantes de 1’algorithme sont présentées, et certaines permettent réellement
de se tirer de mauvaises passes (par exemple 1’algorithme de Good-Thomas ou celui split-
radix, présentés aux exercices II1.2 et I1I.3).

Dans le cas ol le nombre N est un entier que 1’on sait factoriser, il y a cependant une
méthode trés simple, qui consiste a regarder de plus pres le travail effectué par la méthode
de Cooley-Tukey dans le cas ot N = 2° =2 x 2°~ 1, Ainsi, sans que N soit nécessairement
une puissance de 2, supposons que 1’on dispose d’une factorisation N = p x g. Dans le
cas ol les entiers p et g sont premiers entre eux, une remarquable propriété algébrique
(Ie lemme chinois) permet d’optimiser les calculs, et donne naissance a 1’algorithme de
Good-Thomas déja cité. Mais pour I’instant, ne nous préoccupons pas de tels raffinements,
contentons-nous de suivre pas & pas les transformations déja effectuées « a la main » au
paragraphe 2.1. Rappelons la définition de la TFD d’un vecteur f € CV :

_N-l
E Zf[n]coA_,k" pour k=0,...,N—1. (2.13)
=0

L’idée clef pour obtenir une factorisation de cette expression est de réaliser un changement
de variables en utilisant les deux bijections suivantes :

I {o,...,q—1} x{0,...,p—1} — {0,...,N—1}
¢ (a,b) —  ap+b

[ {o,....p—1}x{0,....,q—1} — {0,...,N—1}
W'{ i (c,d) ! — cq+d ’
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On peut en effet réécrire la somme (2.13) sous la forme

- q—1p—1
mmm=%%mWWW%wmn
a=0p=

p—1 q-1
= ¥ oy DY 079 f(p(a,b)).
b=0 a=0

Si on note fy[a] = f[¢(a,b)] (ce qui correspond a ne prendre qu’une colonne de £, si on
la représente sous la forme d’une matrice de taille p x g), alors on obtient

~ p-l ~
fvted) =3, @y (wy™Fla))- 2.14)
b=0

Nous avons donc réussi a modifier I’algorithme de calcul pour obtenir un algorithme
fonctionnant en 2D, sur la matrice de taille p x g que constitue F = { f[¢(a,b)]}4- En
fait, si nous n’avions pas les termes parasites wﬁbd (souvent appelés « twiddle factor »
en anglais, voir 1’exercice III.3), nous serions simplement en train de calculer la TFD
bidimensionnelle de la fonction 2D F (que 1’on peut aussi considérer comme une image).

Si I’on compte le nombre d’opérations nécessaires pour calculer la TFD de f par cette
méthode, on obtient Cpg(p + q), ot C représente une constante prenant en compte le
temps de calcul des additions et multiplications complexes. Mais ’intérét de la méthode
est que 1’on peut I’appliquer récursivement sur chacune des sous-TFD a calculer. Ainsi,
si N se factorise sous la forme p; X py X --- X ps, on obtient un nombre d’opérations
proportionnel a2 NY, p;. Bien sir, dans le cas ot N = 2%, on retrouve 1’algorithme FFT
traditionnel déja décrit au paragraphe 2.1. Cependant, on voit qu’avec un peu d’adaptation,
on peut aisément prendre en compte des N admettant des décompositions plus complexes.
Attention cependant a ne pas tomber dans un excés d’optimisme : cette méthode va étre
totalement inefficace lorsque N se factorise mal. Il faut dans ce cas opter pour d’autres
approches, comme celle suggérée a 1’exercice V.9. De plus, lorsque la factorisation N =
pq possede des particularités (typiquement si p et g sont premiers entre eux), il existe des
algorithmes plus optimisés, comme celui de Good-Thomas présenté a I’exercice II1.2.

2.5 Implémentation concréte

L’implémentation naive présentée au paragraphe 2.1 (dans le cas N = 27) souffre de
nombreux points faibles, parmi lesquels on peut relever :

— une structure récursive : les appels récursifs nécessitent des instructions systémes sup-
plémentaires, ce qui fait perdre beaucoup de temps.

— une utilisation de mémoires temporaires : le calcul explicite des deux sous-vecteurs f°
et f! de taille N/2 est a I’évidence une perte de mémoire énorme (puisque 1’on crée de
T’information redondante).

Nous allons voir dans ce paragraphe comment implémenter une routine qui permet de
résoudre ces deux problémes d’un seul coup. L’idée principale est de réarranger le vecteur
de départ. On veut que les éléments du vecteur soient rangés de fagon a ce qu’a chaque
subdivision (sous forme de deux vecteurs de taille moitié), le premier vecteur soit les N /2
premiéres entrées, et le deuxiéme vecteur soit les N /2 derniéres (et non pas les indices
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pairs et impairs). Pour une implémentation dans un langage classique (C ou C++ par
exemple), le gain sera énorme : par I’utilisation de pointeurs (ou, pour les non-initiés, en
déplacant le début du tableau), la seule mémoire utilisée par le vecteur d’origine permet
de loger les deux sous-tableaux.

Dans la suite, nous allons noter les indices sous forme binaire, c’est-a-dire
p—1
i= [ip_l . ..i()]b = z ;2"
t=0
Notre but est de démarrer 1’algorithme avec un vecteur g = { f[n,(0)],..., f[n,(N — 1)},

ol i — np(i) désigne une permutation des indices. On veut que lors de 1’application de
I’équation de Danielson-Lanczos

glk] = g0k] + wy*g! K], (2.15)
le vecteur g° soit constitué des entrées de f d’indices 0, ...,N /2 —1, etque le vecteur g!
soit constitué des entrées de f d’indices N/2,...,N — 1. Ainsi le partage de g en deux

s’effectue sans avoir a déplacer de valeurs dans la mémoire de I’ordinateur. Pour que cette
construction marche encore lors des appels récursifs sur g0 et g!, ces deux sous vecteurs
sont, eux, permutés depuis f° et f! par np—1, qui répond aux mémes exigences que n,.
Cette condition, traduite sur la permutation 7, s’exprime de la facon suivante :

np([ip_l . dglp) = i02p_1 +np_1([ip_1 oo 01]p)-

En itérant cette équation p fois, on trouve I’expression de la permutation n,, :

p—1
np(i) = np([ip1...iols) = 3, ir2P 71"
t=0

De fagon plus concise, n,(i) est le transposé de i écrit en binaire. Par exemple, pour N = 8,
si i =6, qui s’écrit 110 en binaire, alors n,(i) va s’écrire 011, c’est-a-dire n,(6) = 3.

Au final, on voit que I’on doit classer les éléments du vecteur selon I’écriture binaire ren-
versée des indices. C’est ce que réalise la procédure rev_bits, décrite au programme
3.5, annexe A. Cette procédure nécessite O(N) opérations. Pour une implémentation plus
fine, on pourra regarder les NUMERICAL RECIPES [31]. La figure 3.3 montre la matrice

de permutation correspondant a n,, c’est-a-dire la matrice M (P) telle que M;; (P) — 6"” 0,
Les points noirs représentent les entrées non nulles (égales a 1) dans la matrlce M(P).

p=5 p=6 p=7 p=8

F1G. 3.3 — Matrice d’inversion de bits

L’exercice III.1 propose d’écrire une fonction récursive pour effectuer le renversement de
bits. L’utilisation de la procédure rev_bi ts permet d’écrire une fonction ££t_dit qui
n’utilise pas de mémoire temporaire. La fin de cette procédure remplace les appels récur-
sifs par des boucles for imbriquées. La figure 3.4 montre les opérations a effectuer pour
inverser les entrées d’un vecteur, en mettant en évidence les permutations nécessaires.
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= 000, 31 0 = [000], 0 = (000},
1= 001, 4 = (100}, 1= [001),
2= 010, AN /: 2= (010 2= 010,

= (011, 6 = (110}, 3 = [011],

= (100}, 1= [001]s 4= (100},

= [101]s » 5= [101), 5 = [101];
6= [110]1, \ 3=[011], 6 = [110],
7 = [111)s » 7= (111, 7 = [111),

FIG. 3.4 — Inversion de bits par permutation des entrées

2.6 Décimation fréquentielle

Nous allons refaire les calculs qui ont mené aux équations (2.11) et (2.12), mais cette fois-
ci en effectuant un regroupement selon les fréquences de la transformée. L’algorithme
que nous obtiendrons sera en quelque sorte le symétrique de 1’algorithme « classique »
proposé par COOLEY et TUKEY. Méme si cette nouvelle implémentation ne fera pas
gagner en vitesse d’exécution, il est important d’avoir a 1’esprit les deux versions duales
de la FFT, au méme titre qu’il est important de maitriser les propriétés temporelles et
fréquentielles de la transformée de Fourier.

Conformément aux notations (2.8), on note f; (resp. f;) les N/2 premiéres entrées (resp.
N/2 derniéres) du vecteur f. On a

R N/2-1 ” ”
=3 (fal) +e 2% fyln]) e ¥
n=0
On est donc amené a faire une distinction selon la parité de k. En suivant les notations de
I’équation (2.4), on considere (f)° (resp. (f)') la partie paire (resp. impaire) du vecteur
transformé. Attention, il ne faut pas confondre ces vecteurs avec fO et f1, qui sont les
transformés des vecteurs f° et f. On écrit donc, pour k € {0,...,N/2—1},

o _N/2—1 i
(f )kl = f[2k] = ZZ) (feln] + faln]) e N7
Nj2-1

(F)'k] = flak+1] = z e (fyln] - faln]) e ™.

En utilisant I’opérateur .# introduit en (2.10), on obtient les équations de récurrence
suivantes :

(F)°=F (fo+fa)
~ P12
(1) =F (A= 1)
Contrairement a la technique de la décimation temporelle, on voit que les sous-vecteurs

dont on doit calculer la transformée de Fourier sont directement obtenus a partir du vec-
teur d’entrée (il suffit de prendre les parties gauche et droite). Par contre, le vecteur de
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sortie doit étre composé, selon la parité de I’indice, soit des valeurs d’une transformée
soit de I’autre. Pour ne pas avoir & utiliser de mémoire temporaire, nous allons utiliser la
méme astuce que pour la décimation temporelle, mais dans I’autre sens. Nous allons nous
contenter de juxtaposer les deux transformées, c’est-a-dire de mettre & la suite les vecteurs
(j?)0 puis (f) 1. Pour obtenir le bon résultat, il suffira, 2 1a fin de la procédure, de remettre
les fréquences dans le bon ordre, en appelant la fonction rev_bi ts. On peut alors écrire
une version non itérative de la FFT qui utilise le principe de décimation fréquentielle,
c’est la procédure £ ft_dif qui est écrite au paragraphe 3.3, annexe A.

Remarque 2.9. (Temporel et fréquentiel). On voit bien que la décimation fréquentielle
est I’exact symétrique de la décimation temporelle. Le fait d’agir sur les indices du vecteur
résultat (c’est-a-dire sur les fréquences) au lieu d’agir sur les indices du vecteur d’entrée
se traduit par un renversement des bits en phase finale de 1’algorithme.

Pour conclure, on peut d’ores et déja remarquer la grande variété des déclinaisons de 1’al-
gorithme FFT a notre disposition. De nombreuses autres méthodes seront en outre décrites
dans les chapitres et exercices qui suivent. La littérature tournant autour de la FFT est gi-
gantesque, c’est sans doute 1’un des domaines les plus fournis de 1’analyse numérique.
Des articles récapitulatifs ont été écrits, par exemple par BURRUS [12]. La question est
donc de savoir quelle est 1a meilleure méthode. Bien sfir, il n’y a pas de réponse définitive,
car de trop nombreux facteurs entrent en jeu, non seulement concernant la longueur de
la transformée et le type de données (réelles, complexes, etc.), mais surtout le type d’ar-
chitecture (machine, systéme d’exploitation, architecture parall¢le, cache mémoire, etc.)
et le type de précision voulue. Dans le doute, mieux vaut rester sur une implémentation
simple, mais robuste, quitte a sacrifier un peu d’efficacité.

2.7 Ecriture matricielle

Si’on écrit la matrice Qy de 1’opérateur linéaire % : CV — CV dans les bases canoniques,
on obtient

11 1 1
1 oyt wy? a);(N_l)

ov¥|1 op? oy NS (2.16)
1 w};(N—l) w};Z(N—l) . w};(N—l)(N—l)

Cette matrice correspond a une matrice de Vandermonde. Ces matrices interviennent
lorsque I’on écrit le systeme linéaire correspondant a la recherche de 1’unique polyndme
de degré N passant par N points distincts. Il n’y a rien d’étonnant a cela, puisque nous
verrons a la section 5, chap. IV, que le calcul de TFD inverse correspond au calcul des
coefficients du polyndme d’interpolation en des points bien particuliers, les racines Ni€mes
de I’unité.

La formule de la transformée de Fourier inverse (1.3) se traduit par le fait que ’inverse de
la matrice Qu est la matrice %Q}*v, ot ’on note M* £ IVIT la matrice adjointe de M. Ceci
signifie que la matrice LNQN est unitaire, c’est-a-dire QyQy, = NIdy. Les équations de
Danielson-Lanczos (2.11) et (2.12) peuvent alors s’écrire sous la forme d’une factorisation
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de la matrice Qy :

ag
ap :
av| : | = (QN/Z An/2S2 )2 ) an-2
: Qniz —AnpQn) a |’
an-1 .
an-1

ou I’on a noté AN/Z = diag(l,wﬁl,_ . .’w;(N/Z—l)).

3 Convolution circulaire

Nous avons défini au paragraphe 4.3, chap. I, le produit de convolution sur un groupe abé-
lien quelconque, et nous allons maintenant appliquer cette définition ainsi que le théoréme
de convolution 4.15, chap. I, dans le cas simple d’un groupe cyclique, et plus précisément
en employant le langage de la transformée de Fourier discréte qui a été définie au para-
graphe 1.

3.1 Convolution circulaire

Commencons par rappeler la définition du produit de convolution ainsi que les principaux
résultats déja obtenus.
Définition 3.1 (Produit de convolution discret). Soient {f[n]}"-) et {g[n]}"=) deux
échantillons discrets (supposés représenter des signaux échantillonnés a des mémes ins-
tants, espacés de fagon réguliere). On définit le produit de convolution f * g des deux
signaux par 1’équation

N-1
(fxg)n = Y, flklglh—k, n=0,....N—1 (3.1)
k=0

Remarque 3.2. Dans I’équation (3.1), la quantité n — k est bien siir calculée modulo
N, ce qui revient a considérer les échantillons f et g comme des fonctions périodiques
de période N. Cette formule est la traduction de 1’équation (4.6), chap. I, dans le cas du
groupe G = Z/NZ, en prenant soin d’utiliser une notation additive a 1a place de la notation
multiplicative. Dans 1’optique d’une implémentation informatique, on peut donner une
formule plus explicite :

n N-1
(f*g)ME Y, flKgln—k+ Y flklglh—k+N], n=0,. ,N-1.
k=0 k=n+1

Proposition 3.3. Le produit de convolution circulaire est commutatif, et I’application
(f,8) = f*g munit CN d’une structure d’algébre.

Démonstration. La seule chose non triviale a vérifier est la commutativité, que 1’on ob-
tient en faisant le changement de variable k' = n — k dans 1’équation (3.1). O
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On peut maintenant énoncer le théoréme de convolution 4.15, chap. I, en termes de trans-
formée de Fourier discréte.

Proposition 3.4 (Convolution et TFD). Soient {f[n]}") et {g[n|}=) deux échan-
tillons discrets. On a la formule de convolution

Vne{0,...,.N—1}, fxgln = finlgln. (3.2)

Démonstration. Pour que les explications soient plus claires, nous allons noter f; et g;
les fonctions de Z/NZ dans C associées aux échantillons f et g (qui sont de taille N). On
a alors, pour n € {0,...,N — 1} (ob, en termes de groupe abélien, n € Z/NZ),

f=A0) et glnl=g 0, (33)

ol I’on a noté {xo,..., xn—1} les caracteres, c’est-a-dire les éléments du dual Z//N\Z (voir
I’équation (1.2)). En utilisant le théoréme 4.15, chap. I, pour les fonctions fj et g sur
G =7Z/NZ, on obtient .
Fixg1(tn) = FiOm)& (n)-
Or, on a aussi . /\
fglnl = fi*xg1(xn)-
Ceci qui permet donc d’écrire, en utilisant les équations (3.3),

f*g[n] fl ()81 (xn) = f[n]ﬂn] O

Remarque 3.5. (Signaux finis et périodisation). La principale difficulté théorique de
la transformée de Fourier discréte est 1’assimilation entre notre échantillon { f [n]}il\:ol et
une fonction f définie sur Z/NZ. Cette assimilation a pour avantage d’obtenir & moindres
frais des formules algébriques comme le résultat d’inversion 1.4 ainsi que celui de convo-
lution 3.4. Cependant, cette démarche implique que notre fonction f, si on la regarde
comme un signal dans le temps est en fait une fonction périodique, de période N. Ceci
va a I’encontre de I’intuition naturelle qui veut que 1’on considére notre signal (fini) f
comme nul en dehors de I’intervalle ou il est défini. C’est sur ce point qu’il va falloir faire
attention lorsque nous allons vouloir calculer des produits de convolution entre deux si-
gnaux finis. C’est justement ce probléme qui est soulevé au paragraphe 3.3 lors de 1’étude
de la convolution non circulaire.

3.2 Calcul avec la FFT

Une implémentation naive de 1’équation (3.1) méne a un nombre d’opérations (multipli-
cations et additions complexes) de 1’ordre de O(n?). En effet, il faut calculer les N valeurs
de la convolée, et a chaque fois, une somme de N produits apparait. Cependant, en uti-
lisant la formule de convolution (3.2) et la formule d’inversion (1.3), on peut écrire une
équation qui va s’avérer tres utile :

frg=F"" (fu?),

ol I’on a noté f et g € CN deux échantillons de taille N. Grice a I’algorithme FFT, le
calcul des transformées f et g peut se faire en un nombre d’opérations de I’ordre de
O(Nlog(N)), et le calcul du produit f-g nécessite bien siir seulement N multiplica-
tions complexes. Au final, on parvient ainsi a calculer un produit de convolution avec
un nombre d’opérations de 1’ordre de O(Nlog(N)).
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3.3 Convolution acyclique

Nous allons quitter pour un court instant les transformations liées a la structure de groupe
de Z/NZ pour définir une opération qui ne respecte pas du tout cette structure cyclique,
la convolution acyclique (aussi appelée convolution linéaire), notée x (a ne pas confondre
avec le * de la convolution cyclique). Le support d’un signal f € CZ est défini par

Supp(f) £ {n € Z \ f[n] #0}.

Commengons par définir la convolution acyclique pour deux signaux { f1[n] },cz ainsi que
{f2[n]}nez dont le support est supposé fini, ce qui signifie que Supp(fi) et Supp(f2) sont
des ensembles finis. On définit alors la suite fj x f, par

VaeZ, fixfln)=7 filkfaln—k. (3.4)

keZ

Il est & noter que 1’on a I’équation tres utile :

Supp(fi * f2) C Supp(f1) +Supp(f2) = {n+p \ n € Supp(f1), p € Supp(f2)} .

La convolution linéaire n’a donc rien a voir avec a la convolution cyclique, qui, elle, est
une opération sur les vecteurs de CV (et donne pour résultat un vecteur de CM). Cependant,
en créant a partir de nos deux suites, deux vecteurs f1 et f2 de taille N suffisamment
grands, nous allons voir que I’on peut calculer les valeurs non nulles de f; x f, comme
certaines entrées du vecteur fi * f5.

Commengons par remarquer que la taille nécessaire pour stocker les entrées de f) x f> est
NE N1+ N, —1,0ul’on anoté Ny et V; les tailles des supports de fj et f,. On peut trans-
later les indices de fi, ce qui permet de supposer que ces derniers sont {0,...,N; — 1}.

Ceci implique qu’il faut effectuer la méme translation sur le vecteur f. Commengons donc
par créer un vecteur f1 € CN en recopiant d’ abord les N; entrées non nulles de f, puis en
ajoutant des zéros. La construction du vecteur f2 est un peu plus difficile, puisqu’il faut
tenir compte des indices négatifs. Recopions dans f2 € CV les entrées d’indices positifs
de f1, puis mettons suffisamment de zéros, puis recoplons les entrées d’indices négatifs.
De fagon plus précise, si on écrit Supp(f2) = {-P,...,0,...,0}, avec N, = Q0+ P+1,
alors on aura

o & {00, [1),...,£[Q),0,...,0, A[—P),..., fo[~1]} € CV.

Une fois toutes ces transformations effectuées, on peut enfin écrire :
Vne{0,....Mi+Q—-1}, fixfo[n]= fi*fa[n].

Pour les indices situés dans I’intervalle {—P, ..., — 1}, il faut faire attention car, a cause
de la convolution circulaire, ils ont été déplacés dans I’intervalle {N — P,...,N — 1}.
Cependant, dans la pratique (par exemple, pour le filtrage), on n’utilise que les indices
{0,...,N1}.

Une fois cette transformation effectuée, on peut bien slir utiliser 1’algorithme présenté
a la section 3.2 pour calculer rapidement la convolution. Cet algorithme, qui va de pair
avec la technique d’ajout de zéros que nous venons d’expliquer va permettre de réaliser
rapidement des filtrages. Tout ceci sera expliqué en détail au paragraphe 2, chap. IV. On
pourra noter que lorsque la taille d’un des deux vecteurs est beaucoup plus petite que
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celle de I’autre, il existe une stratégie qui permet d’éviter d’ajouter trop de zéros a la fin
du vecteur le plus court. Cette méthode est exposée a I’exercice II1.4.

Dans la suite, on considérera souvent directement la convolution linéaire de deux vec-
teurs de CV, et dans ce cas, les indices négatifs seront placés a la fin du vecteur, (il
faudra donc ajouter des zéros entre les indices positifs et ces indices négatifs pour pou-
voir utiliser 1’algorithme FFT). Il faut cependant bien se rappeller que les convolutions
cycliques et acycliques donnent des résultats bien différents. Par exemple, la figure 3.5
montre une comparaison des deux convolutions. Le filtrage par g réalise en quelque sorte
une « moyenne locale ». Pour les valeurs centrales de k, plus précisément 2 < k < N —4,
ona f*glk] = fg[k|]. Cependant, pour les valeurs du bord, on trouve des résultats diffé-
rents. Ainsi, dans la majeure partie des applications ou le vecteur x représentera un signal

f 9
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0 5 10 15 -5 0 5

Convolution cyclique Convolution acyclique

35 35
30 30
25 25 ]
20 20 ,"'
15 15
10}.- 10} «
% 5 10 15 % 5 10 15

F1G. 3.5 — Convolutions cyclique et acyclique

temporel, la convolution acyclique sera préférée, pour ne pas altérer les valeurs sur les
bords. Tout ceci sera repris en détail lors de 1’explication des différents types de filtrages,
a la section 2, chap. IV.

4 En dimension supérieure

The FFT is part of the revolution in digital image
processing. A typical image contains a million values;
they are the responses to the original image. [...] It hardly
needs saying that all deconvolutions are computed by the
convolution rule-trans form, multiply, and trans form back.
With the FFT what else would we do?

G. STRANG [68] (1986)

Dans ce paragraphe, pour simplifier les explications, nous allons nous restreindre a des
calculs de transformées en dimension 2. La généralisation aux dimensions supérieures,
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méme si elle peut étre périlleuse du point de vue de la programmation, ne présente pas de
difficultés théoriques.

4.1 Transformée de Fourier discrete en 2D

Définition 4.1 (TFD bidimensionnelle). Un échantillon bidimensionnel est représenté

par une matrice {f[i, j]} € CV*P,
Les indices sont donc i € {0,...,N —1} et j € {0,...,P—1}. Sa transformée de Fourier
discréte est une matrice N X P définie par

Fle, = Zf[i,J]e‘T”‘ e, 1)
LJ

onke{0,...,N—1}etl€{0,...,P—1}.

Comme pour le cas unidimensionnel, on peut encore faire le lien avec la transformée de
Fourier sur un groupe abélien, en considérant le groupe G = Z/NZ x Z|PZ. Les carac-
teres de ce groupe sont les x;j, pour 0 < i < N et 0 < j < P, définis par

V(n,p) € Z/NZ X Z/PZ, yxij(n,p)E (on) " (wp) /7.
On peut donc traduire 1’équation (4.1) par
Vk € {0,...,N—1},VI €{0,...,P—1}, f[k ll=f (Xkl)
ol I’on a noté f a la fois 1’échantillon et la fonction associée f : G — C.
Encore une fois, on constate que la fonction

(CNXP SN (CNxP
Z { f - (=7

est un isomorphisme d’algebre dont on connait explicitement I’inverse.

Proposition 4.2 (Formule d’inversion 2D). Soit f € CN*F yn échantillon 2D de taille
N X P. On a la formule d’inversion

2m 2m

flij]= Zf[k le'w ke

pouri€{0,...,N—1} et je{0,...,P—1}.

Le point important est bien sfir de savoir si I’on dispose encore d’un algorithme rapide
pour calculer la TFD en dimension deux. La réponse est donnée par une simple réécriture
de’équation (4.1), pour k € {0,...,N—1} etl € {0,...,P—1}:

-~ N- 217: Zm
=S (Zf[t ¥ ) =S Rt

i=0 i=0

oll I’on a noté F; € CP le vecteur formé par la ™ ligne de la matrice f, et F; sa TFD
unidimensionnelle.
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Pour calculer la TFD en 2D d’une matrice f, il suffit donc de calculer 1a TFD de chacune
de ses lignes, puis de calculer la TFD des colonnes de la matrice obtenue. De fagon plus

synthétique, on peut écrire matriciellement :

7= (F())

ol I’opérateur #p réalise la TFD unidimensionnelle sur les lignes d’une matrice. On peut
également effectuer les calculs en sens inverse, c’est-a-dire calculer d’abord la transfor-
mée sur les colonnes, puis sur les lignes. Matriciellement, comme QyT = Qy, I’équation
de transformation s’écrit f: QN fQp, ou Qy est défini a I’équation (2.16).

La figure 3.6 montre la transformée de Fourier 2D d’une image, qui est une fagon comme
une autre de représenter un échantillon 2D (les valeurs de la fonction sont représentées
par des niveaux de gris, variant du noir pour 0 au blanc pour 1). On peut interpréter in-
tuitivement le spectre obtenu. La valeur de f/i, j], que ’on peut « lire » directement sur
I’image représentant le spectre, correspond a une certaine quantité d’oscillations (bidi-
mensionnelles) présentes dans I’image. Attention, pour la transformée de Fourier (image
de droite), les grands coefficients sont représentés en noir. Ces oscillations sont caractéri-
sées par une fréquence, %\/iz + j2, et une direction, celle du vecteur (i, j).

Image & analyser Spectre

20 40 60 80 100 120 -50 0 50

F1G. 3.6 — Transformée de Fourier 2D

4.2 Convolution 2D

La convolution entre deux signaux bidimensionnels est une généralisation directe de la
convolution cyclique décrite a la section 3.1. Encore une fois, on peut garder en mémoire
la définition de la convolution sur un groupe fini (définie au paragraphe 4.3, chap. I).
11 s’agit bien sfir de considérer le groupe G = Z/NZ x Z/PZ. On peut alors interpréter
les fonctions de C[G] comme des images de taille N X P, que 1’on aurait étendues par
périodicité selon les deux axes. Voici la définition de la convolution entre deux signaux
bidimensionnels. On vérifie qu’il s’agit d’une traduction immédiate de la définition don-
née dans le cadre des groupes finis abéliens.

Définition 4.3 (Convolution bidimensionnelle). Soient f et g deux échantillons de taille
N X P. On définit leur produit de convolution cyclique f * g, qui est une matrice de taille
N X P, de la fagon suivante :
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pouri€ {0,...,N—1}etj€{0,...,P—1}. Bien sir, toutes les opérations sur les indices
doivent étre effectuées modulo N (resp. P) pour les indices de gauche (resp. de droite).

Un calcul naif du produit de convolution directement par la formule (4.2) nécessite (NP)?
opérations. Dans le but de calculer de fagon rapide un tel produit, il faut utiliser la pro-
priété de morphisme d’algebre de la transformée de Fourier sur un groupe fini, qui est ici
rappelée dans le cadre de la transformée de Fourier 2D.

Proposition 4.4 (Convolution 2D et TFD). Soient f et g deux échantillons de taille
N X P. On a la formule de convolution

Vie{0,..,N=1},¥j€{0,....P—1}, fxglijl=flijgli,jl.  43)

Démonstration. La démonstration est la copie conforme de celle de la proposition 3.4.
Il convient simplement de changer le cardinal du groupe (qui vaut NP et non plus N), et
d’utiliser un indexage adapté pour les caracteres et les indices des échantillons, c’est-a-
direi € {0,...,N—1} et j€{0,...,P—1}. a

Ce théoréme suggere, pour calculer une convolution, d’utiliser la technique & laquelle
nous commengons a &tre habitués. Il faut dans un premier temps calculer les TFD des
deux signaux que 1’on souhaite convoler. Ensuite, il faut les multiplier point & point, et
enfin calculer la transformée inverse du signal obtenu. On prendra garde au fait que pour
implémenter cet algorithme, il faut déplacer les entrées d’indices négatifs dans les deux
signaux, de facon a avoir un signal N périodique sur les abscisses, P périodique sur les
ordonnées, et avec des indices (i, j) tels que i € {0,...,N—1}et je {0,...,P—1}.

Nous verrons au paragraphe 2.3, chap. IV, ol il sera question de filtrage 2D, quelles
sont les propriétés « intuitives » de la convolution cyclique, ainsi que des applications
immédiates a I’analyse d’image. On peut cependant donner un exemple de convolution
sur des fonctions représentées par leur graphe en 3D. Ainsi la figure 3.7 représente une
fonction f irréguliére que 1’on a convolée avec une fonction g ayant la forme d’une bosse
(et d’intégrale égale a 1). La convolution a un effet de régularisation puisqu’elle réalise
une moyenne pondérée de la fonction d’origine au voisinage de chaque point.

f g f*g

i

”q‘:g\\\\\\,‘\\;‘,v,;u@;
‘w,\ \ ‘V[H
iy

1 RN
" (i i\
o’t’;‘t‘

\\\\\\\‘;,',;':,,.:‘
0

/I

A

{
it
!
9

FI1G. 3.7 — Convolution 2D

S Symétrie et transformée discrete

Dans ce paragraphe, nous allons donner quelques propriétés annexes de la transformée de
Fourier discréte, et les ainsi créer ses vecteurs propres a partir de vecteurs donnés.
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5.1 Propriétés de symétrie

Commengons par définir différentes opérations sur les fonctions de Z/NZ dans C.

Définition 5.1 (Opérateur de symétrie). Soit f = {f[0],..., f[N — 1]}, un vecteur de
taille N auquel on associe une fonction périodique fi, que ’on peut voir comme une
fonction f; : Z/NZ — C. On définit la fonction symétrisée f! par:

vne{0,....,N—1}, A= fi(-n). (5.1)

Ainsi, on a f! = {f[0], f[N—1],f[N—2],..., f1]}.

Un vecteur f est dit symétrique s’il vérifie f = f. Il est dit anti-symétrique si f = — f.

Définition 5.2 (Décomposition). Pour f € CV, on note f; et f, les parties symétrique et
anti-symétrique de f, définies par les équations

B (47,
a2 (£ 1)

On a bien sir la décomposition f = f; + f,.

Proposition 5.3 (Propriétés de symétrie). Soit f € CV un échantillon. On a les proprié-
tés suivantes.

i) Z(M =NFV(f) ainsi que F2(f) = Nf.
(i) Si f est symétrique, alors F*(f) = Nf et F(f) est symétrique.
(iii) Si f est anti-symétrique, alors F2(f) = —Nf et Z (f) est anti-symétrique.
(iv) Si f € RN est symétrique, alors F(f) € RV.
(v) Si f € RN est anti-symétrique, alors F (f) € (iR)".

Démonstration. Prouvons (i) et (iv):
Pour (i), on a

N-1
Z(M) =Y fl-kHoy™ +f0] = Y, fllok" = Z(f)ln].
k#0 k=0

Pour (iv), si on note Z le conjugué de z€ C, on a

Z(n] = Zk‘,f_[k—]f%ivl"" - gf" K™ = Z()[n] = Z(f) ). O

5.2 Valeurs propres de la TFD

L’étude d’un opérateur linéaire est grandement facilitée par la connaissance de ses valeurs
propres et des vecteurs propres associés. Bien que la matrice #QN soit sans doute la ma-
trice unitaire la plus importante, la recherche de ses vecteurs propres est un sujet difficile.
Nous allons maintenant donner un moyen simple pour construire des vecteurs propres de
la TFD.
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Théoréme et définition 5.4. Soit f € CV un échantillon. On définit

U-(f) & VNf— Z(f5)
V() EVNfoa =i (fa).

Ue(f)EVNL+F(fs) et
y+(f)g\/ﬁfa+iy(fa) et

On a alors
F (U (f)) = VNU(f) et F(%-(f)=-VNU(f)
F(V4(f) = VNV (f) et F(V_(f)) =iVNP(f).

Ceci signifie que les vecteurs %4 (f), Z-(f), ¥4+ (f) et Y_(f) sont des vecteurs propres
de la transformée de Fourier discréte.

Démonstration. Démontrons la premiére égalité : Z (% (f)) = VNZ (f;) + Z2(f:). Bt
comme f; est symétrique, on a F2(f;) = Nf;, d’ol le résultat. a

Remarque 5.5. On peut ajouter que les valeurs propres que nous venons de trouver
sont les seules, puisque la transformée de Fourier vérifie #*(f) = Nf. Donc ses valeurs
propres sont nécessairement des racines 4°ms de N2,

La figure 3.8 montre les différents vecteurs propres construits a partir de la fonction que
I’on peut voir a gauche de la figure 3.9 (c’est-a-dire pour A = 0). Cette proposition permet

- U (D % V(0
4 U + V.
Vecteurs propres pourt 1 Vecteurs propres pourt |
7 o 3 * -
6 i :
S 2 .
5 * +1 ™
* * 1 £ * *
4 E Yot
*k F : P ® hL
(o, 3 3 Lok 3
3 +a Lod P |
B + :
2 -1 * Pt LF
+ i : :
Wx * * ) R *. * wt
of ik kLA g H
* + ¥ : -3 Lok
-1 ¢ . 3 . L .
5 0 5 10 -5 "o 5 10

FIG. 3.8 — Vecteurs propres %+ (f), %-(f), ¥+ (f) et V-()

une construction intéressante, simplement en écrivant la décomposition d’un vecteur f €
CN en fonction des vecteurs propres de la transformée de Fourier :

f=%f)+%- () + 7 () + 7-(f).
Ceci permet de considérer I’opérateur v/.# défini de la maniére suivante :
VE () ENPU(f) +iNVAU () + (=) PN () +1 PN ( ),

ol I’on aura choisi pour i/2 une racine carrée de i (choix arbitraire).

On a alors V% oV Z = & : I'opérateur V/.Z est une racine carrée de la transformée
de Fourier discréte. De méme, pour A € R, on peut construire ainsi & }‘, une transfor-
mée Aifme de Z (encore une fois, la construction n’a absolument rien de canonique).
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1 1

2=00  : A=05 ™ A=08 .°, A=1.0 '

05 05 i 05

ol .
! ol

0 x B
-5 0 5 10

-5 0 5 10 -5 0 5 10 -5 0 5 10 -5 0 5 10

FIG. 3.9 — Vecteurs transformés intermédiaires F*(f) pour A € [0,1]

La figure 3.9 montre différentes transformées intermédiaires. Pour A = 0.5 on obtient
V. Z. L'exercice II1.9 permet de manipuler une transformée de Fourier partielle, qui gé-
néralise la construction que nous venons d’effectuer. On pourra voir, grice a 1’exemple
d’une gaussienne, que ces manipulations correspondent & des notions tres intuitives. Pour
plus d’informations sur la transformée de Fourier partielle (continue comme discréte),
on pourra consulter I’article de CARIOLARO [14]. Enfin, ’exercice II1.10 propose une
méthode pour diagonaliser de maniére canonique la matrice de 1a TFD.

6 Exercices

Exercice II1.1 (Inversion de bits). On définit, pour n > 0, des vecteurs u de taille 2",
par u© = {0} et

2u=1)[k] si k < 2n~1

Vn>0,Vk € {0,...,2" — 1}, u(")[k]"é‘{zu(,,_l)[k_zn_I]H k> 2]

1. Calculer la valeur de u(™ pour n=1,2,3.

2. Montrer que u") esten fait 1a suite 0,...,2"—1, classée en considérant les écritures
binaires inversées des entrées.

3. Soit f un vecteur de taille 2". On note fla suite déterminée par

Vke {0,...,2" =1}, fIkZ fu™x]).

Quelle est I'utilité de flors du calcul de la transformée de Fourier discréte de f?
4. Onnote f0 et f! les parties paire et impaire de f. On note }:1 et ]’;, les parties gauche
et droite de f Quelle relation lie tous ces vecteurs ?
5. Implémenter en MATLAB un algorithme récursif pour calculer f Comparer sa com-
plexité a celle de la procédure rev_bits.

Exercice III.2 (Algorithme de Good-Thomas). Nous avons vu au paragraphe 2.4 que
I’algorithme FFT de Cooley-Tukey se généralisait sans probléme au cas ou I’on disposait
d’une factorisation adéquate de N, la taille du vecteur transformé. Dans cet exercice, nous
allons voir que si certains entiers de cette factorisation sont premiers entre eux, on peut
concevoir un algorithme encore plus rapide.

1. On suppose que N = pg ol p et g sont deux nombres premiers entre eux. On rap-
pelle le lemme Chinois, qui dit que 1’application

Z/NZ —> Z/pZ xZ/qZ
n +— (n modp,n modgq)

est un isomorphisme d’anneaux. Expliciter le morphisme inverse .
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2. Soit f € CN. On définit alors un signal 2D :
Vki €40,...,p—1},Vhka € {0,...,q— 1}, Flk1,ko] = fly(ki,k2)).
Montrer que I’on a
Fl(s1g+s2p) mod N] = F[sy,s2).

3. Montrer que lorsque s; parcourt {0,...,p— 1} et s, parcourt {0,...,q — 1}, alors
(s19+s2p) mod N parcourt {0,...,N — 1}. En déduire comment on peut calculer
la transformée de Fourier de f a partir de celle de F, en explicitant le changement
d’indices.

4. Quel est le gain par rapport a une étape de 1’algorithme FFT classique ? En parti-
culier, que devient I’opérateur .# introduit a I’équation (2.10) ? Proposer une pro-
cédure récursive qui, suivant la factorisation de N obtenue a chaque étape, appelle
la procédure de calcul de TFD optimale. En plus des procédures FFT de Cooley-
Tukey et Good-Thomas, on pourra inclure la procédure Chirp décrite a 1’exercice
V.9, qui est intéressante lorsque N — 1 est un nombre premier.

Exercice IIL.3 (Algorithme Split-Radix). Nous avons vu au paragraphe 2.3 qu’il était
possible d’étendre la méthode de dichotomie de Cooley-Tukey pour calculer des TFD
de longueur p', en réalisant un regroupement des entrées par paquets de taille p. Dans
cet exercice, nous allons montrer comment, en choisissant astucieusement des paquets de
tailles variables, on peut réduire le nombre d’opérations. Ce choix part de la constatation
que I’algorithme de Cooley-Tukey passe beaucoup de temps a calculer I’opérateur .75,
alors que pour certaines valeurs de N (par exemple 2 ou 4), ce demier est trivial. Dans
la littérature anglo-saxonne, on nomme les racines de I’unité ajoutées par cet opérateur
« twiddle factors » (littéralement, « qui se tournent les pouces »). On pourra comparer
cette approche avec celle de 1’algorithme de Good-Thomas, exercice III.2, qui dans le
cadre d’une certaine factorisation de N, permet d’éliminer I’opérateur #5;.

1. On considére un schéma de décimation fréquentielle. On suppose que N est une
puissance de 2. On rappelle que 1’algorithme classique DIF organise le regroupe-
ment suivant:

{fi\k=0,.. .N-1} ={Fl2k\k=0,....N/2-1}
U{flk+1\k=0,...,N/2-1}.

Expliquer pourquoi I’on n’a pas intérét a toucher a la premiére partie de ce re-
groupement. En ce qui concerne la deuxie¢me partie, on propose le regroupement
correspondant & des transformées en base 4, c’est-a-dire :

{fak+\k=0,... .N/2-1} ={Flak+1)\k=0,....N/4-1}
U{Ae+3)\k=0,....N/4-1}

Montrer que ceci méne aux formules de transformation suivantes :

N_ 3
~ 1 . e
flak+2j+1] = 2 w{;;czlem(ZJH) S fln +mN/4o; n2(21+1)’
n;=0 np=0

pour j=0,1etk=0,... ,% — 1. Les sommes intérieures sont-elles compliquées a
calculer? Identifier les « twiddle factors ».
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2. Trouver d’autres schémas de regroupement. Pourquoi le regroupement par 4 est
avantageux ? Calculer le nombre d’opérations nécessaires a chaque fois, et compa-
rer avec celui du schéma DIF classique, en base 2.

3. Transformer les algorithmes décrits plus haut pour obtenir un schéma de décimation
temporelle (regroupement des entrées). Décrire une implémentation itérative des
algorithmes, en n’oubliant pas les procédures de renversement de bits permettant
d’économiser des mémoires temporaires.

Pour plus d’informations, et une généralisation aux TFD de longueur p", on pourra consul-
ter [75].

Exercice II1.4 (Convolution optimisée). On souhaite calculer la convolution acyclique
de deux suites finies f et g de tailles respectives N et M. On suppose que M est beaucoup
plus petit que N. Pour simplifier, on suppose que les indices des deux suites commencent
a0.
1. On prend N = pM. On note f; = {f[k+ jM] ML pour j=0,...,p— 1. Montrer
que I’'on a

p—1
f*glk] = Z(,)fj*g[k— M.
j=

2. En déduire un moyen rapide de calculer f x g sans avoir a ajouter N — M — 1 zéros
a la fin de g. Quelle est la complexité de 1’algorithme obtenu ?

3. Dans le cas ou N n’est pas un multiple de M, que peut-on faire?

Exercice IIL.S (Matrice circulante). Cet exercice présente de fortes similitudes avec
I’exercice I.1 sur les déterminants circulants, avec une présentation utilisant cette fois le
produit de convolution. Soit ¢ < (coy---yCN-1 )T € CV un vecteur de taille N. On définit
la matrice circulante C qui est associée a ce vecteur par

Co CN—1 CN-2 ... C]
s c1 co cr ...
CN—1 CN-2 CN-3 ... €0
1. Soit {ej,...,en} la base canonique de CV. On considére la matrice R dont les co-

lonnes sont {ey,e3,...,en,e;}. On rappelle que Qy désigne la matrice de Fourier,
qui est définie & 1’équation (2.16). Montrer que 1’on a

QvRQy! =D avec D:diag(l,a);l,...,a);(N_l)).
2. Montrer alors que I’on a
QVCQy'=A  avec A= diag(cl0],c[1),...,c[N —1)).
En déduire que pour x € CV, on peut calculer le produit Cx de la maniére suivante :
Cx = Q' ((Qwe) - (Qwx)),

ol I’on a noté - le produit composante par composante des matrices.

3. Montrer que pour x € C, on a Cx = c *x. En utilisant le théoréme de convolution
3.4, en déduire une démonstration immédiate de la question précédente.
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Exercice IIL6 (Interpolation trigonométrique). Soit f € CV un échantillon de taille
N = 2Ny + 1. On définit un vecteur f; de taille P = nN (avec N € N suffisamment grand)

de la fagon suivante :
fo&n{flol, Al1],..., fiNol,0,...,0, ANo +11,..., FIN - 1]}
Montrer que 1’on a
Vke€{0,...,N—1}, £kl = folnkl.

En déduire un algorithme rapide pour interpoler une fonction par des polyndmes trigono-
métriques. On peut voir cet algorithme en action a la figure 3.10.

1 L T
— Courbe originale
— = Courbe Inte: e
f ]
[X] e
06

04

02

F1G. 3.10 — Interpolation trigonométrique

Exercice II1.7 (Interpolation de Chebyshev). On définit les polyndmes de Chebyshev
par
Ti(X) £ cos(karccos(X)).

La figure 3.11 montre les représentations graphiques des polyndomes T; pour des pe-
tites valeurs de k. Ce sont des cas particuliers de figures de Lissajous (qui sont utilisées
pour étudier les phénomenes ondulatoires), c’est-a-dire des courbes paramétrées du type
(x =acos(kt +c),y = bcos(t)). On considere une fonction continue f : [—1,1] — R. On
souhaite 1’interpoler en N points {xk}kN=_01 par un polyndme Py_; de degré N — 1, ou les
xx sont définis par

T
Vke {0,...,N—1}, xccos ((k+ 1/2)17) .
1. Montrer que Ty est bien un polyndme, en déterminant une relation de récurrence
entre Ty et Ty_;. Montrer que les racines de Ty sont les xk, pour k € {0,...,N—1}.

2. Montrer que Py_ peut se mettre sous la forme
N—1

Pv_1=Y, 04T
k=0

3. On considére deux types de transformées discrétes en cosinus (souvent notées DCT-
2 et DCT-3 en anglais, car il en existe d’autres) d’un échantillon { f[k] 2’;01 ERN:

N-1 :
GAUE Y flkcos ( (k+1/2)2%
(% 3 ko (k4172057 )

déf. N—l kﬂ
% | = = klcos | (j 2)— ).
3()] 2f[0]+k§‘1f” ((1+1/ )N>
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T T Ts
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 1 1 0 1
T, Ts Te
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -05
~1 -1 -1
-1 0 1 -1 0 1 -1 1] 1

FIG. 3.11 — Polynémes Ty pour k =1,...,6

Montrer que I’inverse de % est %% Implémenter en MATLAB ces transformées
en utilisant une TFD de taille 4N (on pourra penser a rendre le signal pair, puis a
insérer des 0 aux indices impairs). Pour plus d’informations sur la transformée en
cosinus, on pourra consulter 1’article de STRANG [69]. On pourra noter que c’est la
transformée %, qui est utilisée pour la compression d’images JPEG.

4. Comment calculer les {0y 2’:_01 a partir des {f[k] = f(x)}¥=5 ? En conclure un
algorithme rapide d’interpolation polynomiale aux points x.

La figure 3.12 montre une comparaison entre 1’interpolation de Lagrange (points équidis-
tants) et I’interpolation de Chebyshev sur une fonction en apparence anodine :

)

=——— pour o€ER:.
o2+ P +

Pour la figure, on a pris N = 11, et o = 0.3. Essayer, expérimentalement, de déterminer
la valeur o a partir de laquelle le polyndme de Lagrange converge uniformément vers f
quand n — 4o, L’interpolation de Chebyshev est un cas simple de méthode spectrale. Ces
méthodes utilisent des décompositions selon des polyndmes orthogonaux pour approcher
les solutions d’équations aux dérivées partielles. Il s’agit d’une extension des décompo-
sitions en séries de Fourier adaptée aux fonctions non périodiques. Tout ceci est tres bien
décrit dans le livre de BOYD [9].

Exercice IIL8 (Dérivation fractionnaire). Soit f: R — R une fonction de classe C dé-
croissant rapidement a 1’infini. Montrer que la transformée de Fourier (définie a I’équation
(1.1), chap. IV) de £ est

F(fM)(&) = (=€) " F (f)(&)-

Expliquer en quoi cette propriété permet de définir une dérivation fractionnaire, c’est-
a-dire que I’on peut définir une dérivation pour des valeurs réelles de n. Implémenter
une routine MATLAB qui réalise un calcul approché de dérivée fractionnaire a 1’aide de
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F1G. 3.13 — Dérivées fractionnaires successives d’une gaussienne

I’algorithme FFT. La figure 3.13 montre la dérivée fractionnaire d’ une gaussienne obtenue
par cette méthode, et ceci pour différentes valeurs de n entre O et 2.

Exercice II1.9 (Transformée de Fourier intermédiaire). On rappelle que I’on note Qy
la matrice de Fourier, qui est définie & 1’équation (2.16). C’est une matrice autoadjointe,
donc comme tout endomorphisme normal (c’est-a-dire qui commute avec son adjoint),
elle diagonalise en base orthonormée de CV (ce qui est faux dans RY). Ceci signifie qu’il
existe une matrice P unitaire et une matrice D diagonale telle que

Qy = PDP*.

1. Quelles sont les entrées de D? Vérifier ceci avec MATLAB, en employant la com-
mande eig qui fournit les valeurs propres ainsi qu’une décomposition selon les
vecteurs propres. On remarquera que comme le nombre de valeurs propres dis-
tinctes est inférieur a N, le choix de la base orthonormée de vecteurs propres est
totalement arbitraire.

2. On définit la matrice Qf, pour o € R, par

Q¢ = PDOP*,
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ol D% est une puissance o™ de D. On définit alors des transformées de Fourier
intermédiaires :

vieCh, FUf)=Qfr.
Montrer que I’on a
V(a,B) eR?, F% FP =g o Fl=2

3. Lafigure 3.14 montre le module de la matrice %% pour un paramétre ¢ variant entre
0.3 et 1. Que représentent les deux diagonales blanches que 1’on peut distinguer (on
pourra s’aider du calcul de la matrice Q%)?

FIG. 3.14 — Module de différentes matrices de transformées de Fourier partielles

4. Expliquer pourquoi on peut construire une infinité de transformées intermédiaires.
En laissant MATLAB décider d’une factorisation de Qy, implémenter la transformée
obtenue, puis la tester avec différentes valeurs de o et différents signaux.

La figure 3.15 montre un panel de transformées intermédiaires pour une gaussienne. Le
parametre de transformation o varie entre O et 2. Bien sfir, pour oo = 2, on retrouve le
signal d’origine (car la gaussienne est symétrique).

Exercice 1I1.10 (Diagonalisation de la TFD). Dans I’exercice précédent, on a utilisé
MATLAB pour diagonaliser en base orthonormée la matrice de 1la TFD. La construction
théorique d’une base orthonormée n’est pas simple, principalement parce que les valeurs
propres ont une multiplicité plus grande que 1, ce qui laisse un choix potentiellement infini
de décompositions. Le but est donc de construire un procédé canonique pour déterminer
une base de diagonalisation. Cet exercice est inspiré de 1’article de DICKINSON [27]. On
pourra aussi lire 1’article de CANDAN [13] qui fait la relation entre la matrice S et la
discrétisation d’une équation différentielle.

1. On définit une matrice S € My(R) de la fagon suivante :

C 1 0 1
1 ¢ 1 0
SE10 1 G 0 o G E2 <cos (2——1];”) - 2)
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0.00 0.14 0.29 0.43

FIG. 3.15 — Transformées de Fourier partielles successives d’une gaussienne

Expliquer pourquoi S diagonalise en base orthonormée.

2. Montrer que S et Qy, la matrice de Fourier, commutent, c’est-a-dire que SQy =
QnS. On pourra décomposer S en S =I"+ A, ou I" est une matrice circulante astu-
cieusement choisie de facon a ce que QyI" = AQy.

3. Montrer que si f et g sont deux endomorphismes diagonalisables de C¥ qui com-
mutent, alors il existe une base commune de diagonalisation.

4. On souhaite montrer que les valeurs propres de S sont distinctes. Soit P la matrice
de I’endomorphisme unitaire de CV qui envoie un élément f de CV sur

Vne{l,...,[(N-1)/2]}, Pf["]dér'ﬂnj\/y’
w fln] - fl-n]
7

et Pf[0] = f[0]. Dans le cas ou N est pair, il faut de plus ajouter Pf[N /2] = f[N/2].
Montrer que cet opérateur est symétrique et orthogonal, et qu’il correspond a la
décomposition de f en ses parties symétrique et antisymétrique. Montrer ensuite
que PSP~! est une matrice tridiagonale symétrique.

5. Montrer que les valeurs propres d’une matrice tri-diagonale symétrique a éléments
diagonaux non nuls sont distinctes. On pourra s’aider du livre de CIARLET [16] qui
décrit la méthode de Givens-Householder pour calculer les valeurs propres d’une
matrice symétrique. En conclure que les valeurs propres de S sont bien distinctes.

Vne {[N+1)/2],...,N—1}, Pfln]

6. En déduire que I’on a ainsi construit de fagon canonique une base orthonormée de
vecteurs propres de Q.

Sur la figure 3.16 on peut voir le module des premiers vecteurs propres de la TFD (c’est-
a-dire ceux qui ont le moins de changements de signe) construits a I’aide de la méthode
que nous venons d’exposer. Sur la figure 3.17 on peut voir la matrice des modules des
vecteurs propres de la TFD (les grands coefficients sont noirs).

Exercice II1.11 (Orthogonalisation sur un groupe cyclique). Cet exercice étudie dans
un cas particulier la notion d’orthogonalisation introduite a I’exercice 1.8. Il est cependant
indépendant. On considere le groupe fini G = Z /nZ, ainsi que I’espace vectoriel C[G] des
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FIG. 3.17 — Matrice des modules des vecteurs propres orthogonaux

fonctions de G dans C. Pour f € C[G] et k € G, on définit deux actions de G sur C[G] en
posant
kTf:x— f(x—k) et kLf:x— o ®f(x),
N 10 P def.  2Am
ol ’on a noté m, =en
1. Montrer que les opérations T et L sont reliées par
9(ka)=k_Lﬂ(f) et F(kLf) =kTZ(f).

2. Onrappelle que f est dite orthonormée sous I’actionde T si {kT f },¢ est une base
orthonormée de C[G]. En utilisant la question précédente, expliquer comment sont
reliées les bases orthonormées pour T et les bases orthonormées pour L.

3. Montrer que f est orthonormée pour T siet seulement si Vk € G, |f[k]| =1
4. Soit f € C[G] telle que f ne s’annule pas. On définit alors fy € C[G)] par
~ flk
Vke G, folk]= &
| F1A]|

Montrer que fj est orthonormée pour T. Proposer une construction similaire pour
1.
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5. On suppose maintenant que g est orthonormée pour T. Soit ¢ € C[G] quelconque.
On note, pour k € G, 4(¢)[k] = (p,kTg) les coefficients de décomposition de ¢
dans la base orthonormée {kTg}cg. Montrer que ¢ (¢) = 1 fxg =: 1 Corr(g,g),
ol g[k] = g[—], et Corr est par définition la corrélation de deux vecteurs (voir aussi
I’exercice IV.7 pour la corrélation de deux images). En déduire un algorithme rapide
de calcul de 4(¢) en O(nlog(n)) opérations.

La figure 3.18 montre deux exemples d’orthogonalisation. La fonction du haut, qui est
plus proche de I’orthogonalité que celle du bas (on le voit sur les modules des coeffi-
cients de Fourier qui sont loin de 1), donne naissance a une fonction g moins oscillante.
Intuitivement, pour orthogonaliser une fonction quelconque, il faut la « faire osciller ».

Fonclion originale Fonction orthogonalisée
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FIG. 3.18 — Exemples d’orthogonalisation






Chapitre IV
Applications de la transformée de Fourier discréte

A paper by Cooley and Tukey [20] described a recipes for
computing Fourier coefficients of a time series that used
many fewer operations than did the straightforward
procedure ... What lies over the horizon in digital signal
processing is anyone’s guess, but I think it will surprise us
all.

B.P. BOGERT (1967)

Nous avons donc vu, au chapitre précédent, que 1’on dispose d’un algorithme efficace,
I’algorithme FFT, pour calculer la transformée de Fourier discrete. Dés lors, toutes les ap-
plications utilisant de pres ol de loin la théorie de Fourier vont pouvoir bénéficier de cette
« trouvaille » algorithmique. Mais ce phénoméne va méme plus loin, puisque de nom-
breux autres problémes, pourtant fort éloignés de 1’analyse harmonique, vont étre résolus
de maniere rapide grace a I’algorithme FFT. Nous verrons ainsi que 1’on peut calculer
rapidement des produits de grands entiers, ou bien approcher la solution de I’équation de
Poisson, ce qui peut paraitre quelque peu déconnecté des préoccupations que nous avions
jusqu’alors !

1 Lien avec la transformée de Fourier sur R

To a considerable extent the continuous case can be
obtained through a limiting process from the discrete case
by dividing the continuum of messages and signals into a
large but finite number of small regions and calculating
the various parameters involved on a discrete basis.

C. E. SHANNON [66] (1948)

Ce chapitre est avant tout utile pour mieux comprendre de fagon intuitive la transfor-
mée de Fourier discréte, grace a de nombreuses analogies avec la transformée de Fourier
continue. Il n’est pas 1a pour donner a la TFD une nature numérique, car il faut avant
tout concevoir la transformée discréte comme une transformation algébrique, avec une
formule de reconstruction exacte (la transformée de Fourier discréte inverse). Cependant,
il est vrai que I’algorithme FFT est souvent employé pour calculer de maniére approchée
des coefficients de Fourier, méme si nous allons vite voir que la formule de quadrature
correspondante n’est pas tres précise.
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1.1 Transformée de Fourier continue

Nous venons de définir, de fagcon que 1’on pourrait qualifier d’abstraite, la transformée
de Fourier discréte. On peut donc fort naturellement se demander si cette derniére a un
quelconque rapport avec la transformée de Fourier usuelle sur R. Cette derniére, pour une
fonction f € L!(R) est définie par 1’équation

vEeR, O [ e ar (L1)

Cette transformation fonctionnelle a une signification trés importante, particuliérement
dans le domaine du traitement du signal. Si I’on considére que la fonction f représente
un signal continu qui se propage dans le temps, la transformée de Fourier permet de pas-
ser d’une représentation temporelle a une représentation fréquentielle. La quantité f(&)
représente intuitivement combien il y a de variations 2 la fréquence € dans f.
De plus, on peut étendre par densité la transformée de Fourier aux fonctions f € Lz(R)
d’énergie finie, c’est-a-dire telles que [g |f(x)|?dx < +oco. Ainsi, la célebre formule de
Parseval : R

Vf € L*R), |l =27 £l
peut s’interpréter comme une conservation de 1’énergie lors du passage du domaine tem-
porel au domaine fréquentiel. Pour plus de détails sur la construction de la transformée de
Fourier sur R, on pourra consulter le livre de RUDIN [62].
De méme que pour la transformée de Fourier sur un groupe fini, on a aussi un théoréme
d’inversion, sous des hypothéses un peu restrictives.
Proposition 1.1 (Formule d’inversion). Lorsque f € L?* et fe LY, on a presque partout

16) =5 [ &), a2

En fait, on pourrait refaire une théorie des caractéres sur le groupe (R,+) telle qu’elle I’a
été faite sur les groupes abéliens finis. Voici par exemple la détermination des caracteres
de la droite réelle :

Proposition 1.2 (Caractéres de R). On nomme caractére de (R,+) les morphismes
continus de R dans T = {z € C\ |z| = 1}. Comme d’habitude, on note Rie groupe formé
des caractéres. Pour y € R, soit

{ R — C*
ey:

t — e’
Alors on a R = {ey}ycr et l'application y — ey est un isomorphisme entre R et R.

Démonstration. Les ey sont bien siir des éléments de R. Soit donc X un morphisme
continu de R dans I'. Nous allons commencer par montrer que ) est une fonction dé-
rivable. Pour ce faire, il suffit d’intégrer la propriété d’homomorphisme au voisinage de
0:

h h
/0 x(s+t)dt=x(s)/0 x(t)dt.

Comme x(0) = 1, pour 4 suffisamment petit, on a fé’ x(t)dt # 0. On a donc, pour un

certain A,
x(s) = L4 0L
Jo x(0)de
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ce qui définit bien une fonction continiiment dérivable. Notons A = x’(0). En factorisant
le taux d’accroissement, on obtient

. t)— -
VseR, x'(s)= hmwt—) =x(s) limM =Ax(s).
t—0 h t—0 h
On remarque que la seule fonction f qui vérifie f' = A f et f(0) =1 est s+ 5. 1 ne reste
plus qu’a montrer que A € iR. Il suffit d’utiliser y(s)x(s) = x(0) = 1. En différenciant
cette égalité en 0, on trouve A + A = 0. O

Ainsi, la formule d’inversion (1.2) est & rapprocher la formule (4.4), chap. I, sur un groupe
fini : on s’est en quelque sorte contenté de remplacer la somme finie par une intégrale. De
méme, on pourrait analyser la décomposition d’une fonction 27t-périodique en série de
Fourier. Cette fois-ci, il s’agirait d’utiliser les caractéres du cercle ! = R/27Z, qui sont
les fonctions
VneZ YVt €R, e,(t)Ze™.

La formule de décomposition d’une fonction périodique en série de Fourier (sous de
bonnes hypotheses, et en précisant le sens de la convergence) est une fois encore une
formule d’inversion, avec cette fois-ci une somme dénombrable. Pour une introduction
aux séries et intégrales de Fourier sur un groupe, on pourra consulter le livre de DYM et
MACKEAN [29], chapitre 4.

1.2 Calcul approché de la transformée de Fourier sur R

Avant de se lancer dans des calculs approchés d’intégrales, il faut étre conscient que la
transformée de Fourier discréte ne se résume pas a de telles approximations. On peut en
partie expliquer les propriétés « intuitives » de la transformée de Fourier discréte en in-
voquant des approximations de la transformée de Fourier continue. Cependant, ce qui fait
que la transformée de Fourier discréte marche si bien ne vient pas de sa capacité a ap-
procher fidélement la transformée continue (c’est méme le contraire), mais vient du fait
qu’elle transpose les propriétés algébriques que 1’on utilise pour la droite réelle (convo-
lution, inversion, translation, ...) au cas d’un domaine fini et cyclique. Ce sont donc bien
les propriétés algébriques de 1a TFD qui en font un outil puissant en analyse numérique,
et qui permettent d’avoir des algorithmes simples et rapides. Dans ce paragraphe, nous
allons néanmoins expliquer les connexions qui relient, en termes de calculs approchés,
les deux transformées, discréte et continue.

Bien siir, la bonne méthode pour calculer de fagon approchée la transformée continue est
de chercher la valeur de f en certains pomts En effet, on ne connait en pratique le signal f
que sous la forme d’un echantlllon {fn)}"=/, chaque valeur f[n] étant mesurée pour une
valeur du paramétre x égale  x, = nA, pourn =0,...,N — 1. Aest le pas de discrétisation,
c’est-a-dire I’intervalle (de temps si on considére un signal variant dans le temps) entre
deux mesures du signal f.

Dans la suite, en vue de simplifier les explications, on suppose que N est un entier pair.
11 est clair qu’étant donné un échantillon de N valeurs du signal f, il est vain de vouloir
calculer plus de N valeurs indépendantes de la transformée de Fourier f Cette remarque
intuitive va étre confirmée par le calcul approché suivant :

VEER, f(&)~A 2 fln)e™&%.

n=0
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Cette approximation est obtenue en utilisant la méthode des rectangles & gauche pour
calculer de maniere approchée 1’intégrale (1.1). Pour que cette approximation ait un sens,
il faut bien siir qu’en dehors de I’intervalle [0, NA] 1a fonction f soit sinon nulle, du moins
a décroissance tres rapide.

On voit alors qu’en calculant les valeurs de fpour des valeurs du paramétre £ de la forme

. err . P FRETIN ) P
Sk = A on obtient une écriture particulierement agréable pour le calcul approché de

Fl&): »
FlE)~a go flne ™, (1.3)

Comme nous I’avons déja mentionné, il est logique de ne calculer que N valeurs de la
transformée de Fourier, donc nous allons appliquer le calcul précédent aux points & pour
k variant dans { —N/2+1,...,N/2}. On pourrait se demander pourquoi on ne commence
pas a I'indice k = —N /2, mais on voit que 1’on obtient le méme résultat pour §_N/2 et
pour &y /2 (ce qui est conforme a notre idée: inutile de calculer plus de N coefficients).
En rapprochant I’expression (1.3) et la définition de la transformée de Fourier discrete
(1.1), chap. III, on obtient

vk e{0,...,N=1}, Fl(&)~AflK], (1.4)

ol ’on a noté f[k] la Kkme entrée de la transformée de Fourier discréte du vecteur
{fl0],...,fIN—1]} € CN (comme défini par I’équation (1.1), chap. III).

Cependant, il y a une légere astuce dans 1’équation (1.4). En effet, I'indice k varie dans
{-N/2+1,...,N/2}, alors que le vecteur de transformée discrete { f[0],..., /[N —1]} a
ses indices dans {0,...,N — 1}. Il est néanmoins facile de voir que 1’on n’a pas commis
d’erreur en écrivant 1’égalité (1.4), puisque le vecteur de transformée discréte peut étre
vu comme une fonction périodique de période N. On peut donc remplacer les fréquences
négatives {—N/2+1,..., — 1} par les fréquences {N/2+1,...,N — 1} : on obtient bien
un vecteur dont les indices varient entre 0 et N — 1.

Ainsi, la formule Q.4) nous dit qu’a un facteur A pres, le vecteur de la transformée de
Fourier discréte {f]0],..., fIN — 1]} représente une approximation de la transformée de
Fourier du signal f, mais prise a des fréquences bien particuliéres : les indices n entre 0
et N/2 — 1 correspondent aux fréquences positives entre 0 et f, = % (exclue), les indices
n=N/2+1,...,N —1 correspondent aux fréquences négatives entre — f, (exclue) et 0
(exclue), alors que I’indice N /2 correspond a la fois a la fréquence f, et —f. (ce qui est
normal, puisque le signal discret transformé est périodique de période N). Il faut donc
faire attention aux deux points suivants.

— Le vecteur transformé { [0}, ..., fIN — 1]} est considéré comme une donnée périodique
de période N (c’est le propre de la transformée de Fourier sur un groupe abélien, en
I’occurrence Z/NZ). Ce n’est bien siir pas le cas de la fonction f: R — C qui n’a
aucune raison d’€tre périodique de période 2f,.

— Par rapport a la transformée de Fourier sur R du signal continu f, les fréquences sont
rangées dans le désordre : fréquences négatives, puis fréquences positives.

1.3 Ajout de zéros

Il y a deux techniques de base pour influer sur la fagon dont on peut calculer, a I’aide de
la transformée discréte, différentes valeurs de la transformée continue.
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— On peut échantillonner le signal avec plus ou moins de précision. Nous avons vu que
plus I’échantillonnage est précis (c’est-a-dire plus on prend de points pour représenter
la fonction analysée), plus le spectre de la transformée est large. Ainsi, si I’on désire
couvrir un spectre deux fois plus grand, il suffit de diviser par deux I’intervalle d’inter-
polation. Bien siir, cela rallonge aussi le temps nécessaire pour faire le calcul.

— On peut ajouter des zéros a la fin du vecteur. Si 1’on est satisfait du spectre sur lequel
on calcule la transformée (plus précisément des fréquences maximales et minimales
que I’on peut calculer), on peut ensuite vouloir calculer la transformée avec plus de
précision, par exemple si on veut tracer une courbe pour représenter graphiquement la
transformée. Dans ce cas, la marche a suivre est simple : il suffit de rajouter des zéros a
la fin du vecteur, pour rajouter autant de fréquences intermédiaires calculées.

En jouant sur ces deux parameétres (précision d’interpolation et ajout de zéros), on peut
calculer des transformées discrétes « sur mesure », pour avoir une certaine taille de vec-
teur fixée (ceci peut €tre utilisé pour créer des filtres, cf. section 2), mais aussi pour la
représentation de la transformée. La figure 4.1 montre les différents résultats que 1’on
peut obtenir en jouant 2 la fois sur le nombre de points d’échantillonnage et sur 1’ajout de
zéros. Les fonctions représentées sont les modules de la TFD de la fonction indicatrice
de [0.5,1], échantillonnée sur [0, 1] a intervalles réguliers. Chaque ligne utilise un méme
nombre de points d’échantillonnage, mais avec plus oll moins de zéros ajoutés. L’exercice

Ajout de zéros x1 Ajout de zéros x2 Ajout de zéros x10
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F1G. 4.1 — Influence de ’échantillonnage et de I’ajout de zéros

IV.9 est instructif a cet égard, puisqu’il réinvestit tout ceci dans le but de créer et tester un
filtre passe-bas.
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1.4 Dualité temps/fréquence

Dans le temps a une dimension, la répétition 2 intervalle
égaux est le principe du rythme. Pendant qu’une pousse

effectue sa croissance, on pourrait dire qu’elle traduit un
rythme temporel lent en un rythme spatial.

H. WEYL [77] (1952)

Le calcul approché que nous venons de faire nous permet, via 1’utilisation de la trans-
formée de Fourier discréte de calculer la valeur de la transformée de Fourier d’un si-
gnal pour certaines fréquences uniquement, précisément celles de la forme %‘—X pour
ke {-N/2+1,...,N/2}. On remarque donc que plus la précision avec laquelle on réa-
lise le calcul est grande (c’est-a-dire le pas de discrétisation A est petit), plus le spectre sur
lequel on calcule la transformée est étalé. Ceci n’est pas un phénomene isolé, et résulte

d’une dualité tres forte entre la fonction de départ et sa transformée de Fourier.

Le résultat suivant illustre bien cette dualité entre les propriétés temporelles d’un signal
(c’est-a-dire les propriétés d’une fonction f) et ses propriétés fréquentielles (c’est-a-dire
celles de la fonction transformée f).

Proposition 1.3. Soit f une fonction de L*(R). Alors f et f ne peuvent étre simultanément
a support compact.

La démonstration de ce résultat est proposée a 1’exercice IV.1. Cette propriété a un ana-
logue discret immédiat, que 1’on peut voir en considérant I’'impulsion discréte & (le vec-
teur qui vaut 1 en 0, et qui est nul partout ailleurs). Sa transformée de Fourier discréte a un
spectre qui couvre tout I’intervalle considéré, puisqu’il s’agit de 1a fonction exponentielle
t — €%™ gchantillonnée 2 intervalles de temps réguliers.

2 Filtrage

La notion de filtrage d’un signal échantillonné est simple & définir, mais est utilisée d’une
manicre intensive et variée. Nous ne ferons donc pas le tour de la question, cependant, il
est intéressant de relier la technique du filtrage avec des outils tels 1’algorithme FFT et la
convolution linéaire.

2.1 Filtres linéaires

Commencons par définir le filtrage d’un signal théorique infini, avant de nous intéresser
au calcul pratique sur des signaux finis. Le filtrage d’un signal f € CZ consiste 2 convoler
(de maniére acyclique bien sfir) ce signal avec un autre signal g € CZ fixé a I’avance. On
obtient ainsi un opérateur de filtrage

CZ _ (CZ
@8 . .
{ f o fxg

On dit que g est la fonction de transfert du filtre ®8.
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Une des propriétés remarquables des filtres linéaires est 1’obtention de la réponse im-
pulsionnelle (c’est-a-dire la facon dont le systeme que représente le filtre réagit a une
impulsion), qui se calcule trés simplement :

D (Bo) = doxg =8,

ol on a noté & I’impulsion en 0, c’est-a-dire la suite qui vaut 1 en O, et qui est nulle
partout ailleurs (on parle de Dirac discret). Autrement dit, la fonction de transfert du filtre
n’est rien d’autre que la réponse impulsionnelle.

Une fois exposées toutes ces définitions, on est amené a se poser la question du calcul
pratique du filtre. Si I’on veut pouvoir calculer la convolution f* g en un temps fini,
une hypothése naturelle est d’imposer a la réponse impulsionnelle g d’€étre finie (plus
précisément a support fini). C’est un choix assez radical, mais 1’intérét est qu’il va nous
permettre d’appliquer un filtre linéaire a des signaux finis de fagon trés simple. Il va en
effet suffire d’utiliser les techniques de convolution acyclique déja présentées a la section
3.3, chap. III. Rappelons bri¢vement la marche a suivre. On suppose que le signal a filtrer
est du type : f = {f[0],..., f[N — 1]}, et que la réponse impulsionnelle, elle, est peut étre
définie pour des indices négatifs, mais est, dans tous les cas, de taille finie P. On doit :

— ajouter assez de z€ros au deux vecteurs pour qu’ils atteignent la taille de N+ P —1;

— déplacer les entrées d’indices négatifs de g a la fin du vecteur (c’est la coutume pour les
convolutions cycliques) ;

— calculer la convolution cyclique par FFT puis FFT inverse ;

— extraire du résultat les indices qui nous intéressent et les remettre dans 1’ordre (si on
souhaite récupérer les entrées d’indices négatifs).

L’une des caractéristiques principales des filtres de convolution que nous venons de dé-
crire est qu’ils possédent une réponse impulsionnelle finie, dans le sens ol elle devient
nulle en dehors du support de g. C’est pour cela que 1’on nomme souvent les filtres de
convolution filtres a réponse impulsionnelle finie, en anglais FIR (pour Finite Impulse
Response). Nous verrons au paragraphe 2.2, chap. V, que 1’on peut construire de fagon
simple des filtres qui ne posseédent pas cette propriété, mais qui peuvent quand méme étre
calculés en un temps fini.

Dans la plupart des cas, la fonction de transfert g a un support limité au voisinage de 0
(c’est-a-dire que seules les entrées au voisinage de 0 sont non nulles). Un bon exemple
est le filtre gaussien, donné par 1’équation

2
Vke {-N/2,...,N/2}, glk]= Al/lexp (—@) .

Le paramétre M est ajusté de sorte que ||g||; = Y |g[k]| = 1. Le paramétre ¢ représente la

variance de la gaussienne. Plus ¢ est petit, plus la gaussienne est « ramassée », donc plus
g tend vers le Dirac & (et le filtre ®8 tend vers I’identité). Au contraire, plus ¢ devient
grand, plus la gaussienne est « étalée », et plus le filtre lisse le signal. Il faut faire attention
au fait que les indices de g ont été pris dans [—N/2,N /2], car on souhaite réaliser un filtre
acyclique. Pour réaliser un filtre cyclique et/ou calculer le filtre par FFT, il faut bien siir
reporter les fréquences négatives a la fin du vecteur.

La figure 4.2 montre différents noyaux gaussiens (en haut). Le noyau gauche a une va-
riance ¢ tellement faible qu’il est égal au Dirac. La ligne du bas montre le filtrage d’un
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signal irrégulier (représenté & gauche, puisque le filtrage par un Dirac n’a pas d’effet).
On voit que plus la variance est €levée, plus le signal filtré est régulier. Ceci rejoint la
théorie classique de la convolution continue : lorsque 1’on filtre par un noyau de classe
€ (par exemple une gaussienne), la fonction devient instantanément de classe €, donc

extrémement lisse !

1=0.000 1=0.005 t=0.010 1=0.020
o : 0.08 I 0.06 o 0.04 )
o D oo SN
S 06 0.06 B 004 ; 008 ; ,
B 0.04 oo _ 002 .
04 ; 0.02 i : Y
02 0.02 i L |oor| / "
20 0 20 20 0 20 20 0 20
1 i 1
»
£ i A ; N
c o & A //'* ; EI /: PR
£ U R A I LA PP SN ] P WY A
e R A i '\/\é Vod ! V\t" 1
S ST A ] ¢ PR ig
w vl' s 2/. Y H \/, i V
0 0 0
0 5 100 0 5 100 0 50 100

FIG. 4.2 — Lissage par une gaussienne

2.2 Types de réponses et stabilité

Nous avons donc vu que la réponse impulsionnelle définit un filtre. Cependant, on peut
aussi caractériser ce filtre par d’autres types de réponses, dont notamment :

— la réponse fréquentielle. C’est simplement la transformée de Fourier de la fonction de
transfert, c’est-a-dire Y7 g[k|e!**, pour x € [~ m]. C’est une fonction 27-périodique,
puisque c’est la série de Fourier associée aux coefficients g[k]. Puisque la réponse impul-
sionnelle g est finie, on peut la calculer par transformée discréte (FFT), en ajoutant beau-
coup de zéros 2 la fin de g pour avoir une trés bonne précision (un tracé quasi-continu de
la fonction, cf. paragraphe 1.3). Elle représente la fagon dont le filtre opére dans le do-
maine fréquentiel. En effet, en utilisant le théoréme de convolution 3.4, chap. III, on voit
que la réponse fréquentielle indique par quelle quantité le filtrage va multiplier I’ampli-
tude de chaque harmonique (c’est-a-dire chaque composante du vecteur transformé) du
signal d’origine.

— la réponse indicielle. 11 s’agit du vecteur obtenu en filtrant un échelon, c’est-a-dire la
suite qui est nulle pour les indices négatifs, et qui vaut 1 pour les indices égaux ou
supérieurs a 0. Cette réponse indique comment le filtre va réagir face a une disconti-
nuité. Pour un esprit humain normalement constitué, c’est la réponse qui a le plus de
sens, puisque 1’ceil humain est avant tout entrainé a repérer les discontinuités. Ainsi, en
observant la réponse indicielle d’un filtre 2D, nous aurons des indications sur la fagon
dont le filtre va transformer les contours de I’'image (la ou il y a une variation forte de
I’intensité).

D’une fagon pragmatique, la réponse fréquentielle se calcule trés simplement en em-
ployant 1’algorithme FFT (en prenant soin d’ajouter suffisamment de zéros pour obtenir
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une précision suffisante, et en remettant les fréquences négatives & leur place). Pour la
réponse indicielle, il y a au moins deux maniéres de procéder.

— On peut donner un échelon en entrée du filtre. Pour un filtrage linéaire, il suffit de donner
en entrée un vecteur constant égal a 1, 1’algorithme étant censé ajouter suffisamment de
z€ros pour éviter la convolution circulaire.

— Si on connait la réponse impulsionnelle yg et que 1’on souhaite calculer la réponse indi-
cielle yy, il suffit de remarquer que la fonction échelon est la primitive discréte (c’est-a-
dire la somme partielle), et donc en utilisant la linéarité du filtre, il en sera de méme des
deux réponses. On obtient donc la formule simple

n

Vn>20, yiln]= Y, yolk].

k=-o0c0

La figure 4.3 montre les trois différents types de réponses pour 3 fonctions de transfert dif-
férentes. La premiére ligne représente une gaussienne, et on constate bien que la réponse
impulsionnelle est aussi une gaussienne (ce qui est logique, puisque la transformée d’une
gaussienne est gaussienne, voir le lemme 3.10, chap. II). Les deux autres lignes montrent
des filtres avec une décroissance moins rapide, et on constate quelques oscillations dans
la réponse fréquentielle. Il est a noter que les filtres ne sont pas causaux, c’est-a-dire que
les fonctions de transfert sont définies pour des indices négatifs.

Signal d'origine Réponse indicielle

Réponse fréquentielle (zoom)
1
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FIG. 4.3 — Réponses fréquentielles et indicielles

Remarque 2.1. (Domaine temporel et fréquentiel). Suivant la réponse qui nous inté-
resse, on peut voir un filtre comme opérant dans le domaine temporel (méme si le signal
West pas échantillonné dans le temps mais par exemple dans 1’espace) ol bien dans le
qOmaine fréquentiel. Dans certaines applications, il est naturel de créer le filtre en fonc-
tion des propriétés temporelles que 1’on veut donner au filtre (par exemple pour lisser
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des images dans une direction privilégiée). Dans d’autres applications, nous allons nous
intéresser au comportement fréquentiel du filtre (a la facon dont le filtre va supprimer
les hautes fréquences, pour un filtre passe-bas a la sortie d’un micro). Les remarques sur
la dualité temps/fréquence faites au paragraphe 1.4 expliquent que 1’on ne peut pas ga-
gner sur les deux tableaux. Par exemple, si I’on souhaite créer un filtre passe bande trés
précis (c’est-a-dire avec un support le plus compact possible), il sera nécessairement peu
utilisable dans le domaine temporel, car il aura une réponse impulsionnelle tres étendue.

