1 Maxima et paraboles

1. Dans une feuille wxMaxima, entrer et valider une à une les lignes suivantes :

$$f(x):=a*x^2+b*x+c$$

 $solve([f(0)=-7,f(1)=-1,f(2)=9],[a,b,c])$

- 2. Noter les résultats.
- 3. Comprendre la signification des commandes exécutées en se servant éventuellement de l'aide du logiciel.
- 4. Interpréter le résultat en complètant la phrase suivante : « Il existe une unique parabole passant par les points ..., cette parabole représente la fonction f définie sur \mathbb{R} par $f(x) = \dots$ »

Appel

2 Suite définie par une relation de récurrence

2.1 Une première suite

On définit une suite u par :

$$\begin{cases} u_0 = -7 \\ \text{Pour tout entier } n \geqslant 0, \ u_{n+1} = u_n + 4n + 6 \end{cases}$$

- 1. Faire une feuille de tableur qui devra afficher les premiers termes de la suite. Puis faire une représentation graphique des premiers termes de la suite par un « nuage de points ».
- 2. Faire alors une conjecture sur l'expression de u_n en fonction de n.
- 3. Contrôler la conjecture à l'aide d'une colonne supplémentaire sur la feuille de tableur.

Appel

2.2 Une autre suite

En procèdant de façon analogue, faire une conjecture sur l'expression de u_n en fonction de n avec la suite u définie par :

Pour tout entier
$$n \geqslant 1$$
, $u_n = \frac{3}{n} \sum_{k=1}^{n} k (k-1)$

Appel

Contrainte : on s'interdira l'utilisation de la fonction SOMME du tableur.

3 DM pour ...

- 1. Écrire les réponses apportées au paragraphe 1 (paraboles).
- 2. Écrire les conjectures faites pour chacune des deux suites.
- 3. Démontrer ces conjectures.

Corrigé

1 Paraboles et Maxima

 $f(x) := a*x^2+b*x+c;$

On définit ainsi une fonction f par son expression $f(x) = ax^2 + bx + c$.

$$solve([f(0)=-7,f(1)=-1,f(2)=9],[a,b,c]);$$

On commande ainsi la résolution du système linéaire d'inconnue (a;b;c):

$$\begin{cases} c = -7 \\ a + b + c = -1 \\ 4a + 2b + c = 9 \end{cases}$$

Le résultat (a;b;c)=(2,4,-7) (très simple à obtenir sans logiciel de calcul formel) permet d'écrire : « Il existe une unique parabole passant par les points A(0;-7), B(1;-1) et C(2;9), cette parabole représente la fonction f définie sur \mathbb{R} par $f(x)=2x^2+4x-7$. »

2 Conjectures avec le tableur

2.1 $u_0 = -7$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n + 4n + 6$

1. Les formules de la feuille de calcul:

	A	В	С	D	Е
1	Indices n	Termes u_n			
2	0	-7			
3	1	=B2+4*A2+6			
4	2	=B3+4*A3+6			
5	3	=B4+4*A4+6			
	:				

Les premiers résultats sont les suivants :

	A	В	С	D	E
1	Indices n	Termes u_n			
2	0	-7			
3	1	-1			
4	2	9			
5	3	23			
6	4	41			

2. Il semble que les points obtenus soient placés sur une parabole. Cela permet de conjecturer une expression de la forme $u_n = an^2 + bn + c$ où a, b et c restent à déterminer.

Les résultats obtenus dans la partie 1 (Maxima) permettent de faire la conjecture suivante :

Pour tout entier naturel
$$n$$
, $u_n = 2n^2 + 4n - 7$

3. Pour tenter de renforcer la plausibilité de cette formule, on peut complèter la feuille de tableur de la façon suivante :

	A	В	C	D	E
1	Indices n	Termes u_n	Confirmation?		
2	0	-7	$=2*A2^2+4*A2-7$		
3	1	=B2+4*A2+6	$=2*A3^2+4*A3-7$		
4	2	=B3+4*A3+6	$=2*A4^2+4*A4-7$		
5	3	=B4+4*A4+6	$=2*A5^2+4*A5-7$		
	:				
•	•				

Tous les résultats, même sur une longue colonne, coïncident.

