SUITES DE FONCTIONS ET APPROXIMATION UNIFORME

Pour ce thème, il importe de connaître :

- la définition de la convergence simple et de la convergence uniforme, le critère de Cauchy uniforme;
- les propriétés conservées par la limite simple d'une suite de fonctions : la croissance, la convexité, la parité,
 la périodicité;
- les propriétés de la limite uniforme d'une suite de fonctions : la continuité, la dérivabilité, l'interversion de limites (« double limite »), l'intégration sur un segment ;
- les résultats concernant l'approximation uniforme des fonctions continues sur un segment par des fonctions en escalier, par des fonctions affines par morceaux ou par des fonctions polynômes (théorème de Weierstrass).

Exercice 1

Soit (f_n) la suite de fonctions définies sur l'intervalle $I =]-\pi, \pi[$ par $f_n(0) = 0$ et $f_n(x) = \frac{\sin^2 nx}{n \sin x}$ si $x \neq 0$. Étudier la convergence simple puis uniforme de la suite (f_n) sur I.

Exercice 2

Soit (f_n) la suite de fonctions définies sur $I = [0, \pi/2]$ par $f_n(x) = \cos^n x \sin x$.

- 1. Montrer que la suite (f_n) converge uniformément, sur I, vers la fonction nulle.
- 2. Pour $n \in \mathbb{N}$, on pose $g_n = (n+1)f_n$. Montrer que, pour tout $\delta > 0$, la suite (f_n) converge uniformément, sur $[\delta, \pi/2]$, vers la fonction nulle.
- 3. Vérifier que $\lim_{n\to+\infty} \int_0^{\pi/2} g_n(t) dt \neq 0$.

Exercice 3

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes convergeant uniformément sur \mathbb{R} vers une fonction f. Montrer que f est une fonction polynôme. (Ind. Utiliser le critère de Cauchy uniforme).

Exercice 4

Un lemme de Riemann-Lebesgue.

Soit $f:[a,b]\to \mathbf{R}$ une fonction continue par morceaux. Pour tout réel λ on pose :

$$I_{\lambda}(f) = \int_{a}^{b} f(t) e^{i\lambda t} dt.$$

- 1. Montrer que toute fonction continue par morceaux sur [a,b] à valeurs dans \mathbf{R} est limite uniforme, sur [a,b] d'une suite de fonctions en escalier.
- 2. Montrer que $I_{\lambda}(f)$ tend vers 0 lorsque λ tend vers $+\infty$. (Ind. Établir le résultat pour une fonction en escalier, puis passer au cas général par approximation).

Exercice 5

Le théorème d'approximation uniforme de Weierstrass par les polynômes de Bernstein.

Soit $f:[0,1]\to \mathbf{R}$ une fonction continue. Pour $n\in \mathbf{N}^*$, on définit la fonction $B_n(f)$ sur [0,1] par :

$$B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

On se propose de montrer que la suite de fonctions $(B_n(f))_{n\in\mathbb{N}^*}$ converge uniformément, sur [0,1], vers f.

- 1. Calculer explicitement $B_n(f)$ et prouver le résultat dans les trois cas particuliers suivants : f est la fonction $x \mapsto 1$, f est la fonction $x \mapsto x$, f est la fonction $x \mapsto x^2$. (Ind. Une formule : $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$.)
- 2. On suppose maintenant f quelconque et on fixe $\varepsilon > 0$.
 - (a) Vérifier que, pour tous $x \in [0,1]$ et $n \in \mathbb{N}^*$,

$$f(x) - B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \left(f(x) - f\left(\frac{k}{n}\right) \right).$$

(b) Montrer, en utilisant le théorème de Heine, qu'il existe $\eta > 0$ ayant la propriété suivante :

si
$$x \in [0, 1], n \in \mathbf{N}^*$$
 et $k \in [1, n]$ sont tels que $\left| x - \frac{k}{n} \right| \leqslant \eta$ alors $\left| f(x) - f\left(\frac{k}{n}\right) \right| \leqslant \varepsilon$.

- (c) On note $I(x) = \left\{ k \in \llbracket 0, n \rrbracket, \left| x \frac{k}{n} \right| \leq \eta \right\} \text{ et } J(x) = \left\{ k \in \llbracket 0, n \rrbracket, \left| x \frac{k}{n} \right| > \eta \right\}.$
 - i. Montrer que, pour tous $x \in [0,1]$ et $n \in \mathbf{N}^*$, $\left| \sum_{k \in I(x)} \binom{n}{k} x^k (1-x)^{n-k} \left(f(x) f\left(\frac{k}{n}\right) \right) \right| \leqslant \varepsilon$.
 - ii. Montrer que, pour tous $x \in [0,1]$ et $n \in \mathbb{N}^*$,

$$\left| \sum_{k \in J(x)} \binom{n}{k} x^k (1-x)^{n-k} \left(f(x) - f\left(\frac{k}{n}\right) \right) \right| \leqslant \frac{2 \|f\|_{\infty}}{\eta^2} \sum_{k \in J(x)}^n \binom{n}{k} x^k (1-x)^{n-k} \left(x - \frac{k}{n} \right)^2.$$

- (d) Déduire, en utilisant les résultats des questions précédentes, que la suite $(B_n(f))_{n \in \mathbb{N}^*}$ converge uniformément, sur [0,1], vers f.
- 3. Montrer le théorème de Weierstrass : toute fonction continue sur [a, b] à valeurs dans \mathbf{R} est est limite uniforme sur [a, b] d'une suite de fonctions polynômes.
- 4. Soit $f:[0,1]\to \mathbf{R}$ une fonction continue. On suppose que $\int_a^b f(t)\,t^n\,\mathrm{d}t=0$ pour tout $n\in\mathbf{N}$. Montrer que f est nulle.

Exercice 6

- 1. **Théorème de Dini.** Soit (f_n) une suite de fonctions continues sur [0,1], à valeurs dans \mathbf{R} et convergeant simplement vers une fonction continue f. On suppose que pour x fixé la suite $(f_n(x))$ est croissante.
 - (a) Montrer que la suite définie, pour $n \in \mathbb{N}$, par $u_n = ||f f_n||_{\infty}$ est convergente.
 - (b) Montrer que, pour $n \in \mathbb{N}$, il existe $x_n \in [0,1]$ tel que $u_n = f(x_n)$.
 - (c) Montrer que (u_n) a pour limite 0 c-à-d. que la convergence de (f_n) vers f est uniforme sur [0,1].
- 2. On considère la suite (P_n) de fonctions polynômes sur [0,1] définie par les relations :

$$P_0 = 0, \quad \forall n \in \mathbf{N}, \quad P_{n+1}(x) = P_n(x) + \frac{x - P_n^2(x)}{2}.$$

- 3. Montrer que, pour $x \in [0,1], 0 \leq P_n(x) \leq \sqrt{x}$.
- 4. Déduire de ce qui précède que (P_n) est uniformément convergente, sur [0,1], vers la fonction $x \mapsto \sqrt{x}$.
- 5. Montrer que la fonction $x \mapsto |x|$ est limite uniforme, sur [-1,1], d'une suite de fonctions polynômes [-1,1].

^{1.} Ce qui permet de donner une autre preuve du théorème de Weierstrass.