Avant de passer a I’étude des filtres bidimensionnels, présentons bri¢vement une notion
importante qui sera reprise par la suite (lors de I’étude de la transformée en Z, au para-
graphe 2, chap. V). Il s’agit de la notion de stabilité d’un filtre, qui se définit d’une fagon
trés intuitive.

Définition 2.2 (Stabilité). Un filtre ®S est dit stable si pour tout signal borné f € CZ, la
sortie ®&(D) est aussi bornée.

Un calcul simple montre que

wnez, 1087l <suplflal) 3 leldl

k=-c0

En conséquence, pour qu’un filtre soit stable, il suffit que g € £1(Z), ol1 ’on a noté £'(Z)
I’espace des suites absolument sommables. On peut vérifier que cette condition est éga-
lement nécessaire, en prenant une suite f telle que f[k]g[—k] = |g[k]| (pour les k tels que
glk] # 0). On a alors, si g ¢ £1(Z),

+o00

o (Nol= 3 fKgl-H= 3 |glkll = +e-

k=-oco k=—oco

Si g € £1(Z), I’opérateur de filtrage @8 est un endomorphisme continu de ’espace des
suites bornées, et sa norme est exactement ||g||,1.

Les filtres linéaires a réponse impulsionnelle finie que 1’on a considérés jusqu’a présent
sont donc toujours stables. Nous verrons au paragraphe 2.2, chap. V, qu’il est possible de
construire des filtres qui ne posseédent pas cette propriété sympathique.

2.3 Filtrage 2D et analyse d’image

On peut bien sfir considérer la convolution bidimensionnelle telle qu’elle est expliquée au
paragraphe 4.2, chap. III. Ceci donne naissance a un filtre ®8, qui agit sur des signaux
bidimensionnels f : {0,...,N — 1} x {0,...,N — 1} — R. Ces signaux peuvent étre re-
présentés comme des images, puisqu’en chaque pixel (i, j) de I'image, on a une intensité
lumineuse f{i, j]. De fagon plus précise, on restreint le plus souvent ’ensemble d’arrivée
a un ensemble fini, par exemple {0,...,255}. Ces 256 valeurs représentent les fameux
niveaux de gris qui seront affichés a 1’écran.

Pour « lisser » une image, nous allons une fois de plus considérer des fonctions de trans-
fert g resserrées autour de 0, par exemple une gaussienne :

(2k/N)? 4 (21 /N)2>

(k1) € {=N/2,...,N/2}2, glk,]] = Alllexp <— >



§ 3. Aspects géométriques du filtrage 105

Le paramétre M est comme dans le cas 1D choisi de tel sorte que ||g||; = 1, et ¢ est ajusté
en fonction de la puissance du lissage souhaité. La figure 4.4 montre différents noyaux
gaussiens (ligne du haut) ainsi qu’une image lissée par ces mémes noyaux gaussiens (ligne
du bas).

t=0.001 t=0.005 t=0.010 1=0.020

Fonction g

Fonction f*g

FIG. 4.4 — Lissage d’une image par une gaussienne 2D

Une application trés courante du filtrage d’image est d’adoucir le bruit présent dans une
image naturelle dégradée. C’est ce que montre la figure 4.5, ou I’on peut voir Maurice
dont I’image, de mauvaise qualité, a ét€ améliorée par un filtre gaussien. L’exercice IV.7

Image bruitée Aprés filtrage par une gaussienne

F1G. 4.5 — Exemple de filtrage d’image

propose d’aller plus loin dans I’analyse d’image, en appliquant le calcul de corrélation a
la recherche de sous-images dans une image plus grande.

3 Aspects géométriques du filtrage

Dans cette section, nous allons aborder le probléme du filtrage d’un signal sous un angle
original et simple, celui de la géométrie plane. Plutot que de considérer le signal étudié
comme une suite de valeurs espacées dans le temps, on va I’utiliser pour décrire un poly-
gone dessiné dans le plan complexe. Nous allons alors nous intéresser a I’action d’un filtre
sur la forme de ce polygone. Plus précisément, nous allons voir comment se comportent
les itérés successifs du polygone filtré.
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3.1 Filtrage de polygones

Dans la suite de cet exposé, nous allons étudier un polygone a N sommets, I, que nous
allons considérer comme un vecteur IT € CV. Ainsi, I1[0] représentera le premier sommet
du polygone, I1[1] le deuxiéme, etc. De fagon équivalente, on peut aussi considérer un
polygone comme une fonction IT: Z/NZ — C. Cette description est trés commode, puis-
qu’elle s’adapte bien a la notion de polygone fermé. En effet, on considére que le sommet
IT[i] est relié au sommet I[i + 1], et on a naturellement envie de relier le sommet IT[N — 1]
au sommet I1[0]. Ceci revient & considérer un signal N-périodique.

Nous nous intéressons a 1’action d’un filtre circulaire @& sur un polygone IT. Nous allons
donc considérer les polygones itérés o, pour k > 0, qui sont définis de la maniere

suivante :

M =gxI*D vk>0 "’ 1)

ou g est la fonction de transfert du filtre. La question naturelle est de savoir si %) va
tendre vers un certain polygone limite, 1), si les polygones itérés vont rester bornés, ol
si au contraire ils vont « exploser ». Pour mener a bien cette étude, il suffit de calculer la
transformée de Fourier de la relation d’itération (3.1), et on s’apergoit que

—_—

Vk>0, TIK =(g)"II.

L’étude de la convergence de 1) se fait donc de facon treés simple dans le domaine de
Fourier. De plus, grice a la formule d’inversion de la transformée, une convergence dans
le domaine de Fourier est équivalente & une convergence du polygone. Voici donc les
différents cas qui peuvent se présenter.

- Si 3i € {0,...,N—1} tel que |g[i]| > 1: alors les polygones itérés vont exploser. Cela
correspond aux cas (a) et (b) de la figure 4.6.

— Si pour tout i, on a soit |g[i]| < 1 soit g[i] = 1, alors les polygones itérés vont converger
vers un polygone 1) qui est défini par

| — 0 si |glil<1
Vi=0,...,N—1, II( )[’]z{ﬁ[i] si ﬂ;]=1

Cela correspond au cas (c) de la figure 4.6.

-Sivie {0,...,N—1}, |gli]| < 1, mais s’il existe un i tel que |g[i]| = 1 et g[i] # 1, alors
les polygones itérés ne vont pas converger, mais ils vont rester bornés. Ceci correspond
au cas (d) de la figure 4.6. On peut remarquer que si gi] est une racine de I’unité, alors le
mouvement est périodique (méme si le phénomene est difficile a étudier numériquement
a cause des erreurs d’arrondi).

On peut donner deux exemples typiques de filtrage de polygones. I1s sont représentés a la
figure 4.7.

Exemple 3.1. Le premier correspond au filtre
g=1{1/2,1/2,0,...,0}.
Ceci consiste a remplacer le polygone IT par la polygone IT() tel que

V) = = (TI[i] + T + 1)).

N =
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(a) Flltre qui explose (b) Filtre qui explose
ov
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FIG. 4.6 — Différents cas de filtrages de polygones .

En quelque sorte, ceci revient a joindre les milieux consécutifs de chaque c6té du poly-
gone. De fagon intuitive (et sur le dessin de la figure 4.7, & gauche), on a I’impression que
les polygones itérés convergent vers le centre du polygone. Confirmons ceci par le calcul :

1 _2in’k kﬂ' _iﬂ.’k
== k) = 22 ) e Wk,
glk] 2(1+e ) cos<N>e

Comme on a g[0] =1 et pour k > 1, |g[k]| < 1, on conclut donc que les polygones itérés
vont converger vers le point I1[0], qui correspond au centre de gravité du polygone.

Exemple 3.2. Pour le deuxi¢me exemple, il s’agit d’un filtre qui agit dans le domaine de
Fourier de 1a maniére suivante:

g=1{0.8,1,0.8,...,0.8}.
Les polygones itérés vont donc converger vers un polygone T1C) tel que
) = {o,fi[1],0,...,0}.

On vérifie que ceci correspond a un polygone régulier inscrit dans un cercle de rayon
[TI[1]|, comme on peut le voir 2 la figure 4.7 (droite).

3.2 Inégalités polygonales

Ce paragraphe est tiré du livre de TERRAS [72]. J’ai souhaité 1’insérer dans une étude
plus générale de I’analyse de Fourier géométrique, qui fait I’objet de ce paragraphe. Il
s’agit d’utiliser la transformée de Fourier afin de démontrer des inégalités de nature eucli-
dienne sur les polygones. L'outil principal sera 1’égalité de Plancherel 1.6, chap. III, qui
va permettre de démontrer les inégalités en passant dans le domaine de Fourier.
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Filtre moyenne Filtre laissant passer une fréquence
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F1G. 4.7 - Filtrage moyenne et filtrage passe fréquence

Comme au paragraphe précédent, nous considérons un polygone IT & N c6tés, qui peut
étre vu comme une fonction I1: Z/NZ — C. Nous allons définir plusieurs quantités liées
a ce polygone. Tout d’abord la somme des carrés des longueurs des cotés :
N=l
S = Y i+ 1] - (i)~
i=0

Ensuite, 1a somme des carrés des distances au centre de gravité du polygone :
N-1 R
()= Y, |T1(i] - TI[0] %,
i=0

Enfin, I’aire orientée du polygone :

N-1

A(TT) & gsm (ﬁ[i—]H[i+1]).

1
2
Proposition 3.3. On a les inégalités suivantes :

@) A(IT) < 37(M0)

(i) 4sin? (£) T(IT) < S(10).
Démonstration. Inégalité (i): On introduit I’opérateur de décalage T défini par la rela-

tion TTI[k] = IT[k + 1], ce qui permet d’écrire

1 N-1
A(TT) = —3m< H[i]Tl'I[i]> :

2 k=0

11 suffit d’utiliser ensuite la formule de Plancherel pour calculer A(IT) dans le domaine de
Fourier :

1 N=1
A(TT) = 50m (2 H[k]?(Tl’I)[k]) .
k=0
On utilise ensuite le fait que & (TTI)[k] = eZi'Nerﬁ[k] pour obtenir

N-1 R
A(TT) = % Y sin (-21’;—”) T

k=0
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En remarquant que sin (%’{,") < 1, on obtient bien I’inégalité voulue, apres avoir utilisé
une fois de plus la formule de Plancherel.
Inégalité (ii) : Pour ce faire, introduisons le filtre dont la fonction de transfert est égale a

¢ = {-1,1,0,...,0}. On peut réécrire la quantité S(IT) de la maniére suivante :
N-1 , 1Al )
= Y lg*TK[> == 3 |F (g*xTK]I".
k=0 N o

Pour la derniere égalité, on a utilisé la formule de Plancherel. Calculons le module de la
transformée de Fourier de g:

im k
Vk=1,...,N-1, l§[k]|2=Ie‘zT"—1|2=4Si“2<Wn)>4si“2(zzv)'

I ne reste plus qu’a utiliser la propriété de convolution pour obtenir, comme g[0] = 0,
LN i s Loz (FYS [fin2
= 5 I BWPIARP > Gasin® (7) 3, IR
On conclut ensuite en utilisant une fois de plus la formule de Plancherel :
1Nl NSl . 2
v 2 P =5 3 | # (1 - i) | = 7

Ce qui termine la démonstration. O

3.3 Descripteurs de Fourier

Pour terminer ce chapitre sur les applications de la théorie de Fourier a la géométrie,
nous allons aborder le probleme de la reconnaissance de formes. Pour étre plus précis, on
souhaite savoir si deux polygones IT; et I, représentent la méme forme, a translation, ro-
tation et homothétie pres. Nous allons bien siir essayer de comparer les deux transformées
de Fourier H1 et Hz

Il s’agit donc, a partir d’un vecteur transformé, de créer une quantité 2(I1) caractérisant
un polygone IT a translation et similitude pres. Voici les trois opérations a effectuer :

— pour la translation : on sait que seule la composante ﬁ[O] est modifiée par une transla-
tion. En fait, ﬁ[O] représente précisément le centre de gravité du polygone. Nous allons
donc purement et simplement ignorer la premiéere entrée du vecteur transformé.

— pour la rotation et I’homothétie : on considére une similitude plane de centre w, d’angle
0, et de rapport r. Ceci correspond 2 la transformation z — @ + re'® (z — w). On vérifie
que cette transformation change les coefficients de Fourier ﬁ[k] (pour k > 0) en les
multipliant par re'®. Supposons que ﬁ[l] # 0 (sinon, on prend un autre indice ko > 0 tel
que ﬁﬁ (ko] # 0} Pour annuler I’effet de I’homothétie, il suffit de considérer les quantités
Q2] 13 MN-1
i i

~ pour I'invariante par décalage circulaire des données : on veut que le polygone IT' £ TTI
défini par IT' = {I1[1],I1[2],..., T[N — 1],TI[0] } soit indiscernable du polygone II, ce
qui signifie que 2(IT) = 2(IT'). On constate que v (k] = e'fT"l’I[k] Pour avoir cette
invariance, nous allons donc considérer le module des quantités déja calculées.
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Apres toutes ces constatations, nous sommes donc amenés a assigner a chaque polygone
IT un descripteur de Fourier, que 1’on définit de 1a maniére suivante.

Définition 3.4 (Descripteur de Fourier). Soit IT un polygone a N cdtés tel que ﬁ[l] #0.
Son descripteur de Fourier 2(II) est un vecteur complexe de taille N —2 défini de la
manicre suivante :

_@(H)@{I@[ZH,I1i1[3]|,___’lﬁ[1AV—1]I}_
TN G ]

On définit alors la distance entre deux polygones (on suppose qu’ils vérifient ﬁ,-[l] #0)
IT; et I, de la fagon suivante:

-3
d(I,,IL)* £ 1:2’) (2(T) k] — 2(T1) [K])*.

Deux polygones IT; et I'l; qui sont images 1’un de I’autre par une similitude plane vérifient
donc d(IT;,IT;) = 0. Cependant, on prendra garde au fait que la réciproque est fausse. En
effet, si on choisit des nombres 6y,...,0y—1 arbitraires, alors le polygone Il, défini par
T, [k] £ ¢16[1, [k] vérifie d(IT;,T1;) = 0. Dans la pratique cependant, Ia valeur de d donne
une bonne idée sur la similitude entre deux formes. C’est ce qu’illustre la figure 4.8, ou le
deuxiéme polygone est proche du premier.

4 Résolution numérique d’équations aux dérivées partielles

On voit donc que les valeurs particuliéres

S

ae > cosy,be™>* cos 3y, ce % cos 5y, ...

prennent leur origine dans la question physique elle
méme, et ont une relation avec les phénomenes de la
chaleur. Chacun d’eux exprime un mode simple suivant
lequel la chaleur s’établit et se propage dans une lame
rectangulaire, dont les c6tés, infinis, conservent une
température constante.

JOSEPH FOURIER, Théorie analytique de la chaleur
(1822)

L'une des principales utilités de la transformée de Fourier continue est la résolution
d’équations aux dérivées partielles. D’un point de vue purement formel (presque tota-
lement algébrique), elle permet de remplacer un probléme complexe (une équation diffé-
rentielle linéaire) en un probleéme beaucoup plus simple, une équation polynomiale. Ceci
provient du fait que la transformée de Fourier remplace la dérivation par rapport & x en
multiplication par ix. Bien siir, il faut se soucier des problémes de convergence ainsi que
des conditions aux bords, mais la transformée de Fourier s’avére un outil théorique trés
puissant pour démontrer I’existence de solutions pour de nombreuses équations.

D’un point de vue pratique, le calcul numérique de la solution d’une équation peut, 2
divers moments du procédé de discrétisation, mener a I’utilisation de la transformée de
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—— Forme originale + Forme originale
----_Forme modifiée x__Forme modifiée
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FIG. 4.8 — Descripteurs de Fourier pour deux formes proches

Fourier discrete. Ceci peut provenir d’une discrétisation pure et simple de la transformée
de Fourier continue (par exemple pour I’équation de la chaleur, paragraphe 4.2), ou bien
d’une maniere plus ingénieuse pour simplifier et accélérer les calculs (par exemple pour
I’équation de Poisson, paragraphe 4.3). Dans les paragraphes qui suivent, nous allons nous
concentrer sur ces aspects numériques ; 1’utilisation théorique de la transformée continue
est détaillée notamment a 1’exercice IV.3.

4.1 Calcul de coefficients de Fourier

Comme nous 1’avons vu au paragraphe 1.2, I’algorithme FFT permet de calculer de ma-
ni¢re approchée la valeur de la transformée de Fourier continue a certaines fréquences &
Mais en réalité, le calcul de f[&] que ’on a effectué correspond a 1’approximation de
I’intégrale :

~ NA in
F&) ~A /O F(r)e Ry, @.1)

Or, si on note f; la fonction périodique de période NA qui coincide avec f sur I'intervalle
[0,NA], I’équation (4.1) correspond au calcul de c(f7), le k™€ coefficient de Fourier de
la fonction f.

Résumons tous ces résultats par une formule permettant de calculer de maniére approchée
N coefficients de Fourier pour une fonction f périodique de période 1:

Vne{-N/2+1,...,0,...,N/2}, c,,(f)g/olf(t)e_m”"’dtzI%f[n],

ol I'on a noté f le vecteur transformé de Fourier du vecteur {f(k/N)}¥=}.

L’algorithme FFT va donc permettre de calculer d’un seul coup N coefficients de Fourier
d’une fonction échantillonnée en N points. De plus, les techniques d’ajout de zéros et
de raffinement de I’échantillon permettent de moduler le nombre de coefficients calculés
pour un méme échantillonnage. Le seul probléme potentiel réside dans le manque de pré-
cision (la méthode des rectangles n’est que d’ordre 1), ce qui peut s’avérer problématique
lorsque les coefficients de Fourier décroissent rapidement vers 0, comme c’est le cas pour
une fonction trés réguliére. Deux solutions sont alors possibles :

- augmenter le nombre de points d’interpolation.
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— utiliser une méthode d’intégration plus élevée. Il est possible de faire apparaitre une
transformée de Fourier discréte avec d’autres formules que celle des rectangles (par
exemple celle de Simpson). L’exercice V.10, question 2, détaille cette technique.

4.2 Application a I’équation de la chaleur

Dans ce paragraphe, nous allons appliquer la méthode décrite au paragraphe précédent,
qui permet de calculer d’un seul coup un trés grand nombre de coefficients de Fourier
(certes avec une précision discutable). Il s’agit de résoudre 1’équation de la chaleur, qui
historiquement a eu un réle trés important, puisque c’est elle qui a poussé JOSEPH FOU-
RIER 2 €laborer sa théorie, dans son article Théorie Analytique de la Chaleur (1822).

On veut résoudre de maniére approchée I’équation de la chaleur sur le cercle S' = R /Z:

ou %u
+ 1 —
V(t,x) e Rf x S, 5 = K32 4.2)
Vxe S, u(0,x) = f(x)

ot la solution cherchée u est supposée suffisamment réguliere sur R} x S', et continue
sur R* x S1. Dans ce paragraphe, nous n’allons pas utiliser de méthode de différence
finie, contrairement a ce que nous ferons au paragraphe 4.3 pour résoudre 1’équation
de Poisson. L’exercice IV.2 étudie la stabilité d’une telle méthode pour 1’équation de la
chaleur. Nous allons plutdt résoudre de fagon explicite 1’équation continue, et calculer des
approximations de la solution par FFT.

Cette équation traduit 1’évolution de la chaleur dans un cercle de longueur 1, totalement
isolé, et dont on connait la répartition initiale de la température. La constante x traduit la
conductivité du matériau, et sans perte de généralité, elle sera prise égale a % dans la suite.

En effet, on peut remplacer la fonction u par (¢,x) — u (2’—K,x), ce qui ne modifie pas le

probléme. Pour un exposé sur les différentes applications des séries et de la transformée
de Fourier aux équations différentielles (et en particulier & 1’équation de la chaleur), le
livre de DYM et MACKEAN [29] est une excellente source. Dans la suite, nous nous
contenterons d’énoncer les principaux résultats. En particulier, le résultat d’unicité est
détaillé a I’exercice IV.3.

Pour débuter, nous recherchons une solution formelle sous la forme

u(t,x) £ Y ca(t)en(x)  avec e(x) = 2T,
n€Z

puisque intuitivement, la solution doit étre périodique a ¢ fixé. Les coefficients ¢, (¢) sont
définis par

1
Vi>0, cult)™ /0 (2, %)en( —x)dx.

En faisant deux intégrations par parties, on obtient une équation différentielle vérifiée par
Cn:

dc, 1 ou 119%
0= [ Sree(ndr= [ S xen(-x)a

1
=— 271:2n2/0 u(t,x)en(—x)dx = —2m2n%c,(1).
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Comme ¢,(0) = f(n) (e ni®™e coefficient de Fourier de f), on obtient une solution
formelle de 1’équation de la chaleur (4.2):

V(t,x) ERY x 81, u(t,x) = Y, fn)exp(—2m2n’t)ey(x). (4.3)
nez

Le fait que la fonction u ainsi définie soit bien solution du probléme posé pour ¢ > 0 vient
du fait que 1’on peut dériver sous le signe somme car la série de terme exp(—2n2n?t) est
normalement convergente pour ¢ 2> € > 0, ainsi que toutes ses dérivées par rapport a . La
seule chose difficile a montrer est que 1’on a bien

Ilu(ta ) _f||°° : Oa

c’est-a-dire que les conditions initiales sont bien respectées. On rappelle que | - || désigne
la norme uniforme sur S!. Tout ceci est détaillé dans 1’exercice IV.3 en méme temps que
la démonstration de 1’unicité de la solution.

Remarque 4.1. (Filtrage continu). De fagon intuitive, le passage de u(0,-)=fau(t,-)
correspond 2 la multiplication des coefficients de Fourier f(n) de f par exp(—27t2n t).
Ceci revient a filtrer f par une gaussienne, c’est-a-dire a lisser la fonction de départ. Plus ¢
est grand, plus la variance de la gaussienne est forte, donc plus I’effet de flou induit par le
filtrage est prononcé. A la limite, lorsque ¢t — oo, le filtrage correspond tout simplement
a moyenner la fonction, donc la répartition de la chaleur est uniforme.

Dans le but de calculer de fagon approchée la solution u de 1’équation de la chaleur, nous
allons, pour un certain N assez grand fixé (que 1’on suppose €tre une puissance de 2),

calculer
N/2-1

uN(t,x)g' 2 Cn(t)en(x)'

n=—N/2

Bien siir, nous allons utiliser la technique développée au paragraphe 4.1 et donc échan-
tillonner la fonction f selon un vecteur FE {7 (k/n)}-J. Le calcul de la FFT de ce
vecteur nous permet, 2 un facteur ~ bres, de calculer de fagon approchée N coefficients
de Fourier de la fonction f, et donc de construire la fonction uy. Tout ceci est détaillé
dans les programmes MATLAB présentés au paragraphe 6, annexe A. La seule difficulté
technique est que les coefficients de Fourier calculés par la FFT ne sont pas rangés dans
le bon ordre, mais via I’indexation {0,...,N/2—1, —N/2,..., — 1}. On peut voir I’évo-
lution de la solution dans le temps a la figure 4.9, ou la donnée initiale est une fonction
indicatrice (donc discontinue). On voit bien I’effet régularisant de 1’équation de la cha-
leur : pour ¢ > 0, 1a solution devient lisse, et tend vers une fonction constante quand ¢ tend
vers oo,

Remarque 4.2. (Filtrage discret). La résolution de 1’équation de la chaleur par TFD
revient donc a réaliser un filtrage discret avec un filtre passe bas de plus en plus fort. En
substance, le fait de filtrer par un filtre passe bas symétrique revient & résoudre I’équation
de la chaleur pour un certain temps ¢. Plus le filtre est régularisant, plus ¢ est grand.
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10
- - 1=0.001

o PR A — =01
N :

FIG. 4.9 — Evolution de la solution de I’équation de la chaleur

4.3 Résolution de I’équation de Poisson par différences finies

On souhaite trouver une fonction u : [0, 1] x [0, 1] — R suffisamment réguliére (de classe
%?) qui satisfasse 1’équation de Poisson

déf. 32 82
V0s) € 011 [0,1), Mulx,y) 57+ 55 = fx)

Vx € [0,1], u(x,0)=un(x) et wu(x,1)=uq(x)
Vye [0’ 1]’ u(O,y) = uOy(}’) et u(la)’) = uly()’)

(4.4)

ou f: R% — R est une fonction continue connue 2 1’avance, et les fonctions usg, 1,
ugy et uy sont aussi des fonctions continues supposées connues (on fixe les valeurs de la
solution sur les bords).

L’équation de Poisson a des interprétations trés importantes, notamment en physique. On
peut noter :

— équation d’une membrane élastique: la surface de la membrane est représentée par
I’équation z = u(x,y). La fonction f représente la quantité surfacique de forces appli-
quées verticalement a la surface. Le fait d’imposer la valeur de la fonction u sur les
bords correspond & fixer les bords de la surface a une armature.

— équation d’un potentiel électrique : 1a quantité u(x,y) représente la valeur d’un potentiel
électrique surfacique en un point (x,y), et la fonction f prend en compte une répartition
surfacique de charges électriques.

Dans le cas particulier ol la fonction f est nulle, on parle d’équation de Laplace, et
la fonction u est alors appelée fonction harmonique. De fagon évidente, on montre que
la partie réelie d’une fonction holomorphe est harmonique. On peut méme montrer que
localement, la réciproque est vraie (et donc une fonction harmonique possede des dérivées
partielles a tout ordre !). Pour plus de détails sur la théorie des fonctions harmoniques, on
pourra consulter le livre de RUDIN [62, p.275].

Onse propose d’approcher 1a solution u de 1’équation (4.4) par la méthode des différences
finies. Pour ce faire, nous allons discrétiser le carré [0, 1] x [0,1] selon N + 1 points sur
les deux directions. On cherche donc une solution approchée {U (i, j) }o<i, j<n» ot U (i, 7)

représente une approximation de u(ih, jh) (on a noté h = % le pas de la subdivision).
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En replacant le Laplacien Au par une approximation discréte, on obtient, pour les points
intérieurs au carré les équations suivantes, pour i et j dans {1,...,N —1},

R WUGE=L)+UG+L)+UG+1)+UGE - 1) -4UG)}=FG)),  (4.5)
ot I’on a noté F(i,j) = f(ih, jh) le membre de droite de I’équation. On a bien sfir fait
attention aux termes de bord (i, j = 0,N), qui ne font pas partie du systéme puisqu’ils sont
fixés une fois pour toutes par les conditions au bord.

On serait ainsi tenté d’écrire 1’équation (4.5) comme une convolution par un filtre @ :
Uxd=F

ol * désigne I’opérateur de convolution circulaire 2D, défini au paragraphe 4.2, chap. III,
et 1a fonction de transfert s’écrit

1 .. 0 ...
¢£ﬁ : : (4.6)
1
-4 1 1

(il faut se rappeler que les fonctions considérées sont N périodiques, donc que les fré-
quences négatives sont repoussées a 1’autre bout du tableau). Cependant, il y a au moins
deux objections a faire a cette écriture.

— Les filtres opérent sur un signal périodique, or ce n’est pas le cas ici: les valeurs des
bords n’ont aucune raison de se « recoller ». De plus, I’équation (4.5) n’est valide qu’a
I’intérieur du domaine, c’est-a-dire pour 0 < i, j < N. Elle ne décrit pas une convolution
circulaire.

— Les valeurs du bord sont prises en compte dans le filtrage, donc font partie des incon-
nues : on veut au contraire qu’elles soient fixes.

Pour contourner ce probleéme, il suffit de rendre nulle U aux extrémités, c’est-a-dire pour
i, j =0, N, tout simplement en faisant passer dans le membre de droite les termes de bord.
Voici par exemple une équation obtenue pouri=1let1 < j<N-—1:
A0F U J)+U(L,j+ 1) +U (1~ 1) =40 (1, )} = Fi, )~ i (7h)
=F(i.J),
(on a utilisé le fait que U (0, j) = ugy(jh) la valeur fixée sur le bord x = 0). En faisant de
méme pour les quatre bords de la matrice F, on crée une nouvelle matrice F nulle sur les
bords, et grace a cette manipulation, on peut remplacer 1’inconnue U par une inconnue
U qui est nulle sur les bords. Il reste justement a régler le probléme de 1’application du
filtre sur les bords (I’équation (4.5)) n’est valable qu’a I’intérieur). Pour pouvoir le faire,
il suffit de prolonger les fonctions considérées par imparité selon les deux axes. En effet,
la nullité de la fonction sur les bords ainsi que 1’équation (4.5) du filtre montre que les
termes symétriques par rapport a un bord doivent étre de signes opposés. Par exemple, on
al’équation _
U(1,/) +U(-1,j)=F(0,j) =0,
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d’ott U(1, ) = —U(—1, j). On étend donc les matrices U et F pour obtenir des matrices
(toujours notées de la méme maniere) de taille 2N impaires. Ainsi, dans le cas (simpliste,
mais instructif) ou N = 3, la matrice F va s’écrire

0 0 0 0 0 0

0 F(1,1) F(2,1) 0 —F(2,1) —F(1,1)

#_10 F(1,2) F(2,2) 0 —F(2,2) —F(1,2)
o o 0 0 0 0

0 —F(1,2) —F(2,2) 0 F(2,2) F(1,2)

0 —F(1,1) —-F(2,1) 0 F(2,1) F(1,1)

Avec toutes ces nouvelles conventions, 1’équation (4.5), qui s’étend 8 0 < i, j < 2N et est
aussi vraie en tant que convolution périodique, s’écrit

Ux®=F,
oll @ est encore définie comme 2 I’équation (4.6), mais est cette fois de taille 2N.

L’idée est ensuite de prendre la transformée de Fourier 2D des deux membres, puisque
cette derniere transforme le produit de convolution en produit simple, comme énoncé a la
proposition 3, chap. III. On obtient I’équation tres agréable

#(0)-#(3)=7(F),
ol I’on a noté - le produit terme a terme des deux matrices. Cette équation est maintenant
trés simple a résoudre, puisque I’on sait calculer la transformée de @, comme le montre

le lemme suivant.
Lemme 4.3. La transformée de Fourier de la fonction de transfert ® est donnée par

- 4 (in)? jr\?
F (cl)) =-n {sm (ﬁ) -+ sin (ZN) } .
0<i, j<2N—-1

Démonstration. 11 suffit d’appliquer la définition et de faire un regroupement de termes :

Z (&)> (i, /] = Z(D[k,l]e%il('rk’ezzvl!
k,l

Vg 2y 2im; i _2in;
=ﬁ{eﬁ +ewW/ fe W e W —4}

4 it\* . [jr\?
=-m {Sm(ZN) +s1n(2—N> } O

Z(F)(i,.J)
sin? (T’EJ) + sin (2N)

(il faut faire attention 2 la division 0/0 pour i = j = 0, mais on sait que le résultat est 0).
On termine gréice au calcul de la transformée inverse, U = % ~1(G). Il ne reste plus qu’a

On obtient donc

Gi,j)=# (0) ) =
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extraire la partie de la matrice U qui nous intéresse (c’est-a-dire 0 < i, j < N), et a ajouter
les termes de bord que 1’on avait retranchés au début.

L’intégralité de cette méthode pour résoudre 1’équation de Poisson est reprise de fagon
algorithmique en MATLAB au paragraphe 5, annexe A. Pour pouvoir observer la qualité
de I’approximation, on a choisi une équation dont on connait la solution (en fait, on choisit
d’abord la solution, puis on calcule le membre de droite), et on crée les fonctions de bord
en conséquence. La figure 4.10 montre la résolution d’une équation de Poisson dont on
connait explicitement une solution, & savoir u(x,y) = €. La figure 4.11 reprend la méme
équation, mais modifie les conditions sur deux des bords.

FIG. 4.10 — Solution de I’équation de Pois- FIG. 4.11 - Solution modifiée
son

Remarque 4.4. (Cas d’une fonctionnelle quadratique). Si I’on considére une solution
exacte quadratique, par exemple la fonction u(x,y) = x* + %, qui satisfait I’équation de
Poisson :

%u  d%u _

Fra
on remarque que 1’erreur obtenue lors de la résolution par une méthode de différences
finies est quasi-nulle. Ceci s’explique par le fait que I’approximation du laplacien par
1’équation (4.5) est en fait exacte pour un polynome de degré inférieur a deux (c’est une

formule d’interpolation d’ordre deux).

4,

L’exercice IV.5 reprend cette méthode de résolution en expliquant son fonctionnement par
des décompositions matricielles.

5 Calculs de produits

Our interest in multiplying large numbers is part
theoretical, however, because it is interesting to explore
the ultimate limits of computational complexity.

D. E. KNUTH [39] (1997)

Contrairement a ce que 1’on pourrait penser apres toutes ces application dédiées au calcul
numérique, 1’algorithme FFT posseéde des applications de nature nettement plus algé-
briques. C’est principalement la propriété de convolution qui est utilisée. Cet algorithme
a permis des avancées significatives pour certains calculs arithmétiques, par exemple pour
les calculs intensifs de grands nombres (la recherche des décimales de 7 en est le meilleur
exemple). On pourra lire a ce sujet [5] qui explique quelques anecdotes instructives.
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5.1 Présentation théorique

Avant de décrire des méthodes utilisant I’algorithme FFT présenté au paragraphe 2.1,
chap. III, pour calculer des produits, on peut expliquer de manie€re un peu théorique la
démarche que nous allons suivre.

Considérons, pour (&, ...,Ev—1) € CV, le morphisme d’évaluation
o (C[X ] - cy
L P (P(G0)s- -, P(EN-1))
Le noyau de ce morphisme est 1’idéal de C[X] engendré par le polynéme H,Iyz_ol X -=&).
Dans le cas ot les points &, sont distincts, on obtient, par passage au quotient, un isomor-
phisme linéaire (puisque les deux espaces ont méme dimension N)

5 CH/MG - S e
= (P(€O)a---,P(€N—l))

C’est méme 2 1’évidence un isomorphisme d’algebre, si on munit C[X] du produit des
polyndmes, et CV¥ du produit composante par composante.

Griace a ce morphisme d’évaluation, et son morphisme inverse (interpolation), on peut
tracer le diagramme suivant :

mult.polynémes
(Po,---,Pv-1)5(Qo,---,On-1) ————  (Ro,---,Rn-1)
O(N?)
lévaluan‘on inrerpolationT ,

(P(éo), ceey P({‘N_l)), mult.ponctuelle
———  (R(S0),--.,R(EN—
(&), 0Ev-1) oy (R(E)--oR(Ew-1)
qui nous suggere une nouvelle fagcon de multiplier deux polyndmes, en passant « par en
bas », & savoir en utilisant 1’application

o { CWPOH) — CIX 8

P,Q) +— OHD(P)-D(Q)

ot I’on a noté P la classe de P dans I’algébre C[X]/T1(X — &). D’aprés ce que nous
venons de dire, ce morphisme calcule donc le produit des deux polynémes modulo le
polyndme [T (X — & ). Les questions naturelles sont donc les suivantes.

— Quel choix faire pour les points {&, ...,€v—1} afin que cette nouvelle maniére de cal-
culer un produit soit rapide ?

— Comment faire pour récupérer vraiment le produit des deux polynOomes, et pas seule-
ment le produit modulo un certain polyndme ?

En réalité, nous avons déja répondu a ces deux questions au chapitre III. Il suffit de relier
la TFD a I’évaluation de polyndmes pour réinvestir les algorithmes déja construits.

Remarque 5.1. L’isomorphisme @ est en fait I’isomorphisme canonique donné par le
théoréme chinois :
N-—

N-1
C[X]/H)(X—ék H CiX]/(X &) ~
k=

En effet, les X — & sont premiers entre eux (car les & sont distincts), donc I’application
du théoréme est licite, et la réduction modulo X — & envoie un polynéme P sur P(x)-
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5.2 Multiplication de polynémes modulo XN — 1

Le but de ce paragraphe est de présenter la transformée de Fourier comme une transfor-
mation (en fait un morphisme) sur les polynémes de degrés fixés. Nous pourrons alors
utiliser les propriétés algébriques de la transformée de Fourier discréte ainsi que 1’algo-
rithme FFT pour effectuer des opérations sur les polyndmes de fagon trés rapide. Derriére
ces procédés particulierement efficaces se cache un probléme plus subtil que la simple
utilisation de la transformée de Fourier, puisqu’il s’agit de la question de la représentation
des polyndmes. En effet, 1a transformée de Fourier permet de jongler entre deux types de
représentations, et ainsi d’exploiter les points forts de chacune.

La finalité de cette approche étant de réinvestir les algorithmes déja présentés au chapitre
III (principalement FFT et convolution rapide), nous nous empressons de choisir judi-
cieusement les points d’évaluation/interpolation &, en I’occurrence, les N racines Niemes
de I'unité, c’est-a-dire & = a),;" =e W pour k =0,...,N — 1. On constate alors que le
morphisme @ est en fait la transformée de Fourier discréte. Plus précisément on peut le
réécrire de la maniere suivante :

= | Clxl/xN-1) > cN
D: = ~ ,

P — OP)=%F(P,...,Pn-1)
ot I’on a noté Py,...,Py_; les coefficients du polynéme P (on a choisi le représentant
de degré inférieur a N). Bien siir, on a utilisé ici I’identité H;CV;()I X-&)=XN-10n
s’apercoit donc que le calcul de la transformée de Fourier discréte de P (en tant que
vecteur de CV) n’est rien d’autre que le calcul des valeurs que prend P en les N racines
N de I’unité, et on retrouve exactement le morphisme @ du paragraphe précédent.

La transformée de Fourier discréte permet ainsi de jongler entre deux représentations des
polyndémes de degré N — 1 (en fait modulo XV —1):

— la représentation par coefficients : ceci revient a considérer un polyndme comme un
vecteur de CV. Bien que trés couramment utilisée, cette représentation a un point faible :
elle n’est pas du tout appropriée pour calculer le produit de deux polynémes. Alors que
la somme de deux polyndmes P et Q de degré au plus N se calcule en N opérations
(comme le montre 1’égalité (P + Q)r = P, + Ox), le produit, calculé de fagon naive,
nécessite N2 opérations.

— la représentation par valeurs: on se donne le polyndme par les valeurs qu’il prend en
N points distincts (ici pris de fagon bien particuliére, les racines N®MeS de 1’unité).
Cette représentation est bien plus adaptée au calcul du produit, puisqu’il suffit de faire
le produit des valeurs de chaque polynome.

Ceci est a prendre au pied de la lettre : I’algorithme FFT fournit un moyenrapide et simple
de passer de ’'une a I’autre des représentations.

Pour terminer, rappelons donc 1’équation obtenue pour le calcul du produit de deux poly-
ndmes modulo XV —1:

PxQ=F"1(Z(P)-Z(Q)). (5.1)

Dans cette équation, on a confondu vecteur et polyndmes modulo XV — 1, et le produit
P x Q peut aussi étre vu comme un produit de convolution circulaire entre deux vecteurs.
On peut représenter graphiquement I’ opération effectuée. Les deux premiers graphiques
de la figure 4.12 montrent les polynémes définis par P = 1 +2X +X3 — X* + X3 ainsi que
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o0=X — X2 42X3+2X3. En abscisse, on a mis les degrés des mondmes 1,... ,X10.0p
choisit donc de travailler dans Z/11Z. Ceci est judicieux, car le degré du produit P * Q
est justement 10. Ainsi, lorsque I’on représente dans le graphique de droite le produit des
deux vecteurs, on trouve bien la représentation graphique du produit P x Q, puisque la
réduction modulo X! — 1 n’a pas eu d’effet.

142X XX X5 X-X2+2X3+2X5 X+X245X%48X8+4xB_ax7-2X% 2X1°
* 2 K 8 *
6
*
1% * * 11 * 4 *
2 *
0 * * oK oK K % 0% * ok ok ok k¥ * ¥
0¥ * *
-2 *
-1 * -1 * %
0 5 10 0 5 10 0 5 10

F1G. 4.12 — Représentation graphique du produit de polyndmes par convolution

Remarque 5.2. (Interpolation de Lagrange). Des algorithmes permettent de calculer
les polyndmes d’interpolation dans le cas ol les points &, ne sont pas nécessairement des
racines de I’unité. Il y a bien sfir le résultat de Lagrange, qui donne une base explicite de
Cn-1[X] (espace des polyndmes de degré au plus N — 1) dans lequel le calcul s’effectue
simplement. En effet, si on cherche le polynéme P qui prend les valeurs y; aux points x;,
pouri=0,...,N—1,alors P= Zf’z _01 y;P;, ot P; est le i*™° polynéme de Lagrange associé
aux points {x;}¥ !
N-1

p* M

C (i —x))

Cependant, le calcul numérique du polyndme d’interpolation dans la base des {H}ﬁo
n’est pas utilisé dans la pratique, car il conduit a2 une accumulation des erreurs numériques.
On préfere utiliser la technique des différences divisées, qui est expliquée par exemple
dans [23].

5.3 Multiplication de polynémes

La difficulté a laquelle on est confronté lors du calcul du produit de deux polynémes P et
O (de degré N — 1) par la méthode présentée plus haut est qu’a priori, le produit PQ est
un polynéme de degré 2N — 2. Ce polyndme sera donc réduit modulo XV — 1, ce qui a
souvent un effet plus qu’indésirable ... De fagon plus précise, les coefficients du produit
sont donnés par 1’équation

Ve (0. 2N—1}, (POn="3 Pl 5.2)
k=0

I1 s’agit en fait d’un produit de convolution acyclique (& comparer au produit cyclique de
I’équation (5.1)), et nous allons pouvoir utiliser la technique déja présentée a la section
3.3, chap. III, pour le calculer.
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Cette démarche (ajout de zéros a la fin du vecteur pour rendre le produit cyclique) est trés
intuitive, puisqu’elle consiste a considérer les deux polyndmes comme des polyndmes
de degré 2N — 1 (en ajoutant des coefficients nuls). On peut alors appliquer I’approche
présentée au paragraphe précédent (c’est-a-dire employer un produit de convolution cy-
clique, ot si on préfere, calculer le produit modulo X N _ 1). Bien heureusement, ceci ne
change rien au résultat, puisque le polyndme PQ n’est pas affecté par la réduction modulo
X2N — 1. D’une fagon plus théorique, ceci revient  utiliser la bijectivité de I’application

{(CZN_I[X] — C[x])/(x®N-1)
P — P modX® -1’

ot1 I’on a noté Coy—_;[X] I’espace des polyndmes de degré inférieur ou égal a 2N — 1.

5.4 Multiplication de grands entiers

On note (ap, ...,ay—1) la représentation en base b d’un grand entier a, c’est-a-dire

a=ap+aob+- vt ay_ VL
On remarque que la multiplication de deux entiers a et @’ s’apparente au calcul d’un pro-
duit de polynémes, a une exception prés : les entiers a; et a;, pour k=0, ...,N— 1, doivent
appartenir & I’ensemble {0,...,b— 1}. Si on veut calculer rapidement la multiplication de
deux grands entiers, on pourra donc utiliser la technique de produit de polyndémes que
nous venons d’exposer au paragraphe précédent, suivie d’une phase de « propagation des
retenues ». Des programmes MATLAB permettant de réaliser tout ceci sont rassemblés au
paragraphe 4, annexe A.

Cette approche souffre néanmoins de quelques points faibles, principalement li€s & I’uti-
lisation de calculs en virgule flottante (pour I’algorithme FFT classique), qui sont soumis
a des erreurs d’arrondi (alors que les calculs entiers sont a la fois plus rapides et exempts
d’erreurs). Ce probléme sera résolu au chapitre VI, chap. VI, grace a I’introduction de la
transformée de Fourier sur les corps finis et les anneaux.

6 Exercices

Exercice IV.1 (Transformée a support compact). Il s’agit de démontrer la proposition
1.3. Soit f une fonction telle que Supp(f) C [—A,A]. Expliquer pourquoi f est de classe
%, et calculer ses dérivées successives (" (to), pour ty € R, sous forme d’intégrale entre
—A et A. En utilisant un développement limité de ¢ — e en 19, en déduire un développe-
ment de f. En déduire que f # 0 ne peut s’annuler sur tout un intervalle non vide.

Exercice IV.2 (Résolution de ’équation de la chaleur par différences finies). On sou-
haiterésoudre de maniére approchée 1’équation de la chaleur sur le cercle, dont on rappelle
la formulation, pour Kk = 1:

ou _ P
V(t,x) eRf xS, =24 , 6.1)
Vxe s, u(0,x)= f(x)

ol la solution cherchée u est supposée suffisamment réguliére sur Rj x S!, et continue
sur R* x S!. Pour se faire, on considére une discrétisation de pasd = % en espace, et de
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pas h en temps. Ceci nous amene a considérer les vecteurs u" € RY, pour n > 0, censés
approcher la fonction u:

Vn>0,Vke{0,...,N—1}, u"[k] = u(nh,kd).

1. Montrer que 1’on peut, suite a une discrétisation de 1’équation (6.1), considérer
I’équation aux différences

W k] — u" k] = s (u" [k + 1] + u" [k — 1] — 2u"[K])

pour n >20etk=1,...,N—1. On a noté s & J—’z, et par convention, on définit
w'[—1] = w'[N — 1] et " [N] = u[0).

2. Montrer que ce schéma explicite peut s’écrire sous la forme d’une convolution. Est-
il avantageux de calculer #” par convolutions itérées en utilisant 1’algorithme FFT ?
Proposer une implémentation MATLAB de I’algorithme choisi.

3. Onditquele schéma numérique choisi est stable si, pour tout ug tel que |jup|| < 1,
alors la solution approchée u" reste bornée quel que soit #. Donner, en utilisant la
transformée de Fourier discréte, une condition nécessaire et suffisante pour que le
schéma que nous venons de construire soit stable.

4. On souhaite maintenant envisager des schémas non explicites, c’est-a-dire tels que
u"*1 ne soit pas donné directement en fonction de #”*. On considére le schéma

un+l — " =Ax (9u"+l + (1 _ e)un) ,

oll 6 est un paramétre variant dans [0,1], et A est le vecteur tel que A[0] = —2s,
A[l] = A[—1] = s, et dont toutes les autres entrées sont nulles. En particulier, on
remarque que pour 6 = 0 onretrouve le schéma explicite déja construit, et que pour
0 =1, on obtient un schéma implicite. Expliquer comment on peut résoudre cette
équation en utilisant la transformée de Fourier. Etudier ensuite le probleme de la
stabilité du schéma obtenu.

5. Reprendre les questions précédentes dans le cas de 1’équation de la chaleur en
dimension 2, c’est-a-dire sur R* x S! x S1. En particulier, on proposera une im-
plémentation des algorithmes implicites utilisant des calculs de FFT bidimension-
nelles.

La figure 4.13 montre la résolution de 1’équation de la chaleur 2D par différents schémas.
Horizontalement, chaque image représente un pas de 1’algorithme. La premiére ligne cor-
respond 2 O = 0, et un pas h; =4 x 107> : le schéma est complétement instable (il faut
prendre h de I’ordre de 106 pour que le schéma soit stable). La deuxiéme ligne corres-
pond 2 0 = 0.5 et hy =4 x 10™* = 10k, : on commence 2 appercevoir des instabilités. La
derniére ligne correspond 2 6 = 1 et h3 =4 x 1073 = 100k, : méme avec un pas temporel
aussi grand, le schéma est complétement stable, I’image devenant totalement floue.

Exercice IV.3 (Unicité pour I’équation de la chaleur). Cette démonstration est tirée du
livre de DYM et MCKEAN [29]. On consideére 1’équation de la chaleur sur le cercle (4.2).
On souhaite montrer que sous I’hypothése f continue, 1’équation (4.3) définit bien une
solution de 1’équation, et que c’est en fait la seule.

1. Montrer que pour ¢ > 0, la solution u peut s’écrire sous la forme d’une convolution:

u(t,x)=pr*xf(x) avec p(x) = 2 e_z"z"zre,,(x).
nez
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t=4e-005 t=8e-005 t=0.00012

6=0.0

1=0.0008 1=0.0012

6=0.5

1=0.004 1=0.012

FI1G. 4.13 — Résolution de I’équation de la chaleur par différences finies

2. Dans le cas ot f € €%(S!), montrer que 1’on a bien [|u(t,-) — f|l . 0.
t—

3. On désire montrer que si f > 0, alors u > 0. On considere la fonction v définie
v(t,x) = eP'u(z,x), pour un certain paramétre 8. Montrer que si on suppose que
u(to,xo) < 0, la fonction v atteint son minimum o < 0 sur [0, to) X S 1 pour un certain
temps #; > 0 et une position x;. Montrer alors que 1’on a

2

0 10
0>a—r(tl,x1)=al3+§ (t1,%1) = o

u
ox?
En déduire une contradiction en prenant f§ < 0.

4. En utilisant le produit de convolution qui définit #, en déduire que p, est positif. En
déduire le principe du maximum pour 1’équation de la chaleur:

VE>0, flu(t,)|leo < ||l

Montrer que ceci assure 1’unicité de la solution de 1’équation de la chaleur.

5. En utilisant une suite de fonction f, € ¥2(S') qui converge uniformément vers f,
en déduire que dans le cas ou f est simplement continue, on a quand méme la
convergence ||u(t,-) — f|le i 0.

t—

Exercice IV.4 (Potentiel électrique 3D). On souhaite généraliser 1’algorithme de résolu-
tion de 1’équation de Poisson décrit au paragraphe 4.3 pour des problémes tridimension-
nels. Par exemple on souhaite déterminer un potentiel électrique u qui satisfasse 1’équation
de Poisson :
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avec des conditions aux bords ainsi qu’une fonction f spécifiée par I’utilisateur. Il faudra
bien siir utiliser une transformée de Fourier tridimensionnelle, et penser & rendre impairs
les tableaux 3D rencontrés. Pour représenter la solution, on pourra dessiner des surfaces
équipotentielles, c’est-a-dire les surfaces d’équation f(x,y,z) = A pour certaines valeurs
du paramétre A.

Exercice IV.5 (Formulation matricielle pour I’équation de Poisson). Cet exercice, qui
propose une explication plus calculatoire de 1’algorithme de résolution de 1’équation de
Poisson, est en partie inspiré de 1’article de SWARZTRAUBER et SWEET [70]. On reprend
les notations du paragraphe 4.3, et on considére notamment une matrice carrée U de taille
N — 1 (les indices variant de 1 a N — 1) qui est la solution de 1’équation aux différences
finies (4.5) a I’intérieur du carré [0,1] x [0, 1] (c’est-a-dire sans les termes de bord).

1. Sans prendre en compte les termes de bord, montrer que I’on peut écrire 1’équation
aux différences sous la forme

Tn-1U+UTy-1 =F,

oll Ty_; est la matrice de taille N — 1 avec —2/h? sur la diagonale et 1/A? sur la
sous-diagonale et la sur-diagonale.

2. Puisque la valeur de la solution sur les bords est supposée connue, utiliser la méme
approche que celle employée au paragraphe 4.3 pour obtenir une équation modifiée

du type o _
In.1U+UTy_1 =F. (6.2)

3. Montrer que les vecteurs propres de Ty sont les

. N-1
SR
V,-dé:f{sm(—)} .

N J )iz

Déterminer les valeurs propres associées. On note V la matrice de changement de
base, ce qui signifie que ses colonnes sont les V;, et D la matrice diagonale dont les
entrées sont les valeurs propres calculées. En notant Ug = V-1UV et Fp = V~IFV,
en déduire que Uy vérifie 1’équation

DUy +UgD = K.

Résoudre cette équation.

4. Montrer alors que la matrice V est en fait orthogonale, et que le calcul de Vx, ot
x est un vecteur de taille N — 1, est équivalent a un calcul de transformée en sinus
(C’est-a-dire la partie imaginaire d’une certaine transformée de Fourier discréte).
En déduire que le calcul de U = VUV ! est en fait équivalent au calcul d’une
transformée en sinus bidimensionnelle (c’est-a-dire une transformée sur les lignes
suivie d’une transformée sur les colonnes d’une matrice).

5. Expliquer comment on peut calculer des transformées en sinus (unidimensionnelles
puis en 2D) gréace a une TFD de taille double. Comment calculer la transformée in-
verse ? Enfin, faites le rapprochement entre la démarche matricielle proposée dans
cet exercice et le calcul de convolution qui soutenait 1’algorithme proposé au para-
graphe 4.3.

Exercice IV.6 (Lissage d’image). Ecrire un programme qui permet de lisser une image
2D en niveau de gris, comme le montre la figure 4.5. On pourra utiliser une fonction de
transfert gaussienne, et adapter les parametres a la taille de I’image.
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Exercice IV.7 (Corrélation et détection d’image). Cet exercice est inspiré d’un article
de LEWIS [47], qui remet au gofit du jour I’utilisation de la corrélation pour la détection
d’images. Soit f € RV*N une image de taille N, et g € RP*” une autre image, dont la
taille est typiquement beaucoup plus petite que celle de f. La question est de déterminer
si ’image g est une sous-image de f, et si c’est le cas, de repérer son emplacement. A cet
effet, on définit la distance entre f et g

V(u,v)6{0,...,N—1}2,d(f,g)[u,v]2g' 2 (f(xay)_g(x_uay_v))za
(x,y)eD(u,v)

ol D(u,v) désigne le sous-ensemble de {0,...,N — 1}? formé des couples (x,y) tels que
(x—u,y—v) €{0,...,P—1}%

1. Quelle est la signification intuitive de d(f,g) ? En quelle circonstance d(f,g) est-
elle voisine de z€ro ? Dans le cas ou la quantité

Po(f)= Y fxy)?

(x,y)€D(u,v)

est presque constante, montrer que la recherche des points ot d(f,g) est petite
revient a maximiser la corrélation entre f et g

Corr(f,g)[u,v] = Y fxy)gx—uy—v).

(x,y)€D(u,v)

2. Montrer que Corr(f,g) peut s’écrire comme un produit de convolution acyclique.
En déduire que I’on peut calculer cette corrélation de facon rapide en utilisant 1’al-
gorithme FFT.

3. On souhaite corriger le défaut que I’on a introduit en supposant que P, ,(f) est
presque constante. On note ﬁ,,v la moyenne de f sur D(u,v), et g la moyenne de g.
On définit alors la corrélation normalisée

2(x,y) (f(x,y) _ﬁ,V)(g(x_ uy—v)—g)
{Z) (F059) = Fas? e (a0~ 27} ”

Corr(f,g)[u,v] =

ol les sommes portent sur (x,y) € D(u,v). Expliquer en quoi cette quantité apporte
bien une correction. Dispose-t-on toujours d’un algorithme de calcul rapide par
FFT?

4. Montrer que le numérateur de Corr(f,g) s’écrit comme une convolution. On note,
pour k = 1,2, les « sommes glissantes »

V() €{0,... . N—1}% s 3 floylk,
()€D(u,v)

avec par convention si(u,v) = 0 pour u > N ou v > N. Montrer que s, vérifie I’équa-
tion de récurrence
Si(u,v) =sp(u+1,v) +si(u,v+1) —se(u+1,v+ 1)
+ f(u,v)+ f(u+Pv+P)— f(u,v+P) — f(u+Pv).

En déduire un algorithme de calcul rapide de s; (évaluer sa complexité), puis de
Corr(f, g).
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La figure 4.14 présente un exemple d’application de cette méthode. On voit bien que
la corrélation normalisée (image (d)) présente un maximum beaucoup plus franc que la
corrélation non normalisée (image (c)). On pourra noter que [47] propose un algorithme
de calcul rapide qui a été employé entre autres pour effectuer les recalages dans le film
Forest Gump (1994).

(a) Image d'origine

(c) Correlation (d) Correlation normalisée

FIG. 4.14 — Corrélation entre deux images

Exercice IV.8 (Rotation par FFT). Soit f € CV*¥ un signal bidimensionnel. On définit,
pourv = (vj,n) E R?et A €R,

L)k = flk—vi,l=va, SO (k1) = fle=AL1), SO (F)k, 1] = flk,1—Ak].

1. Exprimer % (T,(f)) en fonction de Z(f). En déduire un algorithme rapide pour
réaliser une translation quelconque d’une image. En translatant chaque ligne (resp.

chaque colonne) de f, écrire un algorithme rapide pour calculer ng) (f) (respecti-

vement Sﬁy ) (.
2. Montrer qu’une rotation d’angle 0 autour de I’origine peut s’écrire sous la forme

cos(f) —sin(6) (1 M 1 0 1 A3
sin() sin(@) / \0 1/\A 1/\0 1)/
Avec la question précédente, en déduire un algorithme rapide pour effectuer une

rotation & une image f € C¥*N autour de I’origine.

3. Quels sont les avantages et les inconvénients de cet algorithme ? Comment les ré-
soudre ? Comment faire tourner une image autour de son centre ?

La figure 4.15 montre plusieurs rotations d’une image autour de son centre.
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F1G. 4.15 — Rotation d’une image par FFT

Exercice IV.9 (Filtre passe bas). On souhaite réaliser un filtre de convolution passe bas.

1. Ecrire un programme MATLAB qui construit un vecteur f, de taille N, tel que
le filtre @/ conserve les N/2 basses fréquences, et supprime les N /2 hautes fré-
quences.

2. Représenter avec une grande précision la transformée de Fourier continue de la
réponse impulsionnelle f (autrement dit la réponse fréquentielle du filtre). Que
constate-t-on ?

3. En considérant une coupure moins brutale dans les fréquences conservées/rejetées,
reprendre les questions précédentes et commenter les résultats. En particulier, ima-
giner une famille de filtres f¢, € € [0, 1], avec une coupure brutale pour € = 0 et
douce pour € = 1.

La figure 4.16 montre trois filtres différents, avec des coupures de plus en plus douces.
On peut aussi voir les transformées discretes des filtres, et leurs transformées de Fourier
continues.

Filtre f TFD de f TF continue de f

0.4

€=0.0

02 i 0.5 : : 0.5

-10 0 10 -10 0 10 -1 0 1

0.4

3
o o
w

0.1

0.4

0.3 o
0.2 : 05 0.5

€=0.7

0.1

FIG. 4.16 — Filtres passe bas pour différentes valeurs de €

Exercice IV.10 (Itérations entiéres). On considére 1’expérience suivante : on dispose n
enfants en cercle, et on leur donne a chacun un nombre pair, arbitraire, de bonbons. Le
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jeu consiste a ce que chaque enfant donne a son voisin de droite 1a moitié de ses bonbons,
et & itérer le procédé.

1. On s’arrange pour que les enfants aient a chaque partage un nombre pair de bon-
bons. Pour cela, une personne extérieure distribue, aprés chaque itération, un bon-
bon & chaque enfant ayant un nombre impair de bonbons. Montrer qu’apres un
nombre fini d’itérations, tous les enfants ont le méme nombre de bonbons.

2. Si on autorise des parties fractionnaires de bonbons, montrer comment on peut tra-
duire cette expérience par un calcul de convolution. En déduire qu’aprés un nombre
potentiellement infini d’itérations, tous les enfants ont le méme nombre de bonbons.

3. Etudier les deux premiéres questions pour des regles de partage différentes. Par
exemple, que se passe-t-il si chaque enfant donne la moitié de ses bonbons a son
voisin de gauche, et I’autre moitié a son voisin de droite ?

Exercice IV.11 (Algorithme de Karatsuba). Nous allons expliciter la construction d’un

algorithme récursif de multiplication de polyndmes. 11 utilise une technique dite diviser

pour régner, souvent employée en algorithmique, voir par exemple le livie d¢ CORMEN

[21] pour d’autres exemples. On considére deux polyndmes P et Q de degré n sur un corps
déf.

K.Onnote k= [(n+1)/2].

1. On écrit les polyndmes P et Q sous la forme
P(X) =Po(X) +X*Pi(X) et Q(X)=Qo(X)+X"Q1(X),

ol les polyndmes Fy,Qp sont de degré inférieur a k, et les polyndmes P;,0Q; sont de
degrés inférieurs a k ou k+ 1, selon la parité de n. Montrer que le produit P(X)Q(X)
peut se mettre sous la forme

P(X)Q(X) = Ro(X) + X*Ry (X) + X %Ry (X).

Préciser la valeur des polyndmes qui interviennent dans cette égalité.

2. Montrer que le polyndme R; peut se calculer a I’aide de seulement une multiplica-
tion, mais par contre 4 additions.

3. Implémenter un algorithme récursif en utilisant & chaque étape la décomposition
que nous venons d’effectuer.
Prouver que la complexité de cet algorithme est O(n!°223)). Pour quelles valeurs de
n cet algorithme est préférable a 1’algorithme utilisant la FFT décrit au paragraphe
537

Exercice IV.12 (Spline et filtrage). Cet exercice nécessite quelques connaissances sur les
séries de Fourier. Si { f[k] }xen est une suite de ¢2(Z), on définit sa transformée de Fourier
par
VxeR, f(x)% Y flkle .
keZ

C’est une fonction 27-périodique, que I’on peut assimiler 2 une fonction de L?(R/27Z).
Soit u : R — R une fonction continue qui décroit suffisamment vite en £oo. On suppose
que 1’on connait en fait des valeurs échantillonnées de u, notées uy[k] = u(k), pour k € Z.
On souhaite interpoler ces valeurs sous une des deux formes suivantes :

v(x) E Y uglklo(x—k) (6.3)
kez
v(x) E Y alkly(x—k), 64)

k€Z
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les fonctions ¢ et y étant données a 1’avance, avec un petit support. On suppose bien sfir
que ’interpolation est exacte, c’est-a-dire Vk € Z, v(k) = u(k). La suite alk], k € Z, est
inconnue, et il va falloir 1a déterminer. Le schéma d’interpolation (6.3) correspond a une
interpolation directe, alors que (6.4) correspond a une interpolation indirecte.

1. On note yy k]

= y(k) la suite échantillonnée de y. On suppose que

VEER, Wa(&)#O.

Montrer alors que le probleme d’interpolation indirecte admet une solution ¢ uni-
que, donnée par la relation

VEER, &)= u%((éé))

Comment peut-on ramener cette interpolation & une interpolation directe ? Quel
probléme rencontre-t-on ?
. On définit la fonction B-spline d’ordre », notée B”" par

ﬁozl[_l l] et Vn>0, anﬁo*ﬁn—l.

Quel est le support de " ? Ces fonctions permettent-elles de définir un schéma
d’interpolation direct ? Indirect? La figure 4.17 montre les 4 premieres fonctions
splines B".

[ p'

1 1
08 08
0.6 1 0.6
04 1 04
02 ] 02
% -1 [ 1 2 -2 =] [ 1 2
P 3
1 " i 1 j i
08| 08
06| 06
04 04
02 | 02
-2 ] [ 1 2 % = ) 1 2

FI1G. 4.17 — Fonctions splines de base

3. Calculer la valeur de [/3; (transformée de Fourier continue). On note B la suite
échantillonnée a partir de B". Calculer la valeur de [33 (série de Fourier), et montrer
que cette fonction ne s’annule pas (on aura a distinguer selon la parité de n).

. En déduire une expression de la fonction B, ; qui permet de réaliser une interpola-
tion indirecte a partir des fonctions splines. Quel est son support? Montrer que 1’on
a la convergence suivante, dans L?(R):

ar. SIN(7Tx)
T omx

Blord — sinc, ol sinc(x)
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Quand n — oo, quel type d’interpolation réalise-t-on? La figure 4.18 montre une
comparaison entre les fonctions cardinales correspondant a I’interpolation spline
de degré 3 (c’est-a-dire ﬁgard) et a ’interpolation Shannon (c’est-a-dire sinc). On
voit que la fonction spline a beaucoup moins de « rebonds ».

F1G. 4.18 — Comparaison entre spline et sinus cardinal

5. En écrivant ¢ comme une convolution, expliquer comment on peut en calculer une
valeur approchée a 1’aide de I’algorithme FFT. Quel est 1’inconvénient de cette
méthode ? A I’exercice V.8, nous verrons comment on peut calculer ¢ par des calculs
récursifs bien plus efficaces.

Il existe des méthodes plus classiques pour calculer I’interpolation par des splines cu-
biques. Par exemple, dans [16], CIARLET décompose la fonction cherchée dans une base
de polyndmes adaptée, et résout un systeme linéaire tridiagonal. Comparer cette méthode
avec celle par filtrage proposée dans cet exercice. Dans la pratique, on considére seule-
ment un nombre fini de valeurs u4[k], pour k € {0,...,K — 1}. On peut alors montrer que
1’on perd I’unicité de la solution, mais que 1’on peut imposer des conditions au bord pour
remédier au probleme. L’exercice V.8 propose d’étudier ce probleéme pour les splines cu-
biques. La figure 4.19 montre I’interpolation par des splines cubiques, avec deux types de
conditions aux bords:

— Splines libres : on impose que la dérivée de la fonction interpolante s’annule au bords.
— Splines « not-a-knot » : on n’impose pas de conditions sur les points du bord, mais on
impose que la dérivée troisi¢me de v soit continue en 1 et K — 2.

Spline libre Spline "not-a-knot"
15 1.5
1 1
05 05
0 ¢

FIG. 4.19 — Interpolation par des splines cubiques



Chapitre V
Extension de la notion de transformée de Fourier

The truth is that the digital computer has totaly defeated
the anlog computer. [...] The question is wether the
special ideas of Fourier analysis still have a part to play,
and the answer is absolutly yes.

G. STRANG [68] (1986)

Ce chapitre regroupe de nombreuses notions voisines de la transformée de Fourier, ainsi
que des applications directes de ces développements. Nous allons ainsi étre amenés a dé-
finir de nouvelles transformations, entre autres la transformée de Hartley, la transformée
en Z, et la transformée de Fourier fractionnaire. Le plus souvent, il s’agit de trouver des
algorithmes pour pallier certaines faiblesses de la TFD (par exemple la transformée de
Hartley), ou bien d’étendre de fagon naturelle certaines notions (la transformée en Z par
exemple). Nous allons étudier dans quels cas ces transformations sont plus efficaces ou
plus adaptées que la transformée de Fourier discréte, et quelles applications peuvent tirer
bénéfice des algorithmes rapides obtenus. Les deux points importants qu’il faut garder a
I’esprit lorsque I’on travaille avec de telles transformations sont les suivants :

— Elles ne correspondent pas a des calculs approchés. Il s’agit de formules exactes, qui
bien souvent possedent une formule d’inversion. Ces transformées peuvent €tre utiles
pour certains calculs numériques (par exemple le calcul approché d’une transformée
de Fourier ou d’une convolution infinie), mais il s’agit avant tout de calculs de nature
algébrique.

—Elles disposent d’algorithmes de calcul rapides. Ce sont ces algorithmes qui donnent
toute sa valeur a une transformée, et qui font qu’elle sera utilisable de fagon intensive.
Ces algorithmes sont des conséquences directes de la nature algébrique des transfor-
mées, et ne font que refléter certaines symétries et invariances algébriques.

1 Transformée de Hartley

L'un des désavantages de la transformée de Fourier discréte est qu’elle nécessite des cal-
culs avec des nombres complexes, ce qui n’est pas adapté au calcul des convolutions
avec des signaux réels. En effet, d’inutiles multiplications et additions complexes (plus
cofiteuses que les multiplications et additions réelles) sont effectuées, et les erreurs d’ar-
rondi n’en sont qu’amplifiées. Nous allons définir une transformée, appelée transformée
de Hartley, qui permet, a I’instar de 1a TFD, de calculer des produits de convolution, mais
qui ne fait intervenir que des calculs avec des nombres réels. Une référence trés compléte
sur la transformée de Hartley et ses applications est le livre de BRACEWELL [10].
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1.1 Définition et premiéres propriétés
Définition 1.1 (Transformée de Hartley). Soit f = {f [n]} ! ¢ CN. On définit sa trans-
formée de Hartley discréte 7#(f) € CN par
def. NSl 2
Vk€{0,...,N—1}, (K=Y, fln]cas (Fnk>, (1.1)
n=0

ot I’on a noté cas(x) = sin(x) + cos(x) = v/2cos (x — %).

Remarque 1.2. La transformée de Hartley discréte a son analogue continu, a savoir, pour
une fonction f € L! (R), la fonction

H(f):s— /Rf(x)cas(?.rcsx)dx.

La plupart des énoncés valables dans le cas discret ont une formulation analogue pour le
cas continu, et nous laissons au lecteur le soin de les énoncer.

Proposition 1.3 (Formule d’inversion). S# est un isomorphisme de RN dans RN. Plus
précisément, pour f € RN, on a 5#%(f) = Nf, ce qui signifie que I'inverse de la trans-
formée de Hartley est 7~ = 1%,%

Démonstration. Nous allons utiliser, pour n et n’ € {0,...,N — 1}, la relation d’orthogo-

nalité Nt
-, 2n ) (27: ,)
Y cas | =—nk ) cas | —n'k N&” (1.2)
= (N N n

ol 6,;" vaut 1 si n = n’ et 0 sinon. On note @ = eziT", d’on
1
vl & cas ( 2ok ) = & (@™ (1 -i) + o™ (1+i)).
N 2
On calcule donc

1—1 1+1 . (1=D1+D) <
(Vny V) = z (ntn') ( z +n )k _)z(_llzw( ¥ (1.3)
k k k

Les deux premiéres sommes sont opposées, et la derni€re vaut N6,’,". Pour obtenir la for-
mule d’inversion, on note que J#(f)(n] = (f,vn), d’ott

-1
lnl = 2% )kJvalk] = Z%Jf[k](Vk,vn>=Nf[n]- O

Proposition 1.4. On a les relations suivantes entre la transformée de Fourier discréte et
la transformée de Hartley d’un vecteur f € RN :

H(f) =Re(Z(f)) +Im(Z(f))
F(f) =2(f)s =i (f)a-

On a noté, pour g € RV, g et g; les parties symétrique et anti-symétrique de g, introduites
a la définition 5.2, chap. II1.

(1.4)
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Remarque 1.5. Les relations (1.4) impliquent, dans le cas ou I’on se restreint a des vec-
teurs réels, une correspondance bijective entre transformée de Fourier discréte et transfor-
mée de Hartley. Comment expliquer que N nombres complexes (pour la TFD) puissent
contenir autant d’informations que seulement N nombres réels ? En réalité, il n’y a pas de
contradiction, il faut simplement se rappeler que dans le cas d’un signal réel, le vecteur
Z(f) estle conjugué de Z ( f1) (onr f! est défini a 1’équation (5.1), chap. III), il y a donc
une redondance d’informations (exactement deux fois trop d’informations). Pour un si-
gnal réel, la transformée de Hartley est nettement plus économique (que ce soit en matiére
de temps de calcul ou d’espace mémoire) que la transformée de Fourier, puisque 1’on va
manipuler exactement deux fois moins d’informations. C’est cette qualité que nous allons
exploiter au paragraphe suivant.

1.2 Transformée de Hartley rapide

Comme pour la TFD, on dispose d’un algorithme rapide pour calculer la transformée de
Hartley. Cet algorithme a été décrit en détail par ULLMANN [73]. Pour le comprendre,
nous allons effectuer un découpage de la transformée, comme nous 1’avons déja fait lors
de I’étude de I’algorithme FFT. Il s’agit bien siir d’exploiter les symétries (algébriques)
de la transformation, ainsi que les propriétés de la fonction cas. Une fois tout ceci mis en
place, nous verrons tout naturellement apparaitre un algorithme récursif.

Cet algorithme utilise une propriété de décimation temporelle. Pour obtenir 1’équation
de récurrence correspondante, nous allons procéder comme nous 1’avons déja fait pour
la transformée de Fourier discréte. If faut décomposer la somme qui définit S (f), pour
fE€ CV, de 1a maniére suivante:

N/2-1 N/2-1
H(f)k= Y, fl2n]cas (%hk) + ), fl2n+1]cas (%(2n+ 1)k>. (1.5)
n=0

n=0

Utilisons les notations de (2.4), chap. III. On reconnait dans la somme de gauche une
transformée de Hartley de longueur N /2, plus précisément #(f°). La somme de droite
pose probléme, mais on peut lever cette difficulté en utilisant la propriété suivante de la
fonction cas.

Proposition 1.6. On a, pour (o, B) € R?,
cas(o+ fB) = cas( o) cos(B) +cas(—o)sin(B). (1.6)

Démonstration. Cette propriété se démontre trés simplement en utilisant les identités
trigonométriques bien connues des fonctions cos et sin. g

En utilisant cette propriété, on peut réécrire la deuxieéme somme de 1’équation (1.5) pour
obtenir

DI = () +cos (2k) (1R -+sin (37) -

On définit alors I’opérateur yy;, pour x € R, de la maniére suivante :

. , N-1
VaecCV, x,{,a‘ﬂ{a[j]cos (27;\[—”‘) +a"[j]sin<2’;vl>} ech.  am

j=0
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On rappelle que a! est le vecteur symétrisé, équation (5.1), chap. III. Nous allons mainte-
nant découper le vecteur #(f) en ses parties gauche et droite, notées 2°(f)g et 2(f),.

La relation ) )
cas (Wn(n—kN/Z)) = —cas (%n)

permet d’obtenir une écriture tres simple de 1’équation de récurrence cherchée :

H(f)g = H(f°) + typ 2 (1), (1.8)
H(f)a=H ()~ 17 (). (1.9)

Ces équations permettent d’implémenter de fagon immédiate un algorithme de calcul ra-
pide que I’on nomme FHT pour Fast Hartley Transform. La procédure fht réalise cet
algorithme par des appels récursifs, et son programme se trouve a la section 2, annexe A.

Remarque 1.7. Les équations de récurrence (1.8) et (1.9) montrent que le calcul de
J#(f) nécessite en fait le calcul de deux transformées de taille moitié. Cependant, a cause
du terme inversé a présent dans I’opérateur xn(a), il est difficile d’utiliser un schéma
papillon comme pour I’algorithme FFT. Dans le but d’écrire un algorithme itératif, ULL-
MANN, dans [73], montre comment on peut faire le calcul par un double schéma papillon,
en utilisant quatre entrées.

On peut montrer qu’une transformation papillon de 1’algorithme FHT nécessite quatre
multiplications et six additions réelles. En ce qui concerne 1’algorithme FFT, on trouve
une addition et deux multiplications complexes, soit quatre additions et six multiplica-
tions. Cependant, la boucle effectuée pour calculer les transformées papillons de 1’algo-
rithme FFT court de 0 & N — 1, alors que pour I’algorithme FHT, il s’agit d’une boucle
entre 0 et N/2 — 1. Au final, ’algorithme FHT présente le double avantage de nécessiter
deux fois moins d’opérations, et d’utiliser deux fois moins de mémoire (on ne manipule
pas de nombres complexes).

Remarque 1.8. (Zero padding). Nous avons déja expliqué au paragraphe 1.3, chap. IV,
qu’il était possible de représenter assez fidelement la TFD continue d’un signal fini par
zero padding. 11 est bien siir possible de faire de méme avec la transformée de Hartley.
L’algorithme FHT, allié & une procédure de zéro-padding permet donc de calculer sim-
plement une transformée de Hartley continue. Plus on ajoute de zéros, plus on calcule
de valeurs intermédiaires de la transformée, et plus la précision de calcul est bonne. La
figure 5.1 montre ce procédé sur un signal simple (trianglulaire), et permet de compa-
rer le spectre de Fourier (en fait sa partie réelle) et son spectre de Harley. Le spectre de
Hartley étant la différence entre les parties réelle et imaginaire du spectre de Fourier, les
ressemblances ne sont donc pas fortuites !

1.3 Calcul de convolution par transformée de Hartley

Les équations (1.4) montrent qu’il est possible de calculer une TFD d’un signal réel au
moyen d’un calcul de transformée de Hartley, ce qui évite d’avoir recours a des multipli-
cations et additions complexes. Dans le méme ordre d’idée, on peut établir une formule
qui permet de calculer un produit de convolution de deux signaux réels en utilisant uni-
quement des transformées de Hartley.
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Signal original

FIG. 5.1 — Comparaison entre le spectre de Hartley et le spectre de Fourier

Proposition 1.9 (Convolution et transformée de Hartley). Soient a et b deux vecteurs
réels de taille N. On a

H(axb) = —{% H(b) — #(a)lH () + H (a) # (b)! + H (a)t 5 (b) },
soit, pourn =0,...,N—1,
H(axb)n) = —{c[n] d[n] +d[—n]) + c[—n](d[n] —d[-n]) },

oL 'on a noté ¢ = # (a) et d = 5 (b). 1l faut bien sir considérer 'indice —n comme
pris modulo N.

Démonstration. Aprés interversion des sommations dans 1’expression de 5 (a* b)[k] on
trouve
N-1  N-1 o n
H(axb)[n]= ) all bkcas(—nk+ >
(@bl = 3, alll 3, blkleas 7
11 suffit ensuite d’utiliser la relation (1.6) pour obtenir

! 2m g 2
axb)[n]=(b)[n] ) alllcos| —n A b)Y all]sin [ =nk ).
i)l = O] 3, allcos (Fonk) -+ A0l 3 ltsin 37 )

Pour conclure, il ne reste plus qu’a exprimer les fonctions cos et sin a I’aide de la fonction
cas de la maniére suivante:

cos(x) = cas(x) + cas(—x)
{ sin(() ccas( ))—cas(—x) O

Le programme fht_convol, que I’on peut trouver & la section 2, annexe A, réalise cette
convolution de signaux réels a 1’aide de 1’algorithme FHT. 11 est plus économique, a la
fois en termes de temps de calcul, et en termes de place mémoire utilisée.

Remarque 1.10. (Auto corrélation). Dans le cas ol les signaux a et b sont égaux, on

peut optimiser 1égérement 1’implémentation de 1’algorithme de calcul de convolution en
écrivant

#(axa)[K] = clklel ] + 3 (cle — c{~P)
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2 Transformée en Z et applications

Notre objectif ici est de donner un cadre relativement général pour étudier des transfor-
mées qui posseédent des propriétés similaires a celles de la transformée de Fourier discréte,
et en quelque sorte, la généralisent (comme par exemple la transformée en Z vectorielle
a la section 3, et la transformée de Fourier fractionnaire a la section 4). Pour ce faire,
nous allons nous intéresser aux fonctions génératrices, que 1’on appellera transformée en
Z. Apres la définition de cette transformée, nous présenterons une application immédiate
de la transformée en Z a la construction de filtres définis par des équations de récurrence.

L’ouvrage de WICH [78] regroupe quantité d’informations sur la transformée en Z. Le
lien avec les séries génératrices et les fonctions holomorphes est longuement discuté dans
le livre de DEMENGEL [25].

2.1 Définition et propriétés formelles

Notre but est de faire le lien entre transformée en Z et séries entiéres. Nous allons donc
définir la notion de transformée en Z dans le cadre de signaux de taille potentiellement
infinie. Dans la pratique, nous utiliserons la transformée sur des signaux de taille finie,
ce qui permet de ne pas avoir a se soucier d’éventuels problemes de convergence. Nous
considérerons donc une suite f = { f[n] }ncz € CZ. Seule I’étude de la fonction de transfert
d’un filtre récursif (au paragraphe 2.2) requiert I’utilisation d’une série infinie. Cependant,
méme dans ce cas, nous aurons une expression exacte de la transformée (sous forme de
fraction rationnelle), ce qui nous évitera tout probléme.