2.2 Pour
$$n \ge 1$$
, $u_n = \frac{3}{n} \sum_{k=1}^{n} k (k-1)$

La feuille de calcul peut par exemple contenir les formules suivantes :

	A	В	С	D	E
1	Indices n	produit $k(k-1)$	$\sum_{k=1}^{n} k(k-1)$	u_n	n^2-1
2	0				
3	1	=A3*A2	=SOMME(B\$3:B3)	=3/A3*C3	$=A3^2-1$
4	2	=A4*A3	=SOMME(B\$3:B4)	=3/A4*C4	$=A4^2-1$
5	3	=A5*A4	=SOMME(B\$3:B5)	=3/A5*C5	$=A5^2-1$
6	4	=A6*A5	=SOMME(B\$3:B6)	=3/A6*C6	$=A6^2-1$

Avec la contrainte imposée, la colonne C peut s'écrire ainsi :

	A	В	С	D	E
1	Indices n	produit $k(k-1)$	$\sum_{k=1}^{n} k(k-1)$	u_n	n^2-1
2	0				
3	1	=A3*A2	=B3	=3/A3*C3	$=A3^2-1$
4	2	=A4*A3	=B4+C3	=3/A4*C4	$=A4^2-1$
5	3	=A5*A4	=B5+C4	=3/A5*C5	$=A5^2-1$
6	4	=A6*A5	=B6+C5	=3/A6*C6	$=A6^2-1$

Ces formules demandent moins de calcul au logiciel en utilisant l'égalité suivante :

$$\sum_{k=1}^{n} k(k-1) = \left(\sum_{k=1}^{n-1} k(k-1)\right) + n(n-1)$$

On remarquera de plus dans la partie démonstration, que cette écriture est l'une des clefs de l'étape d'hérédité. Elle met en effet en évidence le fait que la suite (S_n) définie pour $n \in \mathbb{N}^*$ par $S_n = \sum_{k=1}^n k(k-1)$ est une suite faisant naturellement intervenir une relation de récurrence :

$$S_n = S_{n-1} + n(n-1)$$

On obtient les premiers résultats suivants :

	A	В	С	D	Е
1	Indices n	produit $k(k-1)$	$\sum_{k=1}^{n} k(k-1)$	u_n	n^2-1
2	0				
3	1	0	0	0	0
4	2	2	2	3	3
5	3	6	8	8	8
6	4	12	20	15	15

Les points de la représentation graphique semblent là aussi se trouver sur une parabole. Dans le logiciel Maxima, on entre :

$$f(x):=a*x^2+b*x+c$$

 $solve([f(1)=0,f(2)=3,f(3)=8],[a,b,c])$

et on obtient :

[[a=1,b=0,c=-1]]

ce qui nous mène à la conjecture :

Pour tout entier naturel $n \ge 1$, $u_n = n^2 - 1$

Ce qu'on aurait pu remarquer directement en observant les résultats (qui sont, à une unité près, les carrés des entiers).

3 Démonstrations

3.1 $u_0 = -7$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n + 4n + 6$

Posons pour $n \in \mathbb{N}$: $v_n = 2n^2 + 4n - 7$. Dans Maxima:

 $v(n) := 2*n^2+4*n-7;$ expand(v(n+1)-v(n));

Réponse de Maxima, facile à vérifier avec papier et crayon : $4\,n+6$

Pour la suite v, nous avons donc :

$$\begin{cases} v_0 = -7 \\ v_{n+1} = v_n + 4n + 6 \end{cases}$$

La suite v est donc égale à la suite u.

Démonstration.

- 1. Amorce. Nous avons $u_0 = v_0$.
- 2. Hérédité. Soit p un entier pour lequel on aurait $u_p = v_p$.

$$u_{p+1} = u_p + 4p + 6$$

$$= v_p + 4p + 6 \qquad \text{d'après l'hypothèse de récurrence}$$

$$= v_{p+1}$$

3. Conclusion.

Les deux étapes précédentes et le principe de récurrence nous permettent ainsi l'affirmation :

$$\forall n \in \mathbb{N}, \ v_n = u_n$$

3.2 Pour tout entier
$$n \ge 1$$
, $u_n = \frac{3}{n} \sum_{k=1}^{n} k (k-1)$

Reprenons les notations introduites plus haut :

pour $n \in \mathbb{N}^*$, on définit S_n par $S_n = \sum_{k=1}^n k(k-1)$. Pour $n \in \mathbb{N}^*$, nous avons :

$$S_{n+1} = S_n + n(n+1)$$

Pour $n \in \mathbb{N}^*$, $u_n = \frac{3}{n}S_n$ et:

$$u_{n+1} = \frac{3}{n+1} S_{n+1}$$

$$= \frac{3}{n+1} (S_n + n(n+1))$$

$$= \frac{3}{n+1} \left(\frac{n}{3} u_n + n(n+1) \right)$$

$$= \frac{n}{n+1} u_n + 3n$$

Posons maintenant pour $n \in \mathbb{N}^*$: $v_n = n^2 - 1$. Dans Maxima:

$$v(n) := n^2-1;$$

ratsimp($v(n+1)-n/(n+1)*v(n)$);

La réponse ne se fait pas attendre et est facilement vérifiable « à la main » : 3n.