Définition 2.1 (Transformée en Z). Soit f € CZ. On appelle transformée en Z de f la

fonction D C
20:{ % 2 g S @D

n=

ol D est ’ensemble (éventuellement vide) des points ou la série converge.

Remarque 2.2. (Transformée en Z et fonctions holomorphes). La théorie des séries
de Laurent montre que la transformée en Z est en fait définie a I’intérieur d’une couronne
du type

Cﬁdéf'{ze(c;a<|z|<[3} pour 0 < a < 3,

ol 3 peut éventuellement valoir +o-. On pourra se référer par exemple au livre de CAR-
TAN [15] pour une étude complete de la décomposition d’une fonction holomorphe en
série entiére et en série de Laurent. La fonction Z°(f) est donc holomorphe a I’intérieur
de son disque de convergence. On dit aussi souvent que Z(f) est la série génératrice as-
sociée a la suite f. Comme nous le verrons plus tard (en considérant les filtres récursifs),
cette notion permet de représenter de fagon élégante certaines suites qui sont définies par
récurrence. Pour un exposé intéressant sur la résolution de récurrences par séries géné-
ratrices, on pourra regarder 1’ouvrage de référence de DONALD KNUTH [37]. Un exposé
plus simple se trouve dans [34]. Le livre [79] constitue un ouvrage original sur le sujet.

Exemple 2.3. Voici quelques exemples simples.

1. Soit la suite f € CZ définie par f[n] 20 pourn < 0 et fn] £ 1 sinon. On a

Z(@)=Y "= —

=
n=0 1-2z
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la série étant convergente dans C}™.
2. Pour (a,b) € C?, on définit la suite f € CZ par f[n] = a" pour n > 0 et f[n] = b"

sinon. On a
vy (4) AP 1
fg(f)(z)—'%(z) +n§6(b> S By iy
(5]

la somme étant convergente dans CI "

Proposition 2.4 (Propriétés de la transformée en Z). On note f et g deux suites de CZ.
Outre la linéarité, voici les propriétés importantes de la transformée en Z :

(i) convolution linéaire :
Z(f+g)=2Z(f)Z(g),
la série définissant & (f x g) étant au moins convergente sur ’intersection des cou-
ronnes de convergence de % (f) et Z(g) (si elle est non vide).
(i) dérivation:
2 ({nflnlbnea) () = ~25 2 ()@,

Démonstration. Nous allons faire la preuve de la propriété la plus importante, la propriété
de convolution (i). La convergence absolue sur 1’intersection des domaines de conver-
gence nous permet d’écrire, pour z dans cette intersection :

+00

Z(f*8)(2)= Y, (Fxglnl)z"= i f flnlgln—m)z™"

N=-o00 N=-com=-oco

= 3 sl (3 eln-mlz )

— (D2 ()).

La convergence absolue justifie I’interversion des deux sommations. (]

Remarque 2.5. 1l existe aussi des formules permettant d’intégrer la fonction 2°(f). Elles
nécessitent I’ utilisation d’intégrales curvilignes, ainsi que d’éventuelles précautions sur le
comportement a I’infini de f.

2.2 Filtres récursifs

Nous avons déja vu a la section 2, chap. IV, la définition des filtres linéaires, ainsi que
leur utilisation pour modifier de fagon adéquate des signaux. Nous allons définir ici un
nouveau type de filtres, nommés filtres récursifs, qui permettent eux aussi de réaliser des
opérations intéressantes sur des signaux. La transformée en Z est trés souvent utilisée
pour représenter la fonction de transfert de filtres récursifs. Elle est en effet trés pratique
pour au moins deux raisons :

- la représentation sous la forme d’une fonction va permettre d’utiliser des opérations
algébriques pour modifier le filtre (somme, produit, dérivée, etc.).

— la représentation complexe sous forme de module et argument (c’est-a-dire en coordon-
nées polaires) va permettre de créer de toutes pieces des filtres de fagon intuitive.
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D’excellents livres sont disponibles sur le traitement du signal digital en général, et I’ uti-
lisation de la transformée en Z pour la création de filtres. On peut citer entre autres [67]
ainsi que [17].

Définition 2.6 (Filtre récursif). Soienta = {ay,...,ax} etb={by,...,b;} deux vecteurs
de nombres complexes. Ils permettent de définir le filtre récursif (D’; opérant sur des suites
x € CN en définissant y = ®4(x) € CN par

VneZ, yln]=aoxn]+aix(n—1]+---+apx[n—k]

Fbiyln— 1]+ +biyln—1]. 22)

Remarque 2.7. L’équation (2.2) définit donc le filtre par récurrence. Le filtre n’utilise,
pour le calcul de y[n], que des valeurs déja calculées de y ainsi que des entrées du vecteur
x d’indice inférieur a n. Conformément & la terminologie déja employée (pour les filtres
de convolution), on dit que le filtre est causal. On obtient ainsi un algorithme simple pour
évaluer I’action du filtre sur un signal x. Dans la suite, on ne considérera que des filtres x a
support fini, et tous les signaux mis en jeu (en particulier x et y) seront indexés a partir de
zéro. On remarque que le calcul des premiéres entrées du vecteur y demande la connais-
sance de y[—1],y[—2],...,y[—!], ainsi que x[n — 1],x[n — 2],...,x[—k]. Par convention, on
supposera, sauf mention explicite du contraire, que ces entrées sont nulles.

Remarque 2.8. (Lien avec les filtres de convolution). Nous avons déja défini, a la sec-
tion 2, chap. IV, des filtres de convolution finis. On remarque que dans le cas ol le vecteur
b est nul, le filtre récursif est en fait un filtre de convolution fini. Les filtres récursifs
peuvent €tre vus, d’un point de vue théorique, comme une généralisation des filtres de
convolution linéaire. En fait, nous verrons méme dans 1’étude qui suit, par le calcul de
la transformée en Z, que les filtres récursifs sont des filtres de convolution, mais dont la
réponse impulsionnelle est infinie. C’est pour cela qu’on les nomme filtres /IR dans la
littérature anglo-saxonne (abréviation d’Infinite Impulse Response). D’un point de vue
pragmatique, il n’en va pas de méme : les usages de ces deux types de filtrages sont diffé-
rents, principalement a cause des propriétés inhérentes a la fois a leur implémentation, et a
leurs réponses impulsionnelles. Contrairement a un filtre de convolution linéaire qui peut
étre calculé de fagon rapide par FFT, un filtre récursif se limitera généralement & quelques
termes de récurrence seulement (ce qui signifie que & et / seront souvent supposés petits).
Ces filtres permettent donc, sans avoir a calculer de convolutions, d’obtenir des réponses
trés longues (en théorie infinies) pour des coiits trés faibles, de 1’ordre de O(N) (ou N
désigne la taille des vecteurs filtrés), si on suppose que k et / sont petits devant N. Par
contre, le fait de n’avoir qu’un petit nombre de coefficients a sa disposition pour créer ces
filtres les rend moins maniables. Enfin, il est a noter que le calcul d’un filtre par récurrence
facilite la propagation des erreurs d’arrondi (puisqu’elles s’ajoutent au fur et 2 mesure des
calculs). Pour enrayer ce phénomene, on est souvent obligé de faire des calculs en double
précision.

L’idée de ce paragraphe est d’utiliser la transformée en Z pour définir un filtre récursif
d’une fagon plus agréable que par I’équation de récurrence (2.2). Pour ce faire, calculons
la transformée en Z de cette équation. Apres regroupement des termes, on obtient
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avec .
daet. AQ +alz_1 + - tar
H(z) = ; .

1-biz7' = =biz~
On souhaite affirmer que H est la transformée en Z d’une certaine fonction de transfert
h, dans le but d’écrire le filtre ®% comme étant le filtre de convolution ®,. En effet,
supposons que 1’on ait réussi a trouver un tel 4. En utilisant le résultat de convolution 2.4
(i), on obtient

Z(y)=H -Z(x)=Z(hxx)=Z(h)- Z(x).

On voit donc que H = Z°(h). Le probléme est de savoir si la connaissance de H permet
de déterminer un tel s, autrement dit, s’il est possible de calculer I’inverse de la trans-
formée en Z. La réponse est loin d’étre évidente. On sait, grice aux formules de Cauchy,
qu’une fonction holomorphe définie sur une couronne c{,’, admet un unique développe-
ment en série de Laurent & I’intérieur de cette couronne. Cependant, il reste & savoir a
quelle couronne nous avons a faire. Selon le choix du domaine de convergence, on ob-
tient une suite 4 différente. Nous avons donc besoin de plus d’informations sur le filtre.
En prenant la transformée en Z de 1’équation de récurrence (2.2), nous avons en quelque
sorte « oublié » les conditions aux limites, c’est-a-dire les valeurs de x[—1],...,x[—]
ainsi que y[—1],...,y[—/]. Dans la pratique, on dispose en fait d’informations simples
qui permettent de retrouver le domaine de convergence qui correspond a 1’équation de
récurrence, et ainsi retrouver la suite 4 a partir de H.

— Si on considére 1’équation de récurrence écrite en (2.2), on voit que le filtre considéré
est causal (c’est-a-dire que la détermination de y[n] ne dépend que des entrées d’indices
inférieurs a n de x[n]). Ceci implique que la réponse impulsionnelle est nulle pour les in-
dices négatifs, ce qui se traduit par le fait que le domaine de convergence est 1’extérieur
d’un cercle (il suffit d’utiliser le critére de convergence pour une série entiere, puisque
I’on a en fait une série entiére en 1/z).

—Le plus souvent, on veut que le filtre soit stable en plus d’€tre causal, ce qui implique,
comme nous allons le voir a la proposition 2.10, que le domaine de convergence doit
contenir le cercle unité.

Voici un exemple qui montre I’importance de la spécification du domaine de convergence.
Exemple 2.9 (Causalité et domaine de convergence). On considére un signal y qui
satisfait a I’équation aux différences

y[n] = ay[n— 1] + x[n], (2.3)

oll x € CZ est le signal d’entrée. On obtient donc pour la réponse impulsionnelle la trans-
formée en Z suivante :

1
H@) = 15

De fagon naturelle, I’équation (2.3) définit un filtre causal, et on peut essayer de trouver sa
réponse impulsionnelle par la méthode que nous venons d’expliquer. La fonction H doit

donc étre considérée comme définie a I’extérieur du cercle de rayon |o|. On obtient alors,

par développement de la fraction en série entiére en fonction de z7!,

VzeCy, H(z)= Y, o'z
n=0
D’oli 1a valeur de la réponse impulsionnelle # :
Vn <0, hln =0,
Vn>0, hln]=0o".
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C’est donc bien un filtre causal. Si I’on veut qu’il soit stable, on vérifie qu’il faut en outre
supposer que
fonction H est deﬁme sur C(I) | . 11 faut, cette fois faire la manipulation suivante :

vzecl™, H(z)= —az"
l—z/a ,gb

On obtient ainsi 1’expression de 4 :

Vn<0, hln=-—
Vn>0, hln]=0

Le filtre est donc anti-causal, et la stabilité impose que || > 1. Le fait qu’il soit anti-
causal s’explique simplement en réécrivant 1’équation de récurrence (2.3) sous une forme
inverse (propagation des calculs dans 1’autre sens) :

yin—1] = %y[n] _ éx[n].

Une fois que 1’on a réussi a obtenir la valeur de &, on voit que le filtre % est bien un filtre
de convolution, mais qui reste un peu spécial, puisque sa réponse impulsionnelle, dans le
domaine de la transformée en Z, peut étre mise sous la forme d’une fraction rationnelle.

Nous venons de voir la fagon dont on peut représenter la fonction de transfert d’un filtre
récursif grace a sa transformée en Z. Cette représentation a 1’avantage d’offrir une écriture
compacte et simple. Ceci permet de faire des calculs de fagon efficace sur les filtres, plus
simplement que ne ’autorise la représentation sous forme de convolution exposée au
paragraphe 2.1, chap. IV. Avant d’étudier I’utilisation de la transformée en Z pour la
création de nouveaux filtres, voyons le rapport entre la fraction rationnelle représentant
un filtre, et la stabilité de ce filtre.

Proposition 2.10 (Pdles et stabilité). Soit H(z) = (1 7 12 1, transformée en Z de la fonc-

tion de transfert d’un filtre <I>2 (qui est donc causal). Alors, ce filtre est stable si et seule-
ment si tous les pdles de H sont situés a ’intérieur du cercle unité T,

Démonstration. Nous avons déja dit que pour un filtre causal, la série qui définit H
converge a I’extérieur d’un certain cercle, et la réciproque est vraie (il suffit de considé-
rer le développement en 1/z d’une fonction holomorphe définie au voisinage de I’infini).
Comme ®? est bien sfir causal, cette remarque s’applique. De plus, nous avons vu au pa-
ragraphe 2.2, chap. IV, qu’un filtre de réponse impulsionnelle £ était stable si et seulement
si ||kl g < +eo. Si h est absolument sommable, on a la majoration

veeT, [H@I< S nz"= S )] = Al

n=-oo Nn=-oo

On voit donc que la condition ||| < +eo implique que la série qui définit H est abso-
lument convergente sur le cercle I'. La réciproque est vraie. Le fait que
donc équivalent au fait que la région de convergence contienne tout 1’extérieur du cercle
I. Or, la région de convergence ne saurait contenir de pole. Tous les pdles de la fraction
rationnelle H doivent donc étre de module strictement inférieur 4 1. Encore une fois, 1a
réciproque est vraie. d
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2.3 Application a la construction de filtres

Dans ce paragraphe, nous allons nous concentrer sur 1’utilisation de la transformée en
Z pour la création de filtres récursifs digitaux. La démarche pour créer un filtre est de
décider de I’emplacement des zéros et des poles de la fonction de transfert. Comme nous
I’avons déja vu, les pdles doivent étre contenus dans le cercle unité pour que le filtre soit
causal et stable. Par exemple, on peut choisir les emplacements repérés sur la figure 5.2,
ce qui conduit & ’expression de la fonction de transfert :

() = (z—e™*)(z—e ™% 1-1414z+7°
(z—0.9¢i7/4)(z — 0.9¢=1%/4) ~ 0.810 — 1.273z — 22’

Cette transformée en Z est représentée a la figure 5.3. De cette expression, on déduit

X zéro

FIG. 5.2 — Positionnement des péles et des zéros

immédiatement les coefficients du filtre récursif associé :

1414 ap=1
—0.810.

ap=1 aj
by =1.273 b

2w

Des lors, si I’on désire calculer 1a réponse fréquentielle, deux méthodes s’ offrent a nous :

— calculer la réponse fréquentielle directement & partir de H : il suffit de considérer la va-
leur de la fonction de transfert sur le cercle unité, c’est-a-dire la fonction & — H (e2i"5 )s
pour £ € [0,1]. Par transformée de Fourier inverse, on en déduit la réponse impulsion-
nelle (le calcul approché se fait en échantillonnant la réponse fréquentielle, puis par FFT
inverse).

— calculer la réponse impulsionnelle en utilisant 1’équation de récurrence du filtre et en
I’appliquant pour I’impulsion &. On peut ensuite utiliser une transformée de Fourier
(discréte) pour approcher la réponse fréquentielle. Pour avoir suffisamment de précision,
il faudra calculer une réponse impulsionnelle approchée assez longue.

La figure 5.4 montre les réponses impulsionnelles et fréquentielles du filtre. Elles ont été
calculées directement a partir de la fonction de transfert H représentée a la figure 5.3.
Au paragraphe 3.1, nous présenterons un algorithme de calcul rapide pour déterminer
la valeur de la transformée en Z sur certains contours, et nous calculerons la réponse
impulsionnelle a partir de I’équation de récurrence (2.2).
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FIG. 5.3 — Transformée en Z du filtre
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FIG. 5.4 — Réponse fréquentielle et impulsionnelle du filtre

L’exemple précédent est loin d’€tre aussi anecdotique qu’il en a I’air. En effet, en dé-
composant la fraction rationnelle H, on va pouvoir se ramener au cas de filtres simples,
c’est-a-dire avec au plus deux pdles et deux zéros. Voici deux démarches que 1’on peut
suivre.

— Décomposition en produits. On peut factoriser les numérateurs et les dénominateurs
en polyndmes de degré 1 ou 2 sur R[X] (respectivement de degré 1 sur C[X]). On obtient
ainsi 1’écriture du filtre ®2 sous la forme d’une cascade de filtres :

@b = of! o...oq>g';,
ol chaque oy et fB; représente les coefficients d’un polynéme de degré au plus 2 (respec-

tivement au plus 1). Le filtre (DZ correspond donc & la mise en série d’une suite de filtres
récursifs d’ordre au plus 2 (respectivement au plus 1).
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— Décomposition en éléments simples. On peut décomposer la fraction H en somme
d’éléments simples sur R[X] (respectivement C[X]). On obtient alors la décomposition
5 = @)+ +@F,

ol chaque o; et B3; représente les coefficients d’un polyndme de degré au plus 2 (respec-
tivement au plus 1).

Dans le cas ol ’on réalise des décomposition sur C[X], méme si les signaux sont réels,
il faudra faire les calculs de convolution avec des nombres complexes. Chacune de ces
décompositions fournit une nouvelle fagcon d’implémenter le filtre récursif, en plus de
I'implémentation naive de 1’équation (2.2). L’exercice V.8 applique ces deux méthodes
pour calculer les coefficients d’une interpolation par splines.

2.4 Rapprochement avec le filtrage analogique

Avant d’entrer dans les détails de I’'implémentation d’une transformée en Z discréte, nous
allons essayer d’établir une connexion entre les filtres récursifs digitaux et les filtres ana-
logiques. Les filtres analogiques sont en quelque sorte les ancétres des filtres digitaux
modernes, mais sont encore utilisés dans de nombreuses situations. Il est donc intéres-
sant de comprendre pourquoi les filtres récursifs (qui effectuent des transformations dis-
crétes) permettent de replacer les filtres analogiques (qui effectuent des transformations
continues) dans le cadre « moderne » du traitement digital du signal. Sans entrer dans
la description du filtrage analogique, disons simplement qu’il s’agit de faire passer un
signal continu par un ensemble de composants électroniques, de sorte que le signal de
sortie soit reli€ au signal d’entrée par une équation différentielle linéaire. Le filtre digital
se comporte alors comme un systéme dynamique régi par une équation différentielle.

L’¢quation aux différences (2.2) est en fait ’analogue discret des équations différentielles
que doivent satisfaire les syst¢emes dynamiques. On peut prendre 1’exemple d’un circuit
RLC (cf. le schéma de la figure 5.5). On a alors 1’équation différentielle suivante qui relie
V. et Vi, les tensions d’entrée et de sortie :
dv, av, | d¥,

2h—F = wgmud_; + dtzs,
ou ’on a noté a)g = % etA = %. On peut considérer ce circuit comme un filtre analo-
gique. Comme nous avons développé la transformée en Z pour étudier les filtres discrets,
nous allons introduire une autre généralisation de la transformée de Fourier, continue
cette fois, pour étudier les filtres analogiques. Il s’agit de la transformée de Laplace, qui
est définie de la maniére suivante.
Définition 2.11 (Transformée de Laplace). Pour une fonction f : R — C, on définit
formellement sa transformée de Laplace par

VseD, ZL(f)(s)= [eR f(t)edr.

La fonction .Z(f) est définie sur un domaine D ou I’intégrale converge.

2.4)

Moyennant des précautions sur les domaines de définition des fonctions considérées, on
peut définir la fonction de transfert du filtre analogique, dans le domaine de Laplace :
2
K(S) g Z(VS)(S) — 5 )’s .
L(Ve)(s)  of +2As+s?
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L

Ve
=
Vs

F1G. 5.5 — Circuit RLC

On a calculé€ ici simplement la transformée de Laplace des deux membres de 1’équation
(2.4). On a utilisé le fait que la transformée de Laplace transforme la dérivation en la
multiplication par le paramétre s.

Nous nous intéressons maintenant au probléme résultant de la discrétisation, a intervalles
de temps régulier A, des signaux étudiés. On obtient des signaux discrets V. et V;, qui
vérifient 1’équation aux différences

% (v:[n] ~Vln— 1]) = wgVi[n] +% (Viln] = Vil — 11)

+ (Vb= 1)+ Vel + 1] - 2%41n))

La résolution de 1’équation différentielle d’origine est ainsi remplacée par un schéma
aux différences finies. Bien sfir, on aurait pu choisir d’autres méthodes pour calculer de
fagon approchée les dérivées mises en jeu. Cela aurait conduit 4 une équation légerement
différente. L’exercice V.7 propose de calculer quelques équations aux différences finies
pour un circuit analogique intégrateur.

D’un point de vue purement discret, on obtient un filtre récursif, qui peut étre calculé
a I’aide d’un ordinateur (et non plus d’un circuit électrique comme c’était le cas pour
le filtre RLC). On peut ensuite calculer la fonction de transfert dans le domaine de la
transformée en Z pour étudier ce filtre :

w ZVi)(@) 22.(1-2)
2R 227+ (Aap+24 - 2) + (L —21) 7

H(z)

La réponse fréquentielle du filtre analogique est la fonction 6 — K(if), pour 6 € R. La
réponse fréquentielle du filtre digital est 6 — H (eio), pour 6 € [0,27x[. La figure 5.6
montre que dans les deux cas, on obtient des filtres passe-bande (il laissent passer une
petite gamme de fréquences et diminuent beaucoup les autres). La transformée en Z est
en quelque sorte 1’outil qui permet d’étudier les filtres récursifs, alors que la transformée
de Laplace permet elle d’étudier leurs cousins continus, les filtres analogiques. Ainsi,
les principes de construction de filtres digitaux par I’utilisation de la transformée en Z
(placement des poles et des zéros, mise en série de filtres, etc.) s’appliquent aussi a 1a
création de filtres analogiques, & condition d’utiliser la transformée de Laplace.
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— A=0.1
- A=0.3

Filtre analogique Filtre digital

IK(i

-10 -5 0 5 10 -2 0 2

FIG. 5.6 — Réponses fréquentielles des filtres analogique et digital
3 Transformée en Z vectorielle

La présentation que nous venons de faire de la transformée en Z est avant tout théorique.
Dans le but de calculer effectivement les valeurs d’une fonction transformée en Z, il nous
faut échantillonner et faire un nombre fini de calculs. C’est ce que nous allons faire dans
ce paragraphe, en définissant une nouvelle transformée, que I’on appelle transformée en
Z vectorielle. L’ algorithme qui en résulte s’appelle algorithme chirp. 11 a été découvert
pour la premiere fois, dans le cadre (plus restreint) de la TFD par BLUESTEIN, et est
bien expliqué dans I’article [71]. Quelques aspects concernant la programmation de la
transformée en Z sont abordés dans [2].

3.1 Algorithme de calcul discret

La transformée en Z, méme opérant sur des échantillons discrets et finis, n’en demeure
pas moins une fonction de la variable complexe z. Le fait est qu’un ordinateur ne sait pas
travailler directement avec de telles fonctions (si I’on excepte des logiciels tels MAPLE
qui savent faire certaines manipulations formelles). Il nous faut donc un moyen d’évaluer
de fagon numérique la valeur de la transformée en Z en certains points, et ceci de fagon
rapide. Pour construire cet algorithme, nous allons introduire une transformée dédiée au
calcul de Z(f) en un nombre de points suffisant (autant que de points dans 1I’échantillon
d’origine).

Définition 3.1 (Transformée en Z vectorielle). On se fixe z € C. Pour un vecteur f € CV,
on définit la transformée en Z vectorielle (au point z) par

N-1

(N ELZ(N) = { )y f[k]Z"‘"} - 3.

n=0

Remarque 3.2. Le vecteur obtenu peut étre vu comme le calcul de la valeur que prend la
transformée en Z le long d’une courbe tracée dans le plan complexe. Si le point z est pris
de module 1, cette courbe sera le cercle unité, sinon, il s’agira d’une spirale.
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Soit z € C fixé. Pour construire un algorithme de calcul efficace de %,(f), nous allons
utiliser la relation

V(n,k), nk= % (P +1 = (n— 1))

En I’appliquant & 1’équation de définition (3.1), on obtient

2 N-1 2 (1-k)? 2 o~
G =27% 3 [k T2"F =275 (Fxg)lnl,

k=0

ol I’on a noté g le vecteur défini par

w K
Vke {-N+1,N—1}, glk|&z"7,

et f le vecteur
~ 2
Vke{0,....N—1}, Fin% flklz

11 faut faire attention au fait que la convolution est une convolution linéaire entre un vec-
teur de taille NV et un vecteur de taille 2NV — 1. En utilisant la méthode décrite a la section
3.3, chap. III, on peut calculer une convolution acyclique trés rapidement en la rempla-
cant par une convolution cyclique de taille plus grande. Plus précisément, les vecteurs &
convoler étant de taille N et 2N — 1, il faut en théorie calculer une convolution cyclique de
taille 3N — 2.En réalité, pour utiliser un 1’algorithme FFT de Cooley-Tukey « classique »,
on ajoute des zéros pour atteindre une taille M = 2% juste aprés 3N — 2. On peut cepen-
dant faire beaucoup mieux (taille 2N — 1) en exploitant le fait que g[k] = g[—k]. Ceci est
expliqué a I’exercice V.6 et donne naissance a la procédure MATLAB czt (pour Chirp Z
Transform) (voir la correction de I’exercice V.6). On peut ainsi calculer la transformée en
Z vectorielle en un temps de ’ordre de O(Nlog(N)).

L’approche « chirp » consiste donc a remplacer un calcul de transformée par un calcul de
convolution. Une autre astuce (1’utilisation d’un corps fini) permet d’arriver & un résultat
similaire (lorsque N est un nombre premier). Ceci est 1’objet de 1’exercice V.9.

Pour terminer, utilisons 1I’algorithme de calcul que nous venons de construire pour des-
siner des transformées en Z vectorielles d’un filtre récursif. On a choisi le filtre dont les
poles et les zéros sont placés sur la figure 5.2. On a calculé la réponse impulsionnelle du
filtre en utilisant directement 1’équation de recurrence (2.2). On a choisi deux contours,
qui correspondent respectivement a z = e ¥ (cercle unité) et z = 1. 001e™ (spirale). Le
premier contour permet de calculer la réponse 1mpu1s1onnelle (on retrouve la figure 5.4).
En effet, calculer la transformée en Z pour z = e‘N‘ revient a calculer une TFD (avec un
gain de temps substantiel si N n’est pas une puissance de 2). Pour le deuxi€éme contour en
revanche, on constate que le deuxiéme « saut » est moins marqué, car la spirale est plus
éloignée du deuxiéme pdle que ne 1’est le cercle unité.

3.2 Applications a la transformée de Fourier discrete

Ce paragraphe fait la liaison entre la transformée en Z vectorielle, et la TFD. En particu-
lier, nous allons voir comment ce rapprochement permet de réaliser des calculs de TFD
dans le cas ol la longueur N des signaux n’est pas un nombre composite du type N = 2
(cas ou I’algorithme FFT est tres efficace).
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* Poles — contour n®1
+ Zéros - — - contour n°2

Contours de calcul Transformée en Z sur le contour.
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Amplitude

-1

-1 -05 0 05 1 0 0.2 04 06 08 1
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FI1G. 5.7 — Transformée en Z suivant deux contours

On peut en effet voir la transformée de Fourier discréte comme un cas particulier de
transformée en Z vectorielle. Pour cela, on choisit z = wy £ ¢V et on obtient, pour un
vecteur f € CV,

F(f) =Y (f)-

Or une des forces de 1’algorithme chirp transform présenté au paragraphe précédent est
qu’il peut s’appliquer a n’importe quel entier positif N. Contrairement & 1’algorithme
FFT, il n’est pas restreint aux seuls entiers N dont on connait une « bonne » factorisa-
tion (I’exemple le plus simple est N = 2P), comme cela est expliqué au paragraphe 2.4,
chap. III. On peut méme appliquer I’algorithme chirp transform pour des transformées
dont la longueur N est un nombre premier, alors que dans ce cas il est impossible de
réduire le temps de calcul par une approche FFT ! Bien siir, cet algorithme nécessite un
certain nombre de calculs supplémentaires, entre autres :

—ajout de zéros pour transformer la convolution acyclique en convolution circulaire. En
fait, nous allons calculer des FFT de longueur M = 2 juste aprés 2N — 1.

—calcul de deux FFT (voire trois en prenant en compte le vecteur g) pour calculer une
convolution circulaire.

Cependant, dans le cas ou 1’on doit calculer une TFD de longueur N (et ou on ne peut
pas remplacer ces calculs par une transformée plus grande), cet algorithme constitue une
alternative avantageuse par rapport au calcul naif. Toute fois, il faut garder a 1’esprit que
dans bon nombre d’applications, on peut se contenter de calculer une transformée aux fré-

quences {k/N’ 2’;/_2;,,1/2 plutét que {k/ N}ivf_ ;,1/2, et donc que cette approche est a pros-
crire !

Remarque 3.3. Le pire des cas pouvant se présenter pour 1’algorithme chirp pour le
calcul d’une TFD est 2N — 1 = 27 + 1. On doit en effet calculer 3 FFT de taille 27+! ~
4N pour le calcul de la convolution (on a N’ = 2P*+! et il faut doubler la taille car la
convolution n’est pas circulaire). On voit donc que 1’on réalise environ 12 fois plus de
calculs que pour une FFT de taille 27 ...
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4 Transformée de Fourier fractionnaire

Dans cette section, nous allons étudier la transformée de Fourier fractionnaire. 11 s’ agit
simplement de considérer des fréquences intermédiaires lors de 1’évaluation de la somme
qui définit la TFD. Certes, on perd de nombreuses propriétés de la transformée de Fourier
discréte (convolution, inversion, etc.), puisque 1’on n’utilise plus les caractéres exponen-
. 2% g, . , . , .

tiels e, : k — e~ *". Cependant, nous allons voir que 1’on dispose d’un algorithme de
calcul rapide, ce qui rend cette transformée simple & utiliser. Une présentation relative-
ment complete de la transformée de Fourier fractionnaire est faite dans [6].

4.1 Définition et algorithme de calcul

Voici la définition, trés naturelle, de cette nouvelle transformée.
Définition 4.1 (Transformée de Fourier fractionnaire). Soit o¢ € R. On définit la trans-
formée de Fourier fractionnaire G(f, &) d’un vecteur f € CN par

N-1 .
Vke{0,...,.N=1}, G(f,0)]Z Y flnle @¥ .
n=0

Remarque 4.2. (Lien avec la TFD). On constate que si & = 1, on retrouve la transformée
de Fourier discréte. Pour oo = —1, on retrouve la transformée de Fourier discréte inverse
(2 un facteur 1/N pres). C’est dans ce sens que la transformée fractionnaire généralise la
TFD usuelle.

Dans le but de construire un algorithme de calcul, nous allons faire le lien avec la trans-
formée en Z, définie par I’équation (3.1). On constate en effet que dans le casouz=e ¥ ,
les deux transformées coincident. En utilisant 1’algorithme chirp de transformation en Z,

on va donc pouvoir calculer la transformée de Fourier fractionnaire de fagon rapide.

La transformée de Fourier fractionnaire n’a pas vraiment de signification intuitive simple.
Nous verrons au prochain paragraphe qu’elle permet de calculer des valeurs intermé-
diaires de la transformée de Fourier d’un signal discret. Elle va ainsi se révéler efficace
pour analyser des signaux dont la périodicité est inconnue. Cependant, la transformée
de Fourier fractionnaire n’est pas ce que 1’on pourrait appeler une transformée partielle,
comme nous avons pu en définir au paragraphe 5.2, chap. III, et a ’exercice II1.9. En
effet, la composée de deux transformées fractionnaires avec o = % ne redonne pas la
transformée de Fourier classique.

La figure 5.8 montre les transformées de Fourier fractionnaires G(f, &) d’une fonction en
escalier pour plusieurs valeurs de o. L’exercice V.11 propose de calculer les transformées
de Fourier fractionnaires d’une image.

4.2 Analyse de signaux a périodicité non entiere

La transformée de Fourier discréte est un outil puissant pour analyser des données phy-
siques récoltées par des capteurs ou d’autres méthodes plus ou moins sophistiquées. Ce-
pendant, toute cette analyse faite a 1’aide de la transformée de Fourier suppose que le
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Fonction d’origine 0=0.60 =0.80
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10 10
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FIG. 5.8 — Transformées de Fourier fractionnaires d’une fonction 1D

signal enregistré est périodique, et surtout que sa période est un diviseur de la longueur
sur laquelle on a échantillonné le signal. Cependant, dans la majeure partie des applica-
tions, on est loin d’étre en mesure de connaitre a priori cette période. Dans certains cas,
on dispose d’informations sur la valeur de cette période. Un bon exemple est celui des
données météorologiques. On sait que la période de rotation de la terre autour du soleil
est de 365,2422 jours. Cependant, méme dans ce cas favorable, les données acquises le
sont au rythme d’une fois par jour, soit 365 données par an. En conséquence, le spectre
du signal va étre anormalement compliqué, en tout cas beaucoup plus que si on avait pu
obtenir exactement 365,2422 échantillons par an.

On est donc confronté a un double probléme.

— Comment déterminer, a partir d’un spectre donné, la vraie période du signal?

— Une fois cette période connue, comment modifier le spectre d’origine pour qu’il corres-
ponde a des données échantillonnées suivant la bonne période ?

11 nous faut construire un algorithme qui automatise ces deux tiches, et fasse les calculs de
facon rapide. Nous allons voir que 1’utilisation de la transformée de Fourier fractionnaire
et de son algorithme rapide permet de résoudre ce probléme.

Pour avoir une idée sur la fagon de rechercher la période, il est intéressant d’étudier ce
qui se passe sur un échantillon monochromatique, c’est-a-dire sur une sinusoide. Soit le

signal
— [ PEHF }
f {e k=0’

ol 3 est un nombre réel. Si B n’est pas un entier, on est en présence d’un signal que ’on
sait périodique (de période N/f3), mais dont I’échantillonnage ne refléte pas la périodicité.
La figure 5.9 montre le spectre obtenu pour = 4.63. On y atracé a la fois la transformée

N-1
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de Fourier discréte et la transformée de Fourier continue (qui est approchée en ajoutant
un nombre conséquent de zéros a la fin du signal avant de calculer la TFD). Bien que le

"["+ Spece dchantions
—— Speclre continu

(] 2 4 6 8 10 12 1 16 18 20
Fréquence

FIG. 5.9 — Spectre d’une sinusoide mal échantillonée

spectre ne soit pas égal a celui que devrait avoir une onde monochromatique (on devrait
obtenir une seule raie placée a la fréquence 4.63), il présente un maximum a partir duquel
les valeurs de la transformée décroissent. Sur le dessin, il est facile de déterminer la valeur
exacte de 1’abscisse de ce maximum, qui correspond a la fréquence cherchée et qui nous
permet de déterminer la période. Cependant, il est beaucoup trop coiiteux de calculer la
transformée de Fourier continue pour avoir une bonne valeur approchée de la période.
Sans connaitre cette transformée de Fourier continue, on est néanmoins en mesure de
déterminer la période a une unité preés. Ici nous voyons que cette fréquence cherchée est
comprise entre 4 et 5. Notons b I’entier inmédiatement inférieur a 3. Pour calculer avec
plus de précision 3, nous allons calculer de fagon plus fine le spectre de f dans I’intervalle
[b,b+1]. Soit donc & un pas de subdivision. On cherche la valeur de la transformée de
Fourier de f aux fréquences intermédiaires b,b+ 9, ...,b+ mé > b+ 1, ce qui revient 2
faire le calcul :

Vke{0,...,m}, f(b+k8)= Zf[n]e Fnb+kd) — G(F,8)[K],
n=0

ou fest le vecteur
N-1
F={fimje e} .

La figure 5.10 (a) montre un signal périodique (bruité) dont lalongueur d’échantillonnage
n’est malheureusement pas choisie multiple de la période. A la figure (b), on peut voir le
spectre de ce signal, qui présente un pic en b = 2. La figure (c) réalise un zoom sur la
fenétre fréquentielle [2,3], et I’on peut voir précisément que 8 = 2.23.

Maintenant que nous avons calculé avec précision la fréquence 3 qui détermine la période,
nous aimerions modifier le spectre de maniére a ce que cette fréquence 3 prenne la place
d’une fréquence effectivement calculée par la TFD, en I’occurrence la fréquence b. On
espére ainsi que les coefficients vont décroitre plus vite, comme c’est le cas avec une onde
monochromatique bien échantillonnée. Posons o = %, qui est légérement plus petit que
1. Notons r I’entier le plus proche de Na. Pour que la fréquence 8 devienne la fréquence
b, il nous faut calculer une transformée de Fourier en multipliant les fréquences par L ce
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qui conduit a calculer
vee{0,...,r—1}, REF(X —Sf[n]e‘%’%k”—G(f L) [K]
PR ) k — o _"=0 - "No ’

ou il faut faire attention a compléter le vecteur f par des zéros pour qu’il atteigne la
longueur r. Dans le cas ol Na = r est un entier, et que le signal f est monochromatique
comme nous I’avons déja défini, on obtient

~( k - dizgy, 2wy k
VkE{O,...,r—l}, f & ='§)eN e r :r&b'

On obtient donc bien le résultat voulu, & savoir une correction parfaite du spectre. Si Na
n’est pas un entier, la correction n’est toute fois pas parfaite ; on peut calculer 1’erreur
obtenue pour une onde monochromatique :

2in
Ik 1 — o= BEn(b—h)
Wke{0,...,r—1},k#b, F% f( )‘ e

1 — e Na(6—F)

sin (%&k))

ol I’on a noté s = r — No.. En notant que |s| < 3, on voit que

—on a F, = r, comme dans le cas ou N est entier,

— lorsque k est voisin de b, au premier ordre, on a |Fi| = |s| qui est borné par %, donc
nettement plus petit que F;,

— Lorsque k est loin de b en revanche, la situation est moins favorable (le dénominateur
de | Fy| peut devenir petit). Cependant, en utilisant le fait que

2
Vx € [0,m/2], ;x < sin(x) < x,

on montre que |Fi| reste majoré par %’5 ou F(WN*_)

Dans le cas ol le signal n’est pas monochromatique, la décroissance sera bien entendu
plus faible, et ’amélioration moins visible. La figure 5.10 (d) montre I’effet de cet ajus-
tement de fréquence, et on observe une nette diminution des valeurs de la transformée
hors du pic a la fréquence 2. On a obtenu une représentation fréquencielle de la fonction
analysée beaucoup plus efficace et apte a étre utilisée pour des traitements ultérieurs.

5 Exercices

Exercice V.1 (Vecteurs propres et transformée de Hartley). Quelles sont les valeurs
propres de la transformée de Hartley définie a la section 1? En s’inspirant de la construc-
tion du paragraphe 5.2, chap. III, proposer une méthode pour obtenir des vecteurs propres
pour chacune des valeurs propres. En s’inspirant de ce qui a été fait au paragraphe 5.2,
chap. III, en déduire la construction d’une transformée de Hartley intermédiaire 5#*. La
figure 5.11 montre différentes transformées intermédiaires. On pourra faire la comparai-
son avec la figure 3.9, chap. IIL.
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(a) Fonction analysée (b) Transformée de Fourier
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F1G. 5.10 — Ajustement du spectre par transformée de Fourier fractionnaire
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FIG. 5.11 — Parties réelles des transformées intermédiaires 7 (f) pour 2. € [0,1]

Exercice V.2 (Transformée de Hartley généralisée). En remarquant que
cas(x) = v2cos (x— g) , 5.1

on peut définir, pour f € RV, une transformée de Hartley généralisée par
déf. ol 2T
Vne{0,...,N—1}, IH(f)n= Z flk]cos (Wnk+).>,
k=0

ol A est un paramétre réel dans [0,7[. Pour A ¢ {O, %}, montrer que cette transformation
est bijective, et que son inverse est donné par

2
) = . 52
()" = Gaaay -2 62
La figure 5.12 montre la transformée généralisée du signal triangulaire de la figure 5.1
(gauche), pour A variant entre O et 27.

Exercice V.3 (Interpolation et transformée de Hartley). A 1’exercice III.6, nous avons
vu comment on peut interpoler un signal échantillonné grace a la transformée de Fourier
discrete. Toujours en utilisant la technique de zero padding, expliquer pourquoi la trans-
formée de Hartley discréte permet aussi d’interpoler des valeurs échantillonnées. Montrer
qu’en fait les interpolations obtenues par Fourier et par Hartley sont les mémes.
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FI1G. 5.12 — Transformée de Hartley généralisée pour différentes valeurs de A

Exercice V.4 (Transformée de Hartley 2D). Soit f € RM*M2, On définit sa transformée
de Hartley bidimensionnelle 5#( f) par

Ni=1Np- o
(Pl E Y, Y, flki ko] cas < k1n1> cas (sznz),
k=0 k=0 2
oung €{0,...,N; —1} etnp € {0,...,N, — 1}. Montrer que I’on a la formule d’inversion
suivante :
= —%‘ H
f = K ))

Comment calculer rapidement cette transformée a I’aide de 1’algorithme FHT ?

Exercice V.5 (Transformée de Hartley et corps finis). Etendre la définition de la trans-
formée de Hartley dans le cadre des corps finis (puis des anneaux dans lesquels on dispose
d’une racine ni®™ principale). Si { représente une racine ni®™® de 1’unité, on pourra
utiliser 422’ pour remplacer cos ( ) Ecrire I’algorithme FHT correspondant.

Exercice V.6 (Transformation chirp et matrices de Toeplitz). Dans cet exercice, on
reprend la description de 1’algorithme chirp pour le calcul de la transformée en Z, dans le
but de trouver une formulation matricielle. Rappelons la définition de 1’algorithme chirp.
Il consister a calculer la transformée en Z d’un vecteur f € CV par I’intermédiaire d’un
vecteur {y[n]}'-) défini par

n

Vne {0,...,N—1}, y[n]g'z';g )n) = Zh[kg[n k],

ol I’on a noté
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et
ar K2
Vke {-N+1,N—1}, glk]&z 7.

1. Montrer que y peut se calculer comme un produit matriciel y = Gh, ou G est ce que
I’on nomme une matrice de Toeplitz, c’est-a-dire une matrice constante le long de
chacune de ses diagonales. Par exemple, montrer que pour N = 3, on a

glo] g[1] g2]
G=|g[l] £0] g[1]
gl2] gl1] g[0]

2. En toute généralité, une matrice de Toeplitz T de taille m x n se note

Im—1 Im oo bmgn—2
T In—2 tm—-1 -+ Ilmin-3
fo In—1

Elle est donc entiérement déterminée par sa premiére colonne, que 1’on note sous
la forme 1, & (to,- - - ,t,,_l)T et sa premiére ligne notée ; = (tmy - - - ,tm.,_,,_z)T (on ne
prend pas I’élément #,,_1). On considere le vecteur

% (1,0,...,0,1)T e CM.

ol M est la puissance de deux immédiatement apres n+m — 1. On note C matrice
circulante associée a ¢, comme définie a 1’exercice III.5. Ou peut-on retrouver la
matrice T & I’intérieur de la matrice C? Comment calculer un produit Tx, ou x €
C", en utilisant la matrice C? En déduire un algorithme permettant de calculer Cx
rapidement, a I’aide de I’algorithme FFT.

3. Appliquer la construction précédente a la matrice G. Montrer par exemple que dans
le cas N = 3, on obtient la matrice C suivante :

glo] g[1] g2l 0 0 0 g[2] g[1]
gll] glo] g1 g2 0 0 0 g2
gl2] g[1] g[0] g[1] g2 0 0 O
0 g[2] g[1] £[0] g[1] g2] 0 0O
0 0 g[2] g1] g0 g1] g2] ©
0 0 0 g2] g[1] g0] g[1] g[2]
g2l 0 0 0 g[2] g[1] g[0] g[1]
gll] g2l 0 0 0 g2 gl go])

En déduire un algorithme permettant de calculer y, puis %,(f) rapidement.

Exercice V.7 (Méthodes de quadrature et filtres récursifs). On considére un circuit
intégrateur, qui relie les tensions d’entrée x(¢) et de sortie y(¢) par 1’équation

Quelle est la fonction de transfert de ce filtre dans le domaine de Laplace ? On souhaite, &
partir de ce filtre analogique, créer un filtre récursif digital. On envisage les méthodes de



§ 5. Exercices 155°

quadrature suivantes, pour une fonction f : R — R continue :

1
(o) [ sy 00) 53)
o) [ s 70+ 1), 64
) [ s g0+ 20724 1), 55)

Ces méthodes sont appelées respectivement méthode des rectangles a gauche, méthode
des trapezes, et méthode de Simpson. En considérant une discrétisation des signaux x et
y de pas A, donner les équations de récurrence obtenues en employant chacune des trois
méthodes. Quelles sont les fonctions de transfert associées (pour la transformée en Z)?

Exercice V.8 (Spline et filtres récursifs). On reprend les notations de I’exercice IV.12. 11
s’agit d’expliquer comment on peut calculer les coefficients d’interpolation c[] par I’in-
termédiaire d’un filtre récursif. Nous allons essentiellement nous concentrer sur I’exemple
des splines cubiques, et nous laissons au lecteur le soin de s’entrainer sur d’autres exemples,
puis de généraliser la méthode. On pourra pour se faire s’aider d’une expression de 8%, et
se référer a I’article de UNSER [74].

1. Calculer 3, , puis montrer que sa transformée en Z vaut

2() () = A

2. On rappelle que I’on a ¢ = d)?i * Ug, Ol (I>3 est défini par <I>3 =1/ [33. Décomposer
la fraction rationnelle 2 (d)?i) en éléments simples. Comment peut-on calculer les
coefficients ¢ de I’interpolation indirecte en utilisant deux filtres récursifs ?

3. On suppose que 1’on connait le signal u,[k] pour k € {0,...,K — 1}. Montrer que
1’on peut organiser les calculs de ¢ de la maniére suivante :

Vke{l,...,K—1}, ct[k]=uglk]+bict[k—1]
Vk € {0,...,K =2}, c [kl =uq[k] +bic” [k+1]
Vk € {0,...,K—1}, c[k] =bo(ct[k]+c~[k] — uq[k])

On précisera les valeurs des constantes by et b;. Quelles valeurs donner a c*[0] et
¢~ [K —1]? On pourra par exemple faire en sorte que le signal produit puisse &tre
prolongé par symétrie miroir en K — 1 et O (pour éviter des discontinuités).

4. Reprendre les deux questions précédentes en exploitant une décomposition en pro-

duit de 1a forme
A

(1-az N(1-az)’

Exercice V.9 (Transformation Chirp et corps fini). Soit p un nombre premier. On note
g un générateur du groupe Iy,

Une fonction f : {0,...,p — 1} — C sera considérée comme une fonction définie sur F),.
Montrer que I’on peut écrire 1a transformée de Fourier de f de 1a maniére suivante :

Z(®)) =

-~ P2 a—b
Vb € {0,...,p—2}, f(g“’)=f(0)+§)f(g“)w;8 ,
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oll ®, = e » . En déduire que I’on peut calculer la transformée de Fourier de f a I'aide
d’une convolution sur Z/(p — 1)Z. Préciser les vecteurs mis en jeu, et implémenter cet
algorithme.

Exercice V.10 (Calculs approchés par transformée de Fourier fractionnaire). Soit
une fonction continue f : R — R que I’on suppose a support dans [—a/2,a/2]. On dis-
pose d’un échantillonnage régulier f[k] = f(x;) avec x, = f((k— N/2)a/N) pour k =
0,...,N—1.

1. On souhaite évaluer la transformée de Fourier continue de f autour d’une fréquence
¢, plus précisément aux points yy = § + 27”(k —N/2)7, ou y représente la précision
voulue. Si I’on souhaite effectuer le calcul des f(xk) a I’aide de ’algorithme FFT,
quelle est la taille de la transformée a calculer (on supposera que y € Q) ? Montrer
que I’on peut effectuer ce calcul de fagon plus économique a1’aide de la transformée
de Fourier fractionnaire.

2. On souhaite maintenant augmenter la précision des calculs. En utilisant la méthode
de quadrature de Simpson (exercice V.7, méthode (M3)), expliquer comment il faut
modifier la méthode de la question précédente.

Exercice V.11 (Transformée de Fourier fractionnaire d’une image). Proposer une
transformée de Fourier fractionnaire 2D qui étend la transformée 1D par produit tenso-
riel (on pourra s’aider de la construction de la transformée de Hartley 2D, exercice V.4).
Ecrire la fonction MATLAB qui correspond, et tester la transformée sur plusieures images.
La figure 5.13 présente les transformées de la fonction indicatrice d’un disque.

Image d'origine «=0.60 0=0.80

a=1.40

FIG. 5.13 — Transformées de Fourier fractionnaires d’une fonction 2D



Chapitre VI
Transformée de Fourier a valeurs dans un corps fini

Many people regard arithmetic as a trivial thing that
children can learn and computer do, but we will see that
artihmetic is a fascinating topic with many interesting
facets. It is important to make a thorough study of efficient
methods for calculating with numbers, since arithmetic
underlines so many computer application.

D. E. KNUTH [39] (1997)

Nous avons déja rencontré a de nombreuses reprises les corps finis, en particulier au cha-
pitre II. Cependant, nous nous sommes bornés & les exploiter en tant que domaines de
départ des fonctions que I’on souhaitait analyser. Pourtant, il est trés fréquent de mani-
puler des données a valeurs dans un ensemble fini, que 1’on peut souvent munir d’une
structure de corps fini. L’exemple le plus frappant est celui des données binaires, qui
peuvent étre modélisées par des fonctions 2 valeurs dans F, ~ {0, 1}. Dans ce chapitre,
nous allons présenter de nombreuses situations similaires, et nous verrons comment les
outils de Fourier s’étendent naturellement a de telles structures de corps.

1 Calculs sur un corps fini

Depuis le début de I’exposé, nous nous sommes limités & 1’étude des fonctions a valeurs
dans le corps C des complexes, et nous nous sommes particulierement intéressés aux
morphismes de G (groupe fini abélien) dans le groupe multiplicatif C*. Cependant, la
majeure partie des résultats reste valide si on considére les morphismes de G dans un corps
commutatif quelconque. Dans cette section, nous allons étudier de plus pres le cas des
corps finis. Non seulement nous allons reprendre les résultats déja énoncés aux chapitres
précédents, mais nous allons les particulariser et expliquer pourquoi et comment effectuer
les calculs dans un corps fini.

Il s’agit d’effectuer nos calculs modulo un nombre premier p. Il faut se garder de croire
que nous allons nous restreindre au seul corps F), £ 7/ pZ. Par exemple, au paragraphe
1.4, nous allons nous placer dans un corps plus grand, du type F,r, ot r > 1, pour définir
une transformée d’une longueur arbitraire.
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1.1 Transformée de Fourier sur un corps fini

On se fixe donc un entier premier p. Tous nos calculs seront effectués modulo p. Pour
construire une transformée a valeurs dans un corps fini, nous avons besoin d’une racine
primitive n'®™ de I’unité. Précisons un peu ce que cela signifie.

Définition 1.1 (Racine primitive). Soit K un corps. Un élément { € K est appelé racine
de l'unité si c’est un élément d’ordre fini de K*, c’est-a-dire s’il existe un entier s > 0 tel
que §*=1.

Un élément d’ordre n de K* est appelé racine primitive n®™® de I’unité, ce qui signifie
que {" =1 et que pourtout s tel que 0 < s < n,ona §*# 1.

Dans un corps fini K de cardinal g = p”, tout élément de K* est nécessairement une racine
(g— 1)“”me de I’unité. Bien sfr, I’existence d’une racine n'*™¢ | pour un n quelconque,
n’est pas assurée. En effet, I’ordre de tout élément de K* est un diviseur de g — 1. Ré-
ciproquement, si n|q — 1, c’est-a-dire —1 = nk, alors, si on note @ un générateur de K*,
¢ = w* est une racine n*®™ primitive.

Pour simplifier, nous allons supposer que g = p est un nombre premier. On admet aussi
que I’on dispose de ¢, une racine n'®™® primitive de I’unité sur F p- Il est alors trés simple
de définir la transformée de Fourier a valeurs dans le corps IF),.

Définition 1.2 (Transformée sur [F,). Pour un vecteur f € (F,)", on définit la transfor-
mée de Fourier :

N n—1 .
Vj€{0,...,n=1}, Z(f)lil=1lJl ‘é"sz[k]c*f- (1.1)
=0

La transformée de Fourier sur IF,, posséde exactement les mémes propriétés que la trans-
formée de Fourier classique ; les voici brievement rappelées.

Proposition 1.3 (Propriétés). # est un isomorphisme d’algébre de ((Fp)",*) dans
((Fp)",-) ot I’on a noté x le produit de convolution circulaire et - le produit composante
par composante. Son inverse est donné par

n—1
Z () =n"" k_ZOf[k]C""- (12)

La transformée de Fourier modulo p présente un avantage certain: tous les calculs se
font avec des entiers (certes modulo p, mais au final, on réalise toujours des additions et
multiplications d’entiers). Il n’y a donc pas d’erreur numérique susceptible d’entacher les
résultats des calculs. En revanche, dans des calculs nécessitant une grande précision, 1’uti-
lisation d’une FFT classique peut conduire a des erreurs. Lorsque 1’on veut par exemple
calculer le produit de deux grands entiers (en utilisant la technique présentée au para-
graphe 5.4, chap. IV), il est trés important de minimiser les erreurs numériques, puisque
I’on veut, au final, retrouver des valeurs entiéres (nous allons en fait arrondir a 1’entier le
plus proche). Par exemple, dans [5], I’auteur explique qu’en double précision, passé 10
millions de décimales, 1’algorithme de FFT, utilisé pour des calculs de produits d’entiers,
donnait de mauvais résultats a cause des erreurs d’arrondi. C’est pourquoi les algorithmes
de calculs sur les corps finis (et plus généralement sur Z/mZ) sont au cceur des systémes
informatiques nécessitant des calculs entiers de haute précision.

Au dela de tous ces avantages, il faut garder a I’esprit que le résultat obtenu par transfor-
mée sur un corps fini n’a plus aucune signification « physique ». En effet, la transformée



§ 1. Calculs sur un corps fini 159

de Fourier a valeurs dans C représente une approximation de la transformée de Fourier
continue sur R (se référer aux calculs effectués au paragraphe 1.2, chap. IV), ce qui est
bien siir loin d’étre le cas pour la transformée sur un corps fini. On peut considérer la
transformation effectuée dans les complexes comme un moyen de passer d’une repré-
sentation temporelle des données a une représentation fréquentielle, alors qu’il n’y a pas
d’interprétation aussi évidente pour la transformation réalisée sur [F,.

1.2 Un cas particulier

Le probléme auquel nous sommes confrontés pour construire cette transformée est la
recherche d’une racine primitive ™ de 1’unité. Pour bien comprendre les difficultés
que I’on rencontre, commengons par montrer un cas ou tout se passe bien, mais qui,
comme nous allons le voir, est trés restrictif.

On suppose que I’on a choisi n = p— 1. On sait que le groupe multiplicatif F), =, — {0}
est un groupe fini cyclique. En conséquence, il poss¢de un élément générateur : notons le
{. Par définition, on a donc

Fo={1,,¢%...,§""} et{"=1.

Nous avons donc exhibé une racine ™ primitive de 1’unité, mais au prix d’un choix
particulier pour la valeur de #. Un algorithme naif pour déterminer un générateur du
groupe multiplicatif (Z/nZ)* consiste a essayer un par un tous les éléments du groupe.
Un algorithme plus efficace est présenté dans le livre de COHEN [18].

1.3 Corps cyclotomiques

Dans le paragraphe précédent, nous avons construit une transformée de Fourier de taille
n sur F, dans un cas bien précis, ce qui imposait une relation entre les entiers n et p.
Cependant, on peut souhaiter choisir indépendamment ces deux parameétres, par exemple
dans le cas fréquent ot I’on veut réaliser des TFD de taille trés grande, beaucoup plus
que p. Le probléme est qu’il n’y a aucune raison que le corps F,, £ Z/ pZ contienne des
racines n'°™ primitives. Nous allons donc devoir travailler dans une extension de I,
c’est-a-dire un certain IF - pour r € N*.

Pour mener a bien la recherche de cette extension, on a besoin d’étudier les facteurs ir-
réductibles du polyndme X" — 1, puisque ce seront les polyndmes minimaux d’une éven-
tuelle racine primitive. Rappelons, sans démontration, quels sont ces facteurs irréductibles
sur le corps Q.

Théoréme et définition 1.4 (Polyndmes cyclotomiques). On note @, le n™ poly-
ndme cyclotomique, défini de la fagon suivante:

o,0% ] (x-¢7).
ke(Z/nZ)*

Les polynémes cyclotomiques vérifient

X" —1=[]®aX). (1.3)
din

Is sont a coefficients dans Z, et de plus, ils sont irréductibles dans Q[X].
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Pour une preuve de ce théoréme, ainsi qu’une construction trés claire des corps finis, on
pourra regarder le livie de DEMAZURE [24].

Exemple 1.5. L’équation (1.3) fournit un algorithme qui permet de déterminer par récur-
rence les polyndmes cyclotomiques, dont voici quelques exemples :

QH(X)——XZ—I,
D) (X)=X+1,
O3(X)=X>+X+1,
Ds(X)=X>-X -1

Le programme MAPLE 1.1 permet de calculer un polyndme cyclotomique. Voir a ce sujet
I’exercice VIL.1.

Programme 1.1 Calcul d’un polyndme cyclotomique
with (numtheory) : cyclotomic (105, X);

1+X_Xs+X2_X5_zx7+X35_X28+X48+X46_X43_2x4l_X40_X39+X36+X34
+X33+X3l_X26_X24_X22_X20+Xl7+X16+X15+X14+X12_X9_X6+X47
_X42+X32+Xl3

Les polynémes ®,, étant a coefficients dans Z, on peut donc les réduire modulo p et les
regarder comme éléments de IF,(X|. Bien qu’ils soient irréductibles sur Q, il n’y a aucune
raison qu’ils le soient encore sur IF,. Plus précisément, c’est le théoréme suivant qui va
nous permettre de construire I’extension de corps dont on a besoin.

Proposition 1.6 (Cyclotomie sur F,). On suppose pged (n,p) = 1. Soit r I’ordre de p
dans le groupe (Z/nZ)*, c’est-a-dire le plus petit entier t tel que p' = 1 modulo n. Alors
le polynéme cyclotomique ®,(X) se décompose dans Fp(X] en produit de polynémes
irréductibles de degré r, tous différents.

Démonstration. Comme n est premier avec p, le polyndme X" — 1 est premier avec sa
dérivée nX"~1, donc il n’a pas de racine multiple dans une extension. Avec la relation
(1.3), on en déduit donc que le polyndme @, n’a pas de facteur multiple. 11 suffit donc de
montrer que tout facteur irréductible de @, est de degré r.

Soit donc P un facteur irréductible de degré s. On note K = F,[X]/(P) le corps résiduel.
Son cardinal est |K| = p°. L'image { de I’indéterminée X dans K est une racine primi-
tive de I’unité, puisque P est un facteur irréductible de X" — 1 et que § est racine de P.
Comme tout élément x de K* vérifie x”~! = 1, en particulier, {#’~! = 1, et la définition
d’une racine primitive #*™ implique que n|p® — 1. Par définition de I’ordre r de p dans
(Z/nZ)*,0n a donc r < s.

Montrons I’inégalité inverse. Comme n|p” —1,0na p" —1 = An,d’od {71 = ({")* =1,
donc &P = . Notons alors k le sous-corps de K formé des racines de 1’équation X P =X.
11 contient ¢ qui engendre K*, donc il est en fait égal a K tout entier. Comme X?' —X a
au plus p" racines distinctes, on obtient que |K| = |k| < p”, donc s < r qui est ’inégalité
cherchée. g

Remarque 1.7. Dans le cas ol les entiers »n et p ne sont pas premiers entre eux, n est un
multiple de p, soit n = mp', ou cette fois m est premier avec p. On écrit alors

Xt—1=x"" 17 = (x"-1).



§ 1. Calculs sur un corps fini 161

On peut maintenant appliquer la proposition précédente au polynéme X" — 1 pour trouver
une décomposition de X" — 1.

Remarque 1.8. En fait, la proposition 1.6 est encore valable sur un corps du type F,; ou
q = p' (sans modification de la démonstration). Le polyndme ®, se décompose dans F,(X]
en produit de polyndmes irréductibles de degré r, o r est I’ordre de g dans (Z/nZ)*. 1l
faut faire attention : le fait de regarder le polynéme ®, sur I, revient a réduire ses coeffi-
cients modulo p (et pas modulo g !). Cependant, comme il y a plus d’éléments dans IF; que
dans IFp, il est possible que certains facteurs irréductibles de ®, sur IF,, se décomposent
sur Fy.

Si on note P un facteur irréductible de @y, le corps K = F,[X]/(P) est donc Iextension
de F, que I’on cherche. C’est un corps de cardinal p', et on peut le voir comme un espace
vectoriel de dimension r sur IF, simplement en considérant ses éléments comme des
polyndémes de degré au plus r — 1. On note généralement IF,r ce corps, mais il ne faut
pas le confondre avec Z/p’Z: en effet, dans K, on continue a effectuer 1’addition modulo
p, et la multiplication est plus complexe puisqu’elle correspond a la multiplication des
polyndémes modulo P. Pour finir, notons que I’on a bien ainsi trouvé une racine primitive
de I’unité. Il suffit de considérer la classe de I’indéterminée X dans K : c’est en fait une
racine que I’on notera § de P dans K. On peut alors voir le corps K comme F,({], le corps
engendré par § sur IF,. On nomme ce corps le corps cyclotomique d’indice n sur IF,.

Exemple 1.9. On considére le polyndme
O;5(X)=1-X+X3-x*+x°-x"+ x8 e Z[X)].

Comme !’ordre de 2 dans (Z/15Z)* est 4, @5 se décompose sur F, en produit de 2
polyndmes de degré 4 irréductibles :

®15(X)= (14+X+XH(1+X3+X%) eFyfx].
Un corps de décomposition de ®;5 est donc par exemple
Fa[X]/(14+X +X*) >~ Fpu ~ a0,

ot I’on a noté & une racine de 1 +X +X* (c’est-a-dire la classe de 1’indéterminée X dans
le corps quotient F5[X]/(1+X 4+ X4)).

D’une fagon pratique, pour construire ce corps, il faut dans un premier temps calculer le
polyndme ®,, (par exemple en utilisant par récurrence la relation (1.3)), puis rechercher
un facteur irréductible de @, sur IF,. Pour ce faire, on pourra utiliser MAPLE, toute la
démarche étant détaillée dans le premier programme du paragraphe 1, annexe B. Un
algorithme permettant de factoriser des polyndmes sur un corps fini est 1’algorithme de
Berlekamp. 1l est détaillé dans le livre de DEMAZURE [24].

1.4 Transformée sur un corps cyclotomique

Gréce a la décomposition du polyndéme @, sur le corps IFj, on a réussi a construire une
. Py déf. . ie o ey
extension de IFp, notée K = IF,r, dans laquelle se trouve une racine »'°™® primitive de
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I’unité, o. De plus, la connaissance de son polyndme minimal P nous permet de calcu-
ler avec les éléments de K (qui sont des vecteurs de r éléments de FF),), puisqu’il suffit
d’utiliser la multiplication polynomiale modulo P.

En se plagant dans le corps K, on définit donc la transformée d’un vecteur f € K" par
I’équation (1.1). Cette fois, Z#(f) est lui aussi un vecteur de K”. Dans la pratique, on
utilise souvent cette transformée pour des données qui sont des éléments de (IF,)", mais
il faut bien siir garder en téte que le résultat n’a aucune raison de rester dans IF,. On
retrouve le méme phénomene que pour le calcul de 1a TFD (classique) d’un vecteur réel,
pour laquelle on est obligé de se placer dans 1’extension C du corps des réels. Rappelons
que si on note les éléments de F,r comme des vecteurs (plut6t que des polynémes), un
élément du corps de base [F), se distingue par le fait que seule la premi€re composante du
vecteur est non nulle.

Cette construction d’un algorithme de transformée rapide pour une longueur N arbitraire
sera utilisée a la section 3. Il sera en effet question de décoder certains codes correcteurs
a ’aide de la transformée de Fourier. Nous verrons que 1’utilisation d’un sur-corps (qui
peut paraitre pour 1’instant un peu artificielle) devient alors trés naturelle pour rechercher
I’ensemble des codes vérifiant certaines propriétés (on les appelle codes cycliques).

1.5 Calculs effectifs

Nous allons pouvoir utiliser la transformée de Fourier a valeurs dans un corps fini pour
faire des calculs de convolution. Comme tous les calculs sont effectués modulo p, nous
allons devoir choisir un entier p suffisamment grand pour pouvoir récupérer des résultats
de calculs dans Z, et non pas modulo p.

Le meilleur exemple de I’utilisation de cette transformée de Fourier est le calcul de pro-
duits de grands entiers, écrits en base b. Le paragraphe 5.4, chap. IV, explique comment
calculer le produit de deux entiers a 1’aide d’une convolution acyclique. On peut déter-
miner facilement une borne sur la valeur des entrées d’une convolution linéaire de deux
entiers représentés en base b:

n—1

n—1
|f*glk]| = ,Z{,f[l]g[k_l] <;0|f[llllg[k—l]|Sn(b—l)z-

Pour pouvoir calculer de fagon exacte le produit de deux entiers, il faut que | f x g[k]| < p.
On aura donc intérét a choisir p > n(b— 1),

Pour terminer, il convient de dire quelques mots sur I’implémentation pratique de 1’algo-
rithme de calcul de la transformée. Le plus souvent, on va considérer que n est de la forme
2k, et on va utiliser I’algorithme dichotomique de FFT présenté  la section 2, chap. IIL
Les détails de I’algorithme restent inchangés. Entre autres, si § est la racine d’ordre 2k
cherchée, alors § 2 sera la racine d’ordre 2¥~!, etc. Bien siir, il faut remplacer les opéra-
tions dans le corps des complexes par des opérations dans le corps fini K = IFr. 11 faut
donc choisir une fagon de représenter les éléments du corps K, et savoir comment les
multiplier. Si on a recherché la racine primitive { comme il est indiqué au paragraphe
1.3, on a un moyen tres naturel de le faire. En effet, on dispose par la méme occasion du
polynéme minimal P de {, de degré r, et on peut donc représenter les éléments du corps
comme des polyndmes de degré au plus r— 1 (c’est-a-dire par des vecteurs de taille r dans
la mémoire de I’ordinateur). L’addition s’effectue alors composante par composante, alors
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que la multiplication s’effectue comme une multiplication de polyndmes modulo P. Cette
multiplication se calcule de fagon classique, puis en prenant le reste de la division eucli-
dienne par P.

Le programme MAPLE de la section 1, annexe B, effectue pas a pas les différentes étapes
menant a la construction d’une transformée sur un corps fini. Il débute par la factorisation
de @, sur I, et contient un algorithme FFT récursif. Il utilise pleinement les facilités de
MAPLE, ce qui permet de ne pas avoir a se soucier des opérations dans le corps [F,r. On
notera enfin qu’il précede le programme sur les codes correcteurs BCH (paragraphe 4,
annexe B), ce dernier utilisant les procédures de calcul de transformée sur un corps fini.

2 Calculs sur un anneau

I1 est naturel, apres avoir présenté la transformée de Fourier a valeurs dans un corps fini,
d’essayer d’étendre cette notion a un anneau commutatif quelconque. Cette généralisation
n’est pas du tout gratuite, puisqu’elle va permettre de calculer dans un anneau Z/mZ
quelconque a moindre frais (le calcul des sommes et des produits se fait tout simplement
modulo m). Nous allons ainsi obtenir un algorithme FFT nettement plus simple que celui
construit au paragraphe précédent, qui nécessitait le passage dans un sur-corps et le calcul
de divisions euclidiennes pour effectuer les produits dans ce corps. Bien sfir, tout comme
dans I’exemple simpliste du paragraphe 1.2, ol nous avions n = p — 1, nous allons encore
une fois avoir des limitations sur le choix de n» ou de p. Cependant, nous allons voir
qu’en considérant des anneaux du type Z/2"Z, on peut construire un algorithme FFT trés
simple, ol la recherche de racine primitive devient triviale.

2.1 Racines principales de I’unité

Dans ce paragraphe, nous considérons des structures plus générales, a savoir des anneaux
commutatifs quelconques. Dans la pratique, on utilise surtout I’anneau Z/mZ, ot m est un
entier positif, ce qui permet de faire des calculs de fagon simple a 1’aide d’un ordinateur
(addition et multiplication modulo m). Un probléme se pose lorsque 1’on souhaite définir
une transformée de Fourier & 1’aide de 1’équation (1.2) sur un anneau A quelconque: la
transformation ainsi définie n’a aucune raison d’étre bijective. Ceci est dii a la présence
de diviseurs de zéro dans 1’anneau A. On rappelle qu’un diviseur de zéro x # 0, est un
élément de A tel qu’il existe un y # 0 vérifiant xy = 0. Par exemple, dans I’anneau Z/67Z,
on a I’égalité 2-3 = 0, donc les éléments 2 et 3 sont diviseurs de zéro. Pour pallier ce
probléme, nous allons devoir imposer des restrictions supplémentaires sur le choix de la
racine ni¢me . En suivant les notations de DEMAZURE [24], nous allons introduire le
concept de racine principale de I’unité.

Définition 2.1 (Racine principale de I’unité). Soit A un anneau commutatif quelconque.
Un élément { € A est appelé racine n'®™® principale de 1’unité si:

(i) ona " =1 (en particulier, { est inversible).
(ii) pour touti € {1,...,n—1}, ’élément 1 — { n’est pas un diviseur de zéro dans A.
Ceci signifie que si al' = a, alors a = 0.

Remarque 2.2. Le fait que {' — 1 ne soit pas diviseur de zéro pour i = 1,...,n— 1 im-
plique en particulier que {' # 1, donc une racine principale est une racine primitive. On
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constate que si I’anneau est intégre (et a fortiori si c’est un corps), les notions de racine
ni®me  primitive et de racine »i®™® principale coincident. Par contre, si on considére
par exemple I’anneau Z/15Z, on voit que 1’élément 2 est une racine primitive 4™ de
I’unité, mais elle n’est pas principale, puisque 22 — 1 = 3 est un diviseur de zéro.

Nous allons donc rechercher une racine principale de I’unité, par exemple en menant une
recherche exhaustive parmi les éléments de A*. Comme ce calcul est effectué une fois pour
toutes, il n’est pas important de disposer d’un algorithme rapide. On peut alors définir la
transformée de Fourier discréte a valeurs dans A de la fagon habituelle.

Définition 2.3 (Transformée de Fourier dans un anneau). Soit A un anneau commuta-
tif, et { € A* une racine n'®™® principale. Pour un vecteur f € A", on définit 1a transformée
de Fourier % ainsi qu’une autre application notée % par

n—1
Vje{o,...,n—1}, 36‘(f)[j]“é",§)f[k1¢“, 2.1
— n=1 .
Vje{0,...,n=1}, F(HUE Y FKICY. 22)
k=0

Dans le but d’étudier les relations entre ces deux transformées, nous avons besoin du
lemme suivant.
Lemme 2.4. Soit A un anneau commutatif et { une racine n'®"¢ principale de I’unité.

On a alors
"ilck,-_ n sik=0 modn
“ 1 0 sinon )

i=0
De plus, n n’est pas un diviseur de zéro dans ’anneau.

Démonstration. Nous allons démontrer 1’égalité polynomiale suivante :

n—1
x'—-1=J](x-¢).
i=0
Notons P(X) =X"—1.0na P(1) =0, donc P s’écrit (X —1)Q(X), ou Q est un polyndme
unitaire (en effet, comme le polyndme X — 1 est unitaire, on peut réaliser la division
euclidienne de P par X — 1 et voir que le reste est nul). Comme { est aussi racine de P,
on voit que (§ —1)Q(&) =0, et le fait que { — 1 ne soit pas diviseur de zéro permet de
conclure que Q(&) = 0. On recommence avec Q, que I’on écrit sous la forme (X — {)R(X).
On a alors P(?) = (&2 —1)¢(¢ — 1)R(&?). Le fait que {2 — 1 ne soit pas diviseur de
zéro permet d’affirmer que R({?) = 0. On continue ainsi jusqu’a trouver la factorisation
annoncée. En enlevant le facteur X — 1, on trouve
n—1
Xt x+1=T] (x - ¢).
i=1

D’ou, en évaluant 1’égalité précédente en X =1,

n—1

nla=[] (1-¢).

i=1

Ceci montre que n n’est pas diviseur de zéro dans A. En évaluant une autre fois la méme
égalité, mais pour X = £¥, on obtient I’égalité annoncée. (W
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On peut alors énoncer le résultat principal.

Théoréme 2.5 (Propriétés de la transformée sur un anneau). On note * le produit de
convolution circulaire et - le produit composante par composante. & est un morphisme
d’algébre de (A", *) dans (A",-). On a les relations

—_~

VieA", F(Z(f)=nf ea F(Z()=nf.

Les morphismes & et & sont injectifs. De plus, si nlu est inversible, alors I’application
ZF est un isomorphisme d’inverse n=\ %,

Démonstration. La propriété de morphisme ne présente pas de difficulté, la démonstra-
tion est identique a celle effectuée pour la transformée a valeur dans C, théoréme 4.15,
chap. L. N

Nous allons calculer & (Z(f)):

HEHIUED NSO WITISESWIN DNt
l J J i

11 suffit ensuite d’utiliser le lemme précédent 2.4 avec k = j —n pour conclure.
L’injectivité de % résulte simplement du fait que » n’est pas diviseur de zéro dans A, car

o~

si Z(f) =0, alors Z(Z(f))=nf=0,donc f=0. O

Dans le cadre de 1’anneau A £ Z/mZ, les conditions sous lesquelles on peut construire
une transformée de Fourier deviennent plus simples. L’exercice VI.2 détaille les étapes
qui permettent de démontrer la proposition suivante :

Proposition 2.6. Soitm = pllc' x -+ X pkr oit les p; sont des nombres premiers distincts. On
peut construire une transformée de Fourier de taille n inversible sur I’anneau A < 7./mZ.
si les conditions suivantes sont satisfaites.

(i) pged(n,m)=1.

(i) Sim s’écrit sous la forme , alors n divise pged (p1 — 1,...,pr—1).
La condition (i) permet d’inverser n dans A, et la condition (ii) permet de construire une
racine n'®™® principale. Dans le paragraphe suivant, nous allons particulariser cette étude

a certaines classes d’entiers m, dans le but de construire un algorithme de calcul rapide de
type FFT.

2.2 Implémentation d’un algorithme FFT

On souhaite implémenter un algorithme FFT dichotomique sur un anneau A quelconque.
On suppose donc que n = 2°, et le probléme, pour pouvoir implémenter 1’algorithme, est
tout d’abord de trouver une racine 25°™ principale de Iunité. Mais lorsque le deuxieéme
appel récursif sera lancé, il faudra trouver une racine (23“)léme principale, puis une
racine (2“‘2)léme , etc. Si on veut que 1’algorithme FFT soit réellement utile, il faut que
cette recherche d’une racine principale prenne le moins de temps possible.

La proposition suivante, dont la démonstration fait ’objet de 1’exercice V1.3, va nous
permettre de construire cette racine principale §.
Proposition 2.7. Soit A un anneau commutatif. Pour que { soit une racine principale

(2") reme , il faut et il suffit que 2 ne soit pas diviseur de zéro dans ’anneau, et de plus que
Czk—l -1
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On va choisir un entier m impair pour que 2 soit inversible dans A = Z/mZ (en particu-
lier, 2 ne sera pas un diviseur de zéro). De plus, en prenant simplement { = 2, on voit
2’(—1 . N 2k—l . , .
que {* = —1 dans A en assignant & m la valeur 2 + 1. On a bien trouvé une racine
iéme " .
(2")1 de I'unité, en I’occurrence § = 2, de plus, comme on le voit en reprenant 1’exer-
. . _1\iéme T . e
cice VI3, {2 sera alors une racine (2¢!) de I’unité principale, puis on utilisera {4,
etc.

Remarque 2.8. Les nombres de la forme 22 + 1 sont d’une grande importance, et sont
appelés nombres de Fermat. On note Fer, = 22" 4+ 1 le n'®™ nombre de Fermat. On voit
facilement que tout nombre premier de la forme 2+ 1 est en fait un nombre de Fermat.
On peut voir que Ferg = 3, Fer; = 5, Fer, = 17, Fers = 257 et Ferq4 = 65537 sont tous

premiers, malheureusement, Fers ne 1’est pas ...

En conclusion, cette méthode, bien que moins souple au niveau du choix de n, est net-
tement plus simple & mettre en ceuvre que la transformée de Fourier dans un corps cy-
clotomique. De plus, elle demande nettement moins de calculs. Comme un programme
complet vaut mieux que de longs discours, on pourra se référer au paragraphe 2, annexe
B, ou I’algorithme FFT de longueur » sur I’anneau Z/mZ avec m = 227 est implémenté
en MAPLE.

3 Application aux codes correcteurs

The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point. Frequently the
messages have meaning ; that is they refer to or are
correlated according to some system with certain physical
or conceptual entities.

C. E. SHANNON [66] (1948)

Ce paragraphe est une modeste introduction a la théorie des codes correcteurs ; il s’agit
avant tout de donner envie au lecteur de chercher des informations complémentaires dans
la bibliographie proposée. Le but est d’appliquer les outils introduits depuis le début de ce
chapitre, d’une part pour mieux comprendre les conditions mises en jeu dans la construc-
tion des codes, et d’autre part pour obtenir des algorithmes de décodage rapides et ef-
ficaces. Dans un premier temps, les définitions des notions principales sont données, en
mettant en avant la théorie des codes cycliques. Puis, il s’agit de réinvestir au mieux les
connaissances que 1’on posseéde sur les corps cyclotomiques et sur la transformée de Fou-
rier discréte, pour arriver, a la fin de I’exposé, a construire des codes et des algorithmes.

La théorie classique des codes correcteurs d’erreurs aborde une grande variété de sujets,
ce qui la rend particuliérement attractive (par exemple pour illustrer une lecon d’agréga-
tion). Tout d’abord, elle traite de la géométrie finie (puisqu’il s’agit au fond de manipuler
des boules dans un espace fini). Ensuite, I’aspect combinatoire des codes présente bon
nombre de propriétés remarquables, principalement autour des relations liant entre eux
les différents parametres des codes. Enfin, il sera beaucoup question de théorie des corps,
qui constitue le ceeur de cet exposé.
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Une treés bonne référence sur la théorie des codes correcteurs est le livre de PAPINI et
WOLFMAN [56]. Celui de DEMAZURE [24] constitue un trés bel exposé, avec entre autres
un algorithme de décodage des codes BCH trés efficace.

3.1 Notion de code correcteur

La notion de codage d’une information n’est pas nouvelle: elle est méme intimement
liée a I’activité humaine, au besoin naturel de communiquer par des moyens divers mais
pas toujours trés fiables. Le meilleur exemple est le langage humain, treés complexe, et
qui répond parfaitement au besoin de correction des erreurs. Aprés tout, pourquoi utiliser
des langues naturelles si compliquées, alors que 1’on pourrait utiliser des mots certaine-
ment beaucoup plus courts, avec une syntaxe beaucoup plus simple ? Une des explications
consiste a dire que ces langues naturelles permettent de mieux se comprendre (a condi-
tion d’en maitriser les rudiments). En effet, la diversité des mots employés diminue le
risque d’erreur lors d’une conversation, et la rigidité des régles de grammaire rend cette
communication moins sensible aux aléas (bruit ambiant, mauvaise prononciation, etc.).
En quelques sorte, tout ceci contribue a rendre les mots qui composent la langue tres dif-
férents les uns des autres, de fagcon & ce qu’on puisse facilement les distinguer. Le cas
échéant, si une erreur de communication se produit, il sera relativement simple pour le
locuteur de retrouver le sens du message orignal.

Ce premier exemple donne tous les points clefs d’une théorie des codes correcteurs d’er-
reurs. Il s’agit de trouver un moyen de coder une certaine information de fagon a la rendre
moins sensible aux erreurs lors d’'une communication. On peut découper le processus de
codage de la maniére suivante :

—la transformation de 1’information (qui peut étre une pensée, un son, une séquence
d’ADN, etc.) sous la forme d’une suite de symboles. Dans la théorie qui va suivre,
nous allons nous désintéresser du sens de cette suite de symboles. Il s’agit en quelque
sorte d’une couche d’abstraction qui va nous permettre de fixer une facon de représenter
I’information que 1’on veut traiter.

—le codage mathématique proprement dit. C’est cette partie du processus de codage qui
va nous intéresser. Il s’agit de modifier de fagon adéquate la suite de symboles de fagon
a la rendre le moins sensible possible aux erreurs de transmission. Cette tranformation
va exiger 1’ajout d’information redondante.

Le but de la théorie des codes correcteurs est donc d’utiliser des structures algébriques et
des algorithmes pour que :

- I’information redondante ajoutée au message lors du codage soit la plus faible possible,
pour un nombre d’erreurs corrigées fixé.

— les algorithmes de codage et surtout de décodage soient rapides et efficaces.

Pour y parvenir, nous allons imposer des structures (algébriques) plus ou moins rigides
sur I’ensemble des mots manipulés (que 1’on nomme le code).

Le premier choix a faire est celui de 1’alphabet que nous allons utiliser pour écrire les mots
des messages. L’information d’origine (par exemple un message que 1’on veut transmettre
sur un réseau) sera ainsi transformée, lors de la premiére étape du codage, en une suite de
symboles puisés dans cet alphabet. Un exemple capital d’alphabet est celui utilisé pour
coder les informations génétiques du code humain. Dans ce cas, I’information a coder est
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I’ADN (Acide Désoxyribonucléique), et les symboles sont 4 « bases azotées », que 1’on
note symboliquement A,T,G et C. Ce premier exemple de codage est symptomatique de la
construction mathématique que nous allons effectuer. Il s’agit de remplacer 1’information
(qui posséde un certain sens pour celui qui la transmet) en une suite de symboles fixés.
Des études récentes discutent d’ailleurs de I’existence de codes correcteurs dans la suite
de séquences azotées de I’ ADN, voir par exemple [49].

De fagon a rendre agréable 1’analyse mathématique qui va suivre, nous allons prendre pour
symboles des éléments de certains ensembles algébriques. Le choix que nous allons faire,
et qui peut paraitre arbitraire, est celui d’un corps fini. En pratique, ce choix n’est pas
si restrictif que cela. Par exemple, le codage binaire des éléments du corps F, = Z/27Z
convient parfaitement a la fagcon dont I’information est stockée dans la mémoire d’un
ordinateur. Dans le méme ordre d’idée, les éléments d’un corps du type For pourront étre
stockés sous la forme de vecteurs de r bits. Le deuxiéme choix & faire est celui des mots
que nous allons effectivement envoyer sur un réseau. Ils auront tous la méme longueur,
que 1’on notera n. Ainsi nous allons regrouper les éléments de 1’alphabet envoyés par
paquets de n pour obtenir des n-uplets (xo,...,%:,—1), avec x; € F,. Dans la suite, nous

214 . N déf. .
supposerons donc que ces mots sont des éléments de 1’espace vectoriel (F,)", olt ¢ = p’
avec p un nombre premier.

On souhaite exploiter certaines structures algébriques pour donner naissance a des codes
de plus en plus efficaces. Cependant, il existe de nombreux codes utilisés trés fréquem-
ment et qui ne nécessitent pas des constructions algébriques complexes. En voici deux
exemples.

Exemple 3.1 (Bit de parité). Il s’agit sans doute du code le plus simple et le plus utilisé.
L’information que I’on souhaite coder consiste en une suite de » bits, que 1’on notera donc
sous la forme a=apay...a,_1, ot g € {0,1}. L'opération de codage consiste a ajouter
un (n+1)*™ bit @, défini de la maniére suivante :

a,,déf'ao+-'-+an_1 mod 2.

En fait, on s’arrange pour que la somme de tous les bits du mot transmis soit toujours
un nombre pair. On constate alors que ce code permet, a la réception, de déceler une
erreur due a la modification d’uniquement un bit, puisque alors la somme des bits sera
impaire. Cependant, si deux erreurs simultanées ont lieu, le code sera incapable de les
remarquer. En outre, il est vain de vouloir corriger une erreur avec un code aussi simple. 11
va donc falloir construire des codes plus complexes (avec plus d’informations redondantes
ajoutées), pour obtenir des performances qui satisfassent nos exigences. Cependant, ce
premier exemple est fondamental, d’une part parce que dans bien des cas, il est suffisant
(si la communication est trés fiable, comme c’est le cas pour le stockage en mémoire
centrale d’un ordinateur), et d’autre part parce qu’il peut étre superposé a un code déja
existant pour le rendre plus efficace.

Exemple 3.2 (Code ISBN). Le code ISBN (pour International Standard Book Number)
est un identificateur unique attribué a chaque livre. Il s’agit d’une suite de 9 chiffres dé-
cimaux suivis d’un autre chiffre compris entre 0 et 10 (on note alors 10 sous la forme du
chiffre romain X). Si on note I’'ISBN d’un livre dj. . . do, le dixiéme chiffre est calculé de
facon a satisfaire 1’égalité

10dp+9d;+ -+ +2dg+dy=0 mod 11.
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En général, on regroupe les d; en 4 paquets séparés par des tirets, comme par exemple
dans ’ISBN 0-201-89683-4, dont les significations sont les suivantes.

— Le premier groupe est composé d’un seul chiffre, qui caractérise le pays de 1’éditeur (0
pour I’ Angleterre, 2 pour la France, 3 pour I’ Allemagne, etc.).

—Le deuxieme groupe caractérise 1’éditeur, et sa longueur peut varier de 2 a 7 chiffres
(moins il y a de chiffres, plus 1’éditeur est important).

— Le troisi¢éme groupe caractérise le livre, et sa longueur peut varier de 1 a 6 chiffres.

— Le quatriéme et dernier groupe correspond au chiffre dg censé détecter d’éventuelles
erreurs.

On voit facilement que ce code permet de détecter une erreur, ainsi qu’un échange entre
deux chiffres consécutifs. Cependant, il ne permet pas de corriger les erreurs, ni de détec-
ter certaines inversions de chiffres. Ce codage est trés astucieux, car la plupart du temps,
les codes ISBN sont saisis par des humains, qui ont souvent tendance & inverser deux
chiffres consécutifs.

I1 existe de nombreux autres exemples de codes correcteurs dans la vie courante. On
pourrait citer les numéros de Traveler’s Checks American Express, les codes barres, et
bien siir les disques compacts, qui utilisent des codes beaucoup plus complexes (pour
contrer d’éventuelles rayures sur leur surface).

Nos mots sont donc des vecteurs de ’espace (IF,)". Pour étudier les propriétés de notre
code € C (IF4)", il est intéressant d’introduire une notion de proximité entre les mots qui
le composent, pour pouvoir considérer ce code sous un angle géométrique. On est amené
a considérer une distance sur 1’ensemble des mots. Voici celle qui est la plus couramment
employée.

Définition 3.3 (Distance de Hamming). On définit le poids d’un mot x € (F,)", que I’on
note w(x), comme le nombre d’entrées non nulles dans x. La distance de Hamming entre
deux mots x et y de (IF;)" est définie par d(x,y) = w(x—y).

On voit facilement que d est bien une distance, c’est-a-dire que pour des éléments x, y, et
zde (Fp)":

(i) x#y=>d(x,y) > 0;
(i) d(x,y) =d(yx);
(i) d(x,y) <d(x,2) +d(z,y)-

Cette distance correspond donc au nombre d’entrées qui différent entre deux mots. Par
exemple, I'illustration 6.1 permet de visualiser la distance de Hamming sur (IF,)3, chaque
aréte du cube reliant deux points a distance 1. On aurait pu choisir une autre distance, mais
il s’avére que la distance de Hamming est a la fois suffisamment simple pour permettre
de faire des calculs efficaces, et assez précise pour bien rendre compte de ’efficacité des
codes.

3.2 Présentation des codes linéaires

Aprés le choix de I’alphabet (qui est donc un corps fini IF,), la seconde hypothése que nous
allons faire concerne I’ensemble des mots que 1’on peut coder. En effet, il est évident que
’opération de codage va ajouter de 1’information au message original, donc 1’ensemble
des mots « valides » (c’est-a-dire les mots que nous serons en mesure de produire par
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FIG. 6.1 — Distance de Hamming sur (F,)3

codage) n’occupera pas I’espace (F,)" en entier. De fagon intuitive, on peut voir que
plus il y aura d’espace entre les mots valides (c’est-a-dire les mots du code), plus nous
serons en mesure de les discerner les uns des autres, et donc plus il sera facile de repérer
d’éventuelles erreurs.

La recherche d’un ensemble € C (IF,)" présentant, pour une taille |%’| donnée, la meilleure
répartition de poids (dans un sens a préciser, mais intuitivement, tel que les mots soient les
plus éloignés possibles des uns des autres) est un probléme extrémement difficile. Ainsi,
cette recherche est intimement liée a celle d’empilement de sphéres les plus compacts
possibles, et au fameux probléme du Kissing Number. On renvoie pour plus de détails a
I’article de ELKIES [30]. On peut définir un ensemble de constantes caractérisant avec
plus ou moins de finesse la répartition des mots d’un code.

Définition 3.4 (Fonctions de répartition). On note {A;}!_ la répartition des poids d’un
code € C (Fy)":

Vi=0,...,n, AiZ#{xc%\w(k)=i}. (3.1)
On note {B;}?_, la répartition de distance de € :
1
Vi=0,...,n, Biﬁ@#{(x,y)e%\d(x,y)=i}. (32)

Il est 2 noter que les couples (x,y) sont considérés ordonnés c’est-a-dire (x,y) # (y,x).

Remarque 3.5. On constate que I’on a Bg = 1, et que
Ao+ +An=Bo+:+Bn=|¥].

De plus, si u est un vecteur quelconque de (IF,)", les codes € et € + u ont la méme
répartition de poids. C’est pourquoi dans la pratique on suppose que 0 € ¥, méme si ¢
n’est pas linéaire.

Nous reviendrons sur le calcul et 1’étude de ces répartitions a la section 4. Pour quantifier
de fagon plus simple cette répartition, nous introduisons une notion trés utile, celle de
distance minimale.

Définition 3.6 (Distance minimale). On note d la distance minimale du code € consi-
déré, qui est définie de la fagon suivante :

dZ min{d(x,y) \x £y € ¥}.
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Intuitivement, on se rend compte que plus cette distance minimale est grande, plus le code
va étre efficace, puisque les mots seront plus éloignés les uns des autres. Ce choix est trés
partial, et en quelque sorte trés pessimiste, puisqu’il ne prend en compte que la plus petite
distance. Cependant, il nous donne des conditions sous lesquelles on est assuré de corriger
une erreur, ce qui est précisé par la définition suivante.

Définition 3.7 (Capacité de correction). La capacité de correction t d’un code & est
le nombre maximum d’erreurs qu’il peut corriger. De facon plus précise, si I’émetteur
envoie un mot codé x € % i travers un réseau, et que le récepteur regoit un mot x’ (qui est
peut étre différent du mot envoy€), alors il doit €tre en mesure de retrouver le mot original
sid(x,x) <t

Ceci signifie que les boules de rayon ¢ (pour la distance de Hamming) dont le centre est
un mot du code doivent étre disjointes les unes des autres, ou, en d’autres termes, que les
mots doivent étre & une distance d’au moins 2¢ + 1 les uns des autres. On obtient donc le
résultat suivant.

Proposition 3.8. Un code € est t-correcteur (c’est-a-dire qu’il a une capacité de cor-
rection d’au moins t) si la distance minimale entre deux mots distincts est supérieure ou
égale a 2t + 1. La capacité de correction du code estt = | (d —1)/2], o I’on a noté | x|
la partie entiére d’un réel x.

Pour simplifier grandement la recherche de codes efficaces (par exemple avec une grande
distance minimale d), nous allons imposer une structure trés restrictive aux mots du code.
Définition 3.9 (Code linéaire). Un code linéaire € de taille n et de dimension m sur
IF, est un sous-espace vectoriel de dimension m de (IF4)". Si on considére une matrice G
(appelée matrice génératrice) dont les colonnes forment une base de %, on a

€ ={Gx\x€ (F,)"}.

Notons bien qu’il n’y a pas unicité dans le choix de G. Certes, un code linéaire, méme
optimal, sera dans le meilleur des cas aussi bon que le meilleur des codes non linéaires
(c’est-a-dire un code quelconque), et, dans la pratique, il sera beaucoup moins bon. Ce-
pendant, le fait de se restreindre a des sous-espaces vectoriels va rendre notre recherche
beaucoup plus fructueuse, et va aussi amener son lot d’algorithme de décodage efficace.
Par exemple, la propriété de linéarité de € nous permet de calculer la distance minimale
d beaucoup plus simplement :

dZmin{d(x,y) \x #y € €} = min{w(x) \ x #0 € €}.

De méme, dans le cas linéaire, on constate que les répartitions de poids et de distance
coincident. Sauf mention explicite du contraire, on suppose maintenant que le code % est
un code linéaire, de taille » et de dimension m.

La premiére phase de 1’opération de codage consiste & transformer le message d’origine
contenant une certaine information en un mot du code €. Il faut que cette opération soit
bijective. Dans le cas d’un code linéaire, il est trés facile d’y parvenir. La fagon la plus
simple d’opérer est tout simplement de considérer que nos messages sont des « petits »
vecteurs de (IF;)™, et qu’on les envoie sur des « grands » vecteurs de (IF,;)", simplement
en les multipliant & gauche par la matrice G. La matrice G n’est pas choisie de fagon ca-
nonique, mais le choix d’une autre base conduit & un code ayant sensiblement les mémes
propriétés (on parle de code isomorphe).

Remarque 3.10. (Matrice de contrdle). Un code de taille n et de dimension m sur
F, peut étre vu comme le noyau d’une matrice H de taille (n — m) x n. On appelle cette



172 Chapitre VI. Transformée de Fourier a valeurs dans un corps fini

matrice une matrice de contréle du code % ; elle permet de vérifier si un vecteur x € (IF,)"
appartient au code puisque x € ¥ < Hx = 0. Il n’y a pas unicité dans le choix de G.

Exemple 3.11 (Code de répétitions). Prenons I’exemple simple du code de répétition.
11 consiste & répéter, par exemple, 4 fois un symbole x € [F». Les deux seuls mots du code
sont (0000) et (1111). Des matrices génératrices G et de controle H sont par exemple

i 1100
G= 1 H=[10120
1 1 001

Le code dual (notion précisée un peu plus tard, définition 4.1) est constitué des vecteurs
x € (F2)* tels que (x,[1111]) = 0. C’est donc simplement le code consistant  ajouter 2
xX€ ]F% un bit de parité. On constate qu’il suffit, & une transposition pres, d’échanger les
matrices génératrices et de contrdle. On pourra voir a ce sujet 1’exercice VL.6.

Exemple 3.12 (Code de Hamming de longueur 7). On considére le code de taille 7 et
de dimension 4 sur [F, dont la matrice génératrice est

1101000

G 0110100

0011010

0001101

On peut expliciter les 16 éléments qui composent le code :

xT (Gx)T | w(Gx) xT G0)T | w(Gx)

(0000) | (0000000) 0 (1000) | (1101000) 3
(0100) | (0110100) 3 (0010) | (0011010) 3
(0001) | (0001101) 3 (1100) | (1011100) 4
(1010) | (1110010) 4 (1001) | (1100101) 4
(0110) | (0101110) 4 (0101) | (0111001) 4
(0011) | (0010111) 4 (1110) | (1000110) 3
(1101) | (1010001) 3 (1011) | (1111111) 7
(0111) | (0100011) 3 (1111) | (1001011) 4

Comme on peut le constater, chaque mot non nul du code est de poids supérieur & 3, donc
la capacité de correction de ce code est 1. De plus, il posséde une propriété intéressante :
les 4 vecteurs lignes de la matrice G se déduisent les uns des autres par permutation
circulaire. Par conséquent, I’ensemble du code est invariant par permutation circulaire.
Dans la suite, nous nous intéresserons aux propriétés algébriques de tels codes, et nous
verrons que 1’on dispose d’outils fort pratiques pour les construire, et, dans certains cas,
les décoder. L’exercice VI.7 propose de généraliser la construction qui vient d’étre faite,
pour donner naissance & une famille de codes tres utilisée, les codes de Hamming.

Pour terminer ce paragraphe, voici une relation importante entre les différents parameétres
d’un code, qui montre bien le choix a faire entre capacité de correction et redondance de
I’information transmise.

Proposition 3.13 (Borne de Singleton). Soit € un code correcteur linéaire de longueur
n, de dimension m, et de distance minimale d. On a alors

d<n+1-—m. (3.3)
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Démonstration. Soit E le sous-espace de (IF,)" formé des vecteurs dont les m — 1 der-
niéres composantes sont nulles. C’est un espace de dimension n —m + 1.

On a dim(%) + dim(E) = n+ 1 ce qui implique que ¥ NE # {0}. Il existe donc un
élément x non nul dans % dont les m — 1 derniéres composantes sont nulles, donc qui
vérifie w(x) < n+1—m. On a donc la relation voulue de part la définition de la distance
minimale. a

Remarque 3.14. Les codes qui vérifient d = n+ 1 —m sont appelés codes M DS (pour
Maximum Distance Separable, en Anglais dans le texte), ils sont donc optimaux pour la
borne de Singleton. L’exercice VI.12 étudie en détail ces codes.

3.3 Codes cycliques

Le probleme des codes linéaires est que dans le cas général, on ne dispose pas d’algo-
rithmes rapides de décodage, ou alors ces derniers nécessitent le stockage de tables de
décodage qui deviennent vite énormes pour des codes de tailles respectables. Pour remé-
dier a ce probleme, nous allons imposer une structure supplémentaire aux codes linéaires.
Définition 3.15 (Code cyclique). Un code ¥ de taille n sur IF,, est dit cyclique s’il est
stable par décalage circulaire, c’est-a-dire

Va= (aOa ee 5an—1)T € cga ag (an—laaOa oo aall—Z)T €Y.

Une fagon trés commode de représenter les mots d’un code cyclique consiste a les consi-
dérer comme des éléments de la IF,-algébre < de dimension n qu’est F,[X] /(X" —1). On
considere donc qu’un mot a est en fait un polyndme de degré au plus » — 1 (on choisit un
représentant modulo X” — 1), noté ag 4+ a1 X + - - +a,—1 X" 1. On remarque alors que

d=ap1+aX+ - +a_ X" ' =Xa+a, (X" -1).

Donc modulo X" — 1 (c’est-a-dire dans /), on a @ = Xa. Le code % est stable par mul-
tiplication par X. Comme c’est aussi un espace vectoriel, par linéarité, on en déduit qu’il
est en fait stable par multiplication par tout polyndme P € /. Ceci signifie que c’est un
idéal de I’anneau 7. On sait que les idéaux de 2 sont en bijection avec les idéaux de
F,[X] qui contiennent I’idéal engendré par X" — 1. Comme I’anneau de polynoémes I, [X]
est principal, un idéal de F,,[X]/(X" — 1) est engendré par un unique polynéme unitaire
qui doit en plus étre un diviseur de X" — 1.

Si on note P le polyndme générateur du code %, on a, en notant s = deg(P),
%={PQ modX"—1\QEeF,X]}={PQ\ deg(Q) <n—s-1}.

Le code % est donc de longueur 7 et de dimension n —s. L’opération de codage est encore
plus simple que pour un code linéaire. L’information que 1’on veut transmettre, au lieu
d’étre contenue dans un vecteur de taille n — s, est cette fois représentée par un polynéme
de degré au plus n —s — 1 (mais c’est la méme chose). Pour obtenir un mot du code que
nous allons envoyer sur un réseau, il suffit de multiplier ce polyndme par le polyndme
générateur P.

Nous pouvons dés maintenant faire un rapprochement avec les idées que nous avons in-
troduites lors de I’étude de la transformée de Fourier sur un groupe cyclique, et plus par-
ticulierement lors de la recherche de techniques de multiplication rapide de polynémes
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(section 5, chap. IV). Nous avons déja remarqué que la multiplication par un polynéme
modulo X" — 1 correspond au calcul d’une convolution cyclique de vecteurs de taille
n (I’équation (5.1), chap. IV, montre tres clairement le rapprochement). On peut écrire
I’opération de codage d’un vecteur x € (IF,)"~* comme la convolution circulaire x * y ot
on a noté y le vecteur des coefficients du polyndme P. Il convient d’ajouter des zéros a
la fin de chacun des vecteurs pour qu’ils atteignent la taille #n. La matrice génératrice G
du code correspond donc a une matrice circulante comme nous I’expliquons & 1’exercice
IILS.

Nous ne nous étions intéressés, a la section 5, chap. IV, qu’a des calculs pour des poly-
ndmes de C[X]. Mais cette limitation n’était justifiée que parce que nous ne disposions
pas de transformée de Fourier sur un corps autre que C. Gréce a la construction du para-
graphe 1.4, cette limitation est levée, et nous sommes capables de réaliser une transformée
de Fourier a valeurs dans le corps F,, (méme si cette derniere, rappelons-le, nécessite de
passer dans un corps plus grand, que I’on a noté IF - ). Donc en reprenant la formule de cal-
cul du produit de convolution cyclique (5.1), chap. IV, on voit que nous pouvons effectuer
de fagon rapide 1’opération de codage, moyennant bien siir 1’utilisation d’un algorithme
FFT pour réaliser la transformée de Fourier.

3.4 Construction des codes BCH

Dans ce paragraphe, nous allons présenter une classe de codes cycliques nommés codes
BCH, du nom de leurs inventeurs, BOSE, CHAUDHURI et HOCQUENGHEM. La construc-
tion utilise pleinement la décomposition des polyndmes cyclotomiques expliquée au pa-
ragraphe 1.3. L’intérét majeur de ces codes, outre leur description simple a I’aide de la
transformée de Fourier, est que 1’on dispose explicitement d’un minorant de leur capacité
de correction. Ceci permet d’ajuster les parametres du code en fonction des besoins. De
plus, nous allons voir au paragraphe 3.5 que 1’on dispose d’un algorithme de décodage
efficace, ce qui rend ces codes utilisables de fagon pratique.

Nous allons construire un polyndme générateur d’un code cyclique a 1’aide des corps
cyclotomiques présentés au paragraphe 1.3. En effet, puisque nous nous intéressons aux
diviseurs du polynéme X" — 1, il est naturel de considérer le comportement modulo p
des polyndmes cyclotomiques @,. Dans la suite, on suppose que pged(n,p) = 1 (voir
la remarque 1.7 dans le cas contraire). Rappelons que si on note r I’ordre de p dans le
groupe multiplicatif (Z/nZ)*, alors K = F,r est un corps de rupture du polynéme ®,.
Ceci nous permet donc de choisir o € K une racine #'®™ primitive de I’unité (un tel
choix, rappelons-le, résulte du choix d’un facteur irréductible de ®, modulo p, qui est de
degré r). Nous allons alors choisir le polyndme générateur P sous la forme

P=T]x-a), (34

iel

ol / est un sous-ensemble de {1,...,n — 1} a déterminer. En effet, pour que 1’on obtienne
un code cyclique sur I, encore faut-il que le polynéme P soit a coefficients dans F), et
non pas simplement dans K. Voici un lemme simple mais important qui nous donne un
moyen pour Voir si un polyndme appartient a I, [X].

Lemme 3.16. Un polyndme Q € K[X| appartient & F,[X| si et seulement s’il vérifie
Q(XP) = Q(X)P.
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Démonstration. On sait qu’un élément y € K appartient au sous-corps premier F), si et
seulement s’il vérifie y? = y (reprendre les arguments de la preuve de la proposition 1.6
en considérant les racines de X? — X). En utilisant le morphisme de Frobenius x — xP de
K dans K, on voit que sionnote Q =ag+- - +a X ona

0X)? = (ap+a1X +- - +aX*)P = ab +afXP +--- +af (XP)L. (3.5)

Ainsi, dire que a’ = a; pour i = 0,...,k revient donc 2 dire que Q(X)? = Q(X?). O

]

La proposition suivante nous donne alors un critére qui va nous permettre de choisir de
facon effective I’ensemble 7.

Proposition 3.17. Le polynome P appartient a F,[X] si et seulement si I est stable par
multiplication par p modulo n.

Démonstration. SiP € Fp[X] et sif est une racine de P, on voit avec le lemme précédent
que P(?) = P(B)? =0, en conséquence de quoi I’ensemble / est stable par multiplication

par p.
Réciproquement, si / est stable par multiplication par p, alors

POOP =[] (X - ol =[] (X - @??) = [T (X7 - o) = P(X?),

i€l i€l i€l
donc on a bien P € Fp[X]. O

On a enfin en mains tous les outils nécessaires a la définition des codes BCH.

Définition 3.18 (Codes BCH). On appelle code BCH de distance assignée & un code
cyclique dont le polyndme générateur est obtenu par I’équation (3.4), ou I désigne la plus
petite classe cyclotomique (c’est-a-dire le plus petit ensemble stable par multiplication
par p modulo n) contenant I’ensemble d’indices {1,...,8 — 1}.

Avant d’aller plus loin dans I’investigation des propriétés de ces codes, nous allons donner
un moyen simple de calculer le polyndme générateur une fois que I’on connait la décom-
position sur I, du polynéme cyclotomique @,,. Pour ce faire, nous allons considérer les
classes cyclotomiques les plus simples qui soient, c’est-a-dire les classes engendrées par
un seul élément k € {0,...,n—1}:

I = {k,kp,...,kp*"'}, (3.6)

ol on a noté s le plus petit entier tel que kp* = k (dans le cas ol k =1, on a bien sir s = r
degré de P). De fagon plus élégante, on peut considérer la relation d’équivalence ~ sur
Z/nZ: '

V(x,y) € (Z/nZ)?, (x~y) & (3i,x=yq).

Les classes cyclotomiques sont alors les classes d’équivalence de Z/nZ pour cette rela-
tion, et forment une partition de {0,...,n — 1}. On remarque que le polyndme

RET[x-a) (3.7)

i€ly

est, d’apres la proposition 3.17, un polyndme de F,[X] irréductible de degré s admettant
o* comme racine. En conséquence, c’est le polyndme minimal de o:f. On obtient alors
facilement la description suivante du polynéme générateur du code.

Proposition 3.19. Le polynéme P générateur d’un code BCH de distance assigné  est
le PPCM des polynémes Py, ...,Ps_, définis par I’équation (3.7).
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Exemple 3.20. Voici un exemple de I’utilisation des classes cyclotomiques, dans le cas
de codes sur le corps F,. On souhaite construire des codes de longueur n = 25 — 1 = 31,
donc on aici r = 5. Voici la liste des facteurs irréductibles de X" — 1 sur [F :

Polyn6me : Classe cyclotomique :
Ph=X+1 Ip = {0}
Pi=14+X+X2+X*+X3 I ={1,2,4,8,16}
P=1+X3+X%3 I ={3,6,12,24,17}
Ps=1+X+X24+X3+X° Is ={5,10,20,9,18}
Py =14+X+X24+X34X4+X5 | I;) = {11,22,13,26,21}
Puy=1+X24X3 Ii4 = {14,28,25,19,7}
Ps=1+X+X3+X4+X5 Iis = {15,30,29,27,23}

Conformément & ce que nous avons conseillé de faire pour construire un corps cycloto-
mique, on choisit arbitrairement un facteur irréductible de plus haut degré, par exemple
Py, et on note & une de ses racines, qui sera donc une racine primitive de 1’unité, et que
1’on peut voir comme un élément de K = F,s. Le polyndme Py est ainsi le polyndme
minimal de 1 associé  la classe Iy, le polynéme P; le polyndme minimal de o3 associé
a la classe I3, etc. Pour construire un code BCH, il suffit de choisir de fagon judicieuse
certaines classes cyclotomiques, et de multiplier entre eux les polyndmes correspondants,
pour obtenir le polyndme générateur du code. Par exemple, si on choisit les classes ] et
I, on obtient la classe cyclotomique {1,2,3,4,6,8,12,16,17,24}, et on voit que c’est la
plus petite classe contenant {1,2,3,4}. Par conséquent, le polyndme

P(X)P(X)=1+X+X>+ X3+ X+ X0+ x84 X% + x10

engendre un code BCH de distance assignée 5. Des exemples plus conséquents sont fa-
cilement constructibles a partir du programme MAPLE présenté a la section 4, annexe B,
et qui permet de construire des codes BCH de paramétres arbitraires. Avant d’étudier les
relations qui peuvent exister entre 6 et la capacité de correction du code, on va introduire
un formalisme matriciel qui va naturellement conduire & 1’ utilisation de la transformée de
Fourier.

Le polynéme P que nous venons de construire est le polyndme de F,[X] de plus bas
degré ayant pour racine a, o, ..., a®-1 En conséquence, les polyndmes Q € F,[X] qui
constituent le code sont donc les polyndmes de degré inférieur & n qui vérifient

vie{l,...,6—1}, Q(c')=0. (3.8)

Matriciellement, si on note g = {qo,...,qn—1} le vecteur constitué des coefficients de 0,
I’équation précédente est équivalente a

Ag=0 avec AZ ”}j—o ' 1 € Ms_y p1(K).

On peut aussi utiliser le langage de la transformée de Fourier discréte. On note FZ la
transformée obtenue avec la racine ni®™me primitive a~!, comme définie a I’équation
(1.2) (en prenant § = o~ 1). La condition (3.8) devient alors

vie{l,...,6 -1}, Q') =gli] = F(g)i] =0.
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Autrement dit, le code est maintenant défini en termes de conditions spectrales, de fagon
plus précise, par la nullité de 6 — 1 composantes du vecteur transformé. En employant
la notion de matrice de contrdle introduite a la remarque 3.10, on peut donc dire que les
0 — 1 lignes de la matrice de Fourier constitue une matrice de contrdle pour le code BCH
considéré.

Remarque 3.21. (Dualité et distance minimale). Intuitivement, on commence a com-
prendre quel effet peut avoir I’utilisation d’un & élevé. En forcant le vecteur transformé
a avoir un support tres réduit (par les conditions de nullité que nous venons d’explici-
ter), on force aussi le vecteur d’origine (c’est-a-dire un mot du code) a avoir beaucoup
de composantes non nulles. Ceci est en accord avec le principe d’incertitude discret, tel
qu’il est énoncé a I’exercice .11 (le résultat s’étend sans difficulté au cas de la transfor-
mée de Fourier a valeur dans un corps fini). De ce fait, nous allons obtenir une grande
distance minimale pour le code, qui va donc avoir un taux de correction élevé. Encore
une fois, nous voyons apparaitre le principe de dualité que nous avons mentionné au pa-
ragraphe 1.4, chap. IV. Précisons un peu tout ceci en indiquant un résultat qui nous donne
un minorant sur le taux de correction du code.

Proposition 3.22 (Distance minimale d’un code BCH). La distance minimale du code
& construit est au moins 0.

Démonstration. 11 s’agit de montrer que la boule de centre 0 et de rayon » = § — 1 ne
contient que 0. Soit Q € ¥, qui est donc un polyndme de degré au plus n — 1. On suppose
qu’il est dans cette boule, donc il a au plus r coefficients non nuls. Si on 1’écrit sous la
forme

0(X) =a;Xb +-- 4 a,x",

le fait qu’il appartienne a € implique
vie{l,...,r}, Q(&)=aja® +...+a,a®.

Ceci signifie que le vecteur a £ {ai1,...,a,} € C" satisfait le systeme linéaire Ma = 0,
o M= {a”’f}l <ij<r On constate que c’est une matrice de Vandermonde, et comme
les obi sont distincts, elle est inversible. Ceci implique donc que @ = 0, ce qu’il fallait
démontrer. O

Dans la suite, pour simplifier les explications, on supposera que é = 2¢+ 1, de sorte que le
code est au moins ¢-correcteur, puisque alors | (6 —1)/2| = . On peut remarquer que dans
le cas ot p =2, on peut toujours supposer que § = 2¢ + 1, puisque la partie {1,...,6 — 1}
peut étre supposée stable par multiplication par p = 2.

3.5 Décodage par transformée de Fourier

L’un des intéréts des codes BCH que nous venons de construire est que I’on dispose
d’algorithmes simples et rapides pour les décoder. Par exemple une méthode utilisant
Palgorithme d’Euclide étendu est présentée dans le livre de DEMAZURE [24]. Dans ce
paragraphe, nous allons présenter un autre algorithme, fondé sur la description du code
en termes de transformée de Fourier discréte.
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On suppose que 1’on vient de recevoir un mot codé X' = x + €, oll x représente le mot
d’origine, et € ’erreur de transmission. Notre but est de retrouver le mot x, ou de fagon
équivalente, de déterminer I’erreur €, que 1’on écrit sous la forme

déf.

eX)Eeg+eX+- 4 XV

€ est inconnu, mais pour avoir une chance de pouvoir résoudre ce probléme, on suppose
tout de méme qu’il vérifie w(e) < ¢. On rappelle que ’on a supposé que § = 2t + 1, de
sorte que la proposition 3.22 nous assure que le probléme est bien posé. Mais il nous faut
trouver un moyen de le résoudre de maniére efficace.

Nous savons, par la définition du code en termes de transformée de Fourier, que
Vie{l,...,2t}, &li]=xi]-%i] =2

Nous savons donc calculer 2t = § — 1 coefficients du vecteur €. Il reste encore 2 calculer
les autres, pour pouvoir, par transformée de Fourier inverse, retrouver 1’erreur €. Pour ce
faire, on introduit une inconnue intermédiaire, un autre polynéme.

Définition 3.23 (Polynéme localisateur d’erreurs). On note
JE{ie{0,....,n—1}\ &#0}.

Nous avons déja supposé que Card (J) < ¢, puisque w(x) < ¢. On appelle polynéme loca-
lisateur d’erreurs, et on note o, le polyn6me

o) =[[(1-d2)E14+04Z+ -+ G Z.
ieJ

Le polyndme localisateur d’erreurs est donc un polyndme de degré au plus ¢, comportant
t coefficients a priori inconnus. Les inverses des racines de ¢ correspondent aux o, ol i
est la position d’une erreur dans le mot transmis.

On remarque que les polyndmes € et & possédent une propriété d’orthogonalité, au sens
que

—sis€J,0[s)] = o(a*) =0et g[s] #O0.
—sis¢J,0s) = o(0*) #£0etels] = 0.

On peut résumer ceci par 1’équation 6 - € = 0, ol on a noté - la multiplication coefficient
par coefficient des polyndmes. En utilisant le théoréme de convolution (qui est encore
valable pour une transformée sur un corps fini, comme 1’explique la proposition 1.3), on
obtient par passage a la transformée de Fourier I’équation de convolution

F6-6)=0xF\(e) = ]lva*gﬂ 0,

On rappelle que €', considéré comme un vecteur, est obtenu conformément 2 la définition
5.1, chap. IIL. C’est donc le vecteur {€[0],€[rn — 1],...,€[1]}. Il suffit ensuite de rempla-
cer la convolution de vecteurs par la multiplication modulo Z" — 1 des polyndmes, pour
obtenir une équation polynomiale assez complexe:

(l +01Z+ - +0}Zt) (Eo +E1Z+-- +EIZ”“) modZ"—-1=0.
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On peut remplacer cette équation polynomiale en deux systémes d’équations linéaires :

(&% + go + &0, + - + &o =0
&-1 + €01 + €0, + - + 00 =0
EAR SR . . .
() &-i t+ &-iy101 + E-iy200 + - + &6 = 0
L &41 + &4200 + E4300  + - + Exp10 = 0
& + §+101 + &4200 + - + &8O = 0
() - ~ ~ ~
& + &0 + &0y + - 4+ &40 = 0
& + &0 + &0y 4+ -+ + &y160 = 0

Comme on connait les valeurs de £y,...,€y, le systtme () nous permet de calculer
o1,...,0; de facon trés simple (le systéme est en fait triangulaire). On peut maintenant
utiliser le systéme () pour trouver &, €y, . . . , €,—1, puisque 1’on dispose de n — ¢ équa-
tions pour seulement n — 2t inconnues.

Remarque 3.24. Une fois que I’on a calculé oy, .. .,0; (en résolvant le systéme .#,), une
autre alternative s’offre a nous. En effet, puisque 1’on connait o, il est possible de tester,
pour i =0,...,n—1, si 6(a™') =0, et ainsi de détecter les positions des erreurs. Le
systeme .#] étant trés simple a résoudre, les deux méthodes sont cependant équivalentes.

Cette méthode de décodage est implémentée a 1’aide de MAPLE au paragraphe 4, annexe
B. Elle utilise les routines définies au paragraphe 1, annexe B, pour réaliser des transfor-
mées de Fourier a valeur dans [F),.

4 Codes correcteurs et dualité sur un groupe abélien fini

Dans cette derniére partie, nous allons voir comment les outils développés dans les cha-
pitres précédents peuvent tre utiles pour étudier les caractéristiques d’un code. Ainsi,
vont tour a tour intervenir les notions d’orthogonalité, de dualité sur un groupe fini, et
bien siir les diverses transformations qui sont liées a toutes ces notions (transformée de
Walsh et de Fourier entre autres).

Le livre fondamental sur 1’étude combinatoire des codes correcteurs est celui de MAC-
WILLIAMS et SLOANE [50]. Ce paragraphe reprend les principaux résultats sur la dualité,
en les exposant a travers le langage qui nous est maintenant familier, celui des algebres
de groupe C[G] et des caracteres. Il est important de jeter un coup ceil aux exercices pro-
posés, I’exercice VI.11 par exemple, propose une construction de codes non linéaires trés
efficaces.

4.1 Polyndémes énumérateurs de poids

Dans la suite, nous allons nous restreindre a 1’étude des codes binaires, mais tous les
résultats donnés s’étendent au cas des codes définis sur un corps fini F; quelconque. II



180 Chapitre VI. Transformée de Fourier a valeurs dans un corps fini

faut utiliser les caracteéres additifs appropriés, et on se reportera a 1’exercice I1.8 pour
obtenir la formule de MacWilliams correspondante. Dans les pages suivantes, nous allons
considérer ¥, un code linéaire sur 5, de taille n et de dimension m.

Définition 4.1 (Orthogonal d’un code). On rappelle que I’on dispose d’une forme bili-
néaire symétrique non dégénérée canonique sur (F,)", déja introduite au paragraphe 3.2,
chap. I :

Vi) € B X (B, (5)% T s @
i=
On note €~ le code orthogonal de € pour cette forme bilinéaire, c’est-a-dire :
FL = {xe (F)"\Vy€e ¥, (x,y) =0}.
C’est donc un code de taille n et de dimension n — m.

Remarque 4.2. (Code dual). On parle aussi de code dual pour désigner €. Cette dé-
nomination est trés naturelle, puisque nous avons déja vu a la section 3, chap. II les
similitudes (et méme 1’identité dans le cas de (F,)") entre les notions d’orthogonalité, de
dualité sur un espace vectoriel, et de dualité sur un groupe abélien fini.

Remarque 4.3. (Code auto-dual). Il est important d’insister sur le fait que, méme si on
a toujours dim(%) + dim(%1) = n, un code et son dual ne sont en général pas supplé-
mentaires. Il arrive parfois que 1’on ait € C €1, et I’on parle de code auto-orthogonal.
Lorsque ’on a ¥+ = €, on dit que le code est auto-dual. Cette notion est étudiée plus en
détail a I’exercice VIIL.9. Le fait que la matrice génératrice puisse en méme temps servir
de matrice de contrdle permet de simplifier les procédures de décodage.

Définition 4.4 (Polyndme énumérateur). On note Wy € Z[X, Y] le polynéme énuméra-
teur de poids de €, qui est défini par

n
We(X,Y)E Y AX"Y,
i=0

ol on a noté {A;}_, la répartition de poids de ¥, définie par 1’équation (3.1).

Le résultat fondamental pour la détermination du polyndme énumérateur est I’identité de
MacWilliams, déja démontrée au théoréme 3.6, chap. II, et que 1’on rappelle ici.

Théoréeme 4.5 (Identité de MacWilliams). On a

1

Plusieurs exercices proposent d’utiliser tous ces outils dans le but d’obtenir des informa-
tions de nature combinatoire sur les codes correcteurs. L’exercice VI.8 propose de calculer
les polynémes énumérateurs pour les codes de Hamming. L'exercice VI.12 étudie la ré-
partition des poids des mots dans les codes M DS (c’est-a-dire ceux qui sont optimaux pour
la borne de Singleton). Enfin, I’exercice VIIL9 étudie les codes auto-duaux, en employant
les techniques de la théorie des invariants pour exploiter les identités de MacWilliams.
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4.2 Algebre d’un groupe et codes correcteurs

Toutes ces techniques combinatoires sont donc trés utiles pour analyser la structure d’un
code linéaire. Elles tombent cependant en défaut dés qu’il s’agit d’étudier un code non
linéaire, c’est-a-dire d’étudier la répartition des mots d’un ensemble € C (F2)". On rap-
pelle que la notion essentielle pour étudier un code non linéaire n’est pas la répartition
de poids {A;}"_, mais la répartition de distance {B;}", définie a I’équation (3.2). Dans
le cas non linéaire, ces deux répartitions ne coincident pas, et il peut étre trés complexe
de les déterminer. Nous allons cependant voir qu’en utilisant la transformée de Fourier
sur I’algebre C[(F,)"], on peut obtenir de nombreuses informations sur . Pour plus de
commodité, on notera G = (F2)", qui peut étre vu comme un groupe additif. On rappelle
que C[G] désigne 1’algebre des fonctions de G dans C. Les caractéres de G sont notés,

pour a € G,
|G — C
Xa: X — (_1)(a,x) :

On rappelle la définition de la transformée de Fourier de f € C[G], déja donnée en
(4.1), chap. I:

]/;{ G — C

la — ZiecXalx)f(x)

Ces définitions bien en téte, expliquons comment on peut représenter un ensemble de
vecteurs de (IF,)" = G comme une fonction de C[G].

Définition 4.6 (Fonction indicatrice). Soit € C G (qui n’est pas nécessairement un code
linéaire). On définit la fonction indicatrice de € par

fe = Z Oy
x€¥
C’est la fonction qui vaut 1 sur %, et zéro partout ailleurs. On peut ainsi identifier les
sous-ensembles de G (c’est-a-dire les codes quelconques) a des fonctions de C[G].

Ces fonctions indicatrices sont étudiées en détail a I’exercice 1.4. Cet exercice fait en
particulier le lien entre les propriétés spectrales de la fonction fi et la « régularité »
de ¥. Attardons-nous un instant sur le cas des codes linéaires. La question qui se pose
naturellement est de savoir s’il y a un rapport entre la fonction indicatrice de % et celle de
%-. Nous avons déja vu a I’équation (3.6), chap. II, que

x€¥t o Ye?, (xt)=0 & Vi€, () =1 4.2)

Cette propriété est fondamentale ; elle va nous permettre de calculer la transformée de
Fourier de la fonction fe.

Proposition 4.7 (Transformée d’une fonction indicatrice). Soit & un code linéaire. On
a alors

fe =%\ fer.
Démonstration. Six € €+, alors I’équation (4.2) nous dit que

fe) =X x:(t)= X 1=1%].

te¥ te¥
De méme, si x ¢ €+, I’équation (4.2) nous dit qu’il existe ) € ¥ tel que

X:to) #1, Cesta-dire  jx(to) = —1.
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On obtient donc
—Fe(0) = X xx(t0)xx(t) = X, (1 +10) = Fep (),
te¥ te¥

la derniére égalité provenant du fait que % est un sous-espace vectoriel de G (ou un sous-
groupe additif, en changeant de vocabulaire). On a donc bien

x¢‘€l=>//’<\g(x)=0. O

Notre but est d’étendre la notion de dualité a des ensembles € quelconques. Il serait
tentant d’étudier I’espace formé des vecteurs orthogonaux a ¥. Cependant, la construction
qui va permettre d’obtenir des informations sur €’ est plus complexe. En effet, il s’agit de
construire une fonction duale de la fonction indicatrice fiz. Dans un souci de généralité,
nous allons définir la fonction duale d’un élément quelconque de C[G], & partir du moment
ou sa moyenne n’est pas nulle.

Définition 4.8 (Fonction duale). Soit f € C[G] telle que M = ¥, f(x) # 0. On définit

la fonction duale de f, notée f L par f+ = ML}‘]’\

On peut donc énoncer le résultat important suivant.
Proposition 4.9. Si € est un code linéaire, on a (fg)* = fip..

Démonstration. 11 suffit de remarquer que pour f = fe, on a My = |%|. Il ne reste plus
qu’a appliquer la proposition 4.7. |
Toujours dans 1’idée d’étendre les notions propres aux codes linéaires a des codes plus
généraux, définissons le polyndme énumérateur de poids d’une fonction.

Définition 4.10 (Polynéme énumérateur d’une fonction). Soit f € C[G].
Pouri=0,...,n, on définit
A= Y f),

w(x)=i

ainsi que le polyndme énumérateur de poids de f:

n
Wr(X,Y)E Y AX"Y
i=0

On constate que ce polyndme généralise celui défini en 4.4, puisque 1’on a, pour % un
code linéaire,

Wy (X,Y) = Wf%’(X’Y)'
La question est de savoir si les identités de MacWilliams sont encore valides. La réponse
est positive, et on peut reformuler ces identités avec le vocabulaire des codes correcteurs.
Théoréme 4.11 (Identité de MacWilliams pour des fonctions). Soit f € C[G] telle que
Mg #0.Onaalors

1
=W —-Y). 4.3
WfJ.(X,Y) M; ((X+Y,X-Y) 4.3)

Démonstration. On a, en utilisant la définition de f L

Way)= 3 (2 20 )Xn w(a) pu()

xeG yeG

- Z f Z x[\ Xn w(x Yw(,\)

yEG x€G



§ 4. Codes correcteurs et dualité sur un groupe abélien fini 183

Or nous avons déja calculé la somme interne lors de la preuve du théoréme de Mac-
Williams 3.6, chap. II:

2 xx(y)Xn—w(X)Yw(X) =(X+ Y)n—w(y) X - Y)w(y),
x€G

eton arrive bien au résultat voulu. O

On voit que si I’on applique 1’identité (4.3) a la fonction indicatrice d’un code linéaire, on
retrouve ’identité de MacWilliams pour les codes linéaires.

4.3 Etude combinatoire de codes quelconques

Nous allons maintenant voir comment on peut appliquer toutes ces constructions effec-
tuées sur 1’algébre C[G] a I’étude d’un code. Soit donc € C (F2)" un ensemble quel-
conque. On peut voir € comme un code correcteur quelconque, non nécessairement li-
néaire.

Définition 4.12 (Fonction de distance). La fonction de distance Dy € C[G] est définie
par:

1
D¢ = - fs* fe,

||
ou * désigne le produit de convolution des fonctions sur G, comme nous 1’avons défini a
I’équation (4.6), chap. I.

Cette fonction peut se calculer de fagon explicite :

1
Dy = > Y Gy (4.4)
| 'xe%’ye%’

En particulier, on voit que si € est un code linéaire, on a Dy = fe. Dans la suite, on note
le polyndme énumérateur de poids de D¢ sous la forme

n
Wpy = 3, DiX"7'Y".
i=0
On a alors la proposition suivante, qui permet d’obtenir simplement des informations sur
la répartition des mots de ¥ les uns par rapport aux autres.
Proposition 4.13 (Répartition de distance). {D;}!_ représente la répartition de dis-
tance de €, c’est-a-dire :

1 ,
D= B g {(x) € 9 \dlxy) =i},

ou d(x,y) désigne la distance de Hamming entre x et y.
Démonstration. 1’équation (4.4) peut se mettre sous la forme
L |
Dg=7Y i Y by (4.5)
i=0 l I d(x,y)=i
Or on a, par définition, D; = 3,,(,)—; D¢ (z). Ce qui donne donc, en utilisant (4.5),

D=1 > 1

i = 7o )
1

u,v)=i
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ce qui est exactement le résultat voulu. g

Remarque 4.14. On peut remarquer que le raisonnement effectué pour démontrer la
proposition 4.13 utilise le fait que, pour (x,y) € (IF’2’)2, on a x+y = x—Yy. Pour étendre
cette proposition a un corps fini I, quelconque, il faut introduire, pour f € C[(FF,;)"] la
fonction symétrisée f : x — f(—x). On doit alors définir la fonction de distance comme
suit:

1 —_~
DgE — .
% l(ﬂf%*ﬁg

On vérifie sans probléme que la proposition 4.13 est encore valide, tout comme le reste
des résultats de ce paragraphe.

Dans le cas linéaire, on sait donc que le polyndme énumérateur de D% = D¢ varepré-
senter la répartition de distance du code dual ¥~. Il est donc naturel d’étudier la géné-
ralisation de ce procédé aux codes non linéaires. Ceci signifie donc étudier le polyndme
énumérateur de la fonction D(Jg, qui n’a a priori aucune raison d’avoir des propriétés inté-
ressantes. Pour calculer cette fonction, remarquons que, d’apres (4.4),

1
XELyeE

Le théoréme 4.11 nous permet de calculer, a partir de Wp,,, le polynéme de la fonction
duale. Pour I’instant, contentons nous de I’écrire sous la forme

n
Wps = ;’B;X”"Y i @.7)
=

On peut remarquer que, par définition de la fonction duale et en utilisant (4.6), les B}
valent 1

B f = 120 z 5(} (X),

|cg| w(x)=i

méme s’il est moins simple d’utiliser cette expression plutdt que le résultat du théoréme
4.11. A priori, les nombres B; ne possédent aucune propriété particuliere. En particulier,
il n’y a aucune raison pour que les B; représentent la répartition de distance d’un code.
En effet, € n’étant pas linéaire, le code dual €+ n’est pas défini : tout repose donc sur la
fonction duale fé—. Par exemple, B; n’a aucune raison d’étre entier ! Voici cependant un
résultat simple qui précise les choses.
Proposition 4.15. Les B} sont des nombres rationnels positifs.

Démonstration. 11 suffit d’utiliser le théoréme de convolution 4.15, chap. I pour réécrire
les B; sous la forme

Cette propriété, en apparence anodine, permet de démontrer une inégalité trés fine sur la
taille maximum des codes de taille n et de distance minimale d. Ce développement néces-
site I’introduction des polynémes de Krawtchouk, qui sont définis au début de 1’exercice
VIL.12. L’exercice VI.13 détaille les étapes qui permettent de démontrer cette inégalité.
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Exemple 4.16. Les codes de Hadamard sont définis a I’exercice VI.11. On considére
I’exemple du code 24, calculé grace aux résidus quadratiques modulo 7. Les vecteurs qui
le composent sont donnés a 1’équation (5.2). C’est un code simplexe contenant le vecteur
nul, donc sa répartition de poids est égale a sa répartition de distance :

Ao=Bo=1, A4=Bs=7 et Vi¢ {0,4}, Ai=B;=0.
On obtient donc le polyn6me énumérateur de poids suivant :
W, (X,¥) =X"+7X°y*.

La répartition de distance duale se calcule de la fagon suivante :

1 1
Wi = gWo, (X +Y,X-¥) =2 (X+Y)+7X+Y)}(x -Y)%)
8
=X"4+7X473 +7x374 4+ 7.
Ce qui donne donc
il13 47
Bl|[1T 7 71

Pour un code de Hadamard Hj;, on obtient

1
WD{‘_{IZ(X,Y) = I_WD»‘VIZ(X_*_Y’X_Y)
1
- = ((X+Y)“+11(X+Y) (X—Y)6)
_xttBpaxs MOypayr B8ysye | 8Byeys
3 3 3 3
+ 1;0Y7X4+ 535Y8X3 +y!

Ce qui donne donc
i|1 3 4 5 6 7 8 11
2 1 1 2 1
B 395 293 293 3635 183 1

On constate que I’on a bien B} > 0 et que

i B = 512 21 .
ERED
Ceci est tout a fait normal, puisque % est un code qui contient O et que
2n

1
7//1)%,(2,0) = @

WD#(I’I) = @

5 Exercices

Exercice VL.1 (Polyndomes cyclotomiques). En utilisant MAPLE, montrer que les plus
petites valeurs de n pour lesquelles ®,, posséde un coefficient égal a +1, 2, +3, ... sont
0,105,385,1365,1785,2805,3135,6545,6545,10465,10465,

10465,10465,10465,11305,11305,11305,11305,11305,
11305,11305,15015, 11305, 17255,17255,20615,20615, ...
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Exercice VI.2 (Condition d’existence d’une racine principale). Cet exercice détaille
les étapes de la démonstration de la proposition 2.6. Il s’agit de trouver une condition
pour que 1’on puisse construire une transformée de Fourier sur Z/mZ, ot m s’écrit sous
la forme m = p'l‘l x -+ x pkr et les p; sont des nombres premiers distincts. On rappelle le
théoréme d’Euler : si x est inversible dans Z/sZ, alors x®() =1 mod s. On a noté D(s)
la fonction d’Euler, c’est-a-dire le nombre d’inversibles dans Z/sZ.

1. Expliquer pourquoi il existe une racine ni®™ principale dans IFp, pour p premier,
si et seulement si n|p — 1. Soit alors { une telle racine, que 1’on assimile a son
représentant dans {0, ...,p — 1}, vu comme sous-ensemble de Z/p"Z.

2. On se place dans Z/p'Z, et on note {y = ¢ P~ Montrer que § est inversible dans

Z/p'"Z puis que Cé’_l =1
3. Montrer que dans F,, et pours=1,...,n—1,

g-1=(") —1=g-1.

En déduire que {3 — 1 est premier avec p” et donc que o est une racine pieme
principale de 1’unité dans Z/p"Z.
4. En utilisant le théoréme chinois, conclure.

Exercice VL3 (Racines dyadiques principales). On souhaite démontrer la proposition
2.7, qui donne un critére simple pour trouver une racine (2°)“™ principale dans un
anneau commutatif A.

1. Montrer que pour que { € A soit une racine (nm)iéme principale de I’unité, il faut

et il suffit que £ soit une racine ni®™® principale, et que {” soit une racine mi*me
principale.

2. Quelles sont les racines carrées principales de 1’unité ? Préciser a quelle condition
elles existent.

3. Montrer par récurrence sur k la proposition 2.7

Exercice V1.4 (Fonctions booléennes). Cet exercice utilise la transformée de Walsh dé-
finie a la section 2, chap. IL Une fonction f : (IF)" — [, est appelée fonction booléenne
a n arguments. D’une fagon pratique, on peut aussi se représenter une telle fonction par la
fonction réelle f = (—1)/ avaleursdans {—1, 1}, ce qui permet de calculer la transformée
de Walsh 7/ (f) :

Vke (F2)", 7 (HE Y fle)(-1)R,

tE(F)"

Dans la suite, on jonglera entre ces deux types de représentations f et f Une fonction
booléenne f est dite affine si elle s’écrit

Ve e (F2)", F(x)= fop(x) Z (x,a) +b,

ot a € (F2)", b € Fy, et (-,-) désigne la forme bilinéaire canonique sur (F)", déja ren-
contrée a 1’équation (4.1). On va utiliser la distance d(f,g) entre deux fonctions boo-
léennes, qui est, par définition, la distance de Himming (définition 3.3) entre les vecteurs

V(f)={f(x)} xeFy et V(g)={gx)} xeFy On définit alors la non-linéarité de f par

N(f) Einf {d(f, fap) \ a € (F2)", b € F2}.
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1. Expliquer pourquoi toute fonction booléenne fpeut se mettre de facon unique sous
la forme polynomiale suivante :

Vx € (Fp)", f(x) =b+apxo+ -+ an—1%n—1
+ap1xox1 + apaxox2 + -+ - +ap..n—1%0 " * * Xp—1-

Justifier de fagon intuitive le terme de non-linéarité.
2. Montrer que ’on a

N(f) =2~ S max ([ () (k)| \ k€ ()"~ {0}}.

En déduire une méthode rapide de calcul de N(f) qui utilise 1’algorithme FWT.
3. Montrer que I’on a

N(f)<2vt—227!

On suppose que n est pair. Montrer qu’une fonction f atteint la borne précédente
si et seulement si pour tout k € (F2)", |# (f)(k)| = 22. Dans la littérature anglo-
saxonne, on les appelle « bent functions ». Elles ont été introduites pour la premiére
fois par ROTHAUS dans [61].

4. Pour u € (F)" et v € (F2)™, on pose w = (u,v) € (F2)"*™. Soient f et g des
fonctions de n et m variables. On définit % une fonction de n+m variables par
h(w) = f(u) + -&(v). Montrer que h est bent si et seulement si f et g le sont.
Montrer que fo(ul,uz) = ujuy est bent. En déduire I’exsitence de fonctions bent
pour 7 pair.

5. On nomme code de Reed-Muller d’ordre 1 en n variables (noté R(1,n)) le sous-
espace vectoriel de I’espace des fonctions booléennes formé des f; 5, pour a € I} et
b € F,. Quelle sont la dimension et la distance minimale de ce code? La procédure
de codage consiste, a partir du couple (a,b), & produire la table de vérité V(f,,5),
c’est-a-dire le vecteur {f; »()}4e(rp)» = Fa,5- Proposer un algorithme de codage
rapide. Pour F = V(f) € (F2)%', quel est le couple (a,b) tel que d(f,f, ) soit
minimal ? En déduire un algorithme de décodage rapide.

La détermination des fonctions les moins linéaires dans le cas ol » est impair est un pro-
bleéme ouvert. Les fonctions fortement non-linéaires sont trés utilisées en cryptographie.
Un exposé complet sur ce sujet est I’article de PASALIC et JOHANSSON [57].

Exercice VL5 (Apprentissage de fonctions booléennes). Dans cet exercice, on conserve
les notations de 1’exercice VI.4. On se propose, en utilisant quelques notions de proba-
bilité, d’effectuer des prédictions booléennes sur une fonction f en n’utilisant qu’une
connaissance approchée de sa transformée de Walsh. Cette théorie a été développée ini-
tialement par KUSHILEVITZ et MANSOUR dans [40]. On note P la distribution de pro-
babilité uniforme sur (F2)", c’est-a-dire Vx € (F2)", P(x) = 27". En représentant une
fonction booléenne fpar 1a fonction réelle f = (—1)7, on peut alors calculer I’espérance
de f:

BN T fW)=5#()0)

x€(Fp)"

Enfin, on rappelle la borne de Chernoff-Hoeffding, que 1’on pourra trouver dans [55].
Soient Xj,...,X,, des variables indépendantes identiquement distribuées telles que X; soit
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a valeurs dans [—1,1], E[X;] = petS,, = X", X;. Alorson a

7|

Dans la suite, on considére f une fonction booléenne inconnue, dont on suppose seule-
ment pouvoir accéder a des échantillons f(x), ou les x; sont tirés au hasard de fagon
indépendante selon une loi uniforme. Notre but est de donner, avec aussi peu d’informa-
tions que possible, une bonne estimation de f. On dit que I’on « apprend » la fonction

f.

1. Supposons qu’un des coefficients ag = (f,xp) = 27"# (f)(PB) soit trés grand.
Quelle est I’erreur quadratique E[(f — h)?] que 1’on commet en remplagant f par
he agxp ?

2. A priori, & n’a aucune raison d’étre une fonction booléenne. On remplace donc &
par ho = Signe(k). Montrer que 1’on a alors

P (f(x) # ho(x)) < E[(f — ).

3. On est donc intéressé par le calcul approché de ag = E [f XB]- On propose d’utiliser
m échantillons f(x;) et de calculer la valeur moyenne :

Sm _
= —p

_ A%m
2,

2).] < 2e

—~— déf. 1 o
ag ==Y flx)xp(xe). (5.1)
m e

On souhaite donc approcher la fonction inconnue f par @y = Signe(apg xp). Montrer
que sim > Izzln (%) alors

P (|lag —ag| > 1) < 6.

En déduire que I’on a, avec une probabilité d’au moins 1— &, la majoration suivante
de la probabilité d’erreur :

P(f(x) # 0() < 1 - +22

4. On souhaite maintenant approcher toute une classe de fonctions possédant des coef-
ficients « hautes fréquences » faibles. On dit qu’une fonction booléenne f a un

degré (o,d) si
Yy a<a,

w(s)>d

ol w(s) est le poids de Hamming d’un mot s € (F,)". Pour tous les s tels que
w(s) < d, on calcule a; par I’équation (5.1). On considére ensuite la fonction

90 =Signe(p) o 9= 3 s

w(s)<d
. .. d d
Montrer que si 1’on choisit m > 2;—’ In ( 2%) ,alorson a

P(f(x) # @o(x)) S o+ €

avec une probabilité d’au moins 1 — J.
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On pourra noter que 1’exercice VIIL.7 utilise la théorie des représentations pour trouver
une base orthonormée de C[(FF,)"] qui différe de la base de Walsh. Ceci permet d’envisa-
ger d’autres méthodes pour apprendre une fonction booléenne.

Exercice VL.6 (Matrices génératrice et de contréle). Soit %" un code linéaire de dimen-
sion m et de taille n sur [F,.

L.

2.

Quel liens y a-t-il entre les matrices de contrdle et les matrices génératrices de % et
de 1?

On suppose maintenant que la matrice génératrice de % est sous forme systéma-
tique, c’est-a-dire que

G= (I:m avec A € (F,)n—m>xm,
Quels sont les avantages d’une telle fome ? Comment s’écrit une matrice de contrdle
de €7

Montrer que tout code linéaire % est équivalent a un code systématique. On dit que
deux codes sont équivalents si ils ne différent que par 1’ordre des symboles formant
chaque mot du code (ils possedent les mémes caractéristiques, en particulier, la
méme répartition de poids).

Exercice VL7 (Codes de Hamming). On appelle code de Hamming sur [F, tout code
% de longueur n = 2% — 1 admettant comme matrice de contréle une matrice H définie
comme suit : les colonnes de H sont tous les vecteurs de ]F2 —{0}.

1.

Montrer que sa dimension est m = 2 — 1 — k et que sa distance minimale est 3.
Comment décoder une erreur?

En reprenant la construction des codes BCH dans le cas ot g =2 et n=2F—1,
montrer que 1’on peut définir ainsi un code cyclique qui est un code de Hamming
(on considérera le corps cyclotomlques K = Fx, et on utilisera le fait que si o est
une racine #'®™® primitive, alors o parcourt tout K*).

. Prouver que le code ainsi construit est parfait, dans le sens ot les boules de rayon 1

(la capacité de correction), dont le centre est un mot du code, forment une partition
de (F,)" (iciavecg=2etn= 2k —1). Expliquer pourquoi le code défini 2 I’exemple
3.12 est bien un code de Hamming.

Montrer que le code dual de % est un code simplexe, c’est-a-dire que la distance
entre deux mots quelconques du code est constante. Combien vaut cette distance ?

. Comment généraliser la construction des codes de Hamming a un corps fini quel-

conque (on pensera a utiliser des vecteurs représentant les droites vectorielles) ?

Montrer en particulier que sa dimension est i—-— —k, sa taille gk—— et sa distance
minimale 3.

Exercice VL8 (Polynémes énumérateurs et codes de Hamming). On note H 1a matrice
de taille k x 2¥ — 1 ayant pour colonnes toutes les représentations binaires des entiers entre
let2k—1=n.

L

2.

Expliquer pourquoi le code €, dont H est une matrice de contrdle, est un code de
Hamming, comme défini a I’exercice VI.7. Calculer le polyndme énumérateur de
poids du code de Hamming de taille 7 décrit a I’exemple 3.12.

Quelle est 1a matrice génératrice du code %+ ? Montrer que chaque colonne de cette
matrice a un poids de Hamming égal a 2¢~1,
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3. En déduire que le polyndme énumérateur de poids de € s’écrit
1
W<g = -27;
4. Quel est le nombre de mots de poids 1 et 2? Ceci est-il en accord avec les résultats
de I’exercice VI.7? Montrer que le nombre de mots de poids 3 est %n(n —1).
5. Montrer que la répartition des poids est symétrique, c’est-a-dire que A,—; = A;.

((X+Y)"+n(X—Y)LJ2r"(X+Y)"7_") .

Exercice V1.9 (Code de Hamming étendu). On note % le code de Hamming étendu de
taille 8. C’est le code obtenu en ajoutant un bit de parité au code de Hamming de taille
7 présenté a I’exemple 3.12. Ceci signifie que tous les vecteurs x € ¥ vérifient, modulo
2, 2Z=0 x; = 0. Quels sont les paramétres de ce code ? Dresser la liste des mots qui le
composent. Calculer son polyndme énumérateur, et montrer que ce code est auto-dual.

Exercice VI.10 (Code de répétition). On note % le code de répétition pure. Il consiste a
remplacer un élément x € IF, par le vecteur de (IF;)" dont les entrées sont x.

1. Quels sont ses parametres (dimension, distance minimale) ? Quel est son polyndme
énumérateur ?

2. Identifier le code dual €*. Quel est son polyndme énumérateur? Dans quel(s) cas
ce code est-il auto-dual, c’est-a-dire € = €+ ?

Exercice VI.11 (Codes de Hadamard). Les matrices de Hadamard sont définies a 1’exer-
cice I1.6. Soit H,, une telle matrice, de taille n X n. On la suppose normalisée, c’est-a-dire
que les entrées de la premiére ligne et de la premiere colonne sont égales a 1. On définit
H,, 1a matrice obtenue a partir de H, enremplagant les 1 par des O et les —1 par des 1. On
définit alors deux codes :

—Le code 47,, dont les mots sont les lignes de H, auxquelles on a enlevé la premiére
colonne.

—Le code %, qui est constitué de I’union des mots de 27, et de leurs compléments (on
met a 1 les entrées égales a 0, et vice et versa).

1. Ces codes sont-ils linéaires (on pourra distinguer selon la construction de H,))?

2. Montrer que deux lignes distinctes de 17; ont g entrées communes et '2—' entrées
différentes. Quels sont les parameétres de ces deux codes (taille, nombre d’éléments,
et distance minimale) ? En déduire que &, est un code simplexe, c’est-a-dire que la
distance entre deux mots quelconques du code est constante.

Voici par exemple les mots de deux codes 2% générés par la méthode des résidus quadra-
tiques (dite de Paley) et des matrices de Walsh (chaque ligne représente un mot) :

Résidus quadratiques : || Matrice de Walsh:
(0000000) (0000000)
(1001011) (1010101)
(1100101) (0110011)
(1110010) (1100110) (5.2
(0111001) (0001111)
(1011100) (1011010)
(0101110) (0111100)
(0010111) (1101001)
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Exercice VI.12 (Codes MDS). On considére un code de taille #n et de dimension m sur
[F,. On note d sa distance minimale, et on rappelle que le code est dit MDS s’il y a égalité
dans la borne de Singleton (3.3), c’est-a-dire d = n+ 1 —m. On note A; le nombre de mots
de poids i dans &, et A} le nombre de mots de poids i dans .

1. On définit les polynémes de Krawtchouk Py, par

k

Vk=0,...,n, B(x)% Y (-1)/ciG, (5.3)
j=0

ou le coefficient binomial C){, pour j € N, est défini par

jﬂx(x—l)"'(x_j'i'l)
ci% f .

Montrer que 1’on a
AiP(i
k |<g| Z k

2. Montrer que 1’on a les égalités suivantes :
Vk=0,...,n, ZC,’j A= 2" "ZC,'; kAL

On pourra penser a dériver formellement le polyndéme P(1,Y) par rapport a Y.
3. On suppose maintenant que le code € est MDS. Expliquer pourquoionaA; =0
pour 1 <i < n—m, ainsi que Af =0 pour 1 < i < m. En déduire que I’on a
n—k
Vk=0,...,m—1, Y CrAi=Cr2"*-1).
i=n—m+1
4. Expliquer pourquoi les identités précédentes déterminent de fagon unique la répar-
tition des poids de &. Par exemple, donner le nombre de mots de poids non nul
minimal d’un code MDS.

Exercice VI.13 (Borne de la programmation linéaire). On note R(n,d) le cardinal
maximal d’un code de taille n et de distance minimale d sur [F,. Cette quantité est ex-
trémement difficile a estimer en général, et nous allons voir qu’en utilisant les résultats
de MacWilliams, on peut donner un majorant, appelé borne de la programmation linéaire
(car cette quantité apparait comme solution d’un probléme d’optimisation d’une forme
linéaire sous contraintes linéaires).

1. Soit % un code binaire de taille n. On note P, le k™ polyndme de Krawtchouk,
qui est défini a 1’équation (5.3). On note B; la répartition de ¥, montrer que I’on a

n
Vk€{0,...,n}, X, BiP(i)>0
i=

2. En déduire que ’on a

n ~ — —
R(n,d) < max{ZB; \ (Bo,...,Bn) € E,‘,’} .

i=0
L’ensemble E,, est défini de la maniére suivante :

n
E‘% {(1,0,...,O,xd+1,...,x,,) e R \Vk:O,...,n, > xiP(i) > 0}.
i=0






Chapitre VII
Représentations linéaires des groupes finis

Quand vous vous habillez, I’ordre dans lequel vous
effectuez les phases successives de 1’opération n’est pas
sans importance : vous commencez par votre chemise et
finissez par votre manteau. Et pour vous deshabiller, vous
suivez I’ordre inverse : vous 6tez d’abord le manteau, la
chemise en dernier lieu.

H. WEYL [77] (1952)

Ce chapitre traite de la théorie des représentations, qui permet d’étendre la notion de ca-
ractére et de transformée de Fourier aux groupes non commutatifs. Cette théorie parvient
a faire la liaison entre plusieurs domaines des mathématiques et & utiliser des outils spé-
cifiques a une discipline pour résoudre des problemes formulés dans le langage d’une
autre :

— algebre générale : le probleme initial est celui de 1’étude d’un groupe abstrait.

—algebre linéaire : le but est de réaliser « géométriquement » notre groupe comme un
groupe de transformations linéaires. L’ utilisation des outils matriciels va permettre d’ef-
fectuer des calculs sur notre groupe, et d’obtenir des informations précises (résolubilité,
simplicité, classes de conjugaison, etc.).

— géométrie : I’étude abstraite d’une géométrie revient & 1’étude des invariants pour une
action de groupe donnée. La plupart des actions considérées sont linéaires et la théorie
des représentations rentre alors naturellement en jeu.

La notion de représentation linéaire, bien qu’assez complexe au premier abord, est en fait
au centre de nombreux problémes au programme de 1’agrégation: actions de groupes,
matrices équivalentes, groupes finis, espaces hermitiens (I’espace C[G] est naturellement
muni d’une telle structure), dimension des espaces vectoriels, dénombrement, groupes de
permutations, sous-espaces stables, dualité, sous-groupes distingués (étude de la simpli-
cité).

En ce qui concerne la théorie des représentations, la référence principale en frangais est
le livre de J.P.SERRE [64]. La démonstration de I’orthogonalité des caractéres est assez
calculatoire, et ne sera abordée qu’au chapitre suivant. On pourra regarder le livre de
référence en langue anglaise de FULTON et HARRIS [35] pour retrouver celle qui est
faite ici. En complément, [36] explicite de fagcon compleéte la théorie de Fourier sur C[G],
[1] donne bon nombre de tables de caractéres des groupes classiques, tout comme [19].
L’histoire de la théorie des représentations des groupes finis est expliquée dans les deux
articles de LAM [41] et [42].
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1 Premieéres définitions

Cette premicre partie est consacrée a la définition méme de la notion de représentation,
mais aussi (et surtout) a la mise en place de la problématique déja énoncée : la recherche,
a isomorphisme pres, des représentations irréductibles. Nous donnons donc la définition
de la notion d’isomorphisme de représentations, ainsi que les détails des notions connexes
a celle d’irréductibilité. Pour mettre en relief ces définitions, de nombreux exemples sont
exposés, qu’ils soient fondamentaux (dans le sens ot ils menent a des constructions uti-
lisées par la suite) ou seulement instructifs (permettant de faire des calculs « a la main »
sans utiliser les outils développés par la suite).

1.1 Représentations linéaires

Définition 1.1 (Représentation linéaire). Soit V un K-espace vectoriel de dimension
finie n. Une représentation linéaire d’un groupe G dans V est la donnée d’un morphisme
p : G — GL(V). Ceci correspond a la donnée d’une action linéaire du groupe G sur V,
en notant V(g,v) € GxV, g.v = p(g)(v). On dit aussi que V est un G-module (cette
terminologie sera expliquée par la suite).

Définition 1.2 (Représentation fidele). Une représentation p sur un espace vectoriel V
est dite fideéle si p est injective. On dit aussi que G agit fidélement sur V.

Exemple 1.3. Les exemples qu’il faut avoir en téte sont de nature géométrique : une
action de groupe fidéle permet de réaliser un groupe abstrait comme un groupe de trans-
formations (le plus souvent unitaires ou orthogonales, cf. 1a proposition 1.27) d’un espace
vectoriel. Par exemple, on peut voir le groupe symétrique &4 comme 1’ensemble des iso-
métries qui conservent un cube. Cette identification établit une représentation du groupe
abstrait G, sur I’espace vectoriel R3 comme un groupe de transformations orthogonales.

Nous avons déja vu au paragraphe 4.2, chap. I, la définition ainsi que les principales
propriétés de 1’algébre d’un groupe abélien (sur le corps C des complexes). Ces définitions
s’étendent sans difficulté a un groupe non commautatif et a un corps K quelconque. Nous
allons voir que cette algébre permet de définir la notion de représentation d’une autre
maniere, en utilisant le langage des modules.

Définition 1.4 (Algébre d’un groupe). On suppose donné un espace vectoriel V de
dimension |G| sur un corps K dont une base est indexée par G, c’est-a-dire une base de
la forme {e;}gcc. On peut alors définir une structure de K-algebre sur V par 1’égalité
eg * ey, = eg, qui s’étend par bilinéarité a tout 1’espace.On note K [G] cette algebre, et on
identifie souvent g € G et e, € K[G] de sorte que 1’on parle de I’algébre du groupe G, et
que G s’injecte canoniquement dans K|[G] par g — eg.

L utilité principale de 1’algebre K[G] qui englobe notre groupe G est qu’elle vérifie une
propriété universelle, dans le sens ou toute représentation sur G s’étend de maniére unique
en une représentation sur K[G]. Définissons d’abord la notion de représentation d’algebre.
Définition 1.5 (Représentation d’algébre). Une représentation d’une K-algebre asso-
ciative A estladonnée d’un espace vectoriel V sur K de dimension finie et d’'un morphisme
de K-algebre p : A — End(V).

On voit facilement qu’une représentation d’un groupe p : G — GL(V) s’étend par linéarité
de fagon unique en une représentation d’algebre p : K[G] — End(V). Donc les représen-
tations de K[G] correspondent exactement aux représentations de G. En fait, tout énoncé
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concernant des représentations de G a un équivalent en terme d’algébre du groupe G. Il
s’agit simplement d’un choix de langage, chacun ayant des préférences pour telle ou telle
formulation.

Remarque 1.6. (Représentations et K[G]-modules). La définition d’une représentation
p de I’algébre K[G] correspond exactement a la définition d’un K[G]-module a gauche. La
multiplication externe d’un vecteur v € V par un « scalaire » A € K[G] est alors donnée
par A -v = p(A)(v). Réciproquement, la donnée d’une telle structure définit sans ambi-
guité une représentation d’algebre. Ainsi, les notions de représentation de groupe, de re-
présentation d’algebre, et de K[G]-module sont totalement équivalentes. Dans la suite, on
rencontrera la notion de G-morphisme, qui correspondra aux morphismes pour la struc-
ture de G-module.

Comme nous 1’avons déja remarqué au paragraphe 4.2, chap. I, dans le cas d’un groupe
fini, I’algeébre d’un groupe s’identifie de fagon naturelle (et canonique) a I’espace des
fonctions de G dans le corps K considéré, muni d’un produit appelé produit de convo-
lution. Rappelons ces constructions dans le cadre d’un groupe fini G quelconque et d’un
corps K quelconque.

Remarque 1.7. (Fonctions sur G et algebre du groupe). Si on note, pour g € G, & la
fonction qui vaut 1 en g et 0 ailleurs, alors on peut décomposer une fonction f : G — K
dans la base {8, }gcc

=2 f(g). (1.1)

g€eCG

Ceci permet d’identifier f avec 1’élément

z f(g)eg € K[G].

geG

On identifiera donc K[G] avec ’espace des fonctions de G dans K, dont une base est
donnée par {8} ;G-

Rappelons la formule qui donne la multiplication sur 1’algebre C[G], et que 1’on nomme,
en utilisant le vocabulaire de 1’analyse fonctionnelle, produit de convolution.

Définition 1.8 (Produit de convolution). La multiplication sur K[G] est définie par ex-
tension de la multiplication dans G. En quelque sorte, on sait comment multiplier entre
eux les éléments de la base {3, } ;e (en se rappelant qu’un élément &, € K[G] s’identifie
a g € G), et par bilinéarité de la multiplication, on peut ainsi calculer le produit de deux
éléments en les décomposant comme en (1.1). Ainsi, pour (f,g) € K[G]? on obtient

Vs€G, (fxg)(9)= Y f(h)glk)= Y, f(h)g(h™"s).

hk=s heG

Cette multiplication est nommée produit de convolution. L’é1ément neutre pour cette opé-
ration est &) (qui s’identifie & I’élément neutre 1 de G), et il ne faut donc pas confondre
* avec la multiplication composante par composante des fonctions de G dans K (notée
habituellement -), pour laquelle I’élément neutre est la fonction constante 1.
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1.2 Exemples fondamentaux
La représentation réguliére

Cette représentation est la plus élémentaire, et aussi la plus importante. C’est en décom-
posant la représentation réguliére en sous-représentations que 1’on obtiendra bon nombre
d’informations sur le groupe G, comme on le verra au paragraphe 4.2.

Définition 1.9. La représentation réguliere a gauche est la représentation de G sur I’es-
pace vectoriel K[G] définie par le morphisme

Vs € G, pr(s) :{ K;G] : g[f} .

Remarque 1.10. On peut, comme cela est expliqué a la définition 1.5 prolonger la re-
présentation réguliére en une représentation d’algebre définie sur K[G] tout entiére. On
voit que 1’on obtient tout simplement la structure d’algébre de K[G] (pour le produit de
convolution). Ceci signifie que le K[G]-module donné par K[G] lui méme correspond 2 la
représentation réguliére.

Proposition 1.11. La représentation réguliére est fidéle.

Démonstration. Si p(g) = 1d, alors p(g)(8) = &, c’est-a-dire & * &, = dg = &, donc
g=e. O

La représentation somme

L’opération la plus simple que 1’on puisse faire entre deux représentations est la somme
directe, qui est définie de la maniére suivante.