Pour la suite v, nous avons donc :

$$\begin{cases} v_1 = 0 \\ \forall n \in \mathbb{N}^* \ v_{n+1} = \frac{n}{n+1} v_n + 3n \end{cases}$$

et pour la suite u:

$$\begin{cases} u_1 = 0 \\ \forall n \in \mathbb{N}^* \ u_{n+1} = \frac{n}{n+1} u_n + 3n \end{cases}$$

Avec une rédaction analogue au paragraphe précédent, nous pouvons donc établir que les suites u et v sont égales.

4 Autres rédactions des preuves

4.1 $u_0 = -7$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n + 4n + 6$

On cherche à démontrer, par récurrence, que pour tout entier naturel n, on a : $u_n = 2n^2 + 4n - 7$.

- Amorce.
 - On a $u_0 = -7$ et $2 \times 0^2 + 4 \times 0 7 = -7$. L'égalité entre u_n et $2n^2 + 4n 7$ est donc vraie pour n = 0.
- Hérédité

Soit p un entier naturel pour lequel on aurait $u_p = 2p^2 + 4p - 7$ (HR).

$$u_{p+1} = u_p + 4p + 6$$

= $(2p^2 + 4p - 7) + 4p + 6$ en utilisant HR
= $2p^2 + 8p - 1$

Et le développement de l'expression $2\left(p+1\right)^{2}+4\left(p+1\right)-7$ donne :

$$2(p+1)^{2} + 4(p+1) - 7 = (2p^{2} + 4p + 2) + 4p + 4 - 7$$
$$= 2p^{2} + 8p - 1$$

L'hérédité est ainsi établie.

• Le principe de récurrence nous permet maintenant d'affirmer que pour tout entier naturel n, on a : $u_n = 2n^2 + 4n - 7$.

4.2 $u_0 = -7$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n + 4n + 6$

On cherche à démontrer, par récurrence, que pour tout entier naturel n, on a : $u_n = 2n^2 + 4n - 7$.

• Amorce.

On a $u_0 = -7$ et $2 \times 0^2 + 4 \times 0 - 7 = -7$. L'égalité entre u_n et $2n^2 + 4n - 7$ est donc vraie pour n = 0.

• Hérédité.

Soit p un entier naturel pour lequel on aurait $u_p = 2p^2 + 4p - 7$ (HR).

$$u_{p+1} = u_p + 4p + 6$$

= $(2p^2 + 4p - 7) + 4p + 6$ en utilisant HR
= $2p^2 + 8p - 1$

Et le développement de l'expression $2(p+1)^2 + 4(p+1) - 7$ donne :

$$2(p+1)^{2} + 4(p+1) - 7 = (2p^{2} + 4p + 2) + 4p + 4 - 7$$
$$= 2p^{2} + 8p - 1$$

L'hérédité est ainsi établie.

• Le principe de récurrence nous permet maintenant d'affirmer que pour tout entier naturel n, on a : $u_n = 2n^2 + 4n - 7$.

4.3 Pour tout entier $n \ge 1$, $u_n = \frac{3}{n} \sum_{k=1}^{n} k (k-1)$

On cherche à démontrer par récurrence que pour tout entier naturel $n \ge 1$, on a : $u_n = n^2 - 1$.

Amorce

On a $u_1 = 0$ et $1^2 - 1 = 0$. L'égalité entre u_n et $n^2 - 1$ est donc vraie pour n = 1.

Hérédité.

Soit p un entier naturel pour lequel on aurait $u_p = p^2 - 1$ (HR).

$$u_{p+1} = \frac{3}{p+1} \sum_{k=1}^{p+1} k(k-1)$$

$$= \frac{3}{p+1} \left(\left(\sum_{k=1}^{p} k(k-1) \right) + (p+1) \times p \right)$$

$$= \frac{3}{p+1} \left(\frac{p}{3} u_p + (p+1) \times p \right)$$

$$= \frac{3}{p+1} \left(\frac{p}{3} \left(p^2 - 1 \right) + (p+1) \times p \right) \text{ en utilisant HR}$$

$$= \frac{3}{p+1} \times (p+1) \left(\frac{p}{3} \left(p - 1 \right) + p \right)$$

$$= p(p-1) + 3p$$

$$= p^2 + 2p$$

Et le développement de l'expression $(p+1)^2 - 1$ donne :

$$(p+1)^2 - 1 = (p^2 + 2p + 1) - 1$$

= $p^2 + 2p$

L'hérédité est ainsi établie.

• Le principe de récurrence nous permet maintenant d'affirmer que pour tout entier naturel n non nul, on a : $u_n = n^2 - 1$.