Définition 1.12 (Représentation somme). Pour deux représentations py et py respecti-
vement sur V et W, on définit une représentation pygw sur V@ W par

Vg€ G,V(v,w) €V XW, praw(8)((nw) = pv(8)(v) +pw(g)(w).

La notion de somme est & rapprocher de la notion de décomposabilité qui est abordée
au paragraphe 1.3. La question est de savoir a quelle condition une représentation peut
s’écrire comme la somme de deux autres. Nous verrons (au théoréme 1.29) que ceci est
simplement lié au fait que la représentation admet ou non des sous-représentations.

La représentation des morphismes

La représentation produit (au sens du produit tensoriel d’espaces vectoriels) ne sera pas
abordée. Cependant, on peut utiliser, a la place, la notion de représentation sur 1’espace
vectoriel des morphismes.

Définition 1.13 (Représentation des morphismes). Pour deux représentations py et pw
respectivement sur V et W, on définit une représentation p oy, ) sur £(V,W) (espace
des applications linéaires de V dans W) par

Vg€ G, Yf e LV,W), peyw (@)(f)E pw(g)ofopv(e™).
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Proposition 1.14. On définit bien ainsi une représentation.

Démonstration. On note p £ P v,w)- Tout d’abord, constatons que p(g) est bien une
application linéaire. La proposition résulte simplement du calcul, pour f € Z(V,W) et
pour V(g,k) € G*:

p(gh)(f)

pw(gh)o fopy((gh)™")
pw(g) {pw(hn)o fopy(h~)} pv(g™")
p(@){p(h)(f)}- O

La représentation duale

Dans le méme ordre d’idées que pour la représentation des morphismes, on peut définir
une représentation duale.

Définition 1.15 (Représentation duale). Pour une représentation p sur V, on définit une
représentation p* sur V* le dual de V par

déf.

VgeG, p*(g)=p(g”!),

ol I’on a noté ¢ € £(V*) I’opérateur transposé de ¢ € Z(V).

Remarque 1.16. On peut voir que cette définition correspond a la représentation des
morphismes Py, k) (ol K est considéré comme un espace de dimension 1), puisque
V* = 2(V,K),avec la représentation triviale pg(g) = Id.

Définition 1.17 (Crochet de la dualité). On note, pour f € V* etpourx €V,

(x, ) g5y = F(0).

On nomme cette application le crochet de la dualité, qui est une forme bilinéaire sur
E X E*.

On montre facilement que la représentation duale que nous venons de construire a un

comportement intéressant vis-a-vis du crochet de la dualité.

Proposition 1.18. La représentation duale sur V* conserve le crochet de la dualité,
c’est-a-dire :

Vg € G,Y(f,x) €E* XE, (x,pv+(8)(f))(ge+)= <PV(3_1)(x)’f>(E,E*)'

Une action sur les polynémes

Définition 1.19. Soit G un sous-groupe fini de GL,(K). Si on note, pour A € G, A~!
sous la forme (a; ;) 1<i,j<n, On définit une action linéaire de G sur K[Xj,...,X,] en dé-
finissant p(A)(P) le polyndme obtenu par la substitution de X; par 37_; a;,:X;. On note

symboliquement p(A)(P)(X) = P(A~!-X).
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Si on considére cette action sur K[Xj,...,X,| tout entier, on obtient une représentation de
dimension infinie. Cependant, il est facile de voir que cette action respecte le degré des
polyndmes. On peut donc restreindre cette action au sous-espace K;[Xj,...,X,| constitué
des polyndmes de degré inférieur ou égal & s. C’est un espace de dimension finie, et
ceci donne naissance & une représentation linéaire de dimension finie. Mais on peut aussi
considérer 1’espace K? [X1,...,X,] des polyndmes homogenes de degré s (en incluant le
polyndme nul), ce qui fournit une deuxi¢me famille de représentations de dimension finie.
C’est ce point de vue qui sera adopté pour prouver le théoréme de Molien, a 1’exercice
VIL.6.

Enfin, notons que la théorie des polyndmes invariants sous cette action est trés importante.
L’exercice VIL.S propose de démontrer un résultat fondamental de cette théorie. Dans le
cadre de I’étude des codes correcteurs, ce sont ces outils de théorie des représentations qui
permettent de classifier les codes auto-duaux. On trouvera une instance de cette approche
dans I’exercice VIII.9.

Représentation de degré 1

On se place dans le cas ou K = C. Une représentation de degré 1 est simplement un
morphisme de G dans le groupe multiplicatif C* (on identifie GL; (C) et C*). C’est donc
un caractere de G comme défini au chapitre I. On retrouve ainsi la théorie classique de
dualité sur un groupe fini. Nous savons déja que si G est abélien, les caractéres forment
une base de I’espace C[G] des fonctions de G dans C. Dans la suite, nous étendrons la
notion de caractere, et nous verrons que cette notion a bien les propriétés espérées.

— Dans le cas ou G est commutatif, cette nouvelle notion n’apporte rien de nouveau : on
retrouve uniquement les caractéres déja définis. Intuitivement, on sait que la dimension
1 suffit pour étudier les groupes commutatifs.

— Dans le cas non commutatif, 1’ajout de « nouveaux » caractéres permet de développer
une théorie de Fourier généralisant la théorie déja développée dans le cas commutatif.

Dans un premier temps, contentons nous de la remarque suivante :

Remarque 1.20. Si p est une représentation de G sur un espace vectoriel V, alors I’appli-
cation qui & s € G associe det(p(s)) est une représentation de degré 1 sur C (c’est-a-dire
un caractére au sens oll nous 1’avons déja défini).

1.3 Représentations irréductibles

La notion de représentation irréductible est trés intuitive. Comme dans toute construction,
on cherche les « briques de bases », celles avec lesquelles nous allons pouvoir recons-
truire tout I’édifice (ici toutes les représentations). Notre outil est, comme nous 1’avons dé-
fini au paragraphe 1.2, la somme de représentations. La définition intuitive d’une « brique
de base » est qu’elle doit étre minimale (au sens de 1’inclusion des sous-espaces non
nuls). Cette définition est-elle bien compatible avec la construction par somme de nou-
velles représentations ? C’est ce que précisera le théoréme 1.29, dans le cas d’un corps
algébriquement clos. En effet, nous allons petit & petit quitter la généralité des construc-
tions du paragraphe précédent, pour nous restreindre au cas du corps K = C, pour lequel
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il y a déja beaucoup a faire. Cependant, nous essaierons, dans la mesure du possible, de
mentionner les résultats qui restent valables sous des hypotheses plus faibles.

Définition 1.21 (Représentations isomorphes). Deux représentations p et p’ d’un méme
groupe G respectivement sur deux K-espaces vectoriels V et V’ sont dites isomorphes
s’il existe un isomorphisme d’espaces vectoriels 7 :V — V' tel que pour tout s € G,
T0op(s) = p’(s) o T, ce qui permet d’identifier les deux représentations.

La notion d’isomorphisme de représentations définit une relation d’équivalence sur les re-
présentations d’un groupe G donné. Dans la suite, nous allons nous intéresser aux classes
d’équivalence pour cette relation. Nous allons maintenant donner les définitions qui per-
mettent d’expliciter les notions de « briques de bases ».

Définition 1.22 (Sous-représentations). Si une représentation p de G sur V admet un
sous-espace vectoriel W C V stable par tous les p(s) € GL(V), elle induit une représenta-
tion pw sur W appelée sous-représentation.

Remarque 1.23. En utilisant le langage des K[G]-modules, on voit qu’une sous-repré-
sentation n’est rien d’autre qu’un sous K[G]-module, et qu’un isomorphisme de représen-
tations est un isomorphisme de K|[G]-modules.

Définition 1.24 (Représentations irréductibles). Une représentation sur un espace V
est dite irréductible si elle admet exactement deux sous-représentations: {0} et V tout
entier.

Définition 1.25 (Représentation indécomposable). Une représentation sur un espace V
est dite indécomposable si a chaque fois que 1’on a un isomorphisme de représentations
V ~ W) @&W,, alors W) = {0} ou W, = {0}.

Remarque 1.26. (Irréductibilité et indécomposabilité). I1 est évident qu’une représen-
tation irréductible est en particulier indécomposable, puisqu’une décomposition de V sous
la forme V ~ W) @ W, non triviale donne naissance & deux sous-représentations. Nous al-
lons maintenant nous intéresser a la question réciproque. Pour résoudre ce probléme, il
faut savoir si, étant donnée une sous-représentation non triviale Wj de V, on peut trouver
une autre sous-représentation W, telle que V ~ W, & W,. Ceci signifie exactement trouver
un supplémentaire de W stable sous I’action de G. L’exercice VII.1 montre qu’en général
cet aspect réciproque n’a aucune raison d’étre vrai. Cependant, sous certaines hypotheses
restrictives sur le corps de base, nous allons voir que 1’on peut démontrer 1I’équivalence
entre irréductibilité et indécomposabilité.

Important : A partir de maintenant, sauf mention explicite du contraire, nous travaille-
rons dans le corps des complexes K = C.

Proposition 1.27 (Représentation unitaire). Soit p une représentation d’un groupe fini
G sur un espace V. Alors p laisse invariant le produit hermitien suivant :

536 = X (P(5)(0),p(5) ),

seG 7
ou I’on a noté (-,-) un produit hermitien quelconque surV.

Démonstration. Le fait que (-,-); est invariant par G est trivial :

(P(8)x),p(8) M) = X, (p(s8)(x),p(s8)(¥)) = (x,¥)g-

seG
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Le seul point important est que (-, ) ; est bien un produit hermitien, comme somme de
produits hermitiens. Ceci est valide car on travaille sur le corps C des complexes. g

Remarque 1.28. (Représentation unitaire). Ce résultat est équivalent au fait que les
matrices M; des p(s) sont unitaires dans une base orthonormée pour (-,-)s, c’est-a-dire
vérifient M;M; = Id, ou M est la matrice adjointe. On dit que M; est une représentation
matricielle unitaire.

Théoréme 1.29 (Irréductibilité et indécomposabilité). Une représentation p sur'V est
irréductible si et seulement si elle est indécomposable.

Démonstration. Soit W) une sous-représentation non triviale de V. Comme nous 1’avons
déja fait remarquer, pour démontrer 1’équivalence, il suffit de trouver un supplémentaire
de W stable par G. On peut alors considérer le produit hermitien invariant (-, -) 5, et choisir
W, I’orthogonal de W,. Par conservation du produit scalaire, ’image par G d’un vecteur
orthogonal a W est encore orthogonal a W : W, est bien stable sous 1’action de G. O

Remarque 1.30. La démonstration qui préceéde utilise 1’existence d’un produit hermitien
stable. Elle n’est donc pas valable sur un corps autre que C. On peut cependant proposer
une autre démarche, qui permet de démontrer le théoréme 1.29 dans le cas d’un corps K
tel que sa caractéristique ne divise pas |G|. Voici donc une deuxiéme démonstration :

Démonstration. 11 existe une autre fagon de construire un supplémentaire stable de Wj.
En effet, considérons un supplémentaire W, quelconque, et notons 7 la projection sur W,
associée a la décomposition V = W; @ W5. On peut alors définir un endomorphisme 7o de
la maniére suivante :
o = l GI Y p(g)omop(e™);
geG

ceci est valide car Car(K) ne divise pas |G|. On peut alors constater que 7y est un pro-
jecteur d’image W;, et méme mieux, que son noyau w £ ker( ) est stable par 1’action
de G (on le vérifie a la main aisément). En vertu des propriétés des projecteurs, on a
V = W) & W,. Cette construction, qui peut paraitre un peu magique, est en fait trés na-
turelle, et deviendra claire une fois définies les notions de G-morphisme (définition 2.3),
et surtout d’opérateur de Reynolds Rg (définition 2.10), puisque 1’on a en fait construit

mo = Rg(7). O

Remarque 1.31. Le théoréme 1.29 signifie que si p est réductible, les matrices des p(s)
s’écrivent comme une diagonale de deux blocs dans une base bien choisie, ce qui corres-
pond bien a la notion de réductibilité (et a la représentation somme). Voici maintenant le
résultat qui nous assure que les « briques de base » que sont les représentations irréduc-
tibles permettent de reconstruire toutes les représentations.

Proposition 1.32. Toute représentation peut s’écrire comme somme de représentations
irréductibles.

Démonstration. On raisonne par récurrence sur la dimension de V 1’espace vectoriel de
notre représentation. Un espace de dimension 1 est irréductible. Si V est un espace de di-
mension plus grande que 1 irréductible, et la démonstration est terminée. Sinon, V admet
un sous-espace stable non trivial W, et avec le corollaire 1.29, on peut trouver Wy stable
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tel qu’on ait V =W @ W,. En appliquant I’hypothese de récurrence a W et Wy, on prouve
ce qui était demandé. g

Remarque 1.33. Cette écriture n’est pas unique, mais nous allons voir qu’elle est unique
« & isomorphisme pres », au sens que si 1’on a deux décompositions de W sous la forme
Wi - @W,etW/d---®W/, alors r =, et quitte & réordonner les indices, il existe des
isomorphismes W; ~ W/.

1.4 Le groupe symétrique

Avant d’attaquer le vif du sujet, a savoir I’introduction d’outils utiles pour étudier les re-
présentations, intéressons nous a un groupe de premiére importance, le groupe symétrique
G, Nous allons essayer de dégager « a la main » les principales caractéristiques de ses
représentations, a défaut de pouvoir en donner une description exhaustive.

Définition 1.34 (Représentation par permutation). Soit G, le groupe des permutations
d’un ensemble a n éléments, identifié A I’ensemble {1,...,n}. Soit V un espace vectoriel
de dimension r, dont on choisit une base 8 = {ey,...,e,}. &, agit sur V par permutation
des éléments de la base %, ce qui permet de définir un morphisme p, : &, — GL(V).
On notera donc, pour 6 € &, pp(0) I’endomorphisme correspondant, c’est-a-dire tel
que pp(ei) = eq(;)- On note My la matrice de permutation associée, qui est la matrice de
pp(0) dans la base 3. Cette matrice ne comporte qu’un seul 1 par ligne et par colonne,
et des 0 partout ailleurs. De plus, seule Mg = Id ne comporte que des 1 sur la diagonale
(ce fait sera utilisé pour I’exemple 3.5).

Remarque 1.35. (Lien avec la représentation réguliére). Tout groupe G de cardinal
n s’injecte dans le groupe &, des permutations de I’ensemble {1,...,n}. Pour le voir,
il suffit de numéroter les éléments de G = {gy,...,8n} et de considérer, pour % € G, la
permutation

. 1,...,n} — {1,...,n

by { ot = Qoo

J k — ¥ ol k' est tel que hgx = g

On a alors le diagramme commutatif suivant :

G -2 GL(V)

L |
G, —2 GL(V)

Dans le méme ordre d’idées, lorsque 1’on étudie la représentation p, de G, sur un espace
de dimension n (qu’on peut supposer sur un corps K quelconque), on peut s’intéresser
a la détermination des classes de similitude des matrices des p,(0), 6 € &,. Commen-
cons par caractériser les classes de conjugaison (c’est-a-dire de similitude) dans le groupe
symétrique S,,.

Lemme 1.36 (Classes de conjugaison dans Gy). Deux éléments de S, sont dans la
méme classe de conjugaison si et seulement si leur décomposition en cycles disjoints
posséde le méme nombre de cycles d’une longueur donnée.

En particulier, il y a autant de classes de conjugaison dans G, que de partitions de n du

type
n=k +ky+---+k, avec ki Z2ky>=---2k,>0.
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Démonstration. Tout d’abord, notons que deux cycles de méme longueur sont conjugués.
En effet, si on considére ¢ = (cy,...,cx) et ¢’ = (¢}, ... ,€},)» il suffit d’ utiliser une permu-
tation o : ¢; — ¢} pour voir que ¢ = o0~ !oc’'00. Donc si deux permutations possédent des
décompositions avec des cycles de méme longueur, elles sont conjuguées.

Réciproquement, il est évident que la conjugaison d’une permutation conjugue aussi les
cycles qui la composent, et donc conserve leurs longueurs. O

Théoréme 1.37 (Théoréme de Brauer). On se place sur un corps K de caractéristique
0. Deux matrices Mg et Mg sont semblables si et seulement si G et ¢’ sont conjuguées
dans G,, c’est-a-dire:

Jres,, or=10.

Démonstration. Cette démonstration m’a été communiquée par DANIEL FERRAND.

Le sens réciproque découle directement de la définition d’une représentation.

En effet, si 31 € &, 6’ = 7107, alors My = M1 5, = M7 '\ MM,

Pour le sens direct, on note c,(o) le nombre de cycles d’ordre k dans la décompo-
sition de o en cycles disjoints. En utilisant le lemme 1.36, il suffit de montrer que
Vk € {1,...,n}, c(0) = ck(0’). Or tout cycle o d’ordre k vérifie a* = Id, donc le po-
lyndéme caractéristique de Mg est X* — 1. Comme M et My ont le méme polyndme
caractéristique (car elles sont semblables), on a

TT (x*— 1)) =TT (x* - 1)@, (1.2)

k>1 k>1

Pour m € N, on prend ¢ une racine m®™° de I’unité (dans une cléture algébrique K de
K) d’ordre m (c’est-a-dire primitive). Comme on est en caractéristique 0, P = X* — 1 et
P’ = kX*~1 sont premiers entre eux, ce qui signifie que P est scindé a racines simples dans
K. Donc la multiplicité de { dans P est 1 si { est racine de P (c’est-a-dire si m|k), O sinon.
En égalant les multiplicités dans 1’égalité (1.2), on obtient

Y (o) = T en(o).

mlk mlk

Supposons maintenant qu’il existe m tel que ¢y (0) # cm(0”). On choisit m le plus grand
possible, notons-le myq (ceci est possible car k — c(0) est une fonction a support fini).

On a alors
0= ck(0)— Y ck(0") = cmy(0) — cmo(0”),
molk mo|k
ce qui est une contradiction, car ¢,y (6) # Cumy(0”). O

Apres avoir répondu a ces questions sur les classes de similitudes liées a la représenta-
tion par permutation, se pose le probléme de la détermination des représentations de &,.
Comme il est vain de vouloir toutes les déterminer (il est facile d’en créer des nouvelles
par sommes directes), le vrai probléme est en fait la détermination des représentations
irréductibles de G,,. Cette question est difficile, et dans un premier temps, nous allons
nous contenter de donner des représentations « évidentes ». L’exemple du groupe G4
sera traité complétement au paragraphe 1.4, chap. VIIL Il existe cependant des descrip-
tions précises des représentations irréductibles de G,,, qui sont fondées sur 1’action de ce
groupe sur les tableaux de Young. Une description compléte se trouve dans le livre de
FULTON et HARRIS [35].
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Tout d’abord, est-ce que la représentation de permutation, pour n > 2, est irréductible ?
On voit aisément que non, en regardant le sous-espace

Hy= {A(1,...,1)\ A € C} = Vect((1,...,1)). (1.3)

On voit facilement que ce sous-espace est stable -par toute permutation des coordonnées,
et qu’il admet un supplémentaire également stable par G :

Hi Z {(x1,...,%) €V \x1+-+ +x, =0}. (1.4)

La représentation par permutation p, induit la représentation triviale (c’est-a-dire cons-
tante égale a I’identité) sur Ho. La question de I’irréductibilité de la représentation H;
est abordée a I’exercice VII.7. Nous verrons au paragraphe 1.4, chap. VIII, que dans
I’exemple de G4, cette représentation est bien irréductible. On nomme représentation
standard la représentation induite par p, sur Hy. Outre la représentation triviale (qui est
bien sfir irréductible), il reste une autre représentation de degré un, donnée par 1’équation

Vo € G, pe(o)=¢(0),

ol I’on a noté (o) la signature de la permutation ¢ (comme c’est une représentation de
degré 1, on a noté pg (o) comme un scalaire, alors que c’est en réalité une matrice de taille
1). On nomme cette représentation la représentation alternée. De plus, nous avons déja vu
au chapitre I que c’étaient les deux seules représentations de degré 1 de G,,.

2 Invariance et représentations

Un moyen trés simple pour créer des sous-espaces globalement stables sous 1’action d’un
groupe G est de regarder I’ensemble des vecteurs qui ne sont pas modifiés par G, qui
forme bien un sous-espace. Sur ce sous-espace invariant, G induit la représentation tri-
viale. L’intérét capital de ce sous-espace est qu’on dispose d’une description compléte,
et d’un moyen tres simple d’en générer des éléments. L’idée fondamentale qui se cache
derriére la construction faite dans ce paragraphe (et derriére I’opérateur de Reynolds, qui
est présenté au paragraphe 2.3) est que 1’on se trouve sur un groupe fini, et donc que I’on
est en mesure de moyenner 1’action de notre groupe. Ce principe trés simple, que nous
avons déja utilisé pour construire des supplémentaires stables, sera d’un usage constant
dans la suite de I’exposé, et c’est pour cela qu’il est important de le formaliser.

2.1 Sous-représentation invariante

Définition 2.1 (Sous-représentation invariante). Soit p une représentation sur V. On
note VC le sous-espace des vecteurs invariants, c’est-a-dire :

VG={v€V\Vs€ G,p(s)(v)g‘s.v=v}.

C’est une sous-représentation de V.

Exemple 2.2. On considére I’action du groupe symétrique G,, par permutation des co-
ordonnées, comme définie au paragraphe 1.2. Cette action permet de définir une autre
action, sur K[Xj,...,X,] cette fois-ci, via la construction effectuée au paragraphe 1.2. La
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représentation invariante K[Xi,...,X,]%" est formée des polyndmes symétriques, ce qui
signifie que P € K[X1,...,X,]®" si et seulement si

Vo € G, P(Xo(l)’--"XO'(n)) =P(Xy,...,Xn)-

Ces polyndmes, ainsi que I’action des groupes finis sur les polyndmes sont étudiés en
détail aux exercices VILS et VIL6.

Définition 2.3 (Opérateurs d’entrelacement). Dans le cas de la représentation des mor-
phismes p (v, wy sur £ (V,W) de deux représentations py et py respectivement sur V' et
W, on note Homg(V, W) I’espace des invariants. On nomme ces éléments des opérateurs
d’entrelacement ou des G-morphismes.

Remarque 24. Dire que f € £(V,W) est un opérateur d’entrelacement correspond au
fait que f vérifie Vs € G, fopy(s) = pw(s) o f, c’est-a-dire f fait commuter, pour tout

s € G, le diagramme suivant:

v L w

lpv (s) le (s)

v L w

Si f est bijectif, ceci correspond au fait que f est un isomorphisme de représentations.
Dans le cas général, on parle de G-morphisme, ou d’opérateur d’entrelacement. En re-
prenant le langage des K[G]-modules, un opérateur d’entrelacement est simplement un
morphisme de K[G]-modules.

2.2 Lemme de Schur

Ce lemme, a 1’apparence tres simple, est en fait la pierre angulaire de la plupart des dé-
monstrations qui seront faites dans la suite de 1’exposé.

Lemme 2.5 (Lemme de Schur). Soient py : G— GL(V) et py : G — GL(W) deux repré-
sentations irréductibles d’un groupe G. Soit f € £ (V,W) un opérateur d’entrelacement,
c’est-a-dire f € Homg(V,W). Alors

(i) si py et pw ne sont pas isomorphes, f =0.
(ii) si f #0, alors f est un isomorphisme, les représentations sont isomorphes, et si on
suppose V. =W, py = pw, alors f est une homothétie.

Démonstration. Si on suppose que f # 0, alors les hypothéses montrent que ker(f) est
stable par tous les py (s). En effet,

Vxeker(f), f(pv(s)(x))=pw(s)(f(x))=pw(s)(0)=0,

d’ot py (x) € ker(f). Donc comme py est irréductible et f # 0, ker(f) = {0}. De méme,
on montre que Im( f) est stable par tous les py (s), et comme py est irréductible et f # 0,
Im(f) =W. Au final, f est un isomorphisme et py et py sont isomorphes.

Pour montrer (ii), comme on travaille sur des C-espaces vectoriels, f a au moins une
valeur propre A. En posant f = f — AId, on voit que ker(f’) # {0}. En appliquant la
premiére partie de la démonstration 2 ' qui est encore un G-morphisme, ona f'=0. O

Remarque 2.6. Dans le cas ol on travaille dans un corps K non nécessairement algébri-

quement clos, on garde le fait que si f # 0, f est un isomorphisme. En particulier, si V est

irréductible, alors Homg(V,V) = Endg(V) est un corps non nécessairement commutatif.
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Remarque 2.7. On peut démontrer le lemme de Schur en employant le langage des
K[G]-modules. En effet, dire que f est un opérateur d’entrelacement signifie que f est
un morphisme de K|[G]-modules. Or on vérifie que dans ce cas, ker(f) et Im(f) sont
des sous-K[G]-modules respectivement de V et W. L'irréductibilité de ces deux modules
permet de conclure de la méme maniére.

Corollaire 2.8. On consideére toujours deux représentations irré ductibles de G sur'V et
W. On a dimc(Homg(V,W)) = 1 5i V et W sont isomorphes, et dimg(Homg(V,W)) =0
sinon.

Démonstration. SiV =W ou si les représentations ne sont pas isomorphes, le lemme
de Schur nous donne le résultat. Dans le cas ou les deux représentations sont isomorphes
(mais non définies sur le méme espace), il suffit de se fixer g un isomorphisme entre les
deux espaces vectoriels. On peut alors considérer pj,(s) = g~! opw(s)og € Z(V). En
appliquant le lemme de Schur a py et py;,, on voit que tout opérateur d’entrelacement entre
ces deux représentations s’écrit AId. Donc tout opérateur d’entrelacement entre V et W
s’écrit Ag, et on a bien dim¢ (Homg(V,W)) = 1. O

Remarque 2.9. (Cas des groupes commutatifs). Une fois définie la notion d’opérateur
d’entrelacement, une question naturelle est de savoir si, pour g € G, p(g) est un opérateur
d’entrelacement. Or p(g) € Homg(V) est équivalent a

Vhe G, p(g)p(h)=p(h)p(g), cest-a-dire p(ghg~'h~!)=1.

Donc si g € Z(G), le centre de G, alors p(g) € G.

En particulier, si G est commutatif, alors Z(G) = G, et donc avec le lemme de Schur 2.5,
pour une représentation irréductible p de G sur V, comme les p(g), pour g € G sont des
opérateurs d’entrelacement, ce sont des multiples de 1’identité, ce qui signifie que p est
une représentation de degré 1. On retombe donc dans la théorie classique de la dualité
sur un groupe fini commutatif (ce qui est rassurant), et on peut utiliser pleinement la
théorie développée au chapitre précédent. Cette constatation sera redémontrée a 1’aide de
la théorie des caracteres au corollaire 5.15.

2.3 Opérateur de Reynolds

Nous allons maintenant définir 1’opérateur qui va nous permettre de moyenner 1’action de
G sur un espace vectoriel.

Définition 2.10 (Opérateur de Reynolds). Soit p une représentation de G sur V. On
définit I’opérateur Rg € £ (V,V) par

RGE 1 Y p(s) € L(VV).
IGl s€EG

On I’appelle opérateur de Reynolds associé a p.

Théoréme 2.11 (Propriétés de I’opérateur de Reynolds). Rg est un projecteur sur V.
En particulier:
() V¢ =Im(Rg) = ker(Rg —Id).
(ii) dimc (V) = tr(Rg).
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Démonstration.

(i) Soity = Rg(x) € Im(Rg), alors pour s € G, on a

)0) = |G|ZP )(%) |G|2Psg Rg(x) =),

g8€eG geG
donc y € V. La réciproque est évidente :
sixe V9, Vs e G,p(s)(x) =x, alors x = Rg(x) € Im(Rg).

Pour montrer que R¢ est un projecteur, il faut montrer que Ré = Rg, ce qui est
évident car Im(Rg) est stable par G. Enfin, en vertu de la théorie des projecteurs,
Id — R est aussi un projecteur de noyau Im(Rg) = V.

(ii) La propriété (i) nous montre que Rg est un projecteur sur V°, donc en particulier
V =ker(Rg) ®Im(Rg) et en écrivant la matrice de R dans une bonne base, on en
déduit (ii). O

2.4 Application moyennée

En appliquant le lemme de Schur a la représentation des morphismes, nous allons pouvoir
calculer la dimension de 1’espace des G-morphismes. Pour clarifier les notations, nous
allons introduire la définition suivante.

Définition 2.12 (Application moyennée). Soient py et py deux représentations respec-

tivement sur V et W. On note p &y, ) 1a représentation des morphismes sur &’ (V,w).
7 def.

Pour f € Z(V,W), on note f = Rg(f) € Z(V,W), ce qui correspond a 1’application
moyennée :
FE=Y pw(s)ofopy(s™).
|G| seG
Proposition 2.13 (Application aux G-morphismes). On reprend les notations de la

définition précédente. On suppose que les représentations sur'V et W sont irréductibles.
Ona

dim (Homg (V,W)) = tr(Rg) = { (1) si les représentations sont isomorphes,
sinon.

Démonstration. Nous avons vu au corollaire 2.8 que dim¢(Homg(V,W)) vaut bien le

membre de droite de 1’égalité cherchée. De plus, le théoréme 2.11 (ii), nous dit que I’on a

tr(Rg) = dimc (Homg(V,W)). a

Au final, pour tout f € Z(V,W), fest une application G-invariante pour la représentation
linéaire p (v, w), c’est-a-dire un G-morphisme, fe Homg(V,W). On a en quelque sorte
un moyen de « fabriquer » des opérateurs d’entrelacement. Nous verrons a 1’exercice
VILS une application importante de cette technique.

3 Caracteéres

Dans cette partie, nous allons définir et utiliser 1’outil principal qui sert a analyser des
représentations, mais aussi a trouver des représentations de certains groupes abstraits.
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3.1 Définition et premieres propriétés

Définition 3.1 (Caracteres). Soit p une représentation d’un groupe G sur V un C-espace
vectoriel de dimension 7. On lui associe son caractére Y, défini par x,(s) = tr(p(s)) olt
tr désigne la trace. C’est une fonction de G dans C, c’est-a-dire y, € C[G].

Remarque 3.2. 11 faut faire attention au fait que les caractéres tels que nous venons de
les définir ne sont pas, en général, des morphismes de G dans C*. Ce ne sont donc pas des
caracteres au sens du chapitre I.

La connaissance du caractére )y d’une représentation p permet de connaitre, pour tout
g € Gettoutk € N, lavaleur de tr(p(g)¥) = tr(p(g*)), etsi on note {A1,...,A,} les valeurs
propres de p(g), cela revient donc a connaitre, pour tout k € N, la valeur de Sy = ¥, l,." .
Sy est la kM somme de Newton associée aux valeurs propres de p(g), et donc, en
vertu des relations de Newton, ces sommes permettent (moyennant tout de méme la réso-
lution d’un systeéme linéaire triangulaire) de calculer la valeurs des 0;(A;,...,4,), ol les
o; sont les polyndmes symétriques élémentaires. Grace aux relations coefficients/racines,
on connait donc le polyndme caractéristique P, de notre endomorphisme p(g), et donc
(moyennant la recherche des racines de ce polyndme tout de méme) les valeurs propres
{A1,-..,2x}. En conclusion, la connaissance du caractére d’une représentation est en fait
équivalente a la connaissance de toutes les valeurs propres de tous les morphismes as-
sociés aux éléments de G. Est-ce suffisant pour caractériser une représentation (tout du
moins a isomorphisme pres)? C’est a cette question que nous allons essayer de répondre.
Mais avant toute chose, voici un lemme classique qui sera utile pour étudier la représen-
tation des morphismes.

Lemme 3.3. Soitu € £ (W) et ve Z(V) deux applications linéaires.

On définit ® € (£ (V),ZL(W)) par I’égalité ®(f) =uo fov.

On a alors tr(®) = tr(u) tr(v).

Démonstration. On se donne des bases {e;}ic; de V et {f;}jcs de W, ainsi que les bases
duales {e] }icr et {ff } jes. On peut construire une base {F; j}; jjerxs de £ (V,W) par
VeV, Fj(x)= (%) fieW.

Si les endomorphismes de .#(V,W) sont écrits sous forme matricielle dans les bases (e;)
et (f;), alors Fi; = (6ix6j1) i j)eixJ- L élément F!,; de la base duale associe a une matrice
(ai,j) la valeur a ;. La base duale est ainsi définie par la propriété :

erg(V,W), <F,j’ >=<f;7f(ei)>'

On a donc
w(@)= Y (F®F))= Y (ff,uckov(e))
(i,j)eIxJ (i,))eIxJ
= Y (ffulegve) ;)= 2 (fulf))lefvie)
(i,))eIxJ (i,))elxJ
=tr(u)tr(v). O

Dans la suite, si py est une représentation sur un espace U, nous abrégerons la notation
Xpy €n Xu. Commengons par donner les propriétés évidentes des caracteres.
Proposition 3.4 (Propriétés des caractéres). On a les propriétés suivantes.

@) xp(1)=n
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(ii) Vs€ G, xp(s™1) = xp(s).
(iii) V(s,t) € G2, xp(tst™') = xp(s) : on dit que X, est une fonction centrale (voir para-
graphe 5.2) sur G.
(@iv) Si p se décompose en une somme directe de deux représentations py et pw, alors
déf.
Xp = Xvew = Xv + xw-
(V) Sionnote pyy,w) la représentation des morphismes sur & (V,W) de deux repré-
sentations py et pw, alors X o ,w) = Xov Xpw-
(vi) Sion note p* la représentation duale d’une représentation p , alors Xp+ = Xp.
(vil) Deux représentations isomorphes ont méme caractere.

Démonstration.

(i) C’est évident car tr(Idy) = dim(V) =n.
(ii) Ceci vient du fait que I’on peut prendre une matrice unitaire pour p(s) et du calcul
xp(s71) =t(p(s)™") = tr(p(s)*) = tr(p (s)).
(iii) Ceci vient du fait que V(A, B) € GL,(C), tr(BAB™!) = tr(A).
(iv) Sionnote %y une base de V et By une base de W, 1a matrice de pygw (s) s’écrit
dans la base BZ By U By :

Ms) = <MV0(S) va(s))’

ol My(s) est la matrice de py(s) dans la base By et My (s) celle de pw(s) dans
PBwy. D’oul

xvew (s) = tr(M(s)) = tr(My (s)) + te(Mw (s)) = 2v (s) + xw (s)-

(v) Ceci provient du lemme 3.3, appliqué a u = py (s) et v = py(s~1).
(vi) Ceci provient du fait que la représentation V * est isomorphe a la représentation des
morphismes .%(V,K), ce qui permet d’utiliser (v), et du fait que tr(fT) = tr(f).
(vii) Méme démonstration que pour (iii). g

Exemple 3.5 (Représentation réguliére). On note p, la représentation réguliére a gauche
d’un groupe G, sur un espace de dimension |G| = n. Cette représentation correspond 2
une représentation par permutation des éléments de la base {Jg},c de C[G]. La présence
d’entrées non nulles sur la diagonale de la matrice associée a p,(g) correspond a des
points fixes pour la permutation induite par g. Or la permutation induite par un élément
différent de 1’élément neutre n’a pas de point fixe, puisque

pr(8)(O)=6 < gh=h & g=e.

Onadonc x,(1) =netVs# 1, x,(s) =0.

3.2 Relations d’orthogonalité

Les caractéres sont des éléments (certes un peu particuliers) de I’espace C[G] des fonc-
tions de G dans C. Une idée importante est que 1’on peut munir 1’espace vectoriel C[G]
d’une structure d’espace hermitien, et le produit scalaire associé va s’avérer un outil a la
fois calculatoire et théorique tres efficace.
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Définition 3.6 (Produit hermitien). Si ¢ et y sont deux fonctions de G dans C, on pose

o 7 Z0OVO

teG
(-,-) est un produit hermitien sur I’espace vectoriel C[G] des fonctions de G dans C.

Nous allons maintenant réinvestir les propriétés de 1’opérateur de Reynolds pour démon-
trer le premier résultat important de ce chapitre, & savoir I’orthogonalité des caracteres
irréductibles.

Théoreme 3.7 (Relations d’orthogonalité). Une famille de caractéres de représenta-
tions irréductibles deux a deux non isomorphes forme une famille orthonormale de I’es-
pace des fonctions de G dans C, ce qui signifie que

— si ) est le caractére d’une représentation irréductible, on a (),x) = 1.
—si x et x' sont deux caractéres de représentations irréductibles non isomorphes, on a

(x.x) =
Démonstration. Soient p; et p, deux représentations de la famille considérée, respecti-
vement sur des espaces vectoriels V et W. Avec la proposition 2.13, on a donc tr(Rg) = 8,
ol 6 = +1 si les deux représentations sont isomorphes (donc en fait égales), et O sinon.
Or

(RG |G| sezGtr pf v, W)) z xP_Sf(V w) )

Nous avons vu a la proposition 3.4, (v), que ¥ (v,w)(s) = xv(s)xw(s), donc on a bien

3 v ($)aw(s) E (ow, av) = 6. 0

seG

tr(Rg) =
|G|

Corollaire 3.8. Il y a un nombre fini de classes de représentations irréductibles (sous-
entendu de classes pour la relation « étre isomorphe »).

Démonstration. Les caracteres des représentations irréductibles non isomorphes forment
une famille libre, car orthogonale, de C[G], qui est un espace de dimension finie sur C. En
conséquence, il y a un nombre fini de caractéres, donc un nombre fini de représentations
irréductibles. Leur nombre est borné par dim(C[G]) = |G|. O

4 Représentations et dénombrement

Avant d’aller plus loin dans I’étude des caractéres, nous pouvons tirer bon nombre de
conclusions intéressantes en utilisant seulement 1’orthogonalité des caractéres, que nous
venons de démontrer. En particulier, nous allons pouvoir répondre au probléme de 1’uni-
cité de la décomposition en représentations irréductibles.

4.1 Décomposition d’une représentation

Dans la suite de I’exposé, on se donne une famille de représentants (V;)7_, de I’ensemble
des représentations irréductibles sur G, chaque G-module V; étant implicitement 1i€ a une



210 Chapitre VII. Représentations linéaires des groupes finis

représentation p, pv, Ceci signifie que les V; sont deux a deux non G-isomorphes, et
que toute représentation irréductible W est G-isomorphe a un unique V;.

Définition 4.1 (Dual d’un groupe fini). On note G I’ensemble des classes d’équivalence
des représentations irréductibles sur G pour la relation d’isomorphisme. Par abus de lan-
gage, on notera souvent G I’ensemble (p,),_l, ce qui correspond a choisir un représentant
dans chaque classe. De méme, on notera souvent Y, pcG a la place de 2;:

Proposition 4.2 (Unicité de la décomposition). Soit une représentation sur V, de ca-
ractere Xy. Alors elle se décompose (c’est-a-dire est G-isomorphe) en

p
V@@V,  avec ai=(yv,x) @.1)

Dans cette relation, on a noté VfBa' < Vi - dV; (a; fois).

De plus, on a (xv,xv) = Xo_,a?

Démonstration. On sait, d’apres la proposition 1.32 que la représentation sur V se dé-
compose en somme de g représentations irréductibles (Wj)jl.=1

V=W - OW, 4.2)

chaque espace W; étant associé a un morphisme pw; : G — GL(W;). Donc d’aprés le pro-
position 3.4, (iv),on a yv = yw, + - + Xw,- Comme on a (v, Xi) = E;LI (XWj,Xi>, et
que (xw;, i) vaut 1 si W; est G-isomorphe a W, et 0 sinon, on en déduit que (yy, x:) re-
présente le nombre de W, pour j = 1,...,q, qui sont isomorphes a V;. Or par définition,
c’est a;.

Au final, dans I’écriture (4.2), on peut regrouper les W; isomorphes a V;, et donc écrire
V%% a1a place. O

Remarque 4.3. C’est en ce sens que la décomposition d’une représentation V est unique.
De plus, si on considére une représentation irréductible W, elle est isomorphe a un certain
Vi, et le nombre de fois que W intervient dans la décomposition (c’est-a-dire le nombre
de W; isomorphes & W) est indépendant de la décomposition et vaut (yw, xv) = 4;. En
particulier, si I’on dispose de deux décompositions W =W, @--- W, etW =W/ ®--- @
W/, alors r =/, et quitte & réordonner les indices, il existe des isomorphismes W; ~ W;.

Corollaire 4.4. Deux représentations sont isomorphes si et seulement si elles ont le
méme caractére. De plus, une représentation sur V de caractére xy est irréductible si et
seulement si (xv,xv) = 1.

Démonstration. Le caractere détermine entierement la décomposition (4.1) en fonction
des éléments de G, donc détermine la classe d’isomorphisme.

De plus, un caractere est irréductible si et seulement si sa décomposition ne posseéde qu’un
seul terme, ¢’est-a-dire s’il existe un j € {1,...,p} telqueaj = letsii# j,alors a; =0.
Ceci est équivalent & E 1a =1. a

4.2 Résultats de dénombrement

Le point central pour démontrer les relations liant les degrés des représentations irré-
ductibles est 1’utilisation de la représentation réguliére, puisque nous allons voir qu’elle
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contient toutes les autres représentations, et que 1’on peut méme expliciter sa décomposi-
tion :

Proposition 4.5 (Décomposition de la représentation réguliére). On note p, la repré-
sentation réguliére d’un groupe G, sur un espace vectoriel V de dimension n. Soit X, son
caractére (cf. exemple 3.5). On reprend les notations du paragraphe 4.1. La décompo-
sition de la représentation réguliére sur V (c’est-a-dire en termes de G-isomorphisme)
s’écrit

p
Ve~ @Van" avec ni = dime(V) = (4, X1) -
i=1

Démonstration. D’apres la proposition 4.2, le nombre de fois que V; intervient dans la
représentation réguliére vaut

2y oy = L 1y () = L (D= r:(1) = n:
i= (Xr Xi) |G|s§&7{r(s )Xi(s) |G|xr(1)Xt(1) 2i(1) i O

Corollaire 4.6. On a les relations :

@ Zn =G|

(ii) Pours # 1, Zf:l niXi(s) = 0.
Démonstration. D’aprés la proposition 4.5, on a x,(s) = Y nixi(s). On en déduit (i) en
prenant s = 1 et (ii) en prenant s # 1. O

Remarque 4.7. La relation (i) permet de déterminer si on a, ou non, trouvé toutes les
représentations d’un groupe donné, et, le cas échéant, de déterminer la dimension d’une
éventuelle représentation manquant a I’appel. Dans ce cas, on peut utiliser la relation (ii)
pour déterminer la valeur de ce caracteére (voir I’exemple du groupe G4, paragraphe 1.4,
chap. VIIL, pour une application).

5 Théorie de Fourier

Avant d’essayer de développer une théorie des séries de Fourier semblable a celle des
caracteres sur un groupe commutatif (ceci sera fait au paragraphe 5.3), commencgons par
définir le morphisme de transformée de Fourier. Cette construction est identique a celle
faite dans le cadre des groupes abéliens au paragraphe 4.1, chap. I, puisqu’elle consiste
a étendre une représentation sur un groupe G a I’espace des fonctions de G dans C. En
effet, nous avons déja dit qu’une représentation de G s’étend de mani€re unique en une
représentation d’algébre sur C[G]. Tout naturellement, nous sommes en fait en train de
construire la transformée de Fourier, et nous allons voir que, comme dans le cas des
fonctions de carré intégrable sur un intervalle réel, cette transformée de Fourier est un
morphisme d’algebre.

5.1 Transformée de Fourier

Définition 5.1 (Transformée de Fourier). Soit f € C[G] une fonction de G dans C. On
définit, pour p une représentation de G sur un espace V, 1’application (f)(p), par

n(f)(p) = X f(s)p(s) € Z(V,V).

seG
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Ceci permet de définir 1’application transformée de Fourier :

[ C[G] — @@,End(V;
Lg{ f H*{Mﬁ@MLp (5.1)

oll ’on a noté End(V;) £ £(V;,V;) I’espace des applications linéaires de V; dans V;. Par

abus de notation, on notera .Z (f)(p;) 4 la place de n(f)(p;) = (Zf):; (la i*™ compo-
sante de p;(f)).

Remarque 5.2. (Transformée de Fourier et représentation sur C[G]). Cette définition
est en fait trés naturelle, puisque nous nous sommes contentés de prolonger la représenta-
tion p définie sur G a une représentation sur I’algébre C[G] (c’est-a-dire en un morphisme
d’algebres de C[G] dans End(V)). En effet, on peut identifier s € G a 1’élément & (c’est
I’identification canonique), et on remarque que

Vse G, m(&)(p)=p(s).

On veut prolonger p en p sur C[G]. Pour définir, pour f € C[G], 1a valeur de p(f), il suffit
d’écrire f sous la forme f = Y f(s)&s. L'unique fagon d’effectuer ce prolongement est
d’utiliser la linéarité que doit avoir la fonction p, et de poser

PUNHE Y Fs)p(s).

seEG

Comme par hasard, c’est la définition que 1’on a prise pour (f)(p) ! De cette remarque,
on tire immédiatement la proposition suivante.

Proposition 5.3 (Convolution et transformée de Fourier). L’application transformée
de Fourier est un morphisme d’algébres de (C[G),*) dans @}_, (End(V;),0), autrement
dit,

Vp € G,V(f,8) € C[G), Z(f*8)(p)=Z(f)(p)°F(8)(p)-

Démonstration. 11 suffit d’utiliser le fait que ’application f € C[G] — & f(p) est I'uni-
que représentation qui étend la représentation p a ’espace C[G]. Or une représentation
d’une algebre est un morphisme d’algebres, d’ol 1a proposition. O

Comme pour la transformée de Fourier sur un groupe abélien, 1’application que nous ve-
nons de définir est en fait un isomorphisme d’algebre. C’est ce que nous allons démontrer,
en utilisant une fois de plus la représentation réguliere.

Proposition 5.4 (Bijectivité de la transformée de Fourier). L’application transformée
de Fourier est un isomorphisme d’algébres de (C[G],*) sur @F_, (End(V;),o).

Démonstration. Injectivité: Soit f € C[G] telle que Vi = 1,...,p, Z f(pi) = 0. Soit
alors p une représentation quelconque. On peut décomposer p en somme des représen-
tations (p,-)le. Ceci signifie que dans de bonnes bases, la matrice de p(f) est formée de
tableaux diagonaux des matrices & f(p;),i = 1,...,p, donc qu’elle est nulle.

En appliquant ce résultat & la représentation réguliére p, sur I’ espace V = C[G], on obtient

pr(fr) =0, d’od

déf.

0=7Ff(pr)(be) = fxbe= 1.

Surjectivité : Nous avons déja vu au corollaire 4.6 que ¥7_, ni2 = |G]|. Or on sait que
dimc (C[G]) est égal a |G| (car les (65)sec forment une base canonique de C[G]), et que
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1’on a de plus dimg(End(V;)) = n? (c’est une algébre de matrices). Par égalité des dimen-
sions, on en déduit que %, qui est injective, est bijective. O

On peut méme aller plus loin en explicitant 1’application inverse, grace & une formule
d’inversion qui généralise la formule déja prouvée dans le cas d’un groupe abélien, a la
proposition 4.4, chap. L.
Théoréme 5.5 (Formule d’inversion). Pour f € C(G], on a la formule d’inversion sui-
vante :

Vg € G, f | znl (pl )9f(pt))’

pieG

ou n; est le degré de la représentation p; et tr désigne la trace.

Démonstration. En utilisant la linéarité des deux membres de 1’égalité, il suffit de dé-
montrer la proposition dans le cas ol f = 8. Le membre de droite de 1’égalité se résume
alors a

|G| znltr(pl(g l)pl(h IGI zanz

Or, d’aprés la proposition 4.6, cette derniére quantité vaut 1 si g~'h = 1 (c’est-a-dire
g = h), et 0 sinon. En regardant le membre de droite de 1’égalité, qui vaut J,(g), on voit
que c’est ce qu’il fallait démontrer. (]

5.2 Espace des fonctions centrales

On suppose comme précédemment que 1’on dispose d’une famille de représentants (¥;);er
des caractéres des représentations irréductibles sur V, c’est-a-dire de G. Nous avons vu
que les caractéres sur un groupe G ont une propriété importante, puisqu’il sont dans le
centre de C[G] pour le produit de convolution. Ils partagent cette propriété avec une classe
de fonctions plus grande, que I’on nomme les fonctions centrales, et que 1’on va étudier
dans ce paragraphe. Nous allons voir en particulier le résultat primordial de ce chapitre,
qui dit que les caractéres forment en fait une base de cet espace, et que cette base est
méme orthonormée.

Commengons par rappeler les définitions liées & 1’action de G sur lui-méme par conjugai-
son.

Définition 5.6 (Classes de conjugaison). G agit sur lui méme par conjugaison: pour
un élément g € G, I’action envoie & € G sur ghg~!. Les orbites pour cette action sont
appelées les classes de conjugaison de G. Ainsi, la classe d’un élément & € G est

Ci = {ghg™' \ g € G}.
Deux éléments sont dits conjugués s’ils appartiennent a la méme classe de conjugaison.

Définition 5.7 (Espace des fonctions centrales). Une fonction ¢ : G — C est dite cen-
trale si elle vérifie

V(s,8) € G?, ¢(sgs™") = 9(g)-
On note C[G]® I’ensemble des fonctions centrales sur G : c’est un sous-espace vectoriel

de I’espace C[G] des fonctions de G dans C. Chaque fonction étant constante sur chaque
classe de conjugaison, la dimension de (C[G]G est égale au nombre de ces mémes classes
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(égale, donc, au nombre d’orbites pour I’action de conjugaison de G sur G). De fagon plus
précise, si on note {Cy,...,C,} les différentes classes de conjugaison de G, une base de
I’espace C[G]€ est donnée pas les fonctions feys -5 fc,» définies par

1 sigeC;
Vg € G, fCi(g)z{O singon .

(5.2)
En fait, les fonctions centrales forment un sous-espace trés important de I’algébre C[G].
Proposition 5.8. Les fonctions centrales sont les fonctions f € C|G] qui vérifient Vo €
C[G), f * @ = @ * f. En d’autres termes, C[G)C est le centre de C[G) pour le produit de
convolution *.

Démonstration. 11 suffit d’écrire la définition du produit de convolution :

(f*xo) (@ E Y, f(h) =3 o(K)f(gh'™),

heG heG
ol ’on a effectué le changement de variable 4’ = h~lg dans la sommation. On conclut en
utilisant, puisque f est centrale, le fait que f(gh'~!) = f(K'1g). O

Remarque 5.9. La notation C[G]€ est cohérente avec la théorie des actions de groupes,
car les fonctions centrales peuvent étre vues comme les éléments invariants de C[G] sous
I’action de conjugaison par G. En effet, G agit par conjugaison sur C[G] par

Vge G, VfeC[G], g f:xr flgxg™h).

Les fonctions centrales forment donc la sous-représentation invariante de C[G] sous cette
action de G sur C[G].

Lemme 5.10. Si f € (C[G]G est une fonction centrale de G dans C, alors, pour toute
représentation irréductible p sur un espace V de dimension n, & f(p) est une homothétie

G _—
de rapport l’—ll {f, %p)-
Démonstration. Commengons par remarquer que % f(p) est un opérateur d’entrelace-
ment pour p :
VseG, p(s)'Zf(p)p(s)=3 Ft)p Op(s) =Y f()p(s™!
teG teG

Donc, en utilisant le changement de variable u = s~!¢s et en utilisant le fait que la fonction
f est centrale, il vient

Vs€G, p(s)'Fflp)p(s)= Y, flsus™)p(u) =Y, f(w)p() € Zf(p).
ueG ueG
On applique alors le cas (ii) du lemme de Schur 2.5 pour voir que .% f(p) est une homo-
thétie de rapport A. Comme sa trace vaut nA, on a

nk =3 f(6)t(p Zf )%p(t) = |G (£, %) - O

teG

Remarque 5.11. Cette propriété, démontrée de facon quelque peu calculatoire, traduit
simplement le fait que le morphisme d’algébres # fait correspondre le centre de C[G]
(c’est-a-dire les fonctions centrales) avec le centre de 1’algébre @le End(V;) (c’est-a-
dire les éléments qui induisent sur chaque V; des homothéties). Toutes ces propriétés vont
permettre d’affiner le résultat d’orthogonalité des caractéres, démontré au théoréme 3.7.
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Théoréme 5.12. (xp) pe6= (Xi)2_, forme une base orthonormale de I’espace C[G|® des

fonctions centrales sur G.

Démonstration. Les ();) forme une famille orthonormale, donc libre, il suffit de mon-
trer qu’elle est génératrice. Dire que les (y;) engendrent C[G]C est équivalent (car f €
C[GI° & f € C[G)% a dlre que les (x;) engendrent C[G]C. Autrement dit, si on prend
f € C[G]C orthogonale 3 H = t Vect{%; \i=1,...,p}, on veut montrer que f = 0. Or avec
le lemme 5.10, on sait que % f(p;) est une homothétie de rapport (f,%;), donc est nulle,
car f est orthogonale a H. Ceci signifie que la transformée de Fourier de f est nulle, donc
f =0 grice a la proposition 5.4. (]

Corollaire 5.13. Le nombre p de représentations irréductibles sur G non isomorphes
(c’est-a-dire le cardinal de G ) est égal au nombre de classes de conjugaison de G.

Démonstration. Comme les fonctions de C[G]C sont les fonctions constantes sur les
classes de conjugaison de G, la dimension de C[G]€ est égale au nombre de ces classes.
On termine en utilisant le fait que les ( x,-)le forment une base de C[G]G. O

Remarque 5.14. Méme si on sait que le nombre de représentations irréductibles a iso-
morphisme prés est le méme que le nombre de classes de conjugaison, on n’a, a priori,
aucun moyen de mettre en relation ces deux types d’objets. Par exemple, étant donnée
une classe, on aimerait disposer d’un moyen de construire une représentation irréduc-
tible. Dans le cadre du groupe G,,, on sait le faire, mais la construction est compliquée (se
référer au livre de FULTON et HARRIS [35]).

Corollaire 5.15. G est commutatif si et seulement si toutes ses représentations irréduc-
tibles sont de degré 1.

Démonstration. Sion note p le nombre de classes de conjugaisons, G est commutatif si et
seulement si p = |G|. Oravec le corollaire 4.6, on a ¥, n? = |G|, donc G est commutatif
siet seulementsiVi=1,...,p,n; = 1. O

5.3 Séries de Fourier

Ce paragraphe se contente de synthétiser les résultats précédents sous la forme d’une
formule de décomposition d’une fonction centrale en série de Fourier. On retrouve exac-
tement les mémes énoncés que pour les séries de Fourier sur un groupe abélien, en se
restreignant bien siir aux fonctions centrales. Dans le chapitre suivant, nous étendrons ces
séries de Fourier aux fonctions quelconques de C[G], mais ceci demandera de laisser de
cOté nos caracteres, pourtant si utiles!

Définition 5.16 (Coefficients de Fourier). Pour f € C[G] et pour p; une représentation
irréductible, on définit le coefficient de Fourier de f en p; par

Z(f, ) = ; 53
cr(p) = (f |G|t§&f )2i(t) (53)

ol I’on a noté J; le caractere de p;.

Proposition 5.17 (Décomposition en série de Fourier). Soit f € C[G]|C une fonction
centrale sur G. On a la décomposition de f en série de Fourier:

= ZACf (P)xp

peEG
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Démonstration. Ceci provient immédiatement du fait que les (y;) forment une base or-
thonormale de C[G]°. 0O

Proposition 5.18 (Formule de Plancherel). Soient f et g deux fonctions centrales sur
G. On a l'identité de Plancherel :

L3 160560 = 3 cr(0)eelo).

IG' seG pea

Démonstration. En écrivant f = eracf(X)X ainsi que g = Zx cgCe(X)x, il vient

Y f)gs) =1Gl{f8) =16l X cr(a)eg(na) (1, x2).

seG (Xl !xz)eaz

On obtient donc 1’égalité voulue grice aux relations d’orthogonalité entre les caractéres.
g

En conclusion, observons comment cette décomposition d’une fonction centrale s’ex-
plique en termes de changement de base. Nous avons déja vu que la base « naturelle »
dans laquelle on représente volontiers une fonction centrale est la base {fc,,..., fcp} des
fonctions « plateau ». La décomposition en série de Fourier permet de passer de cette
base, peu pratique du point de vue calculatoire a la base des caractéres, qui a des pro-
priétés beaucoup plus intéressantes vis-a-vis de la convolution. C’est précisément de cette
utilisation des caracteres qu’il va €tre question dans le paragraphe suivant.

5.4 Transformée de Fourier et caractéres

Dans ce paragraphe, nous nous intéressons a présent aux propriétés des caractéres en tant
qu’éléments centraux de 1’algeébre C[G]. Mais pour étudier les projecteurs d’une telle
algebre, nous sommes amenés a utiliser certains concepts d’une portée plus générale.
Définition 5.19 (Idempotents centraux). Soit 2/ une algébre associative de dimension
finie sur le corps C des complexes. Un élément e € &7 est appelé idempotent central s’il
vérifie e = e et Vx € &, e xx = x* e. Une famille {e }¢;. (ol L est un ensemble fini) est
un systéme d’idempotents orthogonaux si elle vérifie

e, siA=pu

Yea=ly VApel el*el‘:{ 0 sinon
AeL

Supposons que I’on dispose d’un isomorphisme d’algebre

®: o S PEnd(V?) = B,
A€l

ol les V* sont des espaces vectoriels de dimension finie. Alors, notons
E,=00--0001d)1 000 - ®0€ B

On voit facilement que la famille {E) },¢; forme un systéme minimal d’idempotents
orthogonaux, puisque 1’on dispose d’une description compléte du centre de % (les mor-
phismes qui sont des homothéties sur chaque V*). En conséquence, grice a @, il est tres
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simple de déterminer un systéme d’idempotents sur 7, il suffit de considérer les {e3 } 11
avec ey = O~1(Ey).

Si on se place dans le cas oit & = C[G], 1a transformée de Fourier # définie par I’équation
(5.1) va donc nous permettre de construire notre systéme formé par les {e; } req Iei,
I’ensemble L a été pris égal a G, puisque a chaque classe de représentation irréductible A
correspond un idempotent e . Le point important est que 1’on peut calculer explicitement
ces idempotents, en utilisant la formule d’inversion de Fourier, proposition 5.5 :

ny,

-1
IGlXA(g ))

VAEG,VZEG, e(s)=F 'Erlg) =
ol on a noté ny la dimension de la représentation A. Rappelons les deux propriétés essen-
tielles de nos e, :

siA=pu

e
Y en=68 et V(A,u) € G, el*euz{ol sinon

reG

Ces idempotents orthogonaux permettent en particulier de calculer des projections sur des
sous-représentations. Soit pyy une représentation de G sur un espace U. On étend de fagon
naturelle cette représentation en une représentation d’algebre, que 1’on note encore py.
En utilisant le langage de la transformée de Fourier, on peut méme écrire, pour f € C[G],
que py(f) = Z(f)(py). Pour tout A € G, on définit alors un endomorphisme de U, noté
P, de la fagon suivante :

Py Z py(er) = Z(e)(pv)-

Par ailleurs, on sait, avec la proposition 4.2, que I’espace U se décompose en somme
directe de représentations irréductibles, et méme plus précisément :

U=@Vvy™ avec ay=(xa,2w) €N,
1eG

ol les V), sont les espaces associés aux représentations irréductibles A € G.

Définition 5.20 (Espaces isotypiques). On appelle U = Vfa “4 1a composante isotypique
de U associée a la représentation irréductible A.

On peut maintenant énoncer le théoréme important de ce paragraphe.
Proposition 5.21. P est le projecteur sur Uy, associé a la décomposition U = @U,,.

Démonstration. Soit V une sous-représentation irréductible. La construction de e; mon-
tre que Z (ey)(pu ), restreint a V, est I'identité si V ~ Vj, et est nul sinon. Ceci veut bien
dire que P, est le projecteur cherché. ]

6 Exercices

Exercice VIL.1 (Irréductibilité et indécomposabilité). Soit K un corps. On considére la

représentation
K — GLy(K)

— 1 x
* 01
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Montrer que si K = C ou si K est un corps fini, ’espace K? est indécomposable mais
réductible pour la représentation considérée. En déduire que le théoreme 1.29 est faux, si
le groupe de départ est infini, ou si le corps de I’espace d’arrivée n’est pas algébriquement
clos.

Exercice VII.2 (Opérateurs stationnaires). Soit G un groupe fini, et un opérateur li-
néaire A : C[G] — C[G]. On note, pour 4 € G, 7, I’opérateur de translation, c’est-a-dire :

VfeC[G], wf:g— f(h'g).

On suppose que A commute avec les translations, c’est-a-dire A7, = 7,A. Montrer qu’il
existe ¢ € C[G] telle que I’on ait

VfeC[G], Af=fxo,
ou * désigne le produit de convolution.

Exercice VII.3 (Représentation irréductible). Soit yy le caractére d’une représentation
de dimension 1 non triviale, et yy celui d’une représentation irréductible. Montrer que
Xu Xy est le caractére d’une représentation irréductible différente de py et py.

Exercice VIL.4 (Représentation d’un groupe produit). Soient G et H deux groupes fi-
nis. Donner des représentants des représentations irréductibles du groupe G x H en fonc-
tion des représentations de G et de H. Quels sont les caractéres correspondants ?

Exercice VILS5 (Action sur les polyndmes). Soit G un sous-groupe fini de GL,(K), ou
K désigne un corps de caractéristique 0. Au paragraphe 1.2, on a défini une représentation
de G sur ’espace vectoriel des polyndmes en n indéterminées, K[Xj, ..., X,]. On rappelle
que 1’on note K[Xj,...,X,]¢ le sous-espace des polyndmes invariants sous cette action.
C’est aussi un sous-anneau. On souhaite montrer que ce sous-anneau est engendré par un
nombre fini de polyndmes.

Dans la suite, on aura besoin des notations suivantes :

Vo = (a4,...,0) € (NT)", X*EXM...X%.

On note alors |¢t| = |oy|+ -+ +|on| le degré du mondme obtenu. Par commodité, on note
aussi
A déf.
A-X)*ZEA-X)P - (A-X), avec (A-X)i = anXi + -+ + ainXn.
Le but de cet exercice est de trouver un ensemble de polyndmes {Py,...,P;} générateur
de I’anneau K[X1,...,X,]¢. Ceci signifie que

VP e K[Xl,...,X,,]G, I0 e K[h,..., Y5, P=Q(P,... ,F). (6.1)
Ce théoreéme est souvent appelé théoréme de Noether.

1. Dans le cas o1 le groupe G est le groupe symétrique S, on fait agir G sur I’espace
K[Xy,...,X,] par permutation des indéterminées. Expliquer pourquoi cette action
rentre dans le cadre de cet exercice. Donner alors des générateurs de 1’anneau des
invariants.

2. On considere les sous-groupes de GL,(C) suivants:

(/£1 © ,
v4‘3i_‘{<0 il)} et C={Id, —1d}.

Pour chacun d’eux, déterminer 1’anneau des invariants, et donner un ensemble de
générateurs minimal. Est-ce que la décomposition d’un polyndme de K[X,X5] en
fonction de ces générateurs est unique ?
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3. On rappelle que 1’opérateur de Reynolds pour I’action de G sur K[Xj,...,X,] est
défini par
f(A-X),
6.3
ol on note symboliquement A - X 1’action de A sur les indéterminées Xj,...,X,. On
souhaite montrer le résultat suivant:

VfeK([Xi,...,Xn), Re(f)(X

K[Xi,.., %)% £ K [Ro(x?) ; 1BI <|G] .

Expliquer pourquoi il suffit de montrer que pour tout exposant @, Rg(X %) s’exprime
comme un polyndme en les Rg(XP), |B| < |G|.

4. On note
X1+ +X) = Y anX,
lor|=k
ou les ay sont des entiers positifs. Soient alors uy,...,u, de nouvelles indétermi-

nées. On note
déf.

VAeEG, Us=uiA1- X+ +uA,-X.

Montrer que 1’on a

SkUa; A€EG)E Y (Un)k = Y, |GlagRc(X¥)u®
A€G |a|=k

On rappelle que tout polynéme symétrique de K[Y1,...,Y,] s’écrit en fonction des
p premiéres sommes de Newton Sy définies par

Y.

Il
M

Vke{l,...,p}, Sk(Y],...,Yp)

i=1

En utilisant cette propriété pour les sommes de Newton S;(Uy ; A € G), montrer
qu’il existe un polyndme F & coefficients dans X tel que

Y auRc(X ua=F( Y |GlagRa(XP)dP,..., ¥ |G|aaRG(Xﬁ)u/3).
o=k 1B1=1 " ipi=ial

En déduire le résultat voulu.
5. On considere le groupe

Ci £ {1d,A,A%,A%}, ol A“é"<(1) "01>.

Utiliser 1’opérateur de Reynolds pour déterminer I’anneau des invariants.

L’exercice VIIIL.9, propose d’utiliser MAPLE pour calculer 1’anneau des invariants par la
méthode exposée ici.

Exercice VIL6 (Théoréme de Molien). On considére G un sous-groupe fini de GL,(C),
et on souhaite étudier I’action de G sur les polyndmes, comme définie au paragraphe
1.2. Plus précisément, pour obtenir une représentation en dimension finie, on considére la
restriction de cette action a 1’espace V; = K?[Xl ,+-+,Xp] des polyndmes homogénese de
degré s (dans lequel on inclut bien sfir le polyndme nul). On note d; la dimension de V.
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On note ps : G — GL(V;) I’action ainsi définie. On rappelle qu’une base de V; est donnée
par I’ensemble des mondmes de degré s. Pour i > 0, on note a; le nombre maximum
de polyndmes de Vs qui sont homogenes, invariants, et linéairement indépendants. Pour
étudier ces nombres a;, on introduit la série formelle de Molien :
d() = z ail’.
n=0

On souhaite montrer le théoréme de Molien, qui affirme que :
1

®)= E'G det(Id — AA)

(6.2)

1. Montrer que si un polyndme P € V; est invariant sous 1’action de G, alors chacune
de ses composantes homogenes est invariante sous-G.
Expliquer pourquoi a; = dim(V.C), ot on rappelle que V¥ désigne le sous-espace
vectoriel des invariants.

2. Pour A € G, on note Al 1a matrice de ps(A) dans la base de V; constituée des mo-
némes homogenes de degré s. On indexera les éléments de cette base dans 1’ordre
lexicographique X; < --- < Xj,. Par exemple, pour n =2:

a® ac c

. _fa b Q) _
si A= c d alors AY“'=|2ab ad+bc 2cd
*  bd 4

Montrer que
|
ag=— Y tr A[‘]>.
P
3. On note wy,...,m, les valeurs propres de A € G. Quelles sont les valeurs propres

de Al1? En déduire que le coefficient en A° dans det(Id — AA)~! est égal 2 la trace
de AlSl, En déduire I’expression (6.2).

4. Dans le casdes groupes G| et G, rencontrés a 1’exercice VIIL9, quelle est I’expres-
sion de ®(A)? En quoi ce résultat permet de simplifier la recherche de générateurs
(au sens de (6.1)) de K[Xj,...,X,]%?

Exercice VII.7 (Lemme de Cauchy-Frobenius). Soit G un groupe fini agissant sur un
ensemble fini X. Pour g € G, on note X, I’ensemble des points fixes de g, c’est-a-dire :

X, = {xeX\g-x=x}.
1. Onnote ¥ le caractere de la représentation triviale sur G. Soit V un espace vectoriel
de dimension |X| dont une base est {ex }xex. Ceci permet de définir une représenta-
tion par permutation 7 : G — GL(V) par les relations

Vge G, VxeX, n(g)(ex) = egx.
Calculer (x1, xx) & I'aide des |X;|.
2. Démontrer le lemme de Cauchy-Frobenius (parfois attribué a Burnside), a savoir
que (7, %)) est égal au nombre d’orbites de X sous I’action de G.
3. A partir de deux types de pierres précieuses, combien de colliers différents de 6
pierres un joaillier peut-il construire ? On pourra utiliser une action du groupe dié-
dral Dg sur 1’ensemble X = {0,1}S.
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4. On suppose que |X| > 2 et que I’action de G sur X est doublement transitive. On
rappelle que Homg(V) désigne ’espace des opérateurs d’entrelacement, c’est-a-
direles f € Z(V,V) tels que fon(g) = m(g) o f. Montrer que dim(Homg(V)) = 2.
En déduire la décomposition de G-modules V = C1® W, ou W est irréductible.
Conclure que la représentation standard de &,, est irréductible pour n > 2.

Exercice VIL.8 (Représentation et théorie des nombres). Soit G un groupe fini. On
souhaite montrer que les dimensions des représentations irréductibles de G sontdes divi-
seurs de G. Cet exercice nécessite quelques connaissances sur les entiers algébriques, que
1’on pourra trouver au début du livre de SAMUEL [63].

1. Soit p : G — V une représentation irréductible, et X une classe de conjugaison de
G. On définit

FEY p(g) €GLYV).

g€EK
Montrer que f est une homothétie de rapport r(p, K). Déterminer r(p,K) en fonc-
tion de ¥, (K) (la valeur de y, sur K), et d, la dimension de V.

2. Démontrer la relation Gl

dp
la somme portant sur ’ensemble des classes de conjugaison de G.
3. Soit K, K’ et K” trois classes de conjugaison de G. On définit, pour x € K",

;r(p,K)x(K‘l),

a(K,K',x) £ Card {(k1,k2) € K xK' \ x =kikz } .

Montrer que a(K,K’,x) prend une valeur constante pour x € K”.
On note a(K,K’,K") cette valeur.

4. Montrer la relation

r(p’K) r(p,K') = Za(K,K',K”)r(p,K”),
KI/

la somme portant sur les classes de conjugaison de G.

5. En déduire que Y g r(p,K)Z est un sous-anneau de C de type fini sur Z. Montrer
alors que les r(p,K) sont des entiers algébriques, puis que ld—il est un entier algé-
brique. Conclure.

Exercice VILI.9 (Déterminant d’un groupe). Le lecteur pourra faire le rapprochement
entre cet exercice et ’exercice 1.1 qui étudie les déterminants circulants. Il s’agit en
quelque sorte de généraliser cette notion a un groupe quelconque. Cet exercice est tiré
de I’exposé de LAM [41], qui traduit en des termes modernes la découverte de la théorie
des représentations par FROBENIUS.

Soit G un groupe fini, et p : G — GL,(C) une représentation. On rappelle qu’elle s’étend
de maniére unique en un morphisme d’algébres f — 7 f encore noté p : C[G] — M, (C).
On considére un ensemble d’indéterminées {X, }¢c. Le déterminant du groupe G est noté
©(G), et c’est le déterminant de la matrice A de taille |G| x |G|, dont les entrées, indexées

par les éléments de G, sont A, £x -1 Pour simplifier les notations, on note

déf.
X= Z Xg0g,
geG
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que 1’on peut considérer comme un élément générique de 1’algeébre C[G]. De méme, on
définit la valeurde p en X :
X)E 3 Xep(8)

g€eG

que I’on peut voir comme une matrice a coefficients dans C [{Xg \ge€ G}] Ceci permet
de définir le déterminant du groupe Genp:

©,(G) = det(p(X)),

indéterminées.

qui est donc un polynéme a

1. Soit p, 1a représentation réguli¢re de G. Montrer que @), (G) = ©(G).
2. Soit py et py deux représentations de G sur des espaces vectoriels U et V. On note
puev la représentation somme. Montrer que

GPUGBV (G) = ®p“ (G) epv (G)

3. On considére un systéme de représentants des représentations irréductibles, p; :
G — GL,,(C), pour i = 1,...,p. Expliquer pourquoi les morphismes d’algebres
associés p; : C[G] — M,,(C) sont surjectifs. Si on note p;(X) = {Ayx(X)} (sous
forme matricielle), en déduire que les formes linéaires (en chaque Xg, g € G) A ik (X),
pour 1 < j, k < n; sont indépendantes.

4. Démontrer que le déterminant des matrices de M, (C), vu comme un polyndme en
n? variables, est irréductible.

5. Expliquer pourquoi on peut compléter la famille {4;x(X)} en une base de I’espace
des formes linéaires en les variables {Xg \ge G}. En déduire que ©,,(G) est irré-
ductible.

6. En remarquant que X; n’apparait que sur la diagonale de p;(X), en déduire si 1’on

regarde ©),(G) comme un polyndme en X1, alors son terme de degré X 1"" ~ " s’écrit

2 XP: X":
g#1

En déduire que la connaissance de ©,(G) détermine p;, puis que les ©,(G), pour
i=1,...,p sont deux a deux non proportionnels.
7. Conclure que la décomposition de ©(G) en facteurs irréductibles sur C s’écrit

6)=T1encr

Exercice VII.10 (Groupe affine sur un corps fini). Cet exercice introduit des notions
importantes que 1’on utilisera a 1’exercice suivant. Soit p un nombre premier. On considere
le groupe des transformations affines inversibles de IF, qui sont de la forme

JFp — F
q)“’b'{ x +— ax+b’

oua € Fy eth € Fp. On note G, ce groupe.

1. Montrer que I’identification de @, 4 avec le couple (b,a) € F, x F, permet de dé-
finir G, comme un produit semi-direct. Quel est I’élément neutre ? Donner les for-
mules définissant le produit de deux éléments de ce groupe ainsi que I’inverse d’un
élément.
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2. On définit une application

n { G, — CIF]
' (b’a) — (f(b,a):x'_’f(a_l(x—b))) '
Montrer qu’il s’agit en fait d’une représentation unitaire (pour le produit hermitien
usuel sur C[F,]) du groupe G ).
3. On considere le sous-espace E C C[F,] :

E= {fe(C[]F,,] > fx) =o}. (6.3)
x€F,

Montrer que E est un sous-espace invariant sous I’action de 7, et que la restriction
de 7 a E définit une représentation irréductible.

Exercice VIL.11 (Transformée en ondelettes sur IF,). Cet exercice est tiré d’un article
de FLORNES et de ses collaborateurs [32]. Il s’agit de construire une transformée en
ondelettes sur le corps IFp, en utilisant le langage de la théorie de représentations. On
reprend les notations de I’exercice précédent.

Soit y € C[F,], que I’on nommera ondelette. On définit, pour f € C[F)] la transformée
en ondelettes # (f) € C[G,):

S G — C
W(f)-{ (b,a) — p(f,Vp,a) = Zrer, fF) V(a1 (x=b))

1. Exprimer # (f)(b,a) en fonction de f (la transformée de Fourier de f sur le groupe

additif IF,).
2. On suppose que ¥ € E. Montrer alors que si f € E, on a la formule d’inversion :
1
Vxe ]Fpa f()C) = z W(f)(b’a)W(b,a)(x)a
€V (b,a)€G,

ol I’on a noté ¢y < p? (y, w). On pourra penser a calculer la transformée de Fourier
des deux membres.
3. Soit maintenant une ondelette y telle que

p—1
(p=1)IP(0)*= g,l (k).

Montrer que # est, a une constante dy, prés, une isométrie de C[F,] sur C[G)].
Montrer que son inverse est donné par la formule

: W(f)(bsa)'V(b,a) (x),

VxeF,, f(x)= @( :
b,a)eG,

avec dy = (p—1)|y(0)%.

4. Ecrire un algorithme de transformée en ondelettes sur F,, ainsi que la transformée
inverse. Représenter graphiquement les résultats obtenus pour diverses ondelettes
et fonctions de test.

La figure 7.1 représente quelques transformées. La colonne de droite représente le module
de #(f)(b,a) (translation b en abscisse, dilatation a en ordonnée), plus la couleur est
noire, plus le coefficient est grand.
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Fonction Fonction y Transformée W(f)(b,a)
1 2 +
(‘/4‘ S‘S
10 [‘f‘ ’\\
P =,
o 1 o 20 ’12‘ ‘\‘\
: B .
08 B 0 ; ® a0
40| 2
0 - i, 2
10 20 30 40 50 -20 0 20
1 o 1
05) : 05
0 .— 0
-05 ‘ -05
. . -1 .
10 20 30 40 50 -20 0 20
15 PR 2
ol
0.5 ' ‘3 . ‘ . 4
0 . v . -
. M 0
-0.5} + : Lo ' .
- LI I
o o8 i -1 i i
10 20 30 40 50 -20 0 20 10 20 30 40 50

b

FIG. 7.1 — Transformée en ondelettes sur Fs3



Chapitre VIII
Applications des représentations linéaires

C’est pourquoi les balles de tennis et les étoiles sont des
spheres ; la terre serait également une sphére si elle ne
tournait pas autour d’un axe. [...] Le phénomene qui
demande une explication n’est donc pas cette symétrie de
rotation mais bien les écarts par rapport a cette symétrie

H. WEYL [77] (1952)

Les représentations linéaires ont de nombreuses applications, principalement en algebre
théorique. Méme dans le cadre simple des groupes finis, cette théorie permet de démontrer
des résultats difficiles. Sans aller tres loin dans cette direction, le deuxiéme paragraphe
montre comment, a partir de la connaissance des caracteéres d’un groupe (c’est-a-dire
d’informations sur la fagon dont notre groupe agit sur des objets extérieurs), on peut
déduire des informations sur les sous-groupes qui le composent. Avant toute chose, et
pour fournir un peu de matériel d’étude, le premier paragraphe étudie certains groupes
finis importants. Enfin, le dernier paragraphe, qui clot ce livre, transpose le probleme de
I’analyse de données dans le cadre des groupes non commutatifs.

1 Représentation de groupes classiques

La mise en pratique de la théorie développée dans ce chapitre passe par I’étude de groupes
élémentaires mais qui interviennent de fagon constante aussi bien en physique théorique
ou en cristallographie qu’en mathématiques. Nous allons donc déterminer la liste de re-
présentations irréductibles de ces groupes, leurs caractéres, en essayant de retrouver les
différentes significations géométriques de nos groupes (groupes d’isométries d’une figure,
action sur les faces, les arétes, etc.).

1.1 Table des caracteéres

Comme les caractéres sont constants sur les classes de conjugaison Cy,...,Cp, de G, il
nous suffit de dresser un tableau des valeurs des caracteres (¥;)7_, sur ces classes. Nous
allons donc considérer les quantités x;(g;), ol g; est un représentant de la classe C;.
Dans la suite, on place toujours en premiere position la représentation triviale, de sorte
que x; = 1. Par commodité, on indique aussi les cardinaux k; des différentes classes C;.
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Enfin, on utilise le fait que x;(1) = n;, pour établir une table, qui est une matrice carrée de
taille p:

1 k... Kk
1 82 8p
X1 1 1 1

X2 | n2 x2(82) ... x2(8p)

Xp |np Xp(82) --- Xp(8p)

Nous avons vu, au paragraphe 5.2, chap. VII, que les caractéres forment une base ortho-
normée de 1’espace des fonctions centrales. Ceci se traduit, sur la table de caracteres, par
des relations d’orthogonalité entre les lignes de la table, en prenant bien soin d’affecter
chaque colonne j du poids k;. En fait, on a aussi des relations similaires sur les colonnes
de la matrice comme le précise la proposition suivante:

Proposition 1.1 (Orthogonalité des colonnes). Si on note x (Cy) la valeur du caractére
X2 sur la classe de conjugaison Cy, on a

1ol siC1 =
ZXA(Cl)XA(C2)={ ICil ,Cl =

neG 0 sinon

Démonstration. Soit C une classe de conjugaison. On rappelle que I’on note f¢ la fonc-
tion caractéristique de cette classe (cf. équation (5.2), chap. VII). Calculons ses coeffi-
cients de Fourier en utilisant la formule de définition (5.3), chap. VII:

3, 7e0)8) = g 721,

geG

VA e 5, Cfc |G|

En prenant successivement C = C; puis C = C; dans cette formule, puis en utilisant la
formule de Plancherel, équation (5.18), chap. VII, on obtient le résultat voulu. a

1.2 Les groupes cycliques

Un groupe cyclique étant commutatif, d’aprés le corollaire 5.15, chap. VII, il n’a que
des représentations de dimension 1, c’est-a-dire des caractéres au sens premier du terme
(des morphismes de G dans le groupe multiplicatif C*). Soit G = {1 go,go, ,gg_l} un

groupe cyclique fini de cardinal n et de générateur go. Soit @, = e % . Nous avons déja vu
que tous les éléments de G sont alors de la forme, pouri€ {0,...,n—1},

{ G — c*
X': . 2imik .
t g= gé — (a):l)k —=e n

En particulier, on a G ~ G. On peut donc écrire la table de Z/nZ, qui est une matrice de
Vandermonde :

1 k=1 ... kn=1
=0 g=1 ... gon=n-1
X1 1 1 1
X2 1 @y, (!),','_1
1 1 (03 (03("_1)
wl 1 @ (r-1)(r-1)
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1.3 Les groupes diédraux

Définition 1.2 (Groupe diédral). On appelle groupe diédral D,, le groupe des isométries
du plan qui conservent un polygone régulier a n c6tés. Il contient n rotations d’angle
"7”, k=0,...,n—1 qui forment un sous-groupe isomorphe a C,, ainsi que n symétries. Si
on note r la rotation d’angle 2,—2” et s une des symétries, alors on a les relations

=1 =1 (sr)?=1.

Selon qu’un élément de D, appartient ou non & C,, un élément de D,, s’écrit de maniére
unique sous la forme sirkaveck=0,... ,n—leti=0,1.DeplusonaxeC, & i=0.

Notons tout d’abord qu’il nous suffit de donner les valeurs des différentes représentations
et des différents caracteres pour les deux générateurs r et s.

Cas ol n est pair :

Une représentation p de degré un (ou son caractere, puisque c’est la méme chose) doit
vérifier y(s)? = 1, c’est-a-dire y(s) = £1. Elle doit aussi vérifier y(sr)> = 1, donc
v(r) = £1 et y(r)" = 1. Comme n est pair, la condition sur r s’écrit y(r) = £1. Au
final, on obtient les 4 représentations suivantes :

n n

o
V1 1 1
v | 1 -1

v | (-DF (=D
ya | (=1)F (-1

£ . £ 2in P
Pour les représentations de degré deux, posons @, = e " . Nous allons définir pour # € N
une représentation sur D, par les formules

Ct)hk 0 0 (O_hk
Ph(rk) = ( 6’ w—hk) Ph(sk) = <a)hk '6 )
n n

On vérifie que ces formules définissent bien une représentation. De plus, on peut prendre
h € {0,...,n— 1}, et les représentations p, et p,_j sont isomorphes, puisque

VgE€G, pulg) = <(1) (1)> Pu-al8) <(1) (1’) )

On en vient donc a ne considérer que les représentations pj, pour 2 =0,...,n/2. La re-
présentation correspondant au cas i = 0 est réductible, puisque les droites C(e; + &) et
C(e; — ey) sont stables. Il en est de méme pour le cas A = n/2. On peut aussi constater que
Xpo = W1+ V2 et que xp , = Y3+ Y4, ce qui prouve que les représentations po et P,/
sont réductibles, et permet de connaitre leur décomposition. Pour les autres valeurs de 4,
la représentation pj, est bien irréductible. En effet, si p;, admettait une sous-représentation
non triviale, il s’agirait d’une droite, et on voit qu’une droite stable par p,(r) est nécessai-
rement un axe de coordonnée, qui n’est pas laissé stable par p;(sr). On peut calculer les
caractéres de ces n/2 — 1 représentations irréductibles :

oy

X | 2cos (@) 0
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On voit donc que ces représentations ne sont pas isomorphes (car leurs caractéres sont
différents). Pour vérifier que I’on a bien ainsi construit toutes les représentations, il suffit
de calculer la somme des carrés des degrés des représentations. Au total, on obtient bien
4x 14 (n/2—1) x4 =2n=|D,|.

Cas ol n est impair :
Cette fois-ci, on ne peut avoir que deux représentations de degré un:

On définit les représentations p, comme dans le cas ol n est pair. Pour 1 <A< (n—1)/2,
ces représentations sont irréductibles et deux a deux non isomorphes: Leurs caractéres
ont déja été calculés dans le cas n pair. En calculant la somme des carrés des degrés, on
obtient 2 x 1+ (n—1)/2 x 4 = 2n = |D,|. On a ainsi énuméré toutes les représentations
irréductibles. '

1.4 Le groupe G4

La premiére chose a faire est de déterminer les classes de conjugaison de G4, le groupe
des permutations d’un ensemble a 4 éléments, identifié & {1,2,3,4}. On utilise pour ce
faire le lemme 1.36, chap. VII, et on obtient donc

—la classe de I’identité, qui correspond a la décomposition 4 =1+ 1+ 1+ 1, c’est-a-dire
en quatre 1-cycles. Elle posséde 1 élément.

—la classe des transpositions, par exemple de 1’élément (12), qui correspond & la décom-
position4 =2+ 1+ 1. Elle posséde 6 éléments (choix de 2 éléments parmi 4 sans ordre,
ce qui fait C,%).

—la classe des trois cycles, par exemple de I’élément (123), qui correspond & la décom-
position 4 = 3 + 1. Elle comporte 8 éléments (4 choix possibles de 3 éléments parmi 4,
et 2 cycles possibles par choix).

—la classe des quatre cycles, par exemple de I’élément (1234), qui correspond a la dé-
composition 4 = 4. Elle comporte 6 éléments (24 permutations que 1’on regroupe par
paquets de 4 4-cycles identiques).

—la classe des couples de 2-cycles disjoints, par exemple de 1’élément (12)(34), qui cor-
respond a la décomposition 4 = 2 4 2. Elle comporte 3 éléments (6 choix possibles
pour la premiére transposition, et le choix de la deuxiéme divise par deux le nombre de
possibilités).

Par le corollaire 5.13, chap. VII, nous savons que G4 admet, a isomorphisme pres, S repré-

sentations irréductibles. Nous avons déja déterminé un certain nombre de représentations
au paragraphe 1.4, chap. VII:

— lareprésentation triviale, sur un espace U (de dimension 1), de caractere y; = (1,1,1,1,1)
(on note ainsi la ligne correspondante dans le tableau des caractéres. On indexe les co-
lonnes dans le méme ordre que celui utilisé pour les classes de conjugaison).

— la représentation alternée, sur un espace V (de dimension 1), qui correspond & la signa-
ture et a pour caractére ye = (1,— 1,1, —1,1).
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— La représentation standard, sur un espace V; (de dimension 3), dont le caractere Xj,
d’apres la décomposition trouvée au paragraphe 1.4, chap. VII, vérifie x, = xs+ x1 (on
a noté x, le caractere de la représentation par permutation des éléments d’une base).
Or la valeur x,(0) correspond au nombre d’éléments laissés fixes par o, ce qui donne
Xp = (4,2,1,0,0). Au final, on a donc y; = (3,1,0, — 1, — 1). On remarque que I’on a

G| (X5, xs) = 12:(1d)* + 6x5((12))?
+8x5((123))2 +6x5((1234))2 + 3x5((12)(34))* = 24.

D’ol (xs,%s) = 1, donc d’apres le corollaire 4.4, chap. VII, la représentation standard
de G4 est irréductible.

On obtient pour I’instant une table des caractéres partielle :

1 6 8 6 3

Id (12) (123) (1234) (12)(34)
|1 1 1 1 1
xell -1 1 -1 1
13 1 0 -1 -1

I1 reste encore deux représentations a déterminer, et en utilisant la relation (i) du corollaire
4.6, chap. VII, on a n3 +n2 = 13, ot ’on a noté n4 et ns les degrés des deux représenta-
tions. On a donc nécessairement une représentation de degré 3 et 1’autre de degré 2. La
premicre représentation peut s’obtenir par I’intermédiaire de la représentation des mor-
phismes sur W £ & (Vs,Ve) des représentations standard et alternée. Elle est de degré
3, et son caractére est Y o(w,yv) = xwAv = (3, — 1,0,1, — 1). On remarque qu’il est bien
différent des caractéres déja déterminés, et que < Xewy) X _g(w’v)> =1, donc cette repré-
sentation est bien irréductible (voir I’exercice VII.3 pour généralisation). Pour déterminer
la derniére représentation, sur un espace noté W’ (de dimension 2), on utilise la relation
(i) du corollaire 4.6, chap. VII, et on trouve yy» = (2,0, — 1,0,2). Au final, on obtient la
table des caracteres:

1 6 8 6 3

Id (12) (123) (1234) (12)(34)
|1 1 1 1 1
xe |1 -1 1 -1 1
13 1 0 -1 ~1
wl|3 -1 0 1 -1
w2 0 -1 0 2

Une des réalisations concretes du groupe G4 est le groupe des isométries directes conser-
vant un cube. On peut voir cette réalisation par I’action du groupe sur les quatre grandes
diagonales du cube. En conséquence, le groupe agit aussi en permutant les faces du méme
cube, ce qui donne naissance a une représentation par permutation du groupe G4, c’est-a-
dire pg : 64 — GL(E), ou E est un espace vectoriel de dimension 6. Comme pour toute
représentation par permutation, la valeur de y£(0), pour & € G4 est égale au nombre de
faces fixées par 1’action de o. Identifions les différentes valeurs de ce caractere :

— une rotation de 180° sur un axe reliant les milieux de deux c6tés opposés : cette permu-
tation échange seulement deux diagonales. Elle correspond a la classe de (12). Aucune
face n’est fixée.
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— une rotation de 120° selon une grande diagonale: seule la diagonale en question est
invariante, les autres permutant circulairement. Elle correspond a la classe de (123).
Aucune face n’est fixée.

— une rotation de 90° selon un axe de coordonnées : permute en cercle les quatre diago-
nales. Elle correspond 2 la classe de (1234). Deux faces sont fixées.

—une rotation de 180° selon un axe de coordonnées : permute deux par deux les diago-
nales. Elle correspond 2 la classe de (12)(34). Deux faces sont fixées.

Le caractére de notre représentation est donc donné par

|1d (12) (123) (1234) (12)(34)
XE| 6 0 0 2 2

On a < Xp> Xp) = 3, donc notre représentation s’écrit comme somme de trois représen-
tations irréductibles. Pour calculer la décomposition de cette représentation, il suffit de
calculer les différents produits scalaires :

(XE,X1)=1, <xE,X£>=0

) <XE,XS>=O,.
(XE’XW>=1’ (anXW’>:1-

On obtient ainsi la décomposition E = C®W & W', en tant que somme de G-modules.

2 La question de la simplicité

Dans ce paragraphe, nous allons utiliser la théorie des caracteéres pour obtenir des infor-
mations sur la structure de notre groupe. Nous allons nous intéresser a la recherche de
sous-groupes distingués.

2.1 Noyau des caractéres

Commengons par une proposition, qui va permettre de caractériser le noyau des représen-
tations.

Proposition 2.1. Soit G un groupe fini, et p : G — GL(V) une représentation, de carac-
tére Xy sur un espace V de dimension d. On note g € G un élément d’ordre k. Alors :

() p(g) est diagonalisable.
(ii) xv est somme de yy(1) = dim(V) = d racines k"™ de I’unité.
(i) |xv(8)l < av(l) =4d.
(iv) Ky, E {x € G\ xv(x) = xv (1)} est un sous-groupe distingué de G. On le nomme
le noyau de la représentation.

Démonstration.

(i) Comme gk =1, on a p(g)* = Id. Donc le polynéme minimal de p(g) divise X* — 1,
qui est scindé a racine simple.
(ii) Soient @y, ...,y les valeurs propres de p(g), quisontdes racines k™ de I’unité.
Onayy(g) =+ + g
(iii) |2v ()l < lan|+-- -+ |wa| = d.
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(iv) Si |xv(g)| = d, on a égalité dans I’inégalité triangulaire précédente. Ceci signifie
que les nombres complexes @; sont positivement liés sur R. Comme ils sont de
module 1, ils sont tous égaux. Si yv(g) = d, on a nécessairement @; = 1, donc
p(g) = Id. Donc K}, = ker(p), est bien un sous-groupe distingué. O

Dans la suite, nous aurons besoin du lemme suivant.

Lemme 2.2. Soit N <G un sous-groupe distingué de G. Soit py une représentation de
G/N sur un espace vectoriel U. Alors il existe une représentation canonique de G sur U
telle que les sous-représentations de U sous I’action de G/N soient exactement celles de
U sous l’action de G.

Démonstration. 11 suffit de poser

VgeG, pulg)=Epuon(s),

ol 7 : G — G/N est la projection canonique. py définit bien la représentation cherchée.
a

2.2 Utilisation de la table des caracteéres

Soit G un groupe fini. On note G= {p1,...,pr} son dual, formé de représentants des
représentations irréductibles non isomorphes. Voici le résultat qui va nous permettre de
déterminer 1’ensemble des sous-groupes distingués d’un groupe donné.

Proposition 2.3. Les sous-groupes distingués de G sont exactement du type

Ky on IC{l,...,r}
i€l

Démonstration. Soit N <1 G un sous-groupe distingué. On note py la représentation ré-
guliere de G/N. Ceci signifie donc que U est un espace vectoriel de dimension égale a
IG/N| = et I'on a py () (eg) = erg.

Nous avons déja vu a la proposition 1.11, chap. VII, que la représentation réguliére est
fidele, donc py est injective. En utilisant le lemme 2.2, on étend cette représentation en
une représentation pyy : G — U. Notons ¥ le caractére de la représentation py. On a alors
I’égalité ker(py) = ker(py om) =N, d’oa N = K.

Il ne reste plus qu’a décomposer la représentation py en fonction des représentations
irréductibles, pour obtenir

X=a X1+ +arxr.
On a donc, en utilisant le point (iii) de 1a proposition 2.1,

r

VgeG, |x(g)l< zatU& zatUCt x(1).
i=1 i=1

On a donc I'égalité x(g) = x(1) (c’ést-a-dire g € Ky) si et seulement si on a une égalité
dans I'inégalité triangulaire précédente. Il s’en suit que y(g) = x(1) si et seulement si
Vi, aixi(g) = aixi(1). Ceci est finalement équivalent a

Vi, ai>0=ge€Ky.

On a donc bien le résultat voulu, avec I = {i \ a; > 0}.
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Enfin, la réciproque est évidente: en effet, comme les Ky, sont distingués, tout sous-
groupe du type Nje/ Ky, I’est aussi. g

Corollaire 2.4. G est simple si et seulement si Vi # 1,Vg € G, xi(g) # xi(1).

Démonstration. Si on suppose qu’il existe g € G, avec g # 1, tel que x;(g) = xi(1), alors
K; C G est un sous-groupe distingué non trivial, donc G n’est pas simple.

Réciproquement, si G est non simple, alors il existe g # 1 dans un certain sous-groupe
distingué N <G non trivial. Avec la proposition précédente, N = N;¢;K;, donc g € K; pour
ielcC{2,...,r}. Ceci signifie bien que xi(g) = xi(1). O

Grice a la table des caractéres, on est donc en mesure de dresser la liste de tous les
sous-groupes distingués d’un groupe G donné, et méme de déterminer les relations d’in-
clusion entre ces sous-groupes. Par exemple, on peut considérer le groupe G4, dont la
table a été établie au paragraphe 1.4. On voit qu’il possede deux sous-groupes distingués
non triviaux : ker(xe) = 4 ainsi que ker(xy) = ((12)(34)) (la classe de la permutation
(12)(34)). De plus, on voit que ker(yy) C ker(xe).

3 Analyse spectrale

Nous avons vu au chapitre précédent que la famille des caractéres d’un groupe fini consti-
tuait une base orthogonale de I’espace des fonctions centrales. Le résultat fondamental de
ce paragraphe est la généralisation de ce résultat a I’espace des fonctions de G dans C
tout entier. Bien sfir, il va falloir considérer une autre famille de fonctions, qui intervient
de maniére naturelle lorsque 1’on essaie de calculer de fagon matricielle la transformée
de Fourier. Cette méthode pour trouver des bases orthonormées d’un espace fonctionnel
est a la base de 1’analyse spectrale sur un groupe fini quelconque, qui a de nombreuses
applications, notamment en statistiques.

3.1 Orthogonalité des fonctions coordonnées

Les caracteres sont avant tout des objets théoriques pour la recherche des représentations
d’un groupe G (grice aux relations d’orthogonalité des lignes et des colonnes de la table
des caracteres), et pour 1’étude du groupe G lui méme (étude de sa simplicité, résolubi-
lité, etc.). D’une maniére pratique, le fait qu’ils forment une base uniquement de 1’espace
des fonctions centrales les rend peu utiles pour analyser une fonction de G dans C quel-
conque. Pour résoudre cette difficulté, nous préférerons utiliser la transformée de Fourier
telle qu’elle est définie au paragraphe précédent. Nous allons méme voir que, grace a
une certaine formulation matricielle, cette transformée correspond aussi au calcul d’une
décomposition dans une base orthogonale.

On considére comme d’habitude un groupe fini G, et on note G= {p1,...,pp} les re-
présentants des classes de représentations irréductibles. Chaque représentation py est liée
a un espace Vj de dimension ny, et ces différentes représentations sont bien sfir deux a
deux non isomorphes. Nous avons vu, a la proposition 1.27, chap. VII, que I’on pouvait,
pour chaque représentation py, trouver une base de V; dans laquelle les matrices Ri(g)
des endomorphismes py(g) sont unitaires. Nous allons noter ces matrices sous la forme
Ri(g) = {r,kj(g)} On obtient ainsi une série d’applications :

Vke{l,...,p},¥(i,j) €{1,...,m}*, r;:G—C.
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Plus précisément, on obtient ainsi Zle n,% = n éléments de C[G]. La proposition suivante,
qui est le cceur des développements qui vont suivre, nous dit que ces éléments ne sont pas
quelconques.
Théoréme 3.1 (Orthogonalité des fonctions coordonnées). Les rJ‘ pourke {1,...,p}
et pour (i,j) € {1,...,m}?, forment une base orthogonale de (C[G]. D’une fagon plus
précise, on a

1
V(k,l) € {17 "ap}z’ ‘V’(a,b,c,d) € {17 ",nk}4’ <'J[5b’r(l:d> = 6561;16/5;1—

Démonstration. 11 s’agit en fait de reformuler le résultat du paragraphe 2.4, chap. VIL
Soit en effet py et p; deux représentations irréductibles. On sait, que pour f € 2 (U, U)),
I’application f = Rg(f) € £ (U, U;) est un opérateur d’entrelacement. D’aprés le lemme
de Schur, c’est soit une homothétie de rapport g’(le) (si k = 1), soit le morphisme nul (si
k#1).

Dans les bases que 1’on a choisies pour Uy et Uj, le morphisme f s’écrit sous forme
matricielle {x; j}{:ll.....;;:k' De méme, on écrit la matrice de f sous la forme {%;;}/=)" - On
peut calculer explicitement la valeur des Xx;; :

Fair = %, X Thp(@%irn(87): 3.1
J1,J2,8€G

Commengons par le cas ol les représentations ne sont pas isomorphes, c’est-a-dire k # [.

Le fait que f = 0 est équivalent a X;,;, = 0, et ceci quels que soient les xj, ;. L’expression

de Xj,; définit une forme linéaire en xj,;,, qui est nulle. Ceci veut donc dire que ses

coefficients sont nuls. En remarquant que r;,j, (§7!) = r;,;, (g), on obtient ainsi, dans le

casou k #1,

V(i],j]) € {O nk}2 v(iZ’jZ) € {0""anl}2a
def. ! _
|G| 2 m 2!2 (8) = <'jjc'1i1’rj2i2> =0.

Il reste maintenant le cas ou k = /. On a cette fois-ci f= %Id, d’ol

A . - 1
V(ll)]l) € {0,...,nk}2,V(l2,j2) € {01""”1}2 Xigiy = (Z 612x1211> 6’2

J1,J2

En réutilisant I’expression de X;,;, obtenue a I’équation (3.1), et en égalant les coefficients
de la forme linéaire obtenue on a la formule

def. ! i o f
|G| 2 Jltl lez g) <'JJ(H|’ lez> _51126112 U

Remarque 3.2. Comme les caractéres des représentations irréductibles sont des sommes
des fonctions coordonnées différentes, ce résultat affirme en méme temps 1’ orthogonalité
des caracteres, que nous avons déja démontrée au théoreme 3.7, chap. VIL

Onnote I £ {(k,i,j)\k=1,...,peti,j=1,...,m}. Le résultat que nous venons de dé-
montrer affirme I’existence d’une base orthonormée de 1’espace C[G], que 1’on note sous
la forme {Aij},,j)er- On remarque que 1’on a bien sir |I| = |G|, qui est la dimension de
C[G]. Ces fonctlons sont définies de la maniére suivante :

V(k,l,j) €l A(k,i,j) e \/I'l_k ij*
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3.2 Séries de Fourier généralisées

Le résultat fondamental du paragraphe précédent met donc a notre disposition une base
orthogonale de I’espace des fonctions de G dans C. On ne peut s’empécher de faire la
comparaison avec le résultat déja obtenu grice a la théorie des caracteres au théoreme
5.12, chap. VIL Or, il est important de comprendre que ces deux constructions n’ont stric-
tement rien a voir. Les caractéres sont définis de fagon canonique. Ils ne dépendent pas
du choix d’une quelconque écriture matricielle de nos représentations. Il s’agit avant tout
d’un outil théorique pour obtenir des informations sur les représentations (par exemple
savoir si une représentation est irréductible) ou sur le groupe lui méme (pour déterminer
les sous-groupes distingués). En revanche, on peut construire une quantité de bases ortho-
normées de C[G] grice aux fonctions coordonnées. Il suffit d’appliquer aux matrices des
différentes représentations unitaires un changement de base unitaire. Il s’agit donc d’un
outil calculatoire. Le seul cas ol ces deux constructions coincident est celui des groupes
finis commutatifs. En effet, les représentations irréductibles d’un tel groupe sont de di-
mension 1, et I'unique entrée des matrices correspondantes est égale (& une constante
pres) au caracteres de la représentation. On voit d’ailleurs que dans ce cas particulier,
la construction des fonctions coordonnées, non canonique dans le cas général, devient
canonique.

Nous souhaitons maintenant appliquer la construction que nous venons d’effectuer a
I’analyse d’une fonction f € C[G]. On suppose donc que I’on dispose d’une base or-
thonormée {Ay; j}(k’,-, j)er- On définit alors les coefficients de Fourier par rapport a cette
base.

Définition 3.3 (Coefficients de Fourier). Pour f € C[G], on appelle coefficients de Fou-
rier par rapport a la base {Ay;j} (k. j)er» €t on note cs(k, i, j) les quantités

(ki j) €1, crlk,iyj) = (f, D) -

On a donc le développement de Fourier suivant :

f= z Cf(kal,])Akt_]
(k,i,j)el
On peut ensuite se demander quel lien il existe entre les coefficients de Fourier que nous
venons d’introduire, et la transformée de Fourier définie en 5.1, chap. VIL Le calcul de
la transformée de Fourier d’une fonction f € C[G] est équivalent au calcul, pour toute
représentation irréductible py, de chaque coefficient de .Z (f)(px), c’est-a-dire de

Vk,ij)el, F(f)(pe)ij= ZGf(S) (P(8))ij = enlk,i, j), (3.2)
g€

ol ’on a noté = ﬁf On voit donc que le calcul des coefficients de Fourier est totale-
ment équivalent & celui du calcul de la transformée de Fourier. En continuant a exploiter
les analogies entre ces deux notions, on peut aussi dire que le calcul de la transformée
s’apparente a un calcul de changement de bases. On s’apercoit en effet qu’a condition de
remplacer f par son conjugué, puis de normaliser le résultat (en le multipliant par |/n;),
le calcul de la transformée de Fourier (sous forme matricielle) revient en fait & passer de
la base canonique des 6g a la base orthonormée des Ay;;.

Une des questions est de savoir si ’on dispose, a I’instar de 1’algorithme FFT sur les
groupes abéliens, d’un algorithme de calcul rapide de la transformée de Fourier sur un
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groupe non commutatif. On peut en effet constater qu’une implémentation naive des
équations (3.2) nécessite O(|G|?) opérations. L’article de synthése de ROCKMORE [52]
explique qu’il existe de tels algorithmes pour de larges classes de groupes, notamment les
groupes symétriques dont il est question au prochain paragraphe.

3.3 Lareprésentation du signal

Le probléme fondamental du traitement du signal est celui de la représentation (au sens
premier du terme) des données étudiées. Le langage de 1’algébre linéaire permet de for-
maliser ce probléme de fagon concise et élégante. Les signaux que 1’on souhaite analyser
peuvent en effet étre vus comme des fonctions f : D — C ou D est un domaine a priori
quelconque (par exemple un carré dans le cas d’une image). Dans le cadre d’un traite-
ment informatique, on est amené & considérer des domaines D finis. Le probleme de la
représentation d’un signal fini peut alors se résumer en la recherche d’une « bonne » base
de I’espace vectoriel de dimension finie formé des fonctions de D dans C. D’un point de
vue pratique, la qualité de notre base se mesurera en sa capacité de simplifier notre fagon
d’appréhender les données a analyser. En particulier, il faudra que la représentation des
données dans la nouvelle base soit plus simple, plus creuse que dans la base d’origine.

La premiere propriété importante que 1’on souhaite pour la base cherchée est d’étre or-
thonormée. Ceci permet d’avoir des formules d’analyse et de reconstruction simples, et
plus robustes d’un point de vue numérique. C’est exactement ce que nous avons fait lors
des différents calculs de transformées de Fourier déja rencontrés. En second lieu, la re-
cherche d’un bonne base nécessite d’exploiter les symétries du domaine D. Méme si ce
point peut paraitre sans rapport avec 1’efficacité de la base (a priori, il n’y a aucune rai-
son pour que les signaux étudiés suivent les symétries du domaine), 1’exploitation des
symétries est essentielle pour obtenir des algorithmes de calcul rapides. Par exemple, si
I’algorithme FFT est si rapide, c’est parce qu’il exploite totalement la symétrie (périodi-
cité) de I’ensemble Z/nZ, ce qui permet d’éviter au maximum tout calcul superflu. Dans
la pratique, cette propriété de respect de symétrie est en fait également importante pour la
représentation des fonctions, car la majeure partie des signaux « naturels » respectent les
régularités du domaine d’origine. L’exemple le plus frappant est 1’étude de signaux mu-
sicaux stationnaires par décomposition en série de Fourier. On observe, aprés quelques
harmoniques fondamentales, des coefficients qui décroissent treés rapidement: la repré-
sentation fréquentielle d’un tel signal est beaucoup plus compacte que sa représentation
temporelle.

Pour essayer d’exploiter les idées développées au paragraphe précédent, il semble naturel
de vouloir munir D d’une structure de groupe fini. Ceci laisse le plus souvent une grande
latitude pour le choix d’une base orthonormée. D’une part, il existe une multitude de
structures, qui peuvent tre non isomorphes, et méme si deux structures sont isomorphes,
I’une peut étre mieux adaptée que 1’autre au signal étudié. D’autre part, nous avons déja
expliqué que le choix de différentes bases pour le calcul des matrices des représentations
irréductibles donnait naissance a des bases orthonormées différentes. Ainsi, 1’exercice
VIIL.7 propose d’utiliser 1a théorie des représentations pour trouver une base orthonormée
de I’espace des fonctions de {0, 1}" dans C. Ceci fait écho aux exercices VI.4 et VL5 qui
utilisent la base de Walsh (c’est-a-dire les caracteres abéliens) pour étudier les fonctions
booléennes. Nous allons maintenant voir sur un exemple concret comment effectuer ces
choix de structures et de bases, et s’en servir pour analyser un ensemble de données.
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L’exemple que nous allons mentionner maintenant est tiré du livre de DIACONIS [26],
qui a été le premier a appliquer la théorie des représentations aux statistiques. Pour un
panorama complet des algorithmes de calculs rapides en théorie des représentations, on
pourra se reporter a 1’article d¢ ROCKMORE [52]. On consideére le résultat d’un sondage
ou I’on a demandé a un nombre conséquent de personnes de classer par ordre de préfé-
rence les trois lieux d’habitation suivants : ville (proposition 1), banlieue (proposition 2),
campagne (proposition 3). Chaque personne répond a I’enquéte en donnant une permuta-
tion des trois propositions. Par exemple, la permutation (2,3, 1) correspond au classement
banlieue, puis campagne, puis ville. Voici les résultats de 1’enquéte :

ville | banlieue | campagne | résultat
1 2 3 242
2 1 3 170
3 2 1 359
1 3 2 28
2 3 1 12
3 1 2 628

L’ensemble des résultats peut ainsi étre vu comme une fonction f : &3 — N, qui a chaque
permutation de (1,2,3) assigne le nombre de personnes ayant donné pour réponse cette
permutation. Le probléme qui se pose maintenant est celui de 1’analyse de ces résultats.
La permutation avec le plus fort résultat (en I’occurrence (3, 1,2)) nous donne quelques
informations sur les préférences des personnes interrogées. Mais pour analyser les inter-
actions entre les différentes permutations, il faut utiliser une analyse plus fine.

Nous allons donc effectuer un changement de base, et calculer la fagcon dont f se dé-
compose dans une base orthogonale obtenue grace aux représentations irréductibles du
groupe G3. Outre les représentations pi, triviale, et P2, alternée, il y a une représentation
irréductible de dimension 2, la représentation standard p3. L’exercice VIII.3 propose une
méthode géométrique pour trouver les matrices orthogonales associées. Nous proposons
ici un autre choix de base. En I’occurrence, si on note {e], ey, 3} la base canonique de C3,
on choisit {(e; —e2)/ V2, (e1 +e2 — 2e3)//6} pour base orthonormée de 1’orthogonal de
e1 +e2 + e3. Les matrices de la représentation p3 s’écrivent dans cette base :

p.23)= (g 9), pe13)= (5 7).
mean=3(_1s ) mas-3( ),
piam=3( 5 ). pi12)=3 (55 7))

En calculant les produits scalaires entre la fonction f et les 6 fonctions coordonnées de
ces représentations, on peut décomposer les fonctions f comme suit :

1
f= 3 (1439p; +325p2 — 109p311 — 1640.2p312 +493.6p321 — 203p322),
ol I’on a noté ps3;; la fonction coordonnée (i, j) de la représentation matricielle p3. Le
premier coefficient, le plus important, correspond a la valeur moyenne de la fonction.
I1 n’est donc pas trés informatif. Par contre, on constate que le coefficient de p3j2 est
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nettement plus important que tous les autres. Il correspond a la composante de f sur la
fonction
p321 = (0,0, —0.87,0.87,0.87, — 0.87),

ol I’on a énuméré les valeurs de p3jp sur les éléments de G; dans le méme ordre que
celui des résultats du sondage. On constate que cette fonction effectue en fait un groupe-
ment des réponses en 3 paquets de 2 permutations (suivant que la valeur est —0.87, 0 ou
0.87), chaque paquet étant caractérisé par le choix du lieu classé en dernier. Le meilleur
estimateur apres la moyenne correspond donc ici au choix du lieu de résidence le moins
apprécié.

4 Exercices

Exercice VIIL1 (Orthogonalité des caractéres). On note ® = {x;(C;)}1<i j<p la table
des caractéres. On note K = diag(ky,...,k,) la matrice diagonale dont les entrées sont
les cardinaux des classes de conjugaison. Montrer que I’on a ®K®* = |G|Id, c’est-a-dire
que la matrice #GK 1/2¢ est unitaire. En déduire une autre démonstration de la formule

d’orthogonalité des colonnes, proposition 1.1.

Exercice VIII.2 (Représentation du groupe diédral). On considére le groupe diédral
D,. Montrer qu’on peut le réaliser géométriquement comme le groupe formé des trans-
formations suivantes :

2kn
n

— les rotations autour de 1’axe Oz et d’angles ,pour k=0,...,n—1.

L. . k )
— les symétries par rapport aux droites du plan Oxy formant des angles % avec I’axe Ox,
pour k=0,...,n—1.

On obtient ainsi une représentation p : D, — O3(R). Est-elle irréductible ? Calculer son
caractére, et en déduire la décomposition de cette représentation.

Exercice VIIL.3 (Représentations de G3). On considére le triangle dont les trois som-
mets ont pour affixes l,eZ'T" ,e‘ZIT”, et on fixe la base {1,i} du plan complexe. Le groupe
G3 agit sur les sommets du triangle en les permutant. Calculer les matrices de deux gé-
nérateurs de ce groupe (par exemple (12) et (123)). En déduire la table des caractéres du
groupe G3.

Exercice VIIL.4 (Action sur les faces d’un cube). Comme indiqué au paragraphe 1.4, le
groupe G4 peut étre considéré comme le groupe des isométries directes du cube. Il agit
donc en permutant I’ensemble a 8 éléments formé par les sommets du cube, ce qui donne
naissance a une représentation de dimension 8. Calculer le caractére de cette représen-
tation. En utilisant la table des caractéres de G4, en déduire une décomposition de cette
représentation. Faire de méme avec la permutation des arétes.

Exercice VIIL.5 (Caractére de G4). On considére le caractére Yy de G4 dont la table
est donnée par
|1d (12) (123) (1234) (12)(34)
Aw' | 2 0 -1 0 2

1. On note py la représentation associée. Montrer que py((12)(34)) = 1d.
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2. Montrer que si H C G est un sous-groupe distingué, alors une représentation p :
G — GL(V) est triviale sur H si et seulement si elle se factorise par G/H en p :

G5 G/HS GL(v)

c’est-a-dire que I’on peut identifier les représentations de G/H avec les représenta-
tions triviales sur H.
3. Onnote H le sous-groupe de &4 engendré par (12)(34). Montrer que G4/H ~ G3.
Par exemple, on pourra considérer I’action de G4 sur les faces opposées d’un cube.
4. Conclure en montrant que py- est en fait la représentation standard de 3.

Exercice VIIL.6 (Représentation d’un groupe simple). Soit G un groupe fini simple
non abélien. On souhaite montrer que G ne posséde pas de représentation irréductible de
dimension 2.

1. Commencer par montrer le lemme de Cauchy: si p est un nombre premier qui
divise |G|, alors G posséde un élément d’ordre p. Pour se faire, on pourra considérer
I’ensemble X = GP, ainsi que 1’action du groupe Z/pZ sur X :

(Z/pZ,G)  — X
{(k’(xﬁa""xﬂ)) — (JCE,...,)Cm)

)

a laquelle on appliquera 1’équation aux classes (se reporter au livre de PERRIN
[58]).

2. On suppose que G posséde une représentation irréductible p : G — GL,(C). En
admettant le résultat de I’exercice VIL.8, en déduire que G posseéde un €lément ¢
d’ordre 2.

3. Montrer que p est en fait & valeur dans SL,(C). Montrer ensuite que p(¢) € SL,(C)
doit étre égal a —Id. En déduire que ¢ est dans le centre de G. Conclure.

Exercice VIIL7 (Groupe quaternionique). On note Hg le groupe quaternionique, qui
est formé des 8 éléments {+1, i, & j, =k} dont les multiplications sont données par la
regle des signes et les formules

P=j=k*=—1, jk=—kj=i, ki=—ik=j, ij=—ji=k.

On nomme H = R[Hj)| I’algebre des quaternions. Pour plus d’informations sur les quater-
nions, on pourra consulter [58].

1. On note g = al + bi +cj + dk un élément générique de H. Montrer que I’applica-

tion :
a -b —c —-d
. b a -d c
gl c d a -b
d —c b a

permet d’identifier H a une sous-algebre de M4(R). En déduire que H est bien une
algebre associative. En déduire aussi une représentation de Hs.
2. Montrer que I’application

B @
permet d’identifier H a une sous-algébre de M, (C). En déduire une représentation
de dimension 2 de Hg sur le corps des complexes. Est-elle unitaire ?

¢:q— M(a+ib,c —id) avec M(a,ﬁ)‘é‘(a —B)



§ 4. Exercices 239

3. Calculer les 4 représentations irréductibles de dimension 1 de Hg. Montrer qu’avec
la représentation obtenue a la question précédente, on dispose de toutes les repré-
sentations irréductibles. Donner alors la base orthonormée correspondante de 1’es-
pace des fonctions de Hg dans C.

4. Expliquer comment Hg permet de définir une structure de groupe non-commutatif
sur I’espace {0,1}. En utilisant le résultat de ’exercice VIL4 décrire les représen-
tations du groupe {0,1}3” vu comme produit du groupe {0,1}3. En déduire une
base orthonormée de ’espace des fonctions de {0,1}" dans C.

On pourra rapprocher cette construction de celle de la base de Walsh rencontrée a la sec-
tion 2, chap. II, qui consistait a utiliser la structure de groupe additif abélien de {0,1}". On
a, en quelque sorte, raffiné la construction pour utiliser une structure non-commutative.
I1 existe des applications importantes de ce type de constructions, par exemple de telles
bases orthonormées permettent de généraliser la technique d’apprentissage de fonctions
booléennes présentée a 1’exercice VI.5. C’est BONEH, dans [8] qui a le premier introduit
ce procédé.

Exercice VIIL.8 (Anneau des invariants). On considére G le groupe des isométries di-
rectes de R3 conservant un cube centré en 1’origine et dont les arétes sont alignées avec les
axes de coordonnées. Cet exercice ne suppose pas connu I’isomorphisme entre G et Gg4.
On garde les notations de I’exercice VIL.S, et on souhaite déterminer géométriquement
des éléments de K[X,Y,Z]°.

1. Expliquer pourquoi X2 +Y2 +Z% c K[X, Y,Z]G.
2. Montrer que, si on note f € XYZ, alors
VAeG, f(A-(X,Y,Z2))=af(X,Y,Z), pouracR.
Montrer ensuite que 1’on a nécessairement a = £1.
En conclure que (XYZ)? € K[X,Y,Z]°.
3. De méme, montrer que les polyndmes
f=X+Y+Z2)(X+Y-Z2)(X-Y-2Z)(X-Y -2)
et g=X’-r)(xX*-25H(¥*-2?)
sont de carré invariant sous G.

Exercice VIIL.9 (Codes correcteurs auto-duaux). Soit 4 un code linéaire sur IF, de
taille # et de dimension k. On note €'+ son code dual et Wee(X,Y) le polynéme énuméra-
teur de poids de %. On suppose que ¥ est auto-dual, c’est-a-dire € = €.

1. Quelle relation doivent vérifier n et k?
2. On note A la matrice 2 x 2 définie par

déf. 1 1 1
500 4)

En utilisant les identités de MacWilliams 4.5, chap. VI, montrer que Wy (X,Y) est
invariant sous I’action de A (comme définie au paragraphe 1.2, chap. VII).

3. On note G; le groupe engendré par A. Ecrire les éléments qui le composent. Ex-
pliquer pourquoi Wi (X,Y) € K[X,Y]". En utilisant le résultat de I’exercice VILS,
montrer que K[X,Y]¢! est engendré, au sens de (6.1), chap. VII, par les polyndmes

X+(V2-1)Y et Y(X-Y).
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4. Montrer que pour tout x € %, w(x) est pair.
En déduire que Wi (X,Y) € K[X,Y]°2, ol ’0n a noté G, le groupe engendré par A
et —Id,.

5. Ecrire un programme MAPLE qui calcule des générateurs de I’anneau des invariants
sous I’action d’un groupe donné. Utiliser ce programme pour calculer des généra-
teurs pour K[X,Y]%2. Quels sont les problémes de cette méthode ?

Il existe des méthodes plus performantes pour calculer 1’anneau des invariants d’un groupe
donné. Le livre de COX [22] présente les bases de Grobner, et leurs applications a la théo-
rie des invariants.



Correction des exercices

1 Correction des exercices du chapitre 1

Correction de ’exercice 1.1 :

1. Soit x € G. Le théoréme de convolution 4.15, chap. I, nous dit que % (fxx)= f7.
On vérifie facilement que ¥ = |G|8,-1, ot §,-1 € C[G] est la fonction qui vaut
1 en x~! et O sinon. Ceci permet d’écrire que & (f * x) = |G|f(x‘1)61_1. Il ne
reste plus qu’a appliquer la transformée de Fourier inverse en utilisant le fait que
3""'1(575_1) = %x. On obtient ainsi que ®/(x) = fA*x = f(x~!)x. Donc x est un
vecteur propre pour ®/, de valeur propre associée f(x!).

2. Ona @/ (&) = f* 8 = Tec f(g'h)S. Sion note {0,...,n— 1} les éléments de
G ~ 7Z/nZ, on écrit donc la matrice A = {g;;} sous la forme a;; = f(i — j).
De plus, avec la question précédente, on a I’expression du déterminant

det(4) = [T F(x™") = TT ).
2€G x€G
3. I suffit de choisir G = Z/nZ, ainsi que Vi € Z/nZ, f(i) = a;.
4. On peut calculer f en O(nlog(n)) opérations avec 1’algorithme FFT, et on obtient

le déterminant en multipliant entre elles les entrées de f Le programme MATLAB
1.1 réalise ceci, sur un vecteur f de taille 10 tiré au hasard.

Programme 1.1 Calcul de déterminant circulant

n = 10; £ = rand(n,1);
prod(fft(£f))

Correction de ’exercice 1.2 :

1. On considere R; (resp. Ry) une rotation d’axe unitaire u; (resp. u2), ainsi que vy, w;
(resp. v2,ws) une base orthonormée du plan (u1)? (resp. (u2)}). On prend Q Iiso-
métrie qui envoie (u1,vy,w;) sur (uz,v2,wz). Si les deux rotations ont le méme
angle, on a R} = Q*RyQ.

2. Comme x(a~'ba) = x(a)~'x(b)x(a) = x(b), x est constant sur les classes de
conjugaison. Avec la question précédente, ¥ (R) ne dépend que de I’angle de la
rotation R.

3. On utilise le fait que tr(tg) = 1+ 2cos(f). En faisant le calcul (avec MAPLE,

comme le montre le programme 1.2), on trouve que tr(rqs5') = 2 cos(a) +cos(a)?.
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Programme 1.2 Calcul de tr(zg)

with(linalg):

rl ““€matrix(3,3,[1,0,0,0,cos(t),sin(t),0,-sin(t),cos(t)]);
r2 “€'matrix (3,3, [cos(t),0,-sin(t),0,1,0,sin(t),0,cos(t)]);

tr dé——f'trace(rl&*rZ);
plot(tr, theta=0..pi);

L'étude de la fonction o +— (2 cos(ot) +cos(a)? — 1) montre immédiatement qu’elle
est strictement decr01ssante sur [0, 7] et prend toutes les valeurs entre 1 et —1.

4. On a donc, VB € [0,7], x(t3) = 2(ra)x(sa)~! = 1. Comme une rotation d’angle
—pB et d’axe v peut étre vue comme une rotation d’angle 8 et d’axe —v, I’égalité

précédente est encore vraie pour § € [—=,0]. Donc y = 1.

Correction de I’exercice 1.3 : 11 suffit d’utiliser la relation & = ﬁZ 1eGX: On écrit

alors que

Nmy= Y  8(@@x1,...,x)—h)

(Xl, ,x,,)GG"

= 2 ZX X], <5 %) ) h)

(xl: ,x,,)GG’ xEG

On trouve bien 1’égalité demandée en remarquant que

X(@(x1,- -, 2) =) = X(@(x1, -, %)) X (R).

Correction de I’exercice 1.4 : Dans la suite, on note n = |G|.

1. Ona | fal} = 4 Zreal = fo}. De méme, fa(xo) = Sxec fa(x) =

|A]-

2. En utilisant la formule de Plancherel, proPos1t10n 4.7, chap. I, on obtient I’égalité
”fA”2 = n|| fal|3 = |A|. On peut majorer ||f4||3 de la fagon suivante :

allfall3 < 1fa(x0)l* + (n = 1)D(A)? = AP + (n -

1)d(A)%

On obtient ainsi ®(4)? > -L;|A|(n — |A|) > |A|/2. L’autre inégalité est triviale,

puisque |74 (%)] < Zrea [X ()] < |A].

3. Onnote B=G\A.Ona fg =1— fu, donc fa=1-fa= |G| 6y, — f1. On a donc,
pour ¥ # o, |78(x)| = |fa(x)|, donc ®(A) = ®(B). Au final, on a les inégalités

G| - |A| > ®(4) > /94

4. Si x # xo, alors f/aa(x) = Yyea X © &(x). Or, I’application y — y o o est une
permutation des caractéres non triviaux. Donc ®(A) = ®(a(A)).

Correction de I’exercice I.5 : Dans la suite, on note n = |G|.

1. En remplagant A par Aj\a = {x—a \ x € A1}, on se raméne & 1’équation homo-
géne x; +---+x, =0, avec x; € A} \a, qui posséde le méme nombre de solutions

que I’équation de départ.
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En appliquant le résultat de ’exercice 1.3, avec la fonction @(xj,...,x) =x1 4+ X
et 2 =0, on obtient

2 3 x4 x). (1.1)

I XGleeA'
La derniére somme peut s’écrire

k

k —_
S oxa++x) =11 > x(x) =.1:[lfA"(X)

Xi€A; i=1x;€A;

Le terme de la somme (1.1) correspondant a o donne M—‘%M. Les autres termes
donnent R.
Pourk=3,ona

IGI S a0 Fan () Fa ().
X#X0
D’ou I’inégalité

D(A3)
|G|

IR| < 3 a0l 1 ()l-

x€G
En utilisant I’inégalité de Cauchy-Schwartz, on obtient

1/2

PNCAIRNCAERE D TNCAIE B I NCHl
x€G x€G x€G

— —\1/2
< (nllfa Il 7o )
= 2| fay ol = /T A

La translation par a étant un automorphisme de G, en utilisant le résultat de I’exer-
cice 1.4, question 4, I’'inégalité trouvée est invariante par translation par a.

Gréce a la question 2, ’inégalité proposée est une réécriture de R < 41 ”lAGZ”A3|. En
utilisant I’égalité prouvée a la question 1, on obtient N > 0.

Correction de I’exercice 1.6 :

1.

2.

On vérifie I’associativité de 1’opération sur la formule donnée. L’é1ément neutre est
(1,1, 7). et (A,x, )" = (A~ 2 (0,27, x7h).

Il faut montrer les différents axiomes d’une action de groupe (voir [58]), en parti-
culier, avec un léger abus de notation,

(A, x,2) - (13, 7) - f1(2) = (A, 2, x) - [uT(2) £ (¥2)]
= Aut(xz)x(2)f (xyz)
= [(A,xx)(1,5,7)]- f(2).

L’action de S#(G) sur C[G] est linéaire (c’est-a-dire que 1’action commute avec les
lois de 1’espace vectoriel). C’est ce que 1’on appelle une représentation linéaire, (se
reporter au chapitre VII).
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3.0na
(A,X,X) szl OMx O]}Of.
On peut d’ailleurs, avec ce formalisme, redémontrer facilement le résultat de la
question précédente. Il suffit de remarquer que TeM¢ = Dy(,)M: T, ce qui permet
d’écrire
(DAMy T;)(DuM<Ty) = Dy DuMy (TeMz)Ty = (D3, DpDy(y) ) (My M) (TT).
On peut ensuite simplifier les termes en utilisant le fait que A — Dy, x — M, et
x — T, sont des morphismes de groupes.
4. Pour simplifier les notations, on introduit, pour (1, x,x) € J#(G), les opérateurs de
dilatation, translation, et modulation par
Di(p)(?) =20(1), Ty(@)(D) =07, Mi(p)(7)=1(x)9(7),
ouTeGet (NS C[@] On montre alors facilement les relations suivantes :
F (L) =M Z(f), FM)=TF(f), FD)=D17().
Par analogie avec I’action de #(G) sur C[G], on définit une action de 5#(G) (dont
il reste encore a définir la multiplication !) sur (C[G] par
(A x,%) - f = Dy M, Ty f.
Pour obtenir la loi de multiplication qui nous convienne, on se contente de composer
I’action de groupe avec elle méme :
(511%?)()(5#1%?1) = (515,,5)((),))(117,;1%)(@?}).
Une fois de plus, c’est le calcul de commutation translation/dilation qui permet
d’arriver au résultat TxMy D Yy )M yTx Au final, on obtient la loi suivante sur
H#(G):
(A, 2,%) - (K, T,y) = (Aux (v), X7, xy).
En quelque sorte, cette loi a été « construite » pour que 1’on obtienne bien une
action de groupe.
5. Lefait que o soit un morphisme résulte du calcul suivant

a((Apt(x),xy,x7)) = (Apt(x)(x0) (= Yy yr,x"ly™)
= (A7 @)t o)~ o), 2Ty
=Ax7 '@, 0x - (e (), Ty h.

Avec la question précédente, on a
F (DyMyTof) = Dy TyM1 Z (f) = Dy -ty Mot T F (f).

En traduisant cette égalité en terme d’action de groupe, on obtient le résultat sou-
haité.
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6. On note, pour g € J2(G), p(g) € Z(C[G]) I'application linéaire f — g- f. De
méme, on note, pour g € #(G), p(8) € -Z(C[G)) I'application linéaire ¢ — 3 - ¢.
p et p sont des représentations linéaires des deux groupes finis J#(G) et J2(G).
L’hypothése faite sur ® signifie que ® o p = p o ®. En utilisant le lemme de Schur
2.5, chap. VII, on a donc que @ est une homothétie. Si on suppose maintenant
que @ commute avec les actions de J#(G) et J#(G), alors ® entrelace les deux
représentations. En utilisant le corollaire 2.8, chap. VII, comme la dimension de
I’espace vectoriel des morphismes d’entrelacement est 1, @ s’écrit r'¥, ou ¥ est
un isomorphisme (non canonique) entre C[G] et C[G] fixé (ces deux espaces ont
bien slir méme dimension) et r € C. Comme G ~ G (non canoniqge), il est méme
facile de construire un isomorphisme d’algébres entre C[G] et C[G] (toujours non
canonique).

Correction de ’exercice 1.7 :

1. Ona (t,(f),%p(f)) = f* f(n— p), ot on a noté f(x) = F(—x). La famille {7,(f)}
est donc orthonormée si et seulement si f * f(n) = &(0). Ceci s’écrit, avec les

distributions, B

(f*f) I = &, (1.2)
ol & est le Dirac en 0. On sait que la transformée de Fourier de f * f est Iﬂz. En
prenant la transformée de Fourier de I’équation (1.2), et en utilisant la propriété de
convolution de la transformée de Fourier (voir [62]) on trouve donc ﬁ |f |2 *I1; =1.
En utilisant le calcul de I/I\l fait a I’exercice I1.9, on trouve le résultat voulu.

2. Ona |§| <A|f], donc ¢ € LA(R).

La fonction ¢ vérifie bien Yicz|@(w +2km)|?> = 1, donc la famille {7,(¢)} est
orthonormée.

Correction de ’exercice 1.8 :

1. Le fait que b soit orthonormé est équivalent au fait que y;, = &, ol e est I’élément
neutre de G. En prenant les transformées de Fourier des deux membres, on trouve

Y, = 8 =1, oll on a noté 1 la fonction constante égale a 1. Il ne reste plus qu’a
remarquer que Y = |G| (%,b,b)
2. 11 s’agit de montrer trois choses :
(i) I’orthogonalité de %y, et %y,.
(ii) I'idempotence de %, .
(iii) que %, est auto-adjoint.
Montrons (i) :

1
(U,V)EG2

=|_(;|_2 Y, RuU)x(U)x(R)
(U,R)EG?

1 _
= 1GP Y 11(U)x2(U) Y, Rx2(R) = 85 Uy,
UeG REG

Pour la deuxieme égalité, on a utilisé le changement de variable R = UV, et pour la
derniére égalité, on a utilisé I’orthogonalité des caracteres ¥ et x2.
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Pour montrer (ii), le calcul est identique, il suffit de prendre %y, = %, .
Le fait que %, soit auto-adjoint est immédiat :

(%) = Y UnU)= Y U 'nU™)=2,.
UeG UeG

Pour la derniére égalité, on a simplement utilisé le fait que U — U~! était une
permutation sur 1’indice de sommation.

3. Pour montrer I’orthogonalité de b, il faut mener le calcul suivant:

(b 2,()) = <1§é% N GR Z \/(11)(_1)>

1
=( Y, —,?/?/b—
< W ey \/6( >

1

0] (%b, 2b) = q,( ) (b, 2b) =
Pour la deuxiéme égalité, on a développé les sommes, et on a utilisé les relations
d’orthogonalité entre les %; démontrées a la question précédente. Pour la derniére
égalité, on a utilisé le fait que %) est auto-adjoint.

4. L’exercice 1.7 se place dans le cas continu et utilise le groupe R agissant de fagon
unitaire sur L?(R) par translation. Il s’agit aussi d’une méthode d’orthogonalisation
dans le domaine de Fourier.

Correction de I’exercice 1.9 :
1. On a P(x0) = 1 et, pour ¥ # X0, U(x) = 0. En utilisant la formule de Plancherel,
proposition 4.7, chap. I, on obtient

1~ ~
IP-Ul3 = IP- Ul = |G|22|P(x

=
6 X0
2. Il suffit de remarquer que ’P(g) - %’ |G||P-U|3

Correction de I’exercice 1.10 :

1. On a la relation

n—1
P(Xer1 =i) = Y, P(Xe = j)P(X1 = ilX = j),
j=0

ce qui signifie exactement p(k+1) = pplk),
En itérant cette relation, on obtient p(k) =Pk p(o).

2. Dans ce cas particulier, on a (Px)[i] = (1 — p)x[i — 1] + px[i + 1]. On reconnait une
formule de convolution, et on a Px = v*x. Il est aussi possible de considérer des
variables aléatoires Y;, indépendantes, de vecteur densité v: On a alors X = Zf.‘zl Y.
En utilisant le fait que Py,+y; = Fy, x Py; = v*v, on retrouve PO =px. kv p(o) (k
produits).
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—_—

3. Gréce au théoréme de convolution 4. 14 chap. [, on obtlent p® =% /(\) On
peut calculer explicitement V{i] = pe e (1—p)e n.Comme 0 < p<1etque

k est impair, on a, pour i # 0, |[V[i]| < 1, et donc p(") — &y, lorsque k — +oco. En
prenant la transformée inverse de cette relation, on obtient p®) — u lorsque k —
+o0. Si k est pair, on a ¥{n/2] = —1 et la probabilité ne converge pas. Intuitivement,
on voit que si on écrit {0,...,n— 1} = PUI (partition entre pairs et impairs), alors
p®) va étre porté par P, et p(3+1) par I, ce qui exclut toute convergence (les deux
ensembles ne se « mélangent » pas).

4. Ona pktD(j] = Z;?;é vi—jp®[i] = p(¥) xv[i]. En écrivant cette équation dans le do-
maine de Fourier, et en I’itérant, on voit qu’il peut se présenter plusieurs situations :
- Si 3i, |cfi]| > 1, alors p®) va exploser. Ceci ne peut pas arriver pour une distribu-

tion de probabilité, puisque |c[i]| < 1.
—Si 3i, [¢]i]| = 1 et &i] # 1, alors p*) ne va pas converger.

— Sinon, p*) — p™ lorsque k — 4o, ot on a défini p= par p=[i] = pO[i] si v]i] = 1,
et p=[i] = 0 sinon.

On pourra comparer ceci avec 1’étude des polygones (paragraphe 3.1, chap. IV)

qui est en tout point identique (sauf que les polygones peuvent exploser !). Le code

MATLAB 1.3 permet, & partir d’un vecteur de probabilité initiale pO0, et du vecteur

de transition v, de calculer la probabilité pk ala k™ ijtération.

Programme 1.3 Calcul de p(¥)

pk = p0;
for i=1:k

pk = real( ifft( fft(pk).*fft(v) ) );
end

Correction de exercice I.11 : Dans la suite on identifie Z/nZ a Z/nZ et on note f(k)
pour f(Xk)-
1. La méthode est exactement celle utilisée pour démontrer la borne sur la distance

minimale des codes BCH, proposition 3.22, chap. VL
On suppose que Supp(f) = {ai,...,ap}. Pourl instant, on suppose simplement que

f( y=-=f ( 1) =0. En notant @ = e & , on obtient le systeme
1 1 1 f(al)

wal a)az wap f(aZ) 0
wal(P—l) waz(.P—l) . a)ap(P—l) f(ap)

La matrice du systeme est de Vandermonde, elle est inversible, ce qui est absurde
car les f(a;) ne sont pas tous nuls. Dans le cas général, si on suppose que p entrées
consécutives de f sont nulles, on se ramene au cas précédent en effectuant une
translation sur f(ce qui revient a une modulation sur f et ne change pas le support).
11 est maintenant simple de voir que ceci implique le principe d’incertitude. Sup-
posons d’abord que p|N. On partitionne {0,...,n— 1} en n/p blocs de taille p.
D’aprés ce que nous venons de montrer, sur chacun de ces blocs, fne peut étre
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nulle. Ainsi, chaque bloc contient au moins un & tel que f(k) # 0 et | Supp(f)| =
n/p.

Si p ne divise pas n, on note d = [n/p]. Il est impossible de distribuer moins de d
éléments parmi n places sur un cercle sans laisser deux €léments avec un trou de p
places entre eux. ~ R

En conséquence, on a |Supp(f)| = d et |Supp(f)| x |Supp(f)| = dp = n.

. La premiére inégalité est triviale. Pour la deuxi€me, il suffit d’utiliser la formule

d’inversion de Fourier 4.4, chap. I, et d’écrire

101 < g7 Z Pzl

X€G

ce qui mene a I’inégalité voulue en prenant le maximum de toutes ces inégalités,
pourx € G.

L’inégalité précédente s’écrit M? < <f,g>, ol I’on a noté g la fonction indicatrice
de Supp(f). Avec Cauchy-Schwartz, on obtient M2 < || f||?|lg||?, ce qui est la pre-
miere inégalité demandée. La deuxiéme inégalité s’obtient en utilisant simplement
la formule de Plancherel 4.7, chap. I. En combinant la premiére égalité de la ques-
tion 2, et I’égalité que I’on a démontrée, on trouve 1’inégalité finale.

La transformée de fy est étudiée a la proposition 4.7, chap. VL

On a donc |Supp(fy)| = |H| et | Supp(fi)| = |HY| = |G|/|H]|. La fonction fy at-
teint bien la borne établie.

2 Correction des exercices du chapitre 2

Correction de I’exercice I1.1 :

1. Chacun des résidus [( —l)bb] p st clairement pair. S’il y a un doublon parmi ces

résidus, alors (—1)"ra = (—1)" 9y’ mod p, donc a=+a’ mod p, et au final on a
a+d =0 mod p. Ceci est impossible car 0 < a+a’ <2peta+ad # p(cara+d
est pair).

En faisant le produit des éléments de B on trouve [],cpb = P IIzcaa@ mod p,
puisque Card (A) = pT_l. De méme, en faisant le produit des éléments de 1’ensemble
{{(=1)%],,}, on trouve [T,eqa = (—1)26<8°],cpb mod p. Avec le critére d’Eu-
ler,lemme 1.1, chap. II, on obtient (ﬁ) = rp‘z—_l, ce qui conduit & 1’égalité souhaitée.

On remarque que {%J est le quotient de la division euclidienne de ra par p, et

[ra]p le reste. On a donc ra = [%J p + [ra]p. En sommant sur tous les a € A, on
obtient 1’égalité demandée. Comme tous les a sont pairs et que p =1 mod 2, on
aYpepb =Yuca \.%J mod 2. On traduit cette inégalité immédiatement en termes
de puissance de —1.

S’il y avait un point (x, y) sur JAB[, avec x < r et y < p, alors on aurait py = rx, ce qui
n’est pas, puisque p et r sont des premiers distincts. Sur chaque droite horizontale
X = a, avec a pair, c’est-a-dire pour a € A, le nombre de points situés en dessous de

[AB] est %J . En sommant pour a € A, on compte tous les points d’abscisses paires
en dessous de [AB].
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5. On note Cp,(F) le nombre de points d’abscisses paires dans une figure F, C;(F) le
nombre de points d’abscisses impaires et C(F) le nombre total de points.
On note n; le nombre de points d’abscisse a situés au-dessous de [AB], et ny le
nombre de points situés au-dessus. On a ny +ny = r— 1 qui est pair, donc n; = np
mod 2. Ceci signifie donc que C,(HKBD) = C,(MHB) mod 2.
Par symétrie par rapport & H, nj est égal au nombre de points d’abscisse p — a situés
en dessous de [AB]. Ceci signifie donc que C,(MHB) = C;(ALH) mod 2.
OnaC,(ABD)=Cy(AKH)+C,(HKDB) mod 2 (décompositionde ABD en deux).
Donc C,(ABD) =C,(AKH) +C;(ALH) mod 2. Par symétrie par rapport a [AB], on
aCi(ALH) = C;(AKH).
Au final, on a C,(ABD) = C,(AKH) + Ci(AKH) = C(AKH).

6. La question précédente nous dit que (i) = (—1)C(4KH) En échangeant les roles de

ret p,onaaussi (£) = (—1)C(AHL) | Ay final, on obtient

(ﬁ) (2) — (—1)CAKH)+C(AHL) _ (_1)C(AKHL) _ (_l)ﬁ"—“%ﬂ.

p) \r
Correction de ’exercice IL.2 :

1. Cette question traduit la structure des sous-groupes de F}, qui est un groupe cy-
clique, voir par exemple [24]. On montre que le seul groupe d’indice k de Fj est
formé des racines du polyndéme X T 1, c’est donc Hy.

2. Ona

k—1
z%(70&, }E v(x 2:}&

x€Fy

Par la proposition d’orthogonahte 1.9, chap. II, appliquée au caracteéres multiplica-
tifs du groupe F; /Hy, 2; o Xi(x) vaut O six ¢ Hy, et k si x € Hi. On obtient ainsi

k=1

2:(3(Xh =k E: V’ kﬂﬂ )

i=0 xEH;
Soit y un caractere additif non trivial. Grace a la proposition 1.17, chap. I, on a la
majoration

. k=1
| < 216G vl = g0+6-1)vD) < V@

3. On note A3 = Hy, d’ot |A3| = q;kl. Comme F; posséde k racines de I’unité, 1’équa-
tionzk =u posséde k racines, et donc N = kN'. En utilisant le résultat de 1’exercice
L.5, question 2, on a

< ®(Hy)v/|A1]A2],

v [l
q

ce qui donne bien I’inégalité voulue.
4. Sous I’hypothése g > k*I11, +4, on peut majorer le membre de droite de 1’équation
(4.4), chap. I :

lilhq
kv/|A1]|A2]q = k|A1||As] G-17
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_ _1)2
On montre ensuite, par une étude de fonction, que, pour g > 0, Ez_‘gg <@F e

qui permet d’avoir I’inégalité

n_ [AillAzl(g—1) < AdlAzl(g—1)
q q

bl

et montre que N > 0.

Dans le cas ol k ne divise pas k — 1, on note d = pged (g — 1,k). Soit A = {x*}
et B = {x?} Comme d|k, k = Ad pour un certain A, d’ott x* = (x*)¢ et A C B.
Réciproquement, avec le théoréme de Bezout, 3(u,v) tels que d = u(g — 1) + vk.
On a donc x4 = (x4~ 1)*(x")k = (x*)¥, donc B C A. Donc si g > k*ljl, +4, on a
q > d*l11, + 4, ce qui permet d’appliquer le raisonnement précédent au groupe Hy
et montre que 1’équation considérée a encore une solution.

En considérant A = A, = Hy, oo d = pged (k,g— 1), on a |A;| = qT'l > %. Ceci
implique /; < k donc KLl +4 <k +4.

Correction de I’exercice IL3 : Un exemple d’interaction d’ordre 2 :

1 1
Ogh = 7 (O + Opg - + 0+ 0 ) = (O + O+ OOy ).

4 4

L’interaction d’ordre 3 :

1 1
Ogbe = 7 (Ot + 04—+ O+ O ) = (g O+ O O ).

4 4

En réordonnant les interactions (pour les mettre dans 1’ordre « de Yates »), on obtient une
écriture matricielle

(1 1 1 1 1 1 1 1 Oyt ( 8u \
1 -1 1 -1 1 -1 1 -1 oy 4u,

1 1 -1 -1 1 1 -1 -1 Oy 44

1 -1 -1 1 1 -1 -1 1 o+ | | 4Ma»

1 1 1 1 -1 -1 -1 -1 Opre | | due |
1 -1 1 -1 -1 1 -1 1 oy 4lge

1 1 -1 -1 -1 -1 1 1 Oy 4L

1 -1 -1 1 -1 1 1 —1) o___ 4uab6}

ou, de fagon plus compacte Wyt = [L, avec des conventions évidentes (Wg est la matrice
de Walsh, équation (2.2), chap. II). La multiplication peut étre effectuée de facon rapide
par I’algorithme FWT.

Correction de ’exercice I1.4 :

1. On vérifie que h — 2£h(2j - —k) est une isométrie de L2([0,1]), donc en particulier

vl = lwll3 = 1.
Siky #ky, Wiy, et V; k, ont des supports disjoints donc <l//j,k1 , V’j,kz) =0.Si j; < jo,

alors yj, 4, est constante sur le support de ¥ j,,, et comme [ Yk, =0, on a encore
(Vi k> Vi) = 0. .
Comme dim(E;) =2/, 1a famille { ,2,:01 est une base orthonormée de E ;.

2. Comme f est continue sur [0, 1] qui est compact, il existe un module de continuité

uniforme C tel que |f(x) — f(y)] < C(|]x—yl|), avec C(¢) — 0 lorsque ¢t — 0. Pour
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conclure a la convergence uniforme de fj, il suffit de remarquer qu’il existe x; € Iy
tel que f;(lx) = f(x) (théoreme des valeurs intermédiaires). Pour x € I, on a donc

1£@) = @I < |5 () = £l + 1f () = F)] < Clbe =) —— 0.

Il y a encore un peu de travail a faire pour en déduire la convergence de ﬁ, 11 faut
contrdler le terme complémentaire

2J-1

x) = k;) | (£, W) Wi ()]

11 faut en fait majorer finement les produits scalaires.
Onnote Ay = [k2~/, (k+1/2)2 /[ et Ay = [(k+1/2)27/,(k+1)27/[. Ona

b= h

oll x; €Aj et x; € Ay. Au final, si on prend x € I, on obtient la majoration

=|{f,wjx) 2/* < 20(277) —0,

J-—b

(£ Wi =272 = 22277 f() — ()| < 2272C(27).

ce qui montre la convergence uniforme de |f:,| < |f7l + |R;| pour un certain J.
On a ||f, — fll2 < || fu — fll» €n conséquence, la suite f, converge aussi en norme
L2, et {y,} forme une base hilbertienne.

3. Les fonctions ¢;; sont les fonctions indicatrices des intervalles I multipliées par
2J/2, Cette famille forme donc une base de Fj. Leurs supports étant disjoints elles

sont deux a deux orthogonales.
La transformation k — 2//2h(2J . —k) conservant 1’énergie, cette base est orthonor-

mée. ;
Sionpose gj—1 = fj— fj-1,0nvoit que g;_; =Z,%J=—01_1 (f, l[/j,k>. Ceci signifie que
sionécrit Fj = F;_1®Gj_j,ona
Fj_1=Vect{@;_14 \k=0,...,2/71 —1}
et Gj_y=Vect{yj;\k=0,...,2771 —1}.

On a les relations suivantes, pour k =0,.. ., 2-1_1:

_ ik = Piakt1 _ Pi+126t @Qjiy1, 2kt1 @1

lVj,k - \/2 (pj 1 \/5

4. Laquantité x(0) [k] est simplement la valeur que prend f sur I’intervalle I, multipliée
par 2//2,
Pour étudier I’opérateur ®; : x() — (x(+1) g(+1)) il faut considérer
— pour ’ensemble de départ, la base canonique de RN, N = 2/,
— pour I’ensemble d’arrivée, la base « alternée » {eo, fo,...,ey /2-1: SN /21 }, ot on
anoté {e,...,en/-1,f0,. .-, fu/2—1} la base canonique de R/2 x RV/2,

Dans ces bases, la matrice de ®; est une diagonale de blocs \/li (1 1), donc c’est

une rotation d’angle 7/2 sur chaque sous-espace Vect(e;, f;).
On vérifie que d est de moyenne nulle, donc x() a la méme moyenne que x(
De proche en proche, la moyenne de x(¥) est celle de x(®) et donc au final vaut x(/) [0].

i+1)
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5.

On définit ¥ (k] £ (£, ¢;_ix) et dD K] Z (£, yj_is14)- On a7 = x0Tl s’agit de
montrer que %) et dW verlﬁent les memes équations de récurrence que x() et 4.
Ceci impliquera que 70 = x) et d) = d1) Ces relations sont évidentes en prenant
les produits scalaires des equatlons @. 1) avec la fonction f.

Comme ®; est une isométrie, on a [|x)|% = [x(*+1|2 4 |d¢+D|2. En itérant, on
trouve

S .
1713 = ¥ O13 = X 1dV15 + 1x9[0)* = T () 3.
i=1

Ce qui signifie que I" est une isométrie. Ceci revient & décomposer le signal discret
%0 sur 1a base de R” formée des I'e;, ol ¢; est 1a base canonique de R". Cette base
correspond aux fonctions y; , échantillonnées avec un pas de 27/, On nomme cette
base la base de Haar discrete.

Par rapport a la base de Walsh, cette base est formée de fonctions & support tres
compact. Plus j devient grand, plus le support est réduit.

Comme le vecteur x() est de taille n/2', 'application de I’opérateur ®; nécessite
cn2~! opérations (c est une constante, représentant une addition, une soustraction,
et deux divisions par v/2). L’algorithme nécessite donc Z{ZO cn2™ = 2cn, c’est-a-
dire O(n) opérations. C’est beaucoup plus rapide que la transformée de Walsh, qui
nécessite O(nlog(n)) opérations !

Le programme 2.1 implémente une fonction MATLAB qui réalise 1’opérateur I".

Programme 2.1 Procédure haar

function y = haar(x)

n =
for

length(x); j = log2(n); y = [1;

i=0:j-1

1/sqart(2)*( x(1:2:27(3-1))-x(2:2:27(3-1)) )
[y:d];

1/sart(2)*( x(1:2:27(j-1))+x(2:2:27(3-1)) ):

ly:ix];

Correction de I’exercice I1.5 :

L.

Soit n = 2, La transformée de Walsh 2D s’écrit simplement, pour f € C"<",

RIYE 2 Zf[s 12, (50)-

s=01t=

La transformée inverse est %, I= o 1 %. La transformée de Walsh 2D correspond
a appliquer une transformée lD sur les colonnes, puis une transformée 1D sur les
lignes. En utilisant la fonction fwt écrite a la section 1, annexe A, on peut définir
une fonction MATLAB réalisant la transformée, comme le montre le programme
2.2.

Pour plus de clarté, on note xi(k) le caractére y; sur (Z/2Z)*, que 1’on peut voir
comme un vecteur de {£1}". On note n,(k) le nombre de changements de signe de

x| cest-a-dire
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Programme 2.2 Procédure fwt2d
function y = fwt2d(x)
n = length(x); y = zeros(n,n);
for(i=1l:n) y(i,:) = fwt(x(i,:)’)’; end;
for(j=1:n) y(:,3) = fwt(y(:,3)); end;

, k . )
Nous allons montrer, par récurrence sur k, que n,( ) fournit une nouvelle numérota-

tion des xi(k), c’est-a-dire que i — nt(k) est une permutation de {0,...,2¥ — 1}. Pour
k=1,ona n(()l) =0et ngl) = 1 donc la propriété est vraie. On suppose la propriété
vraie pour i — nl(k). Pour i =0,...,2k— 1, on a, en notant (a,b) la concaténation
des vecteursa et b,

x(k+1) — (X,-(k)a Xi(k)) et X,-(Skl) — (x’_(k)’ _ Xi(k)) )
Ceci implique les relations suivantes sur les changements de signe :

nng) = 2n§k) + ei(k) et nl(f_;,(l )= 2n,(k) +(1— el-(k)), (2.2)
ou si(k) =1 s’il y a une discontinuité au milieu de x,-(k+1), ce qui revient a dire que
xi(k) [2k — 1] = —1. Avec les relations trouvées, il est facile de voir que les n§k+l)

couvrent tout {0,...,2¥!1 —1}.

3. Le spectre de Walsh se calcule grace a la fonction fwt (voir section 1, annexe A).
On peut ensuite classer le spectre par nombre de changements de signe. Ceci peut
étre fait rapidement en calculant en méme temps que la transformée le nombre de
changements de signe griace aux équations (2.2). En effet, les quantités si(k) vérifient

aussi une équation de récurrence, i =0,...,2¥—1,ona

gt =gl g 81.(41;;1) =1-¢®.

Par exemple, la routine MATLAB 2.3 calcule le vecteur n(k),

Programme 2.3 Procédure nbr_chgt_signe

function nk = nbr_chgt_signe(n)
p = log2(n); nk = 0; ek = 0;

for k=1:p
ek = [ek; 1-ek]; nk = 2*[nk;nk]+ek;
end

4. En gardant seulement les coefficients correspondant aux fonctions avec peu de
changements de signe, on reconstruit une fonction avec moins de détails. Ceci a
pour effet de conserver moins d’information, et donc permet une compression du
signal.

La compression par transformée de Walsh est rapide a calculer (seulement des addi-
tions et des soustractions). Par contre, elle introduit des discontinuités dans le signal
souvent inacceptables.

5. Le nombre de changements de signe n’est pas bien défini pour une fonction 2D.
Pour une fonction y; ;, on note n; le nombre de changements de signe sur I’axe des
x, et nj le nombre de changements de signe sur I’axe des y. On peut par exemple
classer les fonctions par ordre de n; + n; croissant, et on régle les cas d’égalité par
ordre de n; croissant.
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Correction de I’exercice I1.6 :

1. Commeona #; ! = Wk = 7//kT, on a bien W, W, T = nld,, avec n = 2.

2. La premicre chose a remarquer est que si on permute les lignes et les colonnes
d’une matrice de Hadamard, alors elle reste de Hadamard. Il en est de méme si I’on
multiplie une ligne ou une colonne par —1. En multipliant par —1 les colonnes puis
les lignes qui commencent par —1, on met ainsi la matrice sous forme normalisée.
Par permutation sur les lignes, on peut réarranger les trois premicres lignes pour
qu’elles soient de la forme annoncée. Par les propriétés d’orthogonalité entre ces
trois lignes, on obtient les équations

i+j+j+l=n i+j—k—1=0 i—j+k—1=0, i—j—k+1=0.
Cecimeéneai= j=k=1=j, et donc n est divisible par 4.

3. Pour commencer, (i — j) = n(=1)n(j —i) = —n(j —i) puisque p = 4k — 1 (uti-
liser 1a formule d’Euler 1.1, chap. II, pour le voir). Donc Q est anti-symétrique.
Soit ¢ # 0, on calcule ensuite

-1 -1
:’gon(bm(mc) =Zgln<b>n<bz> =3 n() =0-n(1)= 1.

z#1
On a fait le changement de variable z = b—jg, en utilisant le fait que b — z est une
bijection de Fy sur F,\{1}.
Slz—],ona(QQ )”—Zb 0n() p—1.Sii#j,ona

(QQTU—ZT' —in 271 b+c -1,

avecb=k—tetc=z—j.
Comme F), contient %( p — 1) résidus quadratiques et autant de non résidus, chaque
ligne de Q contient autant de +1 que de —1 et QJ =JQO =0.

4, Ona

agTo(L v 1 v\ _ (p+1 0
mm Wt g-1d, ) \v 0T-1d,) T\ 0 J+(Q-1d,)(QT-1dp) )’

etJ +(Q—1d,)(QT —1d,) = J + pld, —J —Q — QT +1d, = (p+ 1)1d,,.

5. La quantité |det(A)| mesure le volume du parallélépipéde engendré par les vecteurs
colonnes de A. Ce volume est plus petit que le produit des normes de ces vecteurs.
Si on a |a;j| < 1, alors la norme d’un vecteur colonne est majorée par /n est on
trouve bien la majoration de Hadamard. Si A est une matrice de Hadamard, on a
det(A4)? = det(AAT) = det(nld,) =

La procédure MAPLE 2.4 construit la matrice de Paley H,, et on peut la tester avec le
programme 2.5.

Correction de I’exercice I1.7 :
1. On vérifie que
(A1,A1)AA* -+ (A1,A) AA*
(A®A)(ARA)* = : : =s’Idg,
(As,A1)AA* - (A Ag) AA*

ou I’on a noté A; la "™ colonne de A. Par récurrence, on obtient le résultat voulu.
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Programme 2.4 Procédure MatricePaley

MatricePaley %gproc(p)
local H,Q,1i,3;
with (numtheory) :
Q %gMatrix(l..p,l..p);
for i from 1 to p do
for j from 1 to p do
0li, 31 " 'legendre(i-j,p);
end do:
end do:
H “E'Matrix(1l..p+1,1..p+1);
H[2..p+1,2..p+1] %QQ—Matrix(l..p,l..p, shape=identity) ;
H[1..p+1,1] *£1; H[1,1..p+1] “E1;
return H;
end proc:

Programme 2.5 Test de la construction de Paley

H dgé'MatricePaley(3l);
evalm(H&*transpose (H)) ;

2. Pour la transformée de Walsh, on a Wy = A®* avec A = (i _11> .

3. La procédure MATLAB 2.6 réalise le calcul de la transformée de fagon rapide (de
I’ordre de O(Nlog,(N)) opérations, ol N est la taille du vecteur & transformer). On
ax=(A®")"!y = L(A*)®". La transformée inverse s’obtient donc en passant A*
la place de A a I’algorithme, et en divisant le résultat par s”.

Programme 2.6 Procédure decompose_tensoriel

function y = decompose_tensoriel (x,3)

s = length(A); m = length(x); m0O = m/s;
if(m==1) y = x; return; end;

B = zeros(m0,s); % résulats temporaires

for j=1:s

sel = ((3j-1)*m0+1):(Jj*m0);

B(:,J) = decompose_tensoriel (x(sel), b A);
end
y = zeros(m,1);
for i=1:s

sel = ((i-1)*m0+1):(i*m0);

for j=1:s

y(sel) = y(sel) + A(i,j)*B(:,3);

end

end -~

4. Pour oo = m/4, on obtient la transformée de Walsh ordinaire. Pour & = /2, la
transformée réalise une symétrie.

Correction de ’exercice I1.8 :

1. (-,-) est la forme bilinéaire canonique sur E x E. On identifie un élément x € E a la
forme linéaire (x,-). Cette identification marche car la forme est non-dégénérée, et
correspond au crochet de la dualité.
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2. On considére I’application @ : a — ¥,. C’est un morphisme de groupes. On montre
facilement qu’il est injectif. En effet, si ®(a) = 0, ceci signifie que pour tout x € E
on a x1((x,a)) = 1, et comme % est injectif, Vx € E, (x,a) = 0. Comme la forme
bilinéaire (-,-) est non-dégénérée, on a a = 0. Enfin, comme E et E ont méme
dimension, le morphisme est bijectif.

3. Six € H, par la propriété de groupe, x+---+x = kx € H, donc H est stable pour la
loi externe, donc c’est un espace vectoriel.

OnaH'={y,\Vx€H, xa( ) =0}, qui est en correspondance par ® avec ’en-
semble {a \ Vx € H, (x,a) =0} = H'.

4. La formule de Poisson, 3.3, chap. II, est encore valable sur E. La preuve de la
formule de MacWilliams, théoréme 3.6, chap. I, est encore la méme. Seul le calcul
de f ( Xa) est légérement changé, puisque I’on a

Flta) = (x4 (g = 1)) D (x—y)"@.

Correction de I’exercice I1.9 : La formule de Poisson s’écrit, pour une fonction f de la

classe de Schwartz .#(R):
A 2nr
3 fm =23 r(27),

nez S nez

On vérifie qu’au sens des distributions, le membre de gauche est égal & <f, l'I1> = < £ l{I\l >,

et que le membre de droite est égal a <ZT"’1'I i > L’égalité étant valide pour tout f dans
& (R), on en déduit la formule demandée.

Correction de ’exercice I1.10 :

1. On a, avec la formule d’inversion de Fourier,

fx) = fl@)e“ do.

27t Ir

Avec le théoréme de dérivation sous le signe d’intégration, on voit que f est de
classe €.
2. En appliquant le résultat de I’exercice I1.9, on voit facilement que

o)

keZ

Eneffet, ona f; = f-Ilr, et en prenant la transformée de Fourier des deux membres
(au sens des distributions), on trouve fa(w) = f* l'IT( ). Si n # 0, le support de
£(-—"2) et celui de f sont d’intersection vide. Ceci implique donc le résultat de-
mandé.

3. Le résultat de la question précédente peut s’écrire (@) = Thy fy, ot hr est I'indi-
catrice de I’intervalle I7. Sa transformée de Fourier inverse est & ~! (hr) = T sincr.
En prenant la transformée de Fourier inverse delarelation f(a)) = ThT]‘:,, on trouve
le théoréme d’échantillonnage.

4. On note g = sincr. Le fait que les fonctions {g(. —nT)} soient orthogonales se
vérifie immédiatement en utilisant la formule de Plancherel :

2 .
(8,8(. ) = 5= (F (), F(&(.~nT)) = 5 (hr,hr()eT) = T8,
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Le fait que cette famille soit totale résulte du théoréme d’échantillonnage, puisque
la formule de reconstruction (4.7), chap. II, converge en norme L2
La projection sur cette base correspond a 1’échantillonnage, puisque 1’on a la rela-

tion (f,g(. —nT)) = f(nT).

3 Correction des exercices du chapitre 3

Correction de I’exercice II1.1 :

1. Onau() =(0,1),u® =(0,2,1,3) et u® = (0,4,2,6,1,5,3,7).
2. Soit k1) = ¥ k2% un entier de n+ 1 bits. On note k("*1) I"entier avec les bits
renversés. On a

n—1 -
n+1 zk o= i__ z kizn—l +kn — 2k(n) + kna
i=0
ce qui est exactement 1’équation de récurrence vérifiée par ul,
3. festutile pour construire un algorithme FFT n’utilisant pas de mémoire temporaire,
comme exphque au paragraphe 2.5, chap. IIL
4, Onafg—foetfd—f1
5. La question précédente donne naissance a une fonction MATLAB récursive, pro-
gramme 3.1. Cette procédure nécessite O(Nlog(N)) opérations, ce qui est la méme
complexité que la procédure rev_bits.

Programme 3.1 Procédure rev_bits_rec
function y = rev_bits_rec (x)
n = length(x);
if(n>1) y = [rev_bits_rec(x(1l:2:n)) ; rev_bits_rec(x(2:2:n))];
else y = x; end

Correction de I’exercice ITI1.2 :

1. @ est un morphisme d’anneaux, et on peut expliciter son inverse. Avec le théoréme
de Bezout, B(uv) up+vq = 1. On prend alors y(k;,k2) = kzup +kjvg mod N.
2. Onnote w, = ¢ 2 . On calcule tout d’abord Ia transformée 2D :
F[Sl ,s2] z f[lll ky ,k2 ]w—slkl w—szkz — z f[‘l/ k ,k2)] —(gs1ky +P32k2)
ky,ka ki ky

Calculons la quantité A suivante :

déf.

A= y(ki,k2)(s1g+ s2p) = qk151(qv) + pkasa(pv) mod N.

On veut montrer que A = gs1k; + psak, mod N. Avec le théoreéme Chinois, il suffit
de montrer que cette égalité est vraie modulo p et modulo g, ce qu’on vérifie sans
probléme. On a donc

Flsi,50] = Y, fly(ki, ko)) ay” (k1,k2) (s19+s2p)
ki, k2

=Y Koy 1 7P) = Flsig+s2p),
k

ol I’on s’est contenté de faire le changement d’indice k = y/(k,k3).
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3. On a0 < s1qg+s2p < N—1. De plus, par le lemme chinois, le systeme de deux
équations {n =s;q mod p ; n =s,p mod g} a une unique solution modulo N, et
le représentant de cette solution est donc n.

Pour calculer la FFT de f, il suffit de calculer la FFT 2D de F, et de réordonner les
indices selon (s1,s2) — s1g+s2p mod N.

4. L’étape de I’algorithme de Good-Thomas présentée permet de remplacer 1’étape de
I’algorithme de Cooley-Tukey expliquée au paragraphe 2.4, chap. III. Ce rempla-
cement permet d’éviter les multiplications internes par @y bd dans I’équation 2.14,
chap. III, qui correspondent a I’opérateur .#3. Le lemme chinois a en quelque sorte
éliminé les « twiddle factors ».

Le programme 3.2 montre une procédure MATLAB naive. En réalité, il faudrait

Programme 3.2 Procédure fft_gt

function y = fft_gt(x,p)

n = length(x); q = n/p;

y = zeros(n,1l); m = zeros(p,q);
for i=0:n-1

m(mod(i,p)+1, mod(i,q)+1l) = x(i+1l);
end
m = fft2(m);
for(sl=0:p-1) for(s2=0:g-1)

yv( mod(sl*g+s2*p,n)+1 ) = m(sl+l,s2+1);
end; end;

appeler, plutét que £ft2 (m), une procédure de FFT sur les lignes (longueur gq)
puis sur les colonnes (longueur p) qui exploite les décompositions de p et g.

Correction de I’exercice II1.3 :

1. La premiére partie du regroupement ne génere pas de « twiddle factors », il n’est
donc pas la peine de la décomposer.
En utilisant le fait que (nj,n3) — n1+n2N /4 est une bijection de I’ensemble produit
{0,...,N/4 -1} x{0,...,3} sur {0,...,N — 1}, on peut écrire

N N/4—-1 3 )
Fk42j+1)= 3 3 M@0 e N4,
n;=0 ny=0
Pour conclure & I’expression proposée, il suffit de remarquer que

—(n1+nyN/4)(4k+2j—-1) (2j+1)w4—n2(2j+1)‘

— o —km =
Wy = Oyyq On

Les sommes intérieures sont des TFD de longueur 4, et elles sont triviales a calculer
puisque les racines complexes utilisées sont {£1, +i}.

2. On peut effectuer des regroupements des fréquences par paquets de 2! (le cas I = 1
correspond a la décimation fréquentielle classique, et [ = 2 a la question 1). Ceci
conduit a 1a décomposition suivante de la TFD :

N N/2'-1 ) 2! )
fe+2j+11= Y opfiay" Y £l +mn/2l] oy,
n=0 ny=0
pour j=0,...,2""1—1etk=0,...,N/2" — 1. On peut montrer que le split-radix
de taille 2! optimal correspond a celui de la question 1 (voir [75]). Ceci provient du
fait que les TFD de taille 4 ne nécessitent aucune multiplication complexe.
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3. Pour un schéma de décimation temporelle, il s’agit de regrouper non pas les fré-
quences du vecteur transformé, mais les entrées du vecteur & transformer. Ceci
donne naissance a I’équation de décomposition suivante :

~ N/2-1 ‘|
fln1+nN/4| =(-1)" Z f2K| "l

z CO 2}+1)wnz 2j+1) Zf[4k+21+ 1] 1074,
Jj=0

pourn; =0,...,N/4etn; =0,...,3. La TFD de longueur N est ainsi décomposée
en la somme d’une TFD de longueur N/2 et deux TFD de longueur N /4. L’analyse
de I’optimalité de cette décomposition est identique a celle de la version décimation
fréquentielle de la question 1.

Correction de I’exercice I11.4 :
1.Ona f= Zf o fjl- — jM]. Par bilinéarité du produit de convolution, on a donc
fxg= Zj=0 fj*g[' _JM]
2. 11 faut donc calculer les p produits de convolution fjx g. Comme les deux vec-
teurs ont pour taille M, ce produit peut se calculer par FFT en ajoutant seulement
M — 1 zéros. En supposant que 1’algorithme FFT nécessite cMlog(M), le calcul de
convolution nécessite 2cM log(M) + M opérations, et ce calcul est effectué p fois.

3. Si N n’est pas un multiple de M, il convient d’ajouter des zéros a f pour atteindre
une taille égale au multiple de M juste aprés N.

La procédure MATLAB convol, programme 3.3, met en place cette méthode. Il est &
noter que la FFT du vecteur g (auquel on a ajouté M — 1 zéros) est stockée une fois pour
toutes dans la variable f£g.

Programme 3.3 Procédure convol

function y = convol (f,qg)

N = length(f); M = length(g); p = N/M;

y = zeros(M+N-1,1);

fg = fft( [g; zeros(M-1,1)] );

for j=0:p-1
fj = [£( (1:M)+j*M ); zeros(M-1,1)];
sel = (j*M+1):((j+2)*M-1); ¢ les indices concernés
y(sel) = y(sel) + ifft( fft(fj).*fg );

end

Correction de I’exercice IIL.S5 :

1. On a, pour x = (x,... ,xN_l)T,
QN(DX)[k] = (QN(xN_l,xO,...,xN 2 [k] Z Xi— le ki

N—-1
= oy* Y xoy* = oyt (Qux) (K],
i=0

ce qui est le résultat demandé.
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2.

3.

On utilise la décomposition C = 3N  ¢;R!, d’on

N N

QNCQXJI = ZC,'QNR'QITII = ZCiD' =A.
i=0 i=0

On remarque que si y € CV, Ay = (Qxc) -y. On a donc AQyx = (Quc) - (Quwx).

Le fait que Cx = ¢ *x se vérifie immédiatement. Avec le théoréme de convolution,

ona & (Cx) = & (c*x) =c-x. Comme X = Qyx, on obtient bien la méme formule.

Correction de P’exercice III.6 : En utilisant la formule d’inversion de Fourier 1.4,
chap. III,on a

1 ot~ snk
folnk] = 5 3, Folsloo”
s=0

LR 2w, LN A skepin
=N2f[s]a’1v ty Y, flsloy = flK].
=0 s=No+1

Le programme 3.4 implémente la technique d’interpolation exposée.

Programme 3.4 Procédure interp_trigo

function y = interp_trigo(x,eta)

N

f
f
Yy

length(x); NO = (N-1)/2; P =N*eta;
ffe(x);

eta*[f(1:NO+1); zeros(P-N,1); £(NO+2:N)];
real ( ifft(f) );

Correction de I’exercice II1.7 :

1.

En utilisant la relation trigonométrique
cos((k+1)6)+cos((k—1)8) = cos(kO)cos(6), avec 6 =arccos(X),

on obtient la relation de récurrence T = 2X T, — T;_;. Cette relation montre que
T; est un polynéme a coefficients entiers de degré k.

Comme on a Ty(x;) = cos (N(j+1/2)%) =0, on a trouvé les N racines de Ty qui
est de degré N.

Comme les {]}c}ivgol ont des degrés différents, ils forment une famille libre de I’es-
pace des polyndmes de degré inférieur a8 N — 1. Comme ils sont au nombre de N,
c’est une base de cet espace.

La formule d’inversion peut se vérifier a la main, mais c’est assez pénible. Il faut
mieux se ramener a des vecteurs orthogonaux. On peut en effet montrer assez faci-
lement que les vecteurs

N-1 “1/2 oip—
Vi = {/’Lk\/%cos (kﬁn <n+%>)} avec 7Lk={ ? z;f();o

k=0
forment une base orthonormée de CV. L’article de STRANG [69] propose une jolie
preuve qui utilise le fait que les v, sont vecteurs propres d’une certaine matrice
symétrique.
Le programme MATLAB 3.5 implémente la transformée %, par ’intermédiaire
d’une FFT de taille 4N. Le programme 3.6 implémente lui la transformée %3, tou-
jours par I’intermédiaire d’une FFT de taille 4N.
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Programme 3.5 Procédure dct2

function y = dct2(x)

n = length(x);

yv(2:2:2*n,1) = x;

y = [y ;i zeros(2*n,1)];

y = real( fft(y) ); v = y(1l:n);

Programme 3.6 Procédure dct3
function y = dct3(x)

n = length(x);
y = [x ; zeros(3*n,1)];
y = real( fft(y) ); y = y(2:2:2*n) - x(1)/2;

4. Les coefficients & = (0, ..., 0n—1 )T du polynéme Py_ vérifient

N-1 N-1
flil= Y oTi(x;) = 3, acos (k(j+1/2)]fv) =%(a)+%. G.1)
k=0 k=0

I1 y a donc une 1égere difficulté a cause du terme « parasite » %1 Sionnotel la
fonction constante égale a 1, on a %3 (1) = N&. On peut donc inverser 1’égalité 3.1 :

]%‘fz(f) = 1%‘52('53(0‘)) +%‘52(0601) = a+apd = (209,01,...,0N§_1).

Le programme 3.7 montre comment, avec MATLAB on peut utiliser la procédure
dct3 pour effectuer une interpolation de Chebyshev. Ici, on interpole la fonction
flx)= Ezﬁf connue en n points (les points x;). Le programme dessine la courbe
interpolée en 1’évaluant en nn points espacés régulierement.

Programme 3.7 Interpolation de Chebyshev

n = 16; nn = 200; alpha = 0.3;
x = cos( ((0:n-1)+1/2)*pi/n )’;
f = 1./(alpha™2+x.72);

coef = 2/n*dct2(f);
coef (1) = coef(1l)*1/2;

XX = (-1:2/(nn-1):1)"’;
ff = zeros(nn,1);
for k=0:n-1
ff = ff + coef(k+1)*cos(k*acos(xx));
end

plot(x,f, o’ ,xx,ff);

Correction de I’exercice IIL.8 : On prouve la formule demandée simplement par » inté-
grations par parties.

On remarquera que la multiplication par (i )" correspond & un filtre qui amplifie les
hautes fréquences. C’est tout a fait logique, puisque la dérivation fait perdre de la ré-
gularité, tout comme un filtre amplifiant les hautes fréquences (décroissance moins rapide
de la transformée, que 1’on peut comparer & une amplification du « bruit »).

Le programme MATLAB 3.8 propose une fonction qui réalise une dérivée fractionnaire a
I’ordre alpha. La procédure utilise 1’algorithme FFT, donc, pour qu’elle approche avec
justesse la dérivée de la fonction d’origine, il faut que 1’échantillonnage soit assez fin, et
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Programme 3.8 Procédure der_frac

function y = der_frac(f, alpha)
n = length(f)/2;

fce = pi*((0:n)/n, ((-n+l):-1)/nl;
f = fft( £ );
f = (-i*fce). alpha.*f; f = real (ifft(f));

il faut que h soit 2 support dans [—7, 7] (sinon, attention a I’aliasing, car on ne remplit
plus les hypotheses du théoréme de Shannon, exercice I1.10).

Correction de ’exercice II1.9 :

1. Comme (Qy)* = N?Idy, les valeurs propres de Qy sont {++/N, £iv/N}.

2. Ona F%o0 FB = pp*p*PDBP* = pPD*+Bp* = Zo+h,

3. On remarque que Q,ZV = A ou A est la matrice telle que Ae; = e_; (inversion du
signal). Cette matrice correspond a la diagonale inversée. Plus & (modulo 4) est
proche de 2, plus cette diagonale inversée est prépondérante dans % %, et plus o est
proche de 0, plus la diagonale est dominante.

4. Pour N > 4, il existe une infinité de bases orthogonale de diagonalisation de Qy (les
espaces propres sont de dimension supérieure a 1). Chaque base différente donne
naissance a une transformée intermédiaire.

La procédure MATLAB 3.9 calcule une transformée intermédiaire pour une valeur de o
donnée.

Programme 3.9 Procédure t£d_interm

function y = tfd_interm(x,alpha)
n = length(x);

f = (0:n-1)'*(0:n-1);

Omega = exp(-2i*f*pi/n);

[V,D] = eig(Omega, ‘'nobalance’);
y = V*D"alpha*ctranspose (V) *x;

Correction de ’exercice II1.10 :

1. S est une matrice symétrique réelle, qui diagonalise en base orthonormée.
2. On note w =. Le plus simple est d’exploiter 1a décomposition suivante de S':

-2 1 0 ... 1
1 -2 1 ... 0
0 1 -2 0 | +di 2
+diag { 2 ( cos kﬁ -1 k=0,....N—1]),
1 0 0 ... =2

que I’on note S = I'+ A. I" est une matrice circulante (voir exercice II1.5), la multi-
. . s . T
plication par cette matrice correspond a la convolution par v = (-2,1,0,...,0,1)".
Comme la transformée de Fourier de v est la diagonale de A, on a QyI" = AQy
(avec le théoreme de convolution). En utilisant la symétrie de S et Qy, il vient

SQy = (QvS)T = (AQw)T + (QnA)T = AQy + QvA = QpS.
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3. On pourra trouver la démonstration de cette propriété classique dans [59]. Il s’agit
essentiellement d’utiliser le fait que les espaces propres de f sont stables par g, ce
qui résulte du fait que si ¢ et y commutent, alors ker(¢) est stable par y. C’est
exactement ceci que 1’on utilise pour prouver le lemme de Schur 2.5, chap. VIIL.

4. Un simple calcul montre que cet opérateur est symétrique et orthogonal. Par exem-
ple pour N =5, on a

V2 00 0 0
(]0 100 1
P=—|0 01 1 0
\5001—10
0 10 0 -1

Pour simplifier les explications, supposons que N = 2p. Pour voir que PSP~ est
tridiagonal, il faut utiliser la base canonique de CN, notée {0,...,6n-1}, et consi-
dérer la base B = {eg = S0, €1,...s€p, f1,-. s fp}-

On anoté ¢; = %(5,-—{- o_i)et fi= \/LE(SH' 6_;). Alors on a

S(eo) = S(80) = Codo+ 81 + 6_1 = Coeo +e1,

1 1 1
ES(&') + ﬁs(5—i) =7 (Ci+Cn-i)ei+eir1 +eii,
Vi<i<p, S(f,)= %S(&-) - %5(5_,-) = %(Ci —Cn=i)fit fir1 + fi-1.

Vi<i<p, S(e)=

11 faut faire attention que les indices sont exprimés modulo N, et que pour i = p, les
inégalités sont valables a condition de prendre la convention e, 1 =ep et fp41 = fp.
Donc I’opérateur S, exprimé dans la base 4 est tridiagonal, ce qui revient a dire que
PSP~ est tridiagonal.

5. Ladémonstration utilise une procédure de séparation des valeurs propres grace aux
suites de Sturm. Voir [16].

6. Cette construction est totalement intrinséque, elle ne repose pas sur un choix arbi-
traire des vecteurs de diagonalisation. Pour construire une TFD partielle, il faut faire
un choix dans 1’ordre des vecteurs propres. Dans [13] le nombre de changements
de signes est utilisé.

La procédure MATLAB 3.10 construit la base de vecteurs propres exposée dans cette
exercice, pour une taille N donnée en paramétre.

Programme 3.10 Procédure vect_propres_tfd

function V = vect_propres_tfd(n)

X = (0:n-1)'*(0:n-1);

Omega = 1/sqgrt(n)*exp(2i*x*pi/n);

d = 2*%( cos(2*pi/n*(0:n-1)) - 2 );

S = diag(d,0) + diag(ones(n-1,1),1) + diag(ones(n-1,1),-1);
S(1,n) =1; S(n,1) = 1;

[V,D] = eig(S);

Correction de I’exercice II1.11 :

1. Faisons uniquement I’un des deux calculs:

n—1 n
FkTAH =Y 07" fls—k =0,y @, " flr] = (kLf)[],

-1
s=0 r=0
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ou I’on a fait le changement d’indice de sommation r = s — k.

2. Si B = {e;}!7, est orthonormée pour L, alors # (&) = {F (e;)}'=, est orthonor-

mée pour T. Bien siir, L et T sont interchangeables.
3. f est orthonormée pour T si et seulement si, pour tout &

n—1
Lyafig=1 3, Slfls =K = &K

ot on a noté f[s] = f[—s]. En prenant la transformée de Fourier de f * f = &, et en
utilisant le théoréme de convolution, on trouve |£|? = 1, oil on a noté 1 la fonction

constante égale a 1.
4. Tl est évident que | fy|?> = 1, donc fy est orthonormée pour T.

Si on veut que g soit orthonormée pour _L, alors on applique la construction précé-

dente 3 f = g, et on considére go = &~ (/o).

5. Ona(p,kTg)=1y"tels—klols|=1f % f[k]. Comme & s’exprime comme une

convolution, on peut le calculer de fagon rapide par FFT.

La procédure MATLAB 3.11 permet d’orthogonaliser un vecteur donné.

Programme 3.11 Procédure fft_orthog

function y = fft_orthog(x)

y = fft(x);

if( min(abs(y))==0 ) error(’La TFD de X s’’annule.’); return; end;
y = y./abs(y); y = real( ifft(y) );

4 Correction des exercices du chapitre 4

Correction de I’exercice IV.1 : Avec la formule d’inversion de Fourier, on a

= i‘/A flw)e " dw
21 J—4 '

Par dérivation sous le signe intégral, on montre que f est de classe €.
Si f(t) = 0 pour ¢ € [c,d], on aurait, au point o = 1 (c +d),

~

(w)e™®0de = 0.

190) =5 [ (~io)"
2r
En développant ¢ — exp(—i(¢ —#p)) au voisinage de 0, on trouve e
i [—i(t —to /A Fl@) 0" do =0,
T =0 A
ce qui est absurde. L’interversion entre Y, et [ est justifiée par le théoréme de Fubini.

Correction de ’exercice IV.2 :

1. On utilise les schémas de différences finies 2 g (t,x) = (u(t +h,x) —u(t+h,x)) et

X2
Bien siir, les vecteurs sont considérés comme cycliques.

9 Sx) =4 L (u(t,x+d)+u(t,x—d) — 2u(t,x)), ce qui meéne A 1’équation annoncée.
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2. Onau™!=gxu", avec g = {1 —2s,s5,0,...,0,5}. Comme le support de g est trés
petit, on n’a pas intérét a utiliser 1’algorithme FFT.

3. Comme la transformée de Fourier est une isométrie, u" reste borgé si et seulement
si 4" reste borné. Comme on a u" = F(g *---x g xu®) = (g)" - ud, cette condition
est équivalente a |g| < 1. On peut calculer cette transformée de Fourier, et on trouve

2
1—4s<§[k]=1+2s<cos<ﬁﬂ> —1) <1

La condition de stabilité s’écrit donc —1 < 1 —4s, c’est-a-dire s < % Cette condition
est appelée condition de Courant-Friedrichs-Levy ou CFL. La procédure MATLAB
4.1 calcule la solution u' aprés t itérations, en lui spécifiant la condition initiale
(variable x) et la précision (variable s).

Programme 4.1 Procédure resolution_explicite

function y = resolution_explicite(x,s,t)
n = length(x); y = X;
for i=1:t
for k=1:n
y1l(k) = s*y( mod(k-2,n)+1 ) + s*y( mod(k,n)+1 ) + (1-2*s)*y(k);
end
y = vyl;
end

4. En utilisant les propriétés de convolution, on obtient la solution
— —0)A[K] ~ km\ -~
u"“[k] — 1+ (1 E)A[k] un[k] =h <2_7'C) .un,
1 — 6A[K] N
qu’il est donc possible de résoudre en Fourier. On remarque que

1—4(1—(-))s< _ 1425(1—6)(cos(w) —1)
14+46s = (0) = 1 —256(cos(w) — 1)

<

ces inégalités étant faciles a trouver par une étude de fonction, et ce sont les meil-
leures possibles. La condition de stabilité s’écrit donc —1 > %, ce qui est

équivalent a s(1 —20) < % Ainsi, si 6 > %, le schéma est toujours stable. Si 6 < %,
il faut que s < 2—(1_1—29—). On retrouve la condition CFL pour 68 = 0. Le programme
MATLAB 4.2 permet de résoudre I’équation de la chaleur par cette méthode impli-
cite. Par rapport a la procédure 4.1, il prend un argument supplémentaire, theta.

Programme 4.2 Procédure resolution_implicite

function y = resolution_implicite(x,s,theta,t)
n = length(x); y = x;

A = zeros(n,l); A(l) = -2*s; A(2) = s; A(n) = s;
fA = fft(a); y = fft(x);
mult = ( ones(n,1l)+(l-theta)*fA )./( ones(n,1l)-theta*fA );

for(i=1l:t) y = y.*mult; end;
y = real( ifft(y) );
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Programme 4.3 Procédure resolution_implicite_2d

function y = resolution_implicite_2d(x,s, theta,t)

n = length(x); y = X;

A = zeros(n,n); A(l,1)=-4*s; A(2,1)=s; A(1l,2)=s; A(n,1l)=s; A(l,n)=s;
fA = fft2(A); y = fft2(x);

mult = ( ones(n,n)+(l-theta)*fA )./( ones(n,n)-theta*fA );
for(i=1l:t) y = y.*mult; end;

y = real( ifft2(y) );

5. Les équations 2D sont les mémes a condition de considérer le filtre A tel que seules
les entrées A[0,0] = —4s, A[+1,0] = s et A[0, £ 1] = 5 soient non nulles. Les condi-
tions de stabilité sont les mémes. Le programme MATLAB 4.3 résout 1’équation de
la chaleur pour une fonction 2D donnée.

Correction de I’exercice IV.3 :

1. Ona

ult) = 3 T2 = [ { X, e e —y>} FO)dy = prx £2),

nez nez

ol la convolution est celle de L' ([0,1]). On a noté p;(x) = ¥,ez ety (x).

Par convergence normale des dérivées pour ¢ > 0, on voit que u € (S x R}").
De plus, par dérivation sous le signe intégrale, on voit que pour ¢t > 0, u vérifie
I’équation aux dérivées partielles de la chaleur.

2. Si f € %(S!), ona|f(n)=0 (#f) (voir [80] par exemple), et donc par conver-
gence dominée, il vient

lu(t,) = fllo < 3, 1F(R)]11 =727 — 0.

nez e

3. On suppose u(tg,xg) < 0. Sur [0,%)] x S! qui est compact, v atteint son minimum o
en (¢1,x)). Sur ’axe des x, puisque x; est un point intérieur, on a %(rl ,x1) = 0 ainsi

2 . .
que 3—x‘§(t1 ,X1) = 0. Sur I’axe des ¢, on peut éventuellement avoir #; = fp, mais dans

tous les cas, on a %(tl ,¥1) < 0. On a donc

v

ot

ce qui est absurde si on prend 3 tel que que a8 > 0.
Si u et u sont solution du méme probléme de la chaleur, alors u — u est solution
de I’équation de la chaleur avec pour condition initiale f = 0. Par le principe du
maximum, il vient ||u(-,¢) —u(-,) | < || f|le = 0, donc u = u.

4. Si on n’avait pas p, > 0, on pourrait trouver un voisinage ]a, | sur lequel p; < 0.
On note xg = %(a +b), et b—a = 2m. En choisissant f réguliére, & support dans
[—-m,m], et f >0 sur] —m,m[,ona

2
03 2(1,m) = Bu(ar, )+ 2% 11,21) > 0 + e L) > o,

2 ox?

b
f*pi(x0) = /a pr(y)f(x0 —y)dy <0,
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ce qui est absurde d’apres la question précédente. Ainsi, il vient
1
(-, )llew = ll2e * flloo < 1 fllew /0 Pt = £l

puisque [y pr = Y 2mnt Joen=
5. Ona
ll2,-) = Flleo < 1Pt * for = Pr ¥ flloo + 11 % fi = Flleo + 1.fn = fllo-
Soit £ > 0. On se fixe N tel que || f, — f||l < €/4.

On a aussi ||pr * fy — pr * fleo < || fn = £l < €/4. Puis, comme f est de classe €2,
on fixe # tel que si z < 79, on a ||py * fr — full < €/2.

Correction de ’exercice IV4 : Les équations sont les mémes, sauf qu’il faut prendre
pour P le filtre 3D tel que ®[+1,0,0] = ®[0, +10] = ®[0,0 £ 1] = 1, $[0,0,0] = 6, et
les autres entrées sont nulles. La seule chose difficile a coder est la fonction qui rend la
matrice de données antisymétrique. Ceci est réalisé par la procédure MATLAB 4.4.

Programme 4.4 Procédure antisymetrise

function ff = antisymetrise(f)
n = length(f)+1; ff = zeros(2*n,2*n,2*n);
for(x=1:2*n) for(y=1:2*n) for(z=1:2*n)
if mod(x-1,n)==0 | mod(y-1,n)==0 | mod(z-1,n)==0
ff(x,y,z) = 0;

else
signe = 1; nx = X; ny = y; nz = z;
if (x>n) signe = -signe; nx = 2*n-x+2; end
if (y>n) signe = -signe; ny = 2*n-y+2; end
if(z>n) signe = -signe; nz = 2*n-z+2; end
ff(x,y,z) = signe*f(nx-1,ny-1,nz-1);

end;

end; end; end;

Correction de I’exercice IV.5 :

1. L’équation aux différences finies (4.5), chap. IV, s’écrit comme la somme de deux
convolutions acycliques, I’une sur les lignes et 1’autre sur les colonnes. La multipli-
cation a gauche par Ty _; réalise cette convolution sur les lignes, et la multiplication
a droite réalise celle sur les lignes.

2. En retranchant les valeurs aux bords (entrées U; j avec i,j € {1,N—1}), on vé-
rifie que les convolutions acycliques évoquées a la question précédente s’écrivent
comme des produits matriciels Tyy_— 1U (colonnes) et UTy— (lignes).

3. En utilisant les identités trigonométriques, on a, en notant @ = 7/N, pour 2 < i <
N-2,

R (Ty—1V;)[i] = sin((i — 1) jo) — 2sin (ijo) +sin ((i + 1) jo)

T
= —4sin? (;—N> Vjli].
On vérifie que ce résultat est encore valable pour i =1 et i = N — 1. On peut donc

diagonaliser Ty_;, V~'Ty_,V = D, avecD={ —4sin® (2N>}1<-<N 1
SISV

En multipliant 1’équation (6.2), chap. IV, a gauche par V! et a droite par V, on
obtient 1’équation demandée.
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4. Comme Ty_; est symétrique, ses vecteurs propres sont orthogonaux et donc V est
une matrice orthogonale. On note . : CV~! — CM~! Ia transformée en sinus, défi-
nie par

i|= i=N_1 i sin yr
FPN= W= 3, 1) (N)

Si on note fy = {0, f[0],...,f[N—1],0,...,0} € C¥, alors, pour i = 1,...,N — 1,
ona ()l = Fm(folil).

5. On peut aussi considérer f = {0, f[1],...,f[N — 1],0, —ﬂN— 1),...,—f[1]} e
signal symétrisé par imparité. On a alors #(f)[k] = —2ify[k]. Comme V est or-
thogonale et symétrique, on a &1 = 1%,5”. La procédure MATLAB 4.5 réalise

la transformée en sinus 1D. De méme, si F € CWN-Dx(N ‘1), on note F la fonc-

Programme 4.5 Procédure transformee_sinus

function y = transformee_sinus (x)

n = length(x);
x = [0;%x;0;-x(n:-1:1)]); x = fft(x);
y = real( x(2:n+l)/(-21i) );

tion impaire correspondante (voir le paragraphe 4.3, chap. IV). On a cette fois
VFV~Ik,I] = —4.% (F)[k,I]. Cette méthode est en fait identique 2 celle exposée
au paragraphe 4.3, chap. IV. La procédure MATLAB 4.6 réalise la transformée en
sinus 2D, mais utilise uniquement 1’algorithme de transformée 1D (sur les lignes
puis les colonnes).

Programme 4.6 Procédure transformee_sinus_2d

function y = transformee_sinus_2d(x)

y = zeros(size(x)); n = length(x);
for(i=1:n) y(i,:) = transformee_sinus(x(i,:)’)’; end;
for(j=1:n) y(:,Jj) = transformee_sinus(y(:,3j)); end;

Correction de I’exercice IV.6 : La procédure MATLAB 4.7 calcule un filtre gaussien 2D
de taille (parametre n) et de variance (parametre s) données. Le programme 4.8 applique
un filtre gaussien & une image chargée depuis un fichier, puis dessine 1’image a I’écran.

Programme 4.7 Procédure calcul_filtre

function f = calcul_filtre(n,s)
X = -1:2/(n-1):1;

[X,Y] = meshgrid(x,Xx):

f = exp( -(X.72+Y.72)/(2*s) );
f = f / sum(sum(f));

Correction de I’exercice IV.7 :

1. d(f,g)[u,v] mesure la similarité entre g et une portion de I'image f dont le coin
inférieur gauche est situé en (u,v). On a

d(f,8)[uv] = Corr(f, 8) [u,v] + Pup(f) +llgll3.

Comme ||g||3 est constante, minimiser d(f, g) revient 2 minimiser Corr(f, g)[u,v] si
Py(f) varie peu.
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Programme 4.8 Application d’un filtre gaussien

[im, cm] = imread(’'mettre ici le nom du fichier’);

n
f

Y

length(im); s = 0.01;
calcul_filtre(n,s);
filter2(f,im);

image(y); colormap(cm) ;
axis off; axis image;

2. Corr(f,g) est le produit de convolution acyclique de f avec g[x,y] = g[—x, —y].
3. On note fy[x,y] = flx,y] —f,,,v (que I’on suppose nul en dehors de D(u,v)), et

go[x,y] = g[x,y] —g.Ona

(fO)g())
I foll2llgoll2”

Ainsi, —1 < Corr(f,g) < 1, et Corr(f,g) = 1 si et seulement si fy et go sont égaux.
Ceci donne bien une notion de ressemblance entre g et une portion de f, qui de plus
est insensible aux modifications affines de I’intensité des deux images. Le probléme
est que cette quantité ne s’écrit pas comme une convolution.

Corr(f,8)[u,v] =

. Le numérateur se simplifie en 3., ,) f[x,y]go[x — u,y — ], puisque go est de moyen-

ne nulle. On obtient bien ainsi une convolution. La relation de récurrence se voit en
faisant un dessin, les s; étant des sommes sur des carrés qui se chevauchent. La pro-
cédure MATLAB 4.9 utilise cette récurrence pour remplir, par indices décroissants,
sk Sa complexité est d’environ 6N? opérations. On a || fo||3 = s2(u,v) — P%sl (u,v)?,

Programme 4.9 Procédure somme_glissante

function y = somme_glissante(x,P,k)

N

length(x); y =zeros(N,N);

for(u=N:-1:1) for(v=N:-1:1)

if( u<N ) y(u,v)=y(u,v)+y(u+l,v); end;

if( v<N ) y(u,v)=y(u,v)+y(u,v+l); end;

if( u<N && Vv<N ) y(u,v)=y(u,v)-y(u+l,v+1l); end;
v(u,v)=y(u,v)+x(u,v) k;

if( u+P<=N ) y(u,v)=y(u,v)-x(u+P,v)"k; end;

if( v+P<=N ) y(u,v)=y(u,v)-x(u,v+P)“k; end;

if( u+P<=N && Vv+P<=N ) y(u,v)=y(u,v)+x(u+P,v+P) "k; end;

end; end;

ce qui peut se calculer avec des sommes glissantes, donc trés rapidement. De plus,
lg|l2 se calcule une fois pour toutes. La procédure 4.10 calcule Corr(f,g) a I’aide
de cet algorithme rapide.

Correction de ’exercice IV.8 :

1. Ona

2im

Z(L))k]=ay® ™ Z()k] ot w,=e¥.

La procédure MATLAB 4.11 utilise 1’algorithme FFT pour translater une image. La
procédure 4.12 applique 1’opérateur ng) en effectuant une translation sur chaque

ligne de 1’image. Il est a noter que les indices des entrées de I’image sont prises
entre —N/2 et N/2 — 1, dans le but d’appliquer Sflx) pour tourner une image au-
tour de son centre. Nous laissons le soin au lecteur d’écrire lui méme la procédure
fft_transvec_y.
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Programme 4.10 Procédure correlation_normalisee

function y = correlation_normalisee(f,q)

N =

length(f); P = length(g);

¢ renormalisation

g:

g - mean(mean(g)); g = g/norm(g);

¢ calcul du numérateur

ff
gg
fg
fg
% c
sl
s2

= zeros (N+P-1,N+P-1); ff(1:N,1:N) f;
zeros (N+P-1,N+P-1); gg(l:P,1:P) g;
real (ifft2( ££t2(f£f).*conj (£fft2(gqg)) ));
= fg(1l:N,1:N);

alcul du dénominateur

= somme_glissante(f,P,1);

= somme_glissante(f,P,2);

denom = sqgrt( s2-1/P"2*(sl1l.72) );

Y =

fg./denom;

Programme 4.11 Procédure fft_translation

function y = fft_translation(x, V)

n =
[s,
mul
y=
Y

length (x) ;

t] = meshgrid( [0:(n/2-1),-n/2:-1] );

t = exp( -2i*pi/n*( s*v(1l) + t*v(2) ) );
fft2 (x).*mult;

real ( ifft2(y) ):

Programme 4.12 Procédure fft_transvec_x

fun
n =
for
v

ction y = fft_transvec_x(x, lambda)
length(x) ;

k=1:n

= X(:,k); trans = lambda*(k-n/2-1);

mult = exp( -2i*pi/n*( [0:(n/2-1),-n/2:-1]'*trans ) );

= fft(v).*mult; y(:,k) = real( ifft(v) );

v
end
2. Ona

(s e )=l ™) (anor 1) 0 71

Si on suppose qu’une image correspond 2 une fonction de R? dans R discrétisée aux
points 0,...,N — 1, alors I’opérateur de rotation discréte s’écrit Rg = Sgi)Sg ) S;:).

Pour faire tourner une image autour de son centre, il suffit d’utiliser, dans les algo-
rithmes de calcul de S;f) et Sgy ), des points de discrétisation —N/2,...,N/2 —1
(c’est ce qu’on a fait pour £ft_transvec_x). La procédure 4.13 permet de
réaliser une rotation discréte. Cet algorithme est trés rapide, puisqu’il nécessite

Programme 4.13 Procédure fft_rotation

function y = fft_rotation(x, theta)

Y =
Y
Yy

fft_transvec_x( x,-tan(theta/2) );
fft_transvec_y( y,sin(theta) );
fft_transvec_x( y,-tan(theta/2) );

O(N?1og(N)) opérations. De plus, il est bijectif, et vérifie Rg,Rs, = Rg,+6,- En
quelque sorte, le passage par la TFD est la fagon « naturelle » de discrétiser une
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rotation continue. Par contre, puisque I’image est considérée comme une fonction
continue, I’image se retrouve « découpée en morceaux » apres la rotation. Pour
empécher ceci, il faut ajouter des zéros tout autour. C’est ce que réalise le pro-
gramme 4.14, qui a permis de réaliser la figure 4.15, chap. IV. On peut noter que ce
programme ajoute des 255 autour de 1’image de départ. C’est pour obtenir un bord
blanc plutdt que noir.

Programme 4.14 Rotation d’une image

[im, cm] = imread(’mettre ici le nom du fichier’);
n = length(im); p = ceil(n/2*(sqrt(2)-1));
X = ones(n+2*p,n+2*p) *255;
X((p+1): (n+p), (p+1) : (n+p)) = im;
nbr = 6; rot = pi/(4*(nbr-1));
for r = O:nbr-1

y = fft_rotation(x,r*rot);

subplot (1l,nbr,r+1);

image (y); colormap(cm) ;

axis off; axis image;
end

Correction de I’exercice IV9 :

1. La procédure MATLAB 4.15 réalise ceci.

Programme 4.15 Procédure filtre_passe_bas
function f = filtre_passe_bas(N)
f = (0:N-1)'; £ = (£<=N/4) 1| (f>=3*N/4);
f real (ifft(f));

2. Le programme MATLAB 4.16 dessine la transformée de Fourier d’un filtre, en ajou-
tant des z€ros. On constate des oscillations (phénomene de Gibbs), car on essaie

Programme 4.16 Dessin de la transformée de Fourier continue par zero padding
N = 64; P = 1024;
f = filtre_passe_bas(N);
ff = [£(1:N/2); zeros(P-N,1); f((N/2+1):N)];
ff = real (fft(ff));
plot(ff); axis tight;

d’approcher une fonction discontinue (le filtre idéal est la fonction indicatrice de
[—m/2,7/2]) par un polyndme trigonométrique.

3. Nous allons remplacer le passage brutal de 0 a 1 dans le filtre de la question 1 par
une progression douce (sinusoidale) de longueur €N /2. La procédure 4.17 réalise
ceci.

Correction de ’exercice IV.10 :

1. Ala K®me jtération du procédé, on note my le nombre minimal de bonbons qu’un
enfant possede, n; le nombre maximal, et s, le nombre d’occurrences de my. I1 est
facile de voir que my; > my et ngy1 < ng. De plus, on voit aussi que si sp > 1,
alors sgy1 < Sg, et si s, = 1, alors my41 > my. Comme sy, est borné par n, toutes les
n opérations, my, augmente d’au moins 1, et donc |my —ny| vaut O aprés un nombre
fini d’opérations.



272

Correction des exercices

Programme 4.17 Procédure filtre_parametrable

function f = filtre_parametrable (N, eps)

Pl
t
f
f

= floor(eps*N/4); P = 2*Pl+l; & P doit étre impair

[1]; if(P~=1) t = (cos((0:P-1)'*pi/(P-1))+1)/2; end;

[ones (N/4-P1,1);t;zeros(N/2-P,1);t(P:-1:1);ones(N/4-P1-1,1)1;
real (ifft(f));

2. On peut assimiler la distribution des bonbons & une distribution de probabilité (en

la renormalisant pour que sa somme soit égale a 1), et on se trouve donc dans
la situation de I’exercice I.10. Si on note p(") la distribution des bonbons aprés k
itérations, on a p®) = vx...xv* p©, avec v ={1/2,1/2,0,...,0}. En prenant la

Y Y 2ikx

transformée de Fourier, on obtient p(*) = (¥)*. p(®). On calcule ¥{k] = %(1 +e V),

et on constate que pour k # 0, [7k]| < 1. Donc p®) — {m,...,m}, ot m = p(O[0]
(le nombre moyen de bonbons).

Dans le cas ol chaque enfant distribue la moiti€ & gauche et la moiti€ a droite, il
n’y a pas de convergence, car on peut avoir my4| = my. La situation est analogue a
celle rencontrée a I’exercice 1.10 pour v = {0,1/2,0,...,0,1/2} lorsque n est pair.

Correction de I’exercice IV.11 :

1. 1l faut prendre Ry = PyQo, R1 = P1Qo + PoQ1 et Ry = P Q.
2. On peut effectuer le calcul astucieux suivant: Ry = (Po+ P;)(Qo+ Q1) — Ro— R,.
3. En tout, il y a log,(n) appels récursifs imbriqués. A chaque étape, il y a 3 appels

récursifs, donc pour k = 0, ..., log,(n), il y a 3* appels au total. Le cofit des ad-
ditions a chaque étape est de ¢ x 2logy (n)—k (puisque les polyndmes sont de degré
2logy(m)—ky - Ay total, le nombre d’opérations est de

1
%Z(") 3tc'omlk = 0 (n(3/2)°8™) = 0 (nou®),
k=0

La procédure MATLAB 4.18 calcule le produit de deux polyndmes de méme taille
(représentés sous forme de vecteurs). Il utilise la procédure 4.19 qui additionne
deux polyndmes de degrés différents.

Programme 4.18 Procédure karatsuba

function r = karatsuba(p,q)

n

length(p)-1;

if (n==0) r=p*q; return; end;

k
p0
q0
r0
rl
rl
r
r

floor((n+1)/2);

= p(l:k); pl = p((k+1):(n+l));

= q(l:k); gl = q((k+1):(n+1));

= karatsuba(p0,q0); r2 = karatsuba(pl,ql);
= karatsuba(add(p0,pl),add(q0,ql));

= add(rl,-r0); rl = add(rl,-r2);

add( r0, [zeros(k,1l);rl] );
add( r, [zeros(2*k,1);r2) );
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Programme 4.19 Procédure add

function r = add(p,q)

m = length(p); n = length(q);
if(m>=n) r = p + [qg;zeros(m-n,1)];
else r = q + [p;zeros(n-m,1)]; end;

Correction de I’exercice IV.12 :

1. L’équation v(k) = uy(k] s’écrit uz = a * yy. En utilisant le théoréme de convolution
pour les séries de Fourier (voir [80]), on obtient &y = a@- Y. En remplagant y par
la fonction ¢ telle que

o)=Y Q4(k)y(x—k) avec By= 1
keZ Vd
on se ramene a un probléme d’interpolation directe. M&me si y est a support com-
pact, ¢ n’est en général pas a support compact.

2. B"estasupportdans [(—n+1)/2,(n+1)/2]. B" permet de définir un schéma d’in-
terpolation directe si et seulement si " (k) = d(k), et on vérifie que ceci est le cas
seulement pour n = 0 (interpolation constante par morceaux) ou n = 1 (interpolation
linéaire).

3. Avec le théoréme de convolution de la transformée de Fourier, il vient

Fi(E) = (%ﬁf’)“

On a B} = B" -1y, d’ol, avec le résultat de 1’exercice IL.9, il vient

BR(E) = 2B« _ ) ((Sin(€/2) "
§(6) = 2n < a(§) =20 3 (17 (_—mé /2> .

Comme [/33(5) est une fonction 27-périodique, il suffit de 1’étudier sur [0,27[. Si n

est impair, tous les termes de la somme sont positifs, et BE > 0. Si n est pair, c’est
un peu plus compliqué. Le terme pour p = 0 de la somme est strictement positif.
Pour le reste, il faut regrouper les termes correspondant a p et a —p et utiliser le
critére des séries alternées.

4. Ona B, , = @4 *B". En Fourier, on obtient

card
in(&/2) \ "1
7 (£) = (S E%”) _ 1/@n)
card - R n+l — ’
in(€/2 1+rn(€
2r Xpez (_:tp+§/_/%) )

avec

o= () ()

I',, est de support infini. Comme la transformée de Fourier est une isométrie, on veut
montrer la convergence dans L?(R) :

—_— 1

Bgard Noo ﬁl[—n,n]-
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Par parité, nous allons évaluer seulement les intégrales

E,,=/On(l++n(€)—1)2d§ et F,,=/n+w<—l+—lln—(5>2d§.

Pour la premiére, on a E, < [J' T'2, et on utilise le fait que si & € [0, 7], alors on a
t =2n/€ > 2, d’ot la majoration

—n—1 too
I(€) <2 <2€—”_ 1) 5 et <oty
p-

Par changement de variable & — ¢, on obtient

iad 2r]? 1
< —1)™ 1| de = - .
E, /2 [4(1‘ 1) t2] t O(n)

Pour la deuxiéme intégrale, on utilise la minoration I',(€) > (& /m)**!, d’on

n< [ [regr] %-0(3)

Au final, on voit que I’interpolation trigonométrique (c’est-a-dire par zero padding,
aussi appelée interpolation de Shannon, comme le montre I’exercice I1.10) peut étre
vue comme une interpolation spline de degré infini.

5. On a ¢ = @4 *uy, ce qui s’écrit en Fourier ¢ = i2;/B)]. Si I’on approche la trans-
formée de Fourier continue par une transformée de Fourier discréte, et que 1’on
calcule ¢ par FFT, on va tronquer les fonctions considérées, ce qui est trés mauvais
(oscillations de Gibbs)

5 Correction des exercices du chapitre 5

Correction de I’exercice V.1 : On a 2 = NId, donc les valeurs propres de s sont
incluses dans {£1/N}. Pour f € RV, on définit

Ui (f)EVNF+H(f) et U(f)EVNf— ().

On vérifie que ce sont bien des vecteurs propres de J# associés aux valeurs propres v/N
et —/N. La procédure MATLAB 5.1 calcule, 2 I’aide de ces vecteurs propres, une trans-
formée de Hartley intermédiaire. On fera attention au fait qu’elle est a valeur dans C.

Programme 5.1 Procédure fht_interm

function y = fht_interm(x, lambda)

N = length(x);

ul = sqgrt(N)*x+fht(x); u2 = sqgrt(N)*x-fht(x);
y = ( sqgrt(N)“lambda )*( ul + (-1) "lambda*u2 );

Correction de I’exercice V.2 : On note @ =27/N, et v,% € RY tel que v,); (] = cos(otkl +
A). La transformée de Hartley généralisée s’écrit %3 (f)[k] = < 7 v,%> Pour définir une
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transformée inverse, on cherche une famille de vecteurs biorthogonale aux v,f sous la

forme {vﬁl}sz‘Ol. On veut donc que <v,%,v£‘,l> = 75"' , ol ¥ € C est une constante. En
développant le produit scalaire, on obtient une expression similaire a celle de 1’équation
(1.3), chap. V. Pour que les deux premiers termes se simplifient, on impose (A +2) —
—eiA+2) | par exemple A + A’ = 1/2. On obtient alors <v,%,v,)c','> = %sin(Z/'L)ﬁf , et
donc au final il vient £ o0 A = %sin(Zl)Id.

Correction de ’exercice V.3 : Soit f € RN avec N = 2Ny + 1 et g = #(f). Onnote g =
{gl0],...,8[No],0,...,0,g[No+1],...,8[N — 1]}. Ceci permet de calculer, par FHT, les
quantités #(g)[n] = F(nN/P), ot I'on a noté F (x) = & SN~ ! g[k] cas(2mkx/N). On peut
donc évaluer la fonction F avec la précision que 1’on veut. Avec la formule d’inversion,
proposition 1.3, chap. V, F interpole f aux points 0,...,N — 1. En exprimant les fonctions
x — cas(2mkx) a I’aide des exponentielles complexes x — ez_'lfvxz, on voit que F est un
polyndmes trigonométrique de degré au plus N — 1. L’interpolation trigonométrique de
I’exercice II1.6 utilise aussi un polynéme trigonométrique de degré au plus N — 1. Comme
il passe un seul polynéme trigonométrique de degré au plus N par N points distincts, on
en déduit que ces deux interpolations sont les mémes.

Correction de I’exercice V.4 : On peut écrire la transformée de Hartley 1D comme
H(f)k] = <f, (p,£N1)> avec (p,EN‘)[n] = cas(nk2m/N). La proposition 1.3, chap. V nous

dit que <(p,£N') (N ‘)> =M S,f' . Les fonctions de Hartley 2D sont des produits tensoriels

Y V!
(p((,?f' ,?S) [n1,m2] = (p,gV ')(nl )(p,g‘lz)(nz). Elles forment donc encore un systéme orthogonal,

puisque
(NiN2) (N N2)\ _ /  (N1) (V) (N2) (N2)\ _ Ky ok
<¢(kl',k2§ O > = <¢>k, Yop > <cok22 0 > =NiN2§, 182,

d’oti la formule d’inversion proposée. L’algorithme de calcul consiste a appliquer la pro-
cédure FHT sur chaque ligne de la matrice f € RM>*M2, puis sur chaque colonne. C’est ce
que réalise la procédure 5.2.

Programme 5.2 Procédure tht2d

function y = fht2d(x)

n = length(x); y = zeros(n,n);
for(i=1:n) y(i,:) fht(x(i,:)’)’; end;
for(j=1:n) y(:,3) fht(y(:,3)); end;

Correction de ’exercice V.5 : Soit p un nombre premier tel que 4|p — 1. On note { un
générateur de Fy, et y=( ’7'. Dans I’équation (1.1), chap. V, on remplace cas(2kin/N)
par (¢ + ¢4 + %,(C ki _ =k La démonstration de la proposition 1.3, chap. V est
encore valide si on remplace @ par { et i par y. Le programme MAPLE 5.3 réalise une

transformée de Hartley sur un corps fini en utilisant une extension de corps, comme ex-
pliqué au paragraphe 1.4, chap. VI pour la TFD.

Correction de I’exercice V.6 :

1. 11 faut prendre Gj j = g[i — j] = g[j — i]. La multiplication par G correspond bien a
la convolution acyclique qui définit y.
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Programme 5.3 Transformée de Hartley sur un corps cyclotomique

> with (numtheory): n := 16: p := 5:

> 1liste_div := op(Factor( cyclotomic(n,X) ) mod p ):

> P := liste_div(1l];

> alias ( zeta = RootOf(P) ): # racine niéme primitive

> g := 2: # 2 est une racine carrée de -1 modulo 5
P:=X*+3

> cas := proc(x)

> 1/2*( zeta*(x)*(1l-g) + zetar(-x)*(1l+g) );
> end proc:
Transformée de Hartley, version O(n?) :
> Hartley := proc(f)
local res, formule;
formule := ‘f[l+1]*cas((k-1)*1)"
res := [ seq( sum( formule, ‘1’=0..n-1 ) mod p , k=1..n) ];
return (Normal (res) mod p);
end proc:

VVVVYV

Test simple :
> hasard := rand(0..(p-1)):

> X := [seq( hasard(), i=1..n )];
> y := simplify(Hartley(x)); # Hartley(x) n’est plus dans F p
> evalb( x = Hartley(y)/n mod p ); # doit étre égal.

x:=1[0,1,1,1,2,2,1,4,0,1,2,0,1,0,2,0]

y:=[3,382+44+48+3832+482,14+483+38%,3,28%+28+ 83 +4,2,
203428241,0,8+283 +382 44,2+ 8203 +382+1,1,38 +483 4282 +4,
2,282 4383 +1]

true

2. La matrice T est le bloc constitué des m premiéres lignes et des n premicres co-
lonnes. Pour calculer Tx, on calcule y= CXolu X = (x,0,... ,O)T € CM, et on extrait
de y les m premiéres composantes pour trouver y. On a y = ¢ X, ce qui se calcule
rapidement par FFT.

3. 11 faut donc considérer ¢ = {g[0],...,g[N —1],0,...,0,g[N—1],...,8[1]} € CHM,
La procédure MATLAB 5.4 réalise le calcul de transformée en Z vectorielle par
I’algorithme CZT.

Programme 5.4 Procédure czt

function y = czt(x, z)

= length(x) ;

= z.7(1/2*(0:n-1)'."2); h =

= ceil(log2(2*n-1)); M = 2”k
[g; zeros(M-2*n+1,1); g(n:-1:2)];

= [h; zeros(M-n,1)];

= ifft( fft(g).*fft(h) );

= y(l:n)./g(l:n);

X./g;

KK PQaa xaQB
1

Correction de I’exercice V.7 : On note x,, = f(n) le signal discrétisé, et y,(, ~ Jo f(t)dtle

résultat obtenu avec la méthode (M;). Soit X = 2 (x,) et Y () = 27( E,)) les transformées
en Z. On note H®) = y () /X les fonctions de transfert. On a

1z+1 (3)(2)_11+4Z+22.

(1)(g) = @) -
@)= HP@=5p 2" 21

-1’
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La figure 8.1 montre les réponses fréquentielles de ces trois filtres. On constate qu’ils
amplifient beaucoup les basses fréquences (ils ne sont pas stables), ce qui est normal,
puisque I’on a réalisé des intégrateurs, qui lissent le signal d’entrée.

H(e) H®(w) H®w)
2 2 2
15 15 15
1 1 1
05 05 05
0 0 0
0 2 4 6 0 2 4 6 0 2 4 6

F1G. 8.1 — Réponses fréquentielles des trois filtres

Correction de I’exercice V.8 :

1. Ona
2/3- |x|2+ |x|3/2 si 0< |x[ <1,
B(x)=( (2—1x)*/6 si 1< ¥ <2,
0 sinon,

ce qui donne 83 ={...,0,1/6,2/3,1/6,0,...}.
2. On aladécomposition

—60 1 1
Z(®3)(2) = 1-a? (l—ocz‘l + 1+ozz_1> avec @=v3-2.

La fraction en z~! (respectivement en z) correspond 2 un filtre récursif causal (res-
pectivement anti-causal) qui est stable. Pour calculer c, il faut filtrer u; par les deux
filtres, (I'un selon les indices croissants et 1’autre selon les indices décroissants),
ajouter les résultats, soustraire u,, et multiplier le tout par —6a/(1 — a?).

3. Avec la question précédente, il vient by = —60:/(1 — 02) et b; = ¢.. On peut imposer
¢*t[0] = ¢~ [K — 1] = 0. Pour des conditions plus complexes, on regardera [74]. La
procédure MATLAB 5.5 calcul les coefficients de 1’interpolation par cette méthode.

Programme 5.5 Procédure coef_spline_1

function ¢ = coef_spline_1 (ud)
K = length(ud); alpha = sqrt(3)-2;
bl = alpha; b0=-6*bl/(1-b1"2);
cl = zeros(K,1l); c2 = zeros(K,1);
for i=2:K
cl(i) = ud(i)+bl*cl(i-1);
end
for i=(K-1):-1:1
c2(i) = ud(i)+bl*c2(i+1);
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4. On a la décomposition
—60
(1-—az )(1-0z)
Le vecteur ¢ s’obtient donc par la composition de deux filtres (I’un causal, I’autre
anti-causal). Le programme MATLAB 5.6 utilise cette deuxi¢éme décomposition.

Z(®))(2) =

Programme 5.6 Procédure coef_spline_2
function ¢ = coef_spline_2 (ud)
K = length(ud); alpha = sqrt(3)-2;
c = zeros(K,1); d = zeros(K,1);

for i=2:K
d(i) = 6*ud(i)-alpha*d(i-1);
end
c(K) = -6*alpha/(l-alpha”2)*(2*d(K)-6*ud(K));
for i=(K-1):-1:1
c(i) = alpha*( c(i+1)-d(i+1) );
end

Correction de I’exercice V.9 : En utilisant le fait que a — g% est une bijection de
{0,...,p—2} dans F3, on obtient

~ -b 2 a—b
Fla) =0+ 3, 500" = 10+ 3 )y

On note f et & les vecteurs de CP~! définis par f[k] = f(g¥) et hlk] = W, ¢ On vérifie
que la définition de h est indépendante d’une translation de k par p — 1, donc h peut
étre vu comme une fonction (p — 1)-périodique. En conséquence, I’ expression de f(g‘b )
correspond bien a la convolution circulaire f* Z[b] On peut donc calculer une TFD de
longueur p grice a une convolution de longueur p — 1, donc & 3 TFD de longueur p — 1.
Ceci est avantageux car p n’admet pas de factorisation, alors que p — 1 en admet une (il
est au moins divisible par 2), ce qui permet d’utiliser par exemple la méthode de Cooley-
Tukey, paragraphe 2.4, chap. III.

La procédure MATLAB 5.7 utilise cette méthode. II faut lui fournir un générateur de F),
dans le paramétre g. Elle utilise une fonction auxiliaire invmod, programme 5.8 qui
calcule un inverse modulo p.

Correction de I’exercice V.10 :

1. Ona
N-1 N-1 ;
~ a . a ~ _2in a ~
fom 5 3 fl)e™ = 2e® 3 flsle™ ¥4 = ZeG(F K,
s=0 s=0

o 6 = % (£~ 22) et 7l = f1se 4%, 51 ¢ = 2, ona

N-1 2ix
G(f,y)= 3 Flslea*#h),
k=0

Ceci peut se calculer en ajoutant N(g — 1) zéros a la fin de f, puis en calculant une
TFD de taille Ng. L'utilisation de la transformée de Fourier fractionnaire est trés
avantageuse si g est grand.
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Programme 5.7 Procédure fft_chirp
function y = fft_chirp(x,qg)
p = length(x); f = zeros(p-1,1); h = zeros(p-1,1);
for k=0:p-2
j = mod(g”k,p); jj = invmod(j,p);
f(k+1) = x(j+1); h(k+l) = exp(-2i*pi/p*3jj);

end

h = ifft(ffe(f).*fft(h));

y = zeros(p,1); y(1l) = sum(x);
for k=0:p-2

j = mod(g"k,p); jj = invmod(j,p):;
y(3j+1) = x(1) + h(k+1);
end

Programme 5.8 Procédure invmod

function y = invmod(x,p)
(u,y,d] = gcd(x,p); y = mod(y,p);

2. Nous allons définir une transformée de Fourier fractionnaire Gsim qui utilise la mé-
thode de Simpson a la place de 1a méthode des rectangles pour 1’intégrale de Fourier.
On suppose que N = 2Ny + 1, et en faisant attention a bien découper les sommes,

on obtient

No—1
Gsim f, [k] 1 z f[2 ]a)1;2SkY+ z f[2.§‘+l] —(2s+1)k

+x Zf 25y " = G(g, 7),

ot g est défini par g[0] = 1 £(0], g[N — 1] = 1 f[N—1] et

g[2k] = % f(24] pour k=1,...,No—1,
g[2k+1]—4f[2k+1] pour k=0,...,No— 1.

La procédure MATLAB 5.9 utilise cette méthode. Pour calculer Ggin(f,7), il faut
I’appeler avec le paramétre alpha égal a (ay)?.

Programme 5.9 Procédure czt_simpson
function y = czt_simpson(x,alpha)
N = length(x); NO = (N-1)/2; y = zeros(N,1);
y(l) = x(1)/3; y(N) x(N)/3;
y( 2*(1:(NO-1))+1 ) 2/3*x( 2*(1:(NO-1))+1 );
y( 2*(0: (NO-1))+2 ) 4/3*x( 2*(0:(NO-1))+2 );
y = czt(y,alpha);

Correction de ’exercice V.11 : La procédure MATLAB 5.10 réalise la transformée de
Fourier fractionnaire G(f, o), tout simplement en utilisant 1’algorithme czt (procédure
5.4). On peut ensuite 1’appliquer sur les lignes puis les colones d’une matrice pour calculer
une transformée 2D, comme le fait la procédure 5.11.
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Programme 5.10 Procédure frft
function y = frft(x, alpha)
N = length(x);

w = exp( -2i*pi*alpha/N );
y czt(x,w);

Programme 5.11 Procédure frft2d
function y = frft2d(x,alpha)
n = length(x);
for i=1:n

y(i,:) = frft( x(i,:), alpha );
end
for j=1:n

y(:,3) = frft( y(:,3), alpha );
end

6 Correction des exercices du chapitre 6

Correction de ’exercice VI.1 : La procédure MAPLE 6.1 calcule le premier entier tel
que @, ait un coefficient égal & +k. Attention, elle est tres lente.

Programme 6.1 Procédure CycloCoef

CycloCoef %éproc(k)
local i,j,P,s:
for i from 0 to 10000 do
P dé——f'cyclotomic(i,x): s dg'degree(P):
for j from 0 to s do
if abs(coeff(P,X,3j))=k then return(i): end if:
end do:
end do:
end proc:

Correction de I’exercice V1.2 :

1. Une racine principale { sur F,, est une racine primitive. Le groupe engendré par {
est de cardinal n, c’est un sous-groupe de 3}, donc n|p — 1.

2. On a pged(&,p) =1, donc pged (§,p") =1, donc § est inversible dans Z/p"Z.
Comme ®(p") = p"~!(p—1), on a, avec le théoréme d’Euler, {®(*") = Cé’_l =1.

3. Dans Fp,ona {? ={,donc {* = ({P)’=---= (¢P™")s. Donc, comme s < n < p,
{3 — 1 est inversible dans F. Ceci signifie que pged ({3 — 1,p) = 1, donc on a
pged (65— 1,p") =1, et {§— 1 est aussi inversible dans Z/p’Z.

4. Avec le théoréme chinois,ona Z/mZ ~T]Z/ pf-"'Z. Dans chaque Z/ pf."' Z, on choisit
une racine ni®me principale ;. On vérifie alors que ({1, ..., &) € [1Z/ pf."' Z est une
racine ni®™ principale.

Correction de I’exercice V1.3 :

1. Si { est une racine mni®Mme de I’unité, alors o = {™ est une racine nieme de ’unité.
De plus, o' — 1 = {™ — 1 n’est pas diviseur de zéro, puisque 0 < mi < mn. Idem

pour 3 = {".
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Réciproquement, si {™ est une racine principale n®™ | alors {™" = ({™)" = 1
donc { est une racine mni®™® de 'unité. Soit 0 < i < mn, et a tel que al’ = a.
Montrons que a = 0. Par division euclidienne, on écrit i = ng+r, avec 0 < r < n,
et g < m. Si r =0, alors, comme "7 — 1 n’est pas diviseur de zéro (puisque ¢
est racine principale ni®™® ), on a terminé. Si > 0, alors on a, en itérant al’ = a,
la relation a({?)F = a. En prenant k = m, on obtient a4+ = {™" = g, ce qui
implique a = O car {™ est racine principale ni®me .

2. Les racines carrées de ’unité sont racines du polynéme (X — 1)(X + 1) donc sont
—1 ou +1. Pour obtenir une racine principale, il faut donc que { = —1 et que
{ —1 = —2 ne soit pas diviseur de zéro. Donc si 2 n’est pas diviseur de zéro, —1
est la seule racine carrée principale.

3. La propriété a été démontrée a la question précédente pour £k = 1. On suppose la
propriété démontrée jusqu’au rang k — 1 > 0. Avec la question 1, { est une racine
(26)™ principale si et seulement si (2¢=1)“™ est une racine carrée principale

(donc égale a —1) et si {2 est une racine (24! )'éme . En appliquant ’hypothése de

récurrence a {2, ona ({22 = (% = —

Correction de I’exercice VI4 :

1. On note vg =1+4vet v,lc = V. On a la décomposition

~ ~ n-1 .
f(VO,---,Vn—1)= Z f(i()’"')in—l)]:[v;(k'
k=0

(iO)'--)ill—l)e{O) 1}"

En développant les produits, on trouve bien un polyndme de la forme demandée.
Comme il y a 2" tels polynémes, et 2" fonctions booléennes, la décomposition
trouvée est unique.

2. Ona ~
V()= 3 (~Dkhw),
ue(l;)"
donc # (f)(k) est égal au nombre de 0 moins le nombre de 1 dans le vecteur

k)
{f~(u) + (u, k) }ue () Ceci signifie que
W (f) (k) =2"=2d(f, fr,0)-

Comme on a aussi

d(f,1+ fi,0) =d(f, fi,1) = 2" —d(f, fr,0),
il vient .
min (d(f, fi,0), d(f, fe1)) = 5 (2" =17 (H(K))).

D’oti le résultat, en passant au min sur I’ ensemble des fi ».
3. Si f vérifie |# (f)(k)| = 2"/2, alors N(f) = 2"~1 —2"/2=1, Soit g une fonction telle
que 3k, |7 (g) (k)| # 2"/2. Avec la formule de Plancherel, proposition 4.7, chap. I,

ona
2"—1

3 7 (O =2

Ainsi, comme il y a 2" termes dans la somme, 3k tel que |# (g)(k)| > 2"/2. On a
donc N(g) < 2n—1 —on/2-1,
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4. Ona
W)W = 3 (~1)m0HH0
tE(]F2)n+m
S Y Y (—) @O 1) EO — (1) W)W (8) ).
r€(IFy)" se(IFp)™

Si f et g sont bents, [# (f)(u)| = 2% et |# (g)(v)| = 2m/2 et donc on a bien
|# (h)(w)| = 2(m+n)/2, Réciproquement, si par exemple f n’est pas bent, nous
avons déja vu 2 la question 3 que Jug, |7 (f)(uo)| > 2"/2. Si on suppose que &
est bent, alors pour w = (ug,v),

20W0/2 1o () (w)| = [ () (o)1 (&) ()| = W, [ (g)(¥)| < 2772,

ce qui est impossible car N(g) < om—1_ym/2—1
On vérifie que % (fo) = {2,2,2, —2}, donc fj est bent. Ainsi la fonction

f(uo, ... un—1) = uouy + -+ thp_oUp_1

est bent.
5. La dimension de R(1, n) est n+ 1, et sa distance minimale est 2"~!. Ceci vient du
fait que les fonctions fa p» pour a # 0, prennent 2"~ fois 1a valeur 0, et 2"~ fois la

valeur 1.
On a f, ,(u) = (—=1)°#/(8,)(u), ce qui se calcule rapidement a I’aide de 1’algo-

rithme FWT. La procédure MATLAB 6.2 réalise ce codage. Elle prend comme pa-
rametre a sous la forme d’unentier 0 < a < 2" — 1.

Programme 6.2 Procédure encode_rm

function y = encode_rm(a,b,n)
y = zeros(2°n,1); y(a+l) = 1;
y = fwt(y); v = (1-y)/2;
if(b==1) v = 1-y; end;

Avec la question 2, on voit que d(F, 5, F) est minimale lorsque |7 (f)(a)| est maxi-
mum. Ensuite, ona b =0si #(f)(a) > 0, et b =1 sinon. La procédure MATLAB
6.3 réalise ce décodage, et prend en entrée un vecteur x de taille 2" représentant F.

Programme 6.3 Procédure decode_rm

function y = decode_rm(x)
N = length(x);

f = fwt((-1).7x);
[v,a] = max(abs(f
y = encode_rm( a-

)) i
1,f(a)<0,10g2(N) );

Correction de I’exercice VI.5 :

1. On a, en utilisant la formule de Plancherel, proposition 4.7, chap. I,

E((f—h)? =Y ay=1-aj.
a#p
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2. On note I(x) la fonction qui vaut 1 si f(x) # ho(x), et O sinon. On a

P(£(x) # hox)) = 7 1(x).

X

11 faut donc montrer que I(x) < (f(x) — h(x))2. Si f(x) # ho(x), alors I(x) = 0 et
I’inégalité est vraie. Sinon, alors nécessairement |f(x) —k(x)| > 1, et on a bien

I(x) = 1< (f(x) = h(x))%
3. En appliquant la borne de Chernoff-Hoeffding aux X; = f(x;), qui sont i.i.d. et tels
que E(X;) = E(f), X; € [-1,1], on obtient

P(é3 —cpl = 1) <262 < 8,
Avec une probabilité inférieure a 8, on a donc

P(f(x) # @o(x)) < E((f —apxp)? Zaa +(ap—ap)* < 1—daj+A%

4. On note Sy = {s\ (s) <d}. En utilisant la borne de Chernoff-Hoeffding, on a
P(las—as| > A) < 2¢=A’m/2 De plus, sous la condition |a; —ds| < A, on a

E(f-9)®) <o+ Y (a—-d)? < a+niA?,

SESq

puisque Card (S,) < n¢. Pour avoir P(f(x) # ¢(x)) < o+ ¢, il faut donc imposer
A < \/€/nd, et pour que ceci ait lieu avec une probabilité 1 — §, il faut que 1’on ait
2e~Mm/2pd 5, puisque

P(Vs € Sy, las—as| > 1) < z P(jas —a| > 2) < 2e=Nml2,d.
SESq

Correction de ’exercice VIL.6 :

1. On note G et H des matrices génératrices et de contrdle. On a
ye€ltovxe (Fp)", (Gx,y) =0 & Vx € (Fp)", (x, GTy> =0&Gly=0.

Donc une matrice de controle de ¥+ est GT, et une matrice génératrice est H™.

2. Une telle forme simplifie le codage (ainsi que le décodage, comme nous allons le
voir sur la forme de H). On peut choisir H = (A|Id,—»), et on vérifie bien que
HG =0, avec rang(G) = m — n.

3. Deux codes sont équivalents si on peut passer d’une matrice G| du premier code a
une matrice G, du deuxiéme par
— opérations élémentaires sur les colonnes (qui ne modifient pas I’espace engendré

par les colonnes, donc le code). Ceci correspond aux opérations C; «— AC; ainsi
que C; — C;+ ACj, pour C; # Cj des colonnes et A # 0.
— permutation des lignes (ce qui correspond a une permutation des symboles).

Par pivotage de Gauss (voir [16]), on peut se ramener, par ces opérations, a une
forme systématique.
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Correction de I’exercice VI.7 :

1. La distance minimale d’un code est le nombre minimal de colonnes linéairement

dépendantes. Comme deux colonnes sont ici distinctes, leur somme modulo 2 n’est
jamais nulle, et elles sont donc indépendantes. Par contre, cette somme est néces-
sairement égale a une troisi¢me colonne, donc on peut trouver trois colonnes liées.
La distance minimale est donc de 3.
Comme H posséde k lignes, la dimension de € est 28 — 1 —k. Si v/ = v+ e est
le mot regu, avec w(e) = 1 et v € €, alors s = HV' = He est le syndrome. Ainsi,
s est une colonne de H. Par exemple, si on a pris comme #®™® colonne de H la
décomposition de i en binaire, alors la position de I’erreur dans V' est simplement
I’entier dont s est la décomposition binaire. La fonction MATLAB 6.4 réalise le
décodage. Elle utilise la procédure ecriture_binaire 6.5, qui décompose un
entier en écriture binaire.

Programme 6.4 Procédure decode_hamming

function y = decode_hamming (x)

n = length(x); k = log2(n+l);

H = zeros(k,n); y X;

for(j=1:n) H(:,3J) ecriture_binaire(j,k); end;
s = mod(H*x,2);

e = dot(s,2.7(0:(k-1)));

if(e~=0) y(e)=1-y(e); end;

Programme 6.5 Procédure ecriture_binaire
function y = ecriture_binaire(x,k)
y = zeros(k,1);
for(i=1:k) q = floor(x/2); y(i) = x-2*qg; X = q; end;

2. Dans la base {c,. ..,ak} de Fy comme espace vectoriel sur [y, o s’écrit, sous
forme vectorielle, (1,0,...,0), o s’écrit (0,1,,0,...,0), etc. Les o, pour i entre 1
et n, décrivent toutes les représentations binaires des nombres entre 1 et ». Un mot
de G, le code BCH généré par o (de distance assignée n) est représenté par un
polynéme P et P € Cg si et seulement si P(¢t) = --- = P(a"") = 0. En écrivant P
sous la forme d’un vecteur binaire P de taille n, les égalités précédentes s’écrivent
HP = 0. Ce code est donc bien le code de Hamming de taille n.

3. Ily an+ 1 = 2% mots dans une boule de rayon 1. Comme la distance minimale du
code est 3, les boules centrées en des mots du code sont disjointes. Cet ensemble de
boules contient donc 2 x 2F = 22~1 = 2" mots, c’est-a-dire tout I’espace (IF,)".
Dans le cas n = 7, on peut prendre

1010101
H={011001T1],
0001111

et on vérifie que HG = 0, ou G est la matrice de I’exemple 3.12, chap. VL

4. La matrice génératrice de €L est Go = H. Pour H, on a choisi pour i*™® colonne
1<ig 2k 1) 1a décomposition de i en écriture binaire. On fait précéder G d’une
ligne de O (ce qui ne change pas le poids des mots). On voit alors que la premiére
colonne est une alternance de O et de 1, que la deuxieme est une alternance de
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de 00 et de 11, et ainsi de suite. Toutes les colonnes de Gy ont ainsi pour poids
2k=1, On voit facilement qu’une opération élémentaire sur les lignes du type L; <
L;i+3 jesLj se contente d’effectuer une permutation sur les colonnes de la matrice,
donc le poids des colonnes reste 2k=1 Par de telles opérations, on obtient tous les
mots non nuls de €, qui ont donc comme poids 2¥~!. Comme la distance entre
deux mots est le poids du mot différence, ce code est bien simplexe.

5. Sur IFy, on choisit pour les colonnes de H des représentants des droites vectorielles,
c’est-a-dire de I’espace projectif P(F})). Comme Card (P(F7)) = % (chaque droite
a g — 1 éléments non nuls), on obtient bien la taille et la dimension souhaitées. La
preuve de la distance minimale est inchangée. Le code est encore parfait, un boule
de rayon 1 contenant n(g — 1) + 1 mots.

Correction de I’exercice VL8 :

1. Lareprésentation binaire des entiers permet d’établir une bijection entre 1’ensemble
{1,...,25— 1} et F¥\{0}. Pour k=3, 0n a

We, (X,Y) = X7 +7X37* +7x473 + X7

2. Voir exercice VL7, question 4.

3. Ona Wy (X,Y) = Y+ 25 1xm=2"'y2"" q°on le résultat avec le théoréme 4.5,
chap. VL

4. Onnote P(Y) =Wg(1,Y).Ona A = ﬁ%’;(O). Le sript MAPLE 6.6 effectue le cal-
cul, et on trouve bien A} = Az =0, ce qui est logique, puisque la distance minimale
est 3. Voici quelques valeurs de Ay

k]2 3 | 4 | 5 | 6
A " 0 | 0 | n(n6—1) | n(n—;&(n—3) | n(n—l)(;lz—()3)(rl—7) l n(n—l)(n—?%(()n—S)(n—ﬂ

Programme 6.6 Calcul de A; pour un code de Hamming

Py - 1/(n+1)*( (1+Y) "n+n*(1-Y) " ((n+1)/2)*(1+Y) " ((n-1)/2) );

A s 5 factor( 1/(s!)*eval( diff(P(Y),Y¥$s), Y=0 ) );

5. Pour montrer la symétrie, il faut montrer que P(Y) = Y"P(1/Y), ce qui se vérifie
facilement.

Correction de I’exercice VL9 : On vérifie que Wep(X,Y) = X8 + 14X4Y* 4+ Y8, et que
ce polyndme est invariant par le changement de variable (X,Y) — L(X +Y,X-Y) (on

le vérifie aisément & 1’aide de MAPLE).

g

. Correction de I’exercice VI.10 :

1. € est un code de dimension 1 et de distance minimale n. Son polyndme énuméra-
teurest Y + (g — 1)X".

2. Onax €%t & Yx =0dans IF,. Le code dual correspond au code du bit de parité
(exemple 3.1, chap. VI que I’on étend a IFy). Il est de dimension n — 1 et de distance
minimale 1. On voit facilement que € = % si et seulement si n = 1 (code trivial)
oun=2.
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Correction de ’exercice VI.11 :

1. Dans le cas de la construction par matrice de Walsh (n = 2"), les mots de 27}, sont les
mots de R(1,k), le code de Reed-Muller (voir exercice V1.4, question 5), auxquels
on a enlevé le premier symbole. De fagon équivalente, R(1,k) correspond au code
&, avec un bit de parité en plus (qui vaut toujours 1). Pour cette construction, &7,
tout comme %, est donc linéaire. Pour n = 12, avec la construction de Paley, on
obtient le code %1, suivant, qui est non-linéaire.

22 P12\ %2
(00000000000) (00010110111) | (11111111111) (11101001000)
(11011100010) (10001011011) | (00100011101) (01110100100)
(01101110001) (11000101101) | (10010001110) (00111010010)
(10110111000) (11100010110) | (01001000111) (00011101001)
(01011011100) (01110001011) | (10100100011) (10001110100)
(00101101110) (10111000101) | (11010010001) (01000111010)

2. L’orthogonalité des lignes de H, signifie exactement que deux lignes ont autant
d’entrées égales que d’entrées qui différent. Deux mots de 27, sont donc distants de
n/2, qui est la distance minimale. Si on note u,v € &, et &, v leurs compléments, on
a d(u,v) =d(u,v) =n/2, et d(u,v) = n/2 — 1. Donc la distance minimale de %,
est n/2— 1. Le code <, est de taille n — 1 avec n éléments, et B, est de taille n — 1
avec 2n éléments.

Correction de I’exercice VI.12 :

1. En développant 1’égalité de MacWilliams, on obtient

k
| |Wepr (1,Y) = ZAk (2 ka> <2 /C’Yf>
j =0
En égalant les coefficients de ces deux polynémes, on trouve les égalités deman-
dées.
2. On dérive k fois 1’égalité 2" " #(X,1) = W1 (X +1,X — 1). En utilisant la régle
de Leibniz pour dériver un produit, on obtient
Y‘ . , dk s s
n—m i n—i
2 _OA kICk_ X' = ;)A Z()C"dX" (X)X

—-1).

En faisant X = 1 dans cette égalité, seul le terme correspondant a s = i reste dans la
deuxiéme somme de droite. On obtient les égalités souhaitées.

3. Il n’y a aucun mot de poids i € {1,...,d —1 = n—m} dans %. Pour €, il faut
montrer que sa distance minimale est m+ 1. En effet, d est égal au plus petit nombre
de colonnes linéairement dépendantes dans A (une matrice de contrdle de %). Donc
le plus grand nombre de colonnes linéairement indépendantes dans H est égal a
d—1=n—m. Or HT est la matrice génératrice de €+, donc dés qu’un mot de
%L a moins de n — k coordonnées non nulles, ce mot est nul. En conséquence, la
distance minimale de €+ est au moins de n— (n—k) +1=k+1. Il y a en fait
égalité en appliquant la borne de Singleton 2 €. En restreignant les sommes aux
indices i tels que A; # 0 et A} # 0, en utilisant crk = Cf,, et Ay = 1, on obtient les
m équations demandées.
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4. On a un systeme de m équations & m inconnues (les A;, pouri=n—m+1,...,n).
Ce systeme est en fait triangulaire, et il se résout facilement par remontée. Ainsi,
les A; sont uniquement déterminés. Par exemple, pour i =m—1,ona Ay = Ck-1.

Correction de ’exercice VI.13 :

1. Avec la proposition 4.15, chap. VI, on sait que B > 0. Avec I’expression de A]
trouvée a I’exercice VI.12, question 1, qui s’étend a la distribution Bf (grace au
théoreme 4.11, chap. VI), on obtient les inégalités souhaitées.

2. Si ¥ a pour distance minimale d, alors By = --- = B; =0, et le cardinal de ¥ est
Y oBi. Ladistribution de distance de € appartient donc a E,‘f , et on trouve la borne
annoncée.

7 Correction des exercices du chapitre 7

Correction de ’exercice VIL1 : La droite Vect(e;) est stable, donc la représentation
est réductible. Par contre, si la représentation était décomposable, on aurait 1a somme de
sous-représentations K = Vect(e;) @ Vect(er + Ae;), ot A € K. 1l est facile de voir que
Vect(e, + Ae) ) ne peut étre stable.

Correction de I’exercice VII.2 : On note ¢ = Ad,, ol e est I’élément neutre de G. On a

=Y f(g)A& = f(8)Te(A8) = Y f(8)(Tef) = f*9.

geG geiG geG

Correction de I’exercice VII.3 : On peut voir yw = yyxv comme le caractére de la
représentation des morphismes sur W = Z(U,V*), ou bien comme le produit tensoriel
W =U®V. Comme U est non triviale, yw est distinct de )y et de yy, donc on a bien
construit une nouvelle représentation. Comme |xy| =1, on a

2 lw@P=% (P =Icl,

geCG geG
donc W est bien irréductible.

Correction de I’exercice VII.4 : On note p; : G — GL(Vy), k = 1,...,p, les repré-
sentations irréductibles de G, et 6, : H — GL(W;), | = 1,...,q, celles de H. On note
my = dim(Uy) et ny = dim(V;). Pour (k,1) € {1,...,p} x{1,...,4}, on définit

T,1(8,h) = pr(g) ® 61(h) € GL(V, ® W),

qui est une représentation de G X H sur V;, ® W;. On a g, = Xp Xo;» €n particulier,
Iz ill2 = Il xpell2ll 2o ll2 = 1, donc 7 ; est irréductible. De plus, on a

> dim(V, @ W;)? kan, |G| x |H| = |G x H|,
k,1
donc on a bien trouvé toutes les représentations irréductibles.
Correction de ’exercice VILS :

1. Pour ¢ € G,, on considére la matrice My : e; — €s(i)- Le groupe G = G, est iso-
morphe au groupe matriciel H = {My }seg, et 1’action de G, par permutation des
indéterminées correspond a I’action linéaire de H sur K[Xj,. .., X,).
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Un résultat classique affirme que I’anneau des invariants est généré par les poly-
némes

(Xl’ 7 z XlleZ . ik'

1< <y

. OnaK[X,Y]" = K[X?,Y?]. L’écriture d’un élément de K[X,Y]"* en fonction de X2

et Y2 est unique.

On a K[X,Y]® = K[X?2,Y2,XY]. La décomposition n’est pas unique, puisque I’on
alarelation (XY)? = X2y2.

Si f =Y caX*€K[Xy,...,Xn)C, alors f = ¥ caRG(X*). Ainsi, si on prouve que
RG(X®) s’écrit comme un polyndme en Rg(XP) pour |B| < |G|, on pourra écrire f
en fonction de ces Rg(XP).

. Ona (Uy)k= 2)o|=k2a(A- X )*u®. En sommant ces égalités pour A € G, on trouve

I’expression des Sy = Si(Uys ; A € G) voulue. Tout polyndme symétrique en les
Ua s’écrit en fonction de |G| sommes de Newton Sy, ...,S|g. Comme Sy est un
polyndme symétrique, il existe F € K[Y1,...,Y|g|] tel que Sk = F(Sy,...,S|g)), ce
qui donne I’égalité polynomiale demandée. En égalant les coefficients de u* des
deux membres de 1’égalité, on voit que |GlagRG(X%) est égal a un polyndme en
RG(XP), pour |B| < |G|. Comme K est de caractéristique 0, on peut diviser par
|Glaa.

On peut calculer les Rc, (X?), pour |8 < 4:

X'Y'| Re,(X'YY) X'yt Rc, (XYY

X 0 Xy? 0

Y 0 y3 0

X2 | (X247?))2 x4 X*+14)/)2
Xy 0 X3 | (x*v-xv3)/2

Y2 | (X2+71?)/2 x2y? x2y?

x3 0 Xy3 | —(x3y —Xxv3)/2
X%y 0 Y4 (xX*+1%/2

L’anneau des invariants est donc généré par
P =X2+Y? P =X*+Y* P =X3Y-XY3 P =X%2

Cependant, on note que P, = P12 — 2P4, donc on peut supprimer P, de cette liste.

Correction de I’exercice VIL6 :

1. L’action de G étant linéaire, elle conserve le degré des composantes homogénes.

Comme deux polyndmes sont égaux si et seulement si leurs composantes homo-
geénes sont égales, on en déduit le résultat souhaité.

Le théoréme 2.11, chap. VII, nous dit que dim¢ (V) = tr(Rg), ot Rg est 1’opérateur
de Reynolds pour la représentation ps;. Comme tr(Rg) = ]%[ Zeectr(A Is1), on obtient
la formule demandé.

Soit A € G, de valeurs propres @y, ...,®,. A un changement de base pres, on peut
écrire

A=A = diag(ay, ..., @), A =diag(wf,...,0, 0 @y,...).
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On a donc

tr(A[s])= 2 w;, - @,

i1 <+<s

ce qui correspond bien a la puissance de A® dans I’expansion de

det(1d = 24) ™" = [ (1 - )™

i=1

4. Le groupe G a pour série de Molien [(1—A)(1 —22)]~L. Le groupe G, a pour série
de Molien (1 —A2)~2. Le nombre de polyndmes linéairement indépendants borne
le nombre de polyndmes algébriquement indépendants, ce qui permet de limiter la
recherche.

Correction de I’exercice VIL.7 :

1. Ona

X
(X1, xm) = |G|g§6""‘ |G|g§5| 6l
2. Onnote Gy = {g € G\ g-x = x} le stabilisateur de X, et Gx = {g-x\ g € G} 'or-
bite de x. On a |G| = |G«||Gx| (voir par exemple [58]).
On note xy,...,x; des représentants des ¢ orbites distinctes de ’action de G sur X.
On note T = {(g,x) € Gx X \ g-x = x}. En comptant « dans les deux directions »
les éléments de T', on a

t t
2 Xl =1TI= X 1G] = 3, 3 G| = X, |Gx||Gxi| =1|G].
i=1

geG xeX =1x€Gx; i=1

3. Le cardinal de X (les colliers « virtuels ») est de 26 = 64. Le nombre de colliers
« réels » différents est ¢, le nombre d’orbites de I’action de D¢ sur X, en appliquant
une isométrie & € Dg 2 ’hexagone régulier dont les affixes sont les e*#/3 (que I’on
assimile a un collier !). On note {cp,...,cs} € X un collier virtuel. On calcule |X;|
en faisant les distinctions suivantes.

- Si o =1d, alors |Xy4| =

- Si o est la rotation d’angle +7/6, alors si c est stable sous o, il doit vérifier
ci+1 = ¢;. Ainsi, le collier est unicolore, d’olt |Xq| =2

- Si o est la rotation d’angle +7/3, alors si ¢ est stable sous 0, il doit vérifier
co =c2 =cqetc; =c3 =cs. Ona 2 choix de couleurs a faire, d’oll |Xs| =4

— Soit ¢ une symétrie dont 1’axe fait un angle de m/3 avec les abscisses (méme
raisonnement avec 0 et 27t/3). Alors si c est stable sous o, il doit vérifier co = ¢
et c3 = cs. Il y a4 choix de couleurs a faire, donc |Xs| = 16.

— Soit 0 une symétrie dont I’axe fait un angle de /6 avec les abscisses (méme
raisonnement avec 7/2 et 5m/6). Alors si ¢ est stable sous o, il doit vérifier
co=c3,c] =cp etcqg = cs. Il y a3 choix de couleurs a faire, donc |Xs| = 8.

Au final, on a donc

1
= —5(64+2x2+2x4+3 x 16 43 x 8) = 13 colliers différents.
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4. On écrit f sous forme matricielle f = {@(s,2)};,)ex2- On voit facilement que le

fait que f soit un opérateur d’entrelacement est équivalent a ¢(g-s,8-t) = @(s,?),
donc ¢ est constante sur chacune des orbites de X x X sous 1’action de G définie
par g-(s,t) = (g-s,8-t). Or la double transitivité de G est équivalente au fait que
X x X ait exactement 2 orbites

O1={(s,s) \s€X} et Or={(s,t)\s#t€X}.

Si on identifie f & ¢, I’espace Homg(V') admet pour base {1¢,,10, }, les fonctions
indicatrices de O; et O».

Nous avons déja vu, lors de la démonstration du théoréme 3.7, chap. VII, le fait
que dim(Homg(V)) = dim(.Z(V,V)©), o1 on a considéré sur . (V, V) la représen-
tation des morphismes associée 4 G. On a aussi vu que dim(.Z(V,V)%) est égal a
tr(Rg) = (X, Xn), ol Rg est 1’opérateur de Reynolds associé  la représentation des
morphismes. Au final, on a donc (Xz, Xz) = 2.

11 est évident que I’espace U = 1C engendré par le vecteur constant égal a 1 est
invariant sous G. Il admet donc un supplémentaire stable W. On a yr = x1 + Xw, ol
X1 est le caractére de la représentation triviale. Avec la question 2,ona (xz,x1) =1,
puisque G agit transitivement sur X. On a donc

(ws xw) = X Xm) = 2 (Xms X1) + (X1, 01) =2-2x1+1=1.

Donc W est bien irréductible.
Le groupe &, agit doublement transitivement sur X = {1,...,n}. Dans la construc-
tion précédente, W correspond a la représentation standard, qui est ainsi irréduc-

tible.

Correction de I’exercice VIIL.S :

1. Il faut montrer que f est un opérateur d’entrelacement :

p(hyofop(h™) =3 p(hgh™)=f.

geK

On a tr(f) = dpr(p,K) = Tgex tr(p(8)) = Card (K) xp (K).

2. 0na

x(K)x(K™') = Card ()" PR,
Comme p est irréductible, on a T, 2(8)x(87") = |G, d’ot
IGI=3 > x(e)x(s™") =dp ;r(mK)X(K'l)-

K gex

3. SiK"¢ K-K', alors a(K,K',K") = 0. Soit K" C K-K'. Si hh' = ik} € K", alors

wa™! = uhu' - ub'u=! = uhju=! - ukju~!, donc a(K,K', k') = a(K,K', i 1").

4. Ona

r(p,K)r(p,K')ldy = (Z p(g)) ( > p(g))

kekK kek’
= Y plh)=YaK,K K")Y pu),
(g,h)EKxK’ K" uekK"

d’ou la formule demandée.



§ 7. Correction des exercices du chapitre 7 291

5. Laformule précédente montre que le produit de deux générateurs de A est encore un
élément de A. Donc A est bien un anneau. Il admet un nombre fini de générateurs,
donc il est de type fini sur Z. Ceci est I’une des définitions équivalentes d’entier
algébrique (voir [63]).

On a I?i_l =Yxr(p,K)x(K~1). Les r(p,K) sont des entiers algébriques. De plus,
les %(K~!) sont des racines de I’unité, donc des entiers algébriques. Ainsi, |G|/d,
est a la fois un nombre rationnel et un entier algébrique, donc c’est un entier.

Correction de I’exercice VIL.9 :

1. On note A la matrice p(X). On a
Agn= <A5h,5g> = z Xa<6ah,63> =Xgh—

acG

2. La matrice de pygy s écrit comme diagonale par blocs de py (X) et py(X), d’ou la
formule en prenant le déterminant.

3. Comme les V; sont irréductibles, les morphismes d’algébres p; sont surjectifs (sinon,
il y aurait une sous-représentation non triviale). Supposons que I’on ait une relation
du type ¥ c jxAjx (X ) = 0. Par la surjectivité de p;, on peut trouver une valeur xo de X
dans C[G] telle que p;(xo) = Ejy, (la matrice avec un 1 en (ip, jo), et des O partout
ailleurs). On obtient ¥ ¢ jxAjx(x0) = ¢jok, = 0, d’ol I'indépendance.

4. On note D,(Y1,...,Y,2) le déterminant générique en n? variables. En développant
selon la premiére ligne, on obtient la relation

Dy(11,...,Y2) = Dp_y(Ya,... )Y, +B(Ys,...,Y,2).

Tt

Ainsi, D,, s’écrit comme un polyndme de degré 1 dans A[Y}], avec A = C[Y2,...,Y,2]
qui est factoriel. Par récurrence, si on a supposé D,,_ irréductible, D, est encore

irréductible.
5. D’aprés la question 3, on peut compléter les ni2 formes linéaires A j; en une base
des formes linéaires, notée {11,...,¥|g }. Dans cette nouvelle base, on a I’égalité

0, (G)(X) = Dy (11,... ,Yn'g), qui est irréductible en tant que polyndme en Y;. Par
changement inverse de coordonnées, on voit que @, (G)(X) est encore irréductible
en tant que polyndme en X,.

6. Comme p;(1) =1d,,, X; n’apparait que sur la diagonale de p;(X). En écrivant I’ex-
pansion du déterminant, on obtient, en écrivant seulement les termes de degré n; et
n;—1enX,

Op (%) = [T A5(¥) +--= [T X (pi(e) 61) Xy +-
j=1

heGgeG

=Xy + Y xpi~! <2 <Pi(8)6h’5h>> X

g#1 heG

d’ou I’expression demandée. Les coefficients des termes en XJgX{”'_l déterminent
donc y;, et donc p;. Si ©p, et ©p, sont proportionnels, ils sont égaux (le terme
dominant en X est égal a 1), donc p; = p;.

7. La décomposition de la représentation réguliére, proposition 4.5, chap. VII, donne,
avec la question 2, la factorisation demandée. Comme les ©,(G) sont deux & deux
non proportionnels et irréductibles, c’est bien la factorisation de ©(G) en facteurs
irréductibles.
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Correction de I’exercice VII.10 :

1. Le produit sur G, est défini par (b,a) - (b',a’) = (b+ ab',ad’). L'inverse est donné
par (b,a)~! = (—a~'b,a™!). L’élément neutre est (0,1). On peut voir G, comme
(Fp,+) x¢ (Fp,-), ot @ : Fj, — Aut(F ) est défini par ¢(a) : b — ab (voir [58] pour
la définition du produit semi-direct).

2. On a une action de groupe de G, sur F, via (b,a) -x = a(x+b). m est I’action
par translation induite sur C[F]. Le fait qu’elle soit unitaire est immédiat, puisque

+— (b,a) - x est une permutation de F,.

3. f €E équivaut a (f,1) =0, ot I’on a noté 1 la fonction constante égale a 1. Comme

7 est unitaire, on a donc

<f(b,a)v1> = <f(b,a)a l(b a) > (fa ) =0,

donc f(p,4) € E. On note ap = AT/P et e : x a);k. Les e, sont les caracteres
additifs de Fp, donc ils forment une base orthogonale de C[F,]. Comme on a la
décomposition C[F,| = E @ Vect(eg) (somme orthogonale), les {ek}f;ll forment
une base orthogonale de E. On a w(b,a)(e;) = (D;_lbeka—l. On note y le caractére
associé a la restriction de w a E. D’apres le calcul précédent, sia # 1, e;,-1 # ey et
donc y(b,a)=0.Sia=1,0na

_”i‘w,,k_l_ —1 si b#£0,
T&% T T p-1 s b=0.

On note (-, -) le produit scalaire normalisé sur (C[Gp]. On a donc
1Gol (X,20) = >, 2(5,1)*=(p=1)>+p—1=|Gyl,
bEF,

ainsi, d’apres le théoréme 4.4, chap. VII, & restreint a E est irréductible.

Correction de I’exercice VII.11 :

1. On a, en utilisant la formule de Plancherel,
v (f z fln )b (an).

2. On note ®(x ) le membre de droite de 1’égalité. On rappelle que, comme f et W sont
dans E, ona f(0) = #/(0) =0.On a
17!

0= 3 ZT oy ylan)e,plab
a

11’1

=X fln (Z " k’) (21 le(an)t?(ak))

On utilise ensuite le fait que Zb -0 w,’j(" - p5,’,‘ ainsi que

p p-l i
~ 2 R 2 [0 sik=0,
z | W (ak)| —‘Z‘?)"V(ak)l _{ p*(y,y) sinon.

On obtient au final

~

D (k) = p*(w, ) F (k).
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3. En reprenant la démonstration précédente, on a cette fois

o [ (= DIPO)P? sik=0,
agllw(ak)l—{ i

> '|§(a)]? sinon.

On a donc @ = d.,,f, ce qui donne la formule d’inversion.
On note #* : C[G,] — C[F ] I'application définie par
Vo= 3 0ba)Ya
(b,a)eGp
Il est facile de voir que #* est I’adjoint de # pour les produits scalaires usuels sur
C[F,] et C[Gy), c’est-a-dire que

(W f,0)ci6,) = -7 0)cpp,)»  pour f € C[Fy] et ¢ € C[G).
La formule d’inversion s’écrit ainsi #*o ¥ = dyld, donc LdW est une isométrie

(bien siir non bijective, la transformée en ondelette étant trés Z redondante »).

Il est amusant de remarquer que la démonstration de la formule d’inversion sur
un corps fini est en tout point semblable a celle de la transformée en ondelettes
continue (voir [51]).

4. La procédure MATLAB 7.1 calcule la transformée en ondelette. C’est une procé-
dure lente (O(p?) opérations), il n’y a pas d’algorithme dichotomique, comme il
en existe pour les transformées en ondelettes « classiques » (voir la transformée
de Haar, exercice I1.4). La procédure 7.2 calcule la transformée inverse (en suppo-
sant la condition d’admissibilité f € E et y € E). Ces deux procédures utilisent la
fonction invmod, programme 5.8.

Programme 7.1 Procédure transfo_ondelettes

function y = transfo_ondelettes(x,psi)
p = length(psi); y = zeros(p-1,p);
for(a=1:p-1) for(b=0:p-1)
ordre = mod(invmod(a,p)*((0:p-1)-b), p)+1;
y(a,b+l) = dot(x,psi(ordre));
end; end;

Programme 7.2 Procédure reconstruct_ondelettes

function y = reconstruct_ondelettes(x,psi)
p = length(psi); ¢ = p*dot(psi,psi); y = zeros(p,1l);
for(a=1:p-1) for(b=0:p-1)
ordre = mod(invmod(a,p)*((0:p-1)-b), p)+1;
y =y + x(a,b+1l) *psi (ordre) ;
end; end;
Yy = y/c;

8 Correction des exercices du chapitre 8

Correction de I’exercice VIII.1: Ona

(PKD*); j = Eksx, Co)xi(Cs) = Y, xi(g =1G|8/
s=1 geG
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en utilisant la propriété d’orthogonalité des caracteres, théoréme 3.7, chap. VII. Comme
les colonnes d’une matrice unitaire sont orthogonales, on obtient la propriété d’orthogo-
nalité souhaitée.

Correction de I’exercice VIIL.2 : La droite (Oz) est stable, donc la représentation n’est
pas irréductible. On calcule le caractére y qui vérifie y (r*) = 1 +2cos(2kz/n) ainsi que
% (sr%) = —1. On se place par exemple dans le cas ol n est pair. On obtient les coefficients
de décomposition

oxw) = Xoxws) = Xow) =1, (Hoxwn) = 1,

ainsi que (x,x1) =1 et (x,xx) =0 pour k # 1.
Correction de I’exercice VIII.3 : Les matrices de transformation s’écrivent

pa=(y ). =3 (35 7).

En ajoutant le caractere trivial et le caractere alterné, on obtient la table suivante :

1 3 2
Id (12) (123)
nll 1 1
xell -1 1
|2 0 -1

Correction de I’exercice VIIL.4 : On note ys, le caractére de la représentation par per-
mutation des sommets, et ), celui de la permutation des arétes. On a

1 6 8 6 3

Id (12) (123) (1234) (12)(34)
Xo|8 0 2 0 0
Xar |12 2 0 0 0

On obtient donc les multiplicités suivantes :

|X1 Xe Xs Xw  Xw'
1 1 1 1 0

1 0 2 1 1

Xso
Xar

Correction de I’exercice VIILS :

1. pw((12)(34)) est une involution (donc est diagonalisable) de trace 2. C’est néces-
sairement I’identité.

2. Si p est triviale sur H, alors H C ker(p), donc p passe au quotient par H qui est
distingué. Réciproquement, si p passe au quotient, alors p = p o7 qui est trivial sur
H puisque 7 I’est.

3. OnaH = {Id,(12)(34),(13)(24),(14)(23)}, qui est distingué. L’action de G4 sur
le cube donne naissance a une permutation des paires de faces opposées, c’est-a-
dire a une application ¢ : G4 — G3 (apres une numérotation convenable des faces).
Il est facile de voir que les permutations qui laissent stables les paires de faces
opposées sont les éléments de H. On a donc ker(¢) = H (ce qui montre que H est
distingué), et par passage au quotient, un isomorphisme entre S4/H et G3.
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4.

D’apres la question 1, py est triviale sur H, le groupe/e@endré par (12)(34).
Donc avec la question 2, py s’identifie & un élément de G4/H, c’est-a-dire de 6/5\3
Comme cette représentation est irréductible, par considération de dimension, c’est
nécessairement la représentation standard.

Correction de I’exercice VIIL.6 :

1.

On conserve les notations de la correction de I’exercice VIL.7. On note Gxjy,...,Gx;
les orbites, avec x; = e 1’élément neutre de G. Les orbites formant une partition
de X, on a I’équation aux classes 1+ Y!_, |Gxi| = |X| =|G|? =0 mod p, puisque
p||G|. Mais comme les |Gx;| divisent p, on a |Gx;| € {1, p}, et Iégalité précédente
impose qu’au moins un x; = (g,...,g) vérifie |Gx;| = 1. Ceci signifie exactement
que g est d’ordre p.

Avec le résultat de VIL8, on a que 2 divise |G|, donc avec la question précédente,
G possede un élément ¢ d’ordre 2.

[0} = det op : G +— C* est une représentation de degré 1 dont le noyau est un groupe
simple non réduit a 1’élément neutre de G (car si ker(¢) = {1}, alors ¢ est injectif et
G est commutatif). Comme G est simple, on a ker(¢) = G, et det(p(g)) = 1, donc p
est bien a valeur dans SL,(C). Comme X2 — 1 est le polynéme minimal de p(t), ce
dernier est diagonalisable. Comme det(p(¢)) = 1, et que p(¢) # Id (car p est injectif
puisque ker(p) est un sous-groupe distingué de G), ses deux valeurs propres sont
égales 2 —1. On peut donc trouver P € GL,(C) telle que Pp(¢)P~! = —Id,, et donc
p(t) = —Id,. De plus, pour tout g € G, ona p(gtg~!) = p(g)(=Id2)p(g)~ = p(¢).
Mais p est injectif, donc gtg~! =1¢, et t € Z(G), le centre de G. Comme Z(G) est
distingué, on a Z(G) = {1}, ce qui est une contradiction, car ¢ # 1.

Correction de I’exercice VIIL.7 :

1.

2.

I1 faut montrer que ¢ est un morphisme d’algebre. La linéarité est évidente. Il reste
a vérifier les relations sur les générateurs, par exemple @(jk) = ¢(i).

11 suffit de constater que 1’application ¢(q) — w(q) est unisomorphisme d’algebre.
Ceci est évident, puisque a+ib +— (g —b ) est un isomorphisme d’algébre de C dans
Sim(R?) (les similitudes de R?). Cem montre aussi que la représentation obtenue
est unitaire. De plus, on vérifie que ||xy||2 = 1, donc cette représentation est irré-
ductible.

On a la représentation triviale p; ainsi que les représentations suivantes :

p2(£1) =pa(£i) =1, pa(%)) = pa (k) = —
p3(£1) =p3(+j) =1, ps3(£i) = p3(+k) = —1,
pa(£1) = pa(£k) =1, pa(+i) = pa(£j) = —1.

On vérifie que ces représentations sont bien irréductibles, et si on note ps la repré-
sentation de la question précédente, et n; les dimensions des représentations, on a
> n? =4 x 12422 = |Hg|, donc on a bien toutes les représentations irréductibles.
On fixe un ordre parmi les éléments de Hg, et on note les entrées des matrices Hg
sous forme de vecteurs de taille 8, ce qui donne

vo=(1,1,1,1,1,1,1,1), v4_\f(1,—100001 i),
v=(1,1,1,1,-1,-1,—1,-1), =/2(0,0, —-1,1,0,0),
v2—(1,1,—1, 1,1,1, -1, -1), vé_\f(o,o,l,—, 1100),
=(1,1,-1,-1,—-1,-1,1,1), v7 =+/2(1, —1,0,0,0,0, —i,i),
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et forme une base orthogonale de C3.

L’exercice II.7 explique comment on peut construire, par produit tensoriel, une base
orthogonale de C8" a partir d’une base de C8. La procédure MATLAB 2.6 permet
de calculer, pour f € C8n, (A®™) f, les coefficients de f dans la base orthonormée
construite. Les lignes de A sont les vecteurs v;.

Correction de ’exercice VIIL.S :

L.

2.

Les éléments de G sont des rotations, elles conservent la distance & 1’origine, donc
le polyndme X2 4+ Y2+ 72,

On note V(XYZ) = {(x,y,z) € R®\ xyz=0}. Comme les éléments de G conser-
vent I’ensemble des faces du cubes, ils conservent 1’union des trois plans de coor-
données, c’est-a-dire V(XY Z).

On note I(V(XYZ)) = {P € K[X,Y,Z]\V(x,y,2) € V(XYZ), P(x,y,z) = 0}. Soit
alors P € I(V(XYZ)). En faisant la division euclidienne de P par X en tant que
polyndme en X (ce qui est possible car le coefficient dominant de X est inversible
dans K[Y,Z]), on écrit P(X,Y,Z) = XQ(X,Y,Z) + R(Y,Z). Comme P(0,Y,Z) =0,
on a R = 0. En continuant avec les variables Y et Z, on trouve P = AXYZ avec
A €R.

SoitA € G. Comme V(XYZ) est stable par A, on a, pour (x,y,z) € V(XYZ), I’égalité
f(A-(x,y,z) =0, c’est-a-dire f(A- (X,Y,Z)) € I(V(XYZ)).

On obtient donc f(A-(X,Y,Z)) = Af. Comme A" = Id pour un certain n, on a
nécessairement A = +1.

Cette fois-ci, V(f) est ’union des 4 plans orthogonaux aux trois grandes diagonales.
Comme ces diagonales sont stables par G, on en déduit que V(f) est stable par G.
On peut faire le méme raisonnement qu’a la question précédente, en commengant
cette fois une division euclienne par X +Y +Z.

De méme, V(g) est I'union des 6 plans orthogonaux aux 6 paires de diagonales
opposées inscrites dans les faces du cubes. Une fois de plus, V(g) est stable par G.

Correction de I’exercice VIIL.9 :

L.
2.

n doit étre pair et on a k = n/2.

Comme le polyndme Wy est homogéne de degré n, I’identité de MacWilliams se
rééerit #p(A- (X,Y)) = #»(X,Y).

. OnaA? =1d, donc G = {A,Id,}. En appliquant I’opérateur de Reynolds, on trouve

(X+(VZ-1)Y), Rg(X?)= %(x2+ (X +7)2/2).

RG(X)=\/2§—\;_§1

On peut enlever la constante multiplicative devant Rg(X ) et soustraire 3/4Rg(X)?
a R(X?) pour obtenir les deux invariants de K[X,Y]S! annoncés. Pour montrer que
ce sont les seuls, on peut utiliser la série de Molien calculée a 1’exercice VIL.6,
question 5, ou bien calculer RG(XY), Rg(Y) et Rg(Y?) pour voir qu’ils s’écrivent
en fonction des invariants déja trouvés.

. Si vest un mot du code, on a (v,v) = (v,1) =0, donc ¥, v; =0 mod 2. Ainsi, & ne

contient que des mots de poids pair, et #(—X, —Y) = #x(X,Y). Donc #% est
invariant sous 1’action de A et de —Id.
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5.

Le programme 8.1 permet de calculer des générateurs de 1’anneau des invariants
en essayant tous les Rg(X¥), pour |k| < |G|. Les temps de calcul deviennent trés
importants pour un groupe conséquent. L’explosion combinatoire est double, a la
fois au niveau du cardinal du groupe et de 1’ensemble des X* pour k < |G.

Programme 8.1 Fichier polynomes-invariants.msw

Applique une matrice a un polynome:

>

VVVVVYV

action_matrice := proc(A,p)
local g,v,m;
v := array([[x],[yl]l);
m evalm(A&*v) ;
g := subs ({x=m[1,1],y=m[2,1]},p);
return(g)
end proc:

Un exemple invariant :

>
>

A:=1/sqrt(2) *matrix(2,2,[([1,1],([1,-111);
expand( action_matrice(A,x*2+yr2) );

1 1 1
A"Eﬁ[ 1 -1 ]
)r2+y2
Calcule I’opérateur de Reynolds:
> operateur_reynolds := proc(G,p)
> local i, r;
> r := (1/nops(G))*sum(’action_matrice(G[k],p)’,'k’=1..nops(G));
> return(r)
> end proc:

Calcule des générateurs de I’anneau des invariants :

VvV Vv

VVVVVYV

polynomes_invariants := proc(G)
local i,j,r;
r := [];
for i from 1 to nops(G) do
for j from 0 to i do

r := [op(r),expand(operateur_reynolds(G,x*j*yr(i-j)))1;
end do: end do:
end proc:

Un exemple en rapport aux codes auto-duaux, pour le cas oli 2 divise les poids des mots du code :

>
>
>

B:=matrix(2,2,[[-1,0],(0,-11]1):
G:=[A,-A,B,-B]:
polynomes_invariants( G, 4 );

1, 1 3,1, 1, 1 3, 1 1,
[0,0,4x2 SXY+7Y ,4x2 2V 3078+ 53+ 75%0,0,0,0,
La 1o 355 1 5 5,1, 15 3 5 1,
gt T XYY T Y g T F Yt gy g
1, 1,, 1,1, 3, 1 4, 1,

g T g Py =t

S4, 1y 3,5, 1 5 14
8x+2xy+4xy+2xy+8y]







Annexe A
Programmes MATLAB

Voici I’ensemble des programmes MATLAB évoqués dans les chapitres précédents. Chaque
programme constitue un fichier a part entiére. La plupart sont des procédures, cela signi-
fie que ces programmes doivent étre recopiés dans un fichier portant le méme nom. Par
exemple, la procédure fht est écrite dans le fichier fht .m.

1 Algorithme FWT

Le programme fwt est une implémentation MATLAB de 1’algorithme de transformée de
Walsh rapide présenté au paragraphe 2.2, chap. II. 1l est récursif, mais n’utilise pas de
mémoire supplémentaire, donc est relativement efficace. Il est & noter qu’a un facteur
1/N pres, la transformée de Walsh est sa propre inverse, donc la routine n’inclut pas de
parametre pour calculer la transformée inverse (il suffit de diviser le résultat par N).

Programme 1.1 Procédure fwt

function y = fwt (x)

N = length(x); % N doit étre une puissance de 2
if(N==1) y = x; return; end;

P = N/2;

X [fwt(x(1:P)) ; fwt(x((P+1):N))1];

y = zeros(N,1);

y(l:P) = x(1:P) + x((P+1l):N);

y((P+1):N) = x(1:P) - x((P+1):N);

2 Algorithme FHT

Le paragraphe 1.2, chap. V, expose le fonctionnement de 1’algorithme de transformée de
Hartley rapide. Voici une implémentation MATLAB de cet algorithme.

— Procédure fht (programme 2.1): I’algorithme FHT proprement dit. Pour calculer la
transformée de Hartley inverse, il suffit d’utiliser la routine fht et de diviser le résultat
par N, la longueur de I’échantillon.

—Procédure operateur_chi (programme 2.2) : permet de calculer I’opérateur yy;.

— Procédure £ht_convol (programme 2.3) : permet de calculer la convolution de deux
signaux réels a I’aide de I’algorithme FHT.
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Programme 2.1 Procédure fht

function y = fht(f)

¢ N doit étre une puissance de 2

N = length(f); N1 = N/2;

if( N==1 ) y = f; return; end;

y = zeros(size(f));

¢ construction des deux sous-vecteurs
f p= f(1:2:N); f_i = £(2:2:N);

¢ appels récursifs

f_p = fht(f_p); £_i = fht(f_i);

¢ application de 1’opérateur chi

f_i = operateur_chi(f_i,0.5);

¢ mixage des deux résultats

y(1:N1) = f_p + f_i; y((N1+1):N) = f_p - f_1i;

Programme 2.2 Procédure operateur_chi
function y = operateur_chi (a, x)
N = length(a); a_inv = [a(l);a(N:-1:2)1];
y = a.*cos( 2*pi*x*(0:N-1)’'/N ) + a_inv.*sin( 2*pi*x*(0:N-1)'/N );

Programme 2.3 Procédure fht_convol

function y = fht_convol (x,y)

% N doit étre une puissance de 2

N = length(x); y = zeros(size(x));

a = ftht(x); b = fht(y):

a_inv = [a(l);a(N:-1:2)];

b_inv = [b(1);b(N:-1:2)];

y = 0.5*( a.*b - a_inv.*b_inv + a.*b_inv + a_inv.*b );
y = fht(y)/N;

3 Algorithme FFT

Voici les différentes implémentations de I’algorithme FFT présentées en détail aux para-
graphes 2.1, chap. III, 2.5, chap. III et 2.6, chap. IIL

— Procédure fft_rec (programme 3.1) : version naive et récursive de 1’algorithme (dé-
cimation temporelle).

— Procédure fft_dit (programme 3.2) : implémentation efficace (a la fois en utilisation
mémoire et en rapidité) de 1’algorithme (non récursive et décimation temporelle).

—Procédure fft_dif (programme 3.3): version décimation fréquentielle de 1’algo-
rithme.

— Procédure operateur_s (programme 3.4) : implémentation de I’opérateur .#.

— Procédure rev_bits (programme 3.5): classe le vecteur selon le sens inverse des bits
des indices.

— Procédure rev_index (programme 3.6) : calcule I’entier obtenu par inversion des bits
d’un autre entier.

I1 faut garder a 1’esprit que ces programmes MATLAB ont avant tout un but pédagogique.
L’implémentation est loin d’étre aussi efficace que celles que 1’on peut réaliser dans un
langage rapide (par exemple en C). Il existe de nombreux logiciels disponibles sur internet
qui sont tres performants, par exemple FFTW [33].
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Programme 3.1 Procédure fft_rec

function y = fft_rec(f,dir)

% N doit étre une puissance de 2

N = length(f); N1 = N/2;

if( N==1 ) y = f; return end;

y = zeros(size(f));

% construction des deux sous-vecteurs
fp = £f(1:2:N); f_i = £(2:2:N);

¢ appels récursifs

f p = fft_rec(f_p,dir);

fi = fft_rec(f_i,dir);

¢ application de 1’opérateur S

f_i = operateur_s(f_i,dir*0.5);

2 mixage des deux résultats

y(1:N1) = f_p + £ i; y((N1+1):N) = f_.p - f_1i;

Programme 3.2 Procédure fft_dit

function y = fft_dit(f,dir)
2 N doit étre une puissance de 2
N = length(f); 1ldn = floor(log2(N));
f = rev_bits(f);
for ldm=1:1dn
m = 2"1dm; ml = m/2;
for j=0:ml-1
e = exp(-dir*2.0i*pi*j/m);
for r=0:m:N-m
u = f(r+j+l); v = f(r+j+ml+l) *e;
f(r+j+1) = u + v; f(r+j+ml+l) = u - v;
end
end
end
y = £;

4 Multiplication de grands entiers par FFT

Les programmes MATLAB qui suivent permettent de multiplier des grands entiers repré-
sentés par leur décomposition dans une base b donnée.

— Procédure mul t_entiers (programme 4.1) : permet de multiplier deux entiers repré-
sentés sous forme de vecteurs. On doit bien slir fournir la base utilisée.

— Procédure number2vector (programme 4.2) : fonction pratique qui permet de passer
de la représentation sous forme de nombre entier a la représentation sous forme de
vecteur (d’un intérét limité cependant, car MATLAB ne manipule pas des entiers de
taille arbitraire).

— Procédure vector2number (programme 4.3) : fonction inverse de la précédente.

— Fichier test_mult_entiers.m(programme 4.4): petit programme de test.

5 Résolution de I’équation de Poisson

Voici les différents fichiers pour implémenter la résolution de I’équation de Poisson dé-
crite au paragraphe 4.3, chap. IV.

— Fichier poisson.m (programme 5.1): fichier principal, construit les différentes ma-
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Programme 3.3 Procédure fft_dif
function y = fft_dif(f,dir)
¢ N doit étre une puissance de 2
N = length(f); 1ldn = floor(log2(N));
for ldm=1dn:-1:1
m = 2"1dm; ml = m/2;
for j=0:ml-1
e = exp(-dir*2.0i*pi*j/m);
for r=0:m:N-1
u = f(r+j+1); v = f(r+j+ml+l);
f(r+j+1) = u + v; f(r+j+ml+l) = (u-v)*e;
end
end
end
¢ remet le vecteur transformé dans le bon ordre

y = rev_bits(f);

Programme 3.4 Procédure operateur_s

function y = operateur_s(a, x)
N length(a) ;
y a.*exp( -2.0i*x*(0:N-1) '*pi/N );

Programme 3.5 Procédure rev_bits
function y = rev_bits(x)

n = length(x); t = floor(log2(n)); y = zeros(n,l);
for i=0:n-1

j = rev_index(t,i); y(j+1) = x(i+1);
end

trices, calcule les FFT en 2D et résout I’équation de convolution.

— Procédure f (programme 5.2) : le membre de droite de 1’équation. I1 s’agit de la fonction
f(x,y) = (x> +y?)e®. Elle est calculée pour que la solution soit connue a 1’avance.

— Procédure sol (programme 5.3): la solution exacte de I’équation (on triche un peu,
on utilise une équation dont on connait déja la solution !). On a pris s(x,y) = . Son
laplacien est donc la fonction f du fichier £ . m.

—Procédure u_Oy,u_ly.m,u_x0.met u_x1.m (programme type: 5.4): valeur de la
solution u sur chacun des bords x =0, x =1, y=0 et y= 1. On n’a reporté que le
programme de la fonction u_0y . m, les autres s’écrivant de la méme maniere.

Le choix de la fonction solution est parfaitement arbitraire, on pourra faire des essais avec
d’autres fonctions (en prenant soin de mettre a jour la valeur du laplacien dans le fichier
f . m). On pourra faire des essais avec des conditions sur le bord arbitraires (mais on n’aura
plus de solution exacte de référence ...). De méme, il est facile de changer la précision
de la résolution pour observer la convergence de I’erreur commise par la méthode des

différences finies.
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Programme 3.6 Procédure rev_index

function y = rev_index(t, index)
y = 0; tmp = index;
for i=0:t-1
bit = mod(tmp,2);
tmp = floor (tmp/2);
Yy = y*2 + bit;
end

Programme 4.1 Procédure mult_entiers

function r = mult_entier(x,y,b)
N = length(x);
¢ ajout de zéros pour convolution acyclique
X = [x;zeros(N,1)]; y = [y;zeros(N,1)];
¢ calcule la convolution
r = round( real( ifft(fft(x).*fft(y)) ) );
for i=1:2*N-1 % enléve les retenues
q = floor(r(i)/b);
r(i) = r(i)-g*b; r(i+l) = r(i+l)+q;
end

Programme 4.2 Procédure number2vector

function y = number2vector (x,b)
N = floor( log(x)/log(b) )+1; y = zeros(N,1);

for i=1:N
q = floor(x/b); y(i) = x - gq*b; x = q;
end

6 Résolution de I’équation de la chaleur

Les programmes qui suivent permettent de résoudre 1’équation de la chaleur par la mé-
thode décrite au paragraphe 4.2, chap. IV.

— Fichier chaleur.m (programme 6.1): calcule la solution de 1’équation pour diffé-
rentes valeurs de temps en appelant le programme solve_eq.m, puis dessine I’évolu-
tion de la solution.

— Procédure solve_eq (programme 6.2) : résout I’équation de la chaleur pour un temps
donné en calculant les coefficients de Fourier par FFT.

— Procédure £ (programme 6.3): la répartition initiale de la chaleur au temps ¢ = 0. On a
pris ici une fonction échelon (donc discontinue).

Bien sfiir, il est facile de modifier ces programmes, notamment pour faire des essais avec
différentes conditions initiales, ainsi qu’avec d’autres valeurs du parameétre temps.
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Programme 4.3 Procédure vector2number

function y = vector2number (v,b)
N = length(v); y = sum( v.*( b."(0:N-1)" ) );

Programme 4.4 Fichier test_mult_entiers.m

X = 262122154512154212; y = 314134464653513212;

b = 20; % la base

XX number2vector (x,b); yy = number2vector(y,b);

2z mult_entiers(xx,yy,b); z = vector2number(zz,b);
z - x*y % le résultat doit valoir zéro

Programme 5.1 Fichier poisson.m

¢ quelgues constantes

N = 30; h = 1/N; nb_iter = 30;

M = zeros(N+1, N+1); f_val = zeros(N-1, N-1);

% on commence avec x=h (seulement les points du centre)
for i=1:N-1 % calcul du membre de droite

for j=1:N-1
x = i*h; y = j*h;
f_val(i,3j) = f(x,y);
end
end
for i=1:N-1 % ajout des termes de bord
X = i*h;
f_val(i,1l) = f_val(i,1) - 1/h"2 * f_0y(x);
f_val(i,N-1) = f_val(i,N-1) - 1/h"2 * f_1ly(x);
f_val(l,i) = f_val(l,i) - 1/h"2 * f_x0(x);
f_val(N-1,i) = f_val(N-1,i) - 1/h"2 * f_x1(x);
end

¢ on rend la matrice impaire
ff = [(zeros(N-1,1),f_val,zeros(N-1,1),-f_val(:,N-1:-1:1)1];
ff = [zeros(1l,2*N); ff; zeros(1l,2*N); -ff(N-1:-1:1,:)1];
ff = fft2(f£f); % on calcule la FFT
d = -4/h"2 * sin( (0:2*N-1) * pi/(2*N))."2;
for i=1:2*N & résolution du systéme d*u+u*d = ff
for j=1:2*N
s = d(i) + d(3);
if( s==0 ) s=1; end; % éviter la division par 0
ff(i,j) = ££(i,3) / s;
end
end
ff = real( ifft2( £ff ) ); & on calcule la transformée inverse
¢ on extrait la solution
u = zeros(N+1,N+1); u(2:N, 2:N) = f£f(2:N,2:N);
for i=1:N+1 & on remet les termes du bord

X = (i-1) *h;

u(i,1l) = £_0y(x); u(i,N+1) = f_1ly(x);

u(l,i) = f_x0(x); u(N+1,1i) = f_x1(x);
end

surf(u); title(’Résolution par FFT');

Programme 5.2 Procédure £

function r = f(x,y)
r = (X"2+y"2) *exp (x*y) ;
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Programme 5.3 Procédure sol

function r = sol(x,y)
r = exp(x*y);

Programme 5.4 Procédure u_0Oy

function r = f_0y(y)
r = sol(0,y);

Programme 6.1 Fichier chaleur.m

¢ nombre de points d’interpolation pour le calcul de 1’intégrale

M =2°8; h = 1/M;

¢ valeur de f aux points d’interpolation

f_val = zeros(M,1);

for( i=1:M ) f_val(i) = f£((i-1)*h); end;

% calcul de la fft

dft_val = fft(f_val);

¢ calcul des coefficients de fourier
fcoef = zeros(M,1);

for n=1:M

i =1+ mod(-(n-1),M); % il faut renverser les indices

fcoef(n) = h*dft_val(i);
end
¢ dessine une évolution de la solution

for t = [0.01,0.02,0.03,0.04,0.05,0.06]

XX = [xx, real( solve_eq(0, fcoef) )];
end
plot (xx) ;

Programme 6.2 Procédure solve_eq

function u = solve_eq(t, fcoef_val)

prec = 300; h = 1/prec; % précision du tracé

u= zeros(prec+l, 1);

M = length(fcoef_val); % taille de la solution
v = [0:M/2,-M/2+1:-1]"; & fréquences des coefficients

¢ calcule la solution
for i=0:prec

X = 1*h;
w = exp(-2.0*pi*pi*t*v.*v + 2.0i*pi*x*v)
u(i+l) = sum(w);

end

.* fcoef_val;

Programme 6.3 Procédure £

function y = f(x)

if( x<0.3 ) y = 0;
elseif( x<0.7) y = 1;
else y = 0;

end






Annexe B
Programmes MAPLE

Ce chapitre rassemble I’ensemble des programmes MAPLE du livre. Chaque programme
constitue un fichier . dsw a part entiére. Ils ont souvent été coupés en plusieurs morceaux
par souci de clareté.

1 Transformée sur un corps fini

Le fichier fft-corps-fini.msw réalise successivemente

1. une recherche des facteurs irréductibles de X" — 1 sur un corps fini I, (on a pris
p =2). Par lacommande alias, on nomme ¢ une racine primitive de I’unité.

2. une implémentation naive de la transformée de Fourier sur le corps cyclotomique
IF,r. Dans le cas ou n est de la forme 2°, il est possible d’implémenter une version
récursive de I’algorithme. Ceci est fait pour la transformée de Fourier sur un anneau,
appendice 2.

3. untest surun vecteur f € IF); tiré au hasard. On peut constater que fgé IF, puisqu’on
est obligé de faire les calculs dans une extension cyclotomique de IF,.

2 Transformée sur un anneau

Le programme MAPLE fft-anneau.msw calcule une transformée de taille n a valeur
dans un anneau Z/mZ pour un entier m judicieusement choisi (conformément aux expli-
cations données au paragraphe 2, chap. VI). On a choisi # de la forme 2°, ce qui permet
d’implémenter un algorithme récursif de type FFT. On utilise une fonction intermédiaire,
FFT_rec, qui permet de mettre a jour a chaque appel la racine principale de I’unité.

3 Multiplication de grands entiers

Le programme MAPLE mult-grands-entiers .mws permet de calculer le produit
de deux entiers représentés par leur décomposition dans une base b donnée. Ce pro-
gramme utilise les constantes n et m ainsi que la fonction xFFT qui se trouve dans le
fichier fft-anneau.msw, 2.1. Voici les différentes choses que 1’on peut trouver dans
ce programme.

1. On calcule d’abord une valeur de b optimale, de fagon 2 satisfaire a n(b —1)? < m.
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Programme 1.1 Fichier fft-corps-fini.msw
Les paramétres pour faire un TFD de taille » fixé sur IF,, :
> with(numtheory): n := 16: p := 3:

Liste des facteurs de X" — 1. Choix d’un facteur irréductible de degré r et de la racine primive associée : on
constate que r est bien I’ordre de p dans (Z/nZ)*.
> 1liste_div := op(Factor( cyclotomic(n,X) ) mod p );
> P := liste_div[1l];
> alias( alpha = RootOf(P) ):
liste_div = X*+2X2+2,X*+X2+2

P:=X*42X%242

Transformée de Fourier, version O(n2) :
> TFD := proc(f, signe)

> local res, formule;
> # pour plus de lisibilité, on écrit a part la formule de TFD :
> formule := ‘f[l1+1])*alpha?(-signe*(k-1)*1)"’;
> res := [ seq( sum( formule, ‘1’=0..n-1 ) mod p , k=1..n) 1;
> if signe=-1 then res := 1l/n*res mod p end if;
> return (Normal (res) mod p);
> end proc:
Test simple :
> hasard := rand(0.. (p-1)):
> X := [seq( hasard(), i=1..n )];
> y := TFD(x,1); # TFD(x) n’est plus a coefficients dans F_2.
> evalb( x = TFD(y,-1) ); # Mais on retombe bien sur nos pattes.

X:i= [0a2)0)27172a27211711170)0)2>2$1]

yi=[,2034+2a+a?+2,1,203 +a+202,02+ 1,03+, 1,203 + a1, 1,
Btat+at+22,03+2a+20%202+2,203+20,2,0% +20]
true

2. Ensuite plusieurs fonctions tres utiles sont définies (pour passer de la représentation
sous forme de nombre a celle sous forme de vecteur).

3. La fonction prod_entiers calcule le produit de convolution des deux vecteurs,
puis propage les retenues.

4. Enfin, un test est effectué. Bien sfir, 1’utilité de ces fonctions est de multiplier des
nombres entiers que MAPLE ne sait pas manipuler (car trop grands), ce qui n’est
pas le cas dans ce test (car on fait vérifier a MAPLE que le produit est juste).

4 Décodage des codes BCH

Ce programme MAPLE utilise la fonction FFT définie dans le programme 1. Il faudra
donc recopier cette procédure au début du programme. Le programme a été découpé en
trois parties :

— Partie 1 (programme 4.1): recherche des facteurs irréductibles de X" — 1 sur [, et
construction du polyndme générateur du code BCH. '

— Partie 2 (programme 4.2) : définition de routines pour manipuler des mots du code a la
fois sous forme de vecteurs et de polyndmes, pour générer des mots au hasard.

— Partie 3 (programme 4.3): la premiére partie de 1’algorithme de décodage, on calcule
les valeurs de oy,...,0;.
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Programme 2.1 Fichier fft-anneau.msw
Définition des parametres de la transformée
> s :=4: n := 2%s: m := 24(27(s-1)) + 1:

Sous-procédure récursive:

> FFT_rec := proc(f, signe, zeta)

> local nn, nl, s, t, r;

> nn := nops(f); nl := nn/2; # taille du vecteur

> if nn=1 then return(f) end if; # fin de 1’algorithme

> # construction des deux sous-vecteurs de taille nl

> s := [ seq(f[2*k+1], k=0..nl1-1) 1;

> t := [ seq(f[2*k], k=1..nl) ];

> # calcul des deux sous-FFT :

> s := FFT_rec(s, signe, zeta*2 mod m);

> t := FFT_rec(t, signe, zeta”2 mod m);

> # mixage des deux résultats

> a := seq( slk]+zetar(-signe*(k-1))*t[(k] mod m, k=1..nl );
> b := seq( s[k]l-zeta*r(-signe*(k-1))*t[k] mod m, k=1..nl );
> r := [a,bl;

> return(r);

> end proc:

Procédure principale (attention, le nom FFT est protégé en MAPLE ...):

> XFFT := proc(f, signe)
> local r;
> r := FFT _rec(f,signe,2);
> if signe=-1 then r := 1/n*r mod m;
> else r; end if
> end proc:
Un test:
> hasard := rand(0..m-1):
> X := [seq( hasard(), i=1..n )1:
> y := XFFT(x,+1);
> evalb( x = XxFFT(y,-1) ); # On retombe bien sur nos pattes.

x:=[179,220,230,218,49,253,197,218,67,177,136,127,190, 106,210,255

y:=[5,250,28,179,190,157,195,216,198,11,13,43,5,59,49,238]
true

— Partie 4 (programme 4.4): la deuxieme partie de I’algorithme de décodage, on calcule
les valeurs de &), 82,+1, €1
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Programme 3.1 Fichier mul t-grands-entiers.msw
b désigne la base de calcul. Il faut que n(b — 1) < m.
> b := floor( evalf(sqgrt(m/n))+1 ):

Calcule le produit point & point :
> cw_mult := proc(a,b)
> [seq( a[i]l*b[i], i=1..n )]:
> end proc:

Transforme un entier en vecteur :
> number2vector := proc(x)

> local N, res, i, r, q, XX:

> N := floor( log(x)/log(b) )+1;
> res := []: XX := X:

> for i from 1 to N do

> XX := iquo(xx,b,’'r’):

> res := [op(res), r]:

> end:

> return(res):

> end proc:

Transforme un vecteur en entier :
> vector2number := proc(v)
> add(v[k] *br (k-1), k=1..nops(v));
> end proc:

Calcule le produit de convolution :

> convol := proc(f,g)
> XFFT( cw_mult (XFFT(f,1),xFFT(g,1)), -1):
> end proc:

Calcule le produit de deux entiers représentés sous forme de vecteurs de taille n. Attention, les n/2
derniéres entrées des vecteurs doivent étre nulles.

> prod_entiers := proc(x,y)
> local res, i:
> res := convol(x,y):
> for i from 1 to n-1 do
> res[i] := irem(res([i].b,’q’):
> res[i+1l] := res[i+l]l+q;
> end:
> return(res) :
> end proc:
Un test:

> hasard := rand(0..b-1):
[seq( hasard(), i=1..n/2 ), seq(0, i=1..n/2)];

> XX :=
> vyy := [seq( hasard(), i=1..n/2 ), seq(0, i=1..n/2)];

> X := vector2number (xx): y := vectorZ2number (yy):;

> zz := prod_entiers(xx,yy):

> evalb( vector2number(zz) = x*y ); # il doit y avoir égalité ...

xx:=[4,0,0,3,3,1,0,4,0,0,0,0,0,0,0,0]
yy:=[3,0,4,1,4,2,3,0,0,0,0,0,0,0,0,0]
y:= 55853
zz:=[2,2,1,1,3,3,2,2,1,0,3,3,2,4,2,0]
true
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Programme 4.1 Fichier decodage-bch.msw partie 1
r: degrés des facteurs irréductibles de X" — 1 sur IF; ; ¢ : capacité de correction.

> with(numtheory): with(linalg):
> n := 15: t := 3: delta:=2*t+1:

Liste des facteurs de X" — 1choix d’un facteur irréductible de degré r et de la racine primive associée : on
constate que r est bien I’ordre de p dans (Z/nZ)*.

> liste_div := op(Factor( X*n-1 ) mod 2 ):
> P := liste_divI(2];
> alias( alpha = RootOf(P) ):

P=X*+X3+1

Calcule le polyndme générateur du code de distance prescrite 2¢ + 1, le PPCM des polynémes minimaux
des of, pouri=1,...,2¢

> calc_gen := proc()

> local result, Q, i, liste_pol_rest:

> result := P: # on sait déja que P est dans le PPCM
> liste_pol_rest := {liste_div} minus {P}:

> # alpha”2 est racine de P, donc on peut le sauter
> for i from 3 to 2*t do

> for Q in liste_pol_rest do

> if Eval(Q, X=alpha”i) mod 2 = 0 then

> result := result*Q:

> liste_pol_rest:=1liste_pol_rest minus {Q}: break:
> end if: end do: end do:

> result := Expand(result) mod 2

> end proc:

Polyndme générateur et dimension du code :
> G := sort( calc_gen() ); d := n - degree(G);
G:i=X"04+X%+ X8+ X6+ X5+ X2+1
d:=5
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Programme 4.2 Fichier decodage-bch.msw partie 2
[...] Suite du script précédent

Calcule le mot de taille n (liste de 0/1) correspondant & un polyndme de degré n — 1

> Mot := proc(Q)
> [seq( coeff(Q, X,it), it=0..n-1 )]
> end proc:

Calcule le polyndme de degré n — 1 correspondant 4 un mot de taille n

> Pol := proc(mot)
> sum(mot [1t]*XA (it-1), it=1..n);
> end proc:

Calcule le syndréme d’indice i, i.e. P(a') :

> Syndi := proc(pol, 1i)
> Eval (pol, X = alpha*i) mod 2;
> end proc:

Calcule un vecteur aléatoire avec nb_erreurs erreurs

> Aleat := proc(nb_erreurs)

> local hasard:

> hasard := rand(l..(n-1)):

> Mot ( add(X*hasard(), i=1..nb_erreurs) mod 2 );
> end proc:

Calcule un mot du code au hasard

> MotCode := proc()

> local Q;

> Q := Randpoly(d-1, X) mod 2;
> Q := Expand( Q*G ) mod 2;

> Mot (Q) ;

> end proc:

On simule une transmission avec erreur :
> mot_code := MotCode() ;
> mot_transmis := mot_code + Aleat(3) mod 2;
> p_recu := Pol(mot_transmis);

mot_code :=[0,1,1,1,1,0,0,0,1,0,0,1,1,0, 1]
mot_transmis := [0,1,1,1,1,0,0,0, 1,0,0,0,0,0,0]
p_recu:=X+X?>+ X3+ x4+ x8
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Programme 4.3 Fichier decodage-bch.msw partie 3
[...] Suite du script précédent

lére partie + Résolution des équations pour i =n —t ... n — 1 pour trouver o[1] ... o[t]

Calcule de I’équation polynomiale & résoudre (attention, on note la € transformée de Fourier de I’erreur):

> eqn := (l+add(sigmal[i]*z*i,i=1..t))*
> (add(epsilon[n-il*Z+i,i=1..n)):
> eqn := rem(eqn,Z*n-1,Z,’'q’); # 1l’équation est modulo Z*n-1

eqn:= (016 + 0364+ €1+ 0263) 2" 4 (0365 + &, + 01 &3+ 02 &) Z13

+ (834 0285 + 01 €4 + O3 £6) 212 + (03 87 + O €6 + Oy €5 + £4) Z"!

+ (018 + &5+ 0388+ 02€1) Z'0 + (01 €7 + 03 89 + &+ 02 8) Z°

+(03€10+ 02689+ 01 &3+ &7) Z8 + (0189 + 3+ 02 €10 + 03 £11) Z7

+ (69 + 01 €10+ O2 €11 + O3 €12) Z8 + (02 €12 + €10+ O1 €11 + O3 €13) Z°

+ (01 €12+ €11 + O3 €14 + 02 £13) Z* + (01 €13 + C2 €14 + €12 + T3 89) Z°
+(01eu+Ee3+ 0361+ 02 8) 2%+ (€14 + 0180+ T3 82+ C2€1) Z+ 0363 + &0

+ 0,6+ 01€
Calcule les équations a résoudre, liste les valeurs de € connues, pour i = 1 ... 2¢, puis évalue les équations :
> list_eqgnl := {seq( coeff(egn,Z,i), i=n-t..n-1 )}:
> epsilon_connu := {seq( epsilon[i] = Syndi(p_recu,i), i=1..2*t )};
> eqn_evall := eval(list_eqgnl, epsilon_connu) ;

epsilon_connu :=

{e=a*+?e=36=+1,65=1l, 4=+’ +a+1,5=a+a+1}
egn_evall := {01 (@®+ 02 +a+1)+ o’ +a+1+03(a+1)+ 0y,
o (@d+a2+a+1)+o+a?+o035+0 (3 +a+1),
B+o3(+at+a+1)+oy(ad+a+1)+0i (a3 +0?)}

Met sous forme matricielle les équations :

> ml := matrix(t,t):

> bl := vector(t):

> i :=1:

> for eq in eqn_evall do

> for j from 1 to t do

> ml[i,Jj] := coeff(eq,sigmaljl,1);

> end do:

> bl[i] := eval( eq, [seq(sigmalk]=0,k=1..t)] );
> 1 := i+1:

> end do:

Calcule les valeurs de o en résolvant le systéme :
> sigma_val := Linsolve(ml,bl) mod 2:
> sigma_connu := { seq(sigmalil=sigma_val([i], i = 1..t) };

sigma_connu:= {0y = o> + 1,00 =0+ 0* + a,03 = &2 + 1}
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Programme 4.4 Fichier decodage-bch.msw partie 4
2e partie + Résolution des équations pour i =0 ... n —2¢ — 1 pour trouver £[0], €[2t+1] ... €[n-1]

Calcule les équations pour i =0 ... n — 2¢ — 1, puis les évalue:
> list_eqn2 {seq( coeff(egn,Z,i), i=0..n-2*t-1 )}:
> eqn_eval2 eval (list_egn2, epsilon_connu):
> eqgn_eval2 eval (eqn_eval2, sigma_connu) ;

eqn_eval2 .= {%leyg +e1n+ (@3 +1) &3+ (@ + 1) &,

et (03 +1) g+ (@2 +1) (3 +0?) +%la?,

a3+ (a®+1) e+ %le+ (o +1) o3,
g+%l(a}+a?)+ (P +a+1)(a?+1)+(a+1) 03,

en+ 02+ 1) e+ Bles+ (03 +1) e, 0+ (0 + 1) en + (02 + 1) &3+ %l €rz,
g+ (0 +1) &+ %leo+ (a®+1) e, (02 +1) 12+ %le + (o + 1) €10+ &,
(a®+1) €10+ &+ %leo+ (a3 +1)es}

%1 =a’+a’+ o

Met sous forme matricielle les équations :
> # les indices de epsilon a calculer

> epsilon_indices := [0,seq(i, i=2*t+1l..n-1)]:
> m2 := matrix(n-2*t,n-2*t):

> b2 := vector(n-2*t):

> 1 := 1:

> for eq in eqgn_eval2 do

> j:= 1:

> for index in epsilon_indices do

> m2[i,j] := coeff(eq,epsilon[index],1):
> Jj o= J+1;

> end do:

> b2([i]:=eval(eq, [epsilon[0]=0,seq(epsilon[k]=0,k=2*t+1..n-1)]);
> i = i+1:

> end do:

Calcule les valeurs de €[0], €[2t+1] ... g[n-1], puis regroupe toutes les valeurs :
> epsilon_val := Linsolve(m2,b2) mod 2:
> epsilon_val := [epsilon_val[l], seq(Syndi(p_recu,it),it=1..2*t),
> seq(epsilon_val([it],it=2..n-2*t)];

epsilon_val := [1,03,03 + 02,03+ a+ 1,0* + &2+ a+1,1,03 + 1,03+ a+ 1,0* +
ad+at+o, 1,03 4+0%+a,03+02+ 1,03+ a2+ 1,03 +1]

On peut maintenant déterminer I’erreur par transformée de Fourier inverse :

> erreurs := Normal( TFD(epsilon_val,-1) ) mod 2;
> mot_corrige := mot_transmis - erreurs mod 2:
> evalb( mot_corrige = mot_code );

erreurs := [0,0,0,0,0,0,0,0,0,0,0,1,1,0,1]
true
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CAUCHY, 139, 221, 238
Causalité, 138-140

Centre

— d’un groupe, 205, 295

— de gravité, 106

CFL (condition), 265
Chaine de Markov, 24
CHEBYSHEV, 87

Chirp, 145, 146, 153, 155
Circuit RLC, 143

Classe

— de conjugaison, 213, 215
— de Schwartz, 256

Code

— équivalent, 189

— auto-dual, 180, 190, 239
— auto-orthogonal, 180
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Index

- BCH, 174

— correcteur, 166

- cyclique, 170, 173

— de Hadamard, 184, 190

— de Hamming, 172, 189

— de Hamming étendu, 190

— de Reed-Muller, 187, 285

— dual, 180, 184, 189, 190, 285

— linéaire, 170, 171

- MDS, 173, 191

— non-linéaire, 171

— orthogonal, 180

— parfait, 189

— simplexe, 189, 190

Coefficient de Fourier, 14, 216, 234

— calcul par FFT, 111

Commutateur, 12

Complexité, 56, 68, 84, 86, 125, 128

Compression, 43, 56

- JPEG, 88

Convolution

- 2D, 80, 115

— acyclique, 77, 86, 120, 125, 147, 269,
276

— circulaire, 17, 75, 119, 120, 146, 147,
174,278

— par transformée de Hartley, 134

COOLEY-TUKEY, 66, 70, 84, 146, 278

Corps fini, 27, 155, 158, 307

Corrélation, 93, 125, 135

— normalisée, 125

Courbe de Lissajou, 87

Crochet de la dualité, 43, 197

CZT, 145, 276

D

Décimation

— fréquentielle, 73, 85

— temporelle, 67
Décodage, 178, 283, 308
Décomposition

— en éléments simples, 143, 154, 277
—en cycles, 11

— en produits, 143
Dénombrement, 20, 211
Dérivation fractionnaire, 89
Déterminant, 36, 198

— circulant, 19, 86, 241

— d’un groupe, 222, 290

— maximal, 57

Descripteur de Fourier, 110

Diagonalisation, 89, 91, 230, 262, 268,
294, 295

Dichotomie, 66, 162, 293

Différence

— divisée, 120

— finie, 114, 121

Distance, 108

— assignée, 174, 175

— de Hamming, 48, 169

— entre polygones, 110

— minimale, 171, 247

Distribution, 62

Diviser pour régner, 42, 66, 128

Diviseur de zéro, 163, 164, 280

Dual

— d’un code, 180, 184, 189, 190, 285

— d’un espace vectoriel, 43

— d’un groupe abélien fini, 2

— d’un groupe fini, 210

— d’un groupe non commutatif, 11

Dualité, 197

— linéaire, 9

— sur un groupe, 2

— temps/fréquence, 103

E

Echantillonnage, 62, 98, 145, 148, 155

Echelon, 103

EISENSTEIN, 52

Elément simple, 143, 154, 277

Endomorphisme

— normal, 89

— unitaire, 23, 74, 89, 91, 194, 199, 200,
208, 232, 234, 238, 295

Entier

— algébrique, 290

— de Fermat, 166

— multiplication, 121, 301, 307

Entrelacement, 204, 214, 221

Equation

— aux classes, 238

— aux dérivées partielles, 111

— aux différences, 143

— Danielson-Lanczos, 67

— de Fermat, 52

— de la chaleur, 112, 121, 122

— de Laplace, 114
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— de Poisson, 114 — d’Euler, 28
— différentielle, 143 — d’inversion, 15, 41, 88, 96, 132, 152,
— sur un corps fini, 28 213, 260
— sur un groupe abélien, 21 — de Cauchy, 139
Espace — de Plancherel, 15, 65, 216
— des fonctions centrales, 208, 214 — de Poisson, 44
— des fonctions de G dans C, 3 — de Poisson continue, 49
— des fonctions de G dans K, 195 — de Poisson vectorielle, 47
— des invariants, 203 FOURIER, 112
— dual, 197 FROBENIUS, 30, 221, 222
— isotypiques, 217 FWT, 299
— projectif, 284
EULER, 28, 186 G
GAUSS, 32, 38, 283
F Gaussienne, 51, 113, 125
Factorisation, 143 GOOD-THOMAS, 84
FERMAT, 52, 166 Groupe
FFT, 65, 162, 264 — cyclique, 4, 75, 226, 249
— en base 4, 69 — dérivé, 12
— sur un anneau, 165 — de Heisenberg, 21, 243
FHT, 133, 299 — de transformations, 23, 193, 194
Filtrage, 115 — diédral, 221, 227, 237, 289, 293
Filtre, 100, 115, 261 — du cube G4, 228
- 2D, 104, 125, 266 — ordre d’un groupe, 7

— analogique, 143 — quaternionique, 238, 295

— causal, 138-140 — quotient, 50, 53

— continu, 113 — simple, 230, 232, 238

— de convolution, 138 Groupe symétrique, 11, 13,201, 203,237

— de polygones, 106 - 63,237

— discret, 113 — B4, 194,237

— linéaire, 100 q

— passe bas, 127 HAAR, 54, 250

— récursif, 138, 154 HADAMARD, 57, 190
Fonction

Harmonique, 102

— bent, 187, 281 HARTLEY, 131

~ booléenne, 43, 186, 238 Homothétie, 109, 204, 214

— centrale, 208, 214

— d’Euler, 186 I

— de distance, 183 Idéal, 118, 173

— de transfert, 100 — d’un code, 170

— duale, 182 Idempotent central, 216

— harmonique, 114 Identité

— holomorphes, 136 — de Jacobi, 51

— indicatrice, 20, 181 — de MacWilliams, 43, 48,61, 180, 182,
— plateau, 216 239

— quadratique, 117 Image, 104, 122, 125, 126, 269
— Théta de Jacobi, 50 Inégalité

Forme systématique, 189 — de Cauchy-Schwartz, 21, 24

Formule — polygonales, 107
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Index

Incertitude, 24, 100
Indécomposabilité, 200
Injection canonique, 9
Interpolation, 74, 152
— de Chebysheyv, 87

— de Lagrange, 87

— directe, 128

— indirecte, 128

— trigonométrique, 87, 273
Inversion de bits, 84
Irréductibilité, 200
ISBN, 168
Isomorphisme, 79

- canonique,A 8,9

—entre G et G;, 9
—entreGetG, 5, 8
Itération, 67, 106, 247
— entiére, 127

J
JPEG, 88

K

KARATSUBA, 128
Kissing Number, 170
KRAWTCHOUK, 191

L

LAPLACE, 114, 144
LEGENDRE, 28, 31, 38

Lemme

— chinois, 84, 118, 186

— de Cauchy, 238

— de Cauchy-Frobenius, 221

— de Schur, 22, 204, 214, 263

— qui n’est pas de Burnside, 221
Lissage d’image, 104, 125

M

Méthode

— de Givens-Householder, 92

— de quadrature, 154

— de Simpson, 154, 155

— des rectangles, 97, 154

— des trapezes, 154

— spectrale, 89

MACWILLIAMS, 43, 48, 61, 180, 239
MAPLE, vi, 145, 160, 166, 176, 185, 307
Marche aléatoire, 24

MATLAB, vi, 42, 51, 84, 88, 113, 117,
121, 122, 145, 299

Matrice

— circulante, 86, 91, 153, 174, 262

— de contréle, 172, 189

— de Hadamard, 57, 190

— de Paley, 59, 190

— de permutation, 201

— de Toeplitz, 153

— de transition, 24

— de Vandermonde, 37, 74, 177, 226, 247

— de Walsh, 40

— génératrice, 171, 189

— semblable, 202

— unitaire, 74, 82, 89, 91, 200, 208, 237,
293

MDS, 173, 191

Membrane élastique, 114

Module

- K[G]-modules, 195

— sous-K[G]-modules, 199

Morphisme, 118

— G-morphisme, 204

- K[G]-morphisme, 195

— caractére, 2

— d’anneau, 84

— d’extension, 7

— de Frobenius, 30, 175

— de restriction, 7

— représentation des morphismes, 196

N

Non-linéarité, 43, 186, 285
Noyau, 118

— d’un caractere, 230

o

Ondelette

— de Haar, 54, 250

— sur un corps fini, 223

Opérateur

- 9,67

— d’entrelacement, 204, 214, 221, 233
— de décalage, 108

— de Reynolds, 205, 219, 288, 289
— de symétrie, 82

— stationnaire, 218

Opérations élémentaires, 283
Optimisation, 191

Orthogonal
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— d’un code, 180

— d’un espace vectoriel, 43, 62, 200
— d’un sous-groupe, 25, 44, 62
Orthogonalisation, 22, 23
Orthogonalité, 10, 32, 209
Oscillation, 80, 271, 274

P

Périodicité non-entiere, 148

Périodisation, 49, 76

Pole, 140, 146

PALEY, 59, 190

Partie symétrique, 82

Peigne de Dirac, 62

Phénomene de Runge, 87

Poids d’un mot, 169, 172, 189, 239, 284,
296

POISSON, 44,114

Polygone, 106, 247

Polyn6me

— énumérateur, 48, 180

— énumérateur d’une fonction, 182

— cyclotomique, 159

— de Chebysheyv, 87

— de Krawtchouk, 184, 191

— de Lagrange, 120

— générateur, 174

— irréductible, 143

— localisateur d’erreurs, 178

— multiplication, 119

— symétrique, 203, 207, 219, 287

— trigonométrique, 275

Potentiel électrique, 114, 123

Principe

— d’incertitude, 24, 100

— du maximum, 123

Probabilité, 18, 23, 24

— uniforme, 187

Produit

— d’entiers, 121, 158

— de polyndmes, 119

— de représentation, 196

— hermitien, 199, 209

— tensoriel, 42, 60, 196, 275, 287

— terme a terme, 16

Produit de convolution, 16, 17,212

— discret, 75

- sur K[G], 195

Programmation linéaire, 191

Projecteur, 205, 216

— isotypique, 218

Projection, 205, 216

— isotypique, 218

— orthogonale, 62
Prolongement de caracteres, 6
Propriété universelle, 194

Q
Quaternion, 238, 295

Quotient, 38, 50, 161, 238, 294

R

Réciprocité quadratique, 35, 52
Répartition

— de distance, 170

— de poids, 170

Réponse

— fréquentielle, 102, 127, 141
— impulsionnelle, 100, 127

— indicielle, 102

Résidu quadratique, 28, 59, 184, 190, 254
Racine

— carrée d’opérateur, 83

— de I’unité, 3, 158

— primitive, 158

— principale de I’unité, 163
Reconnaissance de formes, 109
REED-MULLER, 187, 285
Représentation

— d’algebre, 194

— décomposition, 210
—dedegré 1, 198, 218

— des morphismes, 196, 287, 289
— duale, 197, 208

— fidéle, 194

— indécomposable, 199, 200

— irréductible, 199, 218

— isomorphe, 198, 210

— linéaire, 194

— par coefficients, 119

— par permutation, 201

— par valeurs, 119

— produit, 196, 218

— réguliére, 196, 208, 211

— somme, 196, 200, 222

— standard, 203, 238, 289

— sur les polynémes, 197, 203, 218, 239
— unitaire, 200
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Rotation, 20, 56, 109, 126, 227, 229, 269, T
289 Table
— de vérité, 186
S — des caracteres, 225, 231, 237, 294
Série Théoréme
— de Fourier, 15, 49, 112,216, 234 — d’échantillonnage, 62
— de Laurent, 136 — d’Euler, 186
— enti¢re, 136 — de Bezout, 257
— génératrice, 136 — de Brauer, 202
Schéma — de Fubini, 264
— explicite, 122 — de Molien, 220
— implicite, 122 — de Noether, 218
— papillon, 67 Trace, 205, 207, 214, 242, 288, 294
SCHUR, 204 —de K dans k, 30
SHANNON, 62 Transformée
Signal, 56, 57, 64, 126, 143, 148, 235 — de Hartley, 131
Signature d’une permutation, 11, 203 — de Hartley 2D, 152
Similitude, 109 — de Hartley généralisée, 151
Somme — de Hartley sur un corps fini, 153
— de Gauss, 32 — de Laplace, 144
— de Newton, 207, 219 — de Walsh, 39, 41, 186
Somme glissante, 125 — de Walsh 2D, 56
Sous-groupe, 2, 6, 13, 25,44, 53,62, 182, — en cosinus, 87
197, 219, 280, 295 — en sinus, 124
— distingué, 12, 230, 238 —-enZ, 136
Sous-représentation, 199, 200, 203, 217, — en Z vectorielle, 145
286 Transformée de Fourier, 33, 212
Spline, 128 — discréte, 64
— cubique, 154 —en 2D, 79
— libre, 130 — fractionnaire, 148, 155
— not-a-knot, 130 — intermédiaire, 89
Split-radix, 85 — inverse, 65, 66
Stabilité, 104, 122, 140 — partielle, 83
Structure des groupes abéliens, 8 — rapide, 65
Suite —sur R, 96
— de Sturm, 263 — sur un groupe fini, 64
— exacte, 7 Translation, 3, 21, 22, 24, 44, 97, 109,
Support, 24, 77, 101, 129, 138, 177, 202, 126,218,224,243, 244
247, 250, 261, 272 269, 278, 291
— compact, 62, 100, 103, 121 Twiddle factor, 71, 85
Symétrie, 1, 81, 227, 235, 237, 249, 255,
289 v

Valeur propre, 83, 151

Symbole

_ de Kroneker, 6 Vecteur propre, 83, 91, 151

— de Legendre, 28, 31 Z

Syndrome, 283 Zero padding, 87, 98, 134, 152,271
Systeme

— d’idempotents centraux, 216
— dynamique, 143

Achevé d'imprimer en janvier 2004 par Normandie Roto Impression s.a.s. (France) - N° d'impression : 033242 - Dépét légal : janvier 2004






La collection Mathematiques d I'Université se propose de mettre a la disposi-
tion des étudiants de troisieéme, quatrieme et cinquieme années d’études supé-
rieures en mathématiques des ouvrages couvrant I'essentiel des programmes
actuels des universités francaises. Certains de ces ouvrages pourront étre utiles
aussi aux étudiants qui préparent le CAPES ou 'agrégation, ainsi quaux éléves
des grandes écoles.

Nous avons voulu rendre ces livres accessibles a tous : les sujets traités sont
présentés de maniere simple et progressive, tout en respectant scrupuleuse-
ment la rigneur mathématique. Chaque volume comporte un exposé du cours
avec des démonstrations détaillées de tous les résultats essentiels et de
nombreux exercices. Les auteurs de ces ouvrages ont tous une grande expé-
rience de 'enseignement des mathématiques au niveau supérieur.

Ce livre rassemble tout ce qu’il faut savoir sur la transformée de
Fourier discrete. Il s'adresse a un public d’algébristes qui désirent

étendre leurs connaissances vers diverses applications (maitrise,

master, DEA, DEES, ...). Les agrégatifs pourront trouver une grande
quantité de développements autour du programme officiel. I sera
aussi tres utile aux éleves d’écoles d’'ingénieurs qui découvriront des
sujets classiques sous un jour nouveau.

L’auteur fait alterner la présentation des fondements algébriques de la
théorie de Fourier avec I'exposé des applications auxquelles celle-ci
donne lieu. De nombreuses extensions de la théorie conduisent en
outre a aborder des domaines d’études connexes tels que le traite-
ment du signal, les codes correcteurs ou les représentations linéaires.

Enfin, ce livre contient de nombreux outils. Plus de quatre-vingts
programmes MATLAB et MAPLE permettent au lecteur de mettre en